WO2013191173A1 - Sample dispensing apparatus, crystallization method for protein, and microplate formation sheet - Google Patents

Sample dispensing apparatus, crystallization method for protein, and microplate formation sheet Download PDF

Info

Publication number
WO2013191173A1
WO2013191173A1 PCT/JP2013/066723 JP2013066723W WO2013191173A1 WO 2013191173 A1 WO2013191173 A1 WO 2013191173A1 JP 2013066723 W JP2013066723 W JP 2013066723W WO 2013191173 A1 WO2013191173 A1 WO 2013191173A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity
sample
microplate
dispensing
protein
Prior art date
Application number
PCT/JP2013/066723
Other languages
French (fr)
Japanese (ja)
Inventor
正勝 羽藤
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Priority to JP2014521477A priority Critical patent/JP6233889B2/en
Publication of WO2013191173A1 publication Critical patent/WO2013191173A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • C07K1/306Extraction; Separation; Purification by precipitation by crystallization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Definitions

  • the present invention relates to a sample dispensing apparatus, a protein crystallization method, and a microplate forming sheet, and more specifically, a sample dispensing apparatus, a protein crystallization method, and a microplate forming sheet that can be used for crystallization of a membrane protein.
  • a sample dispensing apparatus a protein crystallization method, and a microplate forming sheet that can be used for crystallization of a membrane protein.
  • Protein is an important molecule responsible for various life activities in the living body, and exerts the correct function by taking the correct three-dimensional structure. Therefore, analysis of the structure of proteins leads to a deep understanding of life phenomena, and the information obtained by structural analysis is useful for efficient development of drugs that control the action of proteins that cause diseases, for example. To do.
  • some proteins are difficult to crystallize with high quality necessary for three-dimensional structure analysis.
  • membrane proteins called difficult-to-analyze proteins play an important role in biological functions such as various receptors and channels in cells. Therefore, the structural information has not only academic value but also industrial value such as drug development.
  • membrane proteins are difficult to be prepared in large quantities, crystallized and structurally analyzed with the current state of the art while maintaining activity (function). Therefore, from the academic and industrial point of view, progress in further technique for obtaining a three-dimensional crystal is essential in X-ray structural analysis of membrane proteins is desired.
  • Non-patent Document 1 As a technique for obtaining a three-dimensional crystal of a membrane protein, the lipid mesophase method (Non-patent Document 1) is considered to be one of the promising methods.
  • the lipid mesophase method enables X-ray crystallographic analysis of membrane proteins that have not been successful for many years, such as ⁇ 2-adrenergic G protein coupled receptor (Non-patent document 2) and bacteriorhodopsin (Non-patent document 3). I have to.
  • the lipid mesophase method is a technique in which a membrane protein is reconstituted in a lipid mesophase having a lipid bilayer as a constituent unit, and crystallized as it is in a lipid bilayer matrix.
  • lipid mesophase method as a commonly used method, first, an aqueous solution containing a membrane protein is obtained by mixing (i) a matrix lipid or (ii) a matrix lipid and an appropriate aqueous solution in advance. To prepare a sample of lipid mesophase containing membrane protein (referred to as protein-lipid mesophase sample or simply sample).
  • a quantity of protein-lipid mesophase sample is then dispensed into the wells of the screening plate.
  • a crystallization solution having a different composition is added to each well to start crystallization, and a solution condition for crystal growth of the membrane protein is searched.
  • the lipid mesophase method uses a protein-lipid mesophase sample instead of a solution containing a solubilized membrane protein. Crystallization is proceeding with almost the same concept and procedure as the crystallization method (Non-Patent Document 4).
  • Non-patent Document 5 A working example of the lipid mesophase method using this apparatus is as follows. 1) A protein-lipid mesophase sample is manually filled into a dispensing microsyringe (about 25-100 ⁇ l of microsyringe). 2) The dispensing microsyringe is manually set in the sample dispensing microdispenser part of the apparatus. 3) Manually set the 96-well screening plate and 96-well crystallization solution box in the instrument.
  • the protein-lipid mesophase sample differs greatly from the protein solution solubilized with the surfactant, and the crystallization mechanism of the lipid mesophase method is also crystallized from the protein solution solubilized with the conventional surfactant. It is different from that of how to do Therefore, conventional techniques based on conventional biochemistry and molecular biology techniques accumulated by conventional crystallization using a surfactant-solubilized protein solution make the most of the advantages of the lipid mesophase method. It cannot be said that it is completely clear, and it is never sufficient as a method for obtaining a high-quality crystal.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an apparatus and a method suitable for crystallization by the lipid mesophase method.
  • the sample dispensing apparatus is a sample dispensing means for dispensing a sample of a lipid mesophase containing a plate chamber and a membrane protein to a microplate prepared in the plate chamber.
  • a dry gas having a humidity lower than that of water vapor are supplied into the plate chamber.
  • the “lipid mesophase method” is prepared by mixing an aqueous solution containing a membrane protein with (i) a matrix lipid or (ii) a lipid mesophase obtained by previously mixing a matrix lipid and an appropriate aqueous solution.
  • This refers to a technique in which a membrane protein is crystallized in a lipid bilayer matrix using a lipid mesophase sample (protein-lipid mesophase sample) containing the membrane protein.
  • the "lipid mesophase” as used herein refers to a substance or state having intermediate properties between solid and liquid emerging in the lipid / aqueous mixed system.
  • lipid mesophases are “cubic liquid crystals” in which the lipid bilayer has a three-dimensional continuous structure, and “lamellar liquid crystals” and “cubic liquid crystals” in which the lipid bilayers are stacked in one direction.
  • a mesophase having a lipid bilayer membrane as a constitutional unit such as a “sponge phase” in which order is lost can be mentioned.
  • the conventional lipid mesophase method suppresses changes in the concentration of each component in the crystallization solution due to the evaporation of water during the dispensing of the protein-lipid mesophase sample and the crystallization solution. Therefore, approximately 85% R.D. H.
  • Non-Patent Document 5 the simple method of spraying the humidified air from a humidifier directly on the plate surface where crystallization solution is dispensed is used.
  • the quality of the protein crystal greatly depends on the humidity condition at the time of dispensing the protein-lipid mesophase sample. I found a peculiar phenomenon. This is thought to be because the fine structure of the protein-lipid mesophase sample changes depending on the humidity at the time of dispensing, and in order to fully utilize the humidity effect peculiar to such a lipid mesophase method, more precise analysis is required. It was found that it was necessary to perform humidity control during injection.
  • the humidity in this specification means the relative humidity which expressed the ratio of the water vapor pressure of gas and the saturated water vapor pressure at the temperature in%, and the specific numerical value is% R. H. It shall be expressed as Further, “strictly adjusting the humidity in the plate chamber” means that a desired humidity is set and the humidity inside the plate chamber is set to a set humidity value ⁇ 1% R.D. H. , Preferably ⁇ 0.5% R.D. H. It is intended to be within the scope of
  • the protein crystallization method according to the present invention dispenses a sample of lipid mesophase containing a membrane protein into a microplate prepared in the plate chamber.
  • a protein crystallization method comprising a pasting step of pasting a transparent cover on the upper surface of the microplate after the mixing step, and a crystal growth step of crystallizing the protein in the sample after the pasting step.
  • water vapor and a lower humidity than water vapor are dried inside the plate chamber. It has a configuration for adjusting the humidity of the inside of the plate chamber by supplying a mixed gas of the gas.
  • sample dispensing step or the solution dispensing step may also serve as the mixing step.
  • a sample dispensing process is performed to dispense a sample into a microplate, and a crystallization solution is dispensed directly into the dispensed sample in the solution dispensing process, whereby the sample, the crystallization solution, and And a mixing step may be realized.
  • the microplate forming sheet according to the present invention is a microplate forming sheet having one or more well-forming through-holes that are attached to a substrate to form a microplate, and an adhesive layer is formed on the surface.
  • the well forming through hole has a structure formed by laser processing.
  • the sample dispensing device includes a humidity adjusting device that adjusts the humidity in the plate chamber.
  • This humidity adjusting device is configured to supply a mixed gas of water vapor and a dry gas having a lower humidity than water vapor. Supply into the plate chamber. Therefore, the humidity in the plate chamber can be adjusted more strictly.
  • sample dispensing device An embodiment of a sample dispensing apparatus according to the present invention will be described below with reference to FIGS.
  • the sample dispensing apparatus in the present embodiment dispenses a protein-lipid mesophase sample containing a target membrane protein into wells of a microplate when crystallization of the membrane protein by the lipid mesophase method.
  • This is an apparatus suitably used for preparing a crystallization cell by dispensing and adding a crystallization solution for performing crystallization.
  • the sample dispensing apparatus according to the present invention can be used for a 24-well microplate or the like, or a commercially available plastic screening plate or the like. Available.
  • FIG. 1 is a top view showing a schematic configuration of a sample dispensing apparatus in the present embodiment.
  • FIG. 2 is a front view showing a schematic configuration of the sample dispensing apparatus. However, a portion corresponding to a portion indicated by a broken line A-A ′ in FIG. 1 is shown in a cross section in FIG. 2.
  • the sample dispensing apparatus 1 in this embodiment includes a sample dispensing microdispenser section (sample dispensing means) 2, a crystallization solution dispensing microdispenser section (solution dispensing means).
  • a personal computer (PC) (not shown) for controlling the operation of the crystallization solution dispensing microdispenser unit 3, the cover pasting unit 5, and the dispensing observation unit 8 is provided.
  • the sample dispensing microdispenser unit 2 dispenses a protein-lipid mesophase sample to each well of a microplate such as a 96-well screening plate placed in the plate chamber 4.
  • the sample dispensing microdispenser unit 2 has a detachable syringe 17 for discharging a protein-lipid mesophase sample.
  • Sample dispensing microdispenser unit 2 the protein in the order specified at specified points in a microplate - a lipid mesophase sample dispensing.
  • Protein from the syringe 17 - discharge amount of lipid mesophase sample is set to an arbitrary amount (1 nl units) in the range of, for example, 10 nl ⁇ 200 nl.
  • the discharge speed is set to an arbitrary speed (in units of 0.1 mm / sec) within a range of 1 mm / sec to 30 mm / sec, for example.
  • the sample dispensing microdispenser section 2 has a syringe chip cover that can store a syringe chip (discharge section) that is the tip of the syringe 17.
  • a melamine sponge, etc., moistened with water is installed in the syringe tip cover, except when dispensing protein-lipid mesophase samples to prevent the syringe tip from drying and to remove the contamination of the outer surface of the syringe tip.
  • the tip of the syringe 17 is stored in a syringe tip cover. Incidentally, the protein - while dispensed lipid mesophase sample to a microplate, the tip of the syringe 17 is held at all times the plate chamber 4.
  • the crystallization solution dispensing microdispenser unit 3 dispenses the crystallization solution to each well of a microplate such as a 96-well screening plate placed in the plate chamber 4.
  • the crystallization solution is dispensed and added to the protein-lipid mesophase sample dispensed into the well by the sample dispensing microdispenser unit 2.
  • the crystallization solution dispensing microdispenser unit 3 includes eight dispensing heads 18 to which a disposable chip can be attached and detached.
  • the crystallization solution dispensing microdispenser unit 3 attaches the disposable chips set in the disposable chip rack 6 to the dispensing head 18, and prepares the crystallization solution rack 7 in each of the dispensing heads 18 to which the disposable chips are attached.
  • the crystallization solution is sucked from the crystallization solution box thus formed, held in the disposable chip, and discharged to a designated portion of the microplate.
  • the discharge amount of the crystallization solution is set to an arbitrary amount (0.1 ⁇ l unit) in the range of 0.8 to 10 ⁇ l, for example.
  • the suction amount, suction speed, and discharge speed of the crystallization solution are appropriately set according to the type of the crystallization solution.
  • liquids having various viscosity ranges from low viscosity liquid to high viscosity liquid such as water, 50% PEG 8,000, and 30% PEG 20,000 are assumed.
  • the crystallization solution dispensing microdispenser unit 3 removes the attached disposable chip and discards it.
  • the crystallization solution dispensing microdispenser unit 3 is not limited to eight dispensing heads, and may be eight or more or less, and further uses a fixed needle tip. Also good.
  • the crystallization solution dispensing microdispenser unit 3 includes a chip sensor that detects the attachment of the disposable chip in each of the dispensing heads 18 and an attachment determination unit that determines the quality of the attachment based on the detection data. When the attachment determination unit determines that the attachment is defective, the attachment operation is performed again.
  • the cover affixing unit 5 affixes a transparent cover to the well formation surface of the microplate on which the protein-lipid mesophase sample and the crystallization solution have been dispensed.
  • a cover glass since a cover glass is used as a transparent cover, a cover glass will be described below as an example, but the transparent cover is not limited to glass.
  • the cover attaching part 5 can be moved on the plate chamber 4 and the cover storage part 27 by the guide rail 26 and the drive mechanism. That is, it can move in the direction indicated by the double-ended arrow B in FIG.
  • FIG. 3 is a diagram schematically showing a side surface of the cover pasting portion 5.
  • the cover sticking part 5 is comprised by the support part 5b which enables the movement to an up-down direction while supporting the cover glass sticking part main body 5a and the cover glass sticking part main body 5a.
  • a suction pad 19 for sucking and holding the cover glass is provided on the lower side of the cover pasting portion main body 5a. Further, in order to enable even a thin cover glass to be transported without being damaged, the suction pad 19 is provided with a plurality (four) of soft rubber cover glass suction ports.
  • the cover pasting unit body 5a has a transport unit that takes out one cover glass by the suction pad 19 from the cover storage unit 27 in which the cover glass is stored, and transports the cover glass vertically above the microplate.
  • the cover pasting portion main body 5a When the cover glass is transported vertically above the microplate, the cover pasting portion main body 5a is lowered, the cover glass is brought into contact with the adhesive surface of the upper surface (well forming surface) of the microplate, and a predetermined distance is further increased. Pressure is applied by lowering to complete the adhesion between the cover glass and the adhesive surface.
  • the cover pasting part main body 5a has a rotating protective cover removing claw 20.
  • the cover adhering unit 5 adsorbs the cover glass. Before that, it moves onto the plate chamber 4 and peels off the protective cover of the double-sided adhesive plastic sheet using the protective cover removal claw (peeling means) 20 to expose the adhesive surface. Then, go on to the cover storage unit 27, the suction and one sheet of cover glass, again, to move on to the plate chamber 4, paste the cover glass to the microplate.
  • the cover storage unit 27 is placed between the standby position of the cover pasting unit 5 and the plate chamber 4.
  • a mat made of a resin tape or a soft and porous material such as paper, non-woven fabric, and sponge is laid.
  • the adhesive force between the thin cover glass of 30 ⁇ m thickness and the bottom surface is weakened, suction becomes easier, and suction errors are prevented. be able to.
  • the plate chamber 4 is a chamber for dispensing the protein-lipid mesophase sample and the crystallization solution to the microplate.
  • FIG. 4 is an exploded perspective view of the plate chamber.
  • the plate chamber 4 is provided with a mounting table 21 for mounting the microplate and a glass plate mounting table 25 for performing a test shot of the sample.
  • the plate chamber 4 is provided with a movable lid 12 that covers the upper portion of the plate chamber 4.
  • the inside of the plate chamber 4 is adjusted to a desired humidity by a humidity adjusting device 11.
  • the movable lid 12 is moved along a uniaxial direction (direction indicated by a double-ended arrow B in FIG. 1) by a lid driving unit 22 connected to the side surface of the lid 12. The operation is controlled by the PC.
  • a slit (opening) 15 is formed in the movable lid 12 covering the upper part of the plate chamber 4.
  • the sample dispensing microdispenser unit 2 introduces the tip of the syringe 17 into the plate chamber 4 through the slit 15 and dispenses the protein-lipid mesophase sample to each well of the microplate in the plate chamber 4. .
  • the dispensing observation unit indicates that a certain amount of sample is continuously dispensed by dispensing the sample to the glass plate for trial placement placed on the setting table 25. After confirming by 8, dispensing to the microplate is started.
  • the crystallization solution dispensing microdispenser unit 3 introduces a disposable chip (containing the sucked crystallization solution) portion attached to the dispensing head 18 into the plate chamber 4 through the slit 15, A crystallization solution is dispensed into a predetermined well of a microplate in the plate chamber 4.
  • the lid drive unit 22 dispenses the protein-lipid mesophase sample dispensing position and the crystallization solution dispensing position, that is, the position of the syringe 17 of the sample dispensing microdispenser unit 2 and the crystallization solution dispensing microdispenser unit 3.
  • the lid 12 of the plate chamber 4 is moved so that the slit 15 overlaps the position of the head 18.
  • the protein-lipid mesophase sample and the crystallization solution can be dispensed through the slit 15 regardless of the dispensing position of the protein-lipid mesophase sample and the crystallization solution.
  • the opening part in the plate chamber 4 is restrict
  • the lid driving unit 22 moves the lid 12 to a state where each operation can be performed when performing the operation of introducing and removing the microplate and the operation of attaching the cover glass.
  • the lid 12 of the plate chamber 4 is made of a transparent material such as glass and acrylic so that a protein-lipid mesophase sample dispensed on a microplate placed in the plate chamber 4 and a droplet of the crystallization solution can be observed. It is made of material.
  • the mounting table 21 is not particularly limited as long as it can mount and fix the microplate.
  • the mounting table 21 can be configured to circulate a Peltier element or constant temperature water to adjust the temperature of the microplate. It may be.
  • the humidity adjusting device 11 supplies a mixed gas of water vapor and a dry gas having a lower humidity than water vapor into the plate chamber 4, and adjusts the mixing ratio of the water vapor and the dry gas in the mixed gas, thereby adjusting the inside of the plate chamber 4.
  • the humidity is adjusted.
  • a mixed gas of water vapor and dry nitrogen gas is used as a mixed gas, but the mixed gas is a mixed gas of water vapor and dry gas as described above. Good. Dry gas does not affect the experiment, such as no chemical action such as oxidation and reduction on protein, lipid, protein-lipid mesophase sample, or crystallization solution, and no change in pH due to dissolution of dry gas. If there is no restriction in particular.
  • helium, argon, and nitrogen gas dry air obtained by a known dehumidifier such as a compressor method or a desiccant method, and a mixed gas thereof can be used.
  • the humidity value of the drying gas is not particularly limited as long as the inside of the plate chamber 4 can be set to a desired humidity value. However, the humidity value is low humidity ( ⁇ 0% RH) to saturation humidity (100% RH). .))
  • 0% R.D. H It is desirable to use a dry gas close to. As an example satisfying this requirement, it is clean and has 0% R.D. H. Nitrogen gas from which a dry gas close to 1 can be easily obtained can be suitably used.
  • the water vapor used to form the mixed gas only needs to be supplied as a gas containing water vapor.
  • it also includes a gas containing fine water droplets (mist). It is.
  • the gas containing water vapor has a relative humidity of 100% RH. H. It is preferable that the gas be close to.
  • dry nitrogen gas as the dry gas, an unexpected effect of preventing mold from being generated in the flow path of the mixed gas and the plate chamber 4 was obtained.
  • a mixed gas of water vapor and dry nitrogen gas is preferred.
  • the plate chamber 4 is provided with a plurality of gas supply ports 24 on each of two opposing side surfaces.
  • a gas supply pipe 23 for supplying the mixed gas into the plate chamber 4 is connected to each gas supply port 24 of the plate chamber 4.
  • the gas supply pipe 23 is branched into a Y shape a plurality of times immediately before the gas supply port 24 to form eight tip portions.
  • the eight tip portions are connected to the plate chamber 4 through different gas supply ports 24, respectively. Water vapor and dry nitrogen gas are uniformly mixed while passing through the Y-shaped branch channel.
  • the humidity control device 11 includes a dry nitrogen gas generator 9 and a vaporizing humidifier 10. Water vapor included in the mixed gas is generated by the vaporizing humidifier 10. By generating water vapor with the vaporizing humidifier 10, it is possible to generate water vapor with minimal generation of mist.
  • the humidity control device 11 includes a vaporization type humidifier 10.
  • a vaporization type natural vaporization type, heaterless fan type, osmosis membrane type, dropping permeation type, capillary type, rotation type, etc.
  • Water spray types ultrasonic type, centrifugal type, high pressure spray type, two-fluid spray type, etc.
  • steam types and composite types thereof can be used, and the humidifying mechanism is not particularly limited.
  • the crystallization solution and protein - in suppressing the complete evaporation of water from a lipid mesophase sample, 96 ⁇ 98% R. H.
  • water vapor close to saturation (100% RH) can be stably supplied. Also, when humidifying, the temperature rise that causes protein denaturation is small (preferably the temperature rise from the ambient temperature is within 1 ° C.), and the proportion of minute water droplets (mist) contained in water vapor is small Is preferred.
  • mist removing mechanism using various filters, ceramic cylinders, eliminators, and the like in the water vapor channel.
  • the humidity can be adjusted strictly without adding a mist removal device, etc., and the concentration of components in the sample and crystallization solution can be changed by dilution. Therefore, it can be preferably used.
  • the dry nitrogen gas generator 9 has the structure which supplies the nitrogen gas obtained by vaporizing liquid nitrogen.
  • a nitrogen gas cylinder or the like can be used.
  • Water vapor and dry nitrogen gas included in the mixed gas are supplied as follows, for example.
  • Water vapor A flow rate value corresponding to the target humidity calibrated in advance (specifically, the scale of the flow valve) is set by the water vapor flow rate adjustment valve at the outlet of the vaporizing humidifier 10, and thereafter a constant flow rate of water vapor is continuously applied.
  • Nitrogen gas Dry nitrogen gas obtained by vaporizing liquid nitrogen is reduced to zero under a low humidity condition such as 25% RH using a pressure reducer corresponding to the target humidity previously calibrated. .2 Mpa, 80% RH, etc., at a high humidity condition of 0.05 Mpa).
  • the flow rate is adjusted so that the actually measured humidity value in the plate chamber 4 becomes a predetermined humidity value. After the target humidity value is obtained, the dry nitrogen gas at the flow rate is continuously supplied during the sandwich plate making operation unless there is a large change in the outside air condition.
  • Humidity control device 11 by adjusting the mixing ratio of steam and dry nitrogen gas in the mixed gas supplied to the plate chamber 4, the plate chamber 4 5% R. H. ⁇ 100% R.D. H. It is possible to adjust to any relative humidity within the range.
  • the humidifying capacity of the vaporizing humidifier 10 changes.
  • the measured humidity value in the plate chamber is, for example, 0.2% R.D. H. If the dry nitrogen gas flow rate is finely adjusted at the time of the change, a constant humidity value can be easily maintained.
  • sensors for measuring the humidity and temperature of the outside air of the sample dispensing apparatus 1 are also installed. If the outside air humidity value is known, the setting of the water vapor flow rate and the setting value of the nitrogen gas flow rate can be easily adjusted.
  • a Y-shaped branch channel is provided in the gas supply pipe 23, a mixed gas is introduced into the chamber from two symmetrical directions, or a lid is provided on the plate chamber 4 to provide an opening portion.
  • the humidity in the plate chamber 4 is made uniform by keeping the required amount to a minimum or by supplying appropriate amounts of water vapor and dry nitrogen gas.
  • humidity sensors 14 for detecting humidity are attached to the four corners of the plate chamber 4 one by one. Data detected by the humidity sensor 14 can be transmitted to the PC, and the humidity fluctuation can be monitored in real time on the PC screen.
  • the humidity sensor 14 is a humidity temperature sensor that can also measure the temperature.
  • the humidity inside the plate chamber 4 can be measured, and based on the measurement data, that is, based on the actual humidity inside the plate chamber 4, mixing of water vapor and dry nitrogen gas
  • the humidity in the plate chamber 4 can be adjusted by adjusting the ratio.
  • two or more humidity sensors 14 are installed in order to confirm whether or not the humidity unevenness has occurred.
  • the dispensing observation unit 8 images the state of dispensing of the protein-lipid mesophase sample.
  • the dispensing observation unit 8 also performs imaging of the state of dispensing of the crystallization solution.
  • the dispensing observation unit 8 includes a color CMOS camera as imaging means. The image captured by the color CMOS camera is taken into the attached storage device, and the captured image of the well of the microplate is displayed on the PC screen in almost real time.
  • Protein-lipid mesophase samples are highly viscous materials with complex rheological properties. Therefore, even after the dispensing operation is stopped, spontaneous discharge or spontaneous contraction occurs in the syringe 17. Thus, at the start of dispensing, it often happens that even if a dispensing operation is performed, the sample is not discharged, or a larger amount of sample is discharged than set. In order to avoid this, it is possible to start trial dispensing of the sample before starting dispensing and after confirming that a certain amount of sample has been dispensed stably, dispensing to the microplate can be started. preferable.
  • a protein-lipid mesophase sample is dispensed in an amount of, for example, 20 nl to 100 nl, but a small amount of a protein-lipid mesophase sample droplet of 20 nl to 100 nl is a minute body having a diameter of about 1 mm or less. Therefore, even if it is found that the protein-lipid mesophase sample has been dispensed at the start of dispensing, it can be accurately determined with the naked eye without the dispensing observation unit 8 whether or not a certain amount has been dispensed continuously. It is impossible to judge.
  • the test plate is subjected to test punching about 2 to 5 times in the plate chamber 4 to obtain a constant amount. Whether or not the amount is continuously dispensed is confirmed using the dispensing observation unit 8.
  • the sample dispensing apparatus includes a dispensing observation unit 8 and observes the state of the protein-lipid mesophase sample droplet dispensed from the syringe 17 or the well into which it is dispensed on the screen of the PC. be able to. Thereby, since a defective dispensing well can be confirmed during the dispensing operation, re-dispensing is performed on the sample dispensing microdispenser unit 2 and the crystallization solution dispensing microdispenser unit 3 as necessary. It is possible to perform appropriate dispensing in each well.
  • initial setting such that the tip of the syringe 17 is located at the center of the well is performed using the color CMOS camera.
  • the operator than to position the naked eye is not complicated, short (e.g., about 10 seconds) can be completed positioning within the.
  • movement control and positioning control of the sample dispensing microdispenser unit 2 and the crystallization solution dispensing microdispenser unit 3 can be realized by a conventionally known technique.
  • movement control and positioning control of the lid driving unit 22, the cover pasting unit 5, and the cover pasting unit main body 5a can also be realized by those skilled in the art with reference to conventionally known techniques.
  • the protein crystallization method in the present embodiment is a protein crystallization method using a lipid mesophase method, and is a sample dispensing method in which a protein-lipid mesophase sample is dispensed onto a microplate prepared in the plate chamber.
  • a pasting step of pasting a transparent cover on the upper surface of the microplate, and a crystal growth step of crystallizing the protein in the sample after the pasting step are included.
  • the humidity inside the plate chamber is adjusted by supplying a mixed gas of water vapor and dry nitrogen gas to the inside of the plate chamber.
  • the humidity inside the plate chamber varies depending on the type of protein to be crystallized.
  • the protein crystallization method in the present embodiment can be preferably carried out by using the sample dispensing apparatus in the above-described embodiment.
  • the humidity control when dispensing the protein-lipid mesophase sample is very important for the success or failure of crystallization and the quality of the crystal.
  • lipid used in the lipid mesophase method a lipid capable of forming a reverse cubic liquid crystal in water is used.
  • monoacylglycerols represented by 1-oleoyl-rac-glycerol (monoolein)
  • monoolein monoolein
  • 1-O -(3,7,11,15-tetramethylhexadecyl) - ⁇ -D-xyloside 1-O -(3,7,11,15-tetramethylhexadecyl) - ⁇ -D-xyloside
  • isoprenoid chain lipid Non-patent literature: Hato, M. et al., Langmuir 2002, 18 (9), 3425-3429. ; Hato, M.
  • the microplate is a microplate formed by a substrate and a microplate forming sheet having one or more well-forming through holes attached to the substrate.
  • Transparent covers affixed to the substrate and microplate are used for microscopic observation of crystallization processes (normal light, polarization, fluorescence, UV, multiphoton excitation laser scanning, interference, etc.), circular dichroism spectrum, UV-visible spectrum In addition to measurement of FRAP (Fluorescence Recovery After Photo-bleaching) and FCS (FluorescenceCorrelation Spectroscopy), etc.
  • various types of glass, natural or artificial quartz, inorganic materials such as silicon nitride, and organic materials such as polymers can be used.
  • various glasses and natural or artificial quartz are used that are free of birefringence, are non-fluorescent, and do not elute into crystallization solutions and protein-lipid mesophase samples.
  • Lipid mesophase is a viscous substance having a viscosity comparable to silicon grease. Therefore, the lipid mesophase dispensed into the microplate does not naturally form a smooth surface like a liquid, but becomes a lump having a surface with irregular irregularities. Therefore, the lipid mesophase dispensed on the microplate causes light to be reflected or refracted in a complex manner. It is very difficult to observe the microcrystal inside the lipid mesophase as a clear image through such a surface having irregularities. Furthermore, the refractive index of the lipid mesophase ( ⁇ 1.45) is closer to the refractive index of the protein ( ⁇ 1.5) than the solution containing the solubilized membrane protein ( ⁇ 1.33).
  • Lipid mesophases are also often birefringent. For this reason, in plastic microplates that have been commonly used in other crystallization methods, it is difficult to observe fine protein crystals due to the birefringence of the plastic (particularly in observation with a polarizing microscope). For this reason, in the lipid mesophase method, a protein-lipid mesophase sample to which a crystallization solution has been added is generally sandwiched between two glass plates to form a glass sandwich cell (see above). Non-patent document 4).
  • a glass sandwich cell generally includes a 1 mm thick glass plate of SBS (Society for Biological Screening) standard specification size, a double-sided adhesive plastic sheet (thickness of about 140 ⁇ m) provided with 96 through holes, and It is composed of 0.2 mm thick cover glass. Specifically, the plastic sheet having a through-hole is attached to the glass plate, and after the protein-lipid mesophase sample and the crystallization solution are dispensed into 96 wells formed thereby, the plastic sheet A glass sandwich cell sandwiched between samples is formed by covering and sealing the upper surface of the substrate with the above cover glass.
  • SBS Society for Biological Screening
  • a thin glass plate (glass substrate) having a thickness of 30 ⁇ m to 150 ⁇ m is used as the glass plate in addition to the standard glass sandwich cell, and the cover glass has a thickness of 30 ⁇ m to 150 ⁇ m.
  • a thin glass plate is used. That is, the formed glass sandwich cell is a thin glass sandwich cell sandwiched between two thin glass plates having a thickness of 30 ⁇ m to 150 ⁇ m. More preferably, it is a thin glass sandwich cell sandwiched between two thin glass plates having a thickness of 50 ⁇ m to 150 ⁇ m.
  • the crystallization solution used for the purpose of inducing protein crystallization is not only the interaction between membrane proteins but also the lipid mesophase used as a crystallization field. It was found that the structure of the protein also changes, and that the structural change also determines the success or failure of protein crystallization. Therefore, in the crystallization of membrane protein by the lipid mesophase method, crystallization not only in optimizing the interaction between membrane proteins but also in the structure control of lipid mesophase is necessary. Since membrane-protein interaction and lipid mesophase structure are independent factors, there is no other way to optimize them simultaneously than by repeating many trials and errors beyond the conventional method, which is the bottleneck of the lipid mesophase method. It has become.
  • SAXS X-ray small angle scattering
  • Non-Patent Document 6 a method of measuring lipid mesophase structure using SAXS beam line using synchrotron radiation.
  • measurement is performed using a plastic cell with low X-ray absorption rather than a standard glass sandwich cell used in actual crystallization screening. Therefore, it is still difficult to directly measure the lipid mesophase structure in a standard glass sandwich cell in which actual crystallization screening is performed. Further, as described above, it is difficult to observe crystals in the plastic cell, and small crystals may be missed. Therefore, it is difficult to perform actual crystallization screening in a plastic cell.
  • the absorption of X-rays in the glass is extremely less than that of the conventional standard glass sandwich cell. Therefore, it is possible to perform SAXS measurement by directly setting the formed thin glass sandwich cell on a device that can be used as needed in a normal laboratory. Therefore, it is possible to easily know the structure of lipid mesophase and its change at any point in the protein crystal growth process.
  • the standard glass sandwich cell formed by the conventional lipid mesophase method has the following problems.
  • a crystal When a crystal is obtained in the screening process, it is important to quickly and accurately determine whether it is a protein crystal or a crystal other than a protein such as an electrolyte.
  • the identification of the protein crystal can also be performed by using, for example, a UV microscope.
  • a protein crystal Even if a protein crystal is obtained, it is very often a protein crystal from which an X-ray diffraction point necessary for structural analysis cannot be obtained. Therefore, it is further necessary to quickly and accurately determine whether or not the obtained protein crystal is a protein crystal from which an X-ray diffraction point can be obtained, and further, the resolution of the diffraction point.
  • the cover glass is mechanically broken (only the part covering the target well).
  • the crystal inside the well must be collected by cutting the sample with a cutter.
  • the mechanical breakage of the cover glass will cause mechanical damage to the crystal.
  • reliable evaporation results cannot be obtained because many uncertain factors are caused by the evaporation of moisture during the sampling process, which causes crystal alteration and dissolution, and fine glass fragments are mixed when the cover glass is broken.
  • the absorption of X-rays in the glass is extremely less than that of the conventional standard glass sandwich cell. Therefore, the X-ray diffraction experiment of the protein crystal contained in the cell can be performed as it is with the thin glass sandwich cell without mechanically destroying the thin glass sandwich cell and taking out the crystal.
  • the through hole in the plastic sheet (microplate forming sheet) forming the standard or thin glass sandwich cell used in the crystallization method of the present embodiment is formed by laser processing.
  • a processing machine using a diode laser, a yag laser, a CO2 laser, or the like can be used.
  • the processing can be performed under optimum conditions by adjusting the processing conditions within a range of 20 W to 300 W.
  • a 96-well microplate under the conditions of output: 250 W, frequency: 500 Hz, duty: 100%, speed: 2500 mm / min, correction: 0.19 mm, gas pressure: 0.5 kgf / cm 2 , assist gas: air Can be suitably performed.
  • the plastic used in the conventional crystallization method is used for the components other than the through holes, such as the material forming the plastic sheet, the thickness of the plastic sheet, and the adhesive layer formed on both surfaces of the plastic sheet.
  • Each configuration in the sheet can be used.
  • the through hole is formed by laser processing, the through hole can be easily formed even if the material and thickness of the plastic sheet, the type of adhesive, the size, shape, and layout design of the well are changed. Can do.
  • a microplate-forming sheet that can easily implement new crystallization means that could not be carried out until now, such as vapor diffusion type lipid mesophase crystallization, can be obtained. Can be created.
  • a through hole forming a well is formed by mechanical punching.
  • mechanical punching burrs are formed at the edge of the processed hole, and unevenness is also generated in the adhesive layer between the holes due to mechanical stress during processing.
  • a thin cover glass having a thickness of 30 ⁇ m to 150 ⁇ m is attached to the uneven adhesive layer, a gap is formed between the cover glass and the adhesive layer, thereby forming a passage between adjacent wells.
  • water vapor moves between adjacent wells, and the independence of each well is lost.
  • ⁇ Plastic sheets with through holes formed by laser processing do not apply mechanical stress around the processed holes. Therefore, it is possible to prevent unevenness from occurring in the adhesive layer. For this reason, a sandwich cell can be automatically created without causing the above-described problems during pasting.
  • the sample dispensing apparatus includes a plate chamber, a sample dispensing means for dispensing a lipid mesophase sample containing a membrane protein to a microplate prepared in the plate chamber, and a protein.
  • a solution dispensing means for dispensing a crystallization solution for crystallization into the microplate, and a humidity adjusting device for adjusting the humidity in the plate chamber are provided. It has a configuration for supplying a mixed gas with a low-humidity dry gas into the plate chamber.
  • the protein-lipid mesophase sample is dispensed to the microplate and the crystallization solution is dispensed to the microplate in the plate chamber in which the internal humidity is adjusted.
  • the mixed gas supplied to the plate chamber of the drying gas of low humidity than water vapor and steam, and it controls the humidity of the plate chamber. Therefore, by changing the mixing ratio of water vapor and dry gas in the mixed gas to be supplied, the humidity in the plate chamber can be easily set to an arbitrary humidity value between the humidity value of water vapor and the humidity value of dry gas. Can be adjusted strictly. Thereby, the sample can be dispensed and the crystallization solution can be dispensed in a plate chamber whose humidity is strictly controlled.
  • the dry gas is preferably dry nitrogen gas.
  • dry nitrogen gas is used as the dry gas, it is possible to prevent mold and the like from being generated in the mixed gas flow path and the plate chamber.
  • the humidity adjusting device includes a humidifier that generates the water vapor.
  • the humidifier is more preferably a vaporizing humidifier.
  • one or more humidity sensors are provided inside the plate chamber, and the humidity control apparatus is configured to use the mixed gas based on a measurement result of the one or more humidity sensors. It is preferable to adjust the mixing ratio of the water vapor and the dry gas.
  • the humidity inside the plate chamber is measured, and the mixed gas in which the mixing ratio of the water vapor and the dry gas is adjusted based on the measurement result is supplied into the plate chamber. Therefore, the humidity can be adjusted based on the actual humidity inside the plate chamber.
  • This mechanism can easily be automatically controlled by a computer.
  • the uniformity of humidity in the plate chamber can be confirmed.
  • a movable lid provided with an opening is provided at the top of the plate chamber.
  • the opening of the lid can function as a discharge port for the mixed gas, and at the same time, the protein-lipid mesophase sample and the crystallization solution can be dispensed through the opening.
  • the relative position of the opening with respect to the plate chamber can be changed by moving the lid in accordance with the change in the dispensing position in the microplate. Therefore, regardless of the dispensing position on the microplate, the protein-lipid mesophase sample and the crystallization solution can always be dispensed through the opening. Therefore, while the sample is being dispensed and the crystallization solution is being dispensed, the opening of the plate chamber is limited to the opening of the lid, so that the humidity in the plate chamber can be adjusted more precisely. it can.
  • imaging means for imaging at least one of a state of dispensing of the sample by the sample dispensing means and a discharge portion for discharging the sample in the sample dispensing means. Furthermore, it is preferable to provide.
  • the sample dispensing apparatus further includes an attaching means for attaching a transparent cover to the upper surface of the microplate.
  • protein - a transparent cover automatically after aliquoted lipid mesophase sample and the crystallization solution min can be pasted on the upper surface of the microplate.
  • a protective cover is attached to the microplate, and further provided with a peeling means for peeling the protective cover from the microplate.
  • the protective cover when the protective cover is attached to the microplate, the protective cover can be automatically removed immediately before the transparent cover is attached. This avoids deterioration in well tightness due to a decrease in the adhesive force between the transparent cover and the adhesive layer due to water vapor adsorption on the surface of the adhesive layer on the top surface of the microplate during dispensing operations under high humidity conditions. And the efficiency of work can be realized.
  • the protein crystallization method according to the present invention is a sample dispensing step of dispensing a lipid mesophase sample containing a membrane protein to a microplate prepared in a plate chamber in order to solve the above-described problem.
  • a protein crystallization method comprising a pasting step of pasting a transparent cover on the upper surface of the microplate after the mixing step, and a crystal growth step of crystallizing the protein in the sample after the pasting step.
  • water vapor and a lower humidity than water vapor are dried inside the plate chamber. It has a configuration for adjusting the humidity of the inside of the plate chamber by supplying a mixed gas of the gas.
  • sample dispensing step or the solution dispensing step may also serve as the mixing step.
  • a sample dispensing process is performed to dispense a sample into a microplate, and a crystallization solution is dispensed directly into the dispensed sample in the solution dispensing process, whereby the sample, the crystallization solution, and And a mixing step may be realized.
  • the humidity inside the plate chamber is adjusted by supplying a mixed gas of water vapor and a dry gas having a humidity lower than that of the water vapor, so that the humidity inside the plate chamber can be strictly adjusted. . Therefore, in an environment in which the humidity is strictly controlled, the sample can be dispensed to the microplate and the crystallization solution can be added to the sample.
  • the microplate has a glass substrate having a thickness of 30 ⁇ m to 150 ⁇ m, and a microplate forming sheet having one or more well-forming through-holes attached to the glass substrate.
  • the cover is preferably a cover glass having a thickness of 30 ⁇ m to 150 ⁇ m.
  • a so-called sandwich cell is formed in which a protein crystallization field is sandwiched between a glass substrate and a cover glass. Since both the glass substrate and the cover glass have a thickness of 30 ⁇ m to 150 ⁇ m, the absorption of X-rays by the glass in this sandwich cell is small. Therefore, in the sandwich cell state, that is, without removing the cover glass, in addition to measurements including various microscopic observations, analysis using X-rays such as structural analysis of lipid mesophase by X-rays and confirmation of X-ray diffraction in protein crystals Can be applied directly.
  • the well formation through-hole of the microplate forming sheet is formed by laser processing.
  • the adhesive layer when the adhesive layer is provided on the microplate forming sheet, the adhesive layer around the well-forming through hole formed by processing and the adhesive layer in the sheet portion other than the through hole are formed. Unevenness can be prevented from occurring. Therefore, when a cover glass is affixed, it can prevent that a space
  • the microplate forming sheet according to the present invention is a microplate forming sheet having one or more well-forming through-holes that are attached to a substrate to form a microplate, and an adhesive layer is formed on the surface.
  • the well forming through hole has a structure formed by laser processing.
  • the unevenness of the adhesive layer in the periphery of the through hole for forming a well of the microplate forming sheet and the adhesive layer in the sheet portion other than the through hole is compared with that in which the through hole is formed by mechanical punching. Therefore, when the cover glass is attached to the microplate forming sheet, the generation of voids can be suppressed.
  • Example 1 Evaluation of controllability of humidity
  • the controllability of the humidity in the plate chamber of the sample dispensing apparatus in the present embodiment by mixing water vapor and dry nitrogen gas is expressed as a humidity value of 98% R.D. H. 70% R.V. H. , And 25% R.V. H.
  • the results are shown in FIGS.
  • the horizontal axis in FIGS. 5A to 5C represents the time from the start of data acquisition of the experiment.
  • the vertical axes in FIGS. 5A to 5C represent the humidity values in the plate chamber measured by the respective humidity temperature sensors installed at the four corners in the plate chamber.
  • the humidity temperature sensor measures the humidity value in the plate chamber every 5 seconds.
  • the measured values from the four humidity temperature sensors are indicated by solid lines, broken lines, thick solid lines, or thick broken lines.
  • the water vapor flow rate was constant, and the humidity value was controlled by adjusting the flow rate of dry nitrogen gas.
  • the upward arrow in the figure indicates that the dry nitrogen gas flow rate has been reduced to increase the humidity value at that time, and the downward arrow indicates the dry nitrogen gas flow rate to decrease the humidity value at that time point. It shows that increased.
  • the humidity temperature sensor was corrected using an aqueous electrolyte solution with a known equilibrium gas phase humidity value (for example, non-patent literature: RH Stokes and RA Robinson, Ind. Eng. Chem., 1949, 2013).
  • sample dispensing in this embodiment is performed. It was shown that humidity control is possible with sufficient response sensitivity. Such controllability is 98% R.D. H. 70% R.D. H. (FIG. 5B), and 25% R.D. H. In the case of (C in FIG. 5), similar responsiveness is shown.
  • the sample dispensing device in the present embodiment can obtain good controllability in a wide humidity range.
  • Example 2 Evaluation of time stability of humidity control
  • a microplate is installed in the plate chamber of the sample dispensing apparatus in the present embodiment, and the relative humidity value in the plate chamber is set to 98% R.D. H. (A in FIG. 6), 90% R.I. H. (FIG. 6B), 70% R.D. H. (C in FIG. 6), 25% R.D. H. (D in FIG. 6), or 5% R.D. H.
  • the humidity value when set to (E in FIG. 6) was monitored over 30-40 minutes.
  • the results are shown in FIGS.
  • the horizontal axis in A to E of FIG. 6 represents the time from the start point of the experimental data acquisition.
  • the vertical axis in A to E of FIG. 6 represents the humidity in the chamber obtained from each of the four humidity temperature sensors installed at the four corners in the plate chamber.
  • the humidity temperature sensor measures the humidity value in the plate chamber every minute. Measurements from four different humidity temperature sensors are represented by four different symbols.
  • each of the four sensor values over a 30 minute period was 98 ⁇ 0.5% R.D. H. It was stably controlled within the range. That is, it was shown that the humidity in the plate chamber could be controlled uniformly and stably within 1%. Since the actual dispensing operation is about 10 minutes per microplate, the above results show that stable humidity control that is sufficient for the purpose of the present invention can be performed. Also, under other humidity value setting conditions, 98% R.D. H. As a result, essentially the same accuracy and time stability were confirmed, and it was shown that humidity control within 1% was possible.
  • the increase or decrease in the humidity value seen in C in FIG. 6 is due to fluctuations in the outside air temperature that occur when the room air conditioner in the room where the sample dispensing device is installed, etc. This is partly because of fluctuations.
  • a constant humidity value can be easily maintained by finely adjusting the nitrogen flow rate as appropriate by continuously monitoring the humidity value.
  • the humidity control was hardly affected by the movement of the lid accompanying the dispensing operation or the entrance / exit of the sample dispensing microsyringe or the crystallization solution dispensing tip.
  • the control time is 30 to 40 minutes, but it is easy to extend this time further.
  • the humidity in the plate chamber can be stably controlled for a long period of time at an arbitrary set value in a wide range from 5% to almost 100%.
  • the composition of the crystallization solution is so complex that there is some variation for individual solutions, but the humidity of the gas phase in equilibrium with the crystallization solution estimated from the average composition and concentration of the crystallization solution is 96-99% R.D. H. It is estimated that On the other hand, the equilibrium water vapor pressure of the protein-lipid mesophase sample also depends on the composition and concentration of the aqueous solution contained in the protein-lipid mesophase, but is 96 to 99% R.S. like the crystallization solution. H. It is estimated that it is in the range. Therefore, humidity 98% R.D. H. These conditions are conditions in which there is almost no evaporation and condensation (see Example 4 below).
  • Example 3 Temperature change during humidity control
  • Set humidity value to 98% R.V. H. And 90% R.V. H. (A in FIG. 7), 70% R.V. H. And 25% R.V. H. (FIG. 7B), and 5% R.I. H.
  • the temperature change in the plate chamber when the humidity was controlled in (C in FIG. 7) was measured.
  • the results are shown in FIG.
  • the horizontal axes in FIGS. 7A to 7C indicate the time from the start of data acquisition.
  • the vertical axis in FIGS. 7A to 7C indicates the temperature value from the humidity temperature sensor acquired every 5 seconds.
  • T out indicated by a broken line is an outside air temperature (temperature outside the plate chamber) measured by a humidity temperature sensor installed near the humidifier.
  • T ch indicated by a solid line is a temperature value in the plate chamber measured by four humidity temperature sensors installed at four corners in the plate chamber. Since the temperature values measured by the sensors were within 0.1 ° C., all the sensors were displayed as solid lines without distinguishing between the sensors.
  • the humidity in the plate chamber is 90% R.D. for about 40 minutes. H. And then 98% R.D. for 60 minutes. H.
  • the results when the control is performed (A in FIG. 7) will be described.
  • the outside air temperature (T out ) began to rise. This is because the outside air temperature has risen due to heat generated by components such as the motor and fan of the humidifier.
  • the temperature in the plate chamber (T ch ) started to rise as well. This is because heated water vapor (water vapor temperature at the outlet of the humidifier is about 27 to 29 ° C.) is supplied into the plate chamber for the same reason as described above.
  • the temperature in the plate chamber gradually increased from the starting temperature (19 ° C.) and increased to 19.8 ° C.
  • the steady state (19.8 ° C.) was reached, and no further temperature increase was observed until the end of the 140-minute experiment.
  • Example 4 Evaluation of moisture evaporation rate
  • a micro plate is installed in the plate chamber of the sample dispensing apparatus in the present embodiment, and the humidity in the plate chamber is set to 98% R.D. H. Set to.
  • the time change of the volume of the dispensed water droplet is reduced approximately. Measured over 35 minutes. The same measurement was performed for water droplets dispensed to each well in another row, and the experiment was repeated three times in total. The volume of water droplets at each time was determined using the following method.
  • a calibrated micro glass capillary (BLAUBRAND intre MARK 1/2/3/4/5 ul) was inserted from the upper opening of the plate chamber, and water droplets on each well were sucked into the capillary. From the change in capillary weight before and after the water droplet suction, the mass of the collected water droplet was determined. The volume was calculated on the assumption that the specific gravity of water was 1.
  • the micro glass capillary was used after washing the inner wall of the capillary with 99% or more of absolute ethanol filtered through a filter having a hole diameter of 0.1 ⁇ m and then rapidly drying with a high-pressure nitrogen stream. Thereby, the blotting error was ⁇ 3%. The results are shown in FIG.
  • a volume reduction of about 3% was measured in 35 minutes after dispensing.
  • the time required for dispensing the sample and the crystallization solution to the microplate is approximately 10 minutes. Therefore, moisture evaporation during the production of the crystallization plate is suppressed to 1% or less. Compared with the humidity control in the conventional crystal production method that allows evaporation up to 10%, the evaporation suppression is realized by nearly 10 times.
  • Example 5 Evaluation of repeated change response of humidity
  • the mixing ratio between the amount of water vapor in the mixed gas and the dry nitrogen gas was adjusted, and the humidity (RH) in the plate chamber was repeatedly changed. Specifically, the humidity is 65% R.D. H. And 98% R.V. H.
  • the humidity was measured with humidity temperature sensors installed at the four corners of the plate chamber. The results are shown in FIG. In FIG. 9, measured values from four different humidity temperature sensors are represented by four different symbols.
  • the humidity of each sensor value changed from 98% to 65% in about 1 to 3 minutes and from 65% to 98% in about 3 to 5 minutes with good reproducibility.
  • Condition A Humidity 97 ⁇ 1% R.D. H. Dispense 100 nl / well of bR mesophase under the following conditions of humidity. Immediately after dispensing, add 1 ⁇ l of crystallization solution (2.3 M sodium phosphate / potassium buffer (pH 5.6)), and attach a cover glass. Crystallization started in the dark at 20 ° C.
  • Condition B Humidity 65 ⁇ 1% R.D. H. After dispensing 100 nl / well of bR mesophase under low humidity conditions, 65 ⁇ 1% R.P. H. Incubate for 5 minutes to evaporate water from the bR mesophase, add 1 ⁇ l of crystallization solution (2.3 M sodium phosphate potassium buffer (pH 5.6)), apply cover glass, Crystallization started in the dark.
  • FIG. 10 shows the state of the crystal grown in the bR mesophase one month after the start of crystallization in Condition A
  • FIG. 10B shows the state in the bR mesophase one month after the start of crystallization in Condition B.
  • the state of the grown crystal is shown.
  • FIG. 11 shows the distribution of the size and number of crystals obtained under conditions A and B.
  • the distribution under condition A is indicated by a broken line
  • the distribution under condition B is indicated by black circles and black squares.
  • Example 7 Comparison of crystallization speed due to difference in humidity
  • bR (15.5 mg / ml) solubilized with octyl glycoside and ⁇ -XylOC 16 + 4 were mixed at a ratio of 45/55 (w / w) to reconstitute bR. (BR mesophase) was prepared.
  • BR mesophase reconstitute bR.
  • Crystallization solution 1.0M, 1.2M, 1.5M, 1.7M, 2.0M, 2.3M, 2.5M or 3.0M sodium phosphate potassium buffer (pH 5.6). is there.
  • Condition D Humidity 55 ⁇ 1% R.D. H. After dispensing 50 nl / well of bR mesophase under low humidity conditions of 55 ⁇ 1% R.P. H. Incubated for 5 minutes, then 0.8 ⁇ l of crystallization solution was added, a cover glass was applied, and crystallization was started at 20 ° C. in the dark. As in Condition C, the crystallization solution was 1.0 M, 1.2 M, 1.5 M, 1.7 M, 2.0 M, 2.3 M, 2.5 M, or 3.0 M sodium phosphate potassium buffer ( pH 5.6).
  • FIG. 12 is a diagram showing the relationship between the time (T) at which crystals were first recognized and the crystallization solution concentration.
  • T time
  • the triangular symbol indicates the result under the condition C (97% RH condition)
  • the square symbol indicates the result under the condition D (50% RH condition).
  • Condition D has a significantly shorter time (T) for which crystals are first recognized.
  • T time for which crystals are first recognized.
  • the concentration of the crystallization solution is 2.0M, 2.3M, and 2.5M
  • the time (T) at which crystals are first observed is 20 days, 2 days, and 1 day in the case of Condition D, respectively.
  • condition D crystal growth could be confirmed under all the crystallization solution concentration conditions.
  • condition C the crystal grew only when the concentration of the crystallization solution was 2.0M or more. Thus, a large difference was observed in the crystal growth behavior between conditions C and D.
  • the crystal obtained under the condition D was a hexagonal crystal exhibiting polarized light, and an X-ray diffraction point up to 2.6 mm could be confirmed, but under the condition C, only a crystal with a deformed shape was obtained.
  • Example 8 Comparison of crystal growth probability depending on humidity
  • the membrane protein proteorhodopsin (pR) (30 mg / ml) solubilized with the surfactant dodecyl maltoside and the lipid 1-O- (5,9,13,17-tetramethyloctadecanoyl) ) Erythritol (EROCOC 17 + 4 ) was mixed at a ratio of 40/50 (w / w) to prepare a lipid mesophase reconstituted pR (referred to as pR mesophase). About this pR mesophase, it dispensed on the following three conditions using the sample dispensing apparatus which concerns on embodiment mentioned above, and implemented crystallization.
  • Condition F Humidity 52 ⁇ 1% R.V. H. After dispensing 50 nl / well of pR mesophase under low humidity conditions of 52 ⁇ 1% R.P. H. Incubated for an additional 5 minutes. Immediately thereafter, the humidity was 96 ⁇ 1% R.D. H. The same 25 kinds of crystallization solutions used in condition E were added at 0.8 ⁇ l / well, a cover glass was attached, and crystallization was started at 20 ° C. in the dark.
  • Condition G Humidity 52 ⁇ 1% R.D. H. A crystallization plate was prepared under the same conditions as in Condition F except that the incubation time in was changed to 10 minutes (twice as long as Condition F), and crystallization was started in the dark at 20 ° C.
  • Crystallization was performed at 20 ° C. for one month in a dark place, but no crystal growth was observed in any of the conditions E, F, and G. Thus, when the crystallization temperature was changed to 4 ° C. and crystallization was continued, crystal growth was observed.
  • the number of crystallization solutions in which crystals were grown in 25 different crystallization solutions after changing to 4 ° C. for two months is summarized in Table 1.
  • the proportions of the crystallization solution in which crystals were grown under conditions F and G dispensed under low humidity conditions were 52% and 64%, respectively. Further, comparing the number of crystals appearing in the same crystallization solution, the number of crystals in condition G is 2 to 5 times the number of crystals in condition F, and the crystallization increases as the low-humidity incubation time during dispensing increases. The tendency to promote was recognized. On the other hand, the number of crystallization solutions in which crystals under condition E were grown was reduced to less than half of conditions F and G. Accordingly, it was shown that the humidity condition during dispensing greatly affects the subsequent crystallization behavior even in the membrane protein / lipid system different from Examples 6 and 7.
  • Example 9 Comparison of crystal growth probability depending on humidity] 40/60 (w / w) ratio of ARII (58 mg / ml) membrane protein solubilized with the surfactant dodecyl maltoside and lipid (monoolein containing 11% cholesterol) To prepare a lipid mesophase reconstituted with ARII (referred to as ARII mesophase). About this ARII mesophase, it dispensed on the following three conditions using the sample dispensing apparatus which concerns on embodiment mentioned above, and implemented crystallization. Condition H: Humidity 97 ⁇ 1% R.V. H.
  • Example 10 Confirmation of X-ray diffraction on protein crystal
  • a lysozyme crystal (50 ⁇ m ⁇ 50 ⁇ m) held in a well of a thin sandwich plate composed of a glass plate having a thickness of 150 ⁇ m and a cover glass having a thickness of 50 ⁇ m is subjected to the following conditions on a beam line BL-32XU of SPring-8.
  • X-ray reflection measurement was performed: temperature 20 ° C., camera length 300 mm, attenuator 600 ⁇ m, beam size 10 ⁇ m ⁇ 10 ⁇ m.
  • Example 11 Direct SAXS measurement and microscopic observation of lipid mesophase structure in protein crystallization process
  • Bacteriorhodopsin (bR) (10 mg / ml) solubilized with octyl glycoside as a surfactant and 1-O- (3,7,11,15-tetramethylhexadecyl) - ⁇ -D-xyloside as a lipid ( ⁇ -XylOC 16 + 4 ) was mixed at a ratio of 35/65 (w / w) to prepare a lipid mesophase (bR mesophase) reconstituted with bR.
  • the humidity is 97 ⁇ 1% R.P. H.
  • the bR mesophase was dispensed into the wells of a microplate using 50 ⁇ m-thick substrate glass at 100 nl / well under the following humidity conditions. Then 1 ⁇ l of 1.0 M, 1.2 M, 1.5 M, 1.7 M, 2.0 M, 2.3 M, 2.5 M or 3.0 M sodium phosphate potassium buffer is added to the dispensed bR mesophase. After the addition, a cover cell having a thickness of 50 ⁇ m was pasted to prepare a sandwich cell, and bR was crystallized at 20 ° C.
  • FIG. 13 shows normal light micrographs after 15 minutes, 1.5 hours, 18 hours, and 6 days, respectively
  • FIG. 13 shows polarized micrographs after 15 minutes and 1.5 hours, respectively.
  • the change in the dynamic mesophase morphology induced immediately after the start of crystallization can be clearly observed from the normal light micrograph and the polarization micrograph, and the birefringence of the lipid mesophase decreases with time. It was confirmed that the crystal was isotropic, and further 6 days after the start of crystallization, the formation of fine crystals of about 10 ⁇ m (some crystals were shown by arrows) was clearly confirmed. Further, from the SAXS measurement results shown in FIG.
  • the lipid mesophase gradually transitions from the birefringent lamellar phase to the isotropic Pn3m cubic phase as the bR crystallization progresses. Furthermore, it was confirmed that the lattice constant of the Pn3m cubic phase increased with time, and fine structure information of lipid mesophase that could not be obtained only by microscopic observation was obtained.
  • the lipid mesophase structure during crystallization can be directly measured using a SAXS apparatus that can be used at any time in a general laboratory.
  • Example 12 Evaluation of microplate forming sheet
  • the shape of the edge vicinity of a through-hole was observed with the confocal microscope. The results are shown in FIG. As shown in FIG. 15, when the through hole was formed by mechanical punching, an adhesive burr having a height of about several tens of ⁇ m was remarkably observed at the edge portion of the through hole.
  • FIG. 16B shows an enlarged photograph of the adhesion surface between the wells, and a large number of bubbles remained between the adhesive layer between the wells and the cover glass.
  • the shape near the edge of the through hole was observed with a confocal microscope for the microplate forming sheet in which the through hole was formed by laser processing.
  • the results are shown in FIG.
  • the through-hole is formed by laser processing, the height of the adhesive layer surface is low in the concentric circle portion around the width of 100 ⁇ m at the edge portion of the through-hole (maximum of about 20 ⁇ m). Although it was observed, the outside was hardly affected by the processing.
  • FIG. 18 shows an enlarged photograph of the adhesion surface between the wells.
  • FIG. 18 when the cover glass is attached to the microplate forming sheet in which the through holes are formed by laser processing, almost no residual bubbles are seen compared to the case of mechanical punching. It was confirmed that complete pasting with almost no voids could be realized.
  • the present invention can be used for crystallization of membrane proteins and screening of crystallization conditions.
  • Sample dispensing device 2 Sample dispensing micro-dispenser section (sample dispensing means) 3 Crystallization solution dispensing micro dispenser part (solution dispensing means) 4 Plate chamber 5 Cover sticking part (sticking means) 5a Cover pasting part body (sticking means) 5b Support part (sticking means) 6 Disposable tip rack 7 Crystallization solution rack 8 Dispensing observation section (imaging means) 9 Dry Nitrogen Gas Generator 10 Vaporizing Humidifier 11 Humidity Control Device 12 Lid 14 Humidity Sensor 15 Slit (Opening) 20 Protective cover removal claw (peeling means) 25 Installation stand

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To provide a sample dispensing apparatus suited to lipid mesophase methods, this sample dispensing apparatus is provided with a plate chamber (4), a sample-dispensing microdispenser unit (2), a crystallization solution-dispensing microdispenser unit (3), and a humidity control device (11) for controlling the humidity inside the plate chamber (4). The humidity control device (11) supplies a mixed gas of water vapor and dry gas to the interior of the plate chamber (4).

Description

試料分注装置、タンパク質の結晶化方法、およびマイクロプレート形成シートSample dispensing apparatus, protein crystallization method, and microplate forming sheet
 本発明は、試料分注装置、タンパク質の結晶化方法、およびマイクロプレート形成シートに関し、詳細には膜タンパク質の結晶化に利用され得る試料分注装置、タンパク質の結晶化方法、およびマイクロプレート形成シートに関する。 The present invention relates to a sample dispensing apparatus, a protein crystallization method, and a microplate forming sheet, and more specifically, a sample dispensing apparatus, a protein crystallization method, and a microplate forming sheet that can be used for crystallization of a membrane protein. About.
 タンパク質は生体内で様々な生命活動を担っている重要な分子であり、正しい立体的な構造をとることによって正しい機能を発揮する。したがって、タンパク質の構造などの解析は生命現象の深い理解につながり、構造解析によって得られた情報は、例えば、病気の原因となるタンパク質の働きを制御する薬などの効率的な開発に威力を発揮する。しかし、タンパク質の中には、立体構造解析に必要な高品質の結晶化が困難なものがある。例えば、難解析性タンパク質と呼ばれる膜タンパク質は、細胞における各種受容体およびチャネル等、生体機能に重要な役割を果たしている。そのため、その構造情報は、学術的価値があるばかりでなく、医薬品開発等の産業的価値も高い。しかしながら膜タンパク質は、活性(機能)を維持したままでの大量調製、結晶化および構造解析が現在の技術水準では困難である。そのため、学術的および産業的観点から、膜タンパク質のエックス線構造解析に必須である3次元結晶を得るためのさらなる技術の進歩が望まれている。 Protein is an important molecule responsible for various life activities in the living body, and exerts the correct function by taking the correct three-dimensional structure. Therefore, analysis of the structure of proteins leads to a deep understanding of life phenomena, and the information obtained by structural analysis is useful for efficient development of drugs that control the action of proteins that cause diseases, for example. To do. However, some proteins are difficult to crystallize with high quality necessary for three-dimensional structure analysis. For example, membrane proteins called difficult-to-analyze proteins play an important role in biological functions such as various receptors and channels in cells. Therefore, the structural information has not only academic value but also industrial value such as drug development. However, membrane proteins are difficult to be prepared in large quantities, crystallized and structurally analyzed with the current state of the art while maintaining activity (function). Therefore, from the academic and industrial point of view, progress in further technique for obtaining a three-dimensional crystal is essential in X-ray structural analysis of membrane proteins is desired.
 膜タンパク質の3次元結晶を得るための技術として、脂質メソフェーズ法(非特許文献1)が有力な手法の一つとされている。脂質メソフェーズ法は、β2-adrenergic G protein coupled receptor(非特許文献2)およびバクテリオロドプシン(非特許文献3)など、他の結晶化方法では長年にわたり成功しなかった膜タンパク質のエックス線結晶構造解析を可能にしている。脂質メソフェーズ法は、脂質二重膜を構成ユニットとする脂質メソフェーズ中に、膜タンパク質を再構成し、そのまま脂質二重膜マトリクス中で結晶化を行う手法である。 As a technique for obtaining a three-dimensional crystal of a membrane protein, the lipid mesophase method (Non-patent Document 1) is considered to be one of the promising methods. The lipid mesophase method enables X-ray crystallographic analysis of membrane proteins that have not been successful for many years, such as β2-adrenergic G protein coupled receptor (Non-patent document 2) and bacteriorhodopsin (Non-patent document 3). I have to. The lipid mesophase method is a technique in which a membrane protein is reconstituted in a lipid mesophase having a lipid bilayer as a constituent unit, and crystallized as it is in a lipid bilayer matrix.
 蒸気拡散法などの従来の結晶化法でよく用いられている方法は、可溶化した膜タンパク質を含む溶液をスクリーニングプレートのウェル内に分注する。分注後、ここに、ウェル毎に組成の異なる、タンパク質を結晶化させるための結晶化溶液(電解質および有機化合物等を含む緩衝液)を添加して結晶化を開始し、タンパク質の結晶成長する溶液条件を探索する。これに対し脂質メソフェーズ法では、よく用いられている方法として、まず、膜タンパク質を含む水溶液を(i)マトリクス脂質と、あるいは(ii)マトリクス脂質および適切な水溶液を前もって混合して得た脂質メソフェーズと混合し、「膜タンパク質を含有する脂質メソフェーズの試料(タンパク質-脂質メソフェーズ試料あるいは単に試料と呼ぶ)」を調製する。次いで、一定量のタンパク質-脂質メソフェーズ試料をスクリーニングプレートのウェル内に分注する。タンパク質-脂質メソフェーズ試料を各ウェルに分注した後、ここに、ウェル毎に組成の異なる結晶化溶液を添加して結晶化を開始し、膜タンパク質の結晶成長する溶液条件を探索する。このような意味で、脂質メソフェーズ法は、可溶化した膜タンパク質を含む溶液の代わりにタンパク質-脂質メソフェーズ試料を用いるために、用いられる実験器具が一部異なるものの、蒸気拡散法などの他の結晶化法とほぼ同じ考え方および手順で結晶化が進められている(非特許文献4)。 Methods are often used in conventional crystallization methods, such as vapor diffusion method, dispensed into solution screening plates containing membrane proteins solubilized wells. After dispensing, a crystallization solution (buffer solution containing electrolyte and organic compound) having a different composition for each well is added here to start crystallization, and protein crystals grow Search for solution conditions. On the other hand, in the lipid mesophase method, as a commonly used method, first, an aqueous solution containing a membrane protein is obtained by mixing (i) a matrix lipid or (ii) a matrix lipid and an appropriate aqueous solution in advance. To prepare a sample of lipid mesophase containing membrane protein (referred to as protein-lipid mesophase sample or simply sample). A quantity of protein-lipid mesophase sample is then dispensed into the wells of the screening plate. After the protein-lipid mesophase sample is dispensed into each well, a crystallization solution having a different composition is added to each well to start crystallization, and a solution condition for crystal growth of the membrane protein is searched. In this sense, the lipid mesophase method uses a protein-lipid mesophase sample instead of a solution containing a solubilized membrane protein. Crystallization is proceeding with almost the same concept and procedure as the crystallization method (Non-Patent Document 4).
 また、上記の探索を行うには、タンパク質-脂質メソフェーズ試料および結晶化溶液の分注作業を多数回(数百~数千回/日)繰り返す必要があり、手作業による作業には著しい困難を伴う。そのためこれらの作業の一部を自動化した装置が開発されている(非特許文献5)。この装置を用いた脂質メソフェーズ法の作業例は、次の通りである。
1)分注マイクロシリンジ(25~100μl程度のマイクロシリンジ)にタンパク質-脂質メソフェーズ試料を手作業で充填する。
2)分注マイクロシリンジを、装置の試料分注マイクロディスペンサ部に手作業でセットする。
3)96ウェルスクリーニングプレートおよび96ウェル結晶化溶液ボックスを、装置に手作業でセットする。
4)分注マイクロシリンジの先端が、96ウェルスクリーニングプレートの適切なウェル(例えばA1ウェル)の中央に位置するよう、目視観察により肉眼で、分注マイクロシリンジの位置決めを行う。
5)タンパク質-脂質メソフェーズ試料が分注マイクロシリンジから一定量安定して吐出されているか否かを、目視観察により肉眼で確認する。
6)装置において、超音波型加湿器からの加湿空気を、プラスチックチューブを介して96ウェルスクリーニングプレートの表面に吹き付ける。
7)装置によって、タンパク質-脂質メソフェーズ試料を自動分注し、次いで結晶化溶液を自動分注する。
8)分注終了後、装置から96ウェルスクリーニングプレートを取り出し、手作業でカバーガラスを貼り付ける。
In addition, in order to perform the above search, it is necessary to repeat the dispensing operation of the protein-lipid mesophase sample and the crystallization solution many times (hundreds to several thousand times / day). Accompany. Therefore, an apparatus that automates some of these operations has been developed (Non-patent Document 5). A working example of the lipid mesophase method using this apparatus is as follows.
1) A protein-lipid mesophase sample is manually filled into a dispensing microsyringe (about 25-100 μl of microsyringe).
2) The dispensing microsyringe is manually set in the sample dispensing microdispenser part of the apparatus.
3) Manually set the 96-well screening plate and 96-well crystallization solution box in the instrument.
4) Position the dispensing microsyringe with the naked eye by visual observation so that the tip of the dispensing microsyringe is positioned at the center of an appropriate well (for example, A1 well) of the 96-well screening plate.
5) It is visually confirmed by visual observation whether or not the protein-lipid mesophase sample is stably discharged from the dispensing microsyringe by a certain amount.
6) In the apparatus, humidified air from an ultrasonic humidifier is blown onto the surface of a 96-well screening plate through a plastic tube.
7) Automatically dispense protein-lipid mesophase sample by instrument, then dispense crystallization solution automatically.
8) After dispensing, remove the 96-well screening plate from the device and apply the cover glass manually.
 しかしながらタンパク質-脂質メソフェーズ試料は、界面活性剤で可溶化したタンパク質溶液とはその特性が大きく異なるものであり、脂質メソフェーズ法の結晶化のメカニズムも従来の界面活性剤で可溶化したタンパク質溶液から結晶化を行う方法のそれとは異なっている。したがって、界面活性剤で可溶化したタンパク質溶液を用いた従来の結晶化で蓄積された通常の生化学および分子生物科学分野での技術に基づいた従来技術では、脂質メソフェーズ法の利点を最大限活かしきれているとはいえず、良質な結晶を得るための手法としては決して十分ではない。 However, the protein-lipid mesophase sample differs greatly from the protein solution solubilized with the surfactant, and the crystallization mechanism of the lipid mesophase method is also crystallized from the protein solution solubilized with the conventional surfactant. It is different from that of how to do Therefore, conventional techniques based on conventional biochemistry and molecular biology techniques accumulated by conventional crystallization using a surfactant-solubilized protein solution make the most of the advantages of the lipid mesophase method. It cannot be said that it is completely clear, and it is never sufficient as a method for obtaining a high-quality crystal.
 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、脂質メソフェーズ法による結晶化に適した装置および方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide an apparatus and a method suitable for crystallization by the lipid mesophase method.
 本発明に係る試料分注装置は、上記課題を解決するために、プレートチャンバー、膜タンパク質を含有する脂質メソフェーズの試料を、上記プレートチャンバー内に準備されたマイクロプレートに分注する試料分注手段、タンパク質を結晶化するための結晶化溶液を、上記マイクロプレートに分注する溶液分注手段、および上記プレートチャンバー内の湿度を調節する湿度調節装置を備えており、上記湿度調節装置は、水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスを上記プレートチャンバー内に供給する構成を有している。 In order to solve the above problems, the sample dispensing apparatus according to the present invention is a sample dispensing means for dispensing a sample of a lipid mesophase containing a plate chamber and a membrane protein to a microplate prepared in the plate chamber. , A solution dispensing means for dispensing a crystallization solution for crystallizing the protein to the microplate, and a humidity adjusting device for adjusting the humidity in the plate chamber. And a dry gas having a humidity lower than that of water vapor are supplied into the plate chamber.
 本明細書において「脂質メソフェーズ法」とは、膜タンパク質を含む水溶液を(i)マトリクス脂質と、あるいは(ii)マトリクス脂質および適切な水溶液を前もって混合して得た脂質メソフェーズとを混合して調製された膜タンパク質を含有する脂質メソフェーズの試料(タンパク質-脂質メソフェーズ試料)を用い、脂質二重膜マトリクス中で膜タンパク質の結晶化を行う手法をいう。また、本明細書において「脂質メソフェーズ」とは、脂質/水溶液混合系に現れる固体と液体との中間的な性質を持つ物質あるいは状態を意味する。脂質メソフェーズとして具体的には、脂質二重膜が三次元連続構造を持つ「キュービック液晶」、ならびに脂質二重膜が一方向にスタックした構造を持つ「ラメラ液晶」および「キュービック液晶」の長距離秩序が失われた「スポンジ相」等の脂質二重膜を構成単位とするメソフェーズを挙げることができる。上記非特許文献5に示されているように、従来の脂質メソフェーズ法では、タンパク質-脂質メソフェーズ試料および結晶化溶液の分注時に水分の蒸発による結晶化溶液中の各成分の濃度変化を抑制するために、概ね85%R.H.以上の湿度条件で分注作業が行われている。この湿度条件によれば、分注作業時間内での水分蒸発による結晶化溶液中の各成分の濃度変化は10%以内であるとの実験結果が得られている。したがって、従来の手法においては結晶化溶液における蒸発によるこの程度の濃度変化は許容範囲と考えられている(上記非特許文献5)。また、上記湿度の環境を形成するために、加湿器からの加湿空気を、結晶化溶液が分注されるプレート面に直接吹き付けるという簡便な方法が用いられている。あるいは、分注速度を速くして分注に要する時間を短縮することにより、結晶化溶液の蒸発がおこる時間を短くし、結晶化溶液組成変動を抑えるという戦略等も取られている。一方で、タンパク質-脂質メソフェーズ試料に対する湿度の影響は充分考慮されていない。 In this specification, the “lipid mesophase method” is prepared by mixing an aqueous solution containing a membrane protein with (i) a matrix lipid or (ii) a lipid mesophase obtained by previously mixing a matrix lipid and an appropriate aqueous solution. This refers to a technique in which a membrane protein is crystallized in a lipid bilayer matrix using a lipid mesophase sample (protein-lipid mesophase sample) containing the membrane protein. Further, the "lipid mesophase" as used herein refers to a substance or state having intermediate properties between solid and liquid emerging in the lipid / aqueous mixed system. Specific examples of lipid mesophases are “cubic liquid crystals” in which the lipid bilayer has a three-dimensional continuous structure, and “lamellar liquid crystals” and “cubic liquid crystals” in which the lipid bilayers are stacked in one direction. A mesophase having a lipid bilayer membrane as a constitutional unit such as a “sponge phase” in which order is lost can be mentioned. As shown in Non-Patent Document 5, the conventional lipid mesophase method suppresses changes in the concentration of each component in the crystallization solution due to the evaporation of water during the dispensing of the protein-lipid mesophase sample and the crystallization solution. Therefore, approximately 85% R.D. H. Dispensing work is performed under the above humidity conditions. According to this humidity condition, an experimental result has been obtained that the concentration change of each component in the crystallization solution due to moisture evaporation within the dispensing operation time is within 10%. Therefore, in the conventional method, such a concentration change due to evaporation in the crystallization solution is considered to be an allowable range (Non-Patent Document 5). Moreover, in order to form the said humidity environment, the simple method of spraying the humidified air from a humidifier directly on the plate surface where crystallization solution is dispensed is used. Alternatively, a strategy of shortening the time required for evaporation of the crystallization solution by shortening the time required for dispensing by increasing the dispensing speed, and the like, etc., are taken. On the other hand, the influence of humidity on protein-lipid mesophase samples is not fully considered.
 しかしながら本発明者らが検討を重ねた結果、脂質メソフェーズ法においては、タンパク質結晶の質(エックス線回折の分解能)がタンパク質-脂質メソフェーズ試料の分注時の湿度条件に大きく依存する等の脂質メソフェーズ法に特有の現象を見いだした。これは、タンパク質-脂質メソフェーズ試料の微細構造が分注時の湿度に依存して変化するためと考えられ、このような脂質メソフェーズ法に特有の湿度効果を充分活用するには、より厳密な分注時の湿度制御を行う必要があることを見出した。 However, as a result of repeated studies by the present inventors, in the lipid mesophase method, the quality of the protein crystal (resolution of X-ray diffraction) greatly depends on the humidity condition at the time of dispensing the protein-lipid mesophase sample. I found a peculiar phenomenon. This is thought to be because the fine structure of the protein-lipid mesophase sample changes depending on the humidity at the time of dispensing, and in order to fully utilize the humidity effect peculiar to such a lipid mesophase method, more precise analysis is required. It was found that it was necessary to perform humidity control during injection.
 なお、本明細書においての湿度は、ガスの水蒸気圧とその温度に於ける飽和水蒸気圧の比を%で表した相対湿度を意味し、具体的な数値は%R.H.で表すこととする。また、「プレートチャンバー内の湿度を厳密に調節する」とは、所望の湿度を設定し、プレートチャンバーの内部の湿度を、設定した湿度値±1%R.H.の範囲内、好ましくは±0.5%R.H.の範囲内にすることを意図している。 In addition, the humidity in this specification means the relative humidity which expressed the ratio of the water vapor pressure of gas and the saturated water vapor pressure at the temperature in%, and the specific numerical value is% R. H. It shall be expressed as Further, “strictly adjusting the humidity in the plate chamber” means that a desired humidity is set and the humidity inside the plate chamber is set to a set humidity value ± 1% R.D. H. , Preferably ± 0.5% R.D. H. It is intended to be within the scope of
 また、本発明に係るタンパク質の結晶化方法は、上記課題を解決するために、プレートチャンバーの内部に準備されたマイクロプレートに、膜タンパク質を含有する脂質メソフェーズの試料を分注する試料分注工程と、タンパク質を結晶化するための結晶化溶液を、上記マイクロプレートに分注する溶液分注工程と、分注された上記試料と、分注された上記結晶化溶液とを合わせる混合工程と、上記混合工程の後に、透明なカバーを上記マイクロプレートの上面に貼り付ける貼付け工程と、上記貼付け工程の後に、上記試料中の上記タンパク質を結晶化させる結晶成長工程とを含む、タンパク質の結晶化方法であって、上記試料分注工程および上記溶液分注工程においては、上記プレートチャンバーの内部に水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスを供給することにより上記プレートチャンバーの内部の湿度を調節する構成を有している。 In addition, in order to solve the above problems, the protein crystallization method according to the present invention dispenses a sample of lipid mesophase containing a membrane protein into a microplate prepared in the plate chamber. A solution dispensing step of dispensing a crystallization solution for crystallizing the protein onto the microplate, a mixing step of combining the dispensed sample and the dispensed crystallization solution, A protein crystallization method comprising a pasting step of pasting a transparent cover on the upper surface of the microplate after the mixing step, and a crystal growth step of crystallizing the protein in the sample after the pasting step. In the sample dispensing step and the solution dispensing step, water vapor and a lower humidity than water vapor are dried inside the plate chamber. It has a configuration for adjusting the humidity of the inside of the plate chamber by supplying a mixed gas of the gas.
 なお、試料分注工程または溶液分注工程が混合工程を兼ねるものであってもよい。例えば、まず試料分注工程を実施して試料をマイクロプレートに分注し、この分注された試料に直接、溶液分注工程において結晶化溶液を分注することにより、試料と結晶化溶液とを合わせ、混合工程を実現するものであってもよい。 Note that the sample dispensing step or the solution dispensing step may also serve as the mixing step. For example, first, a sample dispensing process is performed to dispense a sample into a microplate, and a crystallization solution is dispensed directly into the dispensed sample in the solution dispensing process, whereby the sample, the crystallization solution, and And a mixing step may be realized.
 また、本発明に係るマイクロプレート形成シートは、基板に貼り付けられてマイクロプレートを形成する、1以上のウェル形成用貫通孔を有するマイクロプレート形成シートであって、表面に接着剤層が形成されており、上記ウェル形成用貫通孔は、レーザ加工によって形成されている構成を有している。 The microplate forming sheet according to the present invention is a microplate forming sheet having one or more well-forming through-holes that are attached to a substrate to form a microplate, and an adhesive layer is formed on the surface. The well forming through hole has a structure formed by laser processing.
 以上のように本発明に係る試料分注装置は、プレートチャンバー内の湿度を調節する湿度調節装置を備えており、この湿度調節装置は、水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスをプレートチャンバー内に供給する。そのため、プレートチャンバー内の湿度をより厳密に調節することができる。 As described above, the sample dispensing device according to the present invention includes a humidity adjusting device that adjusts the humidity in the plate chamber. This humidity adjusting device is configured to supply a mixed gas of water vapor and a dry gas having a lower humidity than water vapor. Supply into the plate chamber. Therefore, the humidity in the plate chamber can be adjusted more strictly.
本実施の形態における試料分注装置の概略構成を示す上面図である。It is a top view which shows schematic structure of the sample dispensing apparatus in this Embodiment. 本実施の形態における試料分注装置の概略構成を示す前面図である。It is a front view which shows schematic structure of the sample dispensing apparatus in this Embodiment. カバーガラス貼付け部の概略構成を示す側面図である。It is a side view which shows schematic structure of a cover glass sticking part. プレートチャンバーの概略構成を示す分解斜視図である。It is a disassembled perspective view which shows schematic structure of a plate chamber. 実施例における、湿度の制御性の評価の結果を示す図である。It is a figure which shows the result of evaluation of the controllability of humidity in an Example. 実施例における、湿度制御の時間安定性の評価の結果を示す図である。It is a figure which shows the result of evaluation of the time stability of humidity control in an Example. 実施例における、湿度制御時の温度変化を示す図である。It is a figure which shows the temperature change at the time of humidity control in an Example. 実施例における、水分蒸発速度の評価の結果を示す図である。It is a figure which shows the result of the evaluation of the water | moisture-content evaporation rate in an Example. 実施例における、湿度の繰り返し変化応答の評価の結果を示す図である。It is a figure which shows the result of the evaluation of the repeated change response of humidity in an Example. 実施例における、bRメソフェーズ中において成長した結晶の状態を示す図である。It is a figure which shows the state of the crystal | crystallization grown in the bR mesophase in an Example. 実施例における、bRメソフェーズ中において成長した結晶の大きさと数との分布を示す図である。It is a figure which shows distribution of the magnitude | size and number of the crystal | crystallization grown in the bR mesophase in an Example. 実施例における、bRメソフェーズ中における結晶が初めて認められる時間(T)と結晶化溶液濃度との関係を示す図である。It is a figure which shows the relationship between the time (T) in which the crystal | crystallization in bR mesophase is recognized for the first time in an Example, and a crystallization solution density | concentration. 実施例における、通常光と偏光顕微鏡観察による脂質メソフェーズの構造変化の観察結果を示す図である。It is a figure which shows the observation result of the structural change of the lipid mesophase by normal light and a polarization microscope observation in an Example. 実施例における、SAXS測定による脂質メソフェーズの構造変化の測定結果を示す図である。It is a figure which shows the measurement result of the structural change of the lipid mesophase by an SAXS measurement in an Example. 機械的打ち抜き加工によって貫通孔を形成したマイクロプレート形成シートの貫通孔近傍における共焦点顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the confocal microscope in the vicinity of the through-hole of the microplate formation sheet in which the through-hole was formed by the mechanical punching process. 機械的打ち抜き加工によって貫通孔を形成したマイクロプレート形成シートにカバーガラスを貼り付けた状態の観察結果を示す図である。It is a figure which shows the observation result of the state which affixed the cover glass on the microplate formation sheet | seat in which the through-hole was formed by mechanical punching. レーザ加工によって貫通孔を形成したマイクロプレート形成シートの貫通孔近傍における共焦点顕微鏡による観察結果を示す図である。It is a figure which shows the observation result by the confocal microscope in the through-hole vicinity of the microplate formation sheet which formed the through-hole by laser processing. レーザ加工によって貫通孔を形成したマイクロプレート形成シートにカバーガラスを貼り付けた状態の観察結果を示す図である。It is a figure which shows the observation result of the state which affixed the cover glass on the microplate formation sheet which formed the through-hole by laser processing.
 〔試料分注装置〕
 本発明に係る試料分注装置の一実施形態について、図1~図4に基づいて説明すれば以下の通りである。
(Sample dispensing device)
An embodiment of a sample dispensing apparatus according to the present invention will be described below with reference to FIGS.
 本実施の形態における試料分注装置は、脂質メソフェーズ法により膜タンパク質の結晶化を行う際に、目的の膜タンパク質を含むタンパク質-脂質メソフェーズ試料をマイクロプレートのウェルに分注し、ここに、タンパク質の結晶化を行うための結晶化溶液を分注して添加し、結晶化セルを作製するために好適に用いられる装置である。本実施の形態においては、96ウェルのマイクロプレートを用いる場合について説明するが、本発明に係る試料分注装置は、24ウェルのマイクロプレート等についても利用でき、あるいは市販のプラスチックスクリーニングプレート等についても利用できる。 The sample dispensing apparatus in the present embodiment dispenses a protein-lipid mesophase sample containing a target membrane protein into wells of a microplate when crystallization of the membrane protein by the lipid mesophase method. This is an apparatus suitably used for preparing a crystallization cell by dispensing and adding a crystallization solution for performing crystallization. In this embodiment, the case of using a 96-well microplate will be described. However, the sample dispensing apparatus according to the present invention can be used for a 24-well microplate or the like, or a commercially available plastic screening plate or the like. Available.
 図1は、本実施の形態における試料分注装置の概略構成を示す上面図である。図2は、試料分注装置の概略構成を示す前面図である。ただし、図1中の破線A-A’で示す部分に対応する部分については、図2において断面で示している。図1および図2に示すように、本実施の形態における試料分注装置1は、試料分注マイクロディスペンサ部(試料分注手段)2、結晶化溶液分注マイクロディスペンサ部(溶液分注手段)3、カバー貼付け部(貼付手段)5、プレートチャンバー4、ディスポーザブルチップラック6、結晶化溶液ラック7、分注観察部8および湿度調節装置11を備えており、さらに試料分注マイクロディスペンサ部2、結晶化溶液分注マイクロディスペンサ部3、カバー貼付け部5および分注観察部8の動作を制御するパーソナルコンピュータ(PC)(不図示)を備えている。 FIG. 1 is a top view showing a schematic configuration of a sample dispensing apparatus in the present embodiment. FIG. 2 is a front view showing a schematic configuration of the sample dispensing apparatus. However, a portion corresponding to a portion indicated by a broken line A-A ′ in FIG. 1 is shown in a cross section in FIG. 2. As shown in FIG. 1 and FIG. 2, the sample dispensing apparatus 1 in this embodiment includes a sample dispensing microdispenser section (sample dispensing means) 2, a crystallization solution dispensing microdispenser section (solution dispensing means). 3, a cover pasting part (sticking means) 5, a plate chamber 4, a disposable chip rack 6, a crystallization solution rack 7, a dispensing observation part 8, and a humidity control device 11, and a sample dispensing microdispenser part 2 A personal computer (PC) (not shown) for controlling the operation of the crystallization solution dispensing microdispenser unit 3, the cover pasting unit 5, and the dispensing observation unit 8 is provided.
 試料分注マイクロディスペンサ部2は、プレートチャンバー4内に載置された96ウェルスクリーニングプレート等のマイクロプレートの各ウェルに、タンパク質-脂質メソフェーズ試料を分注するものである。試料分注マイクロディスペンサ部2は、タンパク質-脂質メソフェーズ試料を吐出する着脱可能なシリンジ17を有している。 The sample dispensing microdispenser unit 2 dispenses a protein-lipid mesophase sample to each well of a microplate such as a 96-well screening plate placed in the plate chamber 4. The sample dispensing microdispenser unit 2 has a detachable syringe 17 for discharging a protein-lipid mesophase sample.
 試料分注マイクロディスペンサ部2は、マイクロプレートの指定された箇所に指定された順番でタンパク質-脂質メソフェーズ試料を分注する。シリンジ17からのタンパク質-脂質メソフェーズ試料の吐出量は、例えば10nl~200nlの範囲で任意の量(1nl単位)に設定される。また、吐出速度は、例えば1mm/sec~30mm/secの範囲で任意の速度(0.1mm/sec単位)に設定される。 Sample dispensing microdispenser unit 2, the protein in the order specified at specified points in a microplate - a lipid mesophase sample dispensing. Protein from the syringe 17 - discharge amount of lipid mesophase sample is set to an arbitrary amount (1 nl units) in the range of, for example, 10 nl ~ 200 nl. Further, the discharge speed is set to an arbitrary speed (in units of 0.1 mm / sec) within a range of 1 mm / sec to 30 mm / sec, for example.
 試料分注マイクロディスペンサ部2は、シリンジ17の先端であるシリンジチップ(吐出部)を格納できるシリンジチップカバーを有している。シリンジチップカバー内には水で湿らせたメラミンスポンジ等が設置されており、シリンジチップの乾燥防止とシリンジチップ外壁の汚染除去のため、タンパク質-脂質メソフェーズ試料を分注しているとき以外は、シリンジ17の先端はシリンジチップカバー内に格納されている。なお、タンパク質-脂質メソフェーズ試料をマイクロプレートに分注している間は、シリンジ17の先端は常時プレートチャンバー4内に保持されている。 The sample dispensing microdispenser section 2 has a syringe chip cover that can store a syringe chip (discharge section) that is the tip of the syringe 17. A melamine sponge, etc., moistened with water is installed in the syringe tip cover, except when dispensing protein-lipid mesophase samples to prevent the syringe tip from drying and to remove the contamination of the outer surface of the syringe tip. The tip of the syringe 17 is stored in a syringe tip cover. Incidentally, the protein - while dispensed lipid mesophase sample to a microplate, the tip of the syringe 17 is held at all times the plate chamber 4.
 結晶化溶液分注マイクロディスペンサ部3は、プレートチャンバー4内に載置された96ウェルスクリーニングプレート等のマイクロプレートの各ウェルに、結晶化溶液を分注するものである。本実施の形態においては、試料分注マイクロディスペンサ部2によってウェルに分注されたタンパク質-脂質メソフェーズ試料に対して、結晶化溶液を分注して添加する構成としている。結晶化溶液分注マイクロディスペンサ部3は、ディスポーザブルチップが着脱可能な8連の分注ヘッド18を備えている。結晶化溶液分注マイクロディスペンサ部3は、ディスポーザブルチップラック6にセットされたディスポーザブルチップを分注ヘッド18に取り付け、ディスポーザブルチップが取り付けられた分注ヘッド18のそれぞれにおいて、結晶化溶液ラック7に準備された結晶化溶液ボックスから結晶化溶液を吸引してディスポーザブルチップ内に保持し、マイクロプレートの指定された箇所に吐出する。結晶化溶液の吐出量は、例えば0.8~10μlの範囲で任意の量(0.1μl単位)に設定される。結晶化溶液の吸引量、吸引速度および吐出速度は、結晶化溶液の種類に応じて適宜設定される。結晶化溶液の種類としては、水、50% PEG8,000、および30% PEG20,000など、低粘度液体から高粘度液体まで様々な粘度範囲の液体が想定される。分注後、結晶化溶液分注マイクロディスペンサ部3は、取り付けられているディスポーザブルチップを取り外し、廃棄する。なお、結晶化溶液分注マイクロディスペンサ部3は、8連の分注ヘッドに限られるものではなく、8連以上あるいは以下であってもよく、さらには、固定針型チップを用いるものであってもよい。 The crystallization solution dispensing microdispenser unit 3 dispenses the crystallization solution to each well of a microplate such as a 96-well screening plate placed in the plate chamber 4. In the present embodiment, the crystallization solution is dispensed and added to the protein-lipid mesophase sample dispensed into the well by the sample dispensing microdispenser unit 2. The crystallization solution dispensing microdispenser unit 3 includes eight dispensing heads 18 to which a disposable chip can be attached and detached. The crystallization solution dispensing microdispenser unit 3 attaches the disposable chips set in the disposable chip rack 6 to the dispensing head 18, and prepares the crystallization solution rack 7 in each of the dispensing heads 18 to which the disposable chips are attached. The crystallization solution is sucked from the crystallization solution box thus formed, held in the disposable chip, and discharged to a designated portion of the microplate. The discharge amount of the crystallization solution is set to an arbitrary amount (0.1 μl unit) in the range of 0.8 to 10 μl, for example. The suction amount, suction speed, and discharge speed of the crystallization solution are appropriately set according to the type of the crystallization solution. As the kind of the crystallization solution, liquids having various viscosity ranges from low viscosity liquid to high viscosity liquid such as water, 50% PEG 8,000, and 30% PEG 20,000 are assumed. After the dispensing, the crystallization solution dispensing microdispenser unit 3 removes the attached disposable chip and discards it. The crystallization solution dispensing microdispenser unit 3 is not limited to eight dispensing heads, and may be eight or more or less, and further uses a fixed needle tip. Also good.
 結晶化溶液分注マイクロディスペンサ部3は、分注ヘッド18のそれぞれにおけるディスポーザブルチップの取り付けを検出するチップセンサおよび検出データに基づき取り付けの良否を判定する取り付け判定部を備えている。取り付け判定部が取り付けを不良と判定した場合には、再度取り付け操作が行われる。 The crystallization solution dispensing microdispenser unit 3 includes a chip sensor that detects the attachment of the disposable chip in each of the dispensing heads 18 and an attachment determination unit that determines the quality of the attachment based on the detection data. When the attachment determination unit determines that the attachment is defective, the attachment operation is performed again.
 カバー貼付け部5は、タンパク質-脂質メソフェーズ試料および結晶化溶液の分注が完了したマイクロプレートに対して、そのウェル形成面に透明なカバーを貼り付けるものである。なお、本実施の形態では、透明なカバーとしてカバーガラスを用いているため、以下ではカバーガラスを例に説明するが、透明なカバーはガラスに限定されるものではない。カバー貼付け部5は、ガイドレール26および駆動機構によって、プレートチャンバー4上およびカバー格納部27上に移動することができる。すなわち、図1中の両端矢印Bの示す方向に移動することができる。図3は、カバー貼付け部5の側面を模式的に示した図である。カバー貼付け部5は、カバーガラス貼付け部本体5a、およびカバーガラス貼付け部本体5aを支持するとともに上下方向への移動を可能にする支持部5bによって構成されている。カバー貼付け部本体5aには、鉛直下側に、カバーガラスを吸引保持する吸引パッド19が設けられている。また、薄いカバーガラスであっても破損することなく運搬できるようにするため、吸引パッド19には、ソフトラバーのカバーガラス吸引口が複数個(4個)設けられている。カバー貼付け部本体5aは、カバーガラスが格納されたカバー格納部27から吸引パッド19によってカバーガラスを一枚取り出し、マイクロプレートの鉛直上方まで運搬する運搬部を有している。マイクロプレートの鉛直上方までカバーガラスが運搬されると、カバー貼付け部本体5aが下降して、カバーガラスをマイクロプレートの上面(ウェル形成面)の接着剤面に接触させ、予め設定した距離だけさらに下降させることにより圧力を加え、カバーガラスと接着剤面との接着を完成する。 The cover affixing unit 5 affixes a transparent cover to the well formation surface of the microplate on which the protein-lipid mesophase sample and the crystallization solution have been dispensed. In this embodiment, since a cover glass is used as a transparent cover, a cover glass will be described below as an example, but the transparent cover is not limited to glass. The cover attaching part 5 can be moved on the plate chamber 4 and the cover storage part 27 by the guide rail 26 and the drive mechanism. That is, it can move in the direction indicated by the double-ended arrow B in FIG. FIG. 3 is a diagram schematically showing a side surface of the cover pasting portion 5. The cover sticking part 5 is comprised by the support part 5b which enables the movement to an up-down direction while supporting the cover glass sticking part main body 5a and the cover glass sticking part main body 5a. A suction pad 19 for sucking and holding the cover glass is provided on the lower side of the cover pasting portion main body 5a. Further, in order to enable even a thin cover glass to be transported without being damaged, the suction pad 19 is provided with a plurality (four) of soft rubber cover glass suction ports. The cover pasting unit body 5a has a transport unit that takes out one cover glass by the suction pad 19 from the cover storage unit 27 in which the cover glass is stored, and transports the cover glass vertically above the microplate. When the cover glass is transported vertically above the microplate, the cover pasting portion main body 5a is lowered, the cover glass is brought into contact with the adhesive surface of the upper surface (well forming surface) of the microplate, and a predetermined distance is further increased. Pressure is applied by lowering to complete the adhesion between the cover glass and the adhesive surface.
 また、カバー貼付け部本体5aは、回動式の保護カバー取り外し爪20を有している。マイクロプレートが後述するような、一個以上の貫通孔を有する両面接着性のプラスチックシートをガラス基板に貼り付けて形成されているものである場合には、カバー貼付け部5は、カバーガラスを吸着するより前に、プレートチャンバー4上に移動して、両面接着性のプラスチックシートの保護カバーを、保護カバー取り外し爪(引き剥がし手段)20を用いて剥がし取り、粘着面を露出させる。その後、カバー格納部27上に移動し、カバーガラスを1枚吸着し、再度、プレートチャンバー4上に移動し、カバーガラスをマイクロプレートに貼り付ける。 Also, the cover pasting part main body 5a has a rotating protective cover removing claw 20. When the microplate is formed by adhering a double-sided adhesive plastic sheet having one or more through-holes to a glass substrate as will be described later, the cover adhering unit 5 adsorbs the cover glass. Before that, it moves onto the plate chamber 4 and peels off the protective cover of the double-sided adhesive plastic sheet using the protective cover removal claw (peeling means) 20 to expose the adhesive surface. Then, go on to the cover storage unit 27, the suction and one sheet of cover glass, again, to move on to the plate chamber 4, paste the cover glass to the microplate.
 カバー格納部27は、カバー貼付け部5の待機位置とプレートチャンバー4との間に置かれている。カバー格納部27の底面には、樹脂製テープ、あるいは、柔らかくかつ多孔性である、紙、不織布、およびスポンジ等の素材で構成されるマットが敷かれている。これにより、平面性の高い金属面の底面を有するカバーガラス格納部と比較して、30μm厚等の薄いカバーガラスと底面との接着力が弱くなり、吸引がより容易になり、吸引ミスを防ぐことができる。 The cover storage unit 27 is placed between the standby position of the cover pasting unit 5 and the plate chamber 4. On the bottom surface of the cover storage portion 27, a mat made of a resin tape or a soft and porous material such as paper, non-woven fabric, and sponge is laid. As a result, compared with a cover glass storage portion having a highly flat metal surface bottom surface, the adhesive force between the thin cover glass of 30 μm thickness and the bottom surface is weakened, suction becomes easier, and suction errors are prevented. be able to.
 プレートチャンバー4は、マイクロプレートへのタンパク質-脂質メソフェーズ試料および結晶化溶液の分注を行うためのチャンバーである。図4は、プレートチャンバーの分解斜視図である。図4に示すように、プレートチャンバー4の内部には、マイクロプレートを載置するための載置台21、および試料の試し打ちを行うためのガラスプレートの設置台25が設けられている。また、プレートチャンバー4には、プレートチャンバー4の上部を覆う可動式の蓋12が設けられている。プレートチャンバー4の内部は、湿度調節装置11によって所望の湿度に調節されている。また、可動式の蓋12は、蓋12の側面に連結された蓋駆動部22によって一軸方向(図1中、両端矢印Bで示す方向)に沿った移動操作がなされており、蓋駆動部22は、上記のPCによって動作が制御されている。 The plate chamber 4 is a chamber for dispensing the protein-lipid mesophase sample and the crystallization solution to the microplate. FIG. 4 is an exploded perspective view of the plate chamber. As shown in FIG. 4, the plate chamber 4 is provided with a mounting table 21 for mounting the microplate and a glass plate mounting table 25 for performing a test shot of the sample. The plate chamber 4 is provided with a movable lid 12 that covers the upper portion of the plate chamber 4. The inside of the plate chamber 4 is adjusted to a desired humidity by a humidity adjusting device 11. In addition, the movable lid 12 is moved along a uniaxial direction (direction indicated by a double-ended arrow B in FIG. 1) by a lid driving unit 22 connected to the side surface of the lid 12. The operation is controlled by the PC.
 プレートチャンバー4の上部を覆う可動式の蓋12にはスリット(開口部)15が形成されている。試料分注マイクロディスペンサ部2は、シリンジ17の先端を、このスリット15を介してプレートチャンバー4内に導入し、プレートチャンバー4内にあるマイクロプレートの各ウェルにタンパク質-脂質メソフェーズ試料を分注する。なお、マイクロプレートへの分注前に、設置台25上に置かれた試し打ち用ガラスプレートに試料を分注して、一定量の試料が連続して分注されることを分注観察部8によって確認した後に、マイクロプレートへの分注を開始している。結晶化溶液分注マイクロディスペンサ部3は、分注ヘッド18に取り付けられたディスポーザブルチップ(吸引した結晶化溶液が含まれている)部分を、このスリット15を介してプレートチャンバー4内に導入し、プレートチャンバー4内にあるマイクロプレートの所定のウェルに結晶化溶液を分注する。蓋駆動部22は、タンパク質-脂質メソフェーズ試料の分注位置および結晶化溶液の分注位置、すなわち試料分注マイクロディスペンサ部2のシリンジ17の位置および結晶化溶液分注マイクロディスペンサ部3の分注ヘッド18の位置にスリット15が重なるように、プレートチャンバー4の蓋12を移動させる。これにより、タンパク質-脂質メソフェーズ試料の分注位置および結晶化溶液の分注位置によらず、スリット15を介して、タンパク質-脂質メソフェーズ試料および結晶化溶液の分注を行うことができる。また、プレートチャンバー4における開口部分はスリット15部分のみ、すなわち分注がなされる部分の近傍のみに制限されるため、プレートチャンバー4の内部の湿度が変化することを抑えることができる。蓋駆動部22は、マイクロプレートの導入および取り出し操作、ならびにカバーガラスの取り付け操作などを行うときには、各操作を行うことが可能な状態まで蓋12を移動させる。 A slit (opening) 15 is formed in the movable lid 12 covering the upper part of the plate chamber 4. The sample dispensing microdispenser unit 2 introduces the tip of the syringe 17 into the plate chamber 4 through the slit 15 and dispenses the protein-lipid mesophase sample to each well of the microplate in the plate chamber 4. . In addition, before dispensing to the microplate, the dispensing observation unit indicates that a certain amount of sample is continuously dispensed by dispensing the sample to the glass plate for trial placement placed on the setting table 25. After confirming by 8, dispensing to the microplate is started. The crystallization solution dispensing microdispenser unit 3 introduces a disposable chip (containing the sucked crystallization solution) portion attached to the dispensing head 18 into the plate chamber 4 through the slit 15, A crystallization solution is dispensed into a predetermined well of a microplate in the plate chamber 4. The lid drive unit 22 dispenses the protein-lipid mesophase sample dispensing position and the crystallization solution dispensing position, that is, the position of the syringe 17 of the sample dispensing microdispenser unit 2 and the crystallization solution dispensing microdispenser unit 3. The lid 12 of the plate chamber 4 is moved so that the slit 15 overlaps the position of the head 18. Thus, the protein-lipid mesophase sample and the crystallization solution can be dispensed through the slit 15 regardless of the dispensing position of the protein-lipid mesophase sample and the crystallization solution. Moreover, since the opening part in the plate chamber 4 is restrict | limited only to the slit 15 part, ie, the vicinity of the part to be dispensed, it can suppress that the humidity inside the plate chamber 4 changes. The lid driving unit 22 moves the lid 12 to a state where each operation can be performed when performing the operation of introducing and removing the microplate and the operation of attaching the cover glass.
 プレートチャンバー4内に置かれたマイクロプレートに分注されたタンパク質-脂質メソフェーズ試料、および結晶化溶液の液滴などが観察できるように、プレートチャンバー4の蓋12は、ガラスおよびアクリル等の透明な材質で形成されている。 The lid 12 of the plate chamber 4 is made of a transparent material such as glass and acrylic so that a protein-lipid mesophase sample dispensed on a microplate placed in the plate chamber 4 and a droplet of the crystallization solution can be observed. It is made of material.
 載置台21は、マイクロプレートを載置して固定できるものであれば特に制限はないが、例えば、ペルチェ素子あるいは恒温水を循環可能な構造で構成して、マイクロプレートの温度を調節し得るものであってもよい。 The mounting table 21 is not particularly limited as long as it can mount and fix the microplate. For example, the mounting table 21 can be configured to circulate a Peltier element or constant temperature water to adjust the temperature of the microplate. It may be.
 湿度調節装置11は、水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスをプレートチャンバー4内に供給し、混合ガスにおける水蒸気と乾燥ガスとの混合比を調節することにより、プレートチャンバー4内の湿度を調節している。本実施の形態における試料分注装置1では、混合ガスとして水蒸気と乾燥窒素ガスとの混合ガスを用いているが、混合ガスは、上記のように、水蒸気と乾燥ガスとの混合ガスであればよい。乾燥ガスとしては、タンパク質、脂質、タンパク質-脂質メソフェーズ試料、あるいは結晶化溶液に対して、酸化および還元等の化学作用が無く、乾燥ガスの溶解によるpH変化が生じない等、実験に影響しないものであれば特に制限はない。例えば、ヘリウム、アルゴンおよび窒素ガス、コンプレッサー方式やデシカント方式等の公知の除湿器で得た乾燥空気、ならびにこれらの混合ガスを用いることができる。乾燥ガスの湿度値は、プレートチャンバー4の内部を所望の湿度値に設定できる範囲にあれば特に制限はないが、低湿度(~0%R.H.)から飽和湿度(100%R.H.)に亘る広い湿度範囲の制御を行うには、0%R.H.に近い乾燥ガスを用いることが望ましい。この要件を満たす一例として、清浄かつ、0%R.H.に近い乾燥ガスが容易に得られる窒素ガスを好適に用いることができる。また、混合ガスを形成する際の水蒸気は、水蒸気を含むガスとして供給されればよく、完全に水蒸気のみのガスである場合のほかに、微小水滴(ミスト)が含まれるガスである場合も含まれる。また、低湿度(~0%R.H.)から飽和湿度(100%R.H.)に亘る広い湿度範囲の制御を行うには、水蒸気を含むガスは、相対湿度100%R.H.に近いガスであることが好ましい。なお、乾燥ガスとして乾燥窒素ガスを用いることにより、混合ガスの流路およびプレートチャンバー4内にカビが発生することを防止することができるという予期せぬ効果が得られたため、混合ガスとしては、水蒸気と乾燥窒素ガスとの混合ガスであることが好ましい。 The humidity adjusting device 11 supplies a mixed gas of water vapor and a dry gas having a lower humidity than water vapor into the plate chamber 4, and adjusts the mixing ratio of the water vapor and the dry gas in the mixed gas, thereby adjusting the inside of the plate chamber 4. The humidity is adjusted. In the sample dispensing apparatus 1 in the present embodiment, a mixed gas of water vapor and dry nitrogen gas is used as a mixed gas, but the mixed gas is a mixed gas of water vapor and dry gas as described above. Good. Dry gas does not affect the experiment, such as no chemical action such as oxidation and reduction on protein, lipid, protein-lipid mesophase sample, or crystallization solution, and no change in pH due to dissolution of dry gas. If there is no restriction in particular. For example, helium, argon, and nitrogen gas, dry air obtained by a known dehumidifier such as a compressor method or a desiccant method, and a mixed gas thereof can be used. The humidity value of the drying gas is not particularly limited as long as the inside of the plate chamber 4 can be set to a desired humidity value. However, the humidity value is low humidity (˜0% RH) to saturation humidity (100% RH). .)) For a wide humidity range control over 0% R.D. H. It is desirable to use a dry gas close to. As an example satisfying this requirement, it is clean and has 0% R.D. H. Nitrogen gas from which a dry gas close to 1 can be easily obtained can be suitably used. Further, the water vapor used to form the mixed gas only needs to be supplied as a gas containing water vapor. In addition to the case where it is a gas containing only water vapor, it also includes a gas containing fine water droplets (mist). It is. In order to control a wide humidity range from low humidity (˜0% RH) to saturation humidity (100% RH), the gas containing water vapor has a relative humidity of 100% RH. H. It is preferable that the gas be close to. Incidentally, by using dry nitrogen gas as the dry gas, an unexpected effect of preventing mold from being generated in the flow path of the mixed gas and the plate chamber 4 was obtained. A mixed gas of water vapor and dry nitrogen gas is preferred.
 プレートチャンバー4には、対向する2つの側面それぞれに複数のガス供給口24が設けられている。混合ガスをプレートチャンバー4内に供給するガス供給管23は、プレートチャンバー4の各ガス供給口24に連結されている。ガス供給管23は、ガス供給口24の直前において、Y字型に複数回分岐して8つの先端部を形成している。8つの先端部は、それぞれ別のガス供給口24を通じてプレートチャンバー4に連結されている。このY字型の分岐流路を通過する間に水蒸気と乾燥窒素ガスとが均一混合される。 The plate chamber 4 is provided with a plurality of gas supply ports 24 on each of two opposing side surfaces. A gas supply pipe 23 for supplying the mixed gas into the plate chamber 4 is connected to each gas supply port 24 of the plate chamber 4. The gas supply pipe 23 is branched into a Y shape a plurality of times immediately before the gas supply port 24 to form eight tip portions. The eight tip portions are connected to the plate chamber 4 through different gas supply ports 24, respectively. Water vapor and dry nitrogen gas are uniformly mixed while passing through the Y-shaped branch channel.
 湿度調節装置11は乾燥窒素ガス発生装置9および気化型加湿器10を備えている。混合ガスに含ませる水蒸気は気化型加湿器10によって生成している。気化型加湿器10によって水蒸気を生成することにより、ミストの発生を最小限に抑えた水蒸気を生成することができる。 The humidity control device 11 includes a dry nitrogen gas generator 9 and a vaporizing humidifier 10. Water vapor included in the mixed gas is generated by the vaporizing humidifier 10. By generating water vapor with the vaporizing humidifier 10, it is possible to generate water vapor with minimal generation of mist.
 なお、湿度調節装置11では気化型加湿器10を備えているが、加湿器としては、気化型(自然気化型、ヒータレスファン型、浸透膜型、滴下浸透型、毛細管型、回転型等)、水噴霧型(超音波型、遠心型、高圧スプレー型、二流体噴霧型等)、スチーム型、およびこれらの複合型等を用いることができ、その加湿機構には特に制限はない。しかしながら実施例2において後述するように、結晶化溶液およびタンパク質-脂質メソフェーズ試料からの水分蒸発を完全に抑えるには、96~98%R.H.程度の高湿度条件が必要とされるため、飽和(100%R.H.)に近い水蒸気を安定して供給可能であることが望ましい。また、加湿に際して、タンパク質の変成を引き起こす温度上昇が小さいこと(環境温度からの温度上昇が1℃以内であることが好ましい)、および水蒸気中に含まれる微小水滴(ミスト)の存在割合が小さいことが好ましい。 The humidity control device 11 includes a vaporization type humidifier 10. As the humidifier, a vaporization type (natural vaporization type, heaterless fan type, osmosis membrane type, dropping permeation type, capillary type, rotation type, etc.) is used. Water spray types (ultrasonic type, centrifugal type, high pressure spray type, two-fluid spray type, etc.), steam types, and composite types thereof can be used, and the humidifying mechanism is not particularly limited. However, as described below in Example 2, the crystallization solution and protein - in suppressing the complete evaporation of water from a lipid mesophase sample, 96 ~ 98% R. H. Since high humidity conditions are required, it is desirable that water vapor close to saturation (100% RH) can be stably supplied. Also, when humidifying, the temperature rise that causes protein denaturation is small (preferably the temperature rise from the ambient temperature is within 1 ° C.), and the proportion of minute water droplets (mist) contained in water vapor is small Is preferred.
 水蒸気中のミストの存在割合が大きいと、ミストの水滴が試料または結晶化溶液に付着してこれらを希釈してしまい、成分濃度を大きく変化させてしまう。また、湿度センサの感応面にミストが付着し、感応面を濡らし、感応面に薄い水の皮膜が形成されると、センサの応答遅れが生じ、正確な湿度値が不明となる。その結果、湿度制御が不安定となり、再現性が得られないといった問題が生じる。そのため、ミスト発生率の高い水噴霧型やスチーム型の加湿器を用いる場合は、水蒸気流路中に,例えば、各種フィルター、セラミックシリンダーおよびエリミネータ等を用いたミスト除去機構を備えることが好ましい。一方、気化型加湿器によって生成した水蒸気中のミストの存在割合は小さいので、ミスト除去装置等を追加することなく、厳密に湿度を調節できるとともに、希釈により試料および結晶化溶液の成分濃度が変化してしまうことを防ぐことができるため、好適に用いることができる。 If the presence ratio of mist in water vapor is large, water droplets of mist adhere to the sample or the crystallization solution and dilute them, thereby greatly changing the component concentration. In addition, when mist adheres to the sensitive surface of the humidity sensor, wets the sensitive surface, and a thin water film is formed on the sensitive surface, the response of the sensor is delayed, and the accurate humidity value is unknown. As a result, there arises a problem that humidity control becomes unstable and reproducibility cannot be obtained. Therefore, when using a water spray type or steam type humidifier with a high mist generation rate, it is preferable to provide a mist removing mechanism using various filters, ceramic cylinders, eliminators, and the like in the water vapor channel. On the other hand, since the ratio of mist in the water vapor generated by the vaporizing humidifier is small, the humidity can be adjusted strictly without adding a mist removal device, etc., and the concentration of components in the sample and crystallization solution can be changed by dilution. Therefore, it can be preferably used.
 生成される水蒸気に水以外の成分が混入することを防ぐ観点から、水蒸気の生成には逆浸透膜処理水、蒸留水、または市販の純水製造機で得られる純水を用いることが好ましい。 From the viewpoint of preventing components other than water from being mixed into the generated water vapor, it is preferable to use reverse osmosis membrane treated water, distilled water, or pure water obtained with a commercially available pure water production machine for the production of water vapor.
 乾燥窒素ガス発生装置9としては特に制限はないが、液体窒素を気化させて得られる窒素ガスを供給する構成となっている。他にも、窒素ガスボンベ等を用いることも可能である。 Although there is no restriction | limiting in particular as the dry nitrogen gas generator 9, It has the structure which supplies the nitrogen gas obtained by vaporizing liquid nitrogen. In addition, a nitrogen gas cylinder or the like can be used.
 混合ガスに含ませる水蒸気および乾燥窒素ガスは、例えば以下のようにして供給される。
水蒸気:気化型加湿器10出口の水蒸気流量調整バルブによって、予めキャリブレートした目的湿度に対応した流量値(具体的には流量バルブの目盛り)に設定し、それ以後は一定流量の水蒸気を連続して供給する。
窒素ガス:液体窒素を気化して得た乾燥窒素ガスを、減圧機を用いて、予めキャリブレートしておいた目的湿度に対応した圧力値(例えば、25%R.H.といった低湿度条件では0.2Mpa、80%R.H.以上の高湿度条件では0.05Mpa等)に設定する。さらに、面積式(フロート式)流量計を用い、プレートチャンバー4内の実測湿度値が所定の湿度値となるように流量を調整する。目的湿度値が得られた後は、外気条件の大きな変動がない限り、サンドイッチプレート作成作業中は連続して当該流量の乾燥窒素ガスを供給し続ける。
Water vapor and dry nitrogen gas included in the mixed gas are supplied as follows, for example.
Water vapor: A flow rate value corresponding to the target humidity calibrated in advance (specifically, the scale of the flow valve) is set by the water vapor flow rate adjustment valve at the outlet of the vaporizing humidifier 10, and thereafter a constant flow rate of water vapor is continuously applied. Supply.
Nitrogen gas: Dry nitrogen gas obtained by vaporizing liquid nitrogen is reduced to zero under a low humidity condition such as 25% RH using a pressure reducer corresponding to the target humidity previously calibrated. .2 Mpa, 80% RH, etc., at a high humidity condition of 0.05 Mpa). Furthermore, using an area type (float type) flow meter, the flow rate is adjusted so that the actually measured humidity value in the plate chamber 4 becomes a predetermined humidity value. After the target humidity value is obtained, the dry nitrogen gas at the flow rate is continuously supplied during the sandwich plate making operation unless there is a large change in the outside air condition.
 湿度調節装置11は、プレートチャンバー4内に供給する混合ガスにおける水蒸気と乾燥窒素ガスとの混合比を調節することにより、プレートチャンバー4内を5%R.H.~100%R.H.の範囲内の任意の相対湿度に調節することが可能である。 Humidity control device 11, by adjusting the mixing ratio of steam and dry nitrogen gas in the mixed gas supplied to the plate chamber 4, the plate chamber 4 5% R. H. ~ 100% R.D. H. It is possible to adjust to any relative humidity within the range.
 外気の温度または湿度が変化すると気化型加湿器10の加湿能力が変化する。その場合には、プレートチャンバー内の実測湿度値が例えば0.2%R.H.以上変化した時点で乾燥窒素ガス流量を微調整すれば、容易に一定湿度値を保つことが出来る。試料分注装置1においては、プレートチャンバー内の4個の湿度センサ14以外に、試料分注装置1の外気の湿度および温度を測定するセンサも設置している。外気湿度値が分かると、水蒸気流量の設定、および窒素ガス流量の設定値を容易に調整することができる。 When the temperature or humidity of the outside air changes, the humidifying capacity of the vaporizing humidifier 10 changes. In that case, the measured humidity value in the plate chamber is, for example, 0.2% R.D. H. If the dry nitrogen gas flow rate is finely adjusted at the time of the change, a constant humidity value can be easily maintained. In the sample dispensing apparatus 1, in addition to the four humidity sensors 14 in the plate chamber, sensors for measuring the humidity and temperature of the outside air of the sample dispensing apparatus 1 are also installed. If the outside air humidity value is known, the setting of the water vapor flow rate and the setting value of the nitrogen gas flow rate can be easily adjusted.
 試料分注装置1においては、ガス供給管23においてY字型の分岐流路を設けたり、混合ガスを対称的な二方面からチャンバー内に導入したり、プレートチャンバー4に蓋を設けて開口部分を必要最小限に留めるようにしたり、水蒸気および乾燥窒素ガスを適切量供給したりすることにより、プレートチャンバー4内の湿度の均一性を実現している。 In the sample dispensing apparatus 1, a Y-shaped branch channel is provided in the gas supply pipe 23, a mixed gas is introduced into the chamber from two symmetrical directions, or a lid is provided on the plate chamber 4 to provide an opening portion. The humidity in the plate chamber 4 is made uniform by keeping the required amount to a minimum or by supplying appropriate amounts of water vapor and dry nitrogen gas.
 プレートチャンバー4の内部の湿度の均一性を確認するために、湿度を検出する湿度センサ14が、プレートチャンバー4の四隅に1つずつ取り付けられている。湿度センサ14による検出データを上記のPCに送信し、PCの画面上で、湿度の変動をリアルタイムでモニターすることができる。なお、本実施の形態において湿度センサ14は、温度を測定することもできる湿度温度センサである。 In order to confirm the uniformity of the humidity inside the plate chamber 4, humidity sensors 14 for detecting humidity are attached to the four corners of the plate chamber 4 one by one. Data detected by the humidity sensor 14 can be transmitted to the PC, and the humidity fluctuation can be monitored in real time on the PC screen. In the present embodiment, the humidity sensor 14 is a humidity temperature sensor that can also measure the temperature.
 上述のとおり、本実施の形態においては湿度センサ14を4つ設置している。しかしながら湿度センサ14が少なくとも1つ設置されていれば、プレートチャンバー4の内部の湿度を測定でき、測定データに基づき、すなわちプレートチャンバー4内部の実際の湿度に基づき、水蒸気と乾燥窒素ガスとの混合比を調節してプレートチャンバー4内の湿度を調節することができる。しかしながら湿度ムラが発生していないか確認するために、湿度センサ14は2個以上設置されていることが好ましい。 As described above, four humidity sensors 14 are installed in the present embodiment. However, if at least one humidity sensor 14 is installed, the humidity inside the plate chamber 4 can be measured, and based on the measurement data, that is, based on the actual humidity inside the plate chamber 4, mixing of water vapor and dry nitrogen gas The humidity in the plate chamber 4 can be adjusted by adjusting the ratio. However, it is preferable that two or more humidity sensors 14 are installed in order to confirm whether or not the humidity unevenness has occurred.
 分注観察部8は、タンパク質-脂質メソフェーズ試料の分注の様子を撮像するものである。なお、本実施の形態において分注観察部8は、結晶化溶液の分注の様子の撮像も行っている。分注観察部8は、撮像手段としてカラーCMOSカメラを備えている。カラーCMOSカメラで撮像された画像は、付属の記憶装置に取り込まれるとともに、ほぼリアルタイムで、撮像されたマイクロプレートのウェルの画像が、PCの画面上に表示される。 The dispensing observation unit 8 images the state of dispensing of the protein-lipid mesophase sample. In the present embodiment, the dispensing observation unit 8 also performs imaging of the state of dispensing of the crystallization solution. The dispensing observation unit 8 includes a color CMOS camera as imaging means. The image captured by the color CMOS camera is taken into the attached storage device, and the captured image of the well of the microplate is displayed on the PC screen in almost real time.
 タンパク質-脂質メソフェーズ試料は複雑なレオロジー特性を有する高粘度物質である。そのため、分注動作停止後も、シリンジ17内で自発的吐出あるいは自発収縮が生じる。これにより、分注開始時に、分注動作を行っても吐出しない、あるいは設定した以上に多量の試料を吐出してしまうといったことがしばしば起こる。それを避けるためには、分注開始前に、試料の試し打ちを行い、一定量の試料が安定して分注できていることを確認した後、マイクロプレートへの分注を開始することが好ましい。しかし、タンパク質-脂質メソフェーズ試料は例えば20nl~100nlの量で分注されるが、20nl~100nlという少量のタンパク質-脂質メソフェーズ試料滴は、直径1mm程度以下の微小体である。そのため、分注開始時に、タンパク質-脂質メソフェーズ試料が分注されていることが分かったとしても、一定量が連続して分注されているか否かを分注観察部8なしで肉眼で的確に判定することは不可能である。本実施の形態では、結晶作製に用いる実際のマイクロプレートにタンパク質-脂質メソフェーズ試料を分注する前に、プレートチャンバー4内で試し打ち用のガラスプレートに試し打ちを2~5回程度行い、一定量が連続して分注できているか否かを、分注観察部8を利用して確認している。 Protein-lipid mesophase samples are highly viscous materials with complex rheological properties. Therefore, even after the dispensing operation is stopped, spontaneous discharge or spontaneous contraction occurs in the syringe 17. Thus, at the start of dispensing, it often happens that even if a dispensing operation is performed, the sample is not discharged, or a larger amount of sample is discharged than set. In order to avoid this, it is possible to start trial dispensing of the sample before starting dispensing and after confirming that a certain amount of sample has been dispensed stably, dispensing to the microplate can be started. preferable. However, a protein-lipid mesophase sample is dispensed in an amount of, for example, 20 nl to 100 nl, but a small amount of a protein-lipid mesophase sample droplet of 20 nl to 100 nl is a minute body having a diameter of about 1 mm or less. Therefore, even if it is found that the protein-lipid mesophase sample has been dispensed at the start of dispensing, it can be accurately determined with the naked eye without the dispensing observation unit 8 whether or not a certain amount has been dispensed continuously. It is impossible to judge. In this embodiment, before the protein-lipid mesophase sample is dispensed to the actual microplate used for crystal production, the test plate is subjected to test punching about 2 to 5 times in the plate chamber 4 to obtain a constant amount. Whether or not the amount is continuously dispensed is confirmed using the dispensing observation unit 8.
 本実施の形態の試料分注装置は分注観察部8を備えており、シリンジ17から分注されたタンパク質-脂質メソフェーズ試料滴あるいはこれが分注されるウェルの様子をPCの画面上で観察することができる。これにより、分注動作中に、分注不良ウェルの確認を行うことができるため、必要に応じて試料分注マイクロディスペンサ部2および結晶化溶液分注マイクロディスペンサ部3に対して、再分注の指示を送り、各ウェルにおいて適切な分注を行うことが可能となる。 The sample dispensing apparatus according to the present embodiment includes a dispensing observation unit 8 and observes the state of the protein-lipid mesophase sample droplet dispensed from the syringe 17 or the well into which it is dispensed on the screen of the PC. be able to. Thereby, since a defective dispensing well can be confirmed during the dispensing operation, re-dispensing is performed on the sample dispensing microdispenser unit 2 and the crystallization solution dispensing microdispenser unit 3 as necessary. It is possible to perform appropriate dispensing in each well.
 また、シリンジ17の先端がウェルの中央に位置するような初期設定(位置決め)を、上記のカラーCMOSカメラを利用して行っている。これにより、肉眼で位置決めを行うよりも操作が煩雑でなく、短時間(例えば、10秒程度)のうちに位置決めを完了することができる。 In addition, initial setting (positioning) such that the tip of the syringe 17 is located at the center of the well is performed using the color CMOS camera. Thus, the operator than to position the naked eye is not complicated, short (e.g., about 10 seconds) can be completed positioning within the.
 なお、試料分注マイクロディスペンサ部2および結晶化溶液分注マイクロディスペンサ部3の移動制御および位置決め制御などは、当業者であれば従来公知の技術によって実現できる。また、蓋駆動部22ならびにカバー貼付け部5およびカバー貼付け部本体5aの移動制御および位置決め制御についても、当業者であれば従来公知の技術を参考にして実現することができる。 It should be noted that movement control and positioning control of the sample dispensing microdispenser unit 2 and the crystallization solution dispensing microdispenser unit 3 can be realized by a conventionally known technique. In addition, movement control and positioning control of the lid driving unit 22, the cover pasting unit 5, and the cover pasting unit main body 5a can also be realized by those skilled in the art with reference to conventionally known techniques.
 〔タンパク質の結晶化方法〕
 次に、本発明に係るタンパク質の結晶化方法の一実施形態について説明する。
[Protein crystallization method]
Next, an embodiment of the protein crystallization method according to the present invention will be described.
 本実施の形態におけるタンパク質の結晶化方法は、脂質メソフェーズ法を用いたタンパク質の結晶化方法であり、プレートチャンバーの内部に準備されたマイクロプレートに、タンパク質-脂質メソフェーズ試料を分注する試料分注工程と、タンパク質を結晶化するための結晶化溶液を、上記マイクロプレートに分注する溶液分注工程と、分注された上記試料と、分注された上記結晶化溶液とを合わせる混合工程と、上記混合工程の後に、透明なカバーを上記マイクロプレートの上面に貼り付ける貼付け工程と、上記貼付け工程の後に、上記試料中の上記タンパク質を結晶化させる結晶成長工程とを含むものである。また、試料分注工程および溶液分注工程においては、プレートチャンバーの内部に水蒸気と乾燥窒素ガスとの混合ガスを供給することによりプレートチャンバーの内部の湿度を調節している。プレートチャンバー内部の湿度は、結晶化させるタンパク質の種類等に応じて異なるものである。 The protein crystallization method in the present embodiment is a protein crystallization method using a lipid mesophase method, and is a sample dispensing method in which a protein-lipid mesophase sample is dispensed onto a microplate prepared in the plate chamber. A solution dispensing step of dispensing a crystallization solution for crystallizing a protein onto the microplate, a mixing step of combining the dispensed sample and the dispensed crystallization solution. Then, after the mixing step, a pasting step of pasting a transparent cover on the upper surface of the microplate, and a crystal growth step of crystallizing the protein in the sample after the pasting step are included. In the sample dispensing process and the solution dispensing process, the humidity inside the plate chamber is adjusted by supplying a mixed gas of water vapor and dry nitrogen gas to the inside of the plate chamber. The humidity inside the plate chamber varies depending on the type of protein to be crystallized.
 本実施の形態におけるタンパク質の結晶化方法は、上述の実施形態における試料分注装置を利用することにより、好適に実施することができる。 The protein crystallization method in the present embodiment can be preferably carried out by using the sample dispensing apparatus in the above-described embodiment.
 上述のとおり、脂質メソフェーズ法においては、タンパク質-脂質メソフェーズ試料を分注する際の湿度管理が、結晶化の成否および結晶の質において非常に重要である。 As described above, in the lipid mesophase method, the humidity control when dispensing the protein-lipid mesophase sample is very important for the success or failure of crystallization and the quality of the crystal.
 脂質メソフェーズ法に用いられる脂質としては、水中で逆型キュービック液晶を形成できる脂質が用いられる。例えば、1-oleoyl-rac-glycerol(モノオレイン)を代表とするモノアシルグリセロール類、(非特許文献:M. Caffrey, Annu, Rev. Biophys. 2009, 38, 29-51.)、1-O-(3,7,11,15-tetramethylhexadecyl)-β-D-xylosideを代表とするイソプレノイド鎖脂質(非特許文献:Hato, M. et al., Langmuir 2002, 18(9), 3425-3429.; Hato, M. et al., Langmuir 2004, 20(26), 11366-11373.; Yamashita, J. et al., J. Phys. Chem, B, 2008, 112, 12286-12296.; Hato, M. et al., J. Phys. Chem, B 2009.113,10196-10209.)等が挙げられる。 As the lipid used in the lipid mesophase method, a lipid capable of forming a reverse cubic liquid crystal in water is used. For example, monoacylglycerols represented by 1-oleoyl-rac-glycerol (monoolein) (non-patent literature: M. : Caffrey, Annu, Rev. Biophys. 2009, 38, 29-51.), 1-O -(3,7,11,15-tetramethylhexadecyl) -β-D-xyloside as a representative isoprenoid chain lipid (Non-patent literature: Hato, M. et al., Langmuir 2002, 18 (9), 3425-3429. ; Hato, M. et al., Langmuir 2004, 20 (26), 11366-11373 .; Yamashita, J. et al., J. Phys. Chem, B, 2008, 112, 12286-12296 .; Hato, M Et al., J. Phys. Chem, B 2009.113, 10196-10209.).
 本実施の形態におけるタンパク質の結晶化方法において、マイクロプレートは、基板と、該基板に貼り付けられた、1以上のウェル形成用貫通孔を有するマイクロプレート形成シートとによって形成されたマイクロプレートである。基板およびマイクロプレートに貼り付けられる透明なカバーは、結晶化過程の顕微鏡観察(通常光、偏光、蛍光、UV、多光子励起レーザー走査、および干渉等)、円偏光二色性スペクトル、紫外可視スペクトル、FRAP(Fluorescence Recovery After Photo-bleaching)およびFCS(FluorescenceCorrelation Spectroscopy)等の測定の他、エックス線小角散乱(SAXS)、エックス線広角散乱(WAXS)およびエックス線結晶回折等のエックス線測定が可能な素材であれば特に制限はなく、各種のガラス、天然あるいは人工石英、および窒化ケイ素等の無機素材、ならびに高分子等の有機素材を用いることができる。好ましくは、複屈折がなく、無蛍光で、かつ結晶化溶液およびタンパク質-脂質メソフェーズ試料への溶出物のない、各種のガラス、および天然あるいは人工石英が用いられる。 In the protein crystallization method according to the present embodiment, the microplate is a microplate formed by a substrate and a microplate forming sheet having one or more well-forming through holes attached to the substrate. . Transparent covers affixed to the substrate and microplate are used for microscopic observation of crystallization processes (normal light, polarization, fluorescence, UV, multiphoton excitation laser scanning, interference, etc.), circular dichroism spectrum, UV-visible spectrum In addition to measurement of FRAP (Fluorescence Recovery After Photo-bleaching) and FCS (FluorescenceCorrelation Spectroscopy), etc. There is no particular limitation, and various types of glass, natural or artificial quartz, inorganic materials such as silicon nitride, and organic materials such as polymers can be used. Preferably, various glasses and natural or artificial quartz are used that are free of birefringence, are non-fluorescent, and do not elute into crystallization solutions and protein-lipid mesophase samples.
 脂質メソフェーズは、シリコングリース程度の粘度を有する粘稠な物質である。そのため、マイクロプレートに分注された脂質メソフェーズは、液体のような平滑表面が自然には形成されず、不規則な凸凹を有する表面を有する固まりとなる。したがってマイクロプレートに分注された脂質メソフェーズは、光を複雑に反射あるいは屈折させる。このような凸凹を有する表面を通して脂質メソフェーズ内部にある微小結晶を明確な像として観察することは、非常に困難である。さらに脂質メソフェーズの屈折率(~1.45)は可溶化した膜タンパク質を含む溶液(~1.33)に比べタンパク質の屈折率(~1.5)に近いため、脂質メソフェーズ中ではタンパク質結晶のコントラストが低下する。また、脂質メソフェーズはしばしば複屈折性を示す。そのため、他の結晶化方法で常用されてきたプラスチック製マイクロプレートでは、プラスチックの複屈折により(特に偏光顕微鏡観察において)、微小タンパク質結晶の観察が困難となる。そのような理由から、脂質メソフェーズ法においては、一般的に、結晶化溶液が添加されたタンパク質-脂質メソフェーズ試料を二枚のガラス板でサンドイッチ状に挟んでガラスサンドイッチセルを形成させている(上記非特許文献4)。ガラスサンドイッチセルは、一般的には、SBS(Society for Biological Screening)標準仕様サイズの1mm厚のガラスプレート、96個の貫通孔を設けた両面接着性のプラスチックシート(厚さ約140μm)、および~0.2mm厚のカバーグラスから構成されている。具体的には、上記のガラスプレートに、貫通孔を有する上記のプラスチックシートを貼り付け、これにより形成された96個のウェルにタンパク質-脂質メソフェーズ試料および結晶化溶液を分注した後、プラスチックシートの上面を上記のカバーガラスでカバーして密閉することにより、試料が挟まれたガラスサンドイッチセルを形成している。 Lipid mesophase is a viscous substance having a viscosity comparable to silicon grease. Therefore, the lipid mesophase dispensed into the microplate does not naturally form a smooth surface like a liquid, but becomes a lump having a surface with irregular irregularities. Therefore, the lipid mesophase dispensed on the microplate causes light to be reflected or refracted in a complex manner. It is very difficult to observe the microcrystal inside the lipid mesophase as a clear image through such a surface having irregularities. Furthermore, the refractive index of the lipid mesophase (˜1.45) is closer to the refractive index of the protein (˜1.5) than the solution containing the solubilized membrane protein (˜1.33). Contrast decreases. Lipid mesophases are also often birefringent. For this reason, in plastic microplates that have been commonly used in other crystallization methods, it is difficult to observe fine protein crystals due to the birefringence of the plastic (particularly in observation with a polarizing microscope). For this reason, in the lipid mesophase method, a protein-lipid mesophase sample to which a crystallization solution has been added is generally sandwiched between two glass plates to form a glass sandwich cell (see above). Non-patent document 4). A glass sandwich cell generally includes a 1 mm thick glass plate of SBS (Society for Biological Screening) standard specification size, a double-sided adhesive plastic sheet (thickness of about 140 μm) provided with 96 through holes, and It is composed of 0.2 mm thick cover glass. Specifically, the plastic sheet having a through-hole is attached to the glass plate, and after the protein-lipid mesophase sample and the crystallization solution are dispensed into 96 wells formed thereby, the plastic sheet A glass sandwich cell sandwiched between samples is formed by covering and sealing the upper surface of the substrate with the above cover glass.
 しかしながら、本実施の形態においては、上記の標準ガラスサンドイッチセルの他に、ガラスプレートとして、厚み30μm~150μmの薄型ガラスプレート(ガラス基板)を用いており、カバーガラスにも、厚み30μm~150μmの薄型ガラスプレートを用いている。すなわち、形成されるガラスサンドイッチセルは、厚み30μm~150μmの2枚の薄型ガラスプレートに挟まれた薄型ガラスサンドイッチセルとなっている。より好適には、厚み50μm~150μmの2枚の薄型ガラスプレートに挟まれた薄型ガラスサンドイッチセルである。以下、厚み30μm~150μmの2枚の薄型ガラスプレートによって構成された薄型ガラスサンドイッチセルを用いることの利点について説明する。 However, in this embodiment, a thin glass plate (glass substrate) having a thickness of 30 μm to 150 μm is used as the glass plate in addition to the standard glass sandwich cell, and the cover glass has a thickness of 30 μm to 150 μm. A thin glass plate is used. That is, the formed glass sandwich cell is a thin glass sandwich cell sandwiched between two thin glass plates having a thickness of 30 μm to 150 μm. More preferably, it is a thin glass sandwich cell sandwiched between two thin glass plates having a thickness of 50 μm to 150 μm. The advantages of using a thin glass sandwich cell constituted by two thin glass plates having a thickness of 30 μm to 150 μm will be described below.
 本発明者らが結晶化過程の詳細な検討を行った結果、タンパク質の結晶化を誘導する目的で用いられる結晶化溶液は、膜タンパク質間相互作用だけでなく、結晶化の場となる脂質メソフェーズの構造をも変化させること、そしてその構造変化もタンパク質の結晶化の成否を決める要因となることを見出した。したがって、脂質メソフェーズ法による膜タンパク質の結晶化においては、膜タンパク質間相互作用の最適化のみならず、脂質メソフェーズの構造制御も考慮した結晶化が必要である。膜タンパク質間相互作用および脂質メソフェーズ構造は互いに独立した因子であるため、これらを同時に最適化するには、従来法以上の数多くの試行錯誤を繰り返す以外の方法がなく、これが脂質メソフェーズ法のボトルネックとなっている。 As a result of detailed examination of the crystallization process by the present inventors, the crystallization solution used for the purpose of inducing protein crystallization is not only the interaction between membrane proteins but also the lipid mesophase used as a crystallization field. It was found that the structure of the protein also changes, and that the structural change also determines the success or failure of protein crystallization. Therefore, in the crystallization of membrane protein by the lipid mesophase method, crystallization not only in optimizing the interaction between membrane proteins but also in the structure control of lipid mesophase is necessary. Since membrane-protein interaction and lipid mesophase structure are independent factors, there is no other way to optimize them simultaneously than by repeating many trials and errors beyond the conventional method, which is the bottleneck of the lipid mesophase method. It has become.
 膜タンパク質間相互作用および脂質メソフェーズ構造という独立した因子の同時最適化を実施するためには、結晶化過程での結晶成長の観察と同時に、脂質メソフェーズの微細構造およびその変化を直接測定することが必須である。脂質メソフェーズの微細構造を測定する最も信頼性ある方法として、エックス線小角散乱(SAXS)法が挙げられる。しかしながら、従来の脂質メソフェーズにおいて用いられている標準ガラスサンドイッチセルはエックス線を強く吸収するため、エックス線強度の著しい低下をもたらし、実用的なSAXS測定には不適切と考えられている。 In order to simultaneously optimize the independent factors of membrane protein-protein interaction and lipid mesophase structure, it is necessary to directly measure the fine structure of lipid mesophase and its changes simultaneously with the observation of crystal growth during the crystallization process. It is essential. The most reliable method for measuring the fine structure of lipid mesophase is the X-ray small angle scattering (SAXS) method. However, the standard glass sandwich cell used in the conventional lipid mesophase strongly absorbs X-rays, resulting in a significant decrease in X-ray intensity and is considered inappropriate for practical SAXS measurement.
 近年、シンクロトロン放射光を用いたSAXSビームラインを用いて脂質メソフェーズ構造を測定する方法が提案されている(非特許文献6)。しかしこの方法においては、エックス線の減衰を避けるため、実際の結晶化スクリーニングで用いられる標準ガラスサンドイッチセルではなく、エックス線吸収の少ないプラスチックセルを用いて測定を行っている。したがって、実際の結晶化スクリーニングを行っている標準ガラスサンドイッチセル内の脂質メソフェーズ構造をそのまま直接測定することは、依然として困難である。また、上述したように、プラスチックセルでは結晶の観察が困難であり、小さな結晶を見逃してしまう場合がある。そのため、実際の結晶化スクリーニングをプラスチックセルで行うことは困難が伴う。また、放射光施設は利用可能時間に制限があるため、研究に必要なタイミングでの測定が保証されず必要な時点での情報が的確に得られない。さらに、実験室から放射光施設へのサンプルの運送時に生じる温度変化および機械的刺激等によるサンプル損傷等により、脂質メソフェーズ構造の変化が生じる可能性を無視できない。 Recently, a method of measuring lipid mesophase structure using SAXS beam line using synchrotron radiation have been proposed (Non-Patent Document 6). However, in this method, in order to avoid attenuation of X-rays, measurement is performed using a plastic cell with low X-ray absorption rather than a standard glass sandwich cell used in actual crystallization screening. Therefore, it is still difficult to directly measure the lipid mesophase structure in a standard glass sandwich cell in which actual crystallization screening is performed. Further, as described above, it is difficult to observe crystals in the plastic cell, and small crystals may be missed. Therefore, it is difficult to perform actual crystallization screening in a plastic cell. Further, since radiation facility have a limit on available time, it can not be obtained accurately information at the time required not guaranteed measurement at timing required for research. Furthermore, the possibility of changes in the lipid mesophase structure cannot be ignored due to sample changes caused by temperature changes and mechanical stimuli that occur during transport of samples from the laboratory to the synchrotron radiation facility.
 これに対し、本実施の形態の結晶化方法において形成される薄型ガラスサンドイッチセルでは、ガラスにおけるエックス線の吸収が、従来の標準ガラスサンドイッチセルと比較して極めて少なくなっている。したがって、形成された薄型ガラスサンドイッチセルを直接、通常の実験室で随時利用可能な装置にセットしてSAXS測定を行うことが可能となる。したがって、タンパク質結晶成長過程における任意の時点での脂質メソフェーズの構造およびその変化を容易に知ることができる。 On the other hand, in the thin glass sandwich cell formed by the crystallization method of the present embodiment, the absorption of X-rays in the glass is extremely less than that of the conventional standard glass sandwich cell. Therefore, it is possible to perform SAXS measurement by directly setting the formed thin glass sandwich cell on a device that can be used as needed in a normal laboratory. Therefore, it is possible to easily know the structure of lipid mesophase and its change at any point in the protein crystal growth process.
 さらに、従来の脂質メソフェーズ法において形成される標準ガラスサンドイッチセルでは、以下に述べるような問題もある。 Furthermore, the standard glass sandwich cell formed by the conventional lipid mesophase method has the following problems.
 スクリーニング過程で結晶を得た場合、それがタンパク質の結晶であるか、あるいは電解質などタンパク質以外の結晶であるかを迅速かつ的確に判別することが重要である。タンパク質結晶であることの判別は、例えばUV顕微鏡などを用いることによっても可能である。しかしながら、タンパク質結晶が得られたとしても、それが、構造解析に必要なエックス線の回折点が得られないタンパク質結晶であるケースは極めて多い。したがって、得られたタンパク質結晶が、エックス線の回折点が得られるタンパク質結晶であるか否か、さらには回折点の分解能を迅速かつ的確に判別することがさらに必要である。しかしながら、従来の脂質メソフェーズ法において形成される標準ガラスサンドイッチセルでは、上述したとおり、ガラスにおけるエックス線の吸収が大きいため、結晶のエックス線回折測定を行うことは困難である。また、このような困難を回避し、結晶のエックス線回折測定を行うために、標準ガラスサンドイッチセルから結晶を採取する場合には、カバーガラスを機械的に破壊(目的ウェルをカバーしている部分のみをカッターで切り取る等)して、ウェル内部の結晶を採取しなければならない。カバーガラスの機械的破壊は、結晶に機械的なダメージを与えることになる。また、採取過程での水分蒸発によって結晶の変質および溶解を引き起こしたり、カバーガラス破壊時に細かいガラス破片が混入したりして多くの不確定要素を伴うため、信頼ある結果が得られない。 When a crystal is obtained in the screening process, it is important to quickly and accurately determine whether it is a protein crystal or a crystal other than a protein such as an electrolyte. The identification of the protein crystal can also be performed by using, for example, a UV microscope. However, even if a protein crystal is obtained, it is very often a protein crystal from which an X-ray diffraction point necessary for structural analysis cannot be obtained. Therefore, it is further necessary to quickly and accurately determine whether or not the obtained protein crystal is a protein crystal from which an X-ray diffraction point can be obtained, and further, the resolution of the diffraction point. However, in the standard glass sandwich cell formed in the conventional lipid mesophase method, as described above, the X-ray absorption in the glass is large, so that it is difficult to perform X-ray diffraction measurement of the crystal. In order to avoid such difficulties and to perform X-ray diffraction measurement of crystals, when collecting crystals from a standard glass sandwich cell, the cover glass is mechanically broken (only the part covering the target well). The crystal inside the well must be collected by cutting the sample with a cutter. The mechanical breakage of the cover glass will cause mechanical damage to the crystal. In addition, reliable evaporation results cannot be obtained because many uncertain factors are caused by the evaporation of moisture during the sampling process, which causes crystal alteration and dissolution, and fine glass fragments are mixed when the cover glass is broken.
 しかしながら、本実施の形態の結晶化方法において形成される薄型ガラスサンドイッチセルにおいては、ガラスにおけるエックス線の吸収が、従来の標準ガラスサンドイッチセルと比較して極めて少なくなっている。そのため、薄型ガラスサンドイッチセルを機械的に破壊して結晶を取り出すことなく、薄型ガラスサンドイッチセルのまま、セルに含まれるタンパク質結晶のエックス線回折実験を行うことができる。 However, in the thin glass sandwich cell formed by the crystallization method of the present embodiment, the absorption of X-rays in the glass is extremely less than that of the conventional standard glass sandwich cell. Therefore, the X-ray diffraction experiment of the protein crystal contained in the cell can be performed as it is with the thin glass sandwich cell without mechanically destroying the thin glass sandwich cell and taking out the crystal.
 また、本実施の形態の結晶化方法において用いられている標準あるいは薄型ガラスサンドイッチセルを形成しているプラスチックシート(マイクロプレート形成シート)における貫通孔は、レーザ加工によって形成されている。 Further, the through hole in the plastic sheet (microplate forming sheet) forming the standard or thin glass sandwich cell used in the crystallization method of the present embodiment is formed by laser processing.
 レーザ加工としては、ダイオードレーザ、ヤグレーザ、およびCO2レーザ等を用いた加工機を用いることができる。一例を挙げると、CO2レーザ発振器を備えたMITSUBISHI CO2 LASER UNIT ML5036Dを用いた場合、20W~300Wの範囲内において加工条件を調整することによって、最適な条件にて加工することができる。例えば、出力:250W、周波数:500Hz、デューティ:100%、速度:2500mm/min、補正:0.19mm、ガス圧:0.5kgf/cm、アシストガス:エア、の条件で96ウェルのマイクロプレートの加工を好適に行うことができる。 As the laser processing, a processing machine using a diode laser, a yag laser, a CO2 laser, or the like can be used. As an example, when the MITSUBISHI CO2 LASER UNIT ML5036D equipped with a CO2 laser oscillator is used, the processing can be performed under optimum conditions by adjusting the processing conditions within a range of 20 W to 300 W. For example, a 96-well microplate under the conditions of output: 250 W, frequency: 500 Hz, duty: 100%, speed: 2500 mm / min, correction: 0.19 mm, gas pressure: 0.5 kgf / cm 2 , assist gas: air Can be suitably performed.
 なお、プラスチックシートを形成している素材、プラスチックシートの厚み、およびプラスチックシートの両面に形成されている接着剤層など、貫通孔以外の構成については、従来の結晶化方法において用いられているプラスチックシートにおける各構成を用いることができる。さらに、レーザ加工によって貫通孔を形成しているため、プラスチックシートの素材および厚み、接着剤の種類、ならびにウェルのサイズ、形および配置デザイン等を変更しても、容易に貫通孔を形成することができる。また、このようなレーザ加工の特性を生かせば、例えば、蒸気拡散法型の脂質メソフェーズ法結晶化といった、これまでは実施できなかった新たな結晶化手段も容易に実施可能なマイクロプレート形成シートを作成することができる。 The plastic used in the conventional crystallization method is used for the components other than the through holes, such as the material forming the plastic sheet, the thickness of the plastic sheet, and the adhesive layer formed on both surfaces of the plastic sheet. Each configuration in the sheet can be used. Furthermore, since the through hole is formed by laser processing, the through hole can be easily formed even if the material and thickness of the plastic sheet, the type of adhesive, the size, shape, and layout design of the well are changed. Can do. In addition, by utilizing such laser processing characteristics, for example, a microplate-forming sheet that can easily implement new crystallization means that could not be carried out until now, such as vapor diffusion type lipid mesophase crystallization, can be obtained. Can be created.
 従来の結晶化方法において用いられているプラスチックシートは、ウェルを形成する貫通孔が機械的打ち抜き加工によって形成されている。機械的打ち抜き加工では、加工穴エッジ部にバリが形成されるとともに、加工時の機械的ストレスのため、穴と穴との間の接着剤層にも凹凸が生じてしまう。厚み30μm~150μmの薄いカバーガラスを、凹凸のある接着剤層へ貼り付けると、カバーガラスと接着剤層との間に空隙が形成され、これにより隣接ウェル間に通路が形成されてしまう。隣接ウェル間に通路が形成されると、隣接ウェル間での水蒸気の移動が起こり、各ウェルの独立性が失われることになる。また、全体としての密封性が低下するため、数ヶ月にわたる結晶化期間中にウェル内の結晶化溶液からの水分蒸発が起こり、スクリーニングの再現性および信頼性を低下させることになる。これを防ぐためには空隙一つ一つを手作業で埋めるという補修が必要となる。しかしながら、その作業中にカバーグラスが破損する等のトラブルも発生し、実験操作を著しく煩雑にする。 In a plastic sheet used in a conventional crystallization method, a through hole forming a well is formed by mechanical punching. In mechanical punching, burrs are formed at the edge of the processed hole, and unevenness is also generated in the adhesive layer between the holes due to mechanical stress during processing. When a thin cover glass having a thickness of 30 μm to 150 μm is attached to the uneven adhesive layer, a gap is formed between the cover glass and the adhesive layer, thereby forming a passage between adjacent wells. When a passage is formed between adjacent wells, water vapor moves between adjacent wells, and the independence of each well is lost. In addition, since the sealing performance as a whole is lowered, moisture evaporation from the crystallization solution in the well occurs during the crystallization period over several months, thereby reducing the reproducibility and reliability of the screening. In order to prevent this, it is necessary to repair each gap by hand. However, troubles such as breakage of the cover glass occur during the operation, and the experimental operation is remarkably complicated.
 レーザ加工により貫通孔を形成したプラスチックシートでは、加工穴周辺に機械的ストレスがかかることはない。そのため、接着剤層に凹凸が生じることを防止することができる。このため、貼付けに際して上記のような問題を発生させることなくサンドイッチセルを自動作成することができる。 ¡Plastic sheets with through holes formed by laser processing do not apply mechanical stress around the processed holes. Therefore, it is possible to prevent unevenness from occurring in the adhesive layer. For this reason, a sandwich cell can be automatically created without causing the above-described problems during pasting.
 以上のように、上述の実施形態における試料分注装置およびタンパク質の結晶化方法を用いることにより、湿度の精密制御が可能となるため、従来技術が扱っていた標準ガラスサンドイッチセルの作成を格段に厳密な条件下で再現性良く実施できるばかりでなく、結晶核、その前駆体の生成速度、および結晶サイズ等を湿度パラメータで制御して、より高品質な結晶を効率的に成長させるという新しい結晶化法が可能となり、蒸気拡散結晶化法等の従来の結晶化法および従来の脂質メソフェーズ法では結晶化が困難であったタンパク質についても、結晶化される可能性を高めている。 As described above, by using the sample dispensing apparatus and the protein crystallization method in the above-described embodiment, it becomes possible to precisely control the humidity, so that the standard glass sandwich cell handled by the prior art is remarkably produced. A new crystal that not only can be carried out reproducibly under strict conditions, but also grows higher quality crystals efficiently by controlling the crystal nuclei, their precursor formation rate, crystal size, etc. with humidity parameters. Proteins that have been difficult to crystallize by conventional crystallization methods such as vapor diffusion crystallization methods and conventional lipid mesophase methods are also increased.
 さらには、上記の各種測定を最高性能で実施できるばかりでなく、結晶化中の脂質メソフェーズ構造の直接SAXS測定、および結晶化セル内の結晶のエックス線回折測定を、カバーガラスを破壊することなく実施できる薄型ガラスサンドイッチセルを自動作成できる。これにより、結晶化条件の合理的選択、最適化、およびホスト脂質スクリーニングを効率的に行うことができる。 Furthermore, not only can the above-mentioned various measurements be performed with the highest performance, but also direct SAXS measurement of the lipid mesophase structure during crystallization and X-ray diffraction measurement of the crystals in the crystallization cell without breaking the cover glass. A thin glass sandwich cell can be automatically created. Thereby, rational selection of crystallization conditions, optimization, and host lipid screening can be performed efficiently.
 〔まとめ〕
 以上のように、本発明に係る試料分注装置は、プレートチャンバー、膜タンパク質を含有する脂質メソフェーズの試料を、上記プレートチャンバー内に準備されたマイクロプレートに分注する試料分注手段、タンパク質を結晶化するための結晶化溶液を、上記マイクロプレートに分注する溶液分注手段、および上記プレートチャンバー内の湿度を調節する湿度調節装置を備えており、上記湿度調節装置は、水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスを上記プレートチャンバー内に供給する構成を有している。
[Summary]
As described above, the sample dispensing apparatus according to the present invention includes a plate chamber, a sample dispensing means for dispensing a lipid mesophase sample containing a membrane protein to a microplate prepared in the plate chamber, and a protein. A solution dispensing means for dispensing a crystallization solution for crystallization into the microplate, and a humidity adjusting device for adjusting the humidity in the plate chamber are provided. It has a configuration for supplying a mixed gas with a low-humidity dry gas into the plate chamber.
 本発明に係る試料分注装置の上記構成によれば、内部の湿度が調節されたプレートチャンバー内において、タンパク質-脂質メソフェーズ試料のマイクロプレートへの分注、および結晶化溶液のマイクロプレートへの分注を行うことができる。また、水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスをプレートチャンバー内に供給することにより、プレートチャンバー内の湿度を制御している。そのため、供給する混合ガスにおける水蒸気と乾燥ガスとの混合比を変化させることにより、プレートチャンバー内の湿度を、水蒸気の湿度値と乾燥ガスの湿度値との間の任意の湿度値に容易にかつ厳密に調節することができる。これにより、湿度が厳密に調節されたプレートチャンバー内において、試料の分注および結晶化溶液の分注を行うことができる。 According to the above configuration of the sample dispensing apparatus according to the present invention, the protein-lipid mesophase sample is dispensed to the microplate and the crystallization solution is dispensed to the microplate in the plate chamber in which the internal humidity is adjusted. Notes can be made. Further, by supplying the mixed gas to the plate chamber of the drying gas of low humidity than water vapor and steam, and it controls the humidity of the plate chamber. Therefore, by changing the mixing ratio of water vapor and dry gas in the mixed gas to be supplied, the humidity in the plate chamber can be easily set to an arbitrary humidity value between the humidity value of water vapor and the humidity value of dry gas. Can be adjusted strictly. Thereby, the sample can be dispensed and the crystallization solution can be dispensed in a plate chamber whose humidity is strictly controlled.
 本発明に係る試料分注装置において、上記乾燥ガスは乾燥窒素ガスであることが好ましい。乾燥ガスとして乾燥窒素ガスを用いると、混合ガスの流路およびプレートチャンバー内にカビ等が発生することを防ぐことができる。 In the sample dispensing apparatus according to the present invention, the dry gas is preferably dry nitrogen gas. When dry nitrogen gas is used as the dry gas, it is possible to prevent mold and the like from being generated in the mixed gas flow path and the plate chamber.
 本発明に係る試料分注装置において、上記湿度調節装置は、上記水蒸気を生成する加湿器を備えていることが好ましい。また、上記加湿器は気化型加湿器であることがより好ましい。 In the sample dispensing apparatus according to the present invention, it is preferable that the humidity adjusting device includes a humidifier that generates the water vapor. The humidifier is more preferably a vaporizing humidifier.
 本発明に係る試料分注装置において、上記プレートチャンバーの内部には、1以上の湿度センサが設けられており、上記湿度調節装置は、上記1以上の湿度センサによる測定結果に基づき、上記混合ガスにおける上記水蒸気と上記乾燥ガスとの混合割合を調節することが好ましい。 In the sample dispensing apparatus according to the present invention, one or more humidity sensors are provided inside the plate chamber, and the humidity control apparatus is configured to use the mixed gas based on a measurement result of the one or more humidity sensors. It is preferable to adjust the mixing ratio of the water vapor and the dry gas.
 上記構成によれば、プレートチャンバーの内部の湿度を測定し、その測定結果に基づいて水蒸気と乾燥ガスとの混合割合が調節された混合ガスが、プレートチャンバー内に供給されることになる。したがって、プレートチャンバー内部の実際の湿度に基づき、湿度を調節することができる。この機構は容易にコンピュータによる自動制御も可能である。 According to the above configuration, the humidity inside the plate chamber is measured, and the mixed gas in which the mixing ratio of the water vapor and the dry gas is adjusted based on the measurement result is supplied into the plate chamber. Therefore, the humidity can be adjusted based on the actual humidity inside the plate chamber. This mechanism can easily be automatically controlled by a computer.
 本発明に係る試料分注装置において、上記湿度センサは2以上設けられていることが好ましい。 In the sample dispensing apparatus according to the present invention, it is preferable that two or more humidity sensors are provided.
 上記構成によれば、プレートチャンバー内における湿度の均一度を確認することができる。 According to the above configuration, the uniformity of humidity in the plate chamber can be confirmed.
 本発明に係る試料分注装置において、上記プレートチャンバーの上部には、開口部が設けられている可動式の蓋が設けられていることが好ましい。 In the sample dispensing apparatus according to the present invention, it is preferable that a movable lid provided with an opening is provided at the top of the plate chamber.
 上記構成によれば、蓋の開口部は上記混合ガスの排出口としての機能と同時に、開口部を介して、タンパク質-脂質メソフェーズ試料の分注および結晶化溶液の分注を行うことができる。また、マイクロプレートにおける分注位置の変化に応じて蓋を動かすことにより、プレートチャンバーに対する開口部の相対位置を変化させることができる。そのため、マイクロプレートにおける分注位置に関わらず、常に、開口部を介して、タンパク質-脂質メソフェーズ試料の分注および結晶化溶液の分注を行うことができる。したがって、試料の分注および結晶化溶液の分注を行っている間、プレートチャンバーの開口部分は、蓋の開口部のみに制限されるため、プレートチャンバー内の湿度をより厳密に調節することができる。 According to the above configuration, the opening of the lid can function as a discharge port for the mixed gas, and at the same time, the protein-lipid mesophase sample and the crystallization solution can be dispensed through the opening. Further, the relative position of the opening with respect to the plate chamber can be changed by moving the lid in accordance with the change in the dispensing position in the microplate. Therefore, regardless of the dispensing position on the microplate, the protein-lipid mesophase sample and the crystallization solution can always be dispensed through the opening. Therefore, while the sample is being dispensed and the crystallization solution is being dispensed, the opening of the plate chamber is limited to the opening of the lid, so that the humidity in the plate chamber can be adjusted more precisely. it can.
 本発明に係る試料分注装置においては、上記試料分注手段による上記試料の分注の様子、および上記試料分注手段における上記試料を吐出する吐出部の少なくとも何れか一方を撮像する撮像手段をさらに備えていることが好ましい。 In the sample dispensing apparatus according to the present invention, there is provided imaging means for imaging at least one of a state of dispensing of the sample by the sample dispensing means and a discharge portion for discharging the sample in the sample dispensing means. Furthermore, it is preferable to provide.
 上記構成によれば、タンパク質-脂質メソフェーズ試料がマイクロプレートに一定量分注されたか否かを確認することができる。また、上記吐出部のウェルに対する位置合わせを行うことができる。 According to the above configuration, it can be confirmed whether a certain amount of the protein-lipid mesophase sample has been dispensed to the microplate. Further, it is possible to align the discharge unit with respect to the well.
 本発明に係る試料分注装置においては、上記マイクロプレートの上面に透明なカバーを貼り付ける貼付手段をさらに備えていることが好ましい。 In the sample dispensing apparatus according to the present invention, it is preferable that the sample dispensing apparatus further includes an attaching means for attaching a transparent cover to the upper surface of the microplate.
 上記構成によれば、タンパク質-脂質メソフェーズ試料および結晶化溶液を分注した後に自動で透明なカバーをマイクロプレートの上面に貼り付けることができる。これにより、透明なカバーの貼付け時における水分蒸発を最小限に抑制できるとともに、後述する薄型のサンドイッチセルの作成および作業の高効率化を実現できる。 According to the above construction, protein - a transparent cover automatically after aliquoted lipid mesophase sample and the crystallization solution min can be pasted on the upper surface of the microplate. Thus, it is possible to minimize water evaporation during pasting transparent cover, it can realize high efficiency of creating and working sandwich cell thin to be described later.
 本発明に係る試料分注装置において、上記マイクロプレートには保護カバーが貼り付けられており、上記保護カバーを上記マイクロプレートから剥がし取る引き剥がし手段をさらに備えていることが好ましい。 In the sample dispensing apparatus according to the present invention, it is preferable that a protective cover is attached to the microplate, and further provided with a peeling means for peeling the protective cover from the microplate.
 上記構成によれば、マイクロプレートが保護カバーが貼り付けられている構成である場合に、透明なカバーの貼付け直前に自動で保護カバーを剥がし取ることができる。これにより、高湿度条件下での分注作業間におけるマイクロプレート上面の接着剤層表面への水蒸気吸着による透明なカバーと接着剤層との接着力の低下に伴うウェルの気密性の低下を避けること、および作業の効率化を実現できる。 According to the above configuration, when the protective cover is attached to the microplate, the protective cover can be automatically removed immediately before the transparent cover is attached. This avoids deterioration in well tightness due to a decrease in the adhesive force between the transparent cover and the adhesive layer due to water vapor adsorption on the surface of the adhesive layer on the top surface of the microplate during dispensing operations under high humidity conditions. And the efficiency of work can be realized.
 また、本発明に係るタンパク質の結晶化方法は、上記課題を解決するために、プレートチャンバーの内部に準備されたマイクロプレートに、膜タンパク質を含有する脂質メソフェーズの試料を分注する試料分注工程と、タンパク質を結晶化するための結晶化溶液を、上記マイクロプレートに分注する溶液分注工程と、分注された上記試料と、分注された上記結晶化溶液とを合わせる混合工程と、上記混合工程の後に、透明なカバーを上記マイクロプレートの上面に貼り付ける貼付け工程と、上記貼付け工程の後に、上記試料中の上記タンパク質を結晶化させる結晶成長工程とを含む、タンパク質の結晶化方法であって、上記試料分注工程および上記溶液分注工程においては、上記プレートチャンバーの内部に水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスを供給することにより上記プレートチャンバーの内部の湿度を調節する構成を有している。 In addition, the protein crystallization method according to the present invention is a sample dispensing step of dispensing a lipid mesophase sample containing a membrane protein to a microplate prepared in a plate chamber in order to solve the above-described problem. A solution dispensing step of dispensing a crystallization solution for crystallizing the protein onto the microplate, a mixing step of combining the dispensed sample and the dispensed crystallization solution, A protein crystallization method comprising a pasting step of pasting a transparent cover on the upper surface of the microplate after the mixing step, and a crystal growth step of crystallizing the protein in the sample after the pasting step. In the sample dispensing step and the solution dispensing step, water vapor and a lower humidity than water vapor are dried inside the plate chamber. It has a configuration for adjusting the humidity of the inside of the plate chamber by supplying a mixed gas of the gas.
 なお、試料分注工程または溶液分注工程が混合工程を兼ねるものであってもよい。例えば、まず試料分注工程を実施して試料をマイクロプレートに分注し、この分注された試料に直接、溶液分注工程において結晶化溶液を分注することにより、試料と結晶化溶液とを合わせ、混合工程を実現するものであってもよい。 Note that the sample dispensing step or the solution dispensing step may also serve as the mixing step. For example, first, a sample dispensing process is performed to dispense a sample into a microplate, and a crystallization solution is dispensed directly into the dispensed sample in the solution dispensing process, whereby the sample, the crystallization solution, and And a mixing step may be realized.
 上記構成によれば、水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスを供給することによりプレートチャンバーの内部の湿度を調節しているため、プレートチャンバー内の湿度を厳密に調節することができる。したがって、湿度が厳密に調節された環境において、マイクロプレートへの試料の分注および試料への結晶化溶液の添加を行うことができる。 According to the above configuration, the humidity inside the plate chamber is adjusted by supplying a mixed gas of water vapor and a dry gas having a humidity lower than that of the water vapor, so that the humidity inside the plate chamber can be strictly adjusted. . Therefore, in an environment in which the humidity is strictly controlled, the sample can be dispensed to the microplate and the crystallization solution can be added to the sample.
 本発明に係るタンパク質の結晶化方法において、上記マイクロプレートは、厚みが30μm~150μmであるガラス基板と、該ガラス基板に貼り付けられた、1以上のウェル形成用貫通孔を有するマイクロプレート形成シートとによって形成されたマイクロプレートであり、上記カバーは、厚みが30μm~150μmのカバーガラスであることが好ましい。 In the protein crystallization method according to the present invention, the microplate has a glass substrate having a thickness of 30 μm to 150 μm, and a microplate forming sheet having one or more well-forming through-holes attached to the glass substrate. The cover is preferably a cover glass having a thickness of 30 μm to 150 μm.
 上記構成によれば、タンパク質の結晶化の場がガラス基板とカバーガラスとにサンドイッチ状に挟まれた、いわゆるサンドイッチセルが形成される。ガラス基板およびカバーガラスの厚みは何れも30μm~150μmであるため、このサンドイッチセルでのガラスによるエックス線の吸収は小さい。したがって、サンドイッチセルの状態で、すなわちカバーガラスを剥がすことなく、各種顕微鏡観察を含めた測定の他、エックス線による脂質メソフェーズの構造解析およびタンパク質の結晶におけるエックス線の回折確認など、エックス線を用いた解析を直接適用することができる。 According to the above configuration, a so-called sandwich cell is formed in which a protein crystallization field is sandwiched between a glass substrate and a cover glass. Since both the glass substrate and the cover glass have a thickness of 30 μm to 150 μm, the absorption of X-rays by the glass in this sandwich cell is small. Therefore, in the sandwich cell state, that is, without removing the cover glass, in addition to measurements including various microscopic observations, analysis using X-rays such as structural analysis of lipid mesophase by X-rays and confirmation of X-ray diffraction in protein crystals Can be applied directly.
 本発明に係るタンパク質の結晶化方法において、上記マイクロプレート形成シートの上記ウェル形成用貫通孔は、レーザ加工によって形成されていることが好ましい。 In the protein crystallization method according to the present invention, it is preferable that the well formation through-hole of the microplate forming sheet is formed by laser processing.
 上記構成によれば、マイクロプレート形成シートに接着剤層が設けられている場合に、加工により形成されるウェル形成用貫通孔の周囲の接着剤層および貫通孔以外のシート部における接着剤層に凹凸が生じることを防ぐことができる。したがって、カバーガラスを貼り付ける際に、カバーガラスとウェル形成面との間に空隙が生じることを防ぐことができる。 According to the above configuration, when the adhesive layer is provided on the microplate forming sheet, the adhesive layer around the well-forming through hole formed by processing and the adhesive layer in the sheet portion other than the through hole are formed. Unevenness can be prevented from occurring. Therefore, when a cover glass is affixed, it can prevent that a space | gap arises between a cover glass and a well formation surface.
 また、本発明に係るマイクロプレート形成シートは、基板に貼り付けられてマイクロプレートを形成する、1以上のウェル形成用貫通孔を有するマイクロプレート形成シートであって、表面に接着剤層が形成されており、上記ウェル形成用貫通孔は、レーザ加工によって形成されている構成を有している。 The microplate forming sheet according to the present invention is a microplate forming sheet having one or more well-forming through-holes that are attached to a substrate to form a microplate, and an adhesive layer is formed on the surface. The well forming through hole has a structure formed by laser processing.
 上記構成によれば、マイクロプレート形成シートのウェル形成用貫通孔の周囲の接着剤層および貫通孔以外のシート部における接着剤層の凹凸は、機械的打ち抜き加工により貫通孔を形成したものと比較して少ないため、マイクロプレート形成シートにカバーガラスを貼り付ける際に、空隙の発生を抑えることができる。 According to the above configuration, the unevenness of the adhesive layer in the periphery of the through hole for forming a well of the microplate forming sheet and the adhesive layer in the sheet portion other than the through hole is compared with that in which the through hole is formed by mechanical punching. Therefore, when the cover glass is attached to the microplate forming sheet, the generation of voids can be suppressed.
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope indicated in the claims. That is, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。 Examples will be shown below, and the embodiments of the present invention will be described in more detail.
 〔実施例1:湿度の制御性の評価〕
 水蒸気と乾燥窒素ガスとの混合による、本実施の形態における試料分注装置のプレートチャンバー内の湿度の制御性を、湿度値 98%R.H.、70%R.H.、および25%R.H.の場合について評価した。結果を図5のA~Cに示す。図5のA~Cにおける横軸は、当該実験のデータ取得開始時からの時間を表している。図5のA~Cにおける縦軸は、プレートチャンバー内の四隅に設置された各湿度温度センサによって計測された、プレートチャンバー内の湿度値を表している。湿度温度センサは、プレートチャンバー内の湿度値を5秒毎に計測している。図5のA~Cにおいて、実線、破線、太い実線、または太い破線によって4個の各々の湿度温度センサからの測定値を示している。全てにおいて、水蒸気流量は一定とし、乾燥窒素ガスの流量調節でもって湿度値の制御を行った。図中上向きの矢印は、その時点で湿度値を上昇させるために乾燥窒素ガス流量を低下させたことを示しており、下向きの矢印は、その時点で湿度値を降下させるために乾燥窒素ガス流量を増大させたことを示している。湿度温度センサは、平衡気相の湿度値が既知の電解質水溶液(例えば、非特許文献:R.H. Stokes and R.A. Robinson, Ind. Eng.Chem., 1949, 2013)を用いて補正した。
[Example 1: Evaluation of controllability of humidity]
The controllability of the humidity in the plate chamber of the sample dispensing apparatus in the present embodiment by mixing water vapor and dry nitrogen gas is expressed as a humidity value of 98% R.D. H. 70% R.V. H. , And 25% R.V. H. The case was evaluated. The results are shown in FIGS. The horizontal axis in FIGS. 5A to 5C represents the time from the start of data acquisition of the experiment. The vertical axes in FIGS. 5A to 5C represent the humidity values in the plate chamber measured by the respective humidity temperature sensors installed at the four corners in the plate chamber. The humidity temperature sensor measures the humidity value in the plate chamber every 5 seconds. In FIGS. 5A to 5C, the measured values from the four humidity temperature sensors are indicated by solid lines, broken lines, thick solid lines, or thick broken lines. In all cases, the water vapor flow rate was constant, and the humidity value was controlled by adjusting the flow rate of dry nitrogen gas. The upward arrow in the figure indicates that the dry nitrogen gas flow rate has been reduced to increase the humidity value at that time, and the downward arrow indicates the dry nitrogen gas flow rate to decrease the humidity value at that time point. It shows that increased. The humidity temperature sensor was corrected using an aqueous electrolyte solution with a known equilibrium gas phase humidity value (for example, non-patent literature: RH Stokes and RA Robinson, Ind. Eng. Chem., 1949, 2013).
 98%R.H.の場合(図5のA)を具体例として、結果について詳しく説明する。初め湿度値が低下傾向であったため、矢印1の時点で窒素ガス流量を減少させた。これにより湿度値の低下傾向は抑制されたが、4分後に湿度値に若干の上昇傾向がみられた。そのため、矢印2の時点で窒素流量を少し増加させた。その結果、急速な湿度値の低下が誘起されたため、矢印3の時点において再び窒素流量を微減させた。そうしたところ、それ以降は、ほぼ98%R.H.の一定値を維持した。さらに、乾燥窒素ガス流量の増減により全てのセンサ値が敏感に(5~10秒程度で湿度値の変化が現れた)同方向の応答をしていることから、本実施の形態における試料分注装置においては、十分な応答感度をもって湿度制御が可能であることが示された。なお、このような制御性は98%R.H.の条件に限らず、70%R.H.(図5のB)、および25%R.H.(図5のC)の場合についても、同様な応答性を示している。 98% R. H. The case will be described in detail by taking the case (A in FIG. 5) as a specific example. Initially, the humidity value tended to decrease, so the nitrogen gas flow rate was decreased at the time of arrow 1. As a result, the decreasing tendency of the humidity value was suppressed, but a slight increasing tendency was seen in the humidity value after 4 minutes. Therefore, the nitrogen flow rate was slightly increased at the time of arrow 2. As a result, a rapid decrease in humidity value was induced, so that the nitrogen flow rate was slightly decreased again at the time indicated by arrow 3. After that, almost 98% R.D. H. The constant value of was maintained. Furthermore, since all sensor values are sensitively responding in the same direction due to increase / decrease in the dry nitrogen gas flow rate (a change in humidity value appears in about 5 to 10 seconds), sample dispensing in this embodiment is performed. It was shown that humidity control is possible with sufficient response sensitivity. Such controllability is 98% R.D. H. 70% R.D. H. (FIG. 5B), and 25% R.D. H. In the case of (C in FIG. 5), similar responsiveness is shown.
 以上から、本実施の形態における試料分注装置においては、広い湿度範囲で良好な制御性が得られることが示された。 From the above, it was shown that the sample dispensing device in the present embodiment can obtain good controllability in a wide humidity range.
 〔実施例2:湿度制御の時間安定性の評価〕
 本実施の形態における試料分注装置のプレートチャンバー内に、マイクロプレートを設置して、プレートチャンバー内の相対湿度値を98%R.H.(図6のA)、90%R.H.(図6のB)、70%R.H.(図6のC)、25%R.H.(図6のD)、または5%R.H.(図6のE)に設定した場合の湿度値を、30~40分にわたってモニターした。結果を図6のA~Eに示す。図6のA~Eにおける横軸は、当該実験データ取得開始時点からの時間を表している。図6のA~Eにおける縦軸は、プレートチャンバー内の四隅に設置した4個の湿度温度センサそれぞれから得られた、チャンバー内の湿度を表している。湿度温度センサは、プレートチャンバー内の湿度値を1分毎に計測している。4つの異なる湿度温度センサからの測定値を4つの異なるシンボルで表している。
[Example 2: Evaluation of time stability of humidity control]
A microplate is installed in the plate chamber of the sample dispensing apparatus in the present embodiment, and the relative humidity value in the plate chamber is set to 98% R.D. H. (A in FIG. 6), 90% R.I. H. (FIG. 6B), 70% R.D. H. (C in FIG. 6), 25% R.D. H. (D in FIG. 6), or 5% R.D. H. The humidity value when set to (E in FIG. 6) was monitored over 30-40 minutes. The results are shown in FIGS. The horizontal axis in A to E of FIG. 6 represents the time from the start point of the experimental data acquisition. The vertical axis in A to E of FIG. 6 represents the humidity in the chamber obtained from each of the four humidity temperature sensors installed at the four corners in the plate chamber. The humidity temperature sensor measures the humidity value in the plate chamber every minute. Measurements from four different humidity temperature sensors are represented by four different symbols.
 代表例として98%R.H.の場合(図6のA)の結果について説明する。図6のAに示されるように、30分にわたり4個の各センサ値が全て、98±0.5%R.H.の範囲内に安定に制御されていた。すなわち、プレートチャンバー内の湿度が1%以内で均一に安定に制御出来ていることが示された。実際の分注作業は1マイクロプレート当たり約10分程度なので、上記の結果から、本発明の目的に十分かなう、安定な湿度制御が実施できていることが示された。また、他の湿度値設定条件でも98%R.H.の場合と本質的に同じ精度および時間安定性が確認され、1%以内での湿度制御が可能であることが示された。 As a representative example, 98% R.D. H. The result in the case (A in FIG. 6) will be described. As shown in FIG. 6A, each of the four sensor values over a 30 minute period was 98 ± 0.5% R.D. H. It was stably controlled within the range. That is, it was shown that the humidity in the plate chamber could be controlled uniformly and stably within 1%. Since the actual dispensing operation is about 10 minutes per microplate, the above results show that stable humidity control that is sufficient for the purpose of the present invention can be performed. Also, under other humidity value setting conditions, 98% R.D. H. As a result, essentially the same accuracy and time stability were confirmed, and it was shown that humidity control within 1% was possible.
 なお、図6のCに見られる湿度値の一定方向への上昇あるいは下降は、試料分注装置が設置された部屋の室内空調器の切り替え時に起こる外気温度の変動等により、加湿器の加湿性能が変動することが一因である。しかしながら、湿度値の連続モニターにより、適宜窒素流量の微調整を行えば容易に一定湿度値を維持することができる。また、分注動作に伴う蓋の移動、または試料分注用マイクロシリンジもしくは結晶化溶液分注用チップの出入りによっても、湿度制御はほとんど影響を受けなかった。本実施例では制御時間を30~40分としたが、これをさらに時間延長することは容易である。 Note that the increase or decrease in the humidity value seen in C in FIG. 6 is due to fluctuations in the outside air temperature that occur when the room air conditioner in the room where the sample dispensing device is installed, etc. This is partly because of fluctuations. However, a constant humidity value can be easily maintained by finely adjusting the nitrogen flow rate as appropriate by continuously monitoring the humidity value. Also, the humidity control was hardly affected by the movement of the lid accompanying the dispensing operation or the entrance / exit of the sample dispensing microsyringe or the crystallization solution dispensing tip. In this embodiment, the control time is 30 to 40 minutes, but it is easy to extend this time further.
 以上から、プレートチャンバー内の湿度は、5%からほぼ100%にわたる広い範囲の任意の設定値において、長時間安定に湿度制御できることが示された。 From the above, it has been shown that the humidity in the plate chamber can be stably controlled for a long period of time at an arbitrary set value in a wide range from 5% to almost 100%.
 結晶化溶液の組成は非常に複雑であるため、個別の溶液について若干の変動はあるが、結晶化溶液の平均的な組成および濃度から推定した結晶化溶液と平衡にある気相の湿度は、96~99%R.H.の範囲であると推定される。一方、タンパク質-脂質メソフェーズ試料の平衡水蒸気圧も当該タンパク質-脂質メソフェーズに含まれる水溶液の組成および濃度に依存するが、結晶化溶液と同様に96~99%R.H.の範囲にあると推定される。したがって、湿度98%R.H.の条件は、ほとんど蒸発および結露がない条件である(下記実施例4を参照)。 The composition of the crystallization solution is so complex that there is some variation for individual solutions, but the humidity of the gas phase in equilibrium with the crystallization solution estimated from the average composition and concentration of the crystallization solution is 96-99% R.D. H. It is estimated that On the other hand, the equilibrium water vapor pressure of the protein-lipid mesophase sample also depends on the composition and concentration of the aqueous solution contained in the protein-lipid mesophase, but is 96 to 99% R.S. like the crystallization solution. H. It is estimated that it is in the range. Therefore, humidity 98% R.D. H. These conditions are conditions in which there is almost no evaporation and condensation (see Example 4 below).
 〔実施例3:湿度制御時の温度変化〕
 設定湿度値を、98%R.H.と90%R.H.(図7のA)、70%R.H.と25%R.H.(図7のB)、および5%R.H.(図7のC)で湿度制御した場合のプレートチャンバー内の温度変化を測定した。結果を図7に示す。図7のA~Cにおける横軸は、データ取得開始からの時間を示している。図7のA~Cにおける縦軸は、5秒毎に取得される湿度温度センサからの温度値を示している。破線で示したToutは加湿器近くに設置された湿度温度センサで計測した外気温度(プレートチャンバー外の温度)である。実線で示したTchは、プレートチャンバー内の四隅に設置された4個の湿度温度センサで計測された、プレートチャンバー内の温度値である。各センサで計測された温度値は0.1℃以内で一致していたので、センサ間の区別をせず全て実線で表示した。
[Example 3: Temperature change during humidity control]
Set humidity value to 98% R.V. H. And 90% R.V. H. (A in FIG. 7), 70% R.V. H. And 25% R.V. H. (FIG. 7B), and 5% R.I. H. The temperature change in the plate chamber when the humidity was controlled in (C in FIG. 7) was measured. The results are shown in FIG. The horizontal axes in FIGS. 7A to 7C indicate the time from the start of data acquisition. The vertical axis in FIGS. 7A to 7C indicates the temperature value from the humidity temperature sensor acquired every 5 seconds. T out indicated by a broken line is an outside air temperature (temperature outside the plate chamber) measured by a humidity temperature sensor installed near the humidifier. T ch indicated by a solid line is a temperature value in the plate chamber measured by four humidity temperature sensors installed at four corners in the plate chamber. Since the temperature values measured by the sensors were within 0.1 ° C., all the sensors were displayed as solid lines without distinguishing between the sensors.
 プレートチャンバー内の湿度を約40分間、90%R.H.に制御し、次いで60分間、98%R.H.に制御した場合(図7のA)の結果について説明する。湿度制御を開始すると、外気温度(Tout)は上昇を始めた。これは加湿器のモータおよびファン等の部品からの発熱により外気温度が上昇したためである。プレートチャンバー内の温度(Tch)も同様に、上昇を始めた。これは上記と同じ理由で、加熱された水蒸気(加湿器出口での水蒸気温度が27~29℃程度)がプレートチャンバー内に供給されるためである。その後90分間、プレートチャンバー内の温度は、スタート時の温度(19℃)から徐々に上昇し、19.8℃まで上昇した。しかしながらそれ以降はほぼ定常状態(19.8℃)となり、140分の実験終了までそれ以上の温度上昇は観測されなかった。 The humidity in the plate chamber is 90% R.D. for about 40 minutes. H. And then 98% R.D. for 60 minutes. H. The results when the control is performed (A in FIG. 7) will be described. When the humidity control was started, the outside air temperature (T out ) began to rise. This is because the outside air temperature has risen due to heat generated by components such as the motor and fan of the humidifier. The temperature in the plate chamber (T ch ) started to rise as well. This is because heated water vapor (water vapor temperature at the outlet of the humidifier is about 27 to 29 ° C.) is supplied into the plate chamber for the same reason as described above. Thereafter, for 90 minutes, the temperature in the plate chamber gradually increased from the starting temperature (19 ° C.) and increased to 19.8 ° C. However, after that, the steady state (19.8 ° C.) was reached, and no further temperature increase was observed until the end of the 140-minute experiment.
 70%R.H.と25%R.H.との湿度制御を行った場合(図7のB)の場合も、ほぼ同様の温度上昇を示した。この場合110分間の湿度制御でプレートチャンバー内の温度は約0.5℃上昇した。一方で、5%R.H.の湿度制御を行った場合(図7のC)には、温度上昇がほとんど観測されなかった。 70% R.D. H. And 25% R.V. H. In the case where the humidity control was performed (B in FIG. 7), almost the same temperature increase was shown. In this case, the temperature in the plate chamber increased by about 0.5 ° C. by controlling the humidity for 110 minutes. On the other hand, 5% R.D. H. When the humidity control was performed (C in FIG. 7), almost no temperature increase was observed.
 70%R.H.と25%R.H.との湿度制御を行った場合(図7のB)に温度上昇が小さいのは、90%R.H.と98%R.H.との湿度制御を行った場合(図7のA)に比較して、加湿器からの水蒸気導入量が少ないためである。また、5%R.H.の湿度制御を行った場合(図7のC)に、温度上昇がほとんど観測されなかったのは、加湿器を動作させていないためである。 70% R.D. H. And 25% R.V. H. When the humidity control is performed (B in FIG. 7), the temperature rise is small because 90% R.D. H. And 98% R.V. H. This is because the amount of water vapor introduced from the humidifier is smaller than when the humidity control is performed (A in FIG. 7). 5% R.V. H. When performing humidity control (C in FIG. 7), the temperature rise was hardly observed is due not to operate the humidifier.
 以上の結果から、湿度制御によるプレートチャンバー内の温度上昇は1℃以内であることが示された。 From the above results, it was shown that the temperature rise in the plate chamber due to humidity control was within 1 ° C.
 〔実施例4:水分蒸発速度の評価〕
 本実施の形態における試料分注装置のプレートチャンバー内に、マイクログプレートを設置して、プレートチャンバー内の湿度を98%R.H.に設定した。次いで、結晶化溶液分注マイクロディスペンサ部によって、マイクロプレートの1列の8ウェルのそれぞれに、1μlの蒸留水を分注(時間ゼロ)した後、分注された水滴の体積の時間変化を約35分にわたって測定した。同様の測定を別の列の各ウェルに分注した水滴についても行い、計3回実験を繰り返した。各時間における水滴の体積は以下の方法を用いて求めた。所定の時間に、目盛り付マイクロガラスキャピラリ(BLAUBRAND intre MARK 1/2/3/4/5 ul)をプレートチャンバーの上部開口から差し込み、各ウェル上の水滴をキャピラリ内に吸引採取した。水滴吸引前後のキャピラリ重量の変化から、採取した水滴滴の質量を求めた。水の比重を1と仮定して体積を算出した。マイクロガラスキャピラリは、穴径0.1μmのフィルタで濾過した99%以上の無水エタノールでもってキャピラリ内壁を洗浄後、高圧窒素気流で急速乾燥した直後のものを用いた。これにより、吸い取り誤差は±3%であった。結果を図8に示す。
[Example 4: Evaluation of moisture evaporation rate]
A micro plate is installed in the plate chamber of the sample dispensing apparatus in the present embodiment, and the humidity in the plate chamber is set to 98% R.D. H. Set to. Next, after 1 μl of distilled water is dispensed (time zero) to each of the 8 wells in one row of the microplate by the crystallization solution dispensing microdispenser part, the time change of the volume of the dispensed water droplet is reduced approximately. Measured over 35 minutes. The same measurement was performed for water droplets dispensed to each well in another row, and the experiment was repeated three times in total. The volume of water droplets at each time was determined using the following method. At a predetermined time, a calibrated micro glass capillary (BLAUBRAND intre MARK 1/2/3/4/5 ul) was inserted from the upper opening of the plate chamber, and water droplets on each well were sucked into the capillary. From the change in capillary weight before and after the water droplet suction, the mass of the collected water droplet was determined. The volume was calculated on the assumption that the specific gravity of water was 1. The micro glass capillary was used after washing the inner wall of the capillary with 99% or more of absolute ethanol filtered through a filter having a hole diameter of 0.1 μm and then rapidly drying with a high-pressure nitrogen stream. Thereby, the blotting error was ± 3%. The results are shown in FIG.
 図8に示されるように、分注から35分間で、約3%程度の体積の減少が測定された。マイクロプレートへの試料および結晶化溶液の分注に要する時間は、概ね10分である。したがって、結晶化プレート作製時における水分蒸発は、1%以下に抑制されている。10%までの蒸発を許容している従来の結晶作製手法における湿度管理と比較すると、10倍近い蒸発抑制を実現している。 As shown in FIG. 8, a volume reduction of about 3% was measured in 35 minutes after dispensing. The time required for dispensing the sample and the crystallization solution to the microplate is approximately 10 minutes. Therefore, moisture evaporation during the production of the crystallization plate is suppressed to 1% or less. Compared with the humidity control in the conventional crystal production method that allows evaporation up to 10%, the evaporation suppression is realized by nearly 10 times.
 〔実施例5:湿度の繰り返し変化応答の評価〕
 混合ガスにおける水蒸気量と乾燥窒素ガスとの混合比を調節し、プレートチャンバー内の湿度(R.H.)を繰り返し変化させた。具体的には、湿度を65%R.H.と98%R.H.との間で繰り返し変化させ、プレートチャンバー内の四隅に設置した湿度温度センサにより湿度を測定した。結果を図9に示す。図9では、4つの異なる湿度温度センサからの測定値を4つの異なるシンボルで表している。
[Example 5: Evaluation of repeated change response of humidity]
The mixing ratio between the amount of water vapor in the mixed gas and the dry nitrogen gas was adjusted, and the humidity (RH) in the plate chamber was repeatedly changed. Specifically, the humidity is 65% R.D. H. And 98% R.V. H. The humidity was measured with humidity temperature sensors installed at the four corners of the plate chamber. The results are shown in FIG. In FIG. 9, measured values from four different humidity temperature sensors are represented by four different symbols.
 図9に示されるように、何れのセンサ値も、1~3分程度で98%から65%へ、3~5分程度で65%から98%へと再現性良く湿度変化した。 As shown in FIG. 9, the humidity of each sensor value changed from 98% to 65% in about 1 to 3 minutes and from 65% to 98% in about 3 to 5 minutes with good reproducibility.
 また、プレートチャンバー内の湿度の場所依存性は、定常状態に達するまでは2%程度の不均一性を示すこともあったが、湿度値が定常状態になると1%R.H.以内で均一であった。 Also, the location dependence of the humidity in the plate chamber sometimes showed non-uniformity of about 2% until the steady state was reached, but when the humidity value reached the steady state, 1% R.D. H. Was uniform within.
 〔実施例6:湿度の違いによる、結晶数、結晶サイズおよび結晶の品質の比較〕
 界面活性剤であるオクチルグリコシドで可溶化したバクテリオロドプシン(bR)(10mg/ml)と、脂質である1-O-(3,7,11,15-テトラメチルヘキサデシル)-β-D-キシロシド(β-XylOC16+4)とを、45/55(w/w)の比率で混合し、bRを再構成した脂質メソフェーズ(bRメソフェーズと呼ぶ)を調製した。このbRメソフェーズについて、上述した実施形態に係る試料分注装置を用いて、以下の2つの条件で分注し、結晶化を実施した。
条件A:湿度97±1%R.H.の湿度条件で100nl/ウェルのbRメソフェーズを分注し、分注後すぐに1μlの結晶化溶液(2.3M リン酸ナトリウム・カリウム緩衝液(pH5.6))を添加し、カバーガラスを貼付け、20℃、暗所で結晶化を開始した。
条件B:湿度65±1%R.H.の低湿度条件で100nl/ウェルのbRメソフェーズを分注した後、65±1%R.H.で5分間インキュベートし、bRメソフェーズから水分を蒸発させた後に、1μlの結晶化溶液(2.3M リン酸ナトリウム・カリウム緩衝液(pH5.6))を添加し、カバーガラスを貼付け、20℃、暗所で結晶化を開始した。
[Example 6: Comparison of crystal number, crystal size, and crystal quality by difference in humidity]
Bacteriorhodopsin (bR) (10 mg / ml) solubilized with octyl glycoside as a surfactant and 1-O- (3,7,11,15-tetramethylhexadecyl) -β-D-xyloside as a lipid (Β-XylOC 16 + 4 ) was mixed at a ratio of 45/55 (w / w) to prepare a lipid mesophase reconstituted bR (referred to as bR mesophase). About this bR mesophase, it dispensed on the following two conditions using the sample dispensing apparatus which concerns on embodiment mentioned above, and implemented crystallization.
Condition A: Humidity 97 ± 1% R.D. H. Dispense 100 nl / well of bR mesophase under the following conditions of humidity. Immediately after dispensing, add 1 μl of crystallization solution (2.3 M sodium phosphate / potassium buffer (pH 5.6)), and attach a cover glass. Crystallization started in the dark at 20 ° C.
Condition B: Humidity 65 ± 1% R.D. H. After dispensing 100 nl / well of bR mesophase under low humidity conditions, 65 ± 1% R.P. H. Incubate for 5 minutes to evaporate water from the bR mesophase, add 1 μl of crystallization solution (2.3 M sodium phosphate potassium buffer (pH 5.6)), apply cover glass, Crystallization started in the dark.
 結果を図10および図11に示す。図10のAは、条件Aにおける結晶化開始1ヶ月後、bRメソフェーズ中において成長した結晶の状態を示しており、図10のBは、条件Bにおける結晶化開始1ヶ月後、bRメソフェーズ中において成長した結晶の状態を示している。また、図11は、条件AおよびBにおいて得られた結晶の大きさと数との分布を示しており、条件Aにおける分布を破線で示し、条件Bにおける分布を黒丸および黒四角で示している。何れの条件の場合も2つのウェルで結晶化を行った結果を纏めた。 The results are shown in FIG. 10 and FIG. FIG. 10A shows the state of the crystal grown in the bR mesophase one month after the start of crystallization in Condition A, and FIG. 10B shows the state in the bR mesophase one month after the start of crystallization in Condition B. The state of the grown crystal is shown. FIG. 11 shows the distribution of the size and number of crystals obtained under conditions A and B. The distribution under condition A is indicated by a broken line, and the distribution under condition B is indicated by black circles and black squares. The results of crystallization in two wells under all conditions are summarized.
 図11に示されるように、条件Aの操作では、15μm付近を中心とした、最大でも35μm程度の比較的小さな結晶が多数得られた。一方、条件Bの操作では、15μm付近の小さな結晶の数が条件Aの場合の1/2以下に減少するとともに、40~55μmの大きな結晶が得られた。すなわち、条件Aの操作では比較的小さな結晶が多数成長したのに対し、条件Bの操作では小さな結晶数が減少し大きな結晶が成長した。 As shown in FIG. 11, in the operation under Condition A, a large number of relatively small crystals with a maximum of about 35 μm centered around 15 μm were obtained. On the other hand, in the operation under condition B, the number of small crystals in the vicinity of 15 μm decreased to 1/2 or less of that in condition A, and large crystals of 40 to 55 μm were obtained. That is, many relatively small crystals grew in the operation of condition A, whereas the number of small crystals decreased and a large crystal grew in the operation of condition B.
 得られた結晶について、放射光科学研究施設(PF)のビームラインBL1Aによってエックス線回折測定を行った。その結果、条件Bの操作で得られた大きな結晶は、2.3Å程度までのエックス線回折点が確認でき、P3系、61.3,61.3,100.1Åと格子定数を決定できた。一方、条件Aの操作で得られた結晶においては、エックス線の回折点があまり観測されず、また回折点が得られた場合であっても強度が弱い等、両者の結晶におけるエックス線の回折能(結晶の質)には大きな差が現れた。 X-ray diffraction measurement was performed on the obtained crystal using the beam line BL1A of the Synchrotron Radiation Science Research Facility (PF). As a result, an X-ray diffraction point up to about 2.3 は was confirmed for the large crystal obtained by the operation under Condition B, and the lattice constant was determined to be P3, 61.3, 61.3, and 100.1 で き. On the other hand, in the crystal obtained by the operation under the condition A, the X-ray diffraction points are not observed so much, and even when the diffraction points are obtained, the intensity is weak. There was a big difference in crystal quality.
 以上から、分注時の湿度条件が結晶成長過程に大きな影響があることが示され、分注時の湿度制御によって、結晶サイズの増大、および結晶のエックス線の回折能の向上が効率的に達成されることが確認された。 The above shows that the humidity conditions during dispensing have a significant effect on the crystal growth process, and the humidity control during dispensing effectively increases the crystal size and improves the X-ray diffraction power of the crystal. It was confirmed that
 〔実施例7:湿度の違いによる、結晶化速度の比較〕
 実施例6と同様、オクチルグリコシドで可溶化したbR(15.5mg/ml)と、β-XylOC16+4とを、45/55(w/w)の比率で混合し、bRを再構成した脂質メソフェーズ(bRメソフェーズ)を調製した。このbRメソフェーズについて、上述した実施形態に係る試料分注装置を用いて、以下の2つの条件で分注し、結晶化を実施した。
条件C:湿度97±1%R.H.の湿度条件で50nl/ウェルのbRメソフェーズを分注し、分注後すぐに0.8μlの結晶化溶液を添加し、カバーガラスを貼付け、20℃、暗所で結晶化を開始した。結晶化溶液は、1.0M、1.2M、1.5M、1.7M、2.0M、2.3M、2.5Mまたは3.0Mのリン酸ナトリウム・カリウム緩衝液(pH5.6)である。
条件D:湿度55±1%R.H.の低湿度条件で50nl/ウェルのbRメソフェーズを分注した後、さらに55±1%R.H.で5分間インキュベートし、その後に、0.8μlの結晶化溶液を添加し、カバーガラスを貼付け、20℃、暗所で結晶化を開始した。結晶化溶液は、条件Cと同じく、1.0M、1.2M、1.5M、1.7M、2.0M、2.3M、2.5Mまたは3.0Mのリン酸ナトリウム・カリウム緩衝液(pH5.6)である。
[Example 7: Comparison of crystallization speed due to difference in humidity]
As in Example 6, bR (15.5 mg / ml) solubilized with octyl glycoside and β-XylOC 16 + 4 were mixed at a ratio of 45/55 (w / w) to reconstitute bR. (BR mesophase) was prepared. About this bR mesophase, it dispensed on the following two conditions using the sample dispensing apparatus which concerns on embodiment mentioned above, and implemented crystallization.
Condition C: Humidity 97 ± 1% R.D. H. 50 nl / well of bR mesophase was dispensed under the following humidity conditions. Immediately after dispensing, 0.8 μl of crystallization solution was added, a cover glass was attached, and crystallization was started at 20 ° C. in the dark. The crystallization solution is 1.0M, 1.2M, 1.5M, 1.7M, 2.0M, 2.3M, 2.5M or 3.0M sodium phosphate potassium buffer (pH 5.6). is there.
Condition D: Humidity 55 ± 1% R.D. H. After dispensing 50 nl / well of bR mesophase under low humidity conditions of 55 ± 1% R.P. H. Incubated for 5 minutes, then 0.8 μl of crystallization solution was added, a cover glass was applied, and crystallization was started at 20 ° C. in the dark. As in Condition C, the crystallization solution was 1.0 M, 1.2 M, 1.5 M, 1.7 M, 2.0 M, 2.3 M, 2.5 M, or 3.0 M sodium phosphate potassium buffer ( pH 5.6).
 条件CおよびDともに、同じ条件での結晶化を3回繰り返し、結果を纏めた。結晶化過程を経時的に観察した結果を、図12に示す。図12は、結晶が初めて認められた時間(T)と結晶化溶液濃度の関係を示した図である。三角のシンボルは条件C(97%R.H.条件)での結果を示しており、四角のシンボルは条件D(50%R.H.条件)での結果を示している。 For both conditions C and D, crystallization under the same conditions was repeated three times, and the results were summarized. The results of observing the crystallization process over time are shown in FIG. FIG. 12 is a diagram showing the relationship between the time (T) at which crystals were first recognized and the crystallization solution concentration. The triangular symbol indicates the result under the condition C (97% RH condition), and the square symbol indicates the result under the condition D (50% RH condition).
 図12に示されるように、条件Cおよび条件D何れにおいても、結晶化溶液の濃度が高くなるとともに結晶が初めて認められる時間(T)が短くなる傾向が見られた。また、条件Dは条件Cの場合と比較し、結晶が初めて認められる時間(T)が大幅に短かった。例えば、結晶化溶液の濃度が2.0M、2.3Mおよび2.5Mである場合における、結晶が初めて認められる時間(T)は、条件Dの場合、それぞれ20日、2日および1日であったのに対し、条件Cでは、それぞれ55日、25日および20日であった。すなわち、条件Cの場合、条件Dと比較して、結晶が初めて認められる時間(T)が大幅に遅かった。さらに、結晶化を3月間継続したところ、条件Dでは、結晶化溶液の全濃度条件において、結晶の成長が確認できた。一方、条件Cでは、結晶が成長したのは、結晶化溶液の濃度が2.0M以上の場合のみであった。このように、条件CおよびDとの間で、結晶成長挙動に大きな差が見られた。 As shown in FIG. 12, in both conditions C and D, the concentration of the crystallization solution tended to increase and the time (T) for which crystals were first recognized tended to be shortened. In addition, as compared with the case of Condition C, Condition D has a significantly shorter time (T) for which crystals are first recognized. For example, when the concentration of the crystallization solution is 2.0M, 2.3M, and 2.5M, the time (T) at which crystals are first observed is 20 days, 2 days, and 1 day in the case of Condition D, respectively. In contrast, in Condition C, they were 55 days, 25 days, and 20 days, respectively. That is, in the case of the condition C, compared with the condition D, the time (T) for which the crystal was first recognized was significantly delayed. Furthermore, when crystallization was continued for 3 months, under condition D, crystal growth could be confirmed under all the crystallization solution concentration conditions. On the other hand, under the condition C, the crystal grew only when the concentration of the crystallization solution was 2.0M or more. Thus, a large difference was observed in the crystal growth behavior between conditions C and D.
 また、条件Dで得られた結晶は、偏光を示すヘキサゴナル結晶であり、2.6Åまでのエックス線回折点が確認できたが、条件Cでは、形の崩れた結晶しか得られなかった。 Further, the crystal obtained under the condition D was a hexagonal crystal exhibiting polarized light, and an X-ray diffraction point up to 2.6 mm could be confirmed, but under the condition C, only a crystal with a deformed shape was obtained.
 以上のように、分注時の湿度条件が、結晶の質の他、結晶成長速度にも大きく影響することがわかった。 As described above, it was found that the humidity condition during dispensing greatly affects the crystal growth rate in addition to the crystal quality.
 〔実施例8:湿度の違いによる、結晶成長確率の比較〕
 界面活性剤であるドデシルマルトシドで可溶化した、膜タンパク質であるプロテオロドプシン(pR)(30mg/ml)と、脂質である1-O-(5,9,13,17-テトラメチルオクタデカノイル)エリスリトール(EROCOC17+4)とを、40/50(w/w)の比率で混合し、pRを再構成した脂質メソフェーズ(pRメソフェーズと呼ぶ)を調製した。このpRメソフェーズについて、上述した実施形態に係る試料分注装置を用いて、以下の3つの条件で分注し、結晶化を実施した。
条件E:湿度96±1%R.H.の湿度条件で50nl/ウェルのpRメソフェーズを分注した後、分注後すぐに0.8μlの結晶化溶液を添加し、カバーガラスを貼付け、20℃、暗所で結晶化を開始した。結晶化溶液は、0.1Mのクエン酸緩衝液(pH5.6)に、8%、7%、6%、5%または4%(w/w)のMPD、および、0.3M、0.4M、0.5M、0.6Mまたは0.7MのMgSOを含む溶液であり、MPDの濃度およびMgSOの濃度を系統的に組み合わせて、計25の異なった種類の結晶化溶液を用いている。
条件F:湿度52±1%R.H.の低湿度条件で50nl/ウェルのpRメソフェーズを分注した後、52±1%R.H.でさらに5分間インキュベートした。その後すぐに、湿度を96±1%R.H.に上昇させ、条件Eで用いたのと同じ25種の結晶化溶液を0.8μl/ウェルの条件で添加し、カバーガラスを貼付け、20℃、暗所で結晶化を開始した。
条件G:湿度52±1%R.H.でのインキュベート時間を10分間(条件Fの2倍の時間)とした以外は、条件Fと同じ条件で結晶化プレートを作成し、20℃、暗所で結晶化を開始した。
[Example 8: Comparison of crystal growth probability depending on humidity]
The membrane protein proteorhodopsin (pR) (30 mg / ml) solubilized with the surfactant dodecyl maltoside and the lipid 1-O- (5,9,13,17-tetramethyloctadecanoyl) ) Erythritol (EROCOC 17 + 4 ) was mixed at a ratio of 40/50 (w / w) to prepare a lipid mesophase reconstituted pR (referred to as pR mesophase). About this pR mesophase, it dispensed on the following three conditions using the sample dispensing apparatus which concerns on embodiment mentioned above, and implemented crystallization.
Condition E: Humidity 96 ± 1% R.D. H. After dispensing 50 nl / well of pR mesophase under the following humidity conditions, 0.8 μl of crystallization solution was added immediately after dispensing, a cover glass was attached, and crystallization was started at 20 ° C. in the dark. The crystallization solution is 0.1M citrate buffer (pH 5.6), 8%, 7%, 6%, 5% or 4% (w / w) MPD, and 0.3M,. A solution containing 4M, 0.5M, 0.6M or 0.7M MgSO 4 , systematically combining the concentrations of MPD and MgSO 4 and using a total of 25 different types of crystallization solutions Yes.
Condition F: Humidity 52 ± 1% R.V. H. After dispensing 50 nl / well of pR mesophase under low humidity conditions of 52 ± 1% R.P. H. Incubated for an additional 5 minutes. Immediately thereafter, the humidity was 96 ± 1% R.D. H. The same 25 kinds of crystallization solutions used in condition E were added at 0.8 μl / well, a cover glass was attached, and crystallization was started at 20 ° C. in the dark.
Condition G: Humidity 52 ± 1% R.D. H. A crystallization plate was prepared under the same conditions as in Condition F except that the incubation time in was changed to 10 minutes (twice as long as Condition F), and crystallization was started in the dark at 20 ° C.
 20℃、暗所で一ヶ月間、結晶化を行ったが、条件E、FおよびGのいずれの場合も結晶成長が認められなかった。そこで、結晶化温度を4℃に変更し、さらに結晶化を継続したところ、結晶の成長が認められた。4℃に変更してから二ヶ月間結晶を成長させ、25種の異なった結晶化溶液において、結晶を成長させた結晶化溶液の数を表1にまとめた。 Crystallization was performed at 20 ° C. for one month in a dark place, but no crystal growth was observed in any of the conditions E, F, and G. Thus, when the crystallization temperature was changed to 4 ° C. and crystallization was continued, crystal growth was observed. The number of crystallization solutions in which crystals were grown in 25 different crystallization solutions after changing to 4 ° C. for two months is summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、低湿度条件で分注を行った条件FおよびGで結晶を成長させた結晶化溶液の割合は、それぞれ52%および64%であった。さらに、同一結晶化溶液で現れた結晶数を比較すると、条件Gにおける結晶数は、条件Fにおける結晶数の2~5倍であり、分注時の低湿度インキュベーション時間が増加するほど、結晶化を促進する傾向が認められた。一方、条件Eでの結晶を成長させた結晶化溶液の数は条件FおよびGの半分以下に低下していた。これにより、実施例6および7とは異なった膜タンパク質・脂質系においても分注時の湿度条件がその後の結晶化挙動に大きな影響を及ぼすことが示された。 As shown in Table 1, the proportions of the crystallization solution in which crystals were grown under conditions F and G dispensed under low humidity conditions were 52% and 64%, respectively. Further, comparing the number of crystals appearing in the same crystallization solution, the number of crystals in condition G is 2 to 5 times the number of crystals in condition F, and the crystallization increases as the low-humidity incubation time during dispensing increases. The tendency to promote was recognized. On the other hand, the number of crystallization solutions in which crystals under condition E were grown was reduced to less than half of conditions F and G. Accordingly, it was shown that the humidity condition during dispensing greatly affects the subsequent crystallization behavior even in the membrane protein / lipid system different from Examples 6 and 7.
 〔実施例9:湿度の違いによる、結晶成長確率の比較〕
 界面活性剤であるドデシルマルトシドで可溶化した、膜タンパク質であるARII(58mg/ml)と、脂質(11%のコレステロールを含有するモノオレイン)とを、40/60(w/w)の比率で混合し、ARIIを再構成した脂質メソフェーズ(ARIIメソフェーズと呼ぶ)を調製した。このARIIメソフェーズについて、上述した実施形態に係る試料分注装置を用いて、以下の3つの条件で分注し、結晶化を実施した。
条件H:湿度97±1%R.H.の湿度条件で50nl/ウェルのARIIメソフェーズを分注し、分注後すぐに0.8μlの結晶化溶液を添加し、カバーガラスを貼付け、20℃、暗所で結晶化を開始した。結晶化溶液は、0.1Mのトリス塩酸緩衝液(pH7.5またはpH8.0)に、12%、14%または16%のPEG400、および4%、5%、6%または7%のMPDを含む溶液であり、pH値、PEG400の濃度およびMPDの濃度を系統的に組み合わせて、計24種の異なった種類の結晶化溶液を用いている。
条件I:湿度65±1%R.H.の湿度条件で50nl/ウェルのARIIメソフェーズを分注し、分注後すぐに条件Hで用いたのと同じ24種の結晶化溶液を0.8μl/ウェルの条件で添加し、カバーガラスを貼付け、20℃、暗所で結晶化を開始した。
条件J:湿度28±2%R.H.の湿度条件で50nl/ウェルのARIIメソフェーズを分注し、分注後すぐに条件Hで用いたのと同じ24種の結晶化溶液を0.8μl/ウェルの条件で添加し、カバーガラスを貼付け、20℃、暗所で結晶化を開始した。
[Example 9: Comparison of crystal growth probability depending on humidity]
40/60 (w / w) ratio of ARII (58 mg / ml) membrane protein solubilized with the surfactant dodecyl maltoside and lipid (monoolein containing 11% cholesterol) To prepare a lipid mesophase reconstituted with ARII (referred to as ARII mesophase). About this ARII mesophase, it dispensed on the following three conditions using the sample dispensing apparatus which concerns on embodiment mentioned above, and implemented crystallization.
Condition H: Humidity 97 ± 1% R.V. H. 50 nl / well of ARII mesophase was dispensed under the following humidity conditions, and 0.8 μl of crystallization solution was added immediately after dispensing, and a cover glass was attached, and crystallization was started at 20 ° C. in the dark. The crystallization solution is 12%, 14% or 16% PEG400 and 4%, 5%, 6% or 7% MPD in 0.1 M Tris-HCl buffer (pH 7.5 or pH 8.0). A total of 24 different types of crystallization solutions are used by systematically combining pH value, PEG 400 concentration and MPD concentration.
Condition I: Humidity 65 ± 1% R.D. H. 50 nl / well of ARII mesophase was dispensed under the humidity conditions of the following, and immediately after dispensing, the same 24 crystallization solutions used under condition H were added at 0.8 μl / well, and a cover glass was attached. Crystallization started in the dark at 20 ° C.
Condition J: Humidity 28 ± 2% R.V. H. 50 nl / well of ARII mesophase was dispensed under the humidity conditions of the following, and immediately after dispensing, the same 24 crystallization solutions used under condition H were added at 0.8 μl / well, and a cover glass was attached. Crystallization started in the dark at 20 ° C.
 条件H~Jのそれぞれについて結晶化過程を経時的に観察した結果、条件Hの場合には、結晶が全く得られなかった。一方、条件IおよびJの場合には、それぞれ、15%および33%の結晶化溶液で、結晶の成長が確認できた。以上から、分注時の湿度が低下するとともに結晶成長確率が顕著に増加することが分かった。これにより、実施例6、7および8とは異なった膜タンパク質・脂質系においても分注時の湿度条件が結晶化挙動に大きな影響を及ぼすことが示された。 As a result of observing the crystallization process over time for each of the conditions H to J, no crystals were obtained under the condition H. On the other hand, in the case of conditions I and J, growth of crystals could be confirmed with crystallization solutions of 15% and 33%, respectively. From the above, it was found that the crystal growth probability increases remarkably as the humidity during dispensing decreases. Thus, it was shown that the humidity conditions during dispensing greatly influence the crystallization behavior even in membrane protein / lipid systems different from Examples 6, 7 and 8.
 〔実施例10:タンパク質結晶に対するエックス線回折の確認〕
 厚み150μmのガラスプレートおよび厚み50μmのカバーガラスによって構成された薄型サンドイッチプレートのウェル内に保持されたリゾチーム結晶(50μm×50μm)について、SPring-8のビームラインBL-32XUにて、以下の条件でエックス線の反射測定を行った:温度 20℃、カメラ長 300mm、アッテネータ 600μm、ビームサイズ 10μm×10μm。その結果、3.1~3.2Å程度までのエックス線回折点が確認でき、P4系、80,80,37Åと格子定数を決定できた。これにより、ガラスサンドイッチプレートのウェル内のタンパク質結晶を外部に採取することなく、そのままの状態でエックス線回折能のチェックができることを確認することができた。
[Example 10: Confirmation of X-ray diffraction on protein crystal]
A lysozyme crystal (50 μm × 50 μm) held in a well of a thin sandwich plate composed of a glass plate having a thickness of 150 μm and a cover glass having a thickness of 50 μm is subjected to the following conditions on a beam line BL-32XU of SPring-8. X-ray reflection measurement was performed: temperature 20 ° C., camera length 300 mm, attenuator 600 μm, beam size 10 μm × 10 μm. As a result, X-ray diffraction points up to about 3.1 to 3.2 mm were confirmed, and the lattice constants of P4, 80, 80, and 37 mm could be determined. Thus, it was confirmed that the X-ray diffraction ability could be checked as it was without collecting the protein crystals in the well of the glass sandwich plate to the outside.
 〔実施例11:タンパク質結晶化過程における脂質メソフェーズ構造の直接SAXS測定および顕微鏡観察〕
 界面活性剤であるオクチルグリコシドで可溶化したバクテリオロドプシン(bR)(10mg/ml)と、脂質である1-O-(3,7,11,15-テトラメチルヘキサデシル)-β-D-キシロシド(β-XylOC16+4)とを、35/65(w/w)の比率で混合し、bRを再構成した脂質メソフェーズ(bRメソフェーズ)を調製した。このbRメソフェーズについて、上述した実施形態に係る試料分注装置を用いて、湿度97±1%R.H.の湿度条件で100nl/ウェルの条件でbRメソフェーズを50μm厚の基板ガラスを用いたマイクロプレートのウェルに分注した。次いで、1.0M、1.2M、1.5M、1.7M、2.0M、2.3M、2.5Mまたは3.0Mのリン酸ナトリウム・カリウム緩衝液1μlを、分注したbRメソフェーズに添加した後、50μm厚のカバーガラスを貼り付けてサンドイッチセルを作成し、20℃でbRの結晶化を行った。
[Example 11: Direct SAXS measurement and microscopic observation of lipid mesophase structure in protein crystallization process]
Bacteriorhodopsin (bR) (10 mg / ml) solubilized with octyl glycoside as a surfactant and 1-O- (3,7,11,15-tetramethylhexadecyl) -β-D-xyloside as a lipid (Β-XylOC 16 + 4 ) was mixed at a ratio of 35/65 (w / w) to prepare a lipid mesophase (bR mesophase) reconstituted with bR. For this bR mesophase, using the sample dispensing apparatus according to the above-described embodiment, the humidity is 97 ± 1% R.P. H. The bR mesophase was dispensed into the wells of a microplate using 50 μm-thick substrate glass at 100 nl / well under the following humidity conditions. Then 1 μl of 1.0 M, 1.2 M, 1.5 M, 1.7 M, 2.0 M, 2.3 M, 2.5 M or 3.0 M sodium phosphate potassium buffer is added to the dispensed bR mesophase. After the addition, a cover cell having a thickness of 50 μm was pasted to prepare a sandwich cell, and bR was crystallized at 20 ° C.
 bRの結晶化に伴う脂質メソフェーズ構造の変化を解析するため、結晶化開始後、15分、1.5時間、2.5時間、18時間、42時間および6日後に、顕微鏡観察を行うと同時に、MicroMax-007HF(リガク社製)を用いて、40kV、30mA、エックス線照射時間2分、測定温度20℃の条件で、脂質メソフェーズ構造のSAXS測定を行った。2.3M リン酸ナトリウム・カリウム緩衝液を添加した結晶化系を例として、顕微鏡観察の結果を図13に示し、SAXS測定の結果を図14に示す。 In order to analyze changes in lipid mesophase structure accompanying bR crystallization, 15 minutes, 1.5 hours, 2.5 hours, 18 hours, 42 hours and 6 days after crystallization start, SAXS measurement of lipid mesophase structure was performed using MicroMax-007HF (manufactured by Rigaku Corporation) under the conditions of 40 kV, 30 mA, X-ray irradiation time of 2 minutes, and measurement temperature of 20 ° C. Taking a crystallization system to which 2.3M sodium phosphate / potassium buffer solution is added as an example, the results of microscopic observation are shown in FIG. 13, and the results of SAXS measurement are shown in FIG.
 図13中、(A)、(C)、(E)および(F)は、それぞれ15分後、1.5時間後、18時間後および6日後における通常光顕微鏡写真を示しており、(B)および(D)は、それぞれ15分後および1.5時間後における偏光顕微鏡写真を示している。図13に示されるように、結晶化開始直後から誘起されるダイナミックなメソフェーズのモルフォロジーの変化が通常光顕微鏡写真および偏光顕微鏡写真から明瞭に観察でき、時間とともに脂質メソフェーズの複屈折が低下し最終的に等方性となることが確認でき、さらには結晶化開始6日後には10μm程度の微結晶(矢印で幾つかの結晶を示した)の生成を明瞭に確認できた。また、図14に示されるSAXS測定の結果からは、bRの結晶化過程の進行に伴い、脂質メソフェーズが複屈折性のラメラ相から等方性のPn3m型キュービック相に徐々に転移していくこと、さらにはPn3m型キュービック相の格子定数が時間とともに大きくなっていることが確認でき、顕微鏡観察だけでは得られない脂質メソフェーズの微細構造情報が得られた。 In FIG. 13, (A), (C), (E), and (F) show normal light micrographs after 15 minutes, 1.5 hours, 18 hours, and 6 days, respectively (B ) And (D) show polarized micrographs after 15 minutes and 1.5 hours, respectively. As shown in FIG. 13, the change in the dynamic mesophase morphology induced immediately after the start of crystallization can be clearly observed from the normal light micrograph and the polarization micrograph, and the birefringence of the lipid mesophase decreases with time. It was confirmed that the crystal was isotropic, and further 6 days after the start of crystallization, the formation of fine crystals of about 10 μm (some crystals were shown by arrows) was clearly confirmed. Further, from the SAXS measurement results shown in FIG. 14, the lipid mesophase gradually transitions from the birefringent lamellar phase to the isotropic Pn3m cubic phase as the bR crystallization progresses. Furthermore, it was confirmed that the lattice constant of the Pn3m cubic phase increased with time, and fine structure information of lipid mesophase that could not be obtained only by microscopic observation was obtained.
 以上のように、顕微鏡観察と共に、結晶化中の脂質メソフェーズ構造を一般的な実験室で随時利用可能なSAXS装置を用いて直接測定できることが確認された。 As described above, it was confirmed that, along with microscopic observation, the lipid mesophase structure during crystallization can be directly measured using a SAXS apparatus that can be used at any time in a general laboratory.
 〔実施例12:マイクロプレート形成シートの評価〕
 機械的打ち抜き加工によって貫通孔を形成したマイクロプレート形成シートについて、貫通孔のエッジ近傍の形状を共焦点顕微鏡により観察した。結果を図15に示す。図15に示されるように、機械的打ち抜き加工によって貫通孔を形成した場合には、貫通孔のエッジ部において、高さ数十μm程度の接着剤のバリが顕著に観察された。
[Example 12: Evaluation of microplate forming sheet]
About the microplate formation sheet | seat in which the through-hole was formed by the mechanical punching process, the shape of the edge vicinity of a through-hole was observed with the confocal microscope. The results are shown in FIG. As shown in FIG. 15, when the through hole was formed by mechanical punching, an adhesive burr having a height of about several tens of μm was remarkably observed at the edge portion of the through hole.
 次に、機械的打ち抜き加工によって貫通孔を形成したマイクロプレート形成シートについて、厚み50μmのカバーガラスの貼付け操作を行い、その状態を観察した。結果を図16に示す。機械的打ち抜き加工によって貫通孔を形成したマイクロプレート形成シートについてカバーガラスの貼付けを行った場合には、バリの存在によってスムーズな貼付けが困難であり、完全な貼付けが実現できなかった(図16のA)。また、図16のBは、ウェル間の接着面の拡大写真を示しており、ウェル間の接着剤層とカバーガラスとの間に多数の気泡の残存が観察された。 Next, with respect to the microplate forming sheet in which through holes were formed by mechanical punching, a cover glass having a thickness of 50 μm was applied, and the state thereof was observed. The results are shown in FIG. When a cover glass was applied to a microplate forming sheet having through holes formed by mechanical punching, smooth application was difficult due to the presence of burrs, and complete application could not be realized (FIG. 16). A). FIG. 16B shows an enlarged photograph of the adhesion surface between the wells, and a large number of bubbles remained between the adhesive layer between the wells and the cover glass.
 次に、レーザ加工によって貫通孔を形成したマイクロプレート形成シートについて、貫通孔のエッジ近傍の形状を共焦点顕微鏡により観察した。結果を図17に示す。図17に示されるように、レーザ加工によって貫通孔を形成した場合には、貫通孔のエッジ部における幅100μm前後の同心円部分において接着剤層表面の高さが低くなっている(最大約20μm)ことが観察されたものの、その外側は加工の影響をほとんど受けていなかった。 Next, the shape near the edge of the through hole was observed with a confocal microscope for the microplate forming sheet in which the through hole was formed by laser processing. The results are shown in FIG. As shown in FIG. 17, when the through-hole is formed by laser processing, the height of the adhesive layer surface is low in the concentric circle portion around the width of 100 μm at the edge portion of the through-hole (maximum of about 20 μm). Although it was observed, the outside was hardly affected by the processing.
 次に、レーザ加工によって貫通孔を形成したマイクロプレート形成シートについて、厚み50μmのカバーガラスの貼付け操作を行い、その状態を観察した。結果を図18に示す。図18中、図18のBは、ウェル間の接着面の拡大写真を示している。図18に示されるように、レーザ加工によって貫通孔を形成したマイクロプレート形成シートについてカバーガラスの貼付けを行った場合には、機械的打ち抜き加工の場合と比較して、残存気泡もほとんど見られず、空隙がほとんどない完全な貼付けを実現できることが確認できた。 Next, with respect to the microplate forming sheet in which the through holes were formed by laser processing, a cover glass having a thickness of 50 μm was applied, and the state was observed. The results are shown in FIG. In FIG. 18, B in FIG. 18 shows an enlarged photograph of the adhesion surface between the wells. As shown in FIG. 18, when the cover glass is attached to the microplate forming sheet in which the through holes are formed by laser processing, almost no residual bubbles are seen compared to the case of mechanical punching. It was confirmed that complete pasting with almost no voids could be realized.
 本発明は、膜タンパク質の結晶化および結晶化条件のスクリーニングに利用することができる。 The present invention can be used for crystallization of membrane proteins and screening of crystallization conditions.
 1   試料分注装置
 2   試料分注マイクロディスペンサ部(試料分注手段)
 3   結晶化溶液分注マイクロディスペンサ部(溶液分注手段)
 4   プレートチャンバー
 5   カバー貼付け部(貼付手段)
 5a  カバー貼付け部本体(貼付手段)
 5b  支持部(貼付手段)
 6   ディスポーザブルチップラック
 7   結晶化溶液ラック
 8   分注観察部(撮像手段)
 9   乾燥窒素ガス発生装置
 10  気化型加湿器
 11  湿度調節装置
 12  蓋
 14  湿度センサ
 15  スリット(開口部)
 20  保護カバー取り外し爪(引き剥がし手段)
 25  設置台
1 Sample dispensing device 2 Sample dispensing micro-dispenser section (sample dispensing means)
3 Crystallization solution dispensing micro dispenser part (solution dispensing means)
4 Plate chamber 5 Cover sticking part (sticking means)
5a Cover pasting part body (sticking means)
5b Support part (sticking means)
6 Disposable tip rack 7 Crystallization solution rack 8 Dispensing observation section (imaging means)
9 Dry Nitrogen Gas Generator 10 Vaporizing Humidifier 11 Humidity Control Device 12 Lid 14 Humidity Sensor 15 Slit (Opening)
20 Protective cover removal claw (peeling means)
25 Installation stand

Claims (14)

  1.  プレートチャンバー、
     膜タンパク質を含有する脂質メソフェーズの試料を、上記プレートチャンバー内に準備されたマイクロプレートに分注する試料分注手段、
     タンパク質を結晶化するための結晶化溶液を、上記マイクロプレートに分注する溶液分注手段、および
     上記プレートチャンバー内の湿度を調節する湿度調節装置を備えており、
     上記湿度調節装置は、水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスを上記プレートチャンバー内に供給することを特徴とする、試料分注装置。
    Plate chamber,
    Sample dispensing means for dispensing a lipid mesophase sample containing a membrane protein into a microplate prepared in the plate chamber,
    A solution dispensing means for dispensing a crystallization solution for crystallizing the protein to the microplate, and a humidity adjusting device for adjusting the humidity in the plate chamber;
    The said humidity control apparatus supplies the mixed gas of water vapor | steam and dry gas of lower humidity than water vapor | steam in the said plate chamber, The sample dispensing apparatus characterized by the above-mentioned.
  2.  上記乾燥ガスは乾燥窒素ガスであることを特徴とする請求項1に記載の試料分注装置。 The sample dispensing apparatus according to claim 1, wherein the dry gas is dry nitrogen gas.
  3.  上記湿度調節装置は、上記水蒸気を生成する加湿器を備えていることを特徴とする請求項1または2に記載の試料分注装置。 The sample dispensing apparatus according to claim 1 or 2, wherein the humidity control apparatus includes a humidifier that generates the water vapor.
  4.  上記加湿器は気化型加湿器であることを特徴とする請求項3に記載の試料分注装置。 The sample dispensing apparatus according to claim 3, wherein the humidifier is a vaporizing humidifier.
  5.  上記プレートチャンバーの内部には、1以上の湿度センサが設けられており、
     上記湿度調節装置は、上記1以上の湿度センサによる測定結果に基づき、上記混合ガスにおける上記水蒸気と上記乾燥ガスとの混合割合を調節することを特徴とする請求項1~4の何れか1項に記載の試料分注装置。
    One or more humidity sensors are provided inside the plate chamber,
    5. The humidity control apparatus according to claim 1, wherein the humidity control device adjusts a mixing ratio of the water vapor and the dry gas in the mixed gas based on a measurement result by the one or more humidity sensors. The sample dispensing apparatus described in 1.
  6.  上記湿度センサは2以上設けられていることを特徴とする請求項5に記載の試料分注装置。 The sample dispensing apparatus according to claim 5, wherein two or more humidity sensors are provided.
  7.  上記プレートチャンバーの上部には、開口部が設けられている可動式の蓋が設けられていることを特徴とする請求項1~6の何れか1項に記載の試料分注装置。 The sample dispensing apparatus according to any one of claims 1 to 6, wherein a movable lid having an opening is provided at an upper portion of the plate chamber.
  8.  上記試料分注手段による上記試料の分注の様子、および上記試料分注手段における上記試料を吐出する吐出部の少なくとも何れか一方を撮像する撮像手段をさらに備えていることを特徴とする請求項1~7の何れか1項に記載の試料分注装置。 The imaging device for imaging at least one of a state of dispensing of the sample by the sample dispensing unit and a discharge unit that discharges the sample in the sample dispensing unit. 8. The sample dispensing device according to any one of 1 to 7.
  9.  上記マイクロプレートの上面に透明なカバーを貼り付ける貼付手段をさらに備えていることを特徴とする請求項1~8の何れか1項に記載の試料分注装置。 The sample dispensing apparatus according to any one of claims 1 to 8, further comprising an attaching means for attaching a transparent cover to the upper surface of the microplate.
  10.  上記マイクロプレートには保護カバーが貼り付けられており、
     上記保護カバーを上記マイクロプレートから剥がし取る引き剥がし手段をさらに備えていることを特徴とする請求項1~9の何れか1項に記載の試料分注装置。
    A protective cover is attached to the microplate.
    The sample dispensing apparatus according to any one of claims 1 to 9, further comprising peeling means for peeling the protective cover from the microplate.
  11.  プレートチャンバーの内部に準備されたマイクロプレートに、膜タンパク質を含有する脂質メソフェーズの試料を分注する試料分注工程と、
     タンパク質を結晶化するための結晶化溶液を、上記マイクロプレートに分注する溶液分注工程と、
     分注された上記試料と、分注された上記結晶化溶液とを合わせる混合工程と、
     上記混合工程の後に、透明なカバーを上記マイクロプレートの上面に貼り付ける貼付け工程と、
     上記貼付け工程の後に、上記試料中の上記タンパク質を結晶化させる結晶成長工程とを含む、タンパク質の結晶化方法であって、
     上記試料分注工程および上記溶液分注工程においては、上記プレートチャンバーの内部に水蒸気と水蒸気より低湿度の乾燥ガスとの混合ガスを供給することにより上記プレートチャンバーの内部の湿度を調節することを特徴とするタンパク質の結晶化方法。
    A sample dispensing step of dispensing a sample of lipid mesophase containing membrane protein into a microplate prepared inside the plate chamber;
    A solution dispensing step of dispensing a crystallization solution for crystallizing the protein onto the microplate;
    A mixing step of combining the dispensed sample with the dispensed crystallization solution;
    After the mixing step, a pasting step of pasting a transparent cover on the upper surface of the microplate;
    A method of crystallizing a protein, comprising a crystal growth step of crystallizing the protein in the sample after the pasting step,
    In the sample dispensing step and the solution dispensing step, the humidity inside the plate chamber is adjusted by supplying a mixed gas of water vapor and a dry gas having a lower humidity than water vapor into the plate chamber. A protein crystallization method characterized.
  12.  上記マイクロプレートは、厚みが30μm~150μmであるガラス基板と、該ガラス基板に貼り付けられた、1以上のウェル形成用貫通孔を有するマイクロプレート形成シートとによって形成されたマイクロプレートであり、
     上記カバーは、厚みが30μm~150μmのカバーガラスであることを特徴とする請求項11に記載のタンパク質の結晶化方法。
    The microplate is a microplate formed by a glass substrate having a thickness of 30 μm to 150 μm and a microplate forming sheet having one or more well-forming through holes attached to the glass substrate,
    12. The protein crystallization method according to claim 11, wherein the cover is a cover glass having a thickness of 30 μm to 150 μm.
  13.  上記マイクロプレート形成シートの上記ウェル形成用貫通孔は、レーザ加工によって形成されていることを特徴とする請求項12に記載のタンパク質の結晶化方法。 13. The protein crystallization method according to claim 12, wherein the well forming through-hole of the microplate forming sheet is formed by laser processing.
  14.  基板に貼り付けられてマイクロプレートを形成する、1以上のウェル形成用貫通孔を有するマイクロプレート形成シートであって、
     表面に接着剤層が形成されており、
     上記ウェル形成用貫通孔は、レーザ加工によって形成されていることを特徴とするマイクロプレート形成シート。
    A microplate forming sheet having one or more well-forming through-holes that are attached to a substrate to form a microplate,
    An adhesive layer is formed on the surface,
    The microplate forming sheet, wherein the well forming through hole is formed by laser processing.
PCT/JP2013/066723 2012-06-18 2013-06-18 Sample dispensing apparatus, crystallization method for protein, and microplate formation sheet WO2013191173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521477A JP6233889B2 (en) 2012-06-18 2013-06-18 Sample dispensing apparatus and protein crystallization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-137243 2012-06-18
JP2012137243 2012-06-18

Publications (1)

Publication Number Publication Date
WO2013191173A1 true WO2013191173A1 (en) 2013-12-27

Family

ID=49768768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066723 WO2013191173A1 (en) 2012-06-18 2013-06-18 Sample dispensing apparatus, crystallization method for protein, and microplate formation sheet

Country Status (2)

Country Link
JP (1) JP6233889B2 (en)
WO (1) WO2013191173A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105859830A (en) * 2016-03-22 2016-08-17 苏州捷美电子有限公司 LCP experimental facility and experimental method
CN108165486A (en) * 2017-12-27 2018-06-15 大连理工大学 A kind of experimental system and method suitable for macromolecule crystallization process accuracy controlling
US10358475B1 (en) * 2017-06-29 2019-07-23 University Of Puerto Rico High-throughput crystallographic screening device and method for crystalizing membrane proteins using a sub physiological resting membrane potential across a lipid matrix of variable composition
WO2020017022A1 (en) * 2018-07-20 2020-01-23 株式会社島津製作所 Shaking device and analysis method
US11717819B2 (en) 2016-06-29 2023-08-08 University Of Puerto Rico High-throughput crystallographic screening device and method for crystalizing membrane proteins using a sub physiological resting membrane potential across a lipid matrix of variable composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018111478A1 (en) * 2018-05-14 2019-11-14 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Cover for placement on a microtiter plate, and kit comprising cover and microtiter plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112408A1 (en) * 2005-04-15 2006-10-26 National University Corporation Nagoya University Method of forming self-organizing monomolecular film and utilization of the same
JP2009539096A (en) * 2006-05-31 2009-11-12 マインドシーズ ラボラトリーズ ソシエタ ア レスポンサビリタ リミタータ Method and apparatus for manipulating single cells and small assemblies thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2464682A1 (en) * 2001-10-26 2003-05-01 Sequenom, Inc. Method and apparatus for high-throughput sample handling process line
JP4456483B2 (en) * 2002-09-10 2010-04-28 バイオテック株式会社 Well plate supply and storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112408A1 (en) * 2005-04-15 2006-10-26 National University Corporation Nagoya University Method of forming self-organizing monomolecular film and utilization of the same
JP2009539096A (en) * 2006-05-31 2009-11-12 マインドシーズ ラボラトリーズ ソシエタ ア レスポンサビリタ リミタータ Method and apparatus for manipulating single cells and small assemblies thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAFFREY, MARTIN ET AL.: "Crystallizing membrane proteins using lipidic mesophases.", NATURE PROTOCOLS, vol. 4, no. 5, 2009, pages 706 - 731 *
CHEREZOV, VADIM ET AL.: "A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases.", ACTA CRYSTALLOGRAPHICA SECTION D, vol. 60, no. 10, 2004, pages 1795 - 1807 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105859830A (en) * 2016-03-22 2016-08-17 苏州捷美电子有限公司 LCP experimental facility and experimental method
CN105859830B (en) * 2016-03-22 2019-08-06 苏州捷美电子有限公司 A kind of LCP experimental provision and experimental method
US11717819B2 (en) 2016-06-29 2023-08-08 University Of Puerto Rico High-throughput crystallographic screening device and method for crystalizing membrane proteins using a sub physiological resting membrane potential across a lipid matrix of variable composition
US10358475B1 (en) * 2017-06-29 2019-07-23 University Of Puerto Rico High-throughput crystallographic screening device and method for crystalizing membrane proteins using a sub physiological resting membrane potential across a lipid matrix of variable composition
CN108165486A (en) * 2017-12-27 2018-06-15 大连理工大学 A kind of experimental system and method suitable for macromolecule crystallization process accuracy controlling
CN108165486B (en) * 2017-12-27 2021-04-20 大连理工大学 Experimental system and method suitable for precise regulation and control of macromolecule crystallization process
WO2020017022A1 (en) * 2018-07-20 2020-01-23 株式会社島津製作所 Shaking device and analysis method
JPWO2020017022A1 (en) * 2018-07-20 2021-07-15 株式会社島津製作所 Shaking device and analysis method

Also Published As

Publication number Publication date
JP6233889B2 (en) 2017-11-22
JPWO2013191173A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP6233889B2 (en) Sample dispensing apparatus and protein crystallization method
US10241011B2 (en) Apparatus and method for producing specimens for electron microscopy
US7449307B2 (en) Raised surface assay plate
US20050208477A1 (en) Raised surface assay plate
JP5851500B2 (en) Chip assembly for use in microfluidic analysis systems
EP1181548A1 (en) Method for screening crystallization conditions in solution crystal growth
CN102905515B (en) For estimating the dihedron sensor of the tension force of liquid, gesture and activity
JP2013156218A (en) Capillary for minute sample
US20030022383A1 (en) Method for screening crystallization conditions in solution crystal growth
JP4864525B2 (en) Substance introduction apparatus and substance introduction method
US7247490B2 (en) Method for screening crystallization conditions in solution crystal growth
JP2003248004A (en) Method and apparatus for creating crystal of biological macro molecule
EP3502650B1 (en) Method of and apparatus for applying liquid to a substrate
US20030170146A1 (en) Microfabricated two-pin system for biomolecule crystallization
Arrondo et al. Advanced techniques in biophysics
JP2006088034A (en) Control apparatus and method of liquid drop size
JP2013088387A (en) Sample preparation method and sample preparation device
Yao et al. General behavior and mechanisms of dendritic crystal formation in evaporated biological solutions and their significance for solution analysis
JP4572418B2 (en) Crystal growth equipment
EP3502654A1 (en) Method for applying liquids to a substrate
CN104833677A (en) Optical microscopic technology for determining solution crystal growth solubility curve
CN107655779A (en) Salt crystalline stress measuring instrument
WO2013168097A1 (en) Equipment and method to determine the permeability of fruit cuticles in vivo
WO2021177120A1 (en) Observation system, sheet arrangement adjustment mechanism, sheet supply cartridge, sheet collection cartridge, and observation method
JP2018537391A (en) Microfluidic chip for molecular crystallization, preparation method, device comprising said chip, and method for molecular crystallization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521477

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807441

Country of ref document: EP

Kind code of ref document: A1