WO2014001716A1 - Dispositif de dénudage de câbles électriques utilisant des diodes laser violettes ou bleues - Google Patents

Dispositif de dénudage de câbles électriques utilisant des diodes laser violettes ou bleues Download PDF

Info

Publication number
WO2014001716A1
WO2014001716A1 PCT/FR2013/051490 FR2013051490W WO2014001716A1 WO 2014001716 A1 WO2014001716 A1 WO 2014001716A1 FR 2013051490 W FR2013051490 W FR 2013051490W WO 2014001716 A1 WO2014001716 A1 WO 2014001716A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
stripping
track
beams
laser
Prior art date
Application number
PCT/FR2013/051490
Other languages
English (en)
Inventor
Fabien Reversat
Stéphane ROUGIER
Pierre Bouvet
Original Assignee
Laselec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46852226&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014001716(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Laselec filed Critical Laselec
Priority to CN201380034070.2A priority Critical patent/CN104412473B/zh
Priority to RU2015102830A priority patent/RU2621702C2/ru
Priority to ES13744634T priority patent/ES2739610T5/es
Priority to UAA201500700A priority patent/UA115334C2/uk
Priority to CA2876805A priority patent/CA2876805C/fr
Priority to JP2015519295A priority patent/JP6367186B2/ja
Priority to EP13744634.0A priority patent/EP2867960B2/fr
Priority to US14/411,855 priority patent/US9876338B2/en
Publication of WO2014001716A1 publication Critical patent/WO2014001716A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • H02G1/1275Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by applying heat
    • H02G1/128Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by applying heat using radiant energy, e.g. a laser beam
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof

Definitions

  • the present invention relates to a LASER device for the stripping of electric cables.
  • a single-strand electrical cable usually comprises a conductive core and an insulating sheath surrounding the conductor over the entire length thereof, said insulating sheath being able to consist of several layers, for example of an inner layer of Kapton® and an outer layer of Teflon®.
  • a multi-strand cable usually comprises several strands, each consisting of a conductor and an individual insulating sheath, all the strands being surrounded by a metal shielding braid and then by a common insulating sheath (Kapton® layer and Teflon® insulation layer). for example).
  • Stripping one end of a multi-strand cable also involves removing the common insulating sheath over a given length from that end, taking care not to damage the shielding metal braid and the individual insulating sheaths of the various strands. Throughout the description, the term "stripping" the action of stripping an end of a cable.
  • Cable stripping is a particularly frequent operation in the field of aeronautics, an aircraft being equipped with several hundred kilometers of cables for the control and operation of the various systems of the aircraft, and these cables for the most part must be stripped at their opposite ends to allow connection of the cable to various terminals.
  • As part of aircraft maintenance operations it is common for technicians to replace a defective cable; it is in this case more advantageous to strip the ends of the replacement cable in situ, that is to say in the aircraft, a particularly small place.
  • In-situ stripping is sometimes unavoidable, for example when it is impossible to know in advance the length of the cable (this is the case of a multi-strand cable that follows a zigzag circuit). There is therefore a need, especially in the aviation industry, for portable cable stripping devices.
  • Each pair of blades is adapted to a given size and type of cable, so it is necessary to have a whole battery of blades to be able to strip the various cables used for example in an aircraft.
  • the erroneous use of a pair of blades that do not correspond to the cable to be stripped can lead either to an incomplete removal of the insulating sheath and thus to a bad connection of the cable to the terminal, or to the breaking of certain wires of the cable conductor, with for consequences a decrease in its mechanical strength, an increase in its electrical resistance (by reducing its conduction section) may generate hot spots, all of these defects may lead to the total rupture of the cable. Acting by contact, the blades tend to wear out and need to be replaced regularly.
  • the cables used in the field of aeronautics have insulating sleeves increasingly thin, in order to reduce the weight embedded in the aircraft.
  • the current machining tolerances do not make it possible to manufacture blades (at least at an acceptable cost) capable of reliably stripping recent cables whose insulating sheath is for example formed of a very thin layer of Kapton® only .
  • the mechanical devices are not suitable for stripping cables whose section is not circular and in particular for stripping multi-stranded cables or twisted cables.
  • thermal stripping devices with heating blades to burn the insulating sheath. These devices are unsatisfactory because they often leave deposits of insulation on the bare conductor and do not allow to obtain a precise stripping.
  • LASER stripping devices are also known, the LASER radiation emitted from vaporizing the insulating sheath. Being a non-contact technology, these devices do not suffer from wear problems. In addition, they allow not only stripping cables, cylindrical or non-such twisted cables, but also to achieve all forms of cutting in the insulating sheath, for example a window for a shielding recovery. The major drawbacks of LASER stripping devices are their high cost and their lack of compactness.
  • WO 2008084216 discloses a LASER stripping device comprising:
  • a portable stripping head receiving the LASER radiation and comprising
  • a stripping zone capable of receiving the end of a cable to be stripped
  • Optical means capable of receiving the LASER radiation and directing it into the stripping zone, towards and around the cable along a cutting path
  • means for injecting a gas for cleaning optics soiled by the vaporized insulation
  • Control means making it possible to adjust the speed of movement of the radiation along the cutting path or to monitor and possibly modify the power of the emitted LASER radiation.
  • the device proposed by WO 2008084216 responds to an effort of compactness and an attempt to make a portable device, but its basic unit remains very bulky and therefore does not allow the use of the device in very small sites.
  • this basic unit does not seem to be easily embedded in an aircraft.
  • the presence of the hose connecting the stripping head to the base unit hinders the handling of said stripping head.
  • no control of the depth of field of the emitted LASER radiation is provided, so that the electrical conductor is not preserved only if it reflects sufficiently the LASER radiation.
  • LASER gas LASER
  • CO2 LASER, Excimer LASER and Argon LASER gas LASER
  • Excimer LASER and Argon LASER gas LASER
  • the use of these LASER emitting either in the infrared or in the ultraviolet ensures the integrity of the conductors of the cables, the copper reflecting 99% of such radiation.
  • the wavelength of 10.6 ⁇ usually emitted by CO 2 LASERs has proved to be quite relevant for stripping cables not only because copper, generally used as a conductor, has a high damage threshold at this length. but also because most of the insulating materials used for sheathing the cables have a low damage threshold at this wavelength.
  • the phenomenon is reversed in the case of the near-infrared wavelength 1, 064 ⁇ emitted by a solid LASER Nd: YAG type.
  • the infrared wavelength of 10.6pm requires the use of special optics, such as ZnSe optics, which are much more expensive and sensitive than glass. These optics pose particular cleaning problems because of their low hardness.
  • the wavelength 10.6pm is not visible to the eye, which complicates the alignment of the beam. For example, it is necessary to use a visible beam specifically for alignment.
  • LASER stripping technology (wavelength 0, 93pm, 0.248pm, 0.308pm or 0.351 ⁇ m for the most used gases) produces fine and precise slices of cable sheath.
  • LASER sources are extremely bulky. They are also very expensive, not only for purchase but also for maintenance because they require a very frequent renewal of the gaseous mixture, also very toxic.
  • These LASER sources are pulsed and generate a high peak power beam which, if it effectively incises the cable sheath, is also capable of damaging the metal core.
  • FR 2 690 015 An example of use for stripping cables of a laser emitting in the ultraviolet, that is to say with a wavelength of less than 380 nm, is provided by FR 2 690 015.
  • the LASER is an Argon LASER. It should be noted that there are argon LASERS having a wavelength of 351 nm or 364 nm.
  • LASER diodes are a priori not possible for various reasons: the known LASER diodes generate a beam whose wavelength is not favorable and which is either too low power or poor quality. Indeed, the most widespread LASER diodes typically emit in the near-infrared range (wavelengths between 0.7pm and 1.8pm), in which area the cable sheath is very diffusing. These diodes are therefore very little effective for stripping cables. To compensate for this low efficiency, high power would be needed. High-power multi-element LASER diodes are now available.
  • LASER diodes are mainly used for welding or lighting applications. They appear a priori not very compatible with a machining application, which requires precision, such as an application stripping electrical cables.
  • the invention aims to overcome these drawbacks, by proposing a compact and truly portable LASER stripping device - in order to be used in a cramped site such as an aircraft or to be able to be integrated in a known cable marking machine.
  • the device must also make it possible to strip single-conductor cylindrical cables of all diameters in a safe and reliable manner, that is to say without risk of damaging the conductor of the cable and with the assurance that no deposit of insulation remains .
  • the invention also aims to provide a stripping device for stripping any type of electrical cables (cylindrical cables, multi-stranded cables and even ribbon cables).
  • Another object of the invention is to provide a device whose cost price is equivalent to or lower than the known devices.
  • the invention proposes a stripping device for electric cables, comprising on the one hand at least one stripping beam emitted by a LASER source and focused by an optical assembly at a point of focus, called a cutting point, and on the other hand at least one receiving track of a cable portion to be stripped.
  • the device according to the invention is characterized in that the LASER source comprises a LASER diode, hereinafter referred to as a blue or violet LASER diode, emitting a stripping beam with a wavelength of between 400 nm (0.40 m) and 460nm (0.46 ⁇ ).
  • each LASER source consists solely of a blue or violet LASER diode.
  • LASER GaN technology power diodes have been developed especially for "Blu-ray Disk” and LASER projection technologies. They are available in the form of high power single-element LASER diodes with relatively high beam quality (although these diodes are generally multimode). Their low wavelength and high beam quality make it possible to obtain a small cutting point at a reasonable working distance necessary to obtain quality stripping.
  • LASER diodes emitting radiation of wavelength equal to 375 nm (ie in the ultraviolet) are on the market.
  • the inventors have established that these LASER diodes have a power too low for the intended application. In addition, their cost remains quite high.
  • each LASER source therefore comprises a LASER diode emitting a stripping beam of wavelength between 440nm and 460nm or between 400nm and 410nm.
  • LASER diodes o
  • the size of the LASER diodes is out of all proportion to that of the gas LASERs; a LASER diode only measures a few millimeters. This allows in particular to have several LASER diodes in the same stripping device to increase productivity. It also allows for much smaller stripping devices in which the LASER source (s) can be mounted on moving parts. This finally allows the realization of portable stripping devices, which can be used in situ.
  • o Optics can be glass or silica; they are then much easier to stock and more robust.
  • the violet or blue LASER beam is visible (contrary to the ultraviolet beam of the argon laser of FR 2 690 015 and the Excimer LASER, and unlike the infrared beams of the CO2 lasers); so it is very easy to align.
  • the LASER beam can be focused at a very small cutting point, which allows a very precise cut of the insulating sheath to be generated, to optimize the optical power required and to limit the depth of field of the laser beam. stripping.
  • the device according to the invention comprises one or more stripping beams.
  • each beam is emitted and focused by a LASER source and an optical assembly that are specific to it, so that the device comprises as many LASER sources and optical assemblies and stripping beams. .
  • This multiplication of sources is made possible by the miniature character of the laser diodes.
  • the stripping device further comprises, for at least one cutting point and preferably for each cutting point, steering means able to move said cutting point relative to a receiving track. of cable along a predefined cutting path.
  • steering means able to move said cutting point relative to a receiving track. of cable along a predefined cutting path.
  • these means are essentially mechanical.
  • the device can then comprise as many mechanical assemblies of direction as of cutting points, each mechanical assembly allowing to move individually the only cutting point with which it is associated, or, alternatively, a only mechanical assembly for moving all the cutting points together.
  • the device according to the invention comprises mechanical means of direction able to move at least one cutting point around a cable receiving track in a circular path, in a transverse plane.
  • the beam rotates around the cable to be stripped so as to practice in its sheath a circular incision.
  • the device according to the invention comprises steering means able to move at least one cutting point at a time around and along a rectilinear cable receiving track, in order to allow the execution of a cut. in the form of a window for carrying out a shielding recovery for example.
  • each cable receiving track passes entirely through the device and is provided with a retractable abutment which, in the deployed position, crosses the cable receiving track and thus closes the passage to the cable so as to enable it to be stripped.
  • the device according to the invention comprises, on the one hand, a plurality of rectilinear cable receiving tracks to be stripped, these tracks extending in the same plane parallel to each other in a longitudinal direction X, and on the other hand a mechanical assembly capable of moving at least one cutting point in a transverse direction Y parallel to the plane of the cable receiving tracks and orthogonal to the longitudinal direction X.
  • This device makes it possible to strip several cables in the context of the same stripping operation.
  • the device according to the invention comprises at least two stripping beams, the cutting points of said beams being located on either side of a cable receiving track, in the same transverse stripping plane (orthogonal plane to the longitudinal direction of the cable receiving track).
  • the device according to the invention comprises three or four stripping beams distributed around a cable receiving track, each of the stripping beams being formed by a primary beam emitted by a blue or violet laser diode in the stripping plane, that is to say in a plane orthogonal to the cable receiving track, and reflected by a motorized swivel mirror, the three or four motorized pivoting mirrors being controlled desynchronously so that the stripping beams do not cross.
  • the motorized pivoting mirrors are preferably driven two by two (two incisions are therefore made simultaneously in the cable sheath). It should be noted that each motorized pivoting mirror is part of both the "optical assembly” and "steering means" as previously defined, associated with a stripping beam.
  • the device according to the invention comprises three or four stripping beams distributed around a cable receiving track, each of the stripping beams being formed by a primary beam emitted by a blue laser diode or violet in a direction parallel to the cable receiving track, and reflected by a motorized rotating mirror.
  • this second primary beam embodiment parallel to the cable receiving track is more compact.
  • This second embodiment can be declined in two variants.
  • the motor of each motorized pivoting mirror is arranged immediately in front of the corresponding mirror, the expression "at the front” referring to a direction defined as follows.
  • the device comprises an outer casing having a front face, and an opposite rear face; the front face is the one through which a cable to be stripped can be introduced into the device, the cable receiving track extending inside the housing from the front face and preferably to the rear face.
  • each motor is arranged between the associated mirror and the front face of the device.
  • each motorized pivoting mirror is associated with a motor arranged at the rear of the corresponding laser diode, the device again having a front face through which a cable to be stripped can be introduced into a cable entry opening.
  • the motorized pivoting mirror for each stripping beam, one successively finds along the cable receiving track, from the front face of the device: the motorized pivoting mirror, the laser diode and the motor associated with the mirror.
  • the device comprises, for each cable receiving track, a holding assembly for holding a cable to be stripped in the cable receiving track, and the holding assembly comprises a cable gland having a sleeve of a light-proof elastic material. Compression of the sleeve by the stuffing box around a stripping cable makes it possible to make the device impermeable to light and thus avoid any risk of burns of the operator.
  • each holding assembly comprises a slide slidable in a direction orthogonal to the cable receiving track and having at least two through passages of different internal diameters, each through passage being provided with a gland with a sleeve a light-proof elastic material.
  • the device comprises calibration means able to measure a diameter of a stripping cable housed in a cable receiving track and to adjust the position of at least one cutting point relative to said track as a function of the measured diameter.
  • Any suitable means can be used to obtain a measurement of the diameter.
  • a mechanical member comprising a cable holding jaw which pinches the cable and is mounted on a caliper may be used.
  • the calibration means comprise a gland as previously described. The distance of movement of the stuffing box, which is a function of the diameter of the cable, can then be used to determine this diameter.
  • an optical sensing member may be provided.
  • the device comprises, for at least one stripping beam, a monitoring system for controlling the progress of the stripping.
  • this monitoring system comprises means, such as one or more photodiodes for the capture and analysis of a control optical signal emitted by a target referred to by said stripping beam, and control means for adapting parameters of scan (eg angle and / or pivoting speed of a motorized pivoting mirror as previously described) as a function of analysis results of the optical control signal.
  • This optical control signal corresponds either to the LASER beam backscattered by the cable, or to a light emission (fluorescence or incandescence) generated by a laser / insulator interaction to be stripped.
  • This optical control signal is preferably acquired using at least one photodiode (semiconductor component having the ability to detect radiation from the optical domain and transform it into an electrical signal), filtered or non-spectrally (for example an infrared filtered photodiode captures only the lengths of the near infrared and is therefore insensitive to the intense reflection of the blue LASER beam) making it possible to measure either a variation of reflectivity of the blue laser beam, or the incandescence generated by the burning of the Kapton® (polyimide) often present under an upper sheath of PTFE or other.
  • photodiode semiconductor component having the ability to detect radiation from the optical domain and transform it into an electrical signal
  • filtered or non-spectrally for example an infrared filtered photodiode captures only the lengths of the near infrared and is therefore insensitive to the intense reflection of the blue LASER beam
  • a variation of the reflectivity during stripping of a cable whose insulating sheath consists of a single type of polymer makes it possible to know that the metal core or the metal shielding has been achieved.
  • the detection of an intense crackling during the stripping of a cable whose insulating sheath includes a Kapton® underlayer makes it possible to know in the same way that the stripping was done well locally.
  • photodiodes are inexpensive standard components. Here again, their very small dimensions make it possible to obtain a compact and lightweight device. In the case of a device comprising several LASER diodes or, more generally, several stripping beams, it is possible to provide as many control photodiodes as there are stripping beams. The device obtained remains compact and lightweight enough to be portable, for use in an aircraft for example.
  • a filtered photodiode which does not pick up the wavelengths emitted by the laser diode may for example be used to monitor the progress of the stripping process by detecting the presence of bright flashes characteristic of a laser / polyimide interaction. Once this polyimide layer is reached (which can happen if the shield is not perfectly continuous and opaque) and bright flashes are detected, the stripping beam is moved to avoid the risk of cutting the underlying wires.
  • an unfiltered photodiode makes it possible to detect a reflection difference of the stripping beam and thus to allow the stripping operation to be continued until the conductive core or the metallic shield of the cable is reached.
  • the device comprises an autofocus system for servocontrolling a cutting point, able to determine the position of said cutting point with respect to a surface of a stripper cable housed in the corresponding receiving track (track of receiving targeted by said cutting point).
  • this autofocus system comprises two control beams coplanar to the stripping beam (corresponding to the slice cut point) and surrounding it, as well as capture and analysis means (such as a linear sensor ) a control image formed by radiation reflected by a cable housed in the reception track (targeted by said stripping beam); in addition, said reception track extends in a longitudinal direction qualified as inclined, which forms, in a plane containing the stripping beam and the receiving track, a non-zero angle with a normal stripping direction which would be orthogonal to the axial direction of the stripping beam.
  • the control beams can be generated by low power LASER diodes of their own. As a variant, they are generated by the LASER diode generating the stripping beam, to which is associated a three-beam diffractive generator making it possible to separate the radiation emitted by the LASER diode into three beams (a central stripping beam and two lateral control beams). , of lesser power).
  • the monitoring system or the autofocus system furthermore comprise a polarization separator cube enabling the stripping beam and the possible control beams to be oriented towards the cable reception track. transmit to the image sensor or the photodiode that the radiation reflected.
  • the device according to the invention operates on autonomous battery.
  • the LASER stripping device according to the invention can be integrated into a cutting machine and pulling down to a desired length of a coil of cables. It can also be integrated into a cable marking machine. In these two cases, it is preferable to use a device according to the invention whose or the cable receiving tracks are through.
  • the present invention extends to a LASER stripping device characterized in combination, by all or part of the characteristics mentioned above and below.
  • FIG. 1 is a schematic longitudinal sectional view of a first embodiment of a stripping device according to the invention
  • FIG. 2 is a schematic cross-sectional view of a second embodiment of a stripping device according to the invention.
  • FIG. 3 is a schematic longitudinal sectional view of a third embodiment of a stripping device according to the invention.
  • FIGS. 4a to 4c represent, in longitudinal section, a downstream portion of the view of FIG. 3, in three different situations (focused cutting point respectively beyond, on or before the surface of the cable to be stripped) and the signal obtained at the output of a control sensor in each of these three situations;
  • FIG. 5 is a diagrammatic cross-sectional view of an embodiment of a device according to the invention provided with four LASER diodes emitting transverse primary beams;
  • FIG. 6 is a schematic cross-sectional view of an embodiment of a device according to the invention provided with three LASER diodes emitting longitudinal primary beams (parallel to the cable receiving track);
  • FIGS. 7 and 8 are diagrammatic views in longitudinal section of two embodiments of a device according to the invention (FIG. 7 revealing only part of the device) equipped with several LASER diodes emitting primary beams parallel to the cable receiving track;
  • FIGS. 8 and 9 are schematic views in longitudinal section of two embodiments of a gland retaining assembly of a device according to the invention.
  • FIG. 10 is a diagrammatic perspective exploded view of a slider holding assembly and glands of a device according to the invention.
  • a first family of devices comprising one or more stripping heads movable with respect to the cable to be stripped; this is the case of the devices illustrated in FIGS. 1 and 2,
  • a second family of devices comprising one or more stripping heads of which only a part (for example a mirror) is movable relative to the cable to be stripped, the LASER diode (s) remaining fixed in the device; this is the case of the devices illustrated in FIGS. 5 to 8,
  • a third family of mixed devices comprising one or more stripping heads, part of which is movable relative to the cable to be stripped (as for the devices of the second family), all the stripping heads being able to be completely displaced, in bulk in the device, for example in a transverse direction as illustrated in FIG. 2 or in a longitudinal direction along the cable receiving track or tracks in order to make a longitudinal incision, for example to facilitate the extraction of the insulator and for make a window as part of a shielding recovery.
  • FIG. 1 shows a first example of a cable stripping device of the first family.
  • This first example comprises two stripping heads for the emission of two stripping beams 10 and 11 coplanar.
  • Each head comprises a blue or violet laser diode 1, that is to say a diode emitting with a wavelength between 0.40 pm and 0.46 pm, and an optical assembly comprising a collimation optic 2, an optical 3 and a deflection mirror 4.
  • the stripping beam 10 is thus focused at a cutting point 12, while the stripping beam 11 is focused at a cutting point 13.
  • the stripping device illustrated comprises elsewhere a track 6 for receiving a cable 5 to be stripped, delimited on the one hand by a tubular guide 7 which has for this purpose a central recess 70, and on the other hand by a holding jaw 8.
  • the cable 5 is inserted from the left of the figure to an adjustable stop 9 housed in the central recess 70 of the guide 7.
  • the position of the stop 9 in the longitudinal direction relative to the guide 7 can be adjusted by the user by any appropriate means (not shown)
  • the stop 6 slides indeed in the recess 70 of the tubular guide 7.
  • each cutting point 12, 13 can be indexed mechanically on the opening (distance between the jaws) of the jaw 8, so as to maintain a working distance (distance between the cutting point and the surface of the cable) substantially constant regardless of the cable diameter to be stripped.
  • Such an indexing system constitutes mechanical means of calibration within the meaning of the appended claims.
  • the two stripping heads (diode 1 + optics 2 and 3 + deflection mirror 4, which reflecting mirror 4 remains fixed with respect to the diode and the primary beam that it generates) of the device are rotated around the cable.
  • This rotational movement is achieved by means of steering means comprising a motor whose speed is optimized according to a stripping program, an information on the diameter of the cable which can be determined with the help of a sensor measuring for example the movement of the jaws of the jaw (8).
  • Such an embodiment with rotary stripping head (s) may include one or more (two as illustrated, or more) stripping heads.
  • the devices of the first rotary stripping head family such as that of FIG. 1 have the advantage of having cutting points which follow circular trajectories, that is to say trajectories that closely follow the geometry of the cables.
  • the cutting points of the device of the first family illustrated in Figure 2 or devices of the second family illustrated in Figures 5 and 6 follow rectilinear paths less favorable.
  • Some stripping parameters such as the luminous power of the LASER diodes, the rotational speed of the optical heads or the number of rotations can be adjusted by means of a monitoring system for controlling the progression of the stripping.
  • This monitoring system comprises in a simple version, a photodetector (photodiode) measuring the intensity of a control optical signal emitted by the surface of the cable.
  • a photodetector is advantageously provided for each stripping head.
  • optical control signal the intensity of the backscattered flux or fluorescence generated by the surface of the cable (here called "optical control signal”) varies depending on the material struck by the LASER beam, which makes it possible to know for example that a first layer of the insulating sheath of the cable has been machined completely and a second layer is being made or that the metal core of the cable is bare (the intensity of the backscattered flux varies abruptly when the laser beam reaches the metal core of the cable after having passed through the polymeric materials of the insulating sheath).
  • the optical control signal is a function of the angular and longitudinal stroke of the stripping beam.
  • control means able to adjust the LASER power or the speed of displacement so as not to agree more than necessary and to optimize the speed of execution.
  • LASER parameters can also be used in a multi-pass scheme to calculate LASER parameters for subsequent passes. For example, a first pass at fast speed and low LASER power makes it possible to strip areas that are described as easy.
  • the optical control signal makes it possible to locate these already stripped zones and to turn off or lower the LASER power at these zones during the next pass. And so on, for subsequent passages, until the 360 ° circumference or the desired linear length has been fully incised. In this way, it is possible to perform a layer-by-layer machining of insulation, without insisting on easy areas of small thickness or closer to the cutting point of each stripping beam.
  • This monitoring function is particularly interesting for the stripping of shielded twisted multi-stranded cables (also known as "stripping"), cables whose braided helical metal shielding is not always perfectly opaque (in some places, the mesh may be slightly distended).
  • the section of this type of cable is not circular and therefore has a surface more or less close to the cutting point of each stripping beam. It is also common that the upper insulation is wrapped, and has areas composed of a single layer of ribbon and areas consisting of two or more layers of ribbon. In this context, some areas are stripping faster than others. If this type of cable is denuded at constant power and speed, it is necessary to insist on the easy zones (zones having only a single layer of ribbon or zones located at the point of cut) so that the zones difficult (areas with multiple layers of tape or areas upstream or downstream of the cutting point) are fully incised.
  • the tubular guide 7 is also used to suck fumes released by the vaporization of the polymeric materials constituting the sheath.
  • the tubular guide 7 has an annular recess 71 (surrounding its central recess 70) or a plurality of recesses of circular section or whatever, located around the stop 9, in which (s) the smoke can circulate, and on which one comes to connect a suction and filtration device (not shown).
  • Figure 2 shows a second example of a device of the first family, which allows the collective stripping of a large number of cables loaded on a translation plate.
  • Such a device comprises at least one cable reception track 106 and a pair of stripping heads generating two stripping beams 1 10, 1 1 1 in a transverse plane (plane orthogonal to said receiving track 106) said strands extending on either side of said track in this transverse plane (plane of the figure).
  • Each stripping head includes a diode LASER 101 violet or blue, and optics 102, 103 for shaping the stripping beam 1 10 or 11 11.
  • the device further comprises mechanical means for translating the receiving track in a transverse direction (that is, that is orthogonal to the reception track 106) and orthogonal to the direction of the stripping beams.
  • the translation means move not the track but the corresponding stripping heads in the transverse direction. In both cases, these translation means constitute mechanical means of direction within the meaning of the appended claims.
  • the violet or blue LASER diode stripping device may optionally include an autofocus function for servocontrolling a cutting point on the surface of the cable.
  • This function is of great interest for the stripping of twisted multi-wire cables, non-circular section, and whose son under the sheath can be damaged by the LASER beam.
  • it also ensures perfect stripping (without any damage to the conductor or trace remaining insulation), or to adapt the device to the diameter of the cable with extreme precision.
  • the autofocus function makes it possible to work with a LASER beam at a very short depth of field and to follow in real time using a computer the topology of the cable, while the optical head moves axially along the cable or in a circular motion relative to the cable.
  • FIG. 3 illustrates a principle of operation of such an autofocus function.
  • the violet or blue LASER diode 201 emits a beam, called the primary beam 202, which is collimated by an optic 203.
  • the primary beam 202 passes through a three-beam diffractive generator 204, a kind of hologram making it possible to generate two sub-beams of weak light. power on both sides of the main beam, not deviated.
  • a triple beam 205 is thus observed at the output of the generator 204.
  • the optical polarization of the triple LASER beam is rectilinear and oriented so that the triple beam is reflected by a polarization separator cube 206.
  • the triple beam passes through a quarter-wave plate 207 which makes it possible to convert the rectilinear polarization state of the incident wave into a circular polarization state.
  • the triple beam then passes through an active focusing optics 208, at the output of which there are three almost parallel beams: a central stripping beam 209 of high power, and two lateral beams 210, 21 1, said control beams, of low power. .
  • This active optics 208 makes it possible to adjust the position of the point of focus of the cutting beam 209 on the surface of the cable whatever the position of the latter.
  • the central main beam (stripping beam 209) serves for stripping the cable, the two adjacent sub-beams (control beams 210, 21 1) are only used for the autofocus function.
  • the active focusing optics 208 may be a simple lens or a lens arrangement mounted on a longitudinal translation stage (translation in the axial direction of the beams 209-21 1) or an electrically controlled variable focus lens. .
  • the three beams 209-21 1 intercept the surface of the cable 212, inclined with respect to a normal direction of stripping which would be orthogonal to the axial direction of the three beams.
  • the three beams are backscattered by the surface of the cable 212.
  • a part of the backscattered flux passes through the active lens 208 in the opposite direction, then the quarter wave plate 207.
  • the latter transforms the circular polarization state of the backscattered flux into a state. linearly cross-polarized with respect to the rectilinear polarization state of the primary beam 202 emitted by the diode.
  • the backscattered beam is then transmitted by the polarization separator cube 206 and passes through an imaging objective 213 (focusing lens for example).
  • a linear image sensor 214 is disposed in the focal plane of the imaging objective 213, it receives the image of the surface of the cable 212 illuminated by the three beams (cutting beam 209 and control beams 210, 21 1).
  • the analysis of the image received by the image sensor 214 allows to enslave the position of the cutting point of the stripping beam on the surface of the cable 212.
  • An illustration of the principle is provided in Figures 4a to 4c. If the stripping beam 209 is too long, i.e. if the cutting point is beyond the surface of the cable (which corresponds to FIG. 4a), then the control beam 210 is better focused that the control beam 21 and its image point is smaller and more intense (image signal of greater amplitude). If the stripping beam 209 is too short, i.e. if the cutting point is located before the surface of the cable (FIG. 4c), then the control beam 21 is better focused than the control beam 210 and its point image is therefore smaller and more intense.
  • an electronic calculator allows the piloting of the active lens 208 from the analysis of the signal generated by the image sensor 214 in time. real, so as to always maintain an optimal cutting point.
  • the cut point image can also be used to slave stripping parameters, such as the power of the LASER diode, the stripping speed of the stripping head, and so on.
  • An autofocus system such as that illustrated in FIGS. 3 and 4a to 4c can also be associated with each of the stripping heads of a device with rotary heads such as that of FIG. 1.
  • the device according to the invention can integrate a single LASER source and a single optical assembly making it possible to generate all the stripping beams.
  • a device according to the invention comprises as many LASER diodes and optical assemblies as stripping beams. This multiplication of sources is made possible by their miniaturization.
  • FIG. 5 thus illustrates a stripping device according to the invention comprising four stripping heads distributed around a cable receiving track 306, each stripping head comprising a fixed LASER diode 310 to 313, a motorized swivel mirror 315 to 318 and a motor (not shown) for driving the mirror.
  • the device could comprise only two or three stripping heads, or possibly more than four stripping heads.
  • the devices of the second family include as many motors as stripping beams.
  • the second family is more suitable for the realization of portable devices because moving parts are lower in number and weight, which allows the use of less powerful engines, less bulky and lighter.
  • a second advantage of the second family is to allow a greater tolerance for the maintenance of the cable because we can take a little margin on the scanning angles of the mirrors, so that a slight transverse shift of the cable does not pose a problem. problem contrary to the embodiments of the first family. We can therefore use a very simple holding system such as that shown in Figures 9 to 1 1.
  • each LASER diode is arranged to emit a transverse primary beam whose axis is contained in the transverse stripping plane (in other words, the axis of each primary beam is orthogonal to the cable receiving track 306).
  • Each mirror 315 to 318 is oscillating (or pivoting) so that the cutting points of the stripping beams generated by reflection of the primary beams on these mirrors are moved a few millimeters in the directions indicated by double arrows in the figure.
  • each LASER diode (and its associated mirror) makes an incision in the sheath of the cable over a quarter circle.
  • the stripping heads are controlled so that two consecutive LASER diodes, for example the diodes 310 and 31 1, 312 and 313, are activated at the same time and that the stripping beams that they generate do not meet .
  • two incisions simultaneously, the time of completion of a stripping operation is shortened.
  • FIG. 6 illustrates a second example of a device according to the invention of the second family, that is to say having a plurality of stripping mirror and fixed LASER diode stripping heads, but which emit primary beams.
  • longitudinal that is to say parallel to the receiving track 306.
  • the illustrated example comprises three LASER diodes 320 to 322.
  • a device comprising two, four or more LASER diodes with longitudinal primary beams is also in accordance to the invention.
  • each LASER diode 320 to 322 is combined with a motorized pivoting mirror 325 to 327.
  • the motor 341, 342 associated with each pivoting mirror is preferably offset at the rear of the device as shown in FIG. front face of the device being defined as being the face provided with an inlet 307 for entry of a cable to be stripped.
  • each motor is arranged in the immediate vicinity, at the front, of the mirror which it rotates as shown in FIG. 7.
  • This variant is less advantageous than that of FIG. 8, in particular in the case of a portable device. intended to be used in tight wiring environments, because the stripping plane is necessarily remote from the front face of the device to allow housing engines.
  • the stop 360 is associated with the cable receiving track 306. Any suitable means (not shown) may be used to move this stopper between an extended position and a retracted position. In the deployed position, that is to say as shown in Figures 7 and 8, the stop 360 serves as a stop at the end of the cable introduced into the device. In the retracted position (not shown), the stop 360 is remote from the cable receiving track 306 and a longer cable length can be introduced into the device. It is advantageous to provide a stop that is both retractable as the stop 360 and adjustable (adjustable position) as the stop 9 shown in Figure 1. The skilled person can easily design such a stop which does not appear on the attached drawings.
  • each stripping head of the devices of the second family can be equipped with a monitoring system (with one or more photodiodes) as previously described and / or an autofocus system.
  • the examples of the second family can be broken down into a version (third family) where the block consisting of three (or more) strip stripping stripping heads, is translated along the cable to be stripped, so as to be able to perform both an annular incision and one or more (if one lights several diodes) longitudinal incisions (slits), to facilitate the extraction of the insulation and make a window for a shielding recovery.
  • the block consisting of three or four strip stripping stripping heads can be translated in a transverse direction, so as to successively strip several cables as in the illustration of Figure 2.
  • FIG. 11 illustrates means for holding a cable to be stripped of a device according to the invention.
  • These holding means comprise a slide 400 having two through passages 401, 402 having different minimum internal diameters in order to accommodate cables of diameters within a wide range.
  • the slider can be moved by any appropriate means (such as, for example, a rack formed in a lower face of the slider and a corresponding toothed wheel) in a transverse direction so as to align one of the through passages 401, 402 with a cable receiving track 306.
  • each through passage 401, 402 is formed an insertion cone
  • This gland comprises a deformable split cylinder 394 (see through passage 401), an elastic sleeve 383 (removed from the gland of the through passage 401 to allow to observe the split cylinder 394), a clamping plate 395, and a bearing cone 382 formed in the slide.
  • the elastic sleeve 383 is made of a light-tight material, or at least a radiation-proof material having wavelengths equal to those of the LASER diodes equipping the device.
  • the clamping plate 395 can be moved in the longitudinal direction of the through-passages 401, 402. When the clamping plate 395 is brought closer to the bearing cone 382 (following the arrow parallel to the cable illustrated in FIG. 10), the split cylinder 394 is pushed against the cone of support
  • the elastic sleeve 383 then crimps the cable to be stripped; the cable and the sleeve thus completely cover the inlet orifice 307 of the cable; no radiation can escape from the device according to the invention (if the cable receiving track 306 is through, a pivoting cover is provided on the rear face of the device to also close the cable exit hole) and the security of the operator is preserved.
  • FIG. 9 illustrates another example of gland that can be associated with the slider 400.
  • the gland 380 comprises a light-proof elastomeric sleeve, a bearing cone 382.
  • the split cylinder 394 In place of the split cylinder 394, it comprises a compression cone 384 which can be pushed longitudinally in the direction of the bearing cone 382 by the clamping plate 395. Again, the displacement of the clamping plate 395 causes the compression radial of the elastic sleeve which tightly crimp the stripper cable housed in the cable receiving track 306, thus ensuring both the maintenance of the cable in a stripping position and the closing of the inlet port of the cable.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Removal Of Insulation Or Armoring From Wires Or Cables (AREA)
  • Laser Beam Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)
  • Cleaning In General (AREA)

Abstract

L'invention concerne un dispositif de dénudage de câbles électriques, comprenant d'une part au moins un faisceau de dénudage (10, 1 1; 1 10, 1 1 1; 209) émis par une source LASER (1; 101; 201) et focalisé par un ensemble optique (2-4; 102, 103; 203-208) en un point de focalisation (12, 13), dit point de coupe, et d'autre part au moins une piste de réception (6; 106) d'une portion de câble à dénuder, caractérisé en ce que chaque source LASER comprend une diode LASER (1; 101; 201 ) émettant un faisceau de dénudage de longueur d'onde comprise entre 400nm et 460nm, de préférence de l'ordre de 445nm.

Description

Dispositif de dénudage de câbles électriques utilisant des diodes LASER violettes ou bleues La présente invention concerne un dispositif à LASER pour le dénudage de câbles électriques.
Un câble électrique monobrin comprend usuellement une âme conductrice et une gaine isolante entourant le conducteur sur toute la longueur de celui-ci, ladite gaine isolante pouvant être constituée de plusieurs couches, par exemple d'une couche interne en Kapton® et une couche externe en Téflon®. Un câble multibrin comprend usuellement plusieurs brins constitué chacun par un conducteur et une gaine isolante individuelle, l'ensemble des brins étant entouré par une tresse métallique de blindage puis par une gaine isolante commune (couche de Kapton® et couche d'isolant en Téflon® par exemple). Pour raccorder un câble à un dispositif électrique quelconque, il convient de dénuder une extrémité du câble, c'est-à-dire d'en retirer la gaine isolante sur une longueur donnée à partir de cette extrémité pour mettre à nu le conducteur, sans endommager celui-ci. Le dénudage d'une extrémité d'un câble multibrin consiste aussi à retirer la gaine isolante commune sur une longueur donnée à partir de cette extrémité, en prenant soin de ne pas endommager la tresse métallique de blindage et les gaines isolantes individuelles des divers brins. Dans toute la description, on entend par "dénudage" l'action de dénuder une extrémité d'un câble. Le dénudage des câbles est une opération particulièrement fréquente dans le domaine de l'aéronautique, un aéronef étant équipé de plusieurs centaines de kilomètres de câbles pour le contrôle et le fonctionnement des divers systèmes de l'aéronef, et ces câbles pour la plupart doivent être dénudés a leurs deux extrémités opposées pour permettre la connexion du câble à divers terminaux. Dans le cadre d'opérations de maintenance des aéronefs, il est fréquent que les techniciens aient à remplacer un câble défectueux ; il est dans ce cas plus avantageux de dénuder les extrémités du câble de remplacement in situ, c'est-à- dire dans l'aéronef, lieu particulièrement exigu. Le dénudage in situ est parfois inévitable, par exemple lorsqu'il est impossible de connaître à l'avance la longueur du câble (tel est le cas d'un câble multibrin qui suit un circuit en zigzag). Il existe donc, notamment dans l'industrie aéronautique, un besoin de disposer de dispositifs de dénudage de câble portatifs.
Il existe des dispositifs de dénudage mécaniques comprenant deux lames circulaires ou en V, en regard et articulées l'une à l'autre, permettant de couper par cisaillement la gaine entourant le conducteur du câble. Ces dispositifs mécaniques présentent divers inconvénients.
Chaque paire de lames est adaptée à une taille et un type de câble donné, il convient donc de disposer de toute une batterie de lames pour pouvoir dénuder les divers câbles utilisés par exemple dans un aéronef. L'utilisation par erreur d'une paire de lames ne correspondant pas au câble à dénuder peut entraîner soit un retrait incomplet de la gaine isolante et donc une mauvaise connexion du câble au terminal, soit la coupure de certains fils du conducteur du câble, avec pour conséquences une diminution de sa résistance mécanique, une augmentation de sa résistance électrique (par diminution de sa section de conduction) susceptible de générer des points chauds, l'ensemble de ces défauts pouvant conduire à la rupture totale du câble. Agissant par contact, les lames ont tendance à s'user et doivent être remplacées régulièrement. En outre, les câbles utilisés dans le domaine de l'aéronautique présentent des gaines isolantes de plus en plus fines, ce afin de diminuer la masse embarquée dans l'aéronef. Les tolérances d'usinage actuelles ne permettent pas de fabriquer des lames (à tout le moins à un coût acceptable) aptes à dénuder de façon fiable des câbles récents dont la gaine isolante est par exemple formée d'une très fine couche de Kapton® uniquement. Enfin, les dispositifs mécaniques ne sont pas adaptés au dénudage de câbles dont la section n'est pas circulaire et notamment au dénudage de câbles multibrins ou de câbles torsadés.
II existe également des dispositifs de dénudage thermique dotés de lames chauffantes venant brûler la gaine isolante. Ces dispositifs ne donnent pas satisfaction car ils laissent souvent des dépôts d'isolant sur le conducteur dénudé et ne permettent pas d'obtenir un dénudage précis.
On connaît aussi des dispositifs de dénudage à LASER, le rayonnement LASER émis venant vaporiser la gaine isolante. S'agissant d'une technologie sans contact, ces dispositifs ne souffrent pas de problèmes d'usure. En outre, ils permettent non seulement de dénuder des câbles, cylindriques ou non -tels les câbles torsadés-, mais aussi de réaliser toutes formes de découpe dans la gaine isolante, par exemple une fenêtre pour une reprise de blindage. Les inconvénients majeurs des dispositifs de dénudage à LASER sont leur coût élevé et leur manque de compacité.
WO 2008084216 décrit un dispositif de dénudage à LASER comprenant :
- une unité de base incluant un LASER à CO2 émettant un rayonnement LASER dans l'infrarouge,
·· un flexible intégrant un guide d'ondes pour la transmission de ce rayonnement LASER ; il est à noter qu'il n'existe actuellement aucun guide d'ondes apte à transmettre un rayonnement infrarouge émis par un LASER à CO2 ; l'homme du métier n'est donc pas en capacité de réaliser le dispositif divulgué par WO 2008084216 ;
- et une tête de dénudage portable recevant le rayonnement LASER et comprenant
♦ une zone de dénudage apte à recevoir l'extrémité d'un câble à dénuder,
♦ des moyens optiques aptes à recevoir le rayonnement LASER et à le diriger dans la zone de dénudage, vers le câble et autour de celui-ci suivant une trajectoire de découpage,
♦ des moyens d'injection d'un gaz pour le nettoyage des optiques souillées par l'isolant vaporisé,
♦ des moyens de contrôle permettant d'ajuster la vitesse de déplacement du rayonnement le long de la trajectoire de découpage ou de surveiller et éventuellement de modifier la puissance du rayonnement LASER émis.
Le dispositif proposé par WO 2008084216 répond à un effort de compacité et à une tentative de réalisation d'un dispositif portable, mais son unité de base reste très encombrante et n'autorise donc pas l'utilisation du dispositif dans des sites très exigus. En particulier, compte tenu de la taille des LASER à CO2 connus, cette unité de base ne semble pas pouvoir être aisément embarquée dans un aéronef. De même, il est difficile d'envisager d'intégrer un tel dispositif de dénudage dans une machine de marquage de câbles. De plus, la présence du flexible reliant la tête de dénudage à l'unité de base gêne la maniabilité de ladite tête de dénudage. En outre, aucun contrôle de la profondeur de champ du rayonnement LASER émis n'est fourni, de sorte que le conducteur électrique n'est préservé que s'il réfléchit suffisamment le rayonnement LASER. Pour les mêmes raisons, il est impossible avec un tel dispositif connu, de retirer la gaine isolante commune d'un câble multibrin, sans risquer d'inciser également la tresse de blindage dudit câble ou la gaine isolante individuelle de l'un de ses brins.
On connaît des LASER à gaz, des LASER chimiques, des LASER solides (à cristaux), des LASER à semi-conducteurs regroupés ici sous l'appellation "diodes LASER".
Seules l'utilisation de LASER à gaz (en l'occurrence des LASER à CO2, des LASER à Excimère et des LASER à Argon) a jusqu'ici été envisagée pour le dénudage des câbles électriques. L'utilisation de ces LASER qui émettent soit dans l'infrarouge soit dans l'ultraviolet permet de garantir l'intégrité des conducteurs des câbles, le cuivre réfléchissant 99 % d'un tel rayonnement. La longueur d'onde de 10,6μηη usuellement émise par les LASER à CO2 s'est révélée tout à fait pertinente pour le dénudage de câbles non seulement car le cuivre, utilisé généralement comme conducteur, présente un seuil de dommage élevé à cette longueur d'onde mais aussi car la plupart des matériaux isolants utilisés pour gainer les câbles présente un seuil de dommage faible à cette longueur d'onde. Le phénomène est inversé dans le cas de la longueur d'onde proche infrarouge 1 ,064μηι émise par un LASER solide de type Nd:YAG.
La technologie de dénudage par LASER à CO2 souffre pourtant de nombreux inconvénients ;
o Les LASER CO2 sont relativement volumineux (100mm x 100mm x 300mm environ pour les modèles les plus compacts, de puissance 0W). Tous les dispositifs à LASER à CO2 connus à ce jour sont très encombrants. Ils ne permettent donc pas un dénudage in situ.
o Leur consommation électrique est élevée.
o Bien que leur qualité de faisceau puisse être élevée (M2 proche de 1), leur pouvoir de focalisation est faible. Il en résulte que ces dispositifs ne sont pas aptes à générer un petit spot permettant un dénudage précis.
o La longueur d'onde infrarouge de 10,6pm impose l'utilisation d'optiques spéciales, comme des optiques en ZnSe beaucoup plus onéreuses et sensibles que le verre. Ces optiques posent notamment des problèmes de nettoyage en raison de leur faible dureté.
o La longueur d'onde 10,6pm n'est pas visible à l'œil, ce qui complique l'alignement du faisceau. Il faut par exemple utiliser un faisceau visible spécifiquement pour l'alignement.
La technologie de dénudage par LASER à Excimère émettant dans le domaine de l'ultraviolet (longueur d'onde 0, 93pm, 0,248pm, 0,308pm ou 0,351 pm pour les gaz les plus utilisés) permet de produire des coupes fines et précises de la gaine des câbles. Ces sources LASER sont cependant extrêmement volumineuses. Elles sont aussi très onéreuses, non seulement à l'achat mais également à l'entretien car elles nécessitent un renouvellement très fréquent du mélange gazeux, par ailleurs très toxique. Ces sources LASER sont puisées et génèrent un faisceau de forte puissance crête qui, s'il incise efficacement la gaine des câbles, est également capable d'endommager l'âme métallique.
Un exemple d'utilisation pour le dénudage de câbles d'un laser émettant dans l'ultraviolet, c'est-à-dire avec une longueur d'onde inférieure à 380nm, est fourni par FR 2 690 015. De préférence, le LASER est un LASER à argon. Il est à noter qu'il existe des LASERS à argon ayant une longueur d'onde de 351 nm ou de 364 nm.
L'utilisation des diodes LASER n'est a priori pas envisageable pour diverses raisons : les diodes LASER connues génèrent un faisceau dont la longueur d'onde n'est pas favorable et qui est, soit de trop faible puissance, soit de mauvaise qualité. En effet, les diodes LASER les plus répandues émettent typiquement dans le domaine du proche infrarouge (longueurs d'onde comprises entre 0,7pm et 1 ,8pm), domaine dans lequel la gaine des câbles est très diffusante. Ces diodes s'avèrent donc très peu efficaces pour le dénudage de câbles. Pour compenser cette faible efficacité, une puissance élevée serait nécessaire. Des diodes LASER multi-éléments de grande puissance sont aujourd'hui disponibles. Mais ces dernières émettent un faisceau de mauvaise qualité, c'est-à-dire un faisceau ayant un faible pouvoir de focalisation, précisément parce qu'elles sont multi-éléments c'est-à-dire constituées de nombreux éléments émetteurs, qui ne permettent pas de générer de façon simple un spot focalisé intense de petite taille (nécessaire au dénudage de câble). C'est la raison pour laquelle les diodes LASER sont principalement utilisées pour des applications de soudure ou d'éclairage. Elles paraissent a priori peu compatibles avec une application d'usinage, qui exige de la précision, telle qu'une application de dénudage de câbles électriques.
L'invention vise à pallier ces inconvénients, en proposant un dispositif de dénudage à LASER compact et réellement portatif -afin de pouvoir être utilisé dans un site exigu tel un aéronef ou encore de pouvoir être intégré dans une machine de marquage de câbles connue-. Le dispositif doit également permettre de dénuder des câbles monobrins cylindriques de tous diamètres de façon sûre et fiable, c'est-à-dire sans risque d'endommager le conducteur du câble et avec l'assurance qu'aucun dépôt d'isolant ne subsiste. Dans une version avantageuse, l'invention vise également à fournir un dispositif de dénudage permettant de dénuder tout type de câbles électriques (câbles cylindriques, câbles multibrins et même câbles en nappe). Un autre objectif de l'invention est de fournir un dispositif dont le coût de revient est équivalent ou inférieur aux dispositifs connus.
Pour ce faire, l'invention propose un dispositif de dénudage de câbles électriques, comprenant d'une part au moins un faisceau de dénudage émis par une source LASER et focalisé par un ensemble optique en un point de focalisation, dit point de coupe, et d'autre part au moins une piste de réception d'une portion de câble à dénuder. Le dispositif selon l'invention est caractérisé en ce que la source LASER comprend une diode LASER, par la suite qualifiée de diode LASER bleue ou violette, émettant un faisceau de dénudage de longueur d'onde comprise entre 400nm (0,40 m) et 460nm (0,46μηι).
Avantageusement, chaque source LASER est uniquement constituée d'une diode LASER bleue ou violette.
Les inventeurs ont établi que le niveau élevé de réflexion diffuse que l'on observe sur la plupart des gaines de câble dans le domaine visible et proche infrarouge tend à baisser lorsque la longueur d'onde du faisceau de dénudage se rapproche du domaine ultraviolet. Au-dessous de 0,46μηΊ pour certaines gaines, et au-dessous de 0,41 m pour d'autres, le niveau d'absorption augmente de manière significative (en relation avec la diminution du niveau de réflexion diffuse), ce qui autorise un dénudage efficace à l'aide des diodes LASER de puissance de technologie GaN. Ces diodes LASER ont notamment été développées pour les technologies « Blu-ray Disk » et de projection LASER. Elles sont disponibles sous forme de diodes LASER mono-élément de forte puissance et de qualité de faisceau relativement élevée (même si ces diodes sont généralement multimodes). Leur faible longueur d'onde et leur qualité de faisceau élevée permettent d'obtenir un point de coupe de petite taille à une distance de travail raisonnable, nécessaire à l'obtention d'un dénudage de qualité.
Plus précisément, on trouve sur le marché des diodes LASER émettant un rayonnement de longueur d'onde égale à 375nm (c'est-à-dire dans l'ultraviolet). Les inventeurs ont établi que ces diodes LASER présentent une puissance trop faible pour l'application envisagée. En outre, leur coût reste assez élevé.
Il existe aussi des diodes LASER émettant un rayonnement de longueur d'onde égale à 445nm ou plus ; ces diodes possèdent une puissance nettement supérieure, une bonne qualité de faisceau, sont moins fragiles, mais elles sont a priori moins efficaces car moins favorables pour le conducteur vis-à- vis de leur longueur d'onde. Cependant, les inventeurs ont démontré que cette longueur d'onde, jamais testé à ce jour pour des opérations de dénudage de câbles est finalement compatible avec cette application. Il existe enfin des diodes LASER émettant un rayonnement de longueur d'onde comprise entre 400 et 4 0nm, par exemple de l'ordre de 405nm. Les inventeurs ont établi que ces diodes offrent un compromis intéressant pour le dispositif selon l'invention en termes de prix, de puissance et de longueur d'onde. De préférence, chaque source LASER comprend donc une diode LASER émettant un faisceau de dénudage de longueur d'onde comprise entre 440nm et 460nm ou comprise entre 400nm et 410nm.
L'utilisation de diodes LASER violettes ou bleues présente de nombreux avantages par rapport aux technologies LASER à CO2 ou à Excimère ou à argon utilisées précédemment :
o L'encombrement des diodes LASER est sans commune mesure avec celui des LASER à gaz ; une diode LASER ne mesure que quelques millimètres. Cela permet notamment de disposer plusieurs diodes LASER dans un même dispositif de dénudage pour en augmenter la productivité. Cela permet aussi de concevoir des dispositifs de dénudage beaucoup plus petits, dans lesquels la ou les sources LASER peuvent être montées sur des éléments mobiles. Cela permet enfin la réalisation de dispositifs de dénudage portatifs, pouvant être utilisés in situ.
o Leur rendement électrique/optique est très élevé, ce qui réduit significativement la consommation électrique du dispositif de dénudage ; il est dès lors possible de prévoir une alimentation électrique sur batterie.
o Les optiques peuvent être en verre ou silice ; elles sont alors beaucoup plus faciles à approvisionner et plus robustes.
o La diversité des éléments optiques et optoélectroniques disponibles dans ce domaine de longueurs d'onde, permet l'utilisation de schémas complexes comme un système d'autofocus pour l'asservissement du point de coupe décrit plus loin.
o Le faisceau LASER violet ou bleu est visible (contrairement au faisceau ultraviolet du laser à argon de FR 2 690 015 et des LASER à Excimère, et contrairement aux faisceaux infrarouges des lasers à CO2) ; il est donc très facile à aligner.
o Le faisceau LASER peut être focalisé en un point de coupe de très petite taille, ce qui permet de générer une coupe de la gaine isolante de très grande précision, d'optimiser la puissance optique nécessaire et de limiter la profondeur de champ du faisceau de dénudage.
Comme précédemment définie, le dispositif selon l'invention comprend un ou plusieurs faisceaux de dénudage. De préférence, lorsqu'il en comprend plusieurs, chaque faisceau est émis et focalisé par une source LASER et un ensemble optique qui lui sont propres, de sorte que le dispositif comprend autant de sources LASER et d'ensembles optiques et que de faisceaux de dénudage. Cette multiplication des sources est rendue possible par le caractère miniature des diodes laser.
Avantageusement et selon l'invention, le dispositif de dénudage comprend de plus, pour au moins un point de coupe -et de préférence pour chaque point de coupe-, des moyens de direction apte à déplacer ledit point de coupe relativement à une piste de réception de câble selon une trajectoire de coupe prédéfinie. De préférence, ces moyens sont essentiellement mécaniques.
S'il comporte plusieurs points de coupe, le dispositif peut comprendre alors autant d'ensembles mécaniques de direction que de points de coupe, chaque ensemble mécanique permettant de déplacer individuellement le seul point de coupe auquel il est associé, ou, en variante, un seul ensemble mécanique permettant de déplacer conjointement tous les points de coupe.
Avantageusement, le dispositif selon l'invention comprend des moyens mécaniques de direction apte à déplacer au moins un point de coupe autour d'une piste de réception de câble selon une trajectoire circulaire, dans un plan transversal. En d'autres termes, le faisceau tourne autour du câble à dénuder de façon à pratiquer dans sa gaine une incision circulaire.
De préférence, le dispositif selon l'invention comprend des moyens de direction apte à déplacer au moins un point de coupe à la fois autour et le long d'une piste de réception de câble rectiligne, afin de permettre l'exécution d'une coupe en forme de fenêtre pour réaliser une reprise de blindage par exemple.
Avantageusement et selon invention, chaque piste de réception de câble traverse intégralement le dispositif et est munie d'une butée rétractable qui, en position déployée, traverse la piste de réception de câble et ferme ainsi le passage au câble afin de permettre d'en dénuder une extrémité calée contre la butée déployée et qui, en position rétractée, autorise le passage du câble, celui-ci pouvant alors traverser le dispositif afin de permettre d'effectuer une incision dans une zone quelconque du câble (à distance de ses extrémités), par exemple pour réaliser une reprise de blindage, ou afin de pouvoir intégrer un dispositif selon l'invention dans une ligne de fabrication (comprenant par exemple un poste de marquage) dans laquelle le câble circule.
Avantageusement, le dispositif selon invention comprend d'une part plusieurs pistes rectilignes de réception de câble à dénuder, ces pistes s'étendant dans un même plan parallèlement entre elles selon une direction longitudinale X, et d'autre part un ensemble mécanique apte à déplacer au moins un point de coupe selon une direction transversale Y parallèle au plan des pistes de réception de câble et orthogonale à la direction longitudinale X. Ce dispositif permet de dénuder plusieurs câbles dans le cadre d'une même opération de dénudage.
Avantageusement, le dispositif selon l'invention comprend au moins deux faisceaux de dénudage, les points de coupe desdits faisceaux étant situés de part et d'autre d'une piste de réception de câble, dans un même plan de dénudage transversal (plan orthogonal à la direction longitudinale de la piste de réception de câble).
Dans un premier mode de réalisation possible, le dispositif selon invention comprend trois ou quatre faisceaux de dénudage répartis autour d'une piste de réception de câble, chacun des faisceaux de dénudage étant formé par un faisceau primaire émis par une diode laser bleue ou violette dans le plan de dénudage, c'est-à -dire dans un plan orthogonal à la piste de réception de câble, et réfléchi par un miroir pivotant motorisé, les trois ou quatre miroirs pivotants motorisés étant pilotés de façon désynchronisée de sorte que les faisceaux de dénudage ne se croisent pas. Dans le cas d'un dispositif comportant quatre faisceaux de dénudage (et donc quatre diodes et quatre miroirs), les miroirs pivotants motorisés sont de préférence pilotés deux par deux (deux incisions sont donc pratiquées simultanément dans la gaine du câble). Il est à noter que chaque miroir pivotant motorisé fait partie à la fois de « l'ensemble optique » et des « moyens de direction » tels que précédemment définis, associés à un faisceau de dénudage.
Dans un deuxième mode de réalisation possible, le dispositif selon l'invention comprend trois ou quatre faisceaux de dénudage répartis autour d'une piste de réception de câble, chacun des faisceaux de dénudage étant formé par un faisceau primaire émis par une diode laser bleue ou violette selon une direction parallèle à la piste de réception de câble, et réfléchi par un miroir pivotant motorisé. Comparé au premier mode de réalisation à faisceaux primaires orthogonaux à la piste de réception de câble, ce deuxième mode de réalisation à faisceaux primaires parallèles à la piste de réception de câble est plus compact.
Ce deuxième mode de réalisation peut être décliné en deux variantes. Dans la première variante, le moteur de chaque miroir pivotant motorisé est agencé immédiatement à l'avant du miroir correspondant, l'expression « à l'avant » faisant référence à un sens défini comme suit. Le dispositif comprend un boîtier extérieur ayant une face avant, et une face arrière opposée ; la face avant est celle par laquelle un câble à dénuder peut être introduit dans le dispositif, la piste de réception de câble s'étendant à l'intérieur du boîtier depuis la face avant et de préférence jusqu'à la face arrière. Autrement dit, dans cette première variante, chaque moteur est agencé entre le miroir associé et la face avant du dispositif.
Dans la deuxième variante, chaque miroir pivotant motorisé est associé à un moteur agencé à l'arrière de la diode laser correspondante, le dispositif présentant là encore une face avant par laquelle un câble à dénuder peut être introduit dans un orifice d'entrée de câble. En d'autres termes, dans cette deuxième variante, pour chaque faisceau de dénudage, on trouve successivement le long de la piste de réception de câble, depuis la face avant du dispositif : le miroir pivotant motorisé, la diode laser et le moteur associé au miroir. En déportant ainsi le moteur associé au miroir à l'arrière du dispositif, on déplace le plan de dénudage vers la face avant du dispositif, ce qui est particulièrement avantageux pour un dispositif portatif qui doit être apporté jusqu'au câble à dénuder (et non l'inverse) dans un environnement de câblage exigu.
Avantageusement et selon invention le dispositif comprend, pour chaque piste de réception de câble, un ensemble de maintien pour le maintien d'un câble à dénuder dans la piste de réception de câble, et l'ensemble de maintien comprend un presse-étoupe doté d'un manchon en un matériau élastique étanche à la lumière. La compression du manchon par le presse-étoupe autour d'un câble à dénuder permet de rendre le dispositif étanche à la lumière et d'éviter ainsi tout risque de brûlure de l'opérateur.
De préférence, chaque ensemble de maintien comprend un coulisseau pouvant coulisser selon une direction orthogonale à la piste de réception de câble et comportant au moins deux passages traversants de diamètres internes différents, chaque passage traversant étant muni d'un presse-étoupe avec un manchon en un matériau élastique étanche à la lumière.
Avantageusement, le dispositif comprend des moyens de calibrage aptes à mesurer un diamètre d'un câble à dénuder logé dans une piste de réception de câble et à ajuster la position d'au moins un point de coupe relativement à ladite piste en fonction du diamètre mesuré. Tout moyen approprié peut être utilisé pour obtenir une mesure du diamètre. A titre d'exemple, un organe mécanique comprenant une mâchoire de maintien du câble qui vient pincer le câble et est montée sur un pied à coulisse peut être utilisée. En variante, les moyens de calibrage comprennent un presse-étoupe tel que précédemment décrit. La distance de déplacement du presse étoupe, qui est fonction du diamètre du câble, peut alors être utilisée pour déterminer ce diamètre. En variante un organe à détection optique peut être prévu.
Dans une version préférée, le dispositif comprend, pour au moins un faisceau de dénudage, un système de monitoring pour le contrôle de la progression du dénudage.
De préférence, ce système de monitoring comprend des moyens, tels une ou plusieurs photodiodes pour la capture et l'analyse d'un signal optique de contrôle émis par un visé par ledit faisceau de dénudage, et des moyens de pilotage pour adapter des paramètres de balayage (par exemple angle et/ou vitesse de pivotement d'un miroir pivotant motorisé tel que précédemment décrit) en fonction de résultats d'analyse du signal optique de contrôle. Ce signal optique de contrôle correspond soit au faisceau LASER rétrodiffusé par le câble, soit à une émission lumineuse (fluorescence ou incandescence) générée par une interaction laser/isolant à dénuder.
Ce signal optique de contrôle est de préférence acquis à l'aide d'au moins une photodiode (composant semi-conducteur ayant la capacité de détecter un rayonnement du domaine optique et de le transformer en signal électrique), filtrée ou non spectralement (par exemple une photodiode filtrée infrarouge ne capte que les longueurs du proche infrarouge et est donc insensible à la réflexion intense du faisceau LASER bleu) permettant de mesurer soit une variation de réflectivité du faisceau laser bleu, soit l'incandescence générée par la brûlure de la couche de Kapton® (polyimide) souvent présente sous une gaine supérieure en PTFE ou autre. Une variation de la réflectivité lors d'un dénudage d'un câble dont la gaine isolante est constituée d'un seul type de polymère permet de savoir que l'âme métallique ou bien le blindage métallique a été atteint. La détection d'un crépitement intense lors du dénudage d'un câble dont la gaine isolante comprend une sous-couche de Kapton® permet de la même manière de savoir que le dénudage a été bien effectué localement.
A noter que les photodiodes sont des composants standards peu onéreux. Là encore, leurs très faibles dimensions permettent d'obtenir un dispositif peu encombrant et léger. Dans le cas d'un dispositif comportant plusieurs diodes LASER ou de façon plus générale plusieurs faisceaux de dénudage, on peut prévoir autant de photodiodes de contrôle que de faisceaux de dénudage. Le dispositif obtenu reste suffisamment compact et léger pour être portatif, en vue d'une utilisation dans un aéronef par exemple.
Pour le dénudage de câbles multifilaires ayant une couche en polyimide entre l'âme conductrice et le blindage métallique, une photodiode filtrée ne captant pas les longueurs d'ondes émises par la diode laser peut par exemple être utilisée pour contrôler l'état d'avancement du procédé de dénudage en détectant la présence d'éclats lumineux vifs caractéristiques d'une interaction laser / polyimide. Dès lors que cette couche polyimide est atteinte (ce qui peut arriver si le blindage n'est pas parfaitement continu et opaque) et que des éclats lumineux vifs sont ainsi détectés, le faisceau de dénudage est déplacé pour ne pas risquer de couper les fils conducteurs sous-jacents.
Pour les autres câbles, une photodiode non filtré permet de détecter une différence de réflexion du faisceau de dénudage et donc de permettre de poursuivre l'opération de dénudage jusqu'à ce que l'âme conductrice ou le blindage métallique du câble soit atteint.
Avantageusement, le dispositif comprend un système d'autofocus pour l'asservissement d'un point de coupe, aptes à déterminer la position dudit point de coupe relativement à une surface d'un câble à dénuder logé dans la piste de réception correspondante (piste de réception visée par ledit point de coupe). Dans une forme de réalisation possible, ce système d'autofocus comprend deux faisceaux de contrôle coplanaires au faisceau de dénudage (correspondant au point de coupe asservi) et entourant ce dernier, ainsi que des moyens de capture et d'analyse (tels un capteur linéaire) d'une image de contrôle formée par des rayonnements réfléchis par un câble logé dans la piste de réception (visée par ledit faisceau de dénudage) ; par ailleurs, ladite piste de réception s'étend selon une direction longitudinale qualifiée d'inclinée, qui forme, dans un plan contenant le faisceau de dénudage et la piste de réception, un angle non nul avec une direction normale de dénudage qui serait orthogonale à la direction axiale du faisceau de dénudage. Les faisceaux de contrôle peuvent être générés par des diodes LASER de faible puissance qui leur sont propres. En variante, ils sont générés par la diode LASER générant le faisceau de dénudage, à laquelle est associé un générateur diffractif trois faisceaux permettant de séparer le rayonnement émis par la diode LASER en trois faisceaux (un faisceau central de dénudage et deux faisceaux latéraux de contrôle, de moindre puissance).
Dans une version de l'invention, le système de monitoring ou le système d'autofocus comprennent de plus un cube séparateur de polarisation permettant d'orienter vers la piste de réception de câble le faisceau de dénudage et les éventuels faisceaux de contrôle et de ne transmettre au capteur d'image ou à la photodiode que les rayonnements réfléchis.
De préférence, le dispositif selon l'invention fonctionne sur batterie autonome.
Par ailleurs, il est avantageusement connecté à un dispositif d'aspiration et de filtration des fumées générées par la vaporisation de la gaine des câbles. Compte tenu de son faible encombrement, le dispositif de dénudage LASER selon l'invention peut être intégré dans une machine de coupe déroulant et coupant à une longueur souhaitée une bobine de câbles. Il peut aussi être intégré dans une machine de marquage de câbles. Dans ces deux cas, il convient préférentiellement d'utiliser un dispositif selon l'invention dont la ou les pistes de réception de câble sont traversantes.
La présente invention s'étend à un dispositif de dénudage LASER caractérisé en combinaison, par tout ou partie des caractéristiques mentionnées ci-avant et ci-après.
D'autres détails et avantages de la présente invention apparaîtront à la lecture de la description suivante, qui se réfère aux dessins schématiques annexés et porte sur des modes de réalisation préférentiels, fournis à titre d'exemples non limitatifs. Sur ces dessins :
- la figure 1 est une vue schématique en coupe longitudinale d'un premier mode de réalisation d'un dispositif de dénudage selon l'invention ;
- la figure 2 est une vue schématique en coupe transversale d'un deuxième mode de réalisation d'un dispositif de dénudage selon l'invention ;
- la figure 3 est une vue schématique en coupe longitudinale d'un troisième mode de réalisation d'un dispositif de dénudage selon l'invention.
- Les figures 4a à 4c représentent, en coupe longitudinale, une partie aval de la vue de la figure 3, dans trois situations différentes (point de coupe focalisé respectivement au-delà, sur ou avant la surface du câble à dénuder) et le signal obtenu en sortie d'un capteur de contrôle dans chacune de ces trois situations ;
- La figure 5 est une vue schématique en coupe transversale d'un mode de réalisation d'un dispositif selon l'invention doté de quatre diodes LASER émettant des faisceaux primaires transversaux ;
- La figure 6 est une vue schématique en coupe transversale d'un mode de réalisation d'un dispositif selon l'invention doté de trois diodes LASER émettant des faisceaux primaires longitudinaux (parallèles à la piste de réception de câble) ;
- Les figures 7 et 8 sont des vues schématiques en coupe longitudinale de deux modes de réalisation d'un dispositif selon l'invention (la figure 7 ne laissant apparaître qu'une partie du dispositif) dotés de plusieurs diodes LASER émettant des faisceaux primaires parallèles à la piste de réception de câble ;
- les figures 8 et 9 sont des vues schématiques en coupe longitudinale de deux modes de réalisation d'un ensemble de maintien à presse- étoupe d'un dispositif selon l'invention ;
- la figure 10 est une vue schématique en perspective éclatée d'un ensemble de maintien à coulisseau et presse-étoupes d'un dispositif selon l'invention.
De façon générale, on peut classer les divers modes de réalisation de l'invention en trois familles :
- une première famille de dispositifs comprenant une ou plusieurs têtes de dénudage mobiles par rapport au câble à dénuder ; c'est le cas des dispositifs illustrés aux figures 1 et 2,
- une deuxième famille de dispositifs comprenant une ou plusieurs têtes de dénudage dont une partie seulement (par exemple un miroir) est mobile par rapport au câble à dénuder, la ou les diodes LASER restant fixes dans le dispositif ; tel est le cas des dispositifs illustrés aux figures 5 à 8,
- une troisième famille de dispositifs mixtes comprenant une ou plusieurs têtes de dénudage dont une partie est mobile par rapport au câble à dénuder (comme pour les dispositifs de la deuxième famille), toutes les têtes de dénudage pouvant de plus être intégralement déplacées, en bloc, dans le dispositif, par exemple selon une direction transversale comme illustré à la figure 2 ou selon une direction longitudinale suivant la ou les pistes de réception de câbles afin de pratiquer une incision longitudinale par exemple pour faciliter l'extraction de l'isolant et pour réaliser une fenêtre dans le cadre d'une reprise de blindage.
La figure 1 représente un premier exemple d'un dispositif de dénudage de câbles de la première famille. Ce premier exemple comprend deux têtes de dénudage pour l'émission de deux faisceaux de dénudage 10 et 11 coplanaires. Chaque tête comprend une diode laser bleue ou violette 1 , c'est-à-dire une diode émettant avec une longueur d'onde comprise entre 0,40pm et 0,46pm, et un ensemble optique comportant une optique de collimation 2, une optique de focalisation 3 et un miroir de renvoi 4. Le faisceau de dénudage 10 est ainsi focalisé en un point de coupe 12, tandis que le faisceau de dénudage 11 est focalisé en un point de coupe 13. Le dispositif de dénudage illustré comprend par ailleurs une piste 6 de réception d'un câble 5 à dénuder, délimitée d'une part par un guide tubulaire 7 qui présente à cette fin un évidement central 70, et d'autre part par une mâchoire de maintien 8. Le câble 5 est inséré par la gauche de la figure jusqu'à une butée réglable 9 logée dans l'évidement central 70 du guide 7. La position de la butée 9 selon la direction longitudinale relativement au guide 7 peut être ajustée par l'utilisateur par tous moyens appropriés (non représentés). La butée 6 coulisse en effet dans l'évidement 70 du guide tubulaire 7.
On comprendra aisément que la mâchoire 8 qui contribue à définir la piste de réception 6 et à maintenir le câble 5 en position, s'adapte au diamètre du câble à dénuder. La position de chaque point de coupe 12, 13 peut être indexée mécaniquement sur l'ouverture (distance entre les mors) de la mâchoire 8, de sorte à maintenir une distance de travail (distance entre le point de coupe et la surface du câble) sensiblement constante quel que soit le diamètre du câble à dénuder. Un tel système d'indexation (non représenté) constitue des moyens mécaniques de calibrage au sens des revendications annexées.
Les deux têtes de dénudage (diode 1 + optiques 2 et 3 + miroir de renvoi 4, lequel miroir de renvoi 4 reste fixe par rapport à la diode et au faisceau primaire qu'elle génère) du dispositif sont mises en rotation autour du câble à dénuder. Ce mouvement de rotation est réalisé à l'aide de moyens de direction comprenant un moteur dont la vitesse est optimisée en fonction d'un programme de dénudage, d'une information sur le diamètre du câble qui peut être déterminée à l'aide d'un capteur mesurant par exemple le mouvement des mors de la mâchoire (8).
Un tel mode de réalisation à tête(s) de dénudage rotative(s) peut comprendre une ou plusieurs (deux comme illustré, ou plus) têtes de dénudage.
Les dispositifs de la première famille à têtes de dénudage rotatives tels celui de la figure 1 présentent l'avantage d'avoir des points de coupe qui suivent des trajectoires circulaires, c'est-à-dire des trajectoires qui épousent bien la géométrie des câbles, tandis que les points de coupe du dispositif de la première famille illustré à la figure 2 ou des dispositifs de la deuxième famille illustrés aux figures 5 et 6 (décrits plus loin) suivent des trajectoires rectilignes moins favorables. Cela étant, il est possible de doter chaque tête de dénudage de ces dispositifs d'un système d'autofocus tel décrit plus loin pour compenser ce défaut lorsqu'il s'avère critique (selon la nature des câbles à dénuder). Certains paramètres de dénudage tels que la puissance lumineuse des diodes LASER, la vitesse de rotation des têtes optiques ou bien le nombre de rotations peuvent être ajustés au moyen d'un système de monitoring pour le contrôle de la progression du dénudage. Ce système de monitoring, non représenté sur les figures annexées, comprend dans une version simple, un photodétecteur (photodiode) mesurant l'intensité d'un signal optique de contrôle émis par la surface du câble. Dans les dispositifs de la deuxième famille, un photodétecteur est avantageusement prévu pour chaque tête de dénudage.
En effet, l'intensité du flux rétrodiffusé ou généré par fluorescence par la surface du câble (appelé ici « signal optique de contrôle ») varie en fonction du matériau frappé par le faisceau LASER, ce qui permet de savoir par exemple qu'une première couche de la gaine isolante du câble a été usinée complètement et qu'une deuxième couche est en train de l'être ou encore que l'âme métallique du câble est à nue (l'intensité du flux rétrodiffusé variant brutalement lorsque le faisceau laser atteint l'âme métallique du câble après avoir traversé les matériaux polymériques de la gaine isolante). Le signal optique de contrôle est fonction de la course angulaire et longitudinale de faisceau de dénudage.
Il peut être pris en compte en temps réel par des moyens de pilotage aptes à ajuster la puissance LASER ou la vitesse de déplacement de façon à ne pas insister plus que nécessaire et à optimiser la vitesse d'exécution.
Il peut aussi être utilisé dans un schéma à plusieurs passages pour calculer paramètres LASER des passages suivants. Par exemple, un premier passage à vitesse rapide et puissance LASER faible permet de dénuder des zones qualifiées de facile. Le signal optique de contrôle permet de localiser ces zones déjà dénudées et d'éteindre ou de baisser la puissance LASER au niveau de ces zones-là lors du passage suivant. Et ainsi de suite, pour les passages suivants, jusqu'à ce que les 360° de circonférence ou la longueur linéaire souhaitée ait été incisés complètement. On peut de cette manière procéder à un usinage couche par couche d'isolant, sans insister sur les zones faciles de faible épaisseur ou plus proches du point de coupe de chaque faisceau de dénudage.
Cette fonction de monitoring est particulièrement intéressante pour le dénudage de câbles multibrins torsadés blindés (opération appelée aussi « dégainage »), câbles dont le blindage métallique hélicoïdal tressé n'est pas toujours parfaitement opaque (par endroit, le maillage peut-être légèrement distendu).
En effet, la section de ce type de câble n'est pas circulaire et présente donc une surface plus ou moins proche du point de coupe de chaque faisceau de dénudage. Il est par ailleurs fréquent que l'isolant supérieur soit enrubanné, et présente des zones composées d'une seule couche de ruban et des zones constituées de deux couches de ruban voire plus. Dans ce contexte, certaines zones se dénudent plus rapidement que d'autres. Si l'on dénude ce type de câble à puissance et vitesse constante, on est amené à insister sur les zones faciles (zones n'ayant qu'une seule couche de ruban ou zones situées au niveau du point de coupe) afin que les zones difficiles (zones ayant plusieurs couches de ruban ou zones situés en amont ou en aval du point de coupe) soient incisées intégralement. En insistant ainsi sur certaines zones, qui peuvent correspondre à des points où le maillage de la tresse de blindage est imparfait, il n'est pas exclu d'endommager la gaine isolante des fils sous-jacents, ce qui ne peut être accepté. En utilisant la fonction de monitoring soit en temps réel, soit dans le cadre d'un schéma à plusieurs passages comme décrit plus haut, soit selon un autre schéma permettant de doser localement l'énergie LASER, on peut garantir un dénudage ou un dégainage parfaitement contrôlé et sûr vis-à-vis de l'intégrité des fils sous- jacents le blindage.
Outre sa fonction de guidage du câble 5 et de la butée réglable 9, le guide tubulaire 7 est également utilisé pour aspirer les fumées dégagées par la vaporisation des matériaux polymériques constituant la gaine. À cette fin, il présente un évidement annulaire 71 (entourant son évidement central 70) ou une pluralité d'évidements de section circulaire ou quelconque, situés autour de la butée 9, dans le(s)quel(s) les fumées peuvent circuler, et sur lequel on vient brancher un dispositif d'aspiration et de filtration (non représenté).
La figure 2 représente un deuxième exemple d'un dispositif de la première famille, qui permet le dénudage collectif d'un grand nombre de câbles chargés sur une platine de translation.
Un tel dispositif comprend au moins une piste 106 de réception de câble et un couple de têtes de dénudage générant deux faisceaux de dénudage 1 10, 1 1 1 dans un plan transversal (plan orthogonal à ladite piste de réception 106) lesdits faisceaux s'étendant de part et d'autre de ladite piste dans ce plan transversal (plan de la figure). Chaque tête de dénudage comprend une diode LASER 101 violette ou bleue, et des optiques 102, 103 de mise en forme du faisceau de dénudage 1 10 ou 1 11. Le dispositif comprend de plus des moyens mécaniques de translation de la piste de réception selon une direction transversale (c'est-à-dire orthogonale à la piste de réception 106) et orthogonale à la direction des faisceaux de dénudage. En variante on peut prévoir que les moyens de translation déplacent non pas la piste mais les têtes de dénudage correspondantes selon la direction transversale. Dans les deux cas, ces moyens de translation constituent des moyens mécaniques de direction au sens des revendications annexées.
Plusieurs pistes de réception de câble et couples de têtes de dénudage
(ici cinq pistes et cinq couples sont représentés) peuvent être disposés dans le même dispositif de façon à dénuder un grand nombre de câbles à la fois. Ce dispositif permet de plus de dénuder non seulement des câbles monobrins cylindriques mais aussi des câbles en nappe (comme illustré) grâce à la translation transversale des pistes de réception.
Le dispositif de dénudage par diodes LASER violettes ou bleues selon l'invention peut éventuellement comprendre une fonction d'autofocus pour l'asservissement d'un point de coupe sur la surface du câble. Cette fonction présente un grand intérêt pour le dénudage des câbles multifilaires torsadés, de section non circulaire, et dont les fils situés sous la gaine peuvent être endommagés par le faisceau LASER. Dans le cas du dénudage de câbles cylindriques, elle permet aussi de garantir un dénudage parfait (sans aucune lésion du conducteur ni trace d'isolant restant), ou d'adapter le dispositif au diamètre du câble avec une extrême précision.
La fonction d'autofocus permet de travailler avec un faisceau LASER à très courte profondeur de champ et de suivre en temps réel à l'aide d'un calculateur la topologie du câble, pendant que la tête optique se déplace axialement le long du câble ou selon un mouvement circulaire par rapport au câble.
Le mode de réalisation de la figure 3 illustre un principe de fonctionnement d'une telle fonction d'autofocus. La diode LASER violette ou bleue 201 émet un faisceau, dit faisceau primaire 202, qui est collimaté par une optique 203. Le faisceau primaire 202 traverse un générateur diffractif trois-faisceaux 204, sorte d'hologramme permettant de générer deux sous-faisceaux de faible puissance de part et d'autre du faisceau principal non dévié. On observe donc un triple faisceau 205 en sortie du générateur 204. La polarisation optique du triple faisceau LASER est rectiligne et orientée de façon à ce que le triple faisceau soit réfléchi par un cube séparateur de polarisation 206.
Le triple faisceau traverse une lame quart d'onde 207 qui permet de convertir l'état de polarisation rectiligne de l'onde incidente en un état de polarisation circulaire.
Le triple faisceau traverse alors une optique de focalisation active 208, en sortie de laquelle on retrouve trois faisceaux quasiment parallèles : un faisceau central de dénudage 209 de grande puissance, et deux faisceaux latéraux 210, 21 1 , dits faisceaux de contrôle, de faible puissance. Cette optique active 208 permet d'ajuster la position du point de focalisation du faisceau de coupe 209 sur la surface du câble quelle que soit la position de cette dernière. Le faisceau principal central (faisceau de dénudage 209) sert au dénudage du câble, les deux sous-faisceaux adjacents (faisceaux de contrôle 210, 21 1 ) ne servent que pour la fonction d'autofocus.
L'optique de focalisation active 208 peut être une simple lentille ou un arrangement de lentilles, monté(e) sur une platine de translation longitudinale (translation selon la direction axiale des faisceaux 209-21 1) ou bien une lentille à focale variable commandée électriquement.
Les trois faisceaux 209-21 1 interceptent la surface du câble 212, incliné par rapport à une direction normale de dénudage qui serait orthogonale à la direction axiale des trois faisceaux.
Les trois faisceaux sont rétrodiffusés par la surface du câble 212. Une partie du flux rétrodiffusé traverse la lentille active 208 dans le sens inverse, puis la lame quart d'onde 207. Cette dernière transforme l'état de polarisation circulaire du flux rétrodiffusé en état de polarisation rectiligne croisé par rapport à l'état de polarisation rectiligne du faisceau primaire 202 émis par la diode.
Le faisceau rétrodiffusé est alors transmis par le cube séparateur de polarisation 206 et traverse un objectif d'imagerie 213 (lentille de focalisation par exemple). Un capteur d'image linéaire 214 est disposé dans le plan focal de l'objectif d'imagerie 213, il reçoit l'image de la surface du câble 212 éclairée par les trois faisceaux (faisceau de coupe 209 et faisceaux de contrôle 210, 21 1 ).
L'analyse de l'image reçue par le capteur d'image 214 permet d'asservir la position du point de coupe du faisceau de dénudage sur la surface du câble 212. Une illustration du principe est fournie aux figures 4a à 4c. Si le faisceau de dénudage 209 est trop long, c'est-à-dire si le point de coupe est situé au-delà de la surface du câble (ce qui correspond à la figure 4a), alors le faisceau de contrôle 210 est mieux focalisé que le faisceau de contrôle 21 et son point image est donc plus petit et plus intense (signal image de plus grande amplitude). Si le faisceau de dénudage 209 est trop court, c'est-à-dire si le point de coupe est situé avant la surface du câble (figure 4c), alors le faisceau de contrôle 21 est mieux focalisé que le faisceau de contrôle 210 et son point image est donc plus petit et plus intense.
Il faut noter que les deux faisceaux de contrôle 210, 21 1 étant focalisés de part et d'autre de la zone de coupe, réalisée par le faisceau central de dénudage 209, leur image n'est pas altérée par la dégradation du câble en cours d'usinage.
Ce système permet de connaître à la fois le sens et la proportion dans laquelle la correction doit être apportée, un calculateur électronique permet le pilotage de la lentille active 208 à partir de l'analyse du signal généré par le capteur d'image 214 en temps réel, de sorte à toujours maintenir un point de coupe optimal.
L'image du point de coupe peut aussi être utilisée pour asservir des paramètres de dénudage, comme la puissance de la diode LASER, la vitesse de déplacement de la tête de dénudage, etc.
Un système d'autofocus tel que celui illustré aux figures 3 et 4a à 4c peut aussi être associé à chacune des têtes de dénudage d'un dispositif à têtes rotatives tel celui de la figure 1.
Lorsqu'il comprend plusieurs faisceaux de dénudage, le dispositif selon invention peut intégrer une unique source LASER et un unique ensemble optique permettant de générer tous les faisceaux de dénudage. De préférence, un dispositif selon l'invention comprend autant de diodes LASER et d'ensembles optiques que de faisceaux de dénudage. Cette multiplication des sources est rendue possible par leur miniaturisation.
La figure 5 illustre ainsi un dispositif de dénudage selon invention comportant quatre têtes de dénudage réparties autour d'une piste de réception de câble 306, chaque tête de dénudage comprenant une diode LASER fixe 310 à 313, un miroir pivotant motorisé 315 à 318 et un moteur (non représenté) pour l'entraînement du miroir. Bien entendu, le dispositif pourrait ne comprendre que deux ou trois têtes de dénudage, ou à l'inverse éventuellement plus de quatre têtes de dénudage.
Alors qu'un seul moteur est nécessaire dans l'exemple de la première famille illustré à la figure 1 , les dispositifs de la deuxième famille comprennent autant de moteurs que de faisceaux de dénudage. Toutefois, la deuxième famille est plus adaptée à la réalisation de dispositifs portatifs car les pièces mobiles y sont inférieures en nombre et en poids, ce qui autorise l'utilisation de moteurs moins puissants, moins encombrants et plus légers. Un deuxième avantage de la deuxième famille est d'autoriser une tolérance plus importante pour le maintien du câble car on peut prendre un peu de marge sur les angles de balayage des miroirs, de sorte qu'un léger décalage transversal du câble ne pose pas de problème contrairement aux modes de réalisation de la première famille. On peut donc utiliser un système de maintien très simple tel celui représenté aux figures 9 à 1 1.
Dans le premier exemple de la deuxième famille illustré à la figure 5, chaque diode LASER est agencée de façon à émettre un faisceau primaire transversal dont l'axe est contenu dans le plan de dénudage transversal (en d'autres termes, l'axe de chaque faisceau primaire est orthogonal à la piste de réception de câble 306). Chaque miroir 315 à 318 est monté oscillant (ou pivotant) de sorte que les points de coupe des faisceaux de dénudage générés par réflexion des faisceaux primaires sur ces miroirs sont déplacés sur quelques millimètres suivant les directions indiquées par des flèches doubles sur la figure. Ainsi, chaque diode LASER (et son miroir associé) pratique une incision dans la gaine du câble sur un quart de cercle. De préférence, les têtes de dénudage sont pilotées de sorte que deux diodes LASER consécutives, par exemple les diodes 310 et 31 1 ,312 et 313, soient activées en même temps et que, les faisceaux de dénudage qu'elles génèrent ne se rencontrent pas. En pratiquant ainsi deux incisions simultanément, le temps de réalisation d'une opération de dénudage est écourté.
La figure 6 illustre un deuxième exemple d'un dispositif selon l'invention de la deuxième famille c'est-à-dire comportant une pluralité de têtes de dénudage à miroir pivotant et à diode LASER fixe, mais qui émettent des faisceaux primaires longitudinaux, c'est-à-dire parallèles à la piste de réception 306. L'exemple illustré comporte trois diodes LASER 320 à 322. Bien entendu, un dispositif comportant deux, quatre ou plus, diodes LASER à faisceaux primaires longitudinaux est également conforme à l'invention. Dans ce dispositif, chaque diode LASER 320 à 322 est combinée à un miroir pivotant motorisé 325 à 327. Le moteur 341 , 342, associé à chaque miroir pivotant est de préférence déporté à l'arrière du dispositif comme illustré à la figure 8, la face avant du dispositif étant définie comme étant la face dotée d'un orifice 307 d'entrée d'un câble à dénuder.
En variante, chaque moteur est agencé à proximité immédiate, à l'avant, du miroir qu'il fait pivoter comme illustré à la figure 7. Cette variante est moins avantageuse que celle de la figure 8 notamment dans le cas d'un dispositif portatif destiné être utilisé dans des environnements de câblage exigus, car le plan de dénudage est nécessairement éloigné de la face avant du dispositif pour permettre le logement des moteurs.
Dans les deux variantes précédemment décrites, une butée rétractable
360 est associée à la piste de réception câble 306. Tout moyen approprié (non représenté) peut être utilisé pour déplacer cette butée entre une position déployée et une position rétractée. En position déployée, c'est-à-dire telle qu'illustrée sur les figures 7 et 8, la butée 360 sert de butée à l'extrémité du câble introduite dans le dispositif. En position rétractée (non représentée), la butée 360 est à distance de la piste de réception de câble 306 et une longueur de câble plus importante peut- être introduite dans le dispositif. Il est avantageux de prévoir une butée à la fois rétractable comme la butée 360 et réglable (de position ajustable) comme la butée 9 illustrée à la figure 1. L'homme du métier peut aisément concevoir une telle butée qui n'apparaît pas sur les dessins annexés.
Il est à noter que, à l'instar des dispositifs de la première famille, chaque tête de dénudage des dispositifs de la deuxième famille peut être équipée d'un système de monitoring (avec une ou plusieurs photodiodes) tel que décrit précédemment et/ou d'un système d'autofocus.
Les exemples de la deuxième famille peuvent être déclinés en une version (troisième famille) où le bloc constitué des trois (ou plus) têtes de dénudage avec balayage des faisceaux de dénudage, est mis en translation long du câble à dénuder, de façon à pouvoir effectuer à la fois une incision annulaire et une ou plusieurs (si l'on allume plusieurs diodes) incisions longitudinales (fentes), pour faciliter l'extraction de l'isolant et réaliser une fenêtre pour une reprise de blindage. De même, le bloc constitué des trois ou quatre têtes de dénudage avec balayage des faisceaux de dénudage peut être mis en translation selon une direction transversale, de façon à dénuder successivement plusieurs câbles comme dans l'illustration de la figure 2.
La figure 1 1 illustre des moyens de maintien d'un câble à dénuder d'un dispositif selon invention. Ces moyens de maintien comprennent un coulisseau 400 présentant deux passages traversants 401 , 402 ayant des diamètres internes minimaux différents afin de permettre d'accueillir des câbles de diamètres compris dans une large plage. Le coulisseau peut être déplacé par tous moyens appropriés (tels que, par exemple, une crémaillère formée dans une face inférieure du coulisseau et une roue dentée correspondante) selon une direction transversale de façon à permettre d'aligner l'un des passages traversant 401 ,402 avec une piste de réception de câble 306.
Dans chaque passage traversant 401 ,402 est formé un cône d'insertion
381 et est logé un presse-étoupe 390 tel celui illustré à la figure 10. Ce presse- étoupe comprend un cylindre fendu déformable 394 (voir passage traversant 401), un manchon élastique 383 (retiré du presse-étoupe du passage traversant 401 pour permettre d'observer le cylindre fendu 394), une platine de serrage 395, et un cône d'appui 382 ménagé dans le coulisseau. Le manchon élastique 383 est en un matériau étanche à la lumière, ou à tout le moins étanche aux rayonnements ayant des longueurs d'onde égales à celles des diodes LASER équipant le dispositif. La platine de serrage 395 peut être déplacée selon la direction longitudinale des passages traversants 401 , 402. Lorsque la platine de serrage 395 est rapprochée du cône d'appui 382 (suivant la flèche parallèle au câble illustrée à la figure 10), le cylindre fendu 394 est poussé contre le cône d'appui
382 et l'extrémité de ses lamelles (délimitées par les fentes) se rapprochent de la piste de réception de câble, comprimant ainsi radialement le manchon élastique
383 (voir flèches radiales représentée à la figure 10). Le manchon élastique 383 vient alors sertir de façon étanche le câble à dénuder ; le câble et le manchon obturent ainsi complètement l'orifice 307 d'entrée du câble ; aucun rayonnement ne peut sortir du dispositif selon invention (si la piste de réception de câble 306 est traversante, un cache pivotant est prévu sur la face arrière du dispositif pour pouvoir obturer également l'orifice de sortie du câble) et la sécurité de l'opérateur est préservée.
La figure 9 illustre un autre exemple de presse-étoupe pouvant être associée au coulisseau 400. A l'instar du presse-étoupe précédemment décrit, le presse étoupe 380 comprend un manchon en élastomère étanche à la lumière, un cône d'appui 382. En lieu et place du cylindre fendu 394, il comprend un cône de compression 384 qui peut être poussé longitudinalement en direction du cône d'appui 382 par la platine de serrage 395. Là encore, le déplacement de la platine de serrage 395 entraîne la compression radiale du manchon élastique qui vient sertir de façon étanche le câble à dénuder logé dans la piste de réception de câble 306, assurant ainsi à la fois le maintien du câble dans une position de dénudage et l'obturation de l'orifice d'entrée du câble.
L'invention peut faire l'objet de nombreuses variantes par rapport aux modes de réalisation illustrés, dès lors que ces variantes entrent dans le cadre délimité par les revendications.

Claims

REVENDICATIONS
1. Dispositif de dénudage de câbles électriques, comprenant d'une part au moins un faisceau de dénudage (10, 1 1 ; 1 10, 11 1 ; 209) émis par une source LASER (1 ; 101 ; 201) et focalisé par un ensemble optique (2-4 ; 102, 103 ; 203-208) en un point de coupe (12, 13), , et d'autre part au moins une piste de réception (6 ; 106) d'une portion de câble à dénuder, caractérisé en ce que chaque source LASER comprend une diode LASER (1 ; 101 ; 201 ) émettant un faisceau de dénudage de longueur d'onde comprise entre 400nm et 460nm.
2. Dispositif selon la revendication 1 , caractérisé en ce que chaque source LASER est une diode LASER (1 ; 101 ; 201 ) émettant un faisceau de dénudage de longueur d'onde comprise entre 400nm et 410nm ou entre 440nm et 460nm.
3. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend des moyens mécaniques de direction aptes à déplacer au moins un point de coupe (12, 13) autour d'une piste de réception de câble dans un plan transversal.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend des moyens mécaniques de direction aptes à déplacer au moins un point de coupe le long d'une piste de réception de câble rectiligne.
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que chaque piste (306) de réception de câble traverse intégralement le dispositif et est munie d'une butée rétractable (360) qui, en position rétractée, autorise le passage du câble, celui-ci traversant alors le dispositif et qui, en position déployée, traverse la piste de réception de câble et ferme ainsi le passage au câble afin de permettre de dénuder une extrémité du câble calé contre la butée déployée,
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend plusieurs pistes (106) rectilignes de réception de câble à dénuder, ces pistes s'étendant dans un même plan parallèlement entre elles selon une direction longitudinale (X), et en ce que le dispositif comprend des moyens mécaniques de direction aptes à déplacer au moins un point de coupe ou au moins une piste de réception selon une direction transversale (Y) orthogonale à la direction longitudinale (X) et parallèle au plan des pistes de réception de câble.
7, Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend au moins deux faisceaux de dénudage (1 0, 1 1 1 ), les points de coupe desdits faisceaux étant situés de part et d'autre d'une piste de réception de câble, dans un même plan de dénudage transversal.
8. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend quatre faisceaux de dénudage répartis autour d'une piste (306) de réception de câble, chacun des faisceaux de dénudage étant formé par un faisceau primaire transversal émis par une diode laser bleue ou violette (310- 313) dans le plan de dénudage, et réfléchi par un miroir pivotant motorisé (315- 318), les miroirs pivotants motorisés étant pilotés de façon désynchronisée de sorte que les faisceaux de dénudage ne se croisent pas.
9. Dispositif selon la revendication 1 à 7, caractérisé en ce qu'il comprend trois ou quatre faisceaux de dénudage répartis autour d'une piste (306) de réception de câble, chacun des faisceaux de dénudage étant formé par un faisceau primaire longitudinal émis par une diode laser bleue ou violette (320-322) selon une direction parallèle à la piste de réception de câble, et réfléchi par un miroir pivotant motorisé (325-327).
10. Dispositif selon la revendication 9, caractérisé en ce que le dispositif présente une face avant par laquelle un câble à dénuder peut être introduit dans un orifice d'entrée de câble, et en ce que chaque miroir pivotant motorisé est associé à un moteur agencé à l'arrière de la diode laser correspondante.
11. Dispositif selon l'une des revendications précédentes, caractérisé en, ce qu'il comprend, pour chaque piste (306)de réception de câble, un ensemble de maintien pour le maintien d'un câble à dénuder dans la piste de réception de câble, et en ce que l'ensemble de maintien comprend un presse-étoupe (394) doté d'un manchon (383) en un matériau élastique étanche à la lumière.
12. Dispositif selon la revendication 1 1 , caractérisé en ce que chaque ensemble de maintien comprend un coulisseau (400) pouvant coulisser selon une direction orthogonale à la piste (306) de réception de câble et comportant au moins deux passages traversants (401 , 402) de diamètres internes différents, chaque passage traversant étant muni d'un presse-étoupe (394) avec un manchon (383) en un matériau élastique étanche à la lumière.
13. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend des moyens de calibrage (8) aptes à mesurer un diamètre d'un câble à dénuder logé dans une piste de réception (6) de câble et à ajuster la position d'au moins un point de coupe (12, 13) relativement à ladite piste de réception, en fonction du diamètre mesuré.
14. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend, pour au moins un faisceau de dénudage, un système de monitoring comprenant au moins une photodiode pour la capture et l'analyse d'un signal optique de contrôle émis par un câble visé par ledit faisceau de dénudage, et des moyens de pilotage aptes à adapter des paramètres de balayage en fonction de résultats d'analyse du signal optique de contrôle.
15. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un système d'autofocus pour l'asservissement d'un point de coupe, aptes à déterminer la position dudit point de coupe relativement à une surface d'un câble à dénuder (212) logé dans la piste de réception correspondante, ce système d'autofocus comprenant deux faisceaux de contrôle (210, 21 1 ) coplanaires au faisceau de dénudage (209) et entourant ce dernier, ainsi que des moyens de capture (213, 214) et d'analyse d'une image de contrôle formée par des rayonnements réfléchis par un câble logé dans la piste de réception, ladite piste de réception s'étendant selon une direction longitudinale qualifiée d'inclinée, qui forme, dans un plan contenant la direction axiale du faisceau de dénudage et la direction longitudinale de la piste de réception, un angle non nul avec une direction normale de dénudage orthogonale à la direction axiale du faisceau de dénudage.
16. Dispositif selon l'une des revendications précédentes, caractérisée en ce qu'il comprend une batterie autonome.
PCT/FR2013/051490 2012-06-29 2013-06-26 Dispositif de dénudage de câbles électriques utilisant des diodes laser violettes ou bleues WO2014001716A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201380034070.2A CN104412473B (zh) 2012-06-29 2013-06-26 使用紫色或蓝色激光二极管来剥开电缆的设备
RU2015102830A RU2621702C2 (ru) 2012-06-29 2013-06-26 Устройство для зачистки электрических кабелей с использованием фиолетовых или синих лазерных диодов
ES13744634T ES2739610T5 (es) 2012-06-29 2013-06-26 Dispositivo para pelar cables eléctricos que utiliza diodos de láser violetas o azules
UAA201500700A UA115334C2 (uk) 2012-06-29 2013-06-26 Пристрій для зачищування електричних кабелів з використанням фіолетових або синіх лазерних діодів
CA2876805A CA2876805C (fr) 2012-06-29 2013-06-26 Dispositif de denudage de cables electriques utilisant des diodes laser violettes ou bleues
JP2015519295A JP6367186B2 (ja) 2012-06-29 2013-06-26 紫色又は青色レーザーダイオードを用いた電気ケーブル剥皮装置
EP13744634.0A EP2867960B2 (fr) 2012-06-29 2013-06-26 Dispositif de dénudage de câbles électriques utilisant des diodes laser violettes ou bleues
US14/411,855 US9876338B2 (en) 2012-06-29 2013-06-26 Device for stripping electric cables using violet or blue laser diodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1256207A FR2992784B1 (fr) 2012-06-29 2012-06-29 Dispositif de denudage de cables electriques utilisant des diodes laser violettes ou bleues
FR1256207 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014001716A1 true WO2014001716A1 (fr) 2014-01-03

Family

ID=46852226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051490 WO2014001716A1 (fr) 2012-06-29 2013-06-26 Dispositif de dénudage de câbles électriques utilisant des diodes laser violettes ou bleues

Country Status (11)

Country Link
US (1) US9876338B2 (fr)
EP (1) EP2867960B2 (fr)
JP (1) JP6367186B2 (fr)
CN (1) CN104412473B (fr)
CA (1) CA2876805C (fr)
ES (1) ES2739610T5 (fr)
FR (1) FR2992784B1 (fr)
RU (1) RU2621702C2 (fr)
TR (1) TR201909829T4 (fr)
UA (1) UA115334C2 (fr)
WO (1) WO2014001716A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160131839A1 (en) * 2014-11-07 2016-05-12 Corning Optical Communications LLC Methods for stripping an optical fiber coating using blue or blue-violet radiation
US20160161672A1 (en) * 2014-11-07 2016-06-09 Corning Optical Communications LLC Systems and methods for multiple-pass stripping of an optical fiber coating
EP3447865A1 (fr) 2017-08-23 2019-02-27 Komax Holding Ag Procédé d'enlèvement d'une partie d'une feuille écran d'un habillage de câble de ligne et dispositif d'enlèvement des feuilles permettant l'enlèvement d'une partie d'une feuille écran d'un habillage de câble de ligne à un point de rupture de l'habillage de câble de ligne

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779762B (zh) * 2014-02-20 2016-01-20 天地(常州)自动化股份有限公司 环形剥线钳
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US9588625B2 (en) 2014-08-15 2017-03-07 Google Inc. Interactive textiles
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US11169988B2 (en) 2014-08-22 2021-11-09 Google Llc Radar recognition-aided search
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
US10016162B1 (en) 2015-03-23 2018-07-10 Google Llc In-ear health monitoring
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
CN107466389B (zh) 2015-04-30 2021-02-12 谷歌有限责任公司 用于确定类型不可知的rf信号表示的方法和装置
EP3289434A1 (fr) 2015-04-30 2018-03-07 Google LLC Reconnaissance de gestes fondée sur un radar à champ large
EP3289432B1 (fr) 2015-04-30 2019-06-12 Google LLC Suivi de micro-mouvements sur la base de rf pour suivi et reconnaissance de gestes
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US10817065B1 (en) 2015-10-06 2020-10-27 Google Llc Gesture recognition using multiple antenna
WO2017079484A1 (fr) 2015-11-04 2017-05-11 Google Inc. Connecteurs pour connecter des éléments électroniques incorporés dans des vêtements à des dispositifs externes
US10492302B2 (en) 2016-05-03 2019-11-26 Google Llc Connecting an electronic component to an interactive textile
US10175781B2 (en) 2016-05-16 2019-01-08 Google Llc Interactive object with multiple electronics modules
JP6547681B2 (ja) * 2016-05-25 2019-07-24 株式会社村田製作所 コイル部品製造方法
RS61248B1 (sr) * 2016-10-18 2021-01-29 Komax Holding Ag Postupak i uređaj za skidanje izolacije kabla sa višeslojnom oblogom
US10579150B2 (en) 2016-12-05 2020-03-03 Google Llc Concurrent detection of absolute distance and relative movement for sensing action gestures
CN107009024B (zh) * 2017-06-07 2019-05-31 重庆大学 一种激光剥离导爆索时激光切割的功率和速度控制方法
TWI666972B (zh) 2017-09-29 2019-07-21 美商科斯莫燈飾公司 具時控功能的燈具電路
CN107507997B (zh) * 2017-10-11 2023-11-24 浙江欧胜智能装备有限公司 圆柱电芯激光剥皮机
DE102018132490A1 (de) * 2018-11-16 2020-05-20 Md Elektronik Gmbh Laserschneidevorrichtung für Leitungen und Verfahren zum Laserschneiden von Leitungen mit einer Laserschneidevorrichtung
CN110198015B (zh) * 2019-07-12 2024-03-15 内蒙古大学 一种全自动激光辅助热剥离式绝缘电缆剥皮器
DE102019121631A1 (de) * 2019-08-12 2021-02-18 Md Elektronik Gmbh Laserbearbeitungsvorrichtung für geschirmte Leitungen und Verfahren zum Betreiben einer Laserbearbeitungsvorrichtung für geschirmte Leitungen
CN110620350A (zh) * 2019-09-27 2019-12-27 贵州电网有限责任公司 一种多旋翼无人机三轴自稳可控异物清除装置
EP3799083A1 (fr) * 2019-09-30 2021-03-31 Nexans Procédé de fabrication de câbles coaxiaux pourvus de conduit extérieur, radialement fermée, à paroi mince
WO2021153807A1 (fr) * 2020-01-28 2021-08-05 주식회사 휴비스 Dispositif de pelage de fil de cuivre rectangulaire et système de fabrication de segment de bobine
JP7489207B2 (ja) 2020-03-27 2024-05-23 古河電気工業株式会社 皮膜除去方法
CN113865956B (zh) * 2021-09-17 2024-02-20 国网山东省电力公司莱芜供电公司 一种用于线缆检测制样的线缆剥离方法与系统
CN114050512B (zh) * 2021-11-01 2022-11-18 贵州电网有限责任公司 一种电缆剥线钳
WO2024047038A1 (fr) * 2022-08-29 2024-03-07 Atop S.P.A. Procédé de contrôle et de vérification de dénudage de couche isolante dans des secteurs prédéfinis d'un fil conducteur couvert par une couche de matériau diélectrique, et ensemble de contrôle et de vérification associé
CN117977452B (zh) * 2023-12-07 2024-06-14 杭州明韵科技有限公司 一种高压带电线缆全自动剥皮装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761535A (en) * 1987-10-13 1988-08-02 Laser Machining, Inc. Laser wire stripper
FR2690015A1 (fr) 1992-04-10 1993-10-15 Eurocopter France Dispositif pour dénuder des câbles ou analogues, par laser.
US5837961A (en) * 1995-11-24 1998-11-17 Miller; Richard T. Laser wire stripping apparatus having multiple synchronous mirrors and a method therefor
WO2008084216A1 (fr) 2007-01-08 2008-07-17 Spectrum Technologies Plc Dénudeurs de fils laser

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1427458A1 (ru) * 1986-04-07 1988-09-30 Предприятие П/Я М-5178 Устройство дл сн ти изол ции с ленточных проводов
SU1464232A1 (ru) * 1986-08-27 1989-03-07 Научно-Исследовательский,Проектно-Конструкторский И Технологический Институт Электромашиностроения Автомат дл подготовки электрических проводов к монтажу
JP2539886B2 (ja) * 1988-05-24 1996-10-02 松下電器産業 株式会社 絶縁性被覆膜の除去方法
JP4931657B2 (ja) * 2007-03-19 2012-05-16 三菱電機株式会社 銅線の製造方法および銅線被膜剥離装置
US20110247197A1 (en) * 2008-01-09 2011-10-13 Feinics Amatech Teoranta Forming channels for an antenna wire of a transponder
CN101409435B (zh) * 2008-11-27 2011-07-27 武汉凌云光电科技有限责任公司 一种同轴线金属屏蔽层剥线机
WO2011055785A1 (fr) * 2009-11-05 2011-05-12 日本オートマチックマシン株式会社 Procédé et appareil pour couper un film d'isolement de câble à l'aide d'un faisceau de laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761535A (en) * 1987-10-13 1988-08-02 Laser Machining, Inc. Laser wire stripper
FR2690015A1 (fr) 1992-04-10 1993-10-15 Eurocopter France Dispositif pour dénuder des câbles ou analogues, par laser.
US5837961A (en) * 1995-11-24 1998-11-17 Miller; Richard T. Laser wire stripping apparatus having multiple synchronous mirrors and a method therefor
WO2008084216A1 (fr) 2007-01-08 2008-07-17 Spectrum Technologies Plc Dénudeurs de fils laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160131839A1 (en) * 2014-11-07 2016-05-12 Corning Optical Communications LLC Methods for stripping an optical fiber coating using blue or blue-violet radiation
US20160161672A1 (en) * 2014-11-07 2016-06-09 Corning Optical Communications LLC Systems and methods for multiple-pass stripping of an optical fiber coating
US9791624B2 (en) * 2014-11-07 2017-10-17 Corning Optical Communications LLC Methods for stripping an optical fiber coating using blue or blue-violet radiation
US9891384B2 (en) * 2014-11-07 2018-02-13 Corning Optical Communications LLC Systems and methods for multiple-pass stripping of an optical fiber coating
EP3447865A1 (fr) 2017-08-23 2019-02-27 Komax Holding Ag Procédé d'enlèvement d'une partie d'une feuille écran d'un habillage de câble de ligne et dispositif d'enlèvement des feuilles permettant l'enlèvement d'une partie d'une feuille écran d'un habillage de câble de ligne à un point de rupture de l'habillage de câble de ligne
US11450449B2 (en) 2017-08-23 2022-09-20 Komax Holding Ag Method for stripping part of a shielding foil of a sheathed cable and foil removing device for stripping part of a shielding foil of a sheathed cable from the sheathed cable at a predetermined breaking point

Also Published As

Publication number Publication date
RU2621702C2 (ru) 2017-06-07
EP2867960B1 (fr) 2019-05-01
CN104412473B (zh) 2017-11-07
FR2992784B1 (fr) 2015-08-07
CN104412473A (zh) 2015-03-11
ES2739610T3 (es) 2020-02-03
RU2015102830A (ru) 2016-08-20
ES2739610T5 (es) 2023-07-19
JP2015524642A (ja) 2015-08-24
JP6367186B2 (ja) 2018-08-01
UA115334C2 (uk) 2017-10-25
US20150162729A1 (en) 2015-06-11
FR2992784A1 (fr) 2014-01-03
EP2867960A1 (fr) 2015-05-06
CA2876805A1 (fr) 2014-01-03
CA2876805C (fr) 2020-06-02
TR201909829T4 (tr) 2019-07-22
EP2867960B2 (fr) 2023-03-08
US9876338B2 (en) 2018-01-23

Similar Documents

Publication Publication Date Title
EP2867960B1 (fr) Dispositif de dénudage de câbles électriques utilisant des diodes laser violettes ou bleues
EP2577707B1 (fr) Systeme de detection de cathodoluminescence reglable et microscope mettant en oeuvre un tel systeme
FR2588380A1 (fr) Dispositif d'examen a distance de defauts debouchant a la surface interne d'une cavite profonde
WO2011148072A1 (fr) Systeme de detection de cathodoluminescence souple et microscope mettant en oeuvre un tel systeme
EP0873582B1 (fr) Outil portable pour le sertissage de broches de connexion sur des conducteurs electriques
FR2941045A1 (fr) Dispositif et procede de determination d'une information de polarisation et imageur polarimetrique
EP2219036A1 (fr) Microscope en champ proche multifonctionnel
EP0526371A1 (fr) Procédé de découpe profonde par faisceau laser d'un matériau recouvrant un substrat et dispositifs pour sa mise en oeuvre
WO2017001027A1 (fr) Tete pour dispositif de soudage
FR2690015A1 (fr) Dispositif pour dénuder des câbles ou analogues, par laser.
EP2697614B1 (fr) Analyseur spatial de faisceau laser a reglage automatique
EP3008420B1 (fr) Dispositif de contrôle robotisé d'une structure par ultrason-laser
WO2023209097A1 (fr) Dispositif de detection d'un defaut dans un element structurel en materiau composite
CA3028870C (fr) Procede d'inspection d'une surface metallique et dispositif associe
FR2677567A1 (fr) Procede et dispositif de controle du fonctionnement d'une chaine optique, pour faisceau laser, portee par un outil de soudage.
FR3119466A1 (fr) Dispositifs pour l’analyse microscopique ex vivo d’échantillons et in vivo de la peau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013744634

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2876805

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015519295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14411855

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: A201500700

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2015102830

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A20150053

Country of ref document: BY