WO2014000020A1 - Antistatic film - Google Patents
Antistatic film Download PDFInfo
- Publication number
- WO2014000020A1 WO2014000020A1 PCT/AU2013/000633 AU2013000633W WO2014000020A1 WO 2014000020 A1 WO2014000020 A1 WO 2014000020A1 AU 2013000633 W AU2013000633 W AU 2013000633W WO 2014000020 A1 WO2014000020 A1 WO 2014000020A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- opacified
- film according
- antistatic
- film
- Prior art date
Links
- 238000000576 coating method Methods 0.000 claims abstract description 117
- 239000011248 coating agent Substances 0.000 claims abstract description 95
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 229920000642 polymer Polymers 0.000 claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims abstract description 10
- -1 aliphatic amines Chemical class 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 46
- 239000011347 resin Substances 0.000 claims description 28
- 229920005989 resin Polymers 0.000 claims description 28
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 239000002966 varnish Substances 0.000 claims description 10
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 9
- 239000005977 Ethylene Substances 0.000 claims description 9
- 229910044991 metal oxide Inorganic materials 0.000 claims description 9
- 150000004706 metal oxides Chemical class 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- 239000002322 conducting polymer Substances 0.000 claims description 8
- 229920001940 conductive polymer Polymers 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052752 metalloid Inorganic materials 0.000 claims description 6
- 150000002738 metalloids Chemical class 0.000 claims description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 6
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 6
- 239000011253 protective coating Substances 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000007639 printing Methods 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- 229910052689 Holmium Inorganic materials 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052765 Lutetium Inorganic materials 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 claims description 4
- 239000002202 Polyethylene glycol Chemical class 0.000 claims description 4
- 229920000265 Polyparaphenylene Polymers 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052771 Terbium Inorganic materials 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 4
- 239000011127 biaxially oriented polypropylene Substances 0.000 claims description 4
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 4
- 229910052793 cadmium Inorganic materials 0.000 claims description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 4
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 4
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 239000010955 niobium Substances 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229920000553 poly(phenylenevinylene) Polymers 0.000 claims description 4
- 229920000767 polyaniline Polymers 0.000 claims description 4
- 229920000329 polyazepine Polymers 0.000 claims description 4
- 229920000323 polyazulene Polymers 0.000 claims description 4
- 229920001088 polycarbazole Polymers 0.000 claims description 4
- 229920001223 polyethylene glycol Chemical class 0.000 claims description 4
- 229920002098 polyfluorene Polymers 0.000 claims description 4
- 229920005862 polyol Polymers 0.000 claims description 4
- 150000003077 polyols Chemical class 0.000 claims description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 4
- 229920000123 polythiophene Polymers 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 4
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 4
- 229910052703 rhodium Inorganic materials 0.000 claims description 4
- 239000010948 rhodium Substances 0.000 claims description 4
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 4
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 4
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 4
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 239000011135 tin Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 4
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 3
- 229920006378 biaxially oriented polypropylene Polymers 0.000 claims description 3
- 229920001519 homopolymer Polymers 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920006324 polyoxymethylene Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 229920001384 propylene homopolymer Polymers 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims 1
- 229910001928 zirconium oxide Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 description 69
- 239000010410 layer Substances 0.000 description 45
- 239000000463 material Substances 0.000 description 31
- 239000000654 additive Substances 0.000 description 29
- 229920000098 polyolefin Polymers 0.000 description 13
- 239000004743 Polypropylene Substances 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- 239000000976 ink Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000000123 paper Substances 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000012792 core layer Substances 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920006254 polymer film Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229930182556 Polyacetal Natural products 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- BVQHHUQLZPXYAQ-UHFFFAOYSA-N acetyl butanoate Chemical compound CCCC(=O)OC(C)=O BVQHHUQLZPXYAQ-UHFFFAOYSA-N 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000006259 organic additive Substances 0.000 description 2
- 239000011101 paper laminate Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000307 polymer substrate Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229920005601 base polymer Polymers 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001017 electron-beam sputter deposition Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/042—Coating with two or more layers, where at least one layer of a composition contains a polymer binder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/266—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/12—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/044—Forming conductive coatings; Forming coatings having anti-static properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/06—Coating with compositions not containing macromolecular substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2201/00—Polymeric substrate or laminate
- B05D2201/02—Polymeric substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2252/00—Sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/21—Anti-static
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/41—Opaque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/514—Oriented
- B32B2307/518—Oriented bi-axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2323/00—Polyalkenes
- B32B2323/10—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2554/00—Paper of special types, e.g. banknotes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2400/00—Characterised by the use of unspecified polymers
- C08J2400/12—Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31931—Polyene monomer-containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31938—Polymer of monoethylenically unsaturated hydrocarbon
Definitions
- the present invention relates to antistatic films and to methods of their preparation.
- the films may find use in the manufacture of banknotes and the like.
- Opacified polymer based films are widely utilised in industry, for example, in the manufacture of banknotes.
- Polymer derived banknotes often have non- opacified regions in the form of large clear windows or edge to edge windows. These clear windows may contain important security features.
- these non-opacified areas cause a build up of static electricity, which can lead to problems.
- jamming can occur.
- sheet fed processes and automatic teller machines (ATM) double feeding and jamming can occur.
- antistatic agents may be utilised directly as part of the opacifying layer, these cannot be used over the windows as they have inadequate transparency and therefore compromise the transparency of the windows.
- a film having antistatic properties comprising a transparent polymeric substrate, said substrate having a first surface and a second surface, said substrate being partially opacified so as to provide opacified and non-opacified regions, and wherein both the opacified and non-opacified regions are coated on at least one surface with one or more antistatic coatings, said coatings having greater than 70% transmission, preferably greater than 80% transmission, more preferably greater than 90% transmission.
- the polymeric substrate may be partially opacified by coating selected regions of one or both surfaces of the substrate with an opacifying coating.
- One or more opacifying coating layers may be applied.
- the opacifying coating layers may be applied by printing or by any other means known in the art.
- the opacifying coating may comprise pigments.
- the polymeric substrate may be partially opacified by addition of one or more voiding agents to the substrate.
- the voiding agent may be added during manufacture of the substrate or it may be added during processing of the substrate. Alternatively, the voiding agent may be added during both manufacturing and processing.
- opacification may be achieved by sandwiching the substrate of transparent polymeric material between opacifying layers of paper or other partially or substantially opaque material to which indicia may be subsequently printed or otherwise applied.
- Partial opacification of the polymeric substrate results in the generation of one or more windows or one or more half windows in the resulting film. Alternatively, both of one or more windows and one or more half windows may be generated.
- the opacified and non-opacified regions of the polymeric substrate are coated with an antistatic coating on both surfaces of the substrate.
- the antistatic coating is colourless.
- films based on polymeric substrates which have partially opacified surfaces and transparent windows and/or half windows can be coated with an antistatic coating having a high transparency and show improved antistatic behaviour during processing.
- the clear windows and/or half windows often contain security devices, such as holograms or diffractive optical elements (DOEs)
- DOEs diffractive optical elements
- the antistatic coating is applied to both surfaces of the substrate.
- the antistatic coating may only be applied to the surface of the substrate having a non- opacified region in order to improve antistatic behaviour.
- the film may be coated with a protective coating.
- the protective coating may comprise a transparent varnish.
- varnish it is meant a material that results in a durable protective finish.
- Exemplary transparent varnishes are, but are not limited to, nitrocellulose and cellulose acetyl butyrate.
- the varnish is applied prior to the application of the antistatic coating.
- the film may be optionally coated with one or more radiation-curable resins, for example a resin which is curable by actinic radiation such as UV radiation, X-rays or electron beams.
- the resin is an acrylic-based, UV-curable material.
- the resin is applied prior to the application of the antistatic coating.
- Suitable polymeric substrates may comprise, for example, those made from polyolefins such as polypropylene and polyethylene; polyamides exemplified by nylon; polyester such as polyethylene terephthalate; polyacetal;
- polycarbonate polyvinyl chloride and the like or a composite material of two or more materials, such as a laminate of paper and at least one polymeric material, or of two or more polymeric materials.
- the polymeric substrate may comprise a polymer laminate.
- Such laminates include polymer-polymer laminates like polyester-polyolefin or polyester-adhesive-polyolefin, polymer-metallic laminates such as polyester- aluminum, or polymer-paper or polymer-adhesive-paper laminates. Coated polymer films or film laminates can also be used.
- the polymeric substrate comprises a polymer selected from the group consisting of ethylene homopolymers, propylene homopolymers, interpolymers of ethylene and propylene and interpolymers of ethylene or propylene with one or more C 4 -Cio a-olefins and mixtures thereof.
- the polymeric substrate comprises a biaxially oriented polypropylene.
- the polymeric substrates may be of a variety of thicknesses according to the application requirements. For example they can be from about 5 to about 250 micron thick, preferably from about 10 to about 120 micron thick, more preferably from about 12 to about 100 micron thick, and most preferably from about 15 to about 80 micron thick.
- the antistatic coating comprises a compound selected from the group consisting of long chain aliphatic amines or amides, quaternary ammonium salts, polyethyleneglycol esters and polyols.
- the antistatic coating comprises one or more metal or metalloid oxides.
- Suitable metal or metalloid oxides include oxides of aluminum, antimony, barium, bismuth, cadmium, calcium, cerium, cesium, chromium, cobalt, copper, dysprosium, erbium, gadolinium, germanium, hafnium, holmium, indium, iridium, iron, lanthanum, lead, lithium , lutetium, magnesium, manganese, molybdenum, neodymium, nickel, niobium, palladium, potassium, praseodymium, rhodium, rubidium, ruthenium, samarium, scandium, silicon, silver, sodium, strontium, tantalum, terbium, thallium, tin, titanium, tungsten, vanadium, ytterbium, yttrium, zirconium, and mixtures thereof.
- a particularly preferred metal oxide is indium tin oxide.
- the one or more metal oxides are dispersed in one or more resins or one or more solvents. Mixtures of resins and solvents may also be utilised.
- the resin may be one or more radiation-curable resins, for example a resin which is curable by actinic radiation such as UV radiation, X-rays or electron beams.
- the resin comprises an acrylic-based, UV-curable material.
- the antistatic coating comprises one or more conducting polymers.
- the conducting polymer may be selected from the group consisting of polyfluorenes, polyphenylenes, polypyrenes, polyazulenes, polynapthalenes, polypyroles, polycarbazoles, polyindoles, polyazepines, polyanilines, polythiophenes, poly(3,4-ethylenedioxythiophene), poly(p-phenylene sulphide), poly(acetylenes) and poly(p-phenylenevinylene).
- mixtures of two or more of any of the aforementioned antistatic materials may be employed.
- the antistatic coating has a dry coating thickness of about 0.001 microns to about 10 microns.
- the antistatic coating has a dry coating thickness of about 0.01 microns to about 10 microns. More preferably, the antistatic coating has a dry coating thickness of about 0.1 to about 6 microns. Most preferably the antistatic coating has a dry coating thickness of between 1 and 6 microns.
- the antistatic coating has a surface resistivity of less 1 x 10 10 ohm per square, preferably less than 1x10 8 ohm per square.
- the antistatic films may be of a variety of thicknesses according to the application requirements. For example they can be from about 5 to about 250 micron thick, preferably from about 10 to about 120 micron thick, more preferably from about 12 to about 100 micron thick, and most preferably from about 15 to about 80 micron thick.
- the films according to this aspect may comprise one or more additive materials which are well known in the art of polymer film manufacture.
- Additives may include particulate additives.
- the film is a security document. In another embodiment the film is a banknote.
- a method of manufacturing a film having antistatic properties comprising:
- the opacified and non-opacified regions of the polymeric substrate are coated with an antistatic coating on both surfaces of the substrate.
- the antistatic coating is colourless.
- the optional protective coating of step (c) may comprise a transparent varnish.
- varnish it is meant a material that results in a durable protective finish.
- Exemplary transparent varnishes are, but are not limited to, nitrocellulose and cellulose acetyl butyrate.
- the optional coating of step (d) may comprise one or more radiation-curable resins, for example a resin which is curable by actinic radiation such as UV radiation, X-rays or electron beams.
- the resin is an acrylic-based, UV-curable material.
- Suitable polymeric substrates for use in the above method may comprise, for example, those made from polyolefins such as polypropylene and
- polyethylene polyethylene; polyamides exemplified by nylon; polyester such as polyethylene terephthalate; polyacetal; polycarbonate; polyvinyl chloride and the like or a composite material of two or more materials, such as a laminate of paper and at least one polymeric material, or of two or more polymeric materials.
- the polymeric substrate may comprise a polymer laminate.
- Such laminates include polymer-polymer laminates like polyester-polyolefin or polyester-adhesive-polyolefin, polymer-metallic laminates such as polyester- aluminum, or polymer-paper or polymer-adhesive-paper laminates. Coated polymer films or film laminates can also be used.
- the polymeric substrate comprises a polymer selected from the group consisting of ethylene homopolymers, propylene homopolymers, interpolymers of ethylene and propylene and interpolymers of ethylene or propylene with one or more C 4 -Cio a-olefins and mixtures thereof.
- the polymeric substrate comprises a biaxially oriented polypropylene.
- the polymeric substrates for use in the above method may be of a variety of thicknesses according to the application requirements. For example they can be from about 5 to about 250 micron thick, preferably from about 10 to about 120 micron thick, more preferably from about 12 to about 100 micron thick, and most preferably from about 15 to about 80 micron thick.
- the antistatic coating used in the above method comprises a compound selected from the group consisting of long chain aliphatic amines or amides, quaternary ammonium salts, polyethyleneglycol esters and polyols.
- the antistatic coating used in the above method comprises one or more metal or metalloid oxides.
- Suitable metal or metalloid oxides include oxides of aluminum, antimony, barium, bismuth, cadmium, calcium, cerium, cesium, chromium, cobalt, copper, dysprosium, erbium, gadolinium, germanium, hafnium, holmium, indium, iridium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, molybdenum, neodymium, nickel, niobium, palladium, potassium, praseodymium, rhodium, rubidium, ruthenium, samarium, scandium, silicon, silver, sodium, strontium, tantalum, terbium, thallium, tin, titanium, tungsten, vanadium, ytterbium, yttrium, zirconium, and mixtures thereof.
- a particularly preferred metal oxide is indium tin oxide.
- the one or more metal oxides may be dispersed in one or more resins or one or more solvents so as to facilitate the coating process. Mixtures of resins and solvents may also be utilised.
- the resin may be one or more radiation-curable resins, for example a resin which is curable by actinic radiation such as UV radiation, X-rays or electron beams.
- the resin comprises an acrylic-based, UV-curable material.
- the antistatic coating used in the above method comprises one or more conducting polymers.
- the conducting polymer may be selected from the group consisting of polyfluorenes, polyphenylenes, polypyrenes, polyazulenes, polynapthalenes, polypyroles, polycarbazoles, polyindoles, polyazepines, polyanilines, polythiophenes, poly(3,4- ethylenedioxythiophene), poly(p-phenylene sulphide), poly(acetylenes) and poly(p-phenylenevinylene).
- mixtures of two or more of any of the aforementioned antistatic materials may be employed.
- the antistatic coating used in the above method has a dry coating thickness of about 0.001 microns to about 10 microns.
- the antistatic coating has a dry coating thickness of about 0.01 microns to about 10 microns. More preferably, the antistatic coating has a dry coating thickness of about 0.1 to about 6 microns. Most preferably the antistatic coating has a dry coating thickness of between 1 and 6 microns.
- the antistatic coating used in the above method has a surface resistivity of less 1 x 10 10 ohm per square, preferably less than 1x10 8 ohm per square.
- the antistatic films produced by the method may be of a variety of thicknesses according to the application requirements. For example they can be from about 5 to about 250 micron thick, preferably from about 10 to about 120 micron thick, more preferably from about 12 to about 100 micron thick, and most preferably from about 15 to about 80 micron thick.
- the films produced by this aspect may comprise one or more additive materials which are well known in the art of polymer film manufacture.
- Additives may include particulate additives.
- the film produced by the method is a security document. In another embodiment the film is a banknote.
- the antistatic film as hereinbefore described in the manufacture of a security document.
- the security document is a banknote.
- an article of manufacture comprising the film according to any of the aforementioned embodiments.
- the article is a security document, preferably a banknote.
- the term 'security device or feature' includes any one of a large number of security devices, elements or features intended to protect the security document or token from counterfeiting, copying, alteration or tampering.
- Security devices or features may be provided in or on the substrate of the security document or in or on one or more layers applied to the base substrate, and may take a wide variety of forms, such as security threads embedded in layers of the security document; security inks such as fluorescent, luminescent and phosphorescent inks, metallic inks, iridescent inks, photochromic, thermochromic, hydrochromic or piezochromic inks; printed and embossed features, including relief structures; interference layers; liquid crystal devices; lenses and lenticular structures; optically variable devices (OVDs) such as diffractive devices including diffraction gratings, holograms and diffractive optical elements (DOEs).
- ODDs optically variable devices
- DOEs diffractive optical elements
- DOEs Diffractive Optical Elements
- the term 'diffractive optical element' refers to a numerical- type diffractive optical element (DOE).
- Numerical-type diffractive optical elements rely on the mapping of complex data that reconstruct in the far field (or reconstruction plane) a two-dimensional intensity pattern.
- substantially collimated light e.g. from a point light source or a laser
- an interference pattern is generated that produces a projected image in the reconstruction plane that is visible when a suitable viewing surface is located in the reconstruction plane, or when the DOE is viewed in transmission at the reconstruction plane.
- the transformation between the two planes can be approximated by a fast Fourier transform (FFT).
- FFT fast Fourier transform
- complex data including amplitude and phase information has to be physically encoded in the micro- structure of the DOE.
- This DOE data can be calculated by performing an inverse FFT transformation of the desired reconstruction (i.e. the desired intensity pattern in the far field).
- DOEs are sometimes referred to as computer-generated holograms, but they differ from other types of holograms, such as rainbow holograms, Fresnel holograms and volume reflection holograms.
- Transparent Windows and Half Windows are sometimes referred to as computer-generated holograms, but they differ from other types of holograms, such as rainbow holograms, Fresnel holograms and volume reflection holograms.
- window refers to a transparent or translucent area in the security document compared to the substantially opaque region to which printing is applied.
- the window may be fully transparent so that it allows the transmission of light substantially unaffected, or it may be partly transparent or translucent partially allowing the transmission of light but without allowing objects to be seen clearly through the window area.
- a window area may be formed in a polymeric security document which has at least one layer of transparent polymeric material and one or more opacifying layers applied to at least one side of a transparent polymeric substrate, by omitting at least one opacifying layer in the region forming the window area. If opacifying layers are applied to both sides of a transparent substrate a fully transparent window may be formed by omitting the opacifying layers on both sides of the transparent substrate in the window area.
- a partly transparent or translucent area hereinafter referred to as a "half- window” may be formed in a polymeric security document which has opacifying layers on both sides by omitting the opacifying layers on one side only of the security document in the window area so that the "half-window" is not fully transparent, but allows some light to pass through without allowing objects to be viewed clearly through the half-window.
- the substrates may be formed from an substantially opaque material, such as paper or fibrous material, with an insert of transparent plastics material inserted into a cut-out, or recess in the paper or fibrous substrate to form a transparent window or a translucent half-window area.
- Opacifying layers such as paper or fibrous material
- One or more opacifying layers may be applied to a transparent substrate to increase the opacity of the security document.
- An opacifying layer is such that I_T ⁇ Lo, where L 0 is the amount of light incident on the document, and L T is the amount of light transmitted through the document.
- An opacifying layer may comprise any one or more of a variety of opacifying coatings.
- the opacifying coatings may comprise a pigment, such as titanium dioxide, dispersed within a binder or carrier of heat-activated cross-linkable polymeric material.
- a substrate of transparent plastic material could be sandwiched between opacifying layers of paper or other partially or substantially opaque material to which indicia may be subsequently printed or otherwise applied.
- Opacification may also be achieved by inclusion of voiding agents in the substrate, during, for example, substrate manufacture.
- film (10) comprises a polymeric substrate (1 1 ) which is partially coated on each of its surfaces with an opacifying layer (12). Windows (13) result. The partially opacified polymeric substrate is coated on each surface with antistatic coating (14).
- substrates referred to herein are generally sheet-form materials, and may be provided as individual sheets, or as a web material which may subsequently be processed (by die cutting for example) to provide sheet form materials.
- substrate in this specification it is intended, unless expressly provided otherwise, to include films in sheet or web form.
- the substrate may comprise a polyolefin film, for example polyethylene, polypropylene, mixtures thereof, and/or other known polyolefins.
- the polymeric film can be made by any process known in the art, including, but not limited to, cast sheet, cast film, or blown film.
- the film or sheet may be of mono layer or of multi-layer construction. If the film or sheet is of multi-layer construction then it has at least one core layer therein. In the case of a mono layer construction the mono-layer is the core layer.
- the film may comprise a biaxially orientated polypropylene (BOPP) film, which may be prepared as balanced films using substantially equal machine direction and transverse direction stretch ratios, or can be unbalanced, where the film is significantly more orientated in one direction (MD or TD).
- sequential stretching can be used, in which heated rollers effect stretching of the film in the machine direction and a stenter oven is thereafter used to effect stretching in the transverse direction.
- simultaneous stretching for example, using the so-called bubble process, or simultaneous draw stenter stretching may be used.
- the film may comprise one or more additive materials.
- Additives may comprise: dyes; pigments, colorants; metallised and/or pseudo metallised coatings (e.g. aluminium); lubricants, anti-oxidants, surface-active agents, stiffening aids, gloss-improvers, prodegradants, UV attenuating materials (e.g. UV light stabilisers); sealability additives; tackifiers, anti-blocking agents, additives to improve ink adhesion and/or printability, cross-linking agents; adhesive layer (e.g. a pressure sensitive adhesive). Further additives comprise those to reduce coefficient of friction (COF) such as a terpolymer.
- COF coefficient of friction
- Further additives comprise conventional inert particulate additives, preferably having an average particle size of from about 0.2 micron to about 5 micron, more preferably from about 0.7 micron to about 3.0 micron. Decreasing the particle size improves the gloss of the film.
- the amount of additive, preferably spherical, incorporated into the or each layer is desirably in excess of about 0.05%, preferably from about 0.1 % to about 0.5%, for example, about 0.15%, by weight.
- Suitable inert particulate additives may comprise an inorganic or an organic additive, or a mixture of two or more such additives.
- Suitable particulate inorganic additives include inorganic fillers such as talc, and particularly metal or metalloid oxides, such as alumina and silica. Solid or hollow, glass or ceramic micro-beads or micro-spheres may also be employed.
- a suitable organic additive comprises particles, preferably spherical, of an acrylic and/or methacrylic resin comprising a polymer or copolymer of acrylic acid and/or methacrylic acid.
- Some or all of the desired additives listed above may be added together as a composition to coat the film of the present invention and/or form a new layer which may itself be coated (i.e. form one of the inner layers of a final multi-layered sheet) and/or may form the outer or surface layer of the sheet.
- some or all of the preceding additives may be added separately and/or incorporated directly into the bulk of the sheet optionally during and/or prior to the sheet formation (e.g. incorporated as part of the original polymer composition by any suitable means for example compounding, blending and/or injection) and thus may or may not form layers or coatings as such.
- Such additives may be added to the polymer resin before the film is made, or may be applied to the made film as a coating or other layer. If the additive is added to the resin, the mixing of the additives into the resin is done by mixing it into molten polymer by commonly used techniques such as roll-milling, mixing in a Banbury type mixer, or mixing in an extruder barrel and the like. The mixing time can be shortened by mixing the additives with unheated polymer particles so as to achieve substantially even distribution of the agent in the mass of polymer, thereby reducing the amount of time needed for intensive mixing at molten temperature. The most preferred method is to compound the additives with resin in a twin-screw extruder to form concentrates which are then blended with the resins of the film structure immediately prior to extrusion.
- the three main methods of manufacturing polypropylene film are the stenter method, the cast method and the bubble method.
- polymer chips are typically placed in an extruder and heated so that an extrudate is forced out of a slit die onto a chilled roller to form a film (in the case of the cast method) or a thick polymer ribbon (in the case of the stenter method).
- the thick polymer ribbon is then reheated and then stretched lengthways (termed the ("machine direction") and widthways (termed the "transverse direction”) to form a film.
- the polymer is extruded not through a slit die but through an annular die, to form a relatively thick extrudate, in the form of a hollow cylinder through which air is blown.
- the annular die is at the top of an apparatus which is typically the equivalent of several storeys high (for example 40 to 50 metres).
- the extrudate moves downwards and is heated sequentially so that it is expanded to form a bubble.
- the bubble is then slit into two half-bubbles, each of which may be used individually as "monoweb" films; or alternatively the two halves may be nipped and laminated together to form a double thickness film (or the bubble may be collapsed to form a double thickness film).
- the hollow cylinder is an extrudate of three layers.
- the monoweb would consist of three layers with polypropylene in the middle and the double web would consist of five layers because the layer in the middle would be the same skin layer (terpolymer) of each half -bubble.
- Many other possible arrangements and components are possible, for example in terms of the number of annuli, type of skin layer, type of core layer, etc.
- the bubble method results in a thin film (for example 10 to 100 microns thick) by forming a bubble whereas the stenter method results in a thin film by stretching the material.
- the bubble method results in homogeneously stretched film which is different to and for some purposes advantageous over stenter film.
- Biaxially Oriented Polypropylene (BOPP) film is typically made by the bubble process.
- other polymers e.g. LLDPE, polypropylene/butylene copolymers
- LLDPE polypropylene/butylene copolymers
- Formation of a polyolefin film (optionally oriented and optionally heat-set as described herein) which comprises one or more additional layers and/or coatings is conveniently effected by any of the laminating or coating techniques well known to those skilled in the art.
- a layer or coating can be applied to another base layer by a coextrusion technique in which the polymeric components of each of the layers are coextruded into intimate contact while each is still molten.
- the coextrusion is effected from a multi-channel annular die such that the molten polymeric components constituting the respective individual layers of the multilayer film merge at their boundaries within the die to form a single composite structure which is then extruded from a common die orifice in the form of a tubular extrudate.
- a polyolefin film may also be coated with one or more of the additives described herein using conventional coating techniques from a solution or dispersion of the additive in a suitable solvent or dispersant.
- Coatings and/or layers may be applied to either or both surfaces of the polyolefin film.
- the one or each coating and/or layer may be applied sequentially, simultaneously and/or subsequently to any or all other coatings and/or layers Additionally or alternatively further layers can be provided in the polyolefin film by coextrusion through a multiple-annuli die, to produce for example two, three, four or more layers in the coextrudate exiting the die.
- additives and/or components thereof may be used to make a polyolefin film.
- one or more additives may be incorporated into the resin prior to making the film and the one or more other additives may be coated onto the film surface.
- the substrate has at least one region thereon having reduced opacity compared to the surrounding substrate.
- the polymeric substrate may be opacified by printing on one or both surfaces with ink.
- the ink is usually white in colour but may be of a different colour.
- the opacity of the substrate may be at least partially provided by the presence in the substrate of voided (or cavitated) regions. Such voided regions may for example be created by providing in the substrate at least one voiding agent.
- the production of voided films is well known in the art, and any suitable voiding agent may be used.
- Voiding agents are generally particulate materials and may be selected from organic, inorganic or polymeric materials. United States Patent No. 4,377,616 describes a number of these. Voiding agents may be substantially spherical particulate in nature, or may have a higher aspect ratio. For example, the voiding agents described in WO-A- 03/033574 may be used.
- the opacified polymer substrate may be printed in the opacified regions using traditional offset, intaglio and letterpress processes.
- the antistatic coating may comprise a compound selected from the group consisting of long chain aliphatic amines or amides, quaternary ammonium salts, polyethyleneglycol esters and polyols.
- the antistatic coating comprises one or more metal oxides.
- Suitable metal oxides include oxides of aluminum, antimony, barium, bismuth, cadmium, calcium, cerium, cesium, chromium, cobalt, copper, dysprosium, erbium, gadolinium, germanium, hafnium, holmium, indium, iridium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, molybdenum, neodymium, nickel, niobium, palladium, potassium, praseodymium, rhodium, rubidium, ruthenium, samarium, scandium, silicon, silver, sodium, strontium, tantalum, terbium, thallium, tin, titanium, tungsten, vanadium, ytterbium, yttrium, zirconium, and the like.
- the antistatic coating comprises one or more conducting polymers.
- the conducting polymer may be selected from the group consisting of polyfluorenes, polyphenylenes, polypyrenes, polyazulenes, polynapthalenes, polypyroles, polycarbazoles, polyindoles, polyazepines, polyanilines, polythiophenes, poly(3,4-ethylenedioxythiophene), poly(p-phenylene sulphide), poly(acetylenes) and poly(p-phenylenevinylene).
- An antistatic coating may be applied to the surface of the substrate in any suitable manner such as by gravure printing, roll coating, rod coating, dipping, spraying and/or using a coating bar. Solvents, diluents and adjuvants may also be used in these processes as desired.
- the excess liquid e.g. aqueous solution
- the coating composition will ordinarily be applied in such an amount that there will be deposited following drying, a smooth, evenly distributed layer having a thickness of from about 0.01 to about 10 micron, preferably from about 1 to about 6 micron. In general, the thickness of the applied coating is such that it is sufficient to impart the desired characteristics to the substrate sheet.
- ITO indium tin oxide
- ITO thin films can be used for various applications that require both optical transparency in the visible light region and high electrical conductivity.
- There are various techniques available to deposit ITO film on a substrate surface including chemical vapour deposition, physical vapour deposition, electron beam evaporation and sputtering. However, these methods are not well suited for the mass production of coated films since additional apparatus such as vacuum equipment is necessary. However, it is possible to form a coating layer with uniform thickness on a substrate having large surface area if a wet coating method is applied. In this method, a coating solution containing ITO precursors or ITO nanoparticles can be deposited on the substrate by a dip-coating or spin-coating technique.
- In-line coating of the opacified polymer substrate, in which the antistatic coatings are applied during the film manufacturing process is a preferred method for use of the antistatic coatings disclosed herein.
- one or more of the antistatic coatings may be off-line coated.
- the coating is also intended for use where, for example, the base polymer film is produced and later coated off-line with one or more coatings.
- one or more coatings can be applied in-line, with the remainder being applied off-line.
- Conventional off-line coating processes include roll coating, reverse roll coating, gravure roll coating, reverse gravure roll coating, brush coating, wire-wound rod coating, spray coating, air knife coating, meniscus coating or dipping.
- a preferred method of controlling static formation on a partially opacified polymeric substrate is provided herein.
- one or both surfaces of a partially opacified polymeric substrate are coated with an antistatic coating.
- this coating can occur before, after or at the same time the opposite surface of the polymeric substrate is coated with an alternate coating.
- the antistatic coating is preferably not overcoated with another coating. Such a top coating could limit the ability of the antistatic coating to prevent static.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112013003009.8T DE112013003009T5 (en) | 2012-06-28 | 2013-06-14 | Antistatic film |
IN10886DEN2014 IN2014DN10886A (en) | 2012-06-28 | 2013-06-14 | |
CN201380034431.3A CN104507701B (en) | 2012-06-28 | 2013-06-14 | Antistatic film |
AU2013284329A AU2013284329B2 (en) | 2012-06-28 | 2013-06-14 | Antistatic film |
GB1422375.4A GB2519451B (en) | 2012-06-28 | 2013-06-14 | Antistatic film |
US14/411,350 US20150322222A1 (en) | 2012-06-28 | 2013-06-14 | Antistatic film |
BR112014031779A BR112014031779A2 (en) | 2012-06-28 | 2013-06-14 | antistatic film and its method of manufacture, use of antistatic film and article of manufacture |
CH02034/14A CH708535B1 (en) | 2012-06-28 | 2013-06-14 | Antistatic film, process for its preparation and security document with the antistatic film. |
MX2014015626A MX2014015626A (en) | 2012-06-28 | 2013-06-14 | Antistatic film. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2012100979 | 2012-06-28 | ||
AU2012100979A AU2012100979B4 (en) | 2012-06-28 | 2012-06-28 | Antistatic film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014000020A1 true WO2014000020A1 (en) | 2014-01-03 |
Family
ID=46766149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2013/000633 WO2014000020A1 (en) | 2012-06-28 | 2013-06-14 | Antistatic film |
Country Status (11)
Country | Link |
---|---|
US (1) | US20150322222A1 (en) |
CN (1) | CN104507701B (en) |
AU (2) | AU2012100979B4 (en) |
BR (1) | BR112014031779A2 (en) |
CH (1) | CH708535B1 (en) |
DE (1) | DE112013003009T5 (en) |
FR (1) | FR2992581B1 (en) |
GB (1) | GB2519451B (en) |
IN (1) | IN2014DN10886A (en) |
MX (1) | MX2014015626A (en) |
WO (1) | WO2014000020A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018209390A1 (en) * | 2017-05-17 | 2018-11-22 | Ccl Secure Pty Ltd | A banknote |
WO2019197798A1 (en) * | 2018-04-10 | 2019-10-17 | De La Rue International Limited | Security print media and method of manufacture thereof |
US10593006B2 (en) | 2015-07-10 | 2020-03-17 | De La Rue International Limited | Methods of manufacturing security documents and security devices |
US11725382B2 (en) | 2010-05-05 | 2023-08-15 | Allsteel Inc. | Modular wall system |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105968800A (en) * | 2016-07-26 | 2016-09-28 | 潘明华 | Reinforced antistatic nylon composite and preparation method thereof |
JP6987429B2 (en) * | 2017-01-20 | 2022-01-05 | 日東電工株式会社 | A method for manufacturing a protective film for a polarizing element, a protective film for a polarizing element, and an apparatus for manufacturing a protective film for a polarizing element. |
WO2019046906A1 (en) * | 2017-09-11 | 2019-03-14 | Skinprotect Corporation Sdn Bhd | Synthetic elastomeric article and methods for producing thereof |
AU2019426400A1 (en) * | 2019-01-30 | 2021-08-12 | Koenig & Bauer Banknote Solutions Sa | Polymeric security articles |
EP3917787A1 (en) * | 2019-01-30 | 2021-12-08 | Koenig & Bauer Banknote Solutions SA | Process for preparing polymeric security articles |
US20220118784A1 (en) * | 2019-01-30 | 2022-04-21 | Kba-Notasys Sa | Process for preparing polymeric security articles |
CN112708358B (en) * | 2020-12-24 | 2022-10-28 | 无锡新树胶粘制品有限公司 | Anti-static film and preparation method thereof |
CN114702715B (en) * | 2022-04-20 | 2023-06-30 | 北京印刷学院 | Method for improving conductivity of conductive film |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2095703A (en) * | 1981-03-27 | 1982-10-06 | Leybold Heraeus Gmbh & Co Kg | Methods and apparatus for forming electrically conductive transparent oxide coatings |
WO2000074948A1 (en) * | 1999-06-03 | 2000-12-14 | Mobil Oil Corporation | Epoxy coated multilayer structure for use in the producton of securiy documents |
WO2008042631A1 (en) * | 2006-10-04 | 2008-04-10 | 3M Innovative Properties Company | Ink receptive article |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA955144B (en) * | 1994-06-27 | 1996-12-23 | Mobil Oil Corp | Cross-laminated multilayer film structures for use in the production of banknotes or the like |
JPH09115334A (en) * | 1995-10-23 | 1997-05-02 | Mitsubishi Materiais Corp | Transparent conductive film and composition for film formation |
US6897183B2 (en) * | 2003-02-26 | 2005-05-24 | Eastman Kodak Company | Process for making image recording element comprising an antistat tie layer under the image-receiving layer |
GB0720550D0 (en) * | 2007-10-19 | 2007-11-28 | Rue De Int Ltd | Photonic crystal security device multiple optical effects |
DE102008012419A1 (en) * | 2007-10-31 | 2009-05-07 | Bundesdruckerei Gmbh | Polymer composite layer for security and/or valuable documents comprises at least two interlocking polymer layers joined together with a surface printed with a printed layer absorbing in the visible region in and/or on the composite |
-
2012
- 2012-06-28 AU AU2012100979A patent/AU2012100979B4/en not_active Expired
-
2013
- 2013-06-14 WO PCT/AU2013/000633 patent/WO2014000020A1/en active Application Filing
- 2013-06-14 CH CH02034/14A patent/CH708535B1/en not_active IP Right Cessation
- 2013-06-14 US US14/411,350 patent/US20150322222A1/en not_active Abandoned
- 2013-06-14 DE DE112013003009.8T patent/DE112013003009T5/en active Pending
- 2013-06-14 CN CN201380034431.3A patent/CN104507701B/en not_active Expired - Fee Related
- 2013-06-14 MX MX2014015626A patent/MX2014015626A/en unknown
- 2013-06-14 IN IN10886DEN2014 patent/IN2014DN10886A/en unknown
- 2013-06-14 BR BR112014031779A patent/BR112014031779A2/en not_active Application Discontinuation
- 2013-06-14 AU AU2013284329A patent/AU2013284329B2/en active Active
- 2013-06-14 GB GB1422375.4A patent/GB2519451B/en active Active
- 2013-06-26 FR FR1356133A patent/FR2992581B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2095703A (en) * | 1981-03-27 | 1982-10-06 | Leybold Heraeus Gmbh & Co Kg | Methods and apparatus for forming electrically conductive transparent oxide coatings |
WO2000074948A1 (en) * | 1999-06-03 | 2000-12-14 | Mobil Oil Corporation | Epoxy coated multilayer structure for use in the producton of securiy documents |
WO2008042631A1 (en) * | 2006-10-04 | 2008-04-10 | 3M Innovative Properties Company | Ink receptive article |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11725382B2 (en) | 2010-05-05 | 2023-08-15 | Allsteel Inc. | Modular wall system |
US10593006B2 (en) | 2015-07-10 | 2020-03-17 | De La Rue International Limited | Methods of manufacturing security documents and security devices |
US10861121B2 (en) | 2015-07-10 | 2020-12-08 | De La Rue International Limited | Methods of manufacturing security documents and security devices |
WO2018209390A1 (en) * | 2017-05-17 | 2018-11-22 | Ccl Secure Pty Ltd | A banknote |
GB2575603A (en) * | 2017-05-17 | 2020-01-15 | Ccl Secure Pty Ltd | A banknote |
GB2575603B (en) * | 2017-05-17 | 2022-02-16 | Ccl Secure Pty Ltd | A banknote |
AU2018271144B2 (en) * | 2017-05-17 | 2023-05-25 | Ccl Secure Pty Ltd | A banknote |
US11926170B2 (en) | 2017-05-17 | 2024-03-12 | Ccl Secure Pty Ltd | Banknote |
WO2019197798A1 (en) * | 2018-04-10 | 2019-10-17 | De La Rue International Limited | Security print media and method of manufacture thereof |
AU2019253486B2 (en) * | 2018-04-10 | 2023-09-28 | De La Rue International Limited | Security print media and method of manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
AU2013284329B2 (en) | 2017-07-13 |
AU2013284329A1 (en) | 2015-01-29 |
GB2519451B (en) | 2019-07-03 |
CH708535B1 (en) | 2018-03-29 |
CN104507701A (en) | 2015-04-08 |
AU2012100979A4 (en) | 2012-09-06 |
US20150322222A1 (en) | 2015-11-12 |
FR2992581A1 (en) | 2014-01-03 |
AU2012100979B4 (en) | 2012-10-04 |
CN104507701B (en) | 2017-11-10 |
MX2014015626A (en) | 2015-08-20 |
BR112014031779A2 (en) | 2017-06-27 |
GB2519451A (en) | 2015-04-22 |
FR2992581B1 (en) | 2020-02-14 |
DE112013003009T5 (en) | 2015-03-05 |
IN2014DN10886A (en) | 2015-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2013284329B2 (en) | Antistatic film | |
KR100994662B1 (en) | Biaxially oriented multi-layer laminated film and method for manufacture thereof | |
KR101415115B1 (en) | Highly adhesive multilayer thermoplastic resin film | |
HUT77829A (en) | Multilayer film structures for use in the production of banknotes or the like | |
CZ375696A3 (en) | Crosswise laminated multilayer foil structures usable particularly in the production of banknotes | |
KR19990030173A (en) | Biaxially Oriented Multilayer Polyester Film, Uses thereof, and Methods for Making the Same | |
WO2000018829A1 (en) | Thermoplastic resin film and label sheet comprising the same | |
EP1263584A1 (en) | Opaque polymeric films cavitated with pbt and polycarbonate | |
EP2558292A1 (en) | Labels | |
JP6776612B2 (en) | Laminated biaxially stretched polyester film | |
DE60215341T2 (en) | WHITE POLYESTERLAMINATE AND IMAGE RECEIVING LAYER FOR THERMOT TRANSFER RECORDING METHOD | |
WO2023062963A1 (en) | Laminate, packaging material, and packaged article | |
JP2017214559A (en) | Film for molding and molding transfer foil using the same | |
JP2018192741A (en) | Laminated decorative structure | |
JP4925897B2 (en) | Election ballot | |
JP6880621B2 (en) | Thermoplastic resin film | |
CA2459589C (en) | High modulus thermoplastic films and their use as cash register tapes | |
JP4868328B2 (en) | Method for obtaining vapor-deposited film of specific thickness and laminate obtained using the method | |
KR100270479B1 (en) | Lamination film | |
JP3966055B2 (en) | White laminated polyester film and receiving sheet for thermal transfer recording using the same | |
JPH0747600A (en) | Syndiotactic polystyrene film | |
JP2002355933A (en) | Metal can outer surface laminating multilayer laminate film | |
JPH1134593A (en) | Transfer material for multistage press | |
JP2004255590A (en) | Packaging film | |
JP2004250103A (en) | Packaging film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13809231 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 1422375 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20130614 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1422375.4 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/015626 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112013003009 Country of ref document: DE Ref document number: 1120130030098 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14411350 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10201400002034 Country of ref document: CH |
|
ENP | Entry into the national phase |
Ref document number: 2013284329 Country of ref document: AU Date of ref document: 20130614 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014031779 Country of ref document: BR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13809231 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112014031779 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141218 |