WO2014000421A1 - 一种物理上行控制信道资源确定方法及装置 - Google Patents

一种物理上行控制信道资源确定方法及装置 Download PDF

Info

Publication number
WO2014000421A1
WO2014000421A1 PCT/CN2013/000764 CN2013000764W WO2014000421A1 WO 2014000421 A1 WO2014000421 A1 WO 2014000421A1 CN 2013000764 W CN2013000764 W CN 2013000764W WO 2014000421 A1 WO2014000421 A1 WO 2014000421A1
Authority
WO
WIPO (PCT)
Prior art keywords
epdcch
index
ecce
physical resource
maximum
Prior art date
Application number
PCT/CN2013/000764
Other languages
English (en)
French (fr)
Inventor
戴博
陈艺戬
郭森宝
孙云锋
左志松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/377,240 priority Critical patent/US9661617B2/en
Priority to EP13810064.9A priority patent/EP2802181B1/en
Publication of WO2014000421A1 publication Critical patent/WO2014000421A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for determining physical uplink control channel resources in a system.
  • FIG. 1 is a schematic diagram of a frame structure of an LTE (Long Term Evolution) system FDD (Frequency Division Duplex) mode.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • a 10 ms Radio Frame wireless
  • a 10 ms Radio Frame consists of twenty Slots (time slots) of length 0.5ms, numbered 0 ⁇ 19, and time slots 2i and 2i+1 form a Subframe (subframe) i of length 1ms.
  • 2 is a schematic diagram of a frame structure of a TDD (Time Division Duplex) mode of an LTE system.
  • a 10 ms radio frame is composed of two 5 ms long.
  • Half Frame consists of five subframes containing 5 frames of length (1 frame).
  • Subframe i is defined as two time slots 2i and 2i+1 that are 0.5 ms long.
  • Normal CP Normal Cyclic Prefix
  • one slot contains seven symbols with a length of 66.7us, where the CP of the first symbol has a length of 5.21us, and the other six symbols have a CP.
  • the length is 4.69us
  • Extended CP Extended Cyclic Prefix
  • one slot contains 6 symbols, and the CP length of all symbols is 16.67us.
  • the Physical Downlink Control Channel (PDCCH) for transmitting physical layer control signaling is generally configured in the sub-
  • the first N OFDM (Orthogonal Frequency Division Multiplexing) symbols are transmitted on the frame, and the N symbols are generally referred to as control signaling transmission areas.
  • the control signaling transmission area of the R8/9/10 is referred to as the first control signaling transmission area in the embodiment of the present invention.
  • the available transmission resources of the first control signaling transmission area are divided into a plurality of CCE (Control Channel Element) resource units, and resources occupied by the control information are allocated in units of CCE, where the resource unit CCE can be further Subdivided into multiple REGs (Resource Element Group), a CCE is composed of multiple non-contiguous REGs, generally 9 REGs form a CCE, and each REG is composed of multiple basic resource units RE (Resource Element).
  • CCE Control Channel Element
  • REGs Resource Element Group
  • control signaling transmission resources allocated by the user are not continuous, which brings many difficulties to the implementation of the closed-loop precoding technology in the multi-antenna system, so that only the diversity technique can be used in the control signaling region, and it is difficult to use the closed-loop precoding. technology.
  • the main reason is that the demodulation pilot design and channel state information feedback of the first precoding region are very difficult to design. Therefore, the control signaling in the existing version only supports the discontinuous resource transmission and diversity techniques.
  • the design considers opening up a new control channel area, and the control signaling transmission resources of the same UE (User Equipment) can be It is a continuous time-frequency resource to support closed-loop precoding technology and improve the transmission performance of control information.
  • the control signaling area of the new and old versions is shown in Figure 3.
  • the new version of the control signaling divides part of the transmission resources for the second control signaling transmission area in the original R8/9/10 PDSCH (Physical Downlink Shared Channel) transmission area, which can make the control signaling transmission.
  • PDSCH Physical Downlink Shared Channel
  • the second control signaling transmission area the Demodulation Reference Signal (DMRS) in R10 can be reused to demodulate the control signaling, and the precoding technology is well supported.
  • the second control signaling transmission area is in units of RB (Resource Block), which can perform interference coordination better.
  • the DMRS can also support open-loop diversity techniques, such as Space-Frequency Block Coding (SFBC). technology.
  • SFBC Space-Frequency Block Coding
  • LTE-A One RE in LTE is one subcarrier on one OFDM symbol, and one downlink physical RB is composed of 12 consecutive subcarriers and 14 consecutive OFDM symbols (12 when extended cyclic prefix is used), and the RB is in the frequency domain.
  • the upper is 180 kHz, which is generally the length of time in a time slot, as shown in Figure 4 (a 5M system).
  • the LTE/LTE-A system allocates resources blocks as a basic unit.
  • the HARQ-ACK is transmitted in the uplink (Hybrid Automatic Repeat Request Acknowledgment, the hybrid automatic repeat request is affirmative
  • the transmission of the PDSCH transmission indicated by the PDCCH in the LTE TDD mode or the downlink SPS (Semi-Persistent Scheduling) indicated by the PDCCH is obtained after the CCE index corresponding to the PDCCH allocated to the user is subjected to block interleaving. Since there is a configuration in the TDD mode that the number of downlink subframes in a radio frame is more than the number of uplink subframes, the concept of a feedback window is defined. The feedback window is all the downlink subframes corresponding to the uplink subframe. It should be noted that the "correspondence" here means that the downlink subframes feedback feedback information in the uplink subframe.
  • the number of downlink subframes in a radio frame is greater than the number of uplink subframes. Therefore, feedback information of multiple downlink subframes may be sent in the same uplink subframe.
  • a plurality of downlink subframes corresponding to such an uplink subframe are referred to as a feedback window.
  • CH is determined by the high layer configuration and Table 1.
  • Table 1 shows the relationship of PUCCH resource index correspondence signaling.
  • the CH is determined by one of the four resources of the high-level configuration indicated by the TPC domain.
  • DCI Downlink Control Information
  • an ePDCCH (Enhanced PDCCH) is introduced in the discussion of 3GPP (3rd Generation Partnership Project) to enhance PDCCH performance, and a new PDCCH transmission area is introduced, and is defined for An eCCE (Enhanced Control Channel Element, enhanced CCE) carrying an ePDCCH.
  • 3GPP 3rd Generation Partnership Project
  • the embodiment of the present invention provides a method and a device for determining the physical uplink control channel resource, so as to at least solve the above problem.
  • An embodiment of the present invention provides a physical uplink control channel (PUCCH) resource determining method, including:
  • the device determines, according to the physical resource of the enhanced physical downlink control channel (ePDCCH), a channel resource index “ CH ” of the PUCCH, where the PUCCH is used to carry a positive acknowledgement/negative acknowledgement of the physical downlink shared channel (PDSCH) indicated by the ePDCCH (
  • the ACK/NACK information includes: any one or more of a physical resource block, an enhanced control channel element (eCCE), and an antenna port index.
  • the foregoing method may further have the following feature: the determining, by the device, the channel resource index of the PUCCH according to the physical resource of the ePDCCH,
  • the physical resources of the ePDCCH for transmitting the discrete transmission mode share the same area as the physical resources of the ePDCCH for transmitting the continuous transmission mode;
  • the physical resources of the ePDCCH for transmitting the discrete transmission mode are independently configured with the physical resources of the ePDCCH for transmitting the continuous transmission mode.
  • the foregoing method may also have the following features, where the device determines according to physical resources of the ePDCCH.
  • the channel resource index of the PUCCH " CH” includes: the apparatus determining a starting position N P S H of the channel resource of the PUCCH, where:
  • the N P S H is a starting position N CH of a channel resource of a PUCCH corresponding to an existing PDCCH; Or, the N P S H is a starting position A3 ⁇ 4 cch of the channel resource of the PUCCH corresponding to the existing PDCCH, and the predefined value D is added, where the D indicates that the PUCCH is in the uplink subframe where the PUCCH is located. a channel resource maximum value of a PUCCH corresponding to the PDCCH; or, the D indicates a number of control channel elements (CCEs) on a subframe in which the ePDCCH is located;
  • CCEs control channel elements
  • the N P S H is a start position A3 ⁇ 4 cch of a channel resource of the PUCCH corresponding to the existing PDCCH, and the predefined value D is added, and V is added, where the V is determined by signaling; Or the N P S H is determined by signaling;
  • the N P S H is a starting position of a PUCCH format la/lb resource in an uplink subframe where the PUCCH is located.
  • the foregoing method may further have the following feature: in the step of determining, by the apparatus, a starting position Np S ⁇ H of a channel resource of the PUCCH,
  • the Np S ; ⁇ H are the same or different in different uplink subframes.
  • the foregoing method may further have the following feature: in the step of determining, by the device, a starting position N P S H of a channel resource of the PUCCH,
  • the N eH of the channel resources of the PUCCH corresponding to the ePDCCH for different transmission modes are the same or different.
  • the above method may have the following characteristics, said determining means ePDCCH PUCCH resources according to the physical channel resource index "CH comprising the step of: determining an offset of the offset means, wherein said offset is a fixed value, or, according to the following One or a combination of information determines:
  • Antenna port information of the ePDCCH indication signaling, a transmission mode of the ePDCCH, a location of the ePDCCH in a physical resource block, an enhanced control channel element index corresponding to the ePDCCH, and an enhanced corresponding to the ePDCCH Resource unit group index.
  • the above method may also have the following features, the device determining the Offset according to one of the following steps or a combination thereof:
  • the offset corresponding to the ePDCCH is 0 or determined according to the indication signaling.
  • the offset corresponding to the ePDCCH is determined according to any one of the steps A to C.
  • determining the offset according to the antenna port information and the indication signaling used by the ePDCCH includes:
  • Offset offsetl + ARI, where offset1 is determined according to the antenna port index of the ePDCCH, and the ARI value is configured by indication signaling.
  • determining the offset according to the combination of the step B and the step D includes:
  • Offset offsetl + ARI, where offset1 is 0 when the ePDCCH is in the discrete transmission mode, and offset1 is determined according to the antenna port index of the ePDCCH when the ePDCCH is in the continuous transmission mode, and the ARI value is configured by the indication signaling.
  • the foregoing method may further have the following feature: the determining, by the device, the channel resource index of the PUCCH according to the physical resource of the ePDCCH, the step of the CH includes:
  • the device determines the " eH : according to the following formula:
  • the PR is a physical resource block index that carries the ePDCCH after being renumbered, or the PR is an enhanced control channel unit index that carries the ePDCCH; the N P S : ⁇ H is the The starting position of the channel resource of the PUCCH.
  • the above method can also have the following features.
  • the determining, by the device, the channel resource index shield CH of the PUCCH according to the physical resources of the ePDCCH includes: Frame k, the device is based on the physicality of the ePDCCH on the downlink subframe k Resource index " PR determines the channel resource index of the PUCCH (i)
  • the total number of PUCCHs corresponding to the ePDCCH region of one downlink subframe is indicated by signaling; r is greater than or equal to 1; the PR is a physical resource block index carrying the ePDCCH after renumbering, or is an enhancement carrying the ePDCCH. Control channel unit index; the N P S H is a starting position of a channel resource of the PUCCH.
  • the determining, by the device, the channel resource index resort CH of the PUCCH according to the physical resources of the ePDCCH includes:
  • the apparatus determines, according to the physical resource block index of the ePDCCH on the downlink subframe k, a channel resource index of the PUCCH (1)
  • N m represents the downlink sub-frame
  • the total number of PUCCHs corresponding to the ePDCCH region of the frame k is indicated by the signaling;
  • the PR is a physical resource block index that carries the ePDCCH after the re-numbering, or the PR is an enhanced control channel unit that carries the ePDCCH.
  • Index the N P S H is a starting position of a channel resource of the PUCCH.
  • An enhanced control channel unit index of the ePDCCH where h is a maximum number of uplink control channel resources corresponding to one physical resource block carrying the ePDCCH, or h is one physical resource block carrying the ePDCCH
  • the number of enhanced control channel elements included, or the h is indicated by signaling, or the h is a predefined positive integer.
  • the above method may further have the following features, the method further comprising: the device determining the PRB according to the following manner:
  • the PRB is determined according to the maximum or minimum D-eCCE index carrying the ePDCCH; wherein the D-eCCE is an enhanced control channel unit of the ePDCCH for the discrete transmission mode.
  • the foregoing method may also have the following features, according to the maximum or minimum of carrying the ePDCCH.
  • the D-eCCE index determines that the steps of the PRB include:
  • the eCCE is mapped to the same physical resource block; and the physical resource block index "PB is determined according to the physical resource block index corresponding to the intra-group position after the grouping according to the maximum or minimum D-eCCE index carrying the ePDCCH; or
  • the physical resource block index " PRB is a minimum physical resource block index where the maximum or minimum D-eCCE index is located, when the maximum or minimum D-eCCE When the index is an even number, determining the physical resource block index " PRB is the maximum or minimum The index of the largest physical resource block where the D-eCCE index is located;
  • the physical resource block index " PRB is the largest physical resource block index where the maximum or minimum D-eCCE index is located, when the maximum or minimum D-eCCE When the index is an even number, the physical resource block index " PRB " is the smallest physical resource block index in which the largest or smallest D-eCCE index is located.
  • h is the maximum number of uplink control channel resources corresponding to one physical resource block carrying the ePDCCH, or h is the number of enhanced control channel units included in one physical resource block carrying the ePDCCH Or, the h is indicated by signaling, or the h is a predefined positive integer.
  • the above method may further have the following features, the method further comprising: the device determining the ⁇ eE according to the following manner:
  • the eE is the maximum or minimum L-eCCE index that carries the ePDCCH; or determining that the CE is the maximum or minimum L-eCCE index that carries the ePDCCH+Total-DeCCE Wherein the Total-DeCCE indicates the total number of available D-eCCEs or is indicated by signaling; or
  • the D-eCCE index determines the ⁇ CE .
  • the above method may have the following characteristics, said determining step comprises ⁇ CE is the maximum or minimum indexes D-eCCE carrying the ePDCCH:
  • the CE is a maximum or minimum D-eCCE index that carries the ePDCCH; or determining that the CE is a maximum or minimum D-eCCE index that carries the ePDCCH
  • Total-LeCCE indicates the total number of available L-eCCEs or by signaling Instruction
  • the L-eCCE is an enhanced control channel unit of an ePDCCH for a continuous transmission mode
  • the D-eCCE is an enhanced control channel unit of an ePDCCH for a discrete transmission mode.
  • the above method may further have the following features, the method further comprising: the device numbering the physical resources of the pair of ePDCCHs as follows:
  • the sequence of physical resources of all configured ePDCCHs is numbered;
  • the physical resources of the ePDCCH for different transmission modes are first cascaded, and the physical resources of the ePDCCH are numbered according to the sequence after the cascading;
  • the physical resources of the ePDCCHs used for different transmission modes are respectively numbered.
  • the above method may also have the following features, wherein the device is a terminal or a base station.
  • the embodiment of the present invention further provides an apparatus, including: a channel resource determining unit, configured to: determine a channel resource index ⁇ CH of a physical uplink control channel (PUCCH) according to a physical resource of an enhanced physical downlink control channel (ePDCCH), where The PUCCH is used to carry the ePDCCH a positive acknowledgment/negative acknowledgment (ACK/NACK) information of the indicated physical downlink shared channel (PDSCH); the physical resource of the ePDCCH includes: any one or more of a physical resource block, an enhanced control channel element, and an antenna port index.
  • a channel resource determining unit configured to: determine a channel resource index ⁇ CH of a physical uplink control channel (PUCCH) according to a physical resource of an enhanced physical downlink control channel (ePDCCH), where The PUCCH is used to carry the ePDCCH a positive acknowledgment/negative acknowledgment (ACK/NACK) information of the indicated physical downlink shared channel (PDSCH); the physical resource of the ePDCCH includes: any
  • the foregoing apparatus may further have the following feature, the channel resource determining unit is configured to: determine a starting position N P S H of the channel resource of the PUCCH, where:
  • the N P S H is the starting position N CH of the channel resource of the PUCCH corresponding to the existing PDCCH; or the N P S H is the starting position of the channel resource of the PUCCH corresponding to the existing PDCCH A3 ⁇ 4 cch plus And a value of the channel resource of the PUCCH corresponding to the PDCCH in the uplink subframe where the PUCCH is located, or the D indicates a control channel unit on the subframe where the ePDCCH is located.
  • the N P S H is a start position A3 ⁇ 4 cch of a channel resource of the PUCCH corresponding to the existing PDCCH, and the predefined value D is added, and V is added, where the V is determined by signaling; Or the N P S H is determined by signaling;
  • the N P S H is a starting position of a PUCCH format la/lb resource in an uplink subframe where the PUCCH is located.
  • the above device may also have the following features.
  • the Ne eHs are the same or different in different uplink subframes.
  • the foregoing apparatus may also have the following features: the N P S H of the channel resources of the PUCCH corresponding to the ePDCCHs of different transmission modes are the same or different.
  • the channel resource determining unit is configured to: determine an offset amount, wherein the offset is a fixed value, or is determined according to one or a combination of the following information:
  • Antenna port information of the ePDCCH indication signaling, a transmission mode of the ePDCCH, a location of the ePDCCH in a physical resource block, an enhanced control channel element index corresponding to the ePDCCH, and an enhanced corresponding to the ePDCCH Resource unit group index.
  • the above apparatus may further have the following feature, the channel resource determining unit is configured to determine the offset according to one or a combination of the following steps:
  • the antenna port information used by the ePDCCH determines the offset; wherein, the antenna port information used by the ePDCCH includes an antenna port index; or the antenna port information used by the ePDCCH includes an antenna port index and an antenna port corresponding sequence initial information;
  • the offset corresponding to the ePDCCH is 0 or determined according to the indication signaling.
  • the offset corresponding to the ePDCCH is determined according to any one of the steps A to C.
  • the foregoing apparatus may further have the following feature: the resource determining unit is configured to determine the offset according to antenna port information and indication signaling used by the ePDCCH by:
  • Offset offsetl + ARI, where offset1 is determined according to the antenna port index of the ePDCCH, and the ARI value is configured by indication signaling.
  • the foregoing apparatus may further have the following feature, the resource determining unit is configured to determine the offset according to the step B and the step D combination by:
  • Offset offsetl + ARI, where offset1 is 0 when the ePDCCH is in the discrete transmission mode, and offset1 is determined according to the antenna port index of the ePDCCH when the ePDCCH is in the continuous transmission mode, and the ARI value is configured by the indication signaling.
  • the channel resource determination unit is arranged to determine the PUCCH resource by way of the physical channel resource index ePDCCH "CH:
  • the PR is a physical resource block index that carries the ePDCCH after being renumbered, or the PR is an enhanced control channel unit index that carries the ePDCCH; the N P S : ⁇ H is the The starting position of the channel resource of the PUCCH.
  • the above device can also have the following features.
  • the channel resource determining unit is configured to determine a channel resource index (i) of the PUCCH according to the physical resource of the ePDCCH in the following manner.
  • the total number of PUCCHs corresponding to the ePDCCH region of one downlink subframe is indicated by signaling; r is greater than or equal to 1; the PR is a physical resource block index carrying the ePDCCH after renumbering, or the PR is a bearer.
  • the channel resource determining unit is configured to determine a channel resource index of the PUCCH according to physical resources of the ePDCCH in the following manner.
  • CCH :
  • the PR determines the channel resource index of the physical uplink control channel PUCCH (1)
  • N m represents the downlink sub-frame
  • the total number of PUCCHs corresponding to the ePDCCH region of the frame k is indicated by the signaling;
  • the PR is a physical resource block index that carries the ePDCCH after the re-numbering, or the PR is the bearer of the ePDCCH.
  • An enhanced control channel element index; the N P S H being a starting location of a channel resource of the PUCCH.
  • An enhanced control channel unit index of the ePDCCH where h is a maximum number of uplink control channel resources corresponding to one physical resource block carrying the ePDCCH, or h is one physical resource block carrying the ePDCCH
  • the number of enhanced control channel elements included, or the h is indicated by signaling, or the h is a predefined positive integer.
  • the channel resource determining unit is further configured to: determine the PRB according to the following manner:
  • the PRB is determined according to the maximum or minimum D-eCCE index carrying the ePDCCH; wherein the D-eCCE is an enhanced control channel unit of the ePDCCH for the discrete transmission mode.
  • the foregoing apparatus may further have the following feature, the channel resource determining unit is configured to determine the PRB according to a maximum or minimum D-eCCE index that carries the ePDCCH according to the following manner:
  • the eCCE is mapped to the same physical resource block; and the physical resource block index "PB is determined according to the physical resource block index corresponding to the intra-group position after the grouping according to the maximum or minimum D-eCCE index carrying the ePDCCH; or,
  • the physical resource block index " PRB is a minimum physical resource block index where the maximum or minimum D-eCCE index is located, when the maximum or minimum D-eCCE When the index is an even number, determining that the physical resource block index “ PRB is the largest physical resource block index where the maximum or minimum D-eCCE index is located;
  • the physical resource block index " PRB is the largest physical resource block index where the maximum or minimum D-eCCE index is located, when the maximum or minimum D-eCCE When the index is an even number, the physical resource block index " PRB " is the smallest physical resource block index in which the maximum or minimum D-eCCE index is located.
  • the above device can also have the following features.
  • the channel resource determining unit is further configured to: determine the eeeE according to the following manner:
  • the eE is the maximum or minimum L-eCCE index that carries the ePDCCH; or determining that the CE is the maximum or minimum L-eCCE index that carries the ePDCCH+Total-DeCCE Wherein the Total-DeCCE indicates the total number of available D-eCCEs or is indicated by signaling; or
  • the channel resource determining unit is configured to determine the ⁇ CE according to a maximum or minimum D-eCCE index that carries the ePDCCH by:
  • the CE is the maximum or minimum D-eCCE index that carries the ePDCCH; or determining that the CE is the maximum or minimum D-eCCE index + Total-LeCCE that carries the ePDCCH, where the Total- LeCCE indicates the total number of L-eCCEs available or indicated by signaling;
  • the L-eCCE is an enhanced control channel unit of an ePDCCH for a continuous transmission mode
  • the D-eCCE is an enhanced control channel unit of an ePDCCH for a discrete transmission mode.
  • the channel resource determining unit is further configured to: number the physical resources of the ePDCCH by one of the following methods:
  • the sequence of physical resources of all configured ePDCCHs is numbered;
  • the physical resources of the ePDCCH for different transmission modes are first cascaded, and the physical resources of the ePDCCH are numbered according to the sequence after the cascading; The physical resources of the ePDCCHs for different transmission modes are respectively numbered.
  • the above device may also have the following features, and the device is a terminal or a base station.
  • the device determines the channel resource index of the PUCCH, and determines the resource used by the PUCCH according to the determined channel resource index CCH , so that the ePDCCH corresponding HARQ process can be corresponding to the PUCCH feedback ePDCCH.
  • the feedback information of the PDSCH ensures that the HARQ process corresponding to the ePDCCH is normal, and the compatibility between the LTE-Advanced system and the LTE Release-8 system is ensured.
  • FIG. 1 is a schematic diagram of a frame structure of an FDD mode of an LTE system according to the related art.
  • FIG. 2 is a schematic diagram of a frame structure of a TDD mode of an LTE system according to the related art.
  • FIG. 3 is a schematic diagram of the control signaling area of the new and old versions.
  • Figure 4 is a schematic diagram of the definition of a physical resource block.
  • Figure 5 is a block diagram of a device in accordance with an embodiment of the present invention.
  • An ePDCCH is introduced in the 3GPP to enhance the PDCCH performance, and a new PDCCH transmission area is introduced.
  • a method for obtaining a channel resource of a PUCCH that transmits an ACK/NACK corresponding to a PDSCH of an ePDCCH is provided.
  • the HARQ process corresponding to the ePDCCH is normally performed, and the compatibility between the LTE-Advanced system and the LTE Release-8 system is ensured, so that the LTE-Advanced terminal obtains the maximum frequency selective gain. It should be noted that the systems to which the following embodiments and their preferred embodiments are applied are not limited to the LTE-Advanced system.
  • Embodiment of the present invention provides a method for determining a physical uplink control channel resources, comprising: means for determining a channel resource index "PUCCH physical resource in accordance with the ePDCCH CH; wherein said acknowledgment PUCCH for carrying the PDSCH indicated by the ePDCCH / Negative acknowledgement (ACK/NACK) information; the physical resource of the ePDCCH includes: one or more of a physical resource block, an enhanced control channel unit, and an antenna port index; wherein the device is a terminal or a base station.
  • ACK/NACK Negative acknowledgement
  • the ePDCCH region of the discrete transmission mode is the same as the ePDCCH region of the continuous transmission mode; that is, the physical resource of the ePDCCH for transmitting the discrete transmission mode shares the same region as the physical resource of the ePDCCH for transmitting the continuous transmission mode.
  • the ePDCCH region of the discrete transmission mode and the ePDCCH region of the continuous transmission mode are independently configured. That is, the physical resources of the ePDCCH for transmitting the discrete transmission mode are independently configured with the physical resources of the ePDCCH for transmitting the continuous transmission mode.
  • the determining, by the device, the channel resource index CCH of the PUCCH according to the physical resource of the ePDCCH includes: determining a starting location of the channel resource of the PUCCH, N P S H , where:
  • D represents a maximum channel resource of the PUCCH corresponding to the PDCCH, or the D represents a number of control channel elements (CCEs) on a subframe in which the ePDCCH is located;
  • the N P S H is the start position A3 ⁇ 4 cch of the channel resource of the PUCCH corresponding to the existing PDCCH, plus the predefined D, plus V, where the V is determined by signaling;
  • the starting position is: ⁇ , and the N ⁇ CCH is determined by signaling;
  • the starting position N P S CH is a starting position of a PUCCH Format (format) la/lb resource in an uplink subframe where the PUCCH is located.
  • the starting position N eH may also be 0.
  • the foregoing D indicates that the ePDCCH is in the primary serving cell.
  • Primary Serving Cell The case of the primary serving cell (or primary component carrier); PUCCH Format (format)
  • the starting position of the la/lb resource is the PUCCH Format (format) on the primary serving cell in the uplink subframe in which the PUCCH is located. The starting position of the la/lb resource.
  • the values may be different or the same.
  • the start positions of the channel resources of the PUCCH corresponding to the ePDCCHs for different transmission modes are the same or different, and the start positions may also be independently configured.
  • the starting position of the discrete transmission mode is Ad
  • the starting position of the continuous transmission mode is A3 ⁇ 4 eeH .
  • said determining means according to the physical resources of the PUCCH channel resource index ePDCCH ⁇ CH comprises: determining the offset amount offset, wherein the offset amount offset in accordance with the antenna port information ePDCCH indicating Signaling, a transmission mode of the ePDCCH, a location of the ePDCCH in the physical resource block, an enhanced control channel element index corresponding to the ePDCCH, and an enhanced resource element group index corresponding to the ePDCCH or The plurality of information is determined; or, the offset offset is a fixed value, such as a value other than 0 or 0.
  • the Offset determining method is one or a combination of the following.
  • the antenna port information used by the ePDCCH includes an antenna port index.
  • the antenna port information used by the ePDCCH includes an antenna port index and an antenna port corresponding sequence initial information, and the antenna port corresponding sequence initial information includes a Scrambling Code Identifier (SSCID) and/or a virtual cell ID;
  • SSCID Scrambling Code Identifier
  • Method three Establishing a correspondence between the antenna port information and the offset offset, and determining the offset offset according to antenna port information and indication signaling used by the ePDCCH;
  • the indication signaling includes a high-level signaling or a user-specific parameter (for example, a C-RNTI (Cell Radio Network Temporary Identifier));
  • a C-RNTI Cell Radio Network Temporary Identifier
  • the correspondence between the antenna port information and the offset value is configured by higher layer signaling, or determined according to user specific parameters.
  • the offset is determined according to indication signaling (e.g., ARI (Allocation Resource Indicator).
  • indication signaling e.g., ARI (Allocation Resource Indicator).
  • the offset corresponding to the ePDCCH is 0 or determined according to the indication signaling.
  • the offset corresponding to the ePDCCH is determined according to any of the foregoing methods.
  • the foregoing method may further have the following feature, the method third, determining, according to the antenna port information and the indication signaling used by the ePDCCH, that the offset includes:
  • Offset offsetl + ARI, where offset1 is determined according to the antenna port index of the ePDCCH, and the ARI value is configured by indication signaling.
  • the above method may also have the following features, and determining the offset according to the method 3 and the method 5 combination includes:
  • Offset offsetl + ARI, where when ePDCCH is in discrete transmission mode, offsetl is
  • the offset1 is determined according to the antenna port index of the ePDCCH, and the ARI value is configured by the indication signaling.
  • the determining, by the device, the channel resource index of the PUCCH according to the physical resource of the ePDCCH includes:
  • the device determines the " eH : according to the following formula:
  • the PR is a physical resource block index that carries the ePDCCH after renumbering, or
  • the PR is an enhanced control channel element index that carries the ePDCCH.
  • the PR may be a PRB , and the physical resource block index carrying the ePDCCH after renumbering, when the ⁇ is ⁇ , then:
  • the PRB is determined according to the following manner:
  • the PRB is determined according to an index of the largest or smallest D-eCCE carrying the ePDCCH; wherein the D-eCCE is an enhanced control channel element of the ePDCCH for the discrete transmission mode.
  • the determining the PRB according to the maximum or minimum D-eCCE index that carries the ePDCCH includes:
  • the eCCE is mapped to the same physical resource block; and the physical resource block index "PRB" is determined according to the physical resource block index corresponding to the intra-group position after the packet is grouped according to the maximum or minimum D-eCCE index that carries the ePDCCH; or Determining, when the maximum or minimum D-eCCE index is an odd number, the physical resource block index " PRB is a minimum physical resource block index where the maximum or minimum D-eCCE index is located, when the maximum or minimum D-eCCE When the index is an even number, determining that the physical resource
  • the physical resource block index " PRB is the largest physical resource block index where the maximum or minimum D-eCCE index is located, when the maximum or minimum D-eCCE When the index is an even number, the physical resource block index " PRB " is the smallest physical resource block index in which the maximum or minimum D-eCCE index is located.
  • the "PR can be enhanced to carry the control channel element index of ePDCCH ⁇ eE, the ⁇ eE, f
  • PR f ( "eCCS)
  • eCCS "eCCS”
  • ⁇ CE is determined according to the following manner:
  • the eE is the maximum or minimum L-eCCE index that carries the ePDCCH; or determining that the CE is the maximum or minimum L-eCCE index that carries the ePDCCH+Total-DeCCE Wherein the Total-DeCCE indicates the total number of available D-eCCEs or is indicated by signaling; or
  • the eE is determined according to a maximum or minimum D-eCCE index that carries the ePDCCH.
  • D-eCCE maximum or minimum indexes wherein the carrier according to the ePDCCH C CE said step of determining comprises: determining the maximum or minimum ⁇ CE D-eCCE index carrying the ePDCCH; or determining the ⁇ CE is the maximum or minimum D-eCCE index + Total-LeCCE carrying the ePDCCH, wherein the Total-LeCCE indicates the total number of available L-eCCEs or is indicated by signaling;
  • ⁇ CE is the smallest L-eCCE index where the maximum or minimum D-eCCE index is located Determining, when the maximum or minimum D-eCCE index is an even number, that the SCCE is the largest L-eCCE index where the maximum or minimum D-eCCE index is located; or, when the maximum or minimum D-eCCE index is When the number is an odd number, determining that the ⁇ CE is the largest L-eCCE index where the maximum or minimum D-eCCE index is located, and when the maximum or minimum D-eCCE index is an even number, determining that the ⁇ CE is the maximum Or the smallest L-eCCE index where the minimum D-eCCE index is located;
  • the L-eCCE is an enhanced control channel unit of an ePDCCH for a continuous transmission mode
  • the D-eCCE is an enhanced control channel unit of an ePDCCH for a discrete transmission mode.
  • the method for determining the channel resource index « CH of the PUCCH according to the physical resource of the ePDCCH includes: determining, according to the physical resource index R of the ePDCCH on the downlink subframe k, the downlink resource k Channel resource index L 3 ⁇ 4m of PUCCH :
  • the total number of PUCCHs corresponding to the ePDCCH region of one downlink subframe is indicated by signaling; r is greater than 1; preferred values are 2, 3, 4.
  • r is greater than 1; preferred values are 2, 3, 4.
  • the method for determining, by the device, the channel resource index « CH of the PUCCH according to the physical resource of the ePDCCH includes:
  • the channel resource index L 3 ⁇ 4m of the PUCCH is determined according to the physical resource index of the ePDCCH on the subframe k:
  • the method for numbering the physical resources of the ePDCCH includes:
  • Method 1 Number the physical resources of all configured ePDCCHs.
  • Method 2 The physical resources of the ePDCCH for different transmission modes are cascaded, and the physical resources of the ePDCCH are renumbered according to the sequence of the cascading;
  • Method 3 Renumbering physical resources of ePDCCHs for different transmission modes, where the physical resource numbers are physical resource numbers for subframes in which the ePDCCH is located, and when multiple serving cells are configured, the physical resources are The number is a physical resource number on the serving cell where the subframe where the ePDCCH is located, where the ePDCCH is located in the primary serving cell.
  • the device determines a channel resource index « ⁇ CCH of the PUCCH according to the re-numbered physical resource block index and the offset offset where the ePDCCH is located, where one bears the ePDCCH physical resource
  • the maximum number of uplink control channel resources corresponding to the block is h, and the PRB and the offset are based on the antenna port information used by the ePDCCH, the transmission mode of the ePDCCH, the location of the ePDCCH in the physical resource block, At least one of the indication signaling is determined; the PUCCH is used to carry ACK/NACK information of the PDSCH indicated by the ePDCCH.
  • Said means determining the channel resource index through implicit mapping mode "before CH, said determining means ePDCCH PUCCH resources according to the physical channel resource index" CH comprising the step of: determining the means of the channel resource of the PUCCH a starting position N P S H , where the N P S H is a starting position N CH of a channel resource of a PUCCH corresponding to an existing PDCCH; or the N P S H is a PUCCH corresponding to the existing PDCCH
  • the start position of the channel resource ic CH is added with a predefined value D, where the D represents the maximum channel resource value of the PUCCH corresponding to the PDCCH in the uplink subframe in which the PUCCH is located, or the D represents the ePDCCH.
  • the number of CCEs in the subframe to be located; or, the N P S : ⁇ H is the starting position of the channel resource of the PUCCH corresponding to the existing PDCCH, plus the predefined value D, plus V, The V is determined by signaling; or the N P S H is determined by signaling; or the N P S CH is a start of a PUCCH format la/lb resource in an uplink subframe where the PUCCH is located position.
  • the values of the starting positions in different uplink subframes may be different or may be the same;
  • the starting positions in different transmission modes may be the same or different (ie, the starting position is independently configured, for example, the starting position of the discrete transmission mode is 7 eeH , the starting bit of the continuous transmission mode is set to Is N 1 v P( 5 U ) CCH ) ; °
  • the transmission mode of the ePDCCH includes a discrete transmission mode and a continuous transmission mode
  • the discrete transmission mode includes the ePDCCH transmitting on a discrete physical resource block index
  • the continuous transmission mode includes the ePDCCH being transmitted on a continuous (renumbered) physical resource block index
  • An enhanced control channel element (eCCE) for ePDCCH for continuous transmission mode is called L-eCCE
  • an enhanced control channel element (eCCE) for ePDCCH for discrete transmission mode is called D-eCCE
  • An eCCE is a resource in a physical resource block
  • the D-eCCE is a resource in multiple physical resource blocks.
  • a method for renumbering physical resource blocks of the ePDCCH includes the following manner.
  • the physical resource block of the ePDCCH for transmitting the discrete transmission mode shares the same area as the physical resource block of the ePDCCH for transmitting the continuous transmission mode, that is, the configured physical resource block for transmitting the ePDCCH, which can be used for transmitting the discrete transmission mode.
  • the ePDCCH can also be used to transmit the ePDCCH of the continuous transmission mode.
  • the method of renumbering the physical resource blocks of the ePDCCH is to renumber the configured index of the physical resource block for transmitting the ePDCCH according to the index size of the original physical resource block.
  • the physical resource blocks of the ePDCCH for transmitting the discrete transmission mode are respectively configured with the physical resource blocks of the ePDCCH for transmitting the continuous transmission mode, and correspond to different areas.
  • the method of renumbering the physical resource blocks of the ePDCCH is to renumber the configured index of the physical resource block for transmitting the ePDCCH according to the index size of the original physical resource block.
  • the physical resource blocks of the ePDCCH for transmitting the discrete transmission mode are respectively configured with the physical resource blocks of the ePDCCH for transmitting the continuous transmission mode, and correspond to different areas.
  • the method for re-numbering the physical resource blocks of the ePDCCH is to first cascade the physical resource blocks of the ePDCCH for transmitting the discrete transmission mode and the physical resource blocks of the ePDCCH for transmitting the continuous transmission mode, and then according to the level. The order after the union is renumbered.
  • the physical resource blocks of the ePDCCH for transmitting the discrete transmission mode are respectively configured with the physical resource blocks of the ePDCCH for transmitting the continuous transmission mode, and correspond to different areas.
  • the method of re-numbering the physical resource blocks of the ePDCCH is to renumber the physical resource blocks of the ePDCCH for transmitting the discrete transmission mode and the physical resource blocks of the ePDCCH for transmitting the continuous transmission mode, respectively.
  • the physical resource block index " PRB is the largest (smallest) physical resource block index corresponding to the ePDCCH after re-numbering; the method of re-numbering the physical resource block index of the ePDCCH is The index size of the original physical resource block renumbers the configured physical resource block index used to transmit the ePDCCH;
  • the physical resource block index “ PRB ” is determined according to the maximum (minimum) D-eCCE index corresponding to the ePDCCH, and includes the following methods:
  • the physical resource block index " PRB is a minimum physical resource block index where the D-eCCE index is located, and when the D-eCCE index is an even number, the physical resource block The index " PRB is the maximum physical resource block index where the D-eCCE index is located; or, when the D-eCCE index is an odd number, the physical resource block index " PRB is the maximum physics of the D-eCCE index.
  • the resource block index when the D-eCCE index is an even number, the physical resource block index " PRB " is the smallest physical resource block index in which the D-eCCE index is located.
  • the physical resource block index of the ePDCCH is #4, #5, #12, #13, #20, #21, #28, #29, that is, ePDCCH that can be used to transmit continuous transmission mode, and can also be used to transmit discrete
  • the physical resource block indexes are #4, #5, #12, #13, #20, #21, #28, #29, and the renumbered indexes are N0, Nl, N2, N3. , N4, N5, N6, N7;
  • the physical resource block index of the ePDCCH of the device is #20 and #21, the transmission mode of the ePDCCH is a continuous transmission mode, and the physical resource indexes are #20 and #21 corresponding to numbers N4 and N5, when the reason
  • the resource block index " PRB is the largest physical resource block index corresponding to the ePDCCH after renumbering, " PRB is N5, and the physical resource block index " PRB is the smallest physical corresponding to the ePDCCH after renumbering"
  • 3 ⁇ 4 ⁇ is N4;
  • two physical resource blocks correspond to eight
  • the index determines that, when the D-eCCE index is an odd number, the physical resource block index " PRB is a maximum physical resource block index where the D-eCCE index is located, and when the D-eCCE index is an even number, the The physical resource block index " PRB is the smallest physical resource block index where the D-eCCE index is located; when the transmission mode of the ePDCCH is the discrete transmission mode, the D-eCCE index of the ePDCCH of the device is #2 and #3 The minimum D-
  • the physical resource block indexes used to transmit the ePDCCH are #4, #8, #12, #16, #20, #24, #28, #32, where physical resource block indexes #4, #12, #20, #28 are used to transmit ePDCCH in continuous transmission mode, and physical resource block indexes #8, #16, #24, #32 are used for transmission.
  • the renumbered indexes corresponding to the physical resource block indexes #4, #8, #12, #16, #20, #24, #28, #32 are N0, Nl, N2, N3. , N4, N5, N6, N7;
  • the physical resource block index of the ePDCCH of the device is #4, the physical resource block index is #4 corresponding to the number NO, and the physical resource block index is 4;
  • the two physical resource blocks correspond to four D-eCCEs, and the D-eCCE numbers corresponding to the physical resource block indexes #8 and #24 are 0 to 3,
  • the D-eCCE numbers corresponding to the physical resource block indexes are #16 and #32 are 4 to 7; the data is determined according to the minimum D-eCCE index corresponding to the ePDCCH, and when the D-eCCE index is even, the physical The resource block index " PRB is the maximum physical resource block index where the D-eCCE index is located.
  • the physical resource block index " PRB is the minimum physics where the D-eCCE index is located.
  • a resource block index when the transmission mode of the ePDCCH is a discrete transmission mode, and the D-eCCE index of the ePDCCH of the apparatus is #7, the minimum D-eCCE index where the ePDCCH is located is #7, the D The -eCCE index #7 is an odd number, and the physical resource block index " PRB " is the renumbered index N3 corresponding to the smallest physical resource block index #16 in which the D-eCCE index is located.
  • the physical resource block indexes for transmitting ePDCCH are #4, #8, #12, #16, #20, #24, #28, #32, where physical resource block indexes #4, #12, #20, #28 are used to transmit ePDCCH in continuous transmission mode, and physical resource block indexes #8, #16, #24, #32 are used for transmission.
  • the ePDCCH of the discrete transmission mode, the physical resource block of the ePDCCH for transmitting the discrete transmission mode and the physical resource block of the ePDCCH for transmitting the continuous transmission mode are cascaded into the physical resource block index #4, #12, #20 , #28, #8, #16, #24, #32, and then renumbered to N0, Nl, N2, N3, N4, N5, N6, N7 according to the order of cascading;
  • the physical resource block indexes #4 and #12 correspond to numbers NO and N1, and when the physical resource block index " PRB is the ePDCCH"
  • PRB is N1
  • PRB is the smallest physical resource block index corresponding to the ePDCCH after re-numbering
  • four physical resource blocks correspond to 16 D-eCCE, where the physical resource block index #8, #16, #24, #32 corresponds to the D-eCCE number from 0 to 15, and all the numbered D-eCCEs are divided into four groups, each group consisting of four.
  • the number of physical resource blocks available in the system is 50, and the corresponding number is #0 to #49.
  • the physical resource block indexes for transmitting ePDCCH are #4, #8, #12, #16, #20, #24, #28, #32, where physical resource block index #4, #12, #20, #28 are used to transmit ePDCCH in continuous transmission mode, physical resource block index #8, #16, #24, #32
  • the physical resource blocks of the ePDCCH for transmitting the discrete transmission mode and the physical resource blocks of the ePDCCH for transmitting the continuous transmission mode are respectively renumbered in a cascading order;
  • the renumbered index corresponding to the physical resource block index #4, #12, #20, #28 of the ePDCCH transmitting the continuous transmission mode is N0, N1, N2, N3, and the physical resource block of the ePDCCH for transmitting the discrete transmission mode.
  • the physical resource block index " PRB is N1;
  • D-eCCE where the physical resource block index #8, #16, #24, #32 corresponds to the D-eCCE number from 0 to 7, and all the numbered D-eCCEs are divided into two groups, each group consisting of four.
  • the D-eCCE establishes a correspondence between the four D-eCCEs in a group and the four physical resource blocks; wherein the four D-eCCEs in the group correspond to the same antenna port and are mapped to the same Physical resource block, or The four D-eCCEs in the group are mapped to the same physical resource block and are sequentially divided; the physical resource block corresponding to the D-eCCE index Y is the ( ⁇ mod h ) of the four physical resource blocks.
  • the Offset determination method is described below.
  • the value of the ffset is determined by using the antenna port information used by the ePDCCH to determine the value of the offset; the offset value ranges from 0 to h-1; wherein the antenna port information used by the ePDCCH includes Antenna port index.
  • the antenna port index of the ePDCCH is antenna port 7, antenna port 8, antenna port 9, and antenna port 10, and h takes a value of 4. Then, antenna port 7, antenna port 8, antenna port 9, and antenna port 10 Between 0 and 3 with offset - corresponding.
  • the antenna port 7 corresponds to an offset value of 0
  • the antenna port 8 corresponds to an offset value of 1
  • the antenna port 9 corresponds to an offset value of 2
  • the antenna port 10 corresponds to an offset value of 3.
  • the correspondence is not limited thereto; and, the correspondence between different users They can be the same or different.
  • the antenna port index of the ePDCCH is the antenna port 7 and the antenna port 9 and the value of h is 4. Then, the antenna port 7 and the antenna port 9 correspond to the offset values 0 to 3.
  • antenna port 7 corresponds to an offset value of 0 and antenna port 9 corresponds to an offset value of 2, or antenna port 7 corresponds to an offset value of 1 and antenna port 9 corresponds to an offset value of 3.
  • the correspondence is not limited thereto.
  • antenna port index of the ePDCCH is antenna port 7 and antenna port 8, and h is 2, and the antenna port 7 and the antenna port 8 correspond to an offset value of 0 to 1.
  • antenna port 7 corresponds to an offset value of 0, and antenna port 8 corresponds to an offset value of 1, and the correspondence is not limited to this.
  • the antenna port information used by the ePDCCH includes an antenna port index and an antenna port corresponding sequence initial information (SCID and or virtual cell ID).
  • the antenna port index of the ePDCCH is antenna port 7, antenna port 8, antenna port 9, and antenna port 10, h is 8, SCID is 0 or 1, virtual cell ID is x(0) or x(l), then antenna port 7/8/9/10 with SCID 0 and antenna port 7/8/9/10 with SCID 1 between 0 and 7 - corresponding; or, virtual One-to-one correspondence between antenna port 7/8/9/10 with cell ID x(0) and antenna port 7/8/9/10 with virtual cell ID x(l) and offset value 0 to 7; Antenna port 7/8/9/10 with SCID 0 and virtual cell ID x (0) and antenna port 7/8/9/10 and offset with SCID 1 and virtual cell ID x(l) Between 0 and 7 - corresponding.
  • antenna port 7 corresponds to an offset value of 0
  • antenna port 8 corresponds to an offset value of 1
  • antenna port 9 corresponds to an offset value of 2
  • antenna port 10 corresponds to an offset value of 3
  • the antenna port 7 corresponds to an offset value of 4
  • the antenna port 8 corresponds to an offset value of 5
  • the antenna port 9 corresponds to an offset value of 6
  • the antenna port 10 corresponds to an offset value of 7.
  • the correspondence is not limited. Therefore, different user correspondences may be the same or different.
  • the antenna port index of the ePDCCH is antenna port 7 and antenna port 8, h is 4, SCID is 0 or 1, and virtual cell ID is x(0) or x(l).
  • SCID is Antenna port 7/8 of 0 and antenna port 7/8 with SCID of 1 and offset between 0 and 3 - corresponding; or antenna port 7/8 with virtual cell ID x (0) and virtual cell ID
  • the antenna port 7/8 and the offset of x(l) are between 0 and 3 - corresponding; or, the SCID is 0 and the virtual cell ID is x (0)
  • the antenna port 7/8 and the antenna port 7/8 with the SCID of 1 and the virtual cell ID x(l) are between 0 and 3 offset - corresponding.
  • the antenna port 7 corresponds to an offset value of 0
  • the antenna port 8 corresponds to an offset value of 1.
  • the antenna port 7 corresponds to an offset value of 2.
  • the antenna port 8 corresponds to an offset value of 3, and the correspondence relationship is not limited to this; and the correspondence between different users may be the same or different.
  • the indication signaling includes a high layer signaling or a user-specific parameter (eg, C-RNTI), and the like; and the correspondence between the antenna port information and the offset value is configured by high layer signaling, or Determined based on user-specific parameters.
  • a high layer signaling or a user-specific parameter eg, C-RNTI
  • the antenna port index of the ePDCCH is the antenna port 7 and the antenna port 9 and the value of h is 4. Then, the antenna port 7 and the antenna port 9 correspond to the offset values 0 to 3.
  • Mode 1 antenna port 7 corresponds to an offset value of 0, and antenna port 9 corresponds to an offset value of 2; mode 2, antenna port 7 corresponds to an offset value of 1, and antenna port 9 corresponds to an offset value of 3, where a higher layer signaling configuration map
  • the mode is mode 1 or mode 2; or, the corresponding relationship is determined according to user-specific parameters, such as UE ID (C-RNTI), when C-RNTI is odd, mode 1 is used, and when C-RNTI is even When using mode 2, vice versa.
  • C-RNTI UE ID
  • the antenna port index of the ePDCCH is antenna port 7 and antenna port 8, and the value of h is 4. Then, the antenna port 7 and the antenna port 8 correspond to offset values 0 to 3.
  • antenna port 7 corresponds to an offset value of 0, and antenna port 8 corresponds to an offset value of 1;
  • antenna port 7 corresponds to an offset value of 2
  • antenna port 8 corresponds to an offset value of 3.
  • the upper layer signaling configuration mapping mode is mode 1 or mode 2.
  • the antenna port index of the ePDCCH is the antenna port 7 and the antenna port 8, and the antenna port 7 and the antenna port 8 correspond to the offset values al and a2; the values of the al and a2 are configured by the indication signaling.
  • the antenna port index of the ePDCCH is the antenna port 7, the antenna port 8, the antenna port 9, and the antenna port 10. Then, the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, and the offset value a and A2, a3, a4 correspond; the values of al and a2, a3, and a4 are configured by indication signaling.
  • Offset offsetl + ARI, where offset1 is determined according to the antenna port index of the ePDCCH, and the ARI value is configured by the indication signaling; the antenna port according to the ePDCCH may be used in the manner that the offset1 is determined according to the antenna port index of the ePDCCH. The index determines how the offset is.
  • the Offset value is determined according to the indication signaling (eg, ARI); the indication signaling values are al, a2, a3, and a4, where specific values of al, a2, a3, and a4 are configured by signaling, or Predefined values, such as 0, 1, 2, and 3, or -1, 0, 1, and 2, or -2, 0, 2, and 4, etc.
  • the indication signaling eg, ARI
  • the indication signaling values are al, a2, a3, and a4 where specific values of al, a2, a3, and a4 are configured by signaling, or Predefined values, such as 0, 1, 2, and 3, or -1, 0, 1, and 2, or -2, 0, 2, and 4, etc.
  • the corresponding offset (offsetl) of the ePDCCH in the discrete transmission mode is a fixed value of 0, and the corresponding offset (offsetl) of the ePDCCH in the continuous transmission mode is determined by the other methods described above;
  • an offset is determined according to antenna port information corresponding to a minimum (maximum) L-eCCE (D-eCCE) index corresponding to the ePDCCH, and for the discrete transmission mode, according to the D
  • the -eCCE index determines the offset of the antenna port information in the PRB index " PRB ".
  • the maximum number of uplink control channel resources corresponding to a physical resource block carrying the ePDCCH, or h is the number of enhanced control channel units included in a physical resource block carrying the ePDCCH, or h is indicated by signaling, Or, h is a predefined positive integer, such as 1, 2, 4, and 8, and so on.
  • h is a predefined positive integer, such as 1, 2, 4, and 8, and so on.
  • the physical resource of the ePDCCH on the downlink subframe k includes the physical resource block index of the ePDCCH: "PRE:
  • m is the sequence number of the downlink subframe k where the received PDSCH is located in the M downlink subframes corresponding to the uplink subframe n, and 0 ⁇ m ⁇ M-l; is a predefined parameter, and the selection of X should be guaranteed
  • the physical resources of the ePDCCH include the physical resource block index of the ePDCCH on the subframe k " :
  • Nm y ⁇ TM 3 ⁇ + f ( n + o ffset + ⁇ stan
  • m is the sequence number of the downlink subframe k where the received PDSCH is located in the M downlink subframes corresponding to the uplink subframe n, and 0 ⁇ m ⁇ M-1; -i cH m indicates The total number of PUCCHs corresponding to the ePDCCH region on the downlink subframe k is indicated by signaling.
  • PDcc 3 ⁇ 4m N pm m ⁇ ' h is the maximum value of the PUCCH corresponding to one physical resource block, or h is the maximum value of the eCCE included in one physical resource block, or h is indicated by signaling, or h is a predefined positive integer.
  • the physical resources of the ePDCCH include: an enhanced control channel element index 3 ⁇ 4
  • the ePDCCH region of the discrete transmission mode is the same as the ePDCCH region of the continuous transmission mode; that is, the shared physical resource can be used for transmitting the ePDCCH of the discrete transmission mode or the ePDCCH for transmitting the continuous transmission mode; the two can be in the same configuration.
  • Regional transmission
  • the ePDCCH region of the discrete transmission mode and the ePDCCH region of the continuous transmission mode are independently configured.
  • the method for renumbering the physical resources of the ePDCCH includes:
  • Method 1 Number the physical resources of all configured ePDCCHs.
  • Method 2 The physical resources of the ePDCCH for different transmission modes are cascaded, and the physical resources of the ePDCCH are renumbered according to the sequence of the cascading;
  • Method 3 Re-number the physical resources of the ePDCCHs used in different transmission modes.
  • the starting position of the channel resource ic CH is added with a predefined value D, where the D represents the maximum channel resource value of the PUCCH corresponding to the PDCCH in the uplink subframe in which the PUCCH is located; or, the D represents the ePDCCH
  • the number of CCEs in the subframe is located; or, the N P S H is the starting position W ⁇ CCH of the channel resource of the PUCCH
  • the values of the starting positions in different uplink subframes may be different or may be the same.
  • the starting positions of different transmission modes may be the same or different (ie, the starting position is independently configured, for example, the starting position of the discrete transmission mode is 7 eeH , and the starting position of the continuous transmission mode is N ( 5) ).
  • the discrete transmission mode includes the ePDCCH being transmitted on a discrete physical resource block index, the continuous transmission mode including the ePDCCH being transmitted on a continuous (renumbered) physical resource block index.
  • An enhanced control channel element (eCCE) for ePDCCH for continuous transmission mode is called L-eCCE
  • an enhanced control channel element (eCCE) for ePDCCH for discrete transmission mode is called D-eCCE
  • An eCCE is a resource in a physical resource block
  • the D-eCCE is a resource in multiple physical resource blocks.
  • the ⁇ CE is a maximum (minimum) L-eCCE index corresponding to the ePDCCH; or, the ⁇ CE is a maximum (minimum) L-eCCE index + Total-DeCCE corresponding to the ePDCCH,
  • the Total-DeCCE indicates the total number of available D-eCCEs or is indicated by signaling;
  • determining the eCCE according to the maximum (minimum) D-eCCE index corresponding to the ePDCCH including the following methods:
  • the ⁇ CE is the largest (smallest) D-eCCE index corresponding to the ePDCCH.
  • the ⁇ CE is the largest (minimum) D-eCCE index + Total-LeCCE corresponding to the ePDCCH,
  • the Total-LeCCE indicates the total number of available L-eCCEs or is indicated by signaling.
  • the physical resource block indexes for transmitting ePDCCH are #4, #5, #12, #13, #20, #21, #28, #29, ie, ePDCCH that can be used to transmit continuous transmission mode, and can also be used to transmit ePDCCH in discrete transmission mode.
  • one physical resource block corresponds to four L-eCCEs, and all available L-eCCEs According to the physical resource block index size order, it is numbered from #0 to #31;
  • the L-eCCE index of the physical resource block where the ePDCCH of the device is located is #4 and #5, #6 and #7, and the transmission mode of the ePDCCH is a continuous transmission mode, where the eE is corresponding to the ePDCCH.
  • the maximum physical resource index is ⁇
  • the value is 7, when the ⁇ CE is the smallest physical resource index corresponding to the ePDCCH, "is 4;
  • each physical resource block corresponds to one L-eCCE
  • two physical resource blocks correspond to eight D-eCCEs, where the physical resource block indexes are #4 and #12
  • the corresponding D-eCCE number is 0 to 7
  • the physical resource block index is #5 and #13
  • the corresponding D-eCCE number is 8 to 15
  • the physical resource block index is #20 and #28, and the corresponding D-eCCE number is 16.
  • the D-eCCE numbers corresponding to the physical resource block indexes #21 and #29 are 24 to 31; the D-eCCE indexes # and # correspond to the L-eCCE indexes #2 and 1 ⁇ ( ⁇ 3 ⁇ 4 index#t, where (X, y) and (z, t) establish a corresponding relationship.
  • X corresponds to z
  • y corresponds to t
  • the physical resource block indexes used to transmit the ePDCCH are #4, #8, #12, #16, #20, #24, #28, #32, where physical resource block indexes #4, #12, #20, #28 are used to transmit ePDCCH in continuous transmission mode, and physical resource block indexes #8, #16, #24, #32 are used for transmission.
  • one physical resource block corresponds to two L-eCCEs, and all physical resource blocks are divided according to L-eCCE.
  • the eCCE index of the physical resource block where the ePDCCH of the device is located is #5 and #6 according to the physical resource block index size order, and the ePDCCH transmission mode of the ePDCCH is continuous.
  • the transmission mode is mapped to the physical resource block #12.
  • One D-eCCE is mapped to two L-eCCEs, and two physical resource blocks correspond to four D-eCCEs.
  • the physical resource indexes are #8 and #16, and the D-eCCE numbers are 0 to 3, physical resources.
  • the D-eCCE numbers corresponding to the indexes #24 and #32 are 4 to 7; the D-eCCE indexes #x and ⁇ correspond to the L-eCCE index # 2 and !
  • the -eCCE index determines that when the D-eCCE index is X, the ⁇ is 2, and when the D-eCCE index is y, the ⁇ is t; for example, D-eCCE#0 and D -eCCE#l corresponds to L-eCCE#2 and L-eCCE#6, D-eCCE#2 and D-eCCE#3 correspond to L-eCCE#3 and L-eCCE#7, D-eCCE#4 and D-eCCE #5 corresponds to L-eCCE#10 and L-eCCE#14, D-eCCE#6 and D-eCCE#7 correspond to L-eCCE#11 and L-eCCE#15; when
  • the physical resource block indexes for transmitting ePDCCH are #4, #8, #12, #16, #20, #24, #28, #32, where physical resource block indexes #4, #12, #20, #28 are used to transmit ePDCCH in continuous transmission mode, and physical resource block indexes #8, #16, #24, #32 are used for transmission.
  • the ePDCCH of the discrete transmission mode then, the physical resource block of the ePDCCH to be used for transmitting the discrete transmission mode and for transmitting the continuous transmission
  • One physical resource block corresponds to two L-eCCEs, for all transmissions for continuous transmission mode
  • the physical resource blocks of the ePDCCH are divided according to the L-eCCE, and all the L-eCCEs are numbered #0 to #7 according to the sequence after the concatenation, and the total number of available L-eCCEs is Total-LeCCE is 8; the physical resources of the ePDCCH of the device are located.
  • the L-eCCE index of the block is #2 and #3, and the transmission mode of the ePDCCH is a continuous transmission mode, which is mapped on the physical resource block #12, when the ⁇ CE is the largest physical resource index corresponding to the ePDCCH. , ⁇ is 3, when the ⁇ CE is the smallest physical resource index corresponding to the ePDCCH, ⁇ is 2;
  • One physical resource block corresponds to two D-eCCEs, where the physical resource block index is #8 and #16, the corresponding D-eCCE number is 0 to 3, and the physical resource block index is #24 and #32 corresponding D-eCCE number. 4 to 7;
  • the physical resource block indexes for transmitting ePDCCH are #4, #8, #12, #16, #20, #24, #28, #32, where physical resource block indexes #4, #12, #20, #28 are used to transmit ePDCCH in continuous transmission mode, and physical resource block indexes #8, #16, #24, #32 are used for transmission.
  • one physical resource block corresponds to two D-eCCEs, and all physical resource blocks of the ePDCCH for transmitting the discrete transmission mode are divided according to D-eCCE, and all D-eCCEs are numbered as #0 in order.
  • the total number of available D-eCCEs Total-DeCCE is 8;
  • the eCCE indexes of the physical resource blocks in which the ePDCCH of the device is located are #2 and #3, and the transmission mode of the ePDCCH is a discrete transmission mode, and the mapping is in physical On the resource blocks #8 and #16, the ⁇ CE is the largest (smallest) D-eCCE index corresponding to the ePDCCH; when the ⁇ CE is the largest physical resource index corresponding to the ePDCCH, "3" When the CE is the smallest physical resource index corresponding to the ePDCCH, the n eCCE is 2;
  • One physical resource block corresponds to two L-eCCEs, and all L-eCCEs are numbered in order according to L-eCCE for all physical resource blocks of ePDCCH for transmitting continuous transmission mode.
  • the n eCCE is the largest (smallest) L-eCCE index + Total-DeCCE corresponding to the ePDCCH, where the Total-DeCCE indicates the total number of available D-eCCEs 8; when the ePDCCH corresponds to L
  • the physical resource block indexes for transmitting ePDCCH are #4, #8, #12, #16, #20, #24, #28, #32, where physical resource block indexes #4, #12, #20, #28 are used to transmit ePDCCH in continuous transmission mode, and physical resource block indexes #8, #16, #24, #32 are used for transmission.
  • one physical resource block corresponds to four D-eCCEs, and all the physical resource blocks of the ePDCCH for transmitting the discrete transmission mode are divided according to D-eCCE, and all D-eCCEs are numbered as #0 in order.
  • the physical resource eCCE index of the ePDCCH of the device is #12 and #15, the transmission mode of the ePDCCH is a discrete transmission mode, and the ⁇ CE is the maximum (minimum) D-eCCE corresponding to the ePDCCH. Index: when the ⁇ CE is the largest physical resource index corresponding to the ePDCCH, "15", when the ⁇ CE is the smallest physical resource index corresponding to the ePDCCH, 12;
  • One physical resource block corresponds to four L-eCCEs, and all physical resource blocks of the ePDCCH for transmitting the continuous transmission mode are divided according to L-eCCE, and all L-eCCEs are numbered sequentially from #0 to #15;
  • the L-eCCE index of the physical resource block in which the ePDCCH is located is #4 and #5, where the ⁇ CE is the largest (small) L-eCCE index corresponding to the ePDCCH; when the ⁇ CE is the largest corresponding to the ePDCCH When the physical resource is indexed, ⁇ is 5, and when the ⁇ CE is the smallest physical resource index corresponding to the ePDCCH, "is 4."
  • the determining, by the device, the channel resource index « CH of the PUCCH according to the physical resource of the ePDCCH includes: the device determining an offset offset, where the offset offset is determined according to The antenna port information of the ePDCCH, the indication signaling, the transmission mode of the ePDCCH, the location of the ePDCCH in the physical resource block, the enhanced control channel element index corresponding to the ePDCCH, and the enhancement corresponding to the ePDCCH Any one or more of the information in the resource unit group index is determined; or, the offset offset is a fixed value, such as 0, 1, and 3 or other values;
  • the offset determination method is described as follows.
  • the antenna port information used by the ePDCCH includes an antenna port index.
  • the antenna port index of the ePDCCH is antenna port 7, antenna port 8, antenna port 9, and antenna port 10, and h takes a value of 4. Then, antenna port 7, antenna port 8, antenna port 9, and antenna port 10 Between 0 and 3 with offset - corresponding.
  • the antenna port 7 corresponds to an offset value of 0
  • the antenna port 8 corresponds to an offset value of 1
  • the antenna port 9 corresponds to an offset value of 2
  • the antenna port 10 corresponds to an offset value of 3.
  • the correspondence is not limited thereto; and, the correspondence between different users They can be the same or different.
  • the antenna port index of the ePDCCH is the antenna port 7 and the antenna port 9 and the value of h is 4. Then, the antenna port 7 and the antenna port 9 correspond to the offset values 0 to 3.
  • antenna port 7 corresponds to an offset value of 0
  • antenna port 9 corresponds to an offset value of 2
  • antenna port 7 corresponds to an offset value of 1
  • antenna port 9 corresponds to an offset value of 3.
  • the antenna port index of the ePDCCH is the antenna port 7 and the antenna port 8 and the value of h is 2. Therefore, the antenna port 7 and the antenna port 8 correspond to the offset values 0 to 1.
  • antenna port 7 corresponds to an offset value of 0
  • antenna port 8 corresponds to an offset value of 1.
  • the antenna port information used by the ePDCCH includes an antenna port index and an antenna port corresponding sequence initial information (SCID and or virtual cell ID).
  • the antenna port index of the ePDCCH is antenna port 7, antenna port 8, antenna port 9, and antenna port 10, h is 8, SCID is 0 or 1, and virtual cell ID is x(0) or x(l), then antenna port 7/8/9/10 with SCID 0 and antenna port 7/8/9/10 with SCID 1 between 0 and 7 - corresponding; or, virtual One-to-one correspondence between antenna port 7/8/9/10 with cell ID x(0) and antenna port 7/8/9/10 with virtual cell ID x(l) and offset value 0 to 7; Antenna port 7/8/9/10 with SCID 0 and virtual cell ID x (0) and antenna port 7/8/9/10 and offset with SCID 1 and virtual cell ID x(l) Between 0 and 7 - corresponding.
  • the antenna port 7 corresponds to an offset value of 0
  • the antenna port 8 corresponds to an offset value of 1
  • the antenna port 9 corresponds to an offset value of 2
  • the antenna port 10 corresponds to an offset value of 3
  • the antenna port 7 corresponds to an offset value of 4
  • the antenna port 8 corresponds to an offset value of 5
  • the antenna port 9 corresponds to an offset value of 6
  • the antenna port 10 corresponds to an offset value of 7.
  • the correspondence is not limited thereto; Moreover, different user correspondences may be the same or different.
  • the antenna port index of the ePDCCH is antenna port 7 and antenna port 8, h is 4, SCID is 0 or 1, and virtual cell ID is x(0) or x(l).
  • SCID is Antenna port 7/8 of 0 and antenna port 7/8 with SCID of 1 and offset between 0 and 3 - corresponding; or antenna port 7/8 with virtual cell ID x (0) and virtual cell ID
  • the antenna port 7/8 and the offset of x(l) are between 0 and 3 - corresponding; or, the antenna port 7/8 and the SCID of the SCID is 0 and the virtual cell ID is x (0) is 1 and virtual
  • the antenna port 7 corresponds to an offset value of 0
  • the antenna port 8 corresponds to an offset value of 1
  • the antenna port 7 corresponds to an offset value of 2
  • the antenna Port 8 corresponds to an offset value of 3
  • the correspondence is not limited to this; and, the correspondence between different users may be The same, can also be different.
  • the indication signaling includes a high layer signaling or a user-specific parameter (eg, C-RNTI), and the like; and the correspondence between the antenna port information and the offset value is configured by high layer signaling, or Determined based on user-specific parameters.
  • a high layer signaling or a user-specific parameter eg, C-RNTI
  • the antenna port index of the ePDCCH is the antenna port 7 and the antenna port 9 , and the value of h is 4. Then, the antenna port 7 and the antenna port 9 correspond to the offset values 0 to 3.
  • Mode 1 antenna port 7 corresponds to an offset value of 0, antenna port 9 corresponds to an offset value of 2; mode 2, antenna port 7 corresponds to an offset value of 1, antenna port 9 corresponds to an offset value of 3, wherein the higher layer signaling configuration is specific
  • the mapping mode is mode 1 or mode 2; or the correspondence is determined according to user-specific parameters, such as UE ID (C-RNTI), when C-RNTI is odd, mode 1 is used, when C-RNTI is In the case of even numbers, use mode 2, and vice versa.
  • C-RNTI UE ID
  • the antenna port index of the ePDCCH is antenna port 7 and antenna port 8, and the value of h is 4. Then, the antenna port 7 and the antenna port 8 correspond to offset values 0 to 3.
  • antenna port 7 corresponds to an offset value of 0
  • antenna port 8 corresponds to an offset value of 1
  • antenna port 7 corresponds to an offset value of 2
  • antenna port 8 corresponds to an offset value of 3
  • the upper layer signaling configuration is specific
  • the mapping mode is mode 1 or mode 2.
  • the antenna port index of the ePDCCH is antenna port 7 and antenna port 8. Then, antenna port 7 and antenna port 8 correspond to offset values a1 and a2; specific values of al and a2 are determined by Signaling configuration.
  • the antenna port index of the ePDCCH is the antenna port 7, the antenna port 8, the antenna port 9, and the antenna port 10. Then, the antenna port 7, the antenna port 8, the antenna port 9, the antenna port 10, and the offset value a and A2, a3, a4 correspond; the specific values of al and a2, a3, and a4 are configured by signaling.
  • Offset offsetl + ARI, where offset1 is determined according to the antenna port index of the ePDCCH, and the ARI value is configured by the indication signaling; the antenna port according to the ePDCCH may be used in the manner that the offset1 is determined according to the antenna port index of the ePDCCH.
  • the index determines the manner of the offset; when there are multiple antenna ports corresponding to the ePDCCH, the offset is determined according to the antenna port information corresponding to the minimum (maximum) L-eCCE (D-eCCE) index corresponding to the ePDCCH, for the discrete transmission And determining, according to the D-eCCE index, the offset of the antenna port information in the PRB index “ PRB ”.
  • the Offset value is determined according to indication signaling (eg, ARI).
  • indication signaling eg, ARI
  • the corresponding offset (offsetl) of the ePDCCH in the discrete transmission mode is a fixed value of 0, and the corresponding offset (offsetl) of the ePDCCH in the continuous transmission mode is determined by the other methods described above;
  • an offset is determined according to antenna port information corresponding to a minimum (maximum) L-eCCE (D-eCCE) index corresponding to the ePDCCH, and for the discrete transmission mode, according to the D
  • the antenna port information of the L-eCCE corresponding to the eCCE index determines an offset, or, for the discrete transmission mode, the antenna corresponding to the minimum (maximum) index of the physical resource block corresponding to the D-eCCE index according to the D-eCCE index
  • the port information determines an offset; the correspondence is not limited to the correspondence in the above example.
  • the apparatus determines the corresponding physical uplink control channel PUCCH physical resource according to the resource index ePDCCH channel "CH in step, said physical resources comprise ePDCCH enhanced control channel element index of the ePDCCH:
  • h is a maximum number of uplink control channel resources corresponding to the one of the ePDCCH physical resource blocks; or, h is indicated by signaling; or, the h is a predefined positive integer, for example, 1, 2, and 4.
  • Way 2 is a maximum number of uplink control channel resources corresponding to the one of the ePDCCH physical resource blocks; or, h is indicated by signaling; or, the h is a predefined positive integer, for example, 1, 2, and 4.
  • offset is 0 or determined according to the indication signaling, wherein, for the ePDCCH of the continuous transmission mode, , offset is determined according to the above method.
  • mode 1 For TDD systems, mode 1
  • the physical resources of the ePDCCH include the physical resource blocks of the ePDCCH on the downlink subframe k Index " ea:E :
  • m is the sequence number of the downlink subframe k where the received PDSCH is located in the M downlink subframes corresponding to the uplink subframe n, and 0 ⁇ m ⁇ M - l; is a predefined parameter, and the selection of X should be Guarantee N x ⁇
  • the total number of PUCCHs corresponding to the ePDCCH region of one downlink subframe is indicated by signaling. It is assumed that the total number of physical resource blocks for transmitting the ePDCCH is ⁇ ⁇ ⁇ ,
  • N Total isr Total xh
  • h is the maximum value of the PUCCH corresponding to one physical resource block, or h is the maximum value of the eCCE included in one physical resource block, or h is indicated by signaling, or h is a predefined positive integer.
  • the maximum number of uplink control channel resources corresponding to one of the bearer ePDCCH physical resource blocks, or h is indicated by signaling, or h is a predefined positive integer.
  • the apparatus determines, according to the physical resource of the ePDCCH, a channel resource index of the corresponding physical uplink control channel PUCCH, in the step of CH ,
  • the / ⁇ / ⁇ , h is the maximum number of uplink control channel resources corresponding to one of the bearer ePDCCH physical resource blocks, or h is an enhanced control channel included in one of the bearer ePDCCH physical resource blocks
  • the number of units; or, h is indicated by signaling; or, h is a predefined positive integer.
  • the UE determines the currently used PUCCH resource according to the antenna port of the corresponding ePDCCH, or assumes that the N consecutive eCCEs (L-eCCE or D-eCCEs) are grouped into one group, and the UE corresponds to the ePDCCH. (minimum or maximum) eCCE index The location within the group determines the currently used PUCCH resource.
  • the base station allocates four PUCCH resources to the device, and the antenna port corresponding to the ePDCCH of the device includes: an antenna port 7, an antenna port 8, an antenna port 9, and an antenna port 10, where the antenna port and the PUCCH resource are Corresponding to; the device determines the antenna port according to a minimum (maximum) eCCE index corresponding to the ePDCCH, thereby determining a corresponding PUCCH resource.
  • the base station allocates four PUCCH resources to the device, four eCCEs are a group, and four eCCEs in the same group correspond to the PUCCH resources, and the device determines the intra-group according to the minimum (maximum) eCCE index corresponding to the ePDCCH. Position, thereby determining the corresponding PUCCH resource.
  • the antenna ports 7-10 are only examples, and may also be other antenna ports, for example, antenna ports 107-110, etc., where the antenna ports 107 to 110 correspond to the time-frequency position of the pilot and the LTE R10 version.
  • the time-frequency positions of the pilot ports corresponding to the antenna ports 7 to 10 are the same.
  • the embodiment of the present invention further provides an apparatus, where the apparatus is a terminal or a base station, and includes: a channel resource determining unit 50, configured to: determine according to physical resources of an enhanced physical downlink control channel (ePDCCH) a channel resource index « ⁇ CCH of the physical uplink control channel (PUCCH), where the PUCCH is used to carry positive acknowledgement/negative acknowledgement (ACK/NACK) information of the physical downlink shared channel (PDSCH) indicated by the ePDCCH;
  • the physical resources of the ePDCCH include: any one or more of a physical resource block, an enhanced control channel unit, and an antenna port index.
  • a PUCCH channel resource determining software in a large bandwidth system is provided, which is used to implement the technical solutions described in the foregoing embodiments and preferred embodiments.
  • a storage medium in which the above software is stored, the storage medium including an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • the compatibility between the LTE-Advanced system and the LTE Release-8 system can be ensured, which is advantageous for increasing the system capacity and scheduling flexibility of the LTE-Advanced system, so that the LTE-Advanced terminal obtains the maximum frequency.
  • Selective gain Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or Multiple modules or steps are made into a single integrated circuit module. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.
  • the method and apparatus of the embodiments of the present invention ensure that the HARQ process corresponding to the ePDCCH is normally performed, and the compatibility between the LTE-Advanced system and the LTE Release-8 system is ensured.

Abstract

一种物理上行控制信道(PUCCH)资源确定方法及装置。所述方法包括:装置根据增强的物理下行控制信道(ePDCCH)的物理资源确定 PUCCH的信道资源索引,其中,所述 PUCCH用于承载所述ePDCCH指示的物理下行共享信道(PDSCH)的肯定确认/否定确认(ACK/NACK)信息;所述ePDCCH 的物理资源包括:物理资源块、增强的控制信道单元、天线端口索引中任意一个或多个。通过本发明实施例,可以保证 LTE-Advanced系统与 LTE Release-8系统的兼容性,有利于增加 LTE-Advanced系统的系统容量和调度灵活性,从而使 LTE-Advanced终端获得最大的频率选择性增益。

Description

一种物理上行控制信道资源确定方法及装置
技术领域
本发明涉及通信领域, 尤其涉及一种系统中物理上行控制信道资源确定 方法及装置。
背景技术
图 1是 LTE( Long Term Evolution,长期演进 )系统 FDD( Frequency Division Duplex, 频分双工)模式的帧结构示意图, 如图 1所示, FDD模式的帧结构 中, 一个 10ms的 Radio Frame (无线帧) 由二十个长度为 0.5ms, 编号 0~19 的 Slot (时隙)组成, 时隙 2i和 2i+l组成长度为 1ms的 Subframe (子帧) i。 图 2是 LTE系统 TDD ( Time Division Duplex, 时分双工 )模式的帧结构示意 图, 如图 2所示, TDD模式的帧结构中, 一个 10ms的 radio frame (无线帧) 由两个长为 5ms的 Half Frame (半帧)组成, 一个半帧包含 5个长为 1ms的 Subframe (子帧) 。 子帧 i定义为 2个长为 0.5ms的时隙 2i和 2i+l。 两种帧 结构里, 对于 Normal CP ( Normal Cyclic Prefix, 标准循环前缀) , 一个时隙 包含 7个长度为 66.7us的符号, 其中第一个符号的 CP长度为 5.21us, 其余 6 个符号的 CP长度为 4.69us; 对于 Extended CP ( Extended Cyclic Prefix, 扩展 循环前缀) , 一个时隙包含 6个符号, 所有符号的 CP长度均为 16.67us。
在 LTE系统的版本( Release , 简称 R ) 8/9及 LTE-Advanced (高级 LTE ) 系统 R10中, 传输物理层控制信令的物理下行控制信道(Physical Downlink Control Channel, 简称 PDCCH )一般配置在子帧的前 N个 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用)符号上发送, 一般称这 N个 符号为控制信令传输区域。这里为了与新版本新增的控制信令传输区域区别 , R8/9/10 的控制信令传输区域在本发明实施例中被称为第一控制信令传输区 域。
第一控制信令传输区域的可用传输资源被划分为多个 CCE ( Control Channel Element, 控制信道单元) 资源单位, 控制信息占用的资源以 CCE为 单位进行分配, 这里的资源单位 CCE 又可以进一步的细分为多个 REG ( Resource Element Group, 资源单元组), 一个 CCE由多个不连续的 REG组 成, 一般是 9个 REG构成一个 CCE, 每个 REG由多个基本资源单位 RE ( Resource Element, 资源单元)组成。
可以看出用户分配的控制信令传输资源不是连续的, 在多天线系统中给 闭环预编码技术实施带来很多困难, 因此使得控制信令区域中只能使用分集 技术而很难使用闭环预编码技术。 主要原因是第一预编码区域的解调导频设 计和信道状态信息反馈方面有很大的设计难度, 因此已有的版本中控制信令 都是只支持非连续资源传输和分集技术的。
在 R10之后的版本中, 为了提高控制信道的传输容量, 支持更多用户的 控制信令, 设计考虑开辟新的控制信道区域, 并且同一 UE ( User Equipment, 用户设备) 的控制信令传输资源可以是连续的时频资源, 以支持闭环预编码 技术, 提高了控制信息的传输性能。 新旧版本的控制信令区域如图 3所示。
新版本的控制信令在原来的 R8/9/10的 PDSCH( Physical Downlink Shared Channel, 物理下行共享信道)传输区域划分部分传输资源用于第二控制信令 传输区域, 可以使得控制信令传输时支持闭环预编码技术, 提升控制信令容 量支持更多个用户的控制信令。这里在第二控制信令传输区域,可以重用 R10 中的解调导频(Demodulation Reference Signal, DMRS )来解调控制信令, 很 好的支持预编码技术。 另外第二控制信令传输区域是以 RB ( Resource Block, 资源块) 为单位, 可以较好的进行干扰协调。 同时, 考虑到传输鲁棒性和没 有信道信息的情况, 在第二控制信令传输区域中, DMRS也可以支持开环的 分集技术, 如, 空频块码( Space-Frequency Block Coding, SFBC )技术。
为了更好的理解本发明技术方案的背景, 下面对 LTE-A的资源定义进行 一些简单介绍。 LTE中一个 RE为一个 OFDM符号上的一个子载波, 而一个 下行物理 RB由连续的 12个子载波和连续的 14个(釆用扩展循环前缀时为 12个) OFDM符号构成, 该 RB在频域上为 180kHz, 在时域上一般为一个时 隙的时间长度, 如图 4所示 (一个 5M系统)。 LTE/LTE-A系统在进行资源分配 时, 以资源块为基本单位进行分配。
对于 LTE FDD模式下动态调度的 PDSCH,在上行发送承载 HARQ-ACK ( Hybrid Automatic Repeat Request Acknowledgment , 混合自动重传请求肯定 确认)的 PUCCH ( Physical Uplink Control Channel, 物理上行控制信道 )的资 源索引是通过调度的下行子帧上分配给该用户的 PDCCH对应的最小 CCE索 引隐含映射的。 即, ^H = ^E + N CH , 其中 ^CH是用户发送 HARQ-ACK 的 PUCCH资源索引, 《CCE是传输 PDCCH的第一个 CCE索引, N CH由高层 配置。对于 LTE TDD模式下由 PDCCH指示的 PDSCH传输,或者由 PDCCH 指示的下行 SPS ( Semi-Persistent Scheduling, 半静态调度)释放的传输, 在 配给该用户的 PDCCH对应的 CCE索引经过块交织后得到。 由于 TDD模式 下会存在一个无线帧中下行子帧数目多于上行子帧数目的配置, 所以定义了 反馈窗的概念。 反馈窗即为上行子帧对应的所有下行子帧 (需要说明的是, 此处的 "对应" 是指这些下行子帧均在该上行子帧中反馈确认信息) 。
对于 TDD模式,由于可能存在一个无线帧中下行子帧数目大于上行子帧 数目的配置场景, 所以可能存在多个下行子帧的反馈信息在同一个上行子帧 中发送。 这样的一个上行子帧对应的多个下行子帧称为反馈窗。
对于不是由 PDCCH指示的 PDSCH传输, 《 CH由高层配置和表 1决定。 表 1示出了 PUCCH资源索引对应信令的关系。
表 1、 PUCCH资源索引对应信令的关系
Figure imgf000005_0001
对于由下行控制信息 ( Downlink Control Information, 简称为 DCI )信令 指示的下行半静态调度 PDSCH的《 CH由 TPC域指示的高层配置的四个资源 中的一个确定。
目前,在 LTE-Advanced的不断演进过程中,对系统扩容支持用户数量的 需求不断提高, 已有的 PDCCH 已经不能够满足更先进的无线通讯系统的要 求, 为此在 3GPP ( 3rd Generation Partnership Project, 第三代合作伙伴项目) 的讨论中引入了 ePDCCH( Enhanced PDCCH,增强的 PDCCH )来增强 PDCCH 性能, 同时引入新的 PDCCH传输区域,并且定义用于承载 ePDCCH的 eCCE ( Enhanced Control Channel Element,增强的 CCE )。此时,如何获得 ePDCCH 的 PDSCH对应的传输 ACK/NACK的 PUCCH资源成为亟待解决的问题。 发明内容
针对如何获得 ePDCCH的 PDSCH对应的传输 ACK/NACK的 PUCCH资 源的问题,本发明实施例提供了一种物理上行控制信道资源确定方法及装置, 以至少解决上述问题。
本发明实施例提供了一种物理上行控制信道(PUCCH ) 资源确定方法, 包括:
装置根据增强的物理下行控制信道(ePDCCH )的物理资源确定 PUCCH 的信道资源索引《 CH , 其中, 所述 PUCCH用于承载所述 ePDCCH指示的物 理下行共享信道( PDSCH )的肯定确认 /否定确认 ( ACK/NACK )信息; 所述 ePDCCH的物理资源包括: 物理资源块、 增强的控制信道单元(eCCE ) 、 天 线端口索引中任意一个或多个。
上述方法还可具有以下特点, 所述装置根据 ePDCCH 的物理资源确定 PUCCH的信道资源索引 的步骤中,
用于传输离散传输模式的 ePDCCH的物理资源与用于传输连续传输模式 的 ePDCCH的物理资源共享相同的区域;
或者,
用于传输离散传输模式的 ePDCCH的物理资源与用于传输连续传输模式 的 ePDCCH的物理资源独立配置。
上述方法还可具有以下特点, 所述装置根据 ePDCCH 的物理资源确定
PUCCH的信道资源索引《 CH的步骤包括: 所述装置确定所述 PUCCH的信 道资源的起始位置 NP S H , 其中:
所述 NP S H为已有 PDCCH对应的 PUCCH的信道资源的起始位置 N CH; 或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 A¾cch加上预定义值 D, 其中, 所述 D表示所述 PUCCH所在的上行子帧 中所述 PDCCH对应的 PUCCH的信道资源最大值; 或者, 所述 D表示所述 ePDCCH所在的子帧上控制信道单元(CCE ) 的数量;
或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 A¾cch加上所述预定义值 D, 再加上 V, 其中, 所述 V由信令确定; 或者, 所述 NP S H由信令确定;
或者, 所述 NP S H为所述 PUCCH所在的上行子帧中 PUCCH格式 la/lb 资源的起始位置。
上述方法还可具有以下特点, 所述装置确定所述 PUCCH的信道资源的 起始位置 NpS^H的步骤中,
对于时分双工系统, 不同上行子帧中, 所述 NpS;^H相同或不同。
上述方法还可具有以下特点, 所述装置确定所述 PUCCH的信道资源的 起始位置 NP S H的步骤中,
用于不同传输模式的 ePDCCH对应的 PUCCH的信道资源的 N eH相同 或不同。
上述方法还可具有以下特点, 所述装置根据 ePDCCH 的物理资源确定 PUCCH的信道资源索引《 CH的步骤包括:所述装置确定偏移量 offset,其中, 所述 offset为固定值, 或者, 根据如下信息之一或其组合确定:
所述 ePDCCH的天线端口信息、 指示信令、 所述 ePDCCH的传输模式、 所述 ePDCCH在物理资源块中的位置、所述 ePDCCH对应的增强的控制信道 单元索引、 以及所述 ePDCCH对应的增强的资源单元组索引。
上述方法还可具有以下特点, 所述装置根据如下步骤之一或其组合确定 所述 Offset:
A) ) 建立所述天线端口信息与所述 offset之间的对应关系, 根据所述 ePDCCH使用的天线端口信息确定所述 offset; 其中, 所述 ePDCCH使用的 天线端口信息包括天线端口索引; 或者, 所述 ePDCCH使用的天线端口信息 包括天线端口索引和天线端口对应序列初始信息; B ) 建立所述天线端口信息与所述 offset之间的对应关系, 根据所述 ePDCCH使用的天线端口信息和指示信令确定所述 offset;
C )根据指示信令确定所述 offset;
D ) 当 ePDCCH为离散传输模式时, ePDCCH对应的 offset为 0或根据 指示信令确定, 当 ePDCCH为连续传输模式时,按照所述 A至 C任一步骤确 定 ePDCCH对应的 offset。
上述方法还可具有以下特点, 所述步骤 B中, 根据所述 ePDCCH使用的 天线端口信息和指示信令确定所述 offset包括:
Offset = offsetl + ARI, 其中, offsetl根据所述 ePDCCH的天线端口索引 确定, ARI值由指示信令配置。
上述方法还可具有以下特点,根据所述步骤 B和所述步骤 D组合确定所 述 offset包括:
Offset = offsetl + ARI, 其中, 当 ePDCCH为离散传输模式时, offsetl为 0, 当 ePDCCH为连续传输模式时, offsetl根据所述 ePDCCH的天线端口索 引确定, ARI值由指示信令配置。
上述方法还可具有以下特点, 所述装置根据 ePDCCH 的物理资源确定 PUCCH的信道资源索引《 CH的步骤包括:
所述装置根据下式确定所述《 eH
"PUCCH = f PR ) + offset + N CH
其中,所述《PR为重新编号后承载所述 ePDCCH的物理资源块索引,或者, 所述《PR为承载所述 ePDCCH的增强的控制信道单元索引; 所述 NP S:^H为所述 PUCCH的信道资源的起始位置。
上述方法还可具有以下特点,
当所述装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子 帧 n上发送时, 所述装置根据 ePDCCH的物理资源确定 PUCCH的信道资源 索引„ CH的步骤包括: 针对下行子帧 k, 所述装置根据所述下行子帧 k上所述 ePDCCH的物理 资源索引《PR确定所述 PUCCH的信道资源索引 (i)
PUCCH
wpuccH = (M-m-l)xNx + mxNx + /(wPR )+ offset + C]
其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M-l ; N为预定义参数, 且 X的选择保 证
N
Figure imgf000009_0001
1个下行子帧的 ePDCCH区域对应的 PUCCH总数或者由信令指示; r大于等 于 1 ; 所述《PR为重新编号后承载所述 ePDCCH的物理资源块索引, 或者, 为 承载所述 ePDCCH 的增强的控制信道单元索引; 所述 NP S H为所述 PUCCH 的信道资源的起始位置。 上述方法还可具有以下特点,
当所述装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子 帧 n上发送时, 所述装置根据 ePDCCH的物理资源确定 PUCCH的信道资源 索引„ CH的步骤包括:
针对下行子帧 k, 所述装置根据所述下行子帧 k上所述 ePDCCH的物理 资源块索引 确定所述 PUCCH的信道资源索引 (1)
'UCCH, w "P(DUCCH,m = V N 1 λ|T ePoDtaClCH.g + τ J f in PR ) W o uflflsaectL + τ N丄、 P s U ta C rt CH -,
9=0 其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M-l ; N m表示所述下行子帧 k的 ePDCCH区域对应的 PUCCH总数或者由信令指示; 所述《PR为重新编号后承 载所述 ePDCCH的物理资源块索引, 或者, 所述《PR为承载所述 ePDCCH的 增强的控制信道单元索引; 所述 NP S H为所述 PUCCH 的信道资源的起始位 置。
上述方法还可具有以下特点, 当所述《PR为《PRB ,所述 ¾^为重新编号后承 载所述 ePDCCH的物理资源块索引时, 则 所述 f (wPR ) = («PRB ) = nPRB xh; 所述 n} 所述^ eE为承载所述 h
ePDCCH的增强的控制信道单元索引; 其中, 所述 h为 1个承载所述 ePDCCH的物理资源块对应的上行控制信 道资源最大数量, 或者, 所述 h为 1个承载所述 ePDCCH的物理资源块包括 的增强的控制信道单元数量, 或者, 所述 h由信令指示, 或者, 所述 h为预 定义正整数。
上述方法还可具有以下特点, 所述方法还包括: 所述装置根据如下方式 确定所述《PRB :
对于连续传输模式的 ePDCCH, 确定所述《PRB为重新编号后承载所述 ePDCCH的最大或最小物理资源块索引; 或者
对于离散传输模式的 ePDCCH, 根据承载所述 ePDCCH 的最大或最小 D-eCCE 索引确定所述《PRB ; 其中, 所述 D-eCCE 为用于离散传输模式的 ePDCCH的增强的控制信道单元。
上述方法还可具有以下特点, 所述根据承载所述 ePDCCH的最大或最小
D-eCCE索引确定所述《PRB的步骤包括:
将一个 D-eCCE映射到 h个物理资源块上, 并将所有编号后的 D-eCCE 划分为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与 所述 h个物理资源块之间建立——对应关系,其中, 同一组内的 h个 D-eCCE 对应相同的天线端口且映射到相同物理资源块上, 或者, 同一组内的 h个 D-eCCE映射到相同物理资源块上; 以及根据承载所述 ePDCCH的最大或最 小 D-eCCE索引在上述分组后的组内位置对应的物理资源块索引确定所述物 理资源块索引 "P B ; 或者,
当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最小物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 D-eCCE索引所在的最大物理资源块索引;
或者,
当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最大物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 的 D-eCCE索引所在的最小物理资源块索引。
上述方法还可具有以下特点, 当所述《PR为^ CE , 所述^ CE为承载所述 ePDCCH的增强的控制信道单元索引时, 则 所述 f (¾ 或者 f (wPR ) = ne C, CE
h 其中, 所述 h为 1个承载所述 ePDCCH的物理资源块对应的上行控制信 道资源最大数量, 或者, 所述 h为 1个承载所述 ePDCCH的物理资源块包括 的增强的控制信道单元数量, 或者, 所述 h由信令指示, 或者, 所述 h为预 定义正整数。 上述方法还可具有以下特点, 所述方法还包括: 所述装置根据如下方式 确定所述^ eE :
对于连续传输模式的 ePDCCH, 确定所述^ eE为承载所述 ePDCCH的最 大或最小 L-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH的最大或 最小 L-eCCE索引 +Total-DeCCE,其中,所述 Total-DeCCE表示可用的 D-eCCE 总数或者由信令指示; 或者,
对于离散传输模式的 ePDCCH, 根据承载所述 ePDCCH 的最大或最小
D-eCCE索引确定所述^ CE
上述方法还可具有以下特点, 所述根据承载所述 ePDCCH的最大或最小 D-eCCE索引确定所述^ CE的步骤包括:
确定所述^ CE为承载所述 ePDCCH的最大或最小 D-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH 的最大或最小 D-eCCE 索引
+Total-LeCCE,其中,所述 Total-LeCCE表示可用的 L-eCCE总数或者由信令 指示;
或者,
将一个 D-eCCE映射到 h个 L-eCCE上,并将所有编号后的 D-eCCE划分 为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与所述 h 个 L-eCCE之间建立——对应关系,其中, 同一组内的 h个 D-eCCE对应相同 的天线端口且映射到相同 L-eCCE上,或者, 同一组内的 h个 D-eCCE映射到 相同 L-eCCE上; 以及根据承载所述 ePDCCH的最大或最小 D-eCCE索引在 上述分组后的组内位置对应的 L-eCCE索引确定所述^ eE
或者,
将一个 D-eCCE映射到 2个 L-eCCE上,当所述最大或最小 D-eCCE索引 为奇数时, 确定所述^ CE为所述最大或最小 D-eCCE索引所在的最小 L-eCCE 索引, 当所述最大或最小 D-eCCE索引为偶数时, 确定所述"^ E为所述最大 或最小 D-eCCE 索引所在的最大 L-eCCE 索引; 或者, 当所述最大或最小 D-eCCE索引为奇数时,确定所述^ CE为所述最大或最小 D-eCCE索引所在的 最大 L-eCCE索引, 当所述最大或最小 D-eCCE索引为偶数时,确定所述^ CE 为所述最大或最小 D-eCCE索引所在的最小 L-eCCE索引;
其中, 所述 L-eCCE为用于连续传输模式的 ePDCCH的增强的控制信道 单元,所述 D-eCCE为用于离散传输模式的 ePDCCH的增强的控制信道单元。
上述方法还可具有以下特点, 所述方法还包括: 所述装置按如下方式之 一对所述 ePDCCH的物理资源进行编号:
对于所有配置的 ePDCCH的物理资源的顺序进行编号;
先将用于不同传输模式的 ePDCCH的物理资源级联起来, 再按照级联后 的顺序对所述 ePDCCH的物理资源进行编号;
对用于不同传输模式的 ePDCCH的物理资源分别进行编号。
上述方法还可具有以下特点, 其中, 所述装置为终端或者基站。
本发明实施例还提供一种装置, 包括: 信道资源确定单元, 其设置成: 根据增强的物理下行控制信道(ePDCCH ) 的物理资源确定物理上行控制信 道( PUCCH )的信道资源索引 ^CH,其中,所述 PUCCH用于承载所述 ePDCCH 指示的物理下行共享信道(PDSCH )的肯定确认 /否定确认( ACK/NACK )信 息; 所述 ePDCCH的物理资源包括: 物理资源块、 增强的控制信道单元、 天 线端口索引中任意一个或多个。
上述装置还可具有以下特点, 所述信道资源确定单元是设置成: 确定所 述 PUCCH的信道资源的起始位置 NP S H , 其中:
所述 NP S H为已有 PDCCH对应的 PUCCH的信道资源的起始位置 N CH; 或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 A¾cch加上预定义值 D, 其中, 所述 D表示所述 PUCCH所在的上行子帧 中所述 PDCCH对应的 PUCCH的信道资源最大值, 或者, 所述 D表示所述 ePDCCH所在的子帧上控制信道单元( CCE ) 的数量;
或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 A¾cch加上所述预定义值 D, 再加上 V, 其中, 所述 V由信令确定; 或者, 所述 NP S H由信令确定;
或者, 所述 NP S H为所述 PUCCH所在的上行子帧中 PUCCH格式 la/lb 资源的起始位置。
上述装置还可具有以下特点, 对于时分双工系统, 不同上行子帧中, 所 述 N eH相同或不同。
上述装置还可具有以下特点, 用于不同传输模式的 ePDCCH对应的 PUCCH的信道资源的 NP S H相同或不同。
上述装置还可具有以下特点, 所述信道资源确定单元是设置成: 确定偏 移量 offset, 其中, 所述 offset为固定值, 或者, 根据如下信息之一或其组合 确定:
所述 ePDCCH的天线端口信息、 指示信令、 所述 ePDCCH的传输模式、 所述 ePDCCH在物理资源块中的位置、所述 ePDCCH对应的增强的控制信道 单元索引、 以及所述 ePDCCH对应的增强的资源单元组索引。
上述装置还可具有以下特点, 所述信道资源确定单元是设置成根据如下 步骤之一或其组合确定所述 offset:
A ) 建立所述天线端口信息与所述 offset之间的对应关系, 根据所述 ePDCCH使用的天线端口信息确定所述 offset; 其中 , 所述 ePDCCH使用的 天线端口信息包括天线端口索引; 或者, 所述 ePDCCH使用的天线端口信息 包括天线端口索引和天线端口对应序列初始信息;
B ) 建立所述天线端口信息与所述 offset之间的对应关系, 根据所述 ePDCCH使用的天线端口信息和指示信令确定所述 offset;
C )根据指示信令确定所述 offset;
D ) 当 ePDCCH为离散传输模式时, ePDCCH对应的 offset为 0或根据 指示信令确定, 当 ePDCCH为连续传输模式时,按照所述 A至 C任一步骤确 定 ePDCCH对应的 offset。
上述装置还可具有以下特点, 所述资源确定单元是设置为通过如下方式 根据所述 ePDCCH使用的天线端口信息和指示信令确定所述 offset:
Offset = offsetl + ARI, 其中, offsetl根据所述 ePDCCH的天线端口索引 确定, ARI值由指示信令配置。
上述装置还可具有以下特点, 所述资源确定单元是设置为通过如下方式 根据所述步骤 B和所述步骤 D组合确定所述 offset:
Offset = offsetl + ARI, 其中, 当 ePDCCH为离散传输模式时, offsetl为 0, 当 ePDCCH为连续传输模式时, offsetl根据所述 ePDCCH的天线端口索 引确定, ARI值由指示信令配置。
上述装置还可具有以下特点, 所述信道资源确定单元是设置成通过如下 方式根据 ePDCCH的物理资源确定 PUCCH的信道资源索引《 CH
根据下式确定所述《 eH
"PUCCH = f PR ) + offset + N CH
其中,所述《PR为重新编号后承载所述 ePDCCH的物理资源块索引,或者, 所述《PR为承载所述 ePDCCH的增强的控制信道单元索引; 所述 NP S:^H为所述 PUCCH的信道资源的起始位置。
上述装置还可具有以下特点,
当所述装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子 帧 n上发送时, 所述信道资源确定单元是设置成按如下方式根据 ePDCCH的 物理资源确定 PUCCH的信道资源索引 (i) ·
PUCCH ·
针对下行子帧 k , n p y^t | 丁 "T TO
引 "PR确定所述 PUCCH的信道资源索引 L¾m
wpuccH,m = (M-m-l)xNx +mxNx + f{nPR )+ offset + N PUCCH
其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M-l ; N为预定义参数, 且 X的选择保 证 < ("PR )+ offset≤
Ν , 或者, N. N10tal x- , 或者, N =
Figure imgf000015_0001
1个下行子帧的 ePDCCH区域对应的 PUCCH总数或者由信令指示; r大于等 于 1 ; 所述《PR为重新编号后承载所述 ePDCCH的物理资源块索引, 或者, 所 述《PR为承载所述 ePDCCH 的增强的控制信道单元索引; 所述 NP S H为所述 PUCCH的信道资源的起始位置。 上述装置还可具有以下特点,
当所述装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子 帧 n上发送时, 所述信道资源确定单元是设置成按如下方式根据 ePDCCH的 物理资源确定 PUCCH的信道资源索引 CCH
针对下行子帧 k,
引《PR确定所述物理上行控制信道 PUCCH的信道资源索引 (1)
'UCCH,
w "P(DUCCH,m = V N 1 λ| T ePoDtaCl CH.g + J f in PR ) W o uflflsaectL + τ N丄、 P s U ta C rt CH -,
9=0 其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M-l ; N m表示所述下行子帧 k的 ePDCCH区域对应的 PUCCH总数或者由信令指示; 所述《PR为重新编号后承 载所述 ePDCCH的物理资源块索引, 或者, 所述《PR为承载所述 ePDCCH的 增强的控制信道单元索引; 所述 NP S H为所述 PUCCH 的信道资源的起始位 置。 上述装置还可具有以下特点,
当所述《PR为《PRB , 所述《PRB为重新编号后承载所述 ePDCCH的物理资源 块索引时, 则 所述 f (wPR ) = («PRB ) = nPRB xh; 所述 nP 所述^ eE为承载所述 h
ePDCCH的增强的控制信道单元索引; 其中, 所述 h为 1个承载所述 ePDCCH的物理资源块对应的上行控制信 道资源最大数量, 或者, 所述 h为 1个承载所述 ePDCCH的物理资源块包括 的增强的控制信道单元数量, 或者, 所述 h由信令指示, 或者, 所述 h为预 定义正整数。
上述装置还可具有以下特点, 所述信道资源确定单元还设置成: 根据如 下方式确定所述《PRB :
对于连续传输模式的 ePDCCH, 确定所述 ¾^为重新编号后承载所述 ePDCCH的最大或最小物理资源块索引; 或者
对于离散传输模式的 ePDCCH, 根据承载所述 ePDCCH 的最大或最小 D-eCCE 索引确定所述《PRB ; 其中, 所述 D-eCCE 为用于离散传输模式的 ePDCCH的增强的控制信道单元。
上述装置还可具有以下特点, 所述信道资源确定单元是设置成根据如下 方式根据承载所述 ePDCCH的最大或最小 D-eCCE索引确定所述《PRB
将一个 D-eCCE映射到 h个物理资源块上, 并将所有编号后的 D-eCCE 划分为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与 所述 h个物理资源块之间建立——对应关系,其中, 同一组内的 h个 D-eCCE 对应相同的天线端口且映射到相同物理资源块上, 或者, 同一组内的 h个 D-eCCE映射到相同物理资源块上; 以及根据承载所述 ePDCCH的最大或最 小 D-eCCE索引在上述分组后的组内位置对应的物理资源块索引确定所述物 理资源块索引 "P B ; 或者,
当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最小物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 D-eCCE索引所在的最大物理资源块索引;
或者,
当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最大物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 D-eCCE索引所在的最小物理资源块索引。
上述装置还可具有以下特点,
当所述《PR为^ CE , 所述^ CE为承载所述 ePDCCH的增强的控制信道单元 索引时, 则
所述 f ("PR ) 或者 f (wPR ) = ne ;,CCE
h 其中, 所述 h为 1个承载所述 ePDCCH的物理资源块对应的上行控制信 道资源最大数量, 或者, 所述 h为 1个承载所述 ePDCCH的物理资源块包括 的增强的控制信道单元数量, 或者, 所述 h由信令指示, 或者, 所述 h为预 定义正整数。 上述装置还可具有以下特点, 所述信道资源确定单元还设置成: 根据如 下方式确定所述《eeeE :
对于连续传输模式的 ePDCCH, 确定所述^ eE为承载所述 ePDCCH的最 大或最小 L-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH的最大或 最小 L-eCCE索引 +Total-DeCCE,其中,所述 Total-DeCCE表示可用的 D-eCCE 总数或者由信令指示; 或者
对于离散传输模式的 ePDCCH, 根据承载所述 ePDCCH 的最大或最小 D-eCCE索引确定所述 eCCE 上述装置还可具有以下特点, 所述信道资源确定单元是设置成通过如下 方式根据承载所述 ePDCCH的最大或最小 D-eCCE索引确定所述^ CE :
确定所述^ CE为承载所述 ePDCCH的最大或最小 D-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH 的最大或最小 D-eCCE 索引 +Total-LeCCE,其中,所述 Total-LeCCE表示可用的 L-eCCE总数或者由信令 指示;
或者,
将一个 D-eCCE映射到 h个 L-eCCE上,并将所有编号后的 D-eCCE划分 为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与所述 h 个 L-eCCE之间建立——对应关系,其中, 同一组内的 h个 D-eCCE对应相同 的天线端口且映射到相同 L-eCCE上,或者, 同一组内的 h个 D-eCCE映射到 相同 L-eCCE上; 以及根据承载所述 ePDCCH的最大或最小 D-eCCE索引在 上述分组后的组内位置对应的 L-eCCE索引确定所述^ eE
或者,
将一个 D-eCCE映射到 2个 L-eCCE上,当所述最大或最小 D-eCCE索引 为奇数时, 确定所述^ CE为所述最大或最小 D-eCCE索引所在的最小 L-eCCE 索引, 当所述最大或最小 D-eCCE索引为偶数时, 确定所述"^ E为所述最大 或最小 D-eCCE 索引所在的最大 L-eCCE 索引; 或者, 当所述最大或最小 D-eCCE索引为奇数时,确定所述^ CE为所述最大或最小 D-eCCE索引所在的 最大 L-eCCE索引, 当所述最大或最小 D-eCCE索引为偶数时,确定所述^ CE 为所述最大或最小 D-eCCE索引所在的最小 L-eCCE索引;
其中, 所述 L-eCCE为用于连续传输模式的 ePDCCH的增强的控制信道 单元,所述 D-eCCE为用于离散传输模式的 ePDCCH的增强的控制信道单元。
上述装置还可具有以下特点, 所述信道资源确定单元还设置成: 通过如 下方式之一对所述 ePDCCH的物理资源进行编号:
对所有配置的 ePDCCH的物理资源的顺序进行编号;
先将用于不同传输模式的 ePDCCH的物理资源级联起来, 再按照级联后 的顺序对所述 ePDCCH的物理资源进行编号; 对用于不同传输模式的 ePDCCH的物理资源分别进行编号。
上述装置还可具有以下特点, 所述装置为终端或者基站。
通过本发明实施例的方法和装置, 釆用装置确定 PUCCH的信道资源索 引^^^ ,再根据确定的信道资源索引 CCH确定 PUCCH使用的资源,从而使 得在 ePDCCH对应 HARQ过程可以通过 PUCCH反馈 ePDCCH对应的 PDSCH 的反馈信息, 保证了 ePDCCH对应的 HARQ 过程正常进行, 并且保证了 LTE-Advanced系统与 LTE Release-8系统的兼容性。
附图概述
此处所说明的附图用来提供对本发明实施例的进一步理解, 构成本申请 的一部分, 本发明的示意性实施例及其说明用于解释本发明技术方案, 并不 构成对本发明技术方案的不当限定。 在附图中:
图 1是根据相关技术的 LTE系统 FDD模式的帧结构的示意图。
图 2是根据相关技术的 LTE系统 TDD模式的帧结构的示意图。
图 3是新旧版本的控制信令区域的示意图。
图 4是物理资源块定义的示意图。
图 5是根据本发明的实施例的装置的结构图。
本发明的较佳实施方式
下文中将参考附图来详细说明本发明实施例。 需要说明的是, 在不冲突 的情况下 , 本申请中的实施例及实施例中的特征可以相互组合。
在 3GPP中引入 ePDCCH来增强 PDCCH性能, 同时引入新的 PDCCH 传输区域, 在本实施例中提供了一种获得 ePDCCH 的 PDSCH对应的传输 ACK/NACK的 PUCCH的信道资源的方法,通过该方法保证了 ePDCCH对应 的 HARQ过程正常进行, 并且保证了 LTE-Advanced系统与 LTE Release-8系 统的兼容性,使得 LTE-Advanced终端获得最大的频率选择性增益。需要说明 的是, 以下实施例及其优选实施方式所应用的系统并不局限于 LTE-Advanced 系统。 本发明实施例提供一种物理上行控制信道资源确定方法, 包括: 装置根据 ePDCCH的物理资源确定 PUCCH的信道资源索引《 CH;其中, 所述 PUCCH用于承载所述 ePDCCH指示的 PDSCH的肯定确认 /否定确认 ( ACK/NACK )信息; 所述 ePDCCH的物理资源包括: 物理资源块、 增强的 控制信道单元、 天线端口索引中任意一个或多个; 其中, 所述装置为终端或 者基站。
可选的, 主要包括以下应用场景。
1 )离散传输模式的 ePDCCH区域和连续传输模式的 ePDCCH区域相同; 即, 用于传输离散传输模式的 ePDCCH的物理资源与用于传输连续传输模式 的 ePDCCH的物理资源共享相同的区域。
2 ) 离散传输模式的 ePDCCH区域和连续传输模式的 ePDCCH区域独立 配置。 即, 用于传输离散传输模式的 ePDCCH的物理资源与用于传输连续传 输模式的 ePDCCH的物理资源独立配置。
可选的, 所述装置根据所述 ePDCCH的物理资源确定 PUCCH的信道资 源索引 CCH的步骤包括: 确定所述 PUCCH的信道资源的起始位置 NP S H , 其中:
所述 NP S H为已有 PDCCH对应的 PUCCH的信道资源的起始位置 N CH; 或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 N CH加上预定义 D,其中 ,所述 D表示所述 PDCCH对应的所述 PUCCH 的信道资源最大值, 或者, 所述 D表示所述 ePDCCH所在的子帧上控制信道 单元(CCE ) 的数量;
或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 A¾cch加上所述预定义 D, 再加上 V, 其中, 所述 V由信令确定;
或者, 所述起始位置 : 为^^^ , N^CCH由信令确定;
或者, 所述起始位置 NP S CH为所述 PUCCH所在的上行子帧中 PUCCH Format (格式) la/lb资源的起始位置。
当然, 所述起始位置 N eH也可以为 0。
其中, 当配置多个服务小区时, 上述 D表示所述 ePDCCH在主服务小区 ( Primary Serving Cell ) 时主服务小区 (或者主分量载波) 的情况; PUCCH Format (格式) la/lb资源的起始位置为所述 PUCCH所在的上行子帧中主服 务小区上 PUCCH Format (格式) la/lb资源的起始位置。
可选的,对于 TDD系统, 在不同上行子帧中, 所述 ; 取值可以不同, 也可以相同。
可选的, 用于不同传输模式的 ePDCCH对应的 PUCCH的信道资源的起 始位置相同或不同, 也可以独立地配置起始位置。 例如, 离散传输模式的起 始位置是 Ad , 连续传输模式的起始位置是 A¾eeH
可选的, 所述装置根据所述 ePDCCH的物理资源确定 PUCCH的信道资 源索引 ^CH的步骤包括: 确定偏移量 offset , 其中, 所述偏移量 offset根据所 述 ePDCCH的天线端口信息、 指示信令、 所述 ePDCCH的传输模式、 所述 ePDCCH在所述物理资源块中的位置、 所述 ePDCCH对应的增强的控制信道 单元索引、 所述 ePDCCH对应的增强的资源单元组索引中任意一个或多个信 息确定; 或者, 所述偏移量 offset为固定值, 如, 0或 0之外的其他值。
其中, 当 offset固定为 0时, 相当于该参数不存在。
可选的, Offset确定方法为以下之一或组合。
方法一
建立所述天线端口信息与所述偏移量 offset取值之间的对应关系, 根据所 述 ePDCCH使用的天线端口信息确定所述 offset ; offset取值范围为 0到 h-1 ; 其中, 所述 ePDCCH使用的天线端口信息包括天线端口索引。
方法二
建立所述天线端口信息与所述偏移量 offset取值之间的对应关系, 根据所 述 ePDCCH使用的天线端口信息确定所述 offset ; offset取值范围为 0到 h-1 ; 其中, 所述 ePDCCH使用的天线端口信息包括天线端口索引和天线端口对应 序列初始信息, 所述天线端口对应序列初始信息包括序列扰码标识 ( Scrambling Code Identifier, SSCID )和 /或虚拟小区 ID;
方法三 建立所述天线端口信息与所述偏移量 offset之间的对应关系, 根据所述 ePDCCH使用的天线端口信息和指示信令确定所述偏移量 offset;
所述指示信令包括高层信令或用户专有参数(如, C-RNTI ( Cell Radio Network Temporary Identifier, 小区无线网络临时标识) )等;
所述天线端口信息与所述偏移量取值之间的对应关系由高层信令配置, 或, 根据用户专有参数确定。
方法四
所述 offset根据指示信令(如, ARI ( Allocation Resource Indicator, 配置 资源指示)确定。
方法五
当 ePDCCH为离散传输模式时, ePDCCH对应的 offset为 0或根据指示 信令确定, 当 ePDCCH为连续传输模式时, 按照上述任一方法确定 ePDCCH 对应的 offset。
上述方法还可具有以下特点, 所述方法三, 根据所述 ePDCCH使用的天 线端口信息和指示信令确定所述 offset包括:
Offset = offsetl + ARI, 其中, offsetl根据所述 ePDCCH的天线端口索引 确定, ARI值由指示信令配置。
上述方法还可具有以下特点, 根据所述方法三和所述方法五组合确定所 述 offset包括:
Offset = offsetl + ARI, 其中, 当 ePDCCH为离散传输模式时, offsetl为
0, 当 ePDCCH为连续传输模式时, offsetl根据所述 ePDCCH的天线端口索 引确定, ARI值由指示信令配置。
可选的, 所述装置根据所述 ePDCCH的物理资源确定 PUCCH的信道资 源索引《^^的步骤包括:
所述装置根据下式确定所述《 eH
"PUCCH ― f («PR )+ offset + NP S^CH ;
其中,所述《PR为重新编号后承载所述 ePDCCH的物理资源块索引 ,或者, 所述《PR为承载所述 ePDCCH的增强的控制信道单元索引。
其中, 所述《PR可以为《PRB , 所述 ¾^为重新编号后承载所述 ePDCCH的 物理资源块索引, 当所述 ^^为 ^时, 则:
所述" PUCCH = f("PRB )+ offset + C 所述 f (wPR ) = («PRB ) = nPRB xh ; 所述 wf , 所述^ CE为承载所述 ePDCCH的增强的控制信道单元 h 索引; 其中, h为一个所述承载 ePDCCH物理资源块对应的上行控制信道资源 最大数量, 或者, h为 1个所述承载 ePDCCH物理资源块包括的增强的控制 信道单元数量; 或者, 所述 h由信令指示, 或者, 所述 h为预定义正整数。
其中, 根据如下方式确定所述《PRB :
对于连续传输模式的 ePDCCH, 确定所述 ¾^为重新编号后承载所述 ePDCCH的最大或最小物理资源块索引; 或者
对于离散传输模式的 ePDCCH, 根据承载所述 ePDCCH的最大或最小的 D-eCCE的索引确定所述《PRB;其中, D-eCCE为用于离散传输模式的 ePDCCH 的增强的控制信道单元。
所述根据承载所述 ePDCCH的最大或最小的 D-eCCE索引确定所述《PRB 的步骤包括:
将一个 D-eCCE映射到 h个物理资源块上, 并将所有编号后的 D-eCCE 划分为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与 所述 h个物理资源块之间建立——对应关系,其中, 同一组内的 h个 D-eCCE 对应相同的天线端口且映射到相同物理资源块上, 或者, 同一组内的 h个 D-eCCE映射到相同物理资源块上; 以及根据承载所述 ePDCCH的最大或最 小 D-eCCE索引在上述分组后的组内位置对应的物理资源块索引确定所述物 理资源块索引 "PRB ; 或者, 当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最小物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 D-eCCE索引所在的最大物理资源块索引;
或者,
当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最大物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 D-eCCE索引所在的最小物理资源块索引。
可选的, 所述《PR可以为^ eE , 所述^ eE为承载所述 ePDCCH的增强的控 制信道单元索引, f ("PR) = f ("eCCS) , 当所述《PR为^ eE , 则:
所述
Figure imgf000024_0001
其中, 根据如下方式确定所述^ CE :
对于连续传输模式的 ePDCCH, 确定所述^ eE为承载所述 ePDCCH的最 大或最小 L-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH的最大或 最小 L-eCCE索引 +Total-DeCCE,其中,所述 Total-DeCCE表示可用的 D-eCCE 总数或者由信令指示; 或者,
对于离散传输模式的 ePDCCH, 确定所述^ eE根据承载所述 ePDCCH的 最大或最小 D-eCCE索引确定。
其中, 所述根据承载所述 ePDCCH的最大或最小 D-eCCE索引确定所述 CCE的步骤包括: 确定所述^ CE为承载所述 ePDCCH的最大或最小 D-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH 的最大或最小 D-eCCE 索引 +Total-LeCCE,其中,所述 Total-LeCCE表示可用的 L-eCCE总数或者由信令 指示;
或者, 将一个 D-eCCE映射到 h个 L-eCCE上,并将所有编号后的 D-eCCE划分 为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与所述 h 个 L-eCCE之间建立——对应关系,其中, 同一组内的 h个 D-eCCE对应相同 的天线端口且映射到相同 L-eCCE上,或者, 同一组内的 h个 D-eCCE映射到 相同 L-eCCE上; 以及才艮据所述最大或最小 D-eCCE索引在上述分组后的组 内位置对应的 L-eCCE索引确定所述^ CE
或者,
将一个 D-eCCE映射到 2个 L-eCCE上,当所述最大或最小 D-eCCE索引 为奇数时, 确定所述^ CE为所述最大或最小 D-eCCE索引所在的最小 L-eCCE 索引, 当所述最大或最小 D-eCCE索引为偶数时, 确定所述" SCCE为所述最大 或最小 D-eCCE 索引所在的最大 L-eCCE 索引; 或者, 当所述最大或最小 D-eCCE索引为奇数时,确定所述^ CE为所述最大或最小 D-eCCE索引所在的 最大 L-eCCE索引, 当所述最大或最小 D-eCCE索引为偶数时,确定所述^ CE 为所述最大或最小 D-eCCE索引所在的最小 L-eCCE索引;
其中, 所述 L-eCCE为用于连续传输模式的 ePDCCH的增强的控制信道 单元,所述 D-eCCE为用于离散传输模式的 ePDCCH的增强的控制信道单元。
可选的, 对于 TDD系统,
方式 1 上发送时, 所述装置根据 ePDCCH的物理资源确定 PUCCH的信道资源索引 « CH的步骤包括: 针对下行子帧 k,根据所述下行子帧 k上的 ePDCCH的物理资源索引 R 确定所述 PUCCH的信道资源索引 L¾m
uccH,m = (M-m-l)xNx + mxNx + /(wPR )+ offset + CH
其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M-l ; ^为预定义参数, 且 X的选择保 证
Figure imgf000026_0001
1个下行子帧的 ePDCCH区域对应的 PUCCH总数或者由信令指示; r大于等 于 1 ; 优选值为 2 , 3 , 4。 可选的 , 对于 TDD系统 ,
方式 2 上发送时, 所述装置根据 ePDCCH的物理资源确定 PUCCH的信道资源索引 « CH的步骤包括:
针对下行子帧 k,根据所述子帧 k上所述 ePDCCH的物理资源索引 ¾^角 定所述 PUCCH的信道资源索引 L¾m
n "PmUCCH,m = y N 1 λ| T ePoDtaCl CH.g + τ J f in PR ) W o uflflsaectL + τ N丄、 P s U ta C rt CH -,
9=0 其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M-l ; N m表示所述下行子帧 k上 ePDCCH区域对应的 PUCCH总数或者由信令指示。 可选的, 对所述 ePDCCH的物理资源进行编号方法包括:
方法 1、 对所有配置的 ePDCCH的物理资源的顺序进行编号;
方法 2、 先将用于不同传输模式的 ePDCCH的物理资源级联起来, 再按 照级联后的顺序对所述 ePDCCH的物理资源重新编号;
方法 3、 对用于不同传输模式的 ePDCCH的物理资源分别重新编号; 其中, 上述物理资源编号是针对所述 ePDCCH所在子帧上的物理资源编 号, 当配置多个服务小区时, 所述物理资源编号是针对所述 ePDCCH所在子 帧所在服务小区上的物理资源编号, 其中, 所述 ePDCCH位于主服务小区。 下面通过具体实施例进一步说明本发明技术方案。
实施例 1
当对 ePDCCH的物理资源块重新编号时,装置根据 ePDCCH所在的重新 编号后的物理资源块索引 ¾^和偏移量 offset确定 PUCCH 的信道资源索引 «^CCH ,其中,一个承载所述 ePDCCH物理资源块对应的上行控制信道资源最 大数量为 h, 所述《PRB和所述 offset根据所述 ePDCCH使用的天线端口信息、 所述 ePDCCH的传输模式、 所述 ePDCCH在所述物理资源块中的位置、指示 信令中至少之一确定; 所述 PUCCH用于承载所述 ePDCCH指示的 PDSCH 的 ACK/NACK信息。
所述装置通过隐含映射的方式确定所述信道资源索引《 CH之前, 所述装 置根据 ePDCCH的物理资源确定 PUCCH的信道资源索引《 CH的步骤包括: 所述装置确定所述 PUCCH的信道资源的起始位置 NP S H,其中,所述 NP S H为 已有 PDCCH对应的 PUCCH的信道资源的起始位置 N CH;或者,所述 NP S H 为所述已有 PDCCH对应的 PUCCH的信道资源的起始位置 icCH加上预定义 值 D , 其中, 所述 D表示所述 PUCCH所在的上行子帧中 PDCCH对应的 PUCCH的信道资源最大值,或者,所述 D表示所述 ePDCCH所在子帧上 CCE 的数量; 或者, 所述 NP S:^H为所述已有 PDCCH对应的 PUCCH的信道资源的 起始位置 ^∞加上所述预定义值 D , 再加上 V, 其中, 所述 V由信令确定; 或者, 所述 NP S H由信令确定; 或者, 所述 NP S CH为所述 PUCCH所在的上行 子帧中 PUCCH格式 la/lb资源的起始位置。
对于 TDD系统, 所述起始位置在不同上行子帧中的取值可以不同, 也可 以相同;
不同传输模式下的所述起始位置可以相同, 也可以不同 (即, 独立地配 置起始位置, 例如, 离散传输模式的起始位置是 7 eeH , 连续传输模式的起始 位 '-^置是 N 1 v P(5U)CCH ) ; 。°
根据所述 ePDCCH的传输模式确定所述《PRB; 其中, 所述 ePDCCH的传 输模式包括离散传输模式和连续传输模式;
所述离散传输模式包括所述 ePDCCH在离散的物理资源块索引上传输, 所述连续传输模式包括所述 ePDCCH在连续的 (重新编号后的)物理资源块 索引上传输;
用于连续传输模式的 ePDCCH 的增强的控制信道单元(eCCE )称之为 L-eCCE, 用于离散传输模式的 ePDCCH的增强的控制信道单元( eCCE )称 之为 D-eCCE; 所述 L-eCCE为一个物理资源块内的资源, 所述 D-eCCE为多 个物理资源块内的资源。
对所述 ePDCCH的物理资源块重新编号的方法包括如下方式。
方式 la
用于传输离散传输模式的 ePDCCH的物理资源块与用于传输连续传输模 式的 ePDCCH的物理资源块共享相同的区域, 即, 配置的用于传输 ePDCCH 的物理资源块, 可以用于传输离散传输模式的 ePDCCH, 也可以用于传输连 续传输模式的 ePDCCH。 此时, 对所述 ePDCCH的物理资源块重新编号的方 法为按照原物理资源块的索引大小对配置的用于传输 ePDCCH的物理资源块 的索引重新编号。
方式 lb
用于传输离散传输模式的 ePDCCH的物理资源块与用于传输连续传输模 式的 ePDCCH 的物理资源块分别配置, 对应不同的区域。 此时, 对所述 ePDCCH的物理资源块重新编号的方法为按照原物理资源块的索引大小对配 置的用于传输 ePDCCH的物理资源块的索引进行重新编号。
方式 2
用于传输离散传输模式的 ePDCCH的物理资源块与用于传输连续传输模 式的 ePDCCH 的物理资源块分别配置, 对应不同的区域。 此时, 对所述 ePDCCH 的物理资源块重新编号的方法为先将用于传输离散传输模式的 ePDCCH的物理资源块和用于传输连续传输模式的 ePDCCH的物理资源块级 联起来, 再按照级联后的顺序进行重新编号。
方式 3
用于传输离散传输模式的 ePDCCH的物理资源块与用于传输连续传输模 式的 ePDCCH 的物理资源块分别配置, 对应不同的区域。 此时, 对所述 ePDCCH 的物理资源块重新编号的方法为分别对用于传输离散传输模式的 ePDCCH的物理资源块和用于传输连续传输模式的 ePDCCH的物理资源块按 照顺序进行重新编号。
对于连续传输模式的 ePDCCH,所述物理资源块索引《PRB为所述 ePDCCH 在重新编号后对应的最大(最小) 的物理资源块索引; 对所述 ePDCCH的物 理资源块索引重新编号的方法为按照原物理资源块的索引大小对配置的用于 传输 ePDCCH的物理资源块索引进行重新编号;
对于离散传输模式的 ePDCCH, 根据所述 ePDCCH对应的最大(最小 ) D-eCCE索引确定所述物理资源块索引《PRB , 包括以下方法:
确定方法 1
将一个 D-eCCE映射到 h个物理资源块上, 并将所有编号后的 D-eCCE 划分为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与 所述 h个物理资源块之间建立——对应关系, 其中, 所述 h个 D-eCCE对应 相同的天线端口且映射到相同物理资源块索引上, 或者, 所述 h个 D-eCCE 映射到相同物理资源块上; 以及
才艮据所述 D-eCCE索引在上述分组后的组内位置对应的物理资源块索引 确定所述物理资源块索引《PRB
确定方法 2
当所述 D-eCCE索引为奇数时, 所述物理资源块索引《PRB为所述 D-eCCE 索引所在的最小物理资源块索引, 当所述 D-eCCE索引为偶数时, 所述物理 资源块索引《PRB为所述 D-eCCE索引所在的最大物理资源块索引; 或者, 当所 述 D-eCCE索引为奇数时,所述物理资源块索引《PRB为所述 D-eCCE索引所在 的最大物理资源块索引, 当所述 D-eCCE索引为偶数时, 所述物理资源块索 引《PRB为所述 D-eCCE索引所在的最小物理资源块索引。
具体应用 1
殳设, 系统中可用物理资源块为 100个, 相应编号为 #0到 #99, 用于传 输 ePDCCH的物理资源块索引为 #4、 #5、 #12、 #13、 #20、 #21、 #28、 #29, 即, 可以用于传输连续传输模式的 ePDCCH, 也可以用于传输离散传输模式 的 ePDCCH, 则, 物理资源块索引为 #4、 #5、 #12、 #13、 #20、 #21、 #28、 #29 对应的重新编号后的索引为 N0、 Nl、 N2、 N3、 N4、 N5、 N6、 N7;
所述装置的 ePDCCH所在的物理资源块索引为 #20和 #21 ,所述 ePDCCH 的传输模式为连续传输模式, 物理资源索引为 #20和 #21对应的编号为 N4和 N5 , 当所述理资源块索引《PRB为所述 ePDCCH在重新编号后对应的最大的物 理资源块索引时, 《PRB为N5 , 当所述理资源块索引《PRB为所述 ePDCCH在重 新编号后对应的最小的物理资源块索引时, ¾^为 N4;
将一个 D-eCCE映射在两个物理资源块上时, 两个物理资源块对应 8个
D-eCCE, 其中, 物理资源块索引为 #4和 #12对应的 D-eCCE编号为 0到 7 , 物理资源块索引为 #5和 #13对应的 D-eCCE编号为 8到 15 , 物理资源块索引 为 #20和 #28对应的 D-eCCE编号为 16到 23 , 物理资源块索引为 #21和 #29 对应的 D-eCCE编号为 24到 31 ; 根据所述 ePDCCH对应的最小 D-eCCE索 引确定, 当所述 D-eCCE 索引为奇数时, 所述物理资源块索引《PRB为所述 D-eCCE索引所在的最大物理资源块索引, 当所述 D-eCCE索引为偶数时, 所 述物理资源块索引《PRB为所述 D-eCCE索引所在的最小物理资源块索引;当所 述 ePDCCH的传输模式为离散传输模式,所述装置的 ePDCCH所在的 D-eCCE 索引为 #2和 #3时,所述 ePDCCH所在的最小 D-eCCE索引为 #2,所述 D-eCCE 索引 #2为偶数, 所述物理资源块索引《PRB为所述 D-eCCE索引所在的最小物 理资源块索引 #4对应的重新编号后的索引 N0。
具体应用 2
殳设, 系统中可用物理资源块为 100个, 相应编号为 #0到 #99, 用于传 输 ePDCCH的物理资源块索引为 #4、 #8、 #12、 #16、 #20、 #24、 #28、 #32, 其中,物理资源块索引 #4、 #12、 #20、 #28用于传输连续传输模式的 ePDCCH, 物理资源块索引 #8、 #16、 #24、 #32用于传输离散传输模式的 ePDCCH, 则, 物理资源块索引 #4、 #8、 #12、 #16、 #20、 #24、 #28、 #32对应的重新编号后 的索引为 N0、 Nl、 N2、 N3、 N4、 N5、 N6、 N7; 当所述装置的 ePDCCH所在的物理资源索引为 #4时,物理资源块索引为 #4对应的编号为 NO, 所述物理资源块索引 ¾^为 NO;
将一个 D-eCCE映射在两个物理资源块上时, 两个物理资源块对应 4个 D-eCCE , 其中, 物理资源块索引为 #8和 #24对应的 D-eCCE编号为 0到 3 , 物理资源块索引为 #16和 #32对应的 D-eCCE编号为 4到 7;才艮据所述 ePDCCH 对应的最小 D-eCCE索引确定, 当所述 D-eCCE索引为偶数时, 所述物理资 源块索引《PRB为所述 D-eCCE 索引所在的最大物理资源块索引, 当所述 D-eCCE索引为奇数时, 所述物理资源块索引《PRB为所述 D-eCCE索引所在的 最小物理资源块索引; 当所述 ePDCCH的传输模式为离散传输模式, 且所述 装置的 ePDCCH所在的 D-eCCE索引为 #7 时, 所述 ePDCCH所在的最小 D-eCCE索引为 #7 , 所述 D-eCCE索引 #7为奇数, 所述物理资源块索引《PRB为 所述 D-eCCE索引所在的最小物理资源块索引 #16相应的重新编号后的索引 N3。
具体应用 3
殳设, 系统中可用物理资源块为 50个, 相应编号为 #0到 #49, 用于传输 ePDCCH的物理资源块索引为 #4、 #8、 #12、 #16、 #20、 #24、 #28、 #32, 其 中, 物理资源块索引 #4、 #12、 #20、 #28用于传输连续传输模式的 ePDCCH, 物理资源块索引 #8、 #16、 #24、 #32用于传输离散传输模式的 ePDCCH, 则, 将用于传输离散传输模式的 ePDCCH的物理资源块和用于传输连续传输模式 的 ePDCCH的物理资源块级联起来为物理资源块索引 #4、 #12、 #20、 #28、 #8、 #16、 #24、 #32 , 再按照级联后的顺序重新编号为 N0、 Nl、 N2、 N3、 N4、 N5、 N6、 N7;
当所述装置的 ePDCCH所在的物理资源块索引为 #4和 #12时, 物理资源 块索引 #4和 #12对应的编号为 NO和 N1 , 当所述物理资源块索引《PRB为所述 ePDCCH在重新编号后对应的最大的物理资源块索引时, 《PRB为N1 , 当所述 理资源块索引《PRB为所述 ePDCCH在重新编号后对应的最小的物理资源块索 引时, 《PRB为N0;
将一个 D-eCCE映射在 4个物理资源块上时, 4个物理资源块对应 16个 D-eCCE, 其中, 物理资源块索引 #8、 #16、 #24、 #32对应的 D-eCCE编号为 0到 15, 将所有编号后的 D-eCCE划分为 4组, 每组包含 4个 D-eCCE, 在一 个组内的 4个 D-eCCE与所述 4个物理资源块之间建立——对应关系; 其中, 组内所述 4个 D-eCCE对应相同的天线端口且映射到相同物理资源块上, 或 者,组内所述 4个 D-eCCE映射到相同物理资源块上按顺序划分;所述 D-eCCE 资源块, h为 4; 当所述 ePDCCH的传输模式为离散传输模式, 且所述装置 的 ePDCCH所在的 D-eCCE索引为 #9时,所述 D-eCCE索引 #9对应的物理资 源块为所述四个物理资源块中第 ({ ( 8 mod 4 ) +1}=2 )个物理资源块, 所述 物理资源块索引《PRB为物理资源块索引 #16相应的重新编号后的索引 N5;
具体应用 4 殳设, 系统中可用物理资源块为 50个, 相应编号为 #0到 #49, 用于传输 ePDCCH的物理资源块索引为 #4、 #8、 #12、 #16、 #20、 #24、 #28、 #32, 其 中, 物理资源块索引 #4、 #12、 #20、 #28用于传输连续传输模式的 ePDCCH, 物理资源块索引 #8、 #16、 #24、 #32用于传输离散传输模式的 ePDCCH, 则, 分别对用于传输离散传输模式的 ePDCCH的物理资源块和用于传输连续传输 模式的 ePDCCH的物理资源块按照级联后的顺序进行重新编号; 用于传输连 续传输模式的 ePDCCH的物理资源块索引 #4、 #12、 #20、 #28对应的重新编 号后的索引为 N0、 Nl、 N2、 N3 , 用于传输离散传输模式的 ePDCCH的物理 资源块索引 #8、 #16、 #24、 #32对应的重新编号后的索引为 N0、 Nl、 N2、 N3;
当所述装置的 ePDCCH所在的物理资源索引为 #12时, 由于物理资源索 引 #12对应的编号为 N1 , 因此, 所述物理资源块索引《PRB为N1 ;
将一个 D-eCCE映射在 4个物理资源块上时, 四个物理资源块对应 8个
D-eCCE, 其中, 物理资源块索引 #8、 #16、 #24、 #32对应的 D-eCCE编号为 0到 7, 将所有编号后的 D-eCCE划分为 2组, 每组包含 4个 D-eCCE, 在一 个组内的 4个 D-eCCE与所述 4个物理资源块之间建立——对应关系; 其中, 组内所述 4个 D-eCCE对应相同的天线端口且映射到相同物理资源块上, 或 者,组内所述 4个 D-eCCE映射到相同物理资源块上按顺序划分;所述 D-eCCE 索引 Y对应的物理资源块为所述四个物理资源块中第 { ( Y mod h ) +1 }个物 理资源块, h为 4; 当所述 ePDCCH的传输模式为离散传输模式, 且所述装 置的 ePDCCH所在的 D-eCCE索引为 #6时,所述 D-eCCE索引 #6对应的物理 资源块为所述四个物理资源块中第 ({ ( 6 mod 4 ) +1 }=3 )个物理资源块, 所 述物理资源块索引《PRB为物理资源块索引 #24相应的重新编号后的索引 N2;
Offset确定方法描述如下。
方法一
建立所述天线端口信息与所述偏移量。 ffset取值之间——对应关系, 根据 所述 ePDCCH使用的天线端口信息确定所述偏移量取值; offset取值范围为 0 到 h-1 ; 其中, 所述 ePDCCH使用的天线端口信息包括天线端口索引。
场景 1
殳设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8、 天线 端口 9、 天线端口 10, h取值为 4, 则, 天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10与 offset取值 0到 3之间——对应。
如, 天线端口 7对应 offset值为 0, 天线端口 8对应 offset值为 1 , 天线 端口 9对应 offset值为 2 ,天线端口 10对应 offset值为 3 ,对应关系不限于此; 并且, 不同用户对应关系可以相同, 也可以不同。
场景 2
假设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 9 , h取值 为 4, 则, 天线端口 7、 天线端口 9与 offset取值 0到 3之间对应。
如, 天线端口 7对应 offset值为 0, 天线端口 9对应 offset值为 2, 或者, 天线端口 7对应 offset值为 1 , 天线端口 9对应 offset值为 3 , 对应关系不限 于此。
场景 3
假设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8 , h取值 为 2, 则, 天线端口 7、 天线端口 8与 offset取值 0到 1之间对应。 如, 天线端口 7对应 offset值为 0, 天线端口 8对应 offset值为 1 , 对应 关系不限于此。
方法二
建立所述天线端口信息与所述偏移量 offset取值之间——对应关系, 根据 所述 ePDCCH使用的天线端口信息确定所述偏移量取值; offset取值范围为 0 到 h-1 ; 其中, 所述 ePDCCH使用的天线端口信息包括天线端口索引和天线 端口对应序列初始信息 ( SCID和或虚拟小区 ID ) 。
场景 1
H没, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8、 天线 端口 9、 天线端口 10, h取值为 8, SCID取值为 0或 1 , 虚拟小区 ID为 x(0) 或 x(l), 则, SCID为 0的天线端口 7/8/9/10和 SCID为 1的天线端口 7/8/9/10 与 offset取值 0到 7之间——对应; 或者, 虚拟小区 ID为 x(0)的天线端口 7/8/9/10和虚拟小区 ID为 x(l)的天线端口 7/8/9/10与 offset取值 0到 7之间一 一对应; 或者, SCID为 0且虚拟小区 ID为 x(0)的天线端口 7/8/9/10和 SCID 为 1且虚拟小区 ID为 x(l)的天线端口 7/8/9/10与 offset取值 0到 7之间—— 对应。
如, 当虚拟小区 ID为 x(0)时, 天线端口 7对应 offset值为 0, 天线端口 8 对应 offset值为 1 , 天线端口 9对应 offset值为 2, 天线端口 10对应 offset值 为 3; 当虚拟小区 ID为 x(l)时, 天线端口 7对应 offset值为 4, 天线端口 8 对应 offset值为 5, 天线端口 9对应 offset值为 6, 天线端口 10对应 offset值 为 7, 对应关系不限于此; 并且, 不同用户对应关系可以相同, 也可以不同。
场景 2
假设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8 , h取值 为 4, SCID取值为 0或 1 , 虚拟小区 ID为 x(0)或 x(l), 则, SCID为 0的天 线端口 7/8和 SCID为 1的天线端口 7/8与 offset取值 0到 3之间——对应; 或者, 虚拟小区 ID为 x(0)的天线端口 7/8和虚拟小区 ID为 x(l)的天线端口 7/8与 offset取值 0到 3之间——对应;或者, SCID为 0且虚拟小区 ID为 x(0) 的天线端口 7/8和 SCID为 1且虚拟小区 ID为 x(l)的天线端口 7/8与 offset取 值 0到 3之间——对应。
如, 当虚拟小区 ID为 x(0)时, 天线端口 7对应 offset值为 0, 天线端口 8 对应 offset值为 1 , 当虚拟小区 ID为 x(l)时, 天线端口 7对应 offset值为 2, 天线端口 8对应 offset值为 3 , 对应关系不限于此; 并且, 不同用户对应关系 可以相同, 也可以不同。
方法三
建立所述天线端口信息与所述偏移量取值之间——对应关系, 根据所述 ePDCCH使用的天线端口信息和指示信令确定所述偏移量取值;
所述指示信令包括高层信令或用户专有参数(如, C-RNTI )等; 所述天线端口信息与所述偏移量取值之间——对应关系由高层信令配 置, 或, 根据用户专有参数确定。
场景 1
假设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 9 , h取值 为 4, 则, 天线端口 7、 天线端口 9与 offset取值 0到 3之间对应。
具体应用:
方式 1、 天线端口 7对应 offset值为 0, 天线端口 9对应 offset值为 2; 方 式 2、 天线端口 7对应 offset值为 1 , 天线端口 9对应 offset值为 3 , 其中, 高 层信令配置的映射方式是方式 1或是方式 2; 或者, 根据用户专有参数确定 该对应关系, 如, UE ID ( C-RNTI ) , 当 C-RNTI为奇数时, 釆用方式 1 , 当 C-RNTI为偶数时, 釆用方式 2, 反之也可。
场景 2
假设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8 , h取值 为 4, 则, 天线端口 7、 天线端口 8与 offset取值 0到 3之间对应。
具体应用:
方式 1、 天线端口 7对应 offset值为 0, 天线端口 8对应 offset值为 1 ; 方 式 2、 天线端口 7对应 offset值为 2, 天线端口 8对应 offset值为 3 , 其中, 高 层信令配置映射方式是方式 1或是方式 2。
场景 3
殳设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8, 则, 天线端口 7、 天线端口 8与 offset取值 al和 a2对应; al和 a2的取值由指示 信令配置。
殳设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8、 天线 端口 9、 天线端口 10, 则, 天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10与 offset取值 al和 a2、 a3、 a4对应; al和 a2、 a3、 a4的取值由指示信令 配置。
场景 4
Offset = offsetl + ARI, 其中, offsetl根据所述 ePDCCH的天线端口索引 确定, ARI值由指示信令配置;根据所述 ePDCCH的天线端口索引确定 offsetl 的方式可以釆用上述根据所述 ePDCCH的天线端口索引确定 offset的方式。
方法四
所述 Offset值根据指示信令(如, ARI )确定; 指示信令取值为 al、 a2、 a3和 a4, 其中, al、 a2、 a3和 a4的具体取值由信令配置, 或者, 为预定义 值, 如, 0、 1、 2和 3 , 或 -1、 0、 1和 2, 或 -2、 0、 2和 4等。
方法五
离散传输模式的 ePDCCH相应的 offset ( offsetl )为固定值 0, 连续传输 模式的 ePDCCH相应的 offset ( offsetl )釆用上述其他方法确定;
当所述 ePDCCH对应的天线端口有多个时,根据所述 ePDCCH对应的最 小(最大)的 L-eCCE ( D-eCCE )索引对应的天线端口信息确定 offset, 对于 离散传输模式,按照所述 D-eCCE索引在所述理资源块索引《PRB内的天线端口 信息确定 offset。 对应关系不限于上述方式 t 所述装置根据所述 ePDCCH 的物理资源确定 PUCCH 的信道资源索引 «^CCH的步骤中, 所述 ePDCCH的物理资源包括所述 ePDCCH的物理资源块 索引 " PRB: ^CCH =/(«PRB)+ offset + NP S^CH , 其中, 所述/ (" ^ // , 所述 η, , 所述^ CE为承载所述 ePDCCH的增强的控制信道单元索引, h h
为一个承载所述 ePDCCH的物理资源块对应的上行控制信道资源最大数量, 或者, h为 1个承载所述 ePDCCH的物理资源块包括的增强的控制信道单元 数量, 或者, h由信令指示, 或者, h为预定义正整数, 如, 1、 2、 4和 8等。 对于 TDD系统,
方式 1
当装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子帧 n 的信道资源索引 c<¾m的步骤中 ,
下行子帧 k上所述 ePDCCH的物理资源包括所述 ePDCCH的物理资源块 索引 "PRE :
uccH,m = (M-m-l)xNx +mxNx+ /(«PRB ) + offset + NP S^CH
其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的 M 个下行子帧中的序号, 且 0≤m≤M-l; 为预定义参数, 且 X的选择应保证
Nx≤ («PRB)+ offset <NX
{0,1,···, 1} , 且 Nx
Figure imgf000037_0001
xx 或 者 , XX 其中,
Figure imgf000037_0003
Figure imgf000037_0002
表示 ePDCCH区域对应的 PUCCH总数或者由信令指示, r大于等于 1 对于 TDD系统, 方式 2
当装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子帧 n 的信道资源索引 L¾m的步骤中, 所述 ePDCCH的物理资源包括子帧 k上所 述 ePDCCH的物理资源块索引 " :
nm = y Ν3ι + f(n + offset + ^stan
"PUCCH,m 1λ| ePDCCH.g τ J PRB ) τ ullacL ^ l PUCCH
9=0 其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的 M 个下行子帧中的序号,且 0≤m≤M- 1 ; -icH m表示所述下行子帧 k上 ePDCCH 区域对应的 PUCCH总数或者由信令指示; 假设, 下行子帧 k上配置传输 ePDCCH的物理资源块总数为^^1^, 则, PDcc¾m = Npmm <^ ' 其中, h为 1个物理资源块对应的 PUCCH的最大值, 或 者, h为 1个物理资源块包括的 eCCE的最大值, 或者, h由信令指示, 或者, h为预定义正整数。
实施例 2
根据所述 ePDCCH的物理资源确定相应的物理上行控制信道 PUCCH的 信道资源索引《 CH; 其中, 所述 PUCCH用于承载增强的物理下行控制信道 ePDCCH指示的物理下行共享信道 PDSCH的肯定确认 /否定确认 ACK/NACK 信息; 所述 ePDCCH的物理资源包括: 增强的控制信道单元索引 ¾
可选的, 包括以下应用场景。
离散传输模式的 ePDCCH区域和连续传输模式的 ePDCCH区域相同;即, 共享的物理资源既可以用于传输离散传输模式的 ePDCCH, 也可以用于传输 连续传输模式的 ePDCCH; 二者可以在相同的配置区域传输。
离散传输模式的 ePDCCH区域和连续传输模式的 ePDCCH区域独立配 置。 对所述 ePDCCH的物理资源重新编号的方法包括:
方法 1、 对所有配置的 ePDCCH的物理资源的顺序进行编号;
方法 2、 先将用于不同传输模式的 ePDCCH的物理资源级联起来, 再按 照级联后的顺序对所述 ePDCCH的物理资源进行重新编号;
方法 3、对用于不同传输模式的 ePDCCH的物理资源分别进行重新编号。 所述装置通过隐含映射的方式确定所述信道资源索引《 CH之前, 所述装 置根据 ePDCCH的物理资源确定 PUCCH的信道资源索引《 CH的步骤包括: 所述装置确定所述 PUCCH的信道资源的起始位置 NP S H,其中,所述 NP S H为 已有 PDCCH对应的 PUCCH的信道资源的起始位置 N CH;或者,所述 NP S H 为所述已有 PDCCH对应的 PUCCH的信道资源的起始位置 icCH加上预定义 值 D, 其中, 所述 D表示所述 PUCCH所在的上行子帧中 PDCCH对应的 PUCCH的信道资源最大值;或者,所述 D表示所述 ePDCCH所在子帧上 CCE 数量; 或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起 始位置 W^CCH加上所述预定义值 D, 再加上 V, 其中, 所述 V由信令确定; 或者, 所述 NP S H由信令确定; 或者, 所述 NP S CH为所述 PUCCH所在的上行 子帧中 PUCCH Format la/lb资源的起始位置。
对于 TDD系统, 所述起始位置在不同上行子帧中的取值可以不同, 也可 以相同。
不同传输模式的所述起始位置可以相同, 也可以不同 (即, 独立地配置 起始位置, 例如, 离散传输模式的起始位置是 7 eeH , 连续传输模式的起始位 置是 N(5) ) 。
所述离散传输模式包括所述 ePDCCH在离散的物理资源块索引上传输, 所述连续传输模式包括所述 ePDCCH在连续的 (重新编号后的)物理资源块 索引上传输。
用于连续传输模式的 ePDCCH 的增强的控制信道单元(eCCE )称之为 L-eCCE, 用于离散传输模式的 ePDCCH的增强的控制信道单元( eCCE )称 之为 D-eCCE; 所述 L-eCCE为一个物理资源块内的资源, 所述 D-eCCE为多 个物理资源块内的资源。 所述 ¾ ^根据所述 ePDCCH对应的增强的控制信道单元的最大(最小) 索引获得;
对于连续传输模式 ePDCCH, 所述^ CE为所述 ePDCCH对应的最大(最 小)L-eCCE索引;或者,所述^ CE为所述 ePDCCH对应的最大(最小)L-eCCE 索引 +Total-DeCCE, 其中, 所述 Total-DeCCE表示可用的 D-eCCE总数或者 由信令指示;
对于离散传输模式的 ePDCCH, 根据所述 ePDCCH对应的最大(最小 ) D-eCCE索引确定所述《eCCE , 包括以下方法:
确定方法 1
所述^ CE为所述 ePDCCH对应的最大(最小 ) D-eCCE索引。
确定方法 2
将一个 D-eCCE映射到 h个 L-eCCE上,并将所有编号后的 D-eCCE划分 为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与所述 h 个 L-eCCE之间建立——对应关系,其中,所述 h个 D-eCCE对应相同的天线 端口且映射到相同 L-eCCE上, 或者, 所述 h个 D-eCCE映射到相同 L-eCCE 上; 以及
才艮据所述 D-eCCE索引在上述分组后的组内位置对应的 L-eCCE索引确 定所述 eeE
确定方法 3
将一个 D-eCCE映射到 2个 L-eCCE上, 当所述 D-eCCE索引为奇数时, 确定所述^ CE为所述 D-eCCE索引所在的最小 L-eCCE索引, 当所述 D-eCCE 索引为偶数时, 确定所述" SCCE为所述 D-eCCE索引所在的最大 L-eCCE索引; 或者, 当所述 D-eCCE索引为奇数时, 确定所述^ CE为所述 D-eCCE索引所 在的最大 L-eCCE索引, 当所述 D-eCCE索引为偶数时,确定所述^ CE为所述 D-eCCE索引所在的最小 L-eCCE索引。
确定方法 4
所述^ CE为所述 ePDCCH对应的最大(最小)D-eCCE索引 +Total-LeCCE, 其中, 所述 Total-LeCCE表示可用的 L-eCCE总数或者由信令指示。
具体应用 1
殳设, 系统中可用物理资源块为 100个, 相应编号为 #0到 #99, 用于传 输 ePDCCH的物理资源块索引为 #4、 #5、 #12、 #13、 #20、 #21、 #28、 #29, 即, 可以用于传输连续传输模式的 ePDCCH, 也可以用于传输离散传输模式 的 ePDCCH,则,一个物理资源块对应 4个 L-eCCE,并对所有可用的 L-eCCE 按照物理资源块索引大小顺序编号为 #0到 #31 ;
所述装置的 ePDCCH所在的物理资源块的 L-eCCE索引为 #4和 #5、 #6和 #7, 所述 ePDCCH的传输模式为连续传输模式, 当所述^ eE为所述 ePDCCH 对应的最大的物理资源索引时, ^为 7, 当所述^ CE为所述 ePDCCH对应 的最小的物理资源索引时, " 为 4;
将一个 D-eCCE映射到两个物理资源块上时, 每个物理资源块对应一个 L-eCCE , 两个物理资源块对应 8个 D-eCCE , 其中, 物理资源块索引为 #4和 #12对应的 D-eCCE编号为 0到 7,物理资源块索引为 #5和 #13对应的 D-eCCE 编号为 8到 15,物理资源块索引为 #20和 #28对应的 D-eCCE编号为 16到 23 , 物理资源块索引为 #21和 #29对应的 D-eCCE编号为 24到 31 ; D-eCCE索引 # 和# 对应于 L-eCCE索引 #2和1^(^¾索引 #t, 其中, (X , y )与 ( z , t ) 之间建立——对应关系。 如, X对应 z , y对应 t, 根据所述 ePDCCH对应的 最小 D-eCCE索引确定, 当所述 D-eCCE索引为 x时, 所述^ ^为 z, 当所述 D-eCCE索引为 y时, 所述^ CE为 t。
具体应用 2
殳设, 系统中可用物理资源块为 100个, 相应编号为 #0到 #99, 用于传 输 ePDCCH的物理资源块索引为 #4、 #8、 #12、 #16、 #20、 #24、 #28、 #32, 其中,物理资源块索引 #4、 #12、 #20、 #28用于传输连续传输模式的 ePDCCH, 物理资源块索引 #8、 #16、 #24、 #32用于传输离散传输模式的 ePDCCH, 则, 一个物理资源块对应 2个 L-eCCE,对所有物理资源块按照 L-eCCE划分, 才艮据物理资源块索引大小顺序对所有 L-eCCE编号为 #0到 #15 , 所述装置的 ePDCCH所在的物理资源块的 eCCE索引为 #5和 #6, 所述 ePDCCH的传输模式为连续传输模式, 映射在物理资源块 #12上, 当所述^ CE 为所述 ePDCCH对应的最大的物理资源索引时, ^为 6, 当所述 CCE为所 述 ePDCCH对应的最小的物理资源索引时, ^为 5;
1个 D-eCCE映射在 2个 L-eCCE上, 2个物理资源块对应 4个 D-eCCE, 其中,物理资源索引为 #8和 #16对应的 D-eCCE编号为 0到 3 ,物理资源索引 为 #24和 #32对应的 D-eCCE编号为 4到 7; D-eCCE索引 #x和^对应于 L-eCCE 索引 #2和!^(^¾索引 #t, 其中, (X , y )与(z , t )之间建立——对应关系, 如, X对应 z , y对应 t; 根据所述 ePDCCH对应的最小(最大) D-eCCE索引 确定, 当所述 D-eCCE索引为 X时, 所述^ ^为2 , 当所述 D-eCCE索引为 y 时,所述^ ^为 t; 如, D-eCCE#0和 D-eCCE#l对应 L-eCCE#2和 L-eCCE#6, D-eCCE#2和 D-eCCE#3对应 L-eCCE#3和 L-eCCE#7 , D-eCCE#4和 D-eCCE#5 对应 L-eCCE#10和 L-eCCE#14, D-eCCE#6和 D-eCCE#7对应 L-eCCE#l l和 L-eCCE#15;当所述 ePDCCH对应的 D-eCCE为 #0到 #3时,根据所述 ePDCCH 对应的最小 D-eCCE索引确定, 所述 D-eCCE索引为 0, 所述^ ^为 2, 根据 所述 ePDCCH对应的最大 D-eCCE索引确定,所述 D-eCCE索引为 3 ,所述^ CE 为 7。
具体应用 3
殳设, 系统中可用物理资源块为 50个, 相应编号为 #0到 #49, 用于传输 ePDCCH的物理资源块索引为 #4、 #8、 #12、 #16、 #20、 #24、 #28、 #32, 其 中, 物理资源块索引 #4、 #12、 #20、 #28用于传输连续传输模式的 ePDCCH, 物理资源块索引 #8、 #16、 #24、 #32用于传输离散传输模式的 ePDCCH, 则, 将用于传输离散传输模式的 ePDCCH的物理资源块和用于传输连续传输
#8、 #16、 #24、 #32;
一个物理资源块对应 2 个 L-eCCE, 对所有用于传输连续传输模式的 ePDCCH的物理资源块按照 L-eCCE划分,根据串联后的顺序对所有 L-eCCE 编号为 #0到 #7,可用的 L-eCCE总数 Total-LeCCE为 8; 所述装置的 ePDCCH 所在的物理资源块的 L-eCCE索引为 #2和 #3 , 所述 ePDCCH的传输模式为连 续传输模式, 映射在物理资源块 #12上, 当所述^ CE为所述 ePDCCH对应的 最大的物理资源索引时, ^为 3 , 当所述^ CE为所述 ePDCCH对应的最小 的物理资源索引时, ^为2;
一个物理资源块对应 2个 D-eCCE, 其中, 物理资源块索引为 #8和 #16 对应的 D-eCCE编号为 0到 3 , 物理资源块索引为 #24和 #32对应的 D-eCCE 编号为 4到 7; 所述^ CE为所述 ePDCCH对应的最大(最小 ) D-eCCE索引 +Total-LeCCE, 其中, 所述 Total-LeCCE表示可用的 L-eCCE总数 8; 当所述 ePDCCH对应的 D-eCCE为 #0到 #3时,根据所述 ePDCCH对应的最小 D-eCCE 索引确定, 所述 D-eCCE索引为 0, 所述^ ^为 8+0=8, 根据所述 ePDCCH 对应的最大 D-eCCE索引确定, 所述 D-eCCE索引为 3 , 所述^ ^为 8+3=11。
具体应用 4
殳设, 系统中可用物理资源块为 50个, 相应编号为 #0到 #49, 用于传输 ePDCCH的物理资源块索引为 #4、 #8、 #12、 #16、 #20、 #24、 #28、 #32, 其 中, 物理资源块索引 #4、 #12、 #20、 #28用于传输连续传输模式的 ePDCCH, 物理资源块索引 #8、 #16、 #24、 #32用于传输离散传输模式的 ePDCCH, 则, 一个物理资源块对应 2 个 D-eCCE, 对所有用于传输离散传输模式的 ePDCCH的物理资源块按照 D-eCCE划分, 按顺序对所有 D-eCCE编号为 #0 到 #7, 可用的 D-eCCE总数 Total-DeCCE为 8; 所述装置的 ePDCCH所在的 物理资源块的 eCCE索引为 #2和 #3 , 所述 ePDCCH的传输模式为离散传输模 式,映射在物理资源块 #8和 #16上,所述^ CE为所述 ePDCCH对应的最大(最 小 ) D-eCCE索引; 当所述^ CE为所述 ePDCCH对应的最大的物理资源索引 时, " 为 3 ,当所述^ CE为所述 ePDCCH对应的最小的物理资源索引时, neCCE 为 2;
一个物理资源块对应 2个 L-eCCE, 对于所有用于传输连续传输模式的 ePDCCH的物理资源块按照 L-eCCE划分, 按顺序对所有 L-eCCE编号为 #0 到 #7; 所述 neCCE为所述 ePDCCH 对应的最大 (最小 ) L-eCCE 索引 +Total-DeCCE, 其中, 所述 Total-DeCCE表示可用的 D-eCCE总数 8; 当所 述 ePDCCH对应的 L-eCCE为 #6到 #7 时, 根据所述 ePDCCH对应的最小 L-eCCE索引确定, 所述 L-eCCE索引为 6, 所述^ ^为 8+6=14, 根据所述 ePDCCH对应的最大 L-eCCE索引确定, 所述 L-eCCE索引为 7 , 所述^ CE为 8+7=15。
具体应用 5
殳设, 系统中可用物理资源块为 50个, 相应编号为 #0到 #49, 用于传输 ePDCCH的物理资源块索引为 #4、 #8、 #12、 #16、 #20、 #24、 #28、 #32, 其 中, 物理资源块索引 #4、 #12、 #20、 #28用于传输连续传输模式的 ePDCCH, 物理资源块索引 #8、 #16、 #24、 #32用于传输离散传输模式的 ePDCCH, 则, 一个物理资源块对应 4 个 D-eCCE, 对所有用于传输离散传输模式的 ePDCCH的物理资源块按照 D-eCCE划分, 按顺序对所有 D-eCCE编号为 #0 到 #15; 所述装置的 ePDCCH所在的物理资源 eCCE索引为 #12和 #15, 所述 ePDCCH的传输模式为离散传输模式, 所述^ CE为所述 ePDCCH对应的最大 (最小 ) D-eCCE索引; 当所述^ CE为所述 ePDCCH对应的最大的物理资源 索引时, " 为 15 , 当所述^ CE为所述 ePDCCH对应的最小的物理资源索引 时, 12;
一个物理资源块对应 4 个 L-eCCE, 对所有用于传输连续传输模式的 ePDCCH的物理资源块按照 L-eCCE划分, 按顺序对所有 L-eCCE编号为 #0 到 #15; 所述装置的 ePDCCH所在的物理资源块的 L-eCCE索引为 #4和 #5, 所述^ CE为所述 ePDCCH对应的最大(最小) L-eCCE索引; 当所述^ CE为所 述 ePDCCH对应的最大的物理资源索引时, ^为 5 , 当所述^ CE为所述 ePDCCH对应的最小的物理资源索引时, " 为 4。
所述装置根据所述 ePDCCH 的物理资源确定 PUCCH 的信道资源索引 « CH的步骤包括: 所述装置确定偏移量 offset , 其中, 所述偏移量 offset根据 所述 ePDCCH的天线端口信息、 指示信令、 所述 ePDCCH的传输模式、 所述 ePDCCH在所述物理资源块中的位置、 所述 ePDCCH对应的增强的控制信道 单元索引、 所述 ePDCCH对应的增强的资源单元组索引中任意一个或多个信 息确定; 或者, 所述偏移量 offset为固定值, 如, 0、 1和 3或其它值;
所述 offset确定方法描述如下。
方法一
建立所述天线端口信息与所述偏移量 offset取值之间——对应关系, 根据 所述 ePDCCH使用的天线端口信息确定所述偏移量取值; offset取值范围为 0 到 h-1 ; 其中, 所述 ePDCCH使用的天线端口信息包括天线端口索引。
场景 1
殳设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8、 天线 端口 9、 天线端口 10, h取值为 4, 则, 天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10与 offset取值 0到 3之间——对应。
如, 天线端口 7对应 offset值为 0, 天线端口 8对应 offset值为 1 , 天线 端口 9对应 offset值为 2,天线端口 10对应 offset值为 3 ,对应关系不限于此; 并且, 不同用户对应关系可以相同, 也可以不同。
场景 2
假设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 9 , h取值 为 4, 则, 天线端口 7、 天线端口 9与 offset取值 0到 3之间对应。
如, 天线端口 7对应 offset值为 0, 天线端口 9对应 offset值为 2, 或者, 天线端口 7对应 offset值为 1 , 天线端口 9对应 offset值为 3。
场景 3
假设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8 , h取值 为 2, 则, 天线端口 7、 天线端口 8与 offset取值 0到 1之间对应。
如, 天线端口 7对应 offset值为 0, 天线端口 8对应 offset值为 1。 建立所述天线端口信息与所述偏移量 offset取值之间——对应关系, 根据 所述 ePDCCH使用的天线端口信息确定所述偏移量取值; offset取值范围为 0 到 h-1 ; 其中, 所述 ePDCCH使用的天线端口信息包括天线端口索引和天线 端口对应序列初始信息 ( SCID和或虚拟小区 ID ) 。
场景 1
殳设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8、 天线 端口 9、 天线端口 10, h取值为 8, SCID取值为 0或 1 , 虚拟小区 ID为 x(0) 或 x(l), 则, SCID为 0的天线端口 7/8/9/10和 SCID为 1的天线端口 7/8/9/10 与 offset取值 0到 7之间——对应; 或者, 虚拟小区 ID为 x(0)的天线端口 7/8/9/10和虚拟小区 ID为 x(l)的天线端口 7/8/9/10与 offset取值 0到 7之间一 一对应; 或者, SCID为 0且虚拟小区 ID为 x(0)的天线端口 7/8/9/10和 SCID 为 1且虚拟小区 ID为 x(l)的天线端口 7/8/9/10与 offset取值 0到 7之间—— 对应。
如, 虚拟小区 ID为 x(0)时, 天线端口 7对应 offset值为 0, 天线端口 8 对应 offset值为 1 , 天线端口 9对应 offset值为 2, 天线端口 10对应 offset值 为 3; 虚拟小区 ID为 x(l)时, 天线端口 7对应 offset值为 4, 天线端口 8对应 offset值为 5, 天线端口 9对应 offset值为 6, 天线端口 10对应 offset值为 7, 对应关系不限于此; 并且, 不同用户对应关系可以相同, 也可以不同。
场景 2
假设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8 , h取值 为 4, SCID取值为 0或 1 , 虚拟小区 ID为 x(0)或 x(l), 则, SCID为 0的天 线端口 7/8和 SCID为 1的天线端口 7/8与 offset取值 0到 3之间——对应; 或者, 虚拟小区 ID为 x(0)的天线端口 7/8和虚拟小区 ID为 x(l)的天线端口 7/8与 offset取值 0到 3之间——对应;或者, SCID为 0且虚拟小区 ID为 x(0) 的天线端口 7/8和 SCID为 1且虚拟小区 ID为 x(l)的天线端口 7/8与 offset取 值 0到 3之间——对应。
如, 虚拟小区 ID为 x(0)时, 天线端口 7对应 offset值为 0, 天线端口 8 对应 offset值为 1 ; 虚拟小区 ID为 x(l)时, 天线端口 7对应 offset值为 2, 天 线端口 8对应 offset值为 3 , 对应关系不限于此; 并且, 不同用户对应关系可 以相同, 也可以不同。
方法三
建立所述天线端口信息与所述偏移量取值之间——对应关系, 根据所述 ePDCCH使用的天线端口信息和指示信令确定所述偏移量取值;
所述指示信令包括高层信令或用户专有参数(如, C-RNTI )等; 所述天线端口信息与所述偏移量取值之间——对应关系由高层信令配 置, 或, 根据用户专有参数确定。
场景 1
W iSL , 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 9 , h取值 为 4 , 则, 天线端口 7、 天线端口 9与 offset取值 0到 3之间对应。
具体应用:
方式 1、 天线端口 7对应 offset值为 0 , 天线端口 9对应 offset值为 2; 方 式 2、 天线端口 7对应 offset值为 1 , 天线端口 9对应 offset值为 3 , 其中, 高 层信令配置的具体映射方式是方式 1或是方式 2; 或者, 该对应关系根据用 户专有参数确定, 如, UE ID ( C-RNTI ) , 当 C-RNTI为奇数时, 釆用方式 1 , 当 C-RNTI为偶数时, 釆用方式 2 , 反之也可。
场景 2
假设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8 , h取值 为 4 , 则, 天线端口 7、 天线端口 8与 offset取值 0到 3之间对应。
具体应用:
方式 1、 天线端口 7对应 offset值为 0 , 天线端口 8对应 offset值为 1 ; 方 式 2、 天线端口 7对应 offset值为 2 , 天线端口 8对应 offset值为 3 , 其中, 高 层信令配置的具体映射方式是方式 1或是方式 2。
场景 3
殳设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8 , 则, 天线端口 7、 天线端口 8与 offset取值 al和 a2对应; al和 a2的具体取值由 信令配置。
殳设, 所述 ePDCCH的天线端口索引为天线端口 7、 天线端口 8、 天线 端口 9、 天线端口 10, 则, 天线端口 7、 天线端口 8、 天线端口 9、 天线端口 10与 offset取值 al和 a2、 a3、 a4对应; al和 a2、 a3、 a4的具体取值由信令 配置。
场景 4
Offset = offsetl + ARI, 其中, offsetl根据所述 ePDCCH的天线端口索引 确定, ARI值由指示信令配置;根据所述 ePDCCH的天线端口索引确定 offsetl 的方式可以釆用上述根据所述 ePDCCH的天线端口索引确定 offset的方式; 当所述 ePDCCH对应的天线端口有多个时,根据所述 ePDCCH对应的最 小(最大)的 L-eCCE ( D-eCCE )索引对应的天线端口信息确定 offset, 对于 离散传输模式,按照所述 D-eCCE索引在所述理资源块索引《PRB内的天线端口 信息确定 offset。
方法四
所述 Offset值根据指示信令(如, ARI )确定。
方法五
离散传输模式的 ePDCCH相应的 offset ( offsetl )为固定值 0, 连续传输 模式的 ePDCCH相应的 offset ( offsetl )釆用上述其他方法确定;
当所述 ePDCCH对应的天线端口有多个时,根据所述 ePDCCH对应的最 小(最大)的 L-eCCE ( D-eCCE )索引对应的天线端口信息确定 offset, 对于 离散传输模式, 按照所述 D-eCCE索引对应的 L-eCCE的天线端口信息确定 offset, 或者, 对于离散传输模式, 按照所述 D-eCCE索引在所述 D-eCCE索 引对应的物理资源块最小 (最大) 索引内对应的天线端口信息确定 offset; 对应关系不限于上述例子中对应关系。 所述装置根据所述 ePDCCH 的物理资源确定相应的物理上行控制信道 PUCCH的信道资源索引《 CH的步骤中, 所述 ePDCCH的物理资源包括所述 ePDCCH的增强的控制信道单元索引 :
= f(neCcE )+ offset + Ν P'·UCCH 方式 1
所述 , h为一个所述承载 ePDCCH物理资源块对应的上行 控制信道资源最大数量;或者, h由信令指示; 或者,所述 h为预定义正整数, 如, 1、 2和 4等。 方式 2
= "eC 方式 3
对于离散传输模式的 ePDCCH, (weccE ) = «eccE , offset为 0或根据指示信 令确定, 其中, 对于连续传输模式的 ePDCCH,
Figure imgf000049_0001
, offset根据 上述方法确定。
对于 TDD系统, 方式 1
当装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子帧 n 的信道资源索引 L¾m的步骤中, 所述 ePDCCH的物理资源包括下行子帧 k 上所述 ePDCCH的物理资源块索引《ea:E
uccH,m = (M-m -l)xNx +mxNx + f(neCCE )+ offset + NP S CH
其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的 M 个下行子帧中的序号, 且 0≤m≤M - l ; 为预定义参数, 且 X的选择应保证 Nx
N
Figure imgf000050_0001
1个下行子帧的 ePDCCH区域对应的 PUCCH总数或由信令指示; 假设, 配置传输 ePDCCH 的物理资源块总数为 Ν ^Η , 则,
NTotal = isrTotal xh
,其中, h为 1个物理资源块对应的 PUCCH的最大值,或者, h为 1个物理资源块包括的 eCCE的最大值, 或者, h由信令指示, 或者, h 为预定义正整数。
对于 TDD系统, 方式 2
当装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子帧 n 的信道资源索引 L¾m的步骤中, 所述 ePDCCH 的物理资源包括所述 ePDCCH的物理资源块索引《ea:E: w(" = Y Total + J fi、n〃 + offset + Nstart 其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的 M 个下行子帧中的序号,且 0≤ ≤M - 1 ; N M表示下行子帧 k上 ePDCCH区 域对应的 PUCCH总数; 假设, 下行子帧 k上配置传输 ePDCCH的物理资源块总数为^^1^ , 则, ¾m
Figure imgf000050_0002
其中, h为 1个物理资源块对应的 PUCCH的最大值, 或 者, h为 1个物理资源块包括的 eCCE的最大值, 或者, h由信令指示, 或者, h为预定义正整数。
实施例 3
对于离散传输模式的 ePDCCH, 所述装置根据所述 ePDCCH的物理资源 确定 PUCCH的信道资源索引《 CH的步骤中,所述 ePDCCH的物理资源包括 所述 ePDCCH的增强的控制信道单元索引 : UCCH = f(neCcE )+ offset + N; PUCCH 方式 1 所述 , h为一个所述承载 ePDCCH物理资源块对应的上行 控制信道资源最大数量, 或者, h由信令指示, 或者, h为预定义正整数。 方式 2
= "eC
方式 3
对于离散传输模式的 ePDCCH, (WeCCE ) = «eCCE , 0ffSet为 0 或根据指示信
对于连续传输模式的 ePDCCH, 所述装置根据所述 ePDCCH的物理资源 确定相应的物理上行控制信道 PUCCH的信道资源索引《 CH的步骤中, 所述
"PUCCH ― /( " ) + offset + N CH ,
其中, 所述/^ ^^/^ , h为 1个所述承载 ePDCCH物理资源块对应 的上行控制信道资源最大数量, 或者, h为 1个所述承载 ePDCCH物理资源 块包括的增强的控制信道单元数量; 或者, h由信令指示; 或者, h为预定义 正整数。
实施例 4
当高层配置 N个 PUCCH资源时, UE根据相应 ePDCCH的天线端口确 定当前使用的 PUCCH 资源, 或者, 假设 N个连续的 eCCE ( L-eCCE or D-eCCE ) 划分为一组, UE根据 ePDCCH对应的 (最小或最大) eCCE索引 所在组内位置确定当前使用的 PUCCH资源。
假设, 基站给装置配置 4个 PUCCH资源, 所述装置的 ePDCCH对应的 天线端口包括: 天线端口 7、 天线端口 8、 天线端口 9和天线端口 10, 则, 所述天线端口与所述 PUCCH资源——对应; 所述装置根据 ePDCCH对应的 最小(最大) eCCE索引确定所述天线端口,从而,确定相应的 PUCCH资源。
假设, 基站给装置配置 4个 PUCCH资源, 4个 eCCE为一组, 同一组内 的 4个 eCCE与所述 PUCCH资源——对应, 所述装置根据 ePDCCH对应的 最小 (最大) eCCE索引确定组内位置, 从而, 确定相应的 PUCCH资源。
上述各实施例中, 天线端口 7-10仅为示例, 也可以是其他天线端口, 比 如, 天线端口 107-110等, 其中, 天线端口 107到 110对应导频的时频位置 与 LTE R10版本中天线端口 7到 10对应导频的时频位置相同。
如图 5所示, 本发明实施例还提供一种装置, 所述装置为终端或者基站, 包括: 信道资源确定单元 50 , 其设置成: 根据增强的物理下行控制信道 ( ePDCCH ) 的物理资源确定物理上行控制信道(PUCCH ) 的信道资源索引 «^CCH , 其中, 所述 PUCCH用于承载所述 ePDCCH指示的物理下行共享信道 ( PDSCH ) 的肯定确认 /否定确认 ( ACK/NACK )信息; 所述 ePDCCH的物 理资源包括: 物理资源块、 增强的控制信道单元、 天线端口索引中任意一个 或多个。
需要说明的是, 上述方法实施例中描述的多个细节同样适用于该信道资 源确定单元, 因此省略了对相同或相似部分的重复描述。
在另外一个实施例中, 还提供了一种大带宽系统中 PUCCH信道资源确 定软件, 该软件用于执行上述实施例及优选实施例中描述的技术方案。
在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上 述软件, 该存储介质包括光盘、 软盘、 硬盘、 以及可擦写存储器等。
通过上述实施例及优选实施例, 可以保证 LTE-Advanced 系统与 LTE Release-8系统的兼容性, 有利于增加 LTE-Advanced系统的系统容量和调度 的灵活性, 使得 LTE-Advanced终端获得最大的频率选择性增益。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而可以将它们存储在存储装置中由计算装置来执行, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明实施例不限制于任何特定的硬件 和软件结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明实施例可以有各种更改和变化。 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。
工业实用性 通过本发明实施例的方法和装置,保证了 ePDCCH对应的 HARQ过程正 常进行, 并且保证了 LTE-Advanced系统与 LTE Release-8系统的兼容性。

Claims

权 利 要 求 书
1、 一种物理上行控制信道(PUCCH ) 资源确定方法, 包括:
装置根据增强的物理下行控制信道(ePDCCH )的物理资源确定 PUCCH 的信道资源索引《 CH , 其中, 所述 PUCCH用于承载所述 ePDCCH指示的物 理下行共享信道( PDSCH )的肯定确认 /否定确认 ( ACK/NACK )信息; 所述 ePDCCH的物理资源包括: 物理资源块、 增强的控制信道单元(eCCE ) 、 天 线端口索引中任意一个或多个。
2、 如权利要求 1所述的方法, 其中, 所述装置根据 ePDCCH的物理资 源确定 PUCCH的信道资源索引 的步骤中,
用于传输离散传输模式的 ePDCCH的物理资源与用于传输连续传输模式 的 ePDCCH的物理资源共享相同的区域;
或者,
用于传输离散传输模式的 ePDCCH的物理资源与用于传输连续传输模式 的 ePDCCH的物理资源独立配置。
3、 如权利要求 1所述的方法, 其中, 所述装置根据 ePDCCH的物理资 源确定 PUCCH的信道资源索引《 CH的步骤包括:所述装置确定所述 PUCCH 的信道资源的起始位置 NP S H, 其中:
所述 NP S H为已有 PDCCH对应的 PUCCH的信道资源的起始位置 N CH; 或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 W^CCH加上预定义值 D, 其中, 所述 D表示所述 PUCCH所在的上行子帧 中所述 PDCCH对应的 PUCCH的信道资源最大值; 或者, 所述 D表示所述 ePDCCH所在的子帧上控制信道单元(CCE ) 的数量;
或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 A¾cch加上所述预定义值 D, 再加上 V, 其中, 所述 V由信令确定; 或者, 所述 NP S:^H由信令确定;
或者, 所述 NP S H为所述 PUCCH所在的上行子帧中 PUCCH格式 la/lb 资源的起始位置。
4、 如权利要求 3所述的方法, 其中: 所述装置确定所述 PUCCH的信道 资源的起始位置 NP S H的步骤中,
对于时分双工系统, 不同上行子帧中, 所述 NP S:^H相同或不同。
5、 如权利要求 3所述的方法, 其中: 所述装置确定所述 PUCCH的信道 资源的起始位置 NP S H的步骤中,
用于不同传输模式的 ePDCCH对应的 PUCCH的信道资源的 N eH相同 或不同。
6、 如权利要求 1或 3所述的方法, 其中, 所述装置根据 ePDCCH的物 理资源确定 PUCCH的信道资源索引《 CH的步骤包括: 所述装置确定偏移量 offset, 其中, 所述 offset为固定值, 或者, 根据如下信息之一或其组合确定: 所述 ePDCCH的天线端口信息、 指示信令、 所述 ePDCCH的传输模式、 所述 ePDCCH在物理资源块中的位置、所述 ePDCCH对应的增强的控制信道 单元索引、 以及所述 ePDCCH对应的增强的资源单元组索引。
7、 如权利要求 6所述的方法, 其中, 所述装置根据如下步骤之一或其组 合确定所述 offset:
A ) 建立所述天线端口信息与所述 offset之间的对应关系, 根据所述 ePDCCH使用的天线端口信息确定所述 offset; 其中, 所述 ePDCCH使用的 天线端口信息包括天线端口索引; 或者, 所述 ePDCCH使用的天线端口信息 包括天线端口索引和天线端口对应序列初始信息;
B ) 建立所述天线端口信息与所述 offset之间的对应关系, 根据所述 ePDCCH使用的天线端口信息和指示信令确定所述 offset;
C )根据指示信令确定所述 offset;
D )当 ePDCCH为离散传输模式时, offset为 0或根据指示信令确定, 当 ePDCCH为连续传输模式时,按照所述 A至 C任一步骤确定连续传输模式的 ePDCCH对应的 offset。
8、 如权利要求 7所述的方法, 其中, 所述步骤 B中, 根据所述 ePDCCH 使用的天线端口信息和指示信令确定所述 offset包括:
Offset = offsetl + ARI, 其中, offsetl根据所述 ePDCCH的天线端口索引 确定, ARI值由指示信令配置。
9、 如权利要求 8所述的方法, 其中, 根据所述步骤 B和所述步骤 D组 合确定所述 offset包括:
Offset = offsetl + ARI, 其中, 当 ePDCCH为离散传输模式时, offsetl为 0, 当 ePDCCH为连续传输模式时, offsetl根据所述 ePDCCH的天线端口索 引确定, ARI值由指示信令配置。
10、 如权利要求 6所述的方法, 其中, 所述装置根据 ePDCCH的物理资 源确定 PUCCH的信道资源索引《 CH的步骤包括:
所述装置 4艮据下式确定所述 (1) ·
PUCCH ·
UCCH = ί> (¾) + offset + N; PUCCH '
其中,所述《PR为重新编号后承载所述 ePDCCH的物理资源块索引,或者, 所述《PR为承载所述 ePDCCH的增强的控制信道单元索引; 所述 NP S:^H为所述 PUCCH的信道资源的起始位置。
11、 如权利要求 6所述的方法, 其中,
当所述装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子 帧 n上发送时, 所述装置根据 ePDCCH的物理资源确定 PUCCH的信道资源 索引„ CH的步骤包括: 针对下行子帧 k, 所述装置根据所述下行子帧 k上所述 ePDCCH的物理 资源索引《PR确定所述 PUCCH的信道资源索引 L¾m
uccH,m = (M-m -l)xNx +mxNx + f{nm )+ offset + NP S CH
其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M - l ; N为预定义参数, 且 X的选择保 证 Nx≤ («PR )+ offset < NX
N , 或者, N. N10tal x- , 或者, N =
Figure imgf000056_0001
1个下行子帧的 ePDCCH区域对应的 PUCCH总数或者由信令指示; r大于等 于 1 ; 所述《PR为重新编号后承载所述 ePDCCH的物理资源块索引, 或者, 所 述《PR为承载所述 ePDCCH 的增强的控制信道单元索引; 所述 NP S H为所述 PUCCH的信道资源的起始位置。
12、 如权利要求 6所述的方法, 其中,
当所述装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子 帧 n上发送时, 所述装置根据 ePDCCH的物理资源确定 PUCCH的信道资源 索引„ CH的步骤包括:
针对下行子帧 k, 所述装置根据所述下行子帧 k上所述 ePDCCH的物理 资源索引 (1)
PR确定所述 PUCCH的信道资源索引 PUCCH, w "P("UCCH,m = y N 1 λ|T ePoDtaClCH.g + τ J f in PR ) W o uflflsaectL + τ N丄、 P s U ta C rt CH
9=0 其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M-l ; N m表示所述下行子帧 k的 ePDCCH区域对应的 PUCCH总数或者由信令指示; 所述《PR为重新编号后承 载所述 ePDCCH的物理资源块索引, 或者, 所述《PR为承载所述 ePDCCH的 增强的控制信道单元索引; 所述 NP S H为所述 PUCCH 的信道资源的起始位
13、 如权利要求 10所述的方法, 其中,
当所述《PR为《PRB , 所述《PRB为重新编号后承载所述 ePDCCH的物理资源 块索引时, 则 所述 f (wPR ) = («PRB ) = nPRB xh; 所述 nPRB = 所述^ eE为承载所述 h
ePDCCH的增强的控制信道单元索引; 其中, 所述 h为 1个承载所述 ePDCCH的物理资源块对应的上行控制信 道资源最大数量, 或者, 所述 h为 1个承载所述 ePDCCH的物理资源块包括 的增强的控制信道单元数量, 或者, 所述 h由信令指示, 或者, 所述 h为预 定义正整数。
14、 如权利要求 13所述的方法, 还包括: 所述装置根据如下方式确定所
对于连续传输模式的 ePDCCH, 确定所述《PRB为重新编号后承载所述 ePDCCH的最大或最小物理资源块索引; 或者
对于离散传输模式的 ePDCCH, 根据承载所述 ePDCCH 的最大或最小 D-eCCE索引确定所述; 其中,所述 D-eCCE为用于离散传输模式的 ePDCCH 的增强的控制信道单元。
15、 如权利要求 14所述的方法, 其中, 所述根据承载所述 ePDCCH的 最大或最小 D-eCCE索引确定所述《PRB的步骤包括:
将一个 D-eCCE映射到 h个物理资源块上, 并将所有编号后的 D-eCCE 划分为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与 所述 h个物理资源块之间建立——对应关系,其中, 同一组内的 h个 D-eCCE 对应相同的天线端口且映射到相同物理资源块上, 或者, 同一组内的 h个 D-eCCE映射到相同物理资源块上; 以及根据承载所述 ePDCCH的最大或最 小 D-eCCE索引在上述分组后的组内位置对应的物理资源块索引确定所述物 理资源块索引《PRB ;
或者,
当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最小物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 D-eCCE索引所在的最大物理资源块索引;
或者,
当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最大物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 D-eCCE索引所在的最小物理资源块索引。
16、 如权利要求 10所述的方法, 其中,
当所述《PR为^ CE , 所述^ CE为承载所述 ePDCCH的增强的控制信道单元 索引时, 则 所述 f (¾ 或者 f (¾J = weCCE ; 其中, 所述 h为 1个承载所述 ePDCCH的物理资源块对应的上行控制信 道资源最大数量, 或者, 所述 h为 1个承载所述 ePDCCH的物理资源块包括 的增强的控制信道单元数量, 或者, 所述 h由信令指示, 或者, 所述 h为预 定义正整数。
17、 如权利要求 16所述的方法, 还包括: 所述装置根据如下方式确定所 述 "e CCE ·
对于连续传输模式的 ePDCCH, 确定所述^ eE为承载所述 ePDCCH的最 大或最小 L-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH的最大或 最小 L-eCCE索引 +Total-DeCCE,其中,所述 Total-DeCCE表示可用的 D-eCCE 总数或者由信令指示; 或者,
对于离散传输模式的 ePDCCH, 根据承载所述 ePDCCH 的最大或最小 D-eCCE索引确定所述^ CE
18、 如权利要求 17所述的方法, 其中, 所述根据承载所述 ePDCCH的 最大或最小 D-eCCE索引确定所述^ CE的步骤包括:
确定所述^ CE为承载所述 ePDCCH的最大或最小 D-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH 的最大或最小 D-eCCE 索引 +Total-LeCCE,其中,所述 Total-LeCCE表示可用的 L-eCCE总数或者由信令 指示;
或者,
将一个 D-eCCE映射到 h个 L-eCCE上,并将所有编号后的 D-eCCE划分 为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与所述 h 个 L-eCCE之间建立——对应关系,其中, 同一组内的 h个 D-eCCE对应相同 的天线端口且映射到相同 L-eCCE上,或者, 同一组内的 h个 D-eCCE映射到 相同 L-eCCE上; 以及根据承载所述 ePDCCH的最大或最小 D-eCCE索引在 上述分组后的组内位置对应的 L-eCCE索引确定所述^ eE
或者,
将一个 D-eCCE映射到 2个 L-eCCE上,当所述最大或最小 D-eCCE索引 为奇数时, 确定所述^ CE为所述最大或最小 D-eCCE索引所在的最小 L-eCCE 索引, 当所述最大或最小 D-eCCE索引为偶数时, 确定所述"^ E为所述最大 或最小 D-eCCE 索引所在的最大 L-eCCE 索引; 或者, 当所述最大或最小 D-eCCE索引为奇数时,确定所述^ CE为所述最大或最小 D-eCCE索引所在的 最大 L-eCCE索引, 当所述最大或最小 D-eCCE索引为偶数时,确定所述^ CE 为所述最大或最小 D-eCCE索引所在的最小 L-eCCE索引;
其中, 所述 L-eCCE为用于连续传输模式的 ePDCCH的增强的控制信道 单元,所述 D-eCCE为用于离散传输模式的 ePDCCH的增强的控制信道单元。
19、 如权利要求 10所述的方法, 还包括: 所述装置按如下方式之一对所 述 ePDCCH的物理资源进行编号:
对所有配置的 ePDCCH的物理资源的顺序进行编号;
先将用于不同传输模式的 ePDCCH的物理资源级联起来, 再按照级联后 的顺序对所述 ePDCCH的物理资源进行编号;
对用于不同传输模式的 ePDCCH的物理资源分别进行编号。
20、 如权利要求 1至 19任一项所述的方法, 其中, 所述装置为终端或者 基站。
21、 一种装置, 包括: 信道资源确定单元, 其设置成: 根据增强的物理 下行控制信道(ePDCCH ) 的物理资源确定物理上行控制信道(PUCCH ) 的 信道资源索引《 CH , 其中, 所述 PUCCH用于承载所述 ePDCCH指示的物理 下行共享信道(PDSCH ) 的肯定确认 /否定确认(ACK/NACK )信息; 所述 ePDCCH的物理资源包括: 物理资源块、 增强的控制信道单元、 天线端口索 引中任意一个或多个。
22、如权利要求 21所述的装置,其中,所述信道资源确定单元是设置成: 确定所述 PUCCH的信道资源的起始位置 NP S H, 其中: 所述 NP S H为已有 PDCCH对应的 PUCCH的信道资源的起始位置 N CH; 或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 A¾cch加上预定义值 D, 其中, 所述 D表示所述 PUCCH所在的上行子帧 中所述 PDCCH对应的 PUCCH的信道资源最大值, 或者, 所述 D表示所述 ePDCCH所在的子帧上控制信道单元( CCE ) 的数量;
或者, 所述 NP S H为所述已有 PDCCH对应的 PUCCH的信道资源的起始 位置 A¾cch加上所述预定义值 D, 再加上 V, 其中, 所述 V由信令确定; 或者, 所述 NP S H由信令确定;
或者, 所述 NP S H为所述 PUCCH所在的上行子帧中 PUCCH格式 la/lb 资源的起始位置。
23、 如权利要求 22所述的装置, 其中, 对于时分双工系统, 不同上行子 帧中, 所述 NP S H相同或不同。
24、 如权利要求 22 所述的装置, 其中, 用于不同传输模式的 ePDCCH 对应的 PUCCH的信道资源的 NP S H相同或不同。
25、 如权利要求 21或 22所述的装置, 其中, 所述信道资源确定单元是 设置成: 确定偏移量 offset, 其中, 所述 offset为固定值, 或者, 根据如下信 息之一或其组合确定:
所述 ePDCCH的天线端口信息、 指示信令、 所述 ePDCCH的传输模式、 所述 ePDCCH在物理资源块中的位置、所述 ePDCCH对应的增强的控制信道 单元索引、 以及所述 ePDCCH对应的增强的资源单元组索引。
26、 如权利要求 25所述的装置, 其中, 所述信道资源确定单元是设置成 根据如下步骤之一或其组合确定所述 offset:
A ) 建立所述天线端口信息与所述 offset之间的对应关系, 根据所述 ePDCCH使用的天线端口信息确定所述 offset; 其中, 所述 ePDCCH使用的 天线端口信息包括天线端口索引; 或者, 所述 ePDCCH使用的天线端口信息 包括天线端口索引和天线端口对应序列初始信息;
B ) 建立所述天线端口信息与所述 offset之间的对应关系, 根据所述 ePDCCH使用的天线端口信息和指示信令确定所述 offset; C )根据指示信令确定所述 offset;
D )当 ePDCCH为离散传输模式时, offset为 0或根据指示信令确定, 当 ePDCCH为连续传输模式时,按照所述 A至 C任一步骤确定连续传输模式的 ePDCCH对应的 offset。
27、 如权利要求 26所述的装置, 其中, 所述资源确定单元是设置为通过 如下方式根据所述 ePDCCH使用的天线端口信息和指示信令确定所述 offset:
Offset = offsetl + ARI, 其中, offsetl根据所述 ePDCCH的天线端口索引 确定, ARI值由指示信令配置。
28、 如权利要求 27所述的装置, 其中, 所述资源确定单元是设置为通过 如下方式根据所述步骤 B和所述步骤 D的组合确定所述 offset:
Offset = offsetl + ARI, 其中, 当 ePDCCH为离散传输模式时, offsetl为 0, 当 ePDCCH为连续传输模式时, offsetl根据所述 ePDCCH的天线端口索 引确定, ARI值由指示信令配置。
29、 如权利要求 25所述的装置, 其中, 所述信道资源确定单元是设置成
根据下式确定所述《 eH
"PUCCH = f PR) + offset + N CH
其中,所述《PR为重新编号后承载所述 ePDCCH的物理资源块索引,或者, 所述《PR为承载所述 ePDCCH的增强的控制信道单元索引; 所述 NP S:^H为所述 PUCCH的信道资源的起始位置。
30、 如权利要求 25所述的装置, 其中,
当所述装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子 帧 n上发送时, 所述信道资源确定单元是设置成按如下方式根据 ePDCCH的 物理资源确定 PUCCH的信道资源索引 CCH: nm确定所述 PUCCH的信道资源索引 L¾m
uccH,m = (M-m-l)xNx +mxNx + f{nm )+ offset + NP S CH; 其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M-l ; N为预定义参数, 且 X的选择保 证
, 或者, N' X X , N ePDCCH
Figure imgf000063_0001
1个下行子帧的 ePDCCH区域对应的 PUCCH总数或者由信令指示; r大于等 于 1 ; 所述《PR为重新编号后承载所述 ePDCCH的物理资源块索引, 或者, 所 述《PR为承载所述 ePDCCH 的增强的控制信道单元索引; 所述 NP S H为所述 PUCCH的信道资源的起始位置。
31、 如权利要求 25所述的装置, 其中,
当所述装置在 M个下行子帧上的所有 PDSCH的 ACK/NACK在上行子 帧 n上发送时, 所述信道资源确定单元是设置成按如下方式根据 ePDCCH的 物理资源确定 PUCCH的信道资源索引 (1) ·
PUCCH ·
针对下行子帧 k , n p y^t | 丁 "T TO
nm确定所述 PUCCH的信道资源索引
WPUCCH,m K c g Start
+ / ("PR ) + offset + N] PUCCH 其中, m为接收到的 PDSCH所在的下行子帧 k在上行子帧 n所对应的所 述 M个下行子帧中的序号, 且 0≤m≤M-l ; N m表示所述下行子帧 k的 ePDCCH区域对应的 PUCCH总数或者由信令指示; 所述《PR为重新编号后承 载所述 ePDCCH的物理资源块索引, 或者, 所述《PR为承载所述 ePDCCH的 增强的控制信道单元索引; 所述 NP S H为所述 PUCCH 的信道资源的起始位
32、 如权利要求 29所述的装置, 其中,
当所述《PR为《PRB , 所述《PRB为重新编号后承载所述 ePDCCH的物理资源 块索引时, 则
所述 f (wPR ) = («PRB ) = nPRB xh; 所述 nP 所述^ eE为承载所述 h
ePDCCH的增强的控制信道单元索引; 其中, 所述 h为 1个承载所述 ePDCCH的物理资源块对应的上行控制信 道资源最大数量, 或者, 所述 h为 1个承载所述 ePDCCH的物理资源块包括 的增强的控制信道单元数量, 或者, 所述 h由信令指示, 或者, 所述 h为预 定义正整数。
33、 如权利要求 32所述的装置, 其中, 所述信道资源确定单元还设置成 根据如下方式确定所述《PRB
对于连续传输模式的 ePDCCH, 确定所述《PRB为重新编号后承载所述 ePDCCH的最大或最小物理资源块索引; 或者
对于离散传输模式的 ePDCCH, 根据承载所述 ePDCCH 的最大或最小 D-eCCE 索引确定所述《PRB ; 其中, 所述 D-eCCE 为用于离散传输模式的 ePDCCH的增强的控制信道单元。
34、 如权利要求 33所述的装置, 其中, 所述信道资源确定单元是设置成 根据如下方式根据承载所述 ePDCCH 的最大或最小 D-eCCE 索引确定所述
"PRB ·
将一个 D-eCCE映射到 h个物理资源块上, 并将所有编号后的 D-eCCE 划分为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与 所述 h个物理资源块之间建立——对应关系,其中, 同一组内的 h个 D-eCCE 对应相同的天线端口且映射到相同物理资源块上, 或者, 同一组内的 h个 D-eCCE映射到相同物理资源块上; 以及根据承载所述 ePDCCH的最大或最 小的 D-eCCE索引在上述分组后的组内位置对应的物理资源块索引确定所述 物理资源块索引 "PRB ;
或者,
当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最小物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 D-eCCE索引所在的最大物理资源块索引;
或者,
当所述最大或最小 D-eCCE索引为奇数时,确定所述物理资源块索引《PRB 为所述最大或最小 D-eCCE索引所在的最大物理资源块索引, 当所述最大或 最小 D-eCCE索引为偶数时,确定所述物理资源块索引《PRB为所述最大或最小 D-eCCE索引所在的最小物理资源块索引。
35、 如权利要求 29所述的装置, 其中,
当所述《PR为^ CE , 所述^ CE为承载所述 ePDCCH的增强的控制信道单元 索引时, 则 所述 f (¾ 或者 f (wPR ) = n •ee,CCE 其中, 所述 h为 1个承载所述 ePDCCH的物理资源块对应的上行控制信 道资源最大数量, 或者, 所述 h为 1个承载所述 ePDCCH的物理资源块包括 的增强的控制信道单元数量, 或者, 所述 h由信令指示, 或者, 所述 h为预 定义正整数。
36、如权利要求 35所述的装置,其中,所述信道资源确定单元还设置成: 根据如下方式确定所述^ eE
对于连续传输模式的 ePDCCH, 确定所述^ eE为承载所述 ePDCCH的最 大或最小 L-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH的最大或 最小 L-eCCE索引 +Total-DeCCE,其中,所述 Total-DeCCE表示可用的 D-eCCE 总数或者由信令指示; 或者
对于离散传输模式的 ePDCCH, 根据承载所述 ePDCCH 的最大或最小 D-eCCE索引确定所述^ CE
37、 如权利要求 36所述的装置, 其中, 所述信道资源确定单元是设置成 通过如下方式根据承载所述 ePDCCH 的最大或最小 D-eCCE 索引确定所述
"eCCE ·
确定所述^ CE为承载所述 ePDCCH的最大或最小 D-eCCE索引; 或者, 确定所述^ CE为承载所述 ePDCCH 的最大或最小 D-eCCE 索引 +Total-LeCCE,其中,所述 Total-LeCCE表示可用的 L-eCCE总数或者由信令 指示;
或者,
将一个 D-eCCE映射到 h个 L-eCCE上,并将所有编号后的 D-eCCE划分 为 N组, 其中, 每组包含 h个 D-eCCE; 在一个组内的 h个 D-eCCE与所述 h 个 L-eCCE之间建立——对应关系,其中, 同一组内的 h个 D-eCCE对应相同 的天线端口且映射到相同 L-eCCE上,或者, 同一组内的 h个 D-eCCE映射到 相同 L-eCCE上; 以及根据承载所述 ePDCCH的最大或最小 D-eCCE索引在 上述分组后的组内位置对应的 L-eCCE索引确定所述^ eE ;
或者,
将一个 D-eCCE映射到 2个 L-eCCE上,当所述最大或最小 D-eCCE索引 为奇数时, 确定所述^ CE为所述最大或最小 D-eCCE索引所在的最小 L-eCCE 索引, 当所述最大或最小 D-eCCE索引为偶数时, 确定所述"^ E为所述最大 或最小 D-eCCE 索引所在的最大 L-eCCE 索引; 或者, 当所述最大或最小 D-eCCE索引为奇数时,确定所述^ CE为所述最大或最小 D-eCCE索引所在的 最大 L-eCCE索引, 当所述最大或最小 D-eCCE索引为偶数时,确定所述^ CE 为所述最大或最小 D-eCCE索引所在的最小 L-eCCE索引;
其中, 所述 L-eCCE为用于连续传输模式的 ePDCCH的增强的控制信道 单元,所述 D-eCCE为用于离散传输模式的 ePDCCH的增强的控制信道单元。
38、如权利要求 29所述的装置,其中,所述信道资源确定单元还设置成: 通过如下方式之一对所述 ePDCCH的物理资源进行编号:
对所有配置的 ePDCCH的物理资源的顺序进行编号;
先将用于不同传输模式的 ePDCCH的物理资源级联起来, 再按照级联后 的顺序对所述 ePDCCH的物理资源进行编号;
对用于不同传输模式的 ePDCCH的物理资源分别进行编号。
39、 如权利要求 21至 38任一项所述的装置, 其中, 所述装置为终端或 者基站。
PCT/CN2013/000764 2012-06-28 2013-06-26 一种物理上行控制信道资源确定方法及装置 WO2014000421A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/377,240 US9661617B2 (en) 2012-06-28 2013-06-26 Determination method and device for resources in physical uplink control channel
EP13810064.9A EP2802181B1 (en) 2012-06-28 2013-06-26 Determination method and device for resources in physical uplink control channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210218686.2 2012-06-28
CN201210218686.2A CN103516474B (zh) 2012-06-28 2012-06-28 物理上行控制信道资源确定方法及用户设备

Publications (1)

Publication Number Publication Date
WO2014000421A1 true WO2014000421A1 (zh) 2014-01-03

Family

ID=49782159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000764 WO2014000421A1 (zh) 2012-06-28 2013-06-26 一种物理上行控制信道资源确定方法及装置

Country Status (4)

Country Link
US (1) US9661617B2 (zh)
EP (1) EP2802181B1 (zh)
CN (1) CN103516474B (zh)
WO (1) WO2014000421A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068264A1 (zh) * 2019-10-12 2021-04-15 Oppo广东移动通信有限公司 无线通信方法、装置和通信设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3809759A3 (en) * 2012-10-05 2021-05-12 Interdigital Patent Holdings, Inc. Method and apparatuses for transmitting feedback
CN104767595A (zh) * 2014-01-07 2015-07-08 中兴通讯股份有限公司 Harq-ack反馈信息的传输方法、系统及终端和基站
RU2678508C2 (ru) 2014-01-29 2019-01-29 Хуавей Текнолоджиз Ко., Лтд. Способ передачи данных и устройство связи
US9887801B2 (en) 2015-03-11 2018-02-06 Samsung Electronics Co., Ltd. Resource allocation for repetitions of transmissions in a communication system
CN107432007A (zh) * 2015-03-27 2017-12-01 华为技术有限公司 用户设备、网络设备和确定物理上行控制信道资源的方法
BR112018006742B1 (pt) * 2015-11-13 2024-01-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd Método para alocação de recursos de rádio
CN109392122B (zh) 2017-08-10 2023-05-12 华为技术有限公司 数据传输方法、终端和基站
US11368260B2 (en) * 2018-05-03 2022-06-21 Mediatek Singapore Pte. Ltd. Method and apparatus for reporting hybrid automatic repeat request-acknowledge information in mobile communications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442818A (zh) * 2008-12-31 2009-05-27 中兴通讯股份有限公司 大带宽系统物理上行控制信道的指示方法及装置
WO2010026287A1 (en) * 2008-09-08 2010-03-11 Nokia Corporation Adaptive transmission modes for transparent relay
CN102316595A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 大带宽系统物理上行控制信道资源确定方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8160018B2 (en) * 2008-03-14 2012-04-17 Samsung Electronics Co., Ltd. Methods of uplink channelization in LTE
CN102045141B (zh) * 2009-10-10 2013-06-12 中兴通讯股份有限公司 一种利用上行子帧发送秩指示信息的方法及终端
CN103095436B (zh) * 2011-11-07 2019-04-19 上海诺基亚贝尔股份有限公司 用于确定/辅助确定pucch的资源的方法及相应的装置
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
WO2013151389A1 (ko) * 2012-04-05 2013-10-10 엘지전자 주식회사 하향 링크 채널 모니터링 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026287A1 (en) * 2008-09-08 2010-03-11 Nokia Corporation Adaptive transmission modes for transparent relay
CN101442818A (zh) * 2008-12-31 2009-05-27 中兴通讯股份有限公司 大带宽系统物理上行控制信道的指示方法及装置
CN102316595A (zh) * 2011-09-30 2012-01-11 中兴通讯股份有限公司 大带宽系统物理上行控制信道资源确定方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2802181A4 *
SHARP: "PUCCH resource management for CoMP Scenarios", R1-121352, 3GPP TSG RAN WGA MEETING #68BIS, 26 March 2012 (2012-03-26), XP050596640 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021068264A1 (zh) * 2019-10-12 2021-04-15 Oppo广东移动通信有限公司 无线通信方法、装置和通信设备
CN114375054A (zh) * 2019-10-12 2022-04-19 Oppo广东移动通信有限公司 无线通信方法、装置和通信设备
CN114375054B (zh) * 2019-10-12 2023-05-30 Oppo广东移动通信有限公司 无线通信方法、装置和通信设备

Also Published As

Publication number Publication date
EP2802181A4 (en) 2015-05-13
EP2802181B1 (en) 2021-10-06
EP2802181A1 (en) 2014-11-12
CN103516474B (zh) 2017-11-07
US20160192348A1 (en) 2016-06-30
CN103516474A (zh) 2014-01-15
US9661617B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
JP7088967B2 (ja) 拡張された物理ハイブリッド自動再送要求インジケータチャネル用のリソースを割り当てるための方法および装置
KR102021246B1 (ko) Lte 업링크 송신들의 레이턴시를 감소시키기 위한 방법 및 장치
KR101971410B1 (ko) Lte 업링크 송신들의 레이턴시를 감소시키기 위한 방법 및 장치
KR102001991B1 (ko) Lte 업링크 송신들의 레이턴시를 감소시키기 위한 방법 및 장치
JP5954475B2 (ja) 無線通信システム、基地局、第2のユーザ装置及びそれらの方法
WO2014000421A1 (zh) 一种物理上行控制信道资源确定方法及装置
EP3935902B1 (en) Methods and apparatus for grant-free data transmission in wireless communication system
WO2016045443A1 (zh) 用于设备到设备通信的方法及装置
WO2015139429A1 (zh) 控制信息的传输、接收方法、装置及系统
WO2015109846A1 (zh) 控制信息的传输方法及装置
WO2014187260A1 (zh) 公有消息发送、接收方法、装置及系统
US11653336B2 (en) Method and apparatus for transmitting and receiving downlink control information in wireless communication system
WO2012152113A1 (zh) 大带宽系统物理上行控制信道资源确定方法及装置
BR112014014816B1 (pt) Dispositivo de estação móvel e método de comunicação de um dispositivo de estação móvel
JPWO2015020108A1 (ja) 端末装置、基地局装置、および通信方法
WO2015106554A1 (zh) 资源管理方法、装置及计算机存储介质
WO2012155753A1 (zh) 传输方法及装置
EP3878227B1 (en) Method and apparatus for grant free based data transmission in wireless communication system
WO2014173351A1 (zh) 一种上行控制信息的发送方法及用户设备、基站
WO2020253770A1 (zh) 由用户设备执行的方法以及用户设备
WO2014110921A1 (zh) ePHICH的发送方法及装置、接收方法及装置
WO2014187358A1 (zh) 一种机器类通信业务信息的传输方法、基站、终端和系统
JP6385348B2 (ja) 端末装置、基地局装置、集積回路、および、通信方法
WO2021204191A1 (zh) 由用户设备执行的方法以及用户设备
WO2014019529A1 (zh) 一种增强物理下行控制信道的接收、发送方法及相应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013810064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14377240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE