WO2013191053A1 - Method for discharge gas denitration - Google Patents

Method for discharge gas denitration Download PDF

Info

Publication number
WO2013191053A1
WO2013191053A1 PCT/JP2013/066195 JP2013066195W WO2013191053A1 WO 2013191053 A1 WO2013191053 A1 WO 2013191053A1 JP 2013066195 W JP2013066195 W JP 2013066195W WO 2013191053 A1 WO2013191053 A1 WO 2013191053A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
denitration
sulfuric acid
discharge gas
Prior art date
Application number
PCT/JP2013/066195
Other languages
French (fr)
Japanese (ja)
Inventor
琴衣 松山
加藤 泰良
今田 尚美
啓一郎 甲斐
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Priority to EP13807776.3A priority Critical patent/EP2862621A4/en
Publication of WO2013191053A1 publication Critical patent/WO2013191053A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/50Inorganic acids
    • B01D2251/506Sulfuric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • B01J27/055Sulfates with alkali metals, copper, gold or silver

Definitions

  • the present invention relates to a denitration method for exhaust gas, and more particularly to a denitration method suitable for denitration treatment of combustion exhaust gas generated when biomass is burned.
  • Measures to reduce CO2 emissions include reduction of fossil fuel consumption through energy saving, measures for using fossil fuels such as recovery and separation of CO2 in combustion exhaust gas, use of natural energy such as solar cells and wind power generation, etc. It is being advanced. In recent years, power generation using biomass as fuel instead of fossil fuel has attracted attention as a method that does not lead to an increase in CO2, and has begun to be adopted in the form of biomass burning or mixed combustion of biomass and fossil fuel, especially in Europe. .
  • biomass flue gas has the advantage of having a lower sulfur content than fossil fuels, but the combustion ash of plant-derived materials such as wood chips and beets contains alkaline inorganic salts, It is known to deteriorate.
  • calcium carbonate has deliquescent properties, and its catalytic activity is reduced by soaking into the catalyst.
  • potassium ion of potassium carbonate soaks into a denitration catalyst for catalytic catalytic reduction with titanium oxide as the main component
  • potassium ion is first adsorbed to the adsorption point of ammonia (reducing agent) present on titanium oxide. It is known to inhibit the adsorption of ammonia and reduce the catalytic activity.
  • the applicant has reported a technique for delaying the decrease in catalyst activity by preliminarily adsorbing phosphate ions to the ammonia adsorption point of this type of catalyst. According to this, most of the potassium ions entering the catalyst first react with the phosphate ions adsorbed on the catalyst, and this reaction creates a new ammonia adsorption point on the titanium oxide. The decrease can be suppressed and the decrease in catalyst activity can be delayed.
  • Patent Document 1 a method of kneading or heating and kneading the catalyst (titanium oxide) and phosphoric acid in the presence of water is used in order to adsorb phosphoric acid on the catalyst surface before use.
  • this method makes it impossible to replenish phosphoric acid on the catalyst surface during the treatment of exhaust gas.
  • periodic catalyst replacement work is required, and therefore a technique for reducing the frequency of catalyst replacement is required.
  • An object of the present invention is to suppress the deterioration of a denitration catalyst used for the treatment of biomass combustion exhaust gas and to reduce the frequency of catalyst replacement.
  • potassium carbonate (K 2 CO 3 )
  • K 2 CO 3 potassium carbonate
  • the potassium ion of potassium carbonate that has entered the catalyst is bonded to carbonate ion, which is a weak acid, for example, it adsorbs to the OH group that is the adsorption point of ammonia on titanium oxide of the catalyst mainly composed of titanium oxide.
  • Easy (Formula 1). 1 / 2K 2 CO 3 + HO-Ti- (active point on TiO 2 ) ⁇ KO-Ti- + 1 / 2H 2 O + 1 / 2CO 2 (Formula 1)
  • ammonia which is a reducing agent for the denitration reaction
  • OH groups ammonia adsorption points
  • titanium oxide titanium oxide
  • adsorption power of potassium ions and ammonia to OH groups on titanium oxide is stronger for potassium ions, adsorption of ammonia to OH groups is inhibited by adsorption of potassium ions to OH groups.
  • the present invention is characterized by spraying sulfuric acid (H 2 SO 4 ) or SO 3 obtained by oxidizing SO 2 gas into the exhaust gas upstream of the denitration catalyst.
  • a part of the sulfuric acid sprayed in the exhaust gas in this way is decomposed into SO 3 as shown in Equation 3 in the temperature range where the denitration catalyst is installed.
  • Equation 4 5
  • potassium carbonate adhered to the denitration catalyst is gradually changed to potassium sulfate reacts with the added sulfuric acid or SO 3.
  • potassium sulfate does not have deliquescence, even if it adheres to the catalyst, it does not easily move into the catalyst due to moisture like potassium carbonate.
  • the present invention provides a denitration catalyst mainly composed of titanium oxide by injecting ammonia or urea as a reducing agent into exhaust gas obtained by burning biomass exclusively or by co-firing biomass fuel and coal.
  • a denitration catalyst mainly composed of titanium oxide by injecting ammonia or urea as a reducing agent into exhaust gas obtained by burning biomass exclusively or by co-firing biomass fuel and coal.
  • sulfuric acid or SO 3 gas is injected into the exhaust gas flowing upstream of the denitration catalyst.
  • sulfuric acid or SO 3 gas can be continuously or intermittently supplied to the catalyst surface accompanying the exhaust gas, so that it adheres to the catalyst surface or enters from the catalyst surface.
  • the potassium ion can be continuously changed to potassium sulfate. Therefore, the catalyst activity can be maintained high for a long period of time, and the frequency of catalyst replacement can be significantly reduced.
  • the spray amount of sulfuric acid or SO 3 gas is preferably adjusted so that the SO 3 concentration in the exhaust gas flowing upstream of the denitration catalyst is 10 ppm or more and 100 ppm or less.
  • the spray amount of sulfuric acid or SO 3 gas is preferably adjusted so that the SO 3 concentration in the exhaust gas flowing upstream of the denitration catalyst is 10 ppm or more and 100 ppm or less.
  • the present invention it is possible to suppress deterioration of the denitration catalyst used for the treatment of biomass combustion exhaust gas, and to reduce the frequency of catalyst replacement.
  • FIG. 1 is a diagram showing a schematic configuration of an exhaust gas treatment apparatus to which an exhaust gas denitration method according to the present invention is applied.
  • FIG. 1 shows a schematic configuration of an exhaust gas treatment apparatus to which the exhaust gas denitration method of the present embodiment is applied.
  • the exhaust gas treatment apparatus of the present embodiment has a configuration suitable for treating the combustion exhaust gas of a boiler that performs, for example, exclusive combustion of biomass or mixed combustion of biomass and coal.
  • the exhaust gas treatment apparatus 1 of the present embodiment is connected to a boiler 3, a flue 5 through which combustion exhaust gas flows, a denitration device 7 disposed in the flue 5, and a flue upstream of the denitration device 7 5 and a sulfuric acid spraying device 11 disposed in the flue 5 between the reducing agent spraying device 9 and the denitration device 7.
  • the denitration device 7 is used, for example, by forming the denitration catalyst component into a honeycomb shape, or by applying it so as to fill a mesh with a metal substrate or ceramic fiber network processed into a mesh shape,
  • molded the spacer part in the above can be comprised.
  • the form of the catalyst is not limited to this.
  • the denitration catalyst component is not particularly limited.
  • titanium oxide is the main component, and tungsten (W), molybdenum (Mo), vanadium (V), phosphorus (P), aluminum sulfate, and the like are added as catalyst components. Those are preferred.
  • the reducing agent spraying device 9 sprays a reducing agent such as ammonia or urea from an injection nozzle 13 inserted into the flue 5.
  • a reducing agent such as ammonia or urea
  • ammonia is used as a reducing agent.
  • the sulfuric acid spraying device 11 is connected to the sulfuric acid storage tank 15, the injection nozzle 17 inserted into the flue 5, and the storage tank 15 via the pipe 19, and the sulfuric acid extracted from the storage tank 15 is supplied to the injection nozzle 17.
  • a pump 21 is provided for delivery.
  • the pump 21 is configured such that the discharge amount of sulfuric acid is controlled by control means (not shown).
  • the injection nozzle 17 may have any configuration as long as it can spray sulfuric acid in the flue 5 in a spray form.
  • the position where the sulfuric acid spraying device 11 sprays sulfuric acid into the flue 5 is not particularly limited as long as it is upstream of the denitration device 7, but is downstream of the insertion position of the injection nozzle 13 of the reducing agent spraying device 9. It is preferable. Thereby, the influence (acid corrosion etc.) by the sulfuric acid of the injection
  • the amount of sulfuric acid injected into the flue 5 from the injection nozzle 17 of the sulfuric acid spray device 11 varies depending on the potassium content in the biomass burned in the boiler 3, but the combustion ash adhering to the catalyst has a long residence time, Since it reacts gradually with SO 3 in the exhaust gas, the concentration of SO 3 in the exhaust gas flowing in the flue 5 upstream of the denitration device 7 may be low, for example, the amount of sulfuric acid sprayed to be 10 ppm or more and 100 ppm or less. It is good to adjust.
  • sulfuric acid is injected (sprayed) from the injection nozzle 17 of the sulfuric acid spraying device 11
  • SO 3 gas obtained by oxidizing SO 2 gas or ammonium sulfate is used instead of sulfuric acid.
  • SO 3 gas obtained by decomposition can also be injected, and the method for purifying the SO 3 gas is not particularly limited.
  • the boiler 3 is burned by supplying only biomass or both biomass and coal as fuel.
  • the combustion exhaust gas generated by the combustion of the boiler 3 is guided to the denitration device 7 through the flue 5 to remove nitrogen oxides and the like in the exhaust gas.
  • ammonia is sprayed from the injection nozzle 13 of the reducing agent spraying device 9 and sulfuric acid is sprayed from the injection nozzle 17 of the reducing agent spraying device 9.
  • the sulfuric acid sprayed in the flue 5 is accompanied by the exhaust gas and reaches the catalyst surface of the denitration device 7, while the potassium carbonate contained in the combustion ash of the boiler 3 is accompanied by the exhaust gas and reaches the catalyst surface.
  • the potassium ion of potassium carbonate reacts with sulfuric acid to become potassium sulfate having no deliquescence, it is unlikely to move into the catalyst. Even if it moves, it becomes difficult for potassium ions to be adsorbed to the OH group of the catalyst, which is the adsorption point of ammonia.
  • Catalyst example Water was added to 1200 g of titanium oxide (Ishihara Sangyo, specific surface area 100 m 2 / g), 108.1 kg of molybdenum trioxide, 79.1 kg of ammonium metavanadate, 553 g of silica sol (manufactured by Nissan Chemical, OS sol, containing 20 wt% as SiO 2 ). In addition, after kneading with a kneader for 60 minutes, 207.4 g of silica-alumina ceramic fiber (manufactured by Nichias) was gradually added for 30 minutes to obtain a catalyst paste having a moisture content of 27%.
  • the obtained paste was subjected to metal lath processing on a 0.2 mm thick SUS430 steel plate, placed on a 0.7 mm thick substrate, and applied through a pair of pressure rollers to fill the mesh of the metal lath substrate. This was dried and calcined at 450 ° C. for 2 hours to obtain an initial catalyst.
  • Example 1 In order to check whether potassium is sulfated by spraying sulfuric acid into the combustion exhaust gas of biomass and the decrease in catalytic activity is reduced, the catalyst obtained in the catalyst example is cut into 100 mm squares, and potassium sulfate is cut into this. Was impregnated so that the added amount of K 2 O was 0.5 wt% with respect to the catalyst component, and then dried at 150 ° C. Subsequently, the obtained catalyst was cut into a width of 20 mm and a length of 100 mm, and then three of them were used to measure the denitration performance under the conditions shown in Table 1, and the toxicity resistance against the potassium deterioration of the catalyst was evaluated.
  • Example 1 A catalyst was obtained in the same manner as in Example 1 except that the potassium sulfate in Example 1 was changed to potassium carbonate. The results of Example 1 and Comparative Example 1 are summarized in Table 2.
  • the catalyst impregnated with potassium sulfate of Example 1 has a smaller decrease in denitration performance than that of Comparative Example 1 impregnated with potassium carbonate. This shows that potassium sulfate has less influence on the denitration performance than potassium carbonate. Therefore, it is clear that the durability of the catalyst is greatly improved if the potassium carbonate is changed to potassium sulfate by the method of the present embodiment.
  • Example 2 In order to confirm the effect of sulfuric acid spray, the following tests were conducted. First, the catalyst obtained in the catalyst example was cut into a 100 mm square, impregnated with an aqueous solution of potassium carbonate in an amount of 0.5 wt% as K 2 O, and dried at 150 ° C. Thereafter, the catalyst was cut into a width of 20 mm ⁇ 100 mm, filled into a reaction tube in a flow system, and exposed to gas under the conditions shown in Table 3. Here, as a gas condition, an aqueous sulfuric acid solution was injected so that the SO 3 concentration in the gas was 100 ppm. Thereafter, the denitration performance of the obtained catalyst was measured under the conditions shown in Table 1, and the influence of sulfuric acid spray on the performance was evaluated.
  • Example 2 The same treatment was performed except that the sulfuric acid aqueous solution was changed to water under the conditions shown in Table 3 of Example 2. The results of Example 2 and Comparative Example 2 are summarized in Table 4.
  • Example 2 When comparing Example 2 and Comparative Example 2, the decrease in catalyst activity in Example 2 is extremely small. Thus, it can be seen that the method of the present invention is effective in recovering the activity of a catalyst deteriorated by a large amount of alkali carbonate.
  • Example 3 In order to compare deliquescence under wet conditions, the following tests were performed. After sprinkling grass ash containing 20 wt% potassium carbonate uniformly on the surface of a 100 mm square cut to 1 g / m 2 , sandwich the catalyst inside the two medicine wrapping papers, Crimped to the catalyst. The catalyst was cut into a width of 20 mm ⁇ 100 mm, filled into a reaction tube in a flow system, and exposed to gas under the conditions shown in Table 3. Here, as a gas condition, an aqueous sulfuric acid solution was injected so that the SO 3 concentration in the gas was 100 ppm. Thereafter, the obtained catalyst was allowed to stand in a sealed container at 30 ° C. and 100% relative humidity for 100 hours, and then dried at 120 ° C. for 2 hours. Subsequently, after removing the ash adhering to the obtained catalyst, potassium moved into the catalyst was measured by fluorescent X-ray.
  • Example 3 The same treatment was performed except that the sulfuric acid aqueous solution of Example 3 was changed to water. The results of Example 3 and Comparative Example 3 are summarized in Table 5.

Abstract

A method for discharge gas denitration which can inhibit the deterioration of a denitration catalyst to be used for treating a discharge gas resulting from biomass combustion and which lessens the frequency of catalyst replacement, the method comprising blowing ammonia or urea as a reducing agent into a discharge gas resulting from combustion of biomass alone or of a mixture of a biomass fuel and coal and bringing the discharge gas into contact with a denitration catalyst that comprises titanium oxide as a main component, thereby reducing and removing the nitrogen oxides contained in the discharge gas, wherein sulfuric acid or SO3 gas is injected into the discharge gas which is flowing on the upstream side of the denitration catalyst.

Description

排ガスの脱硝方法Denitration method of exhaust gas
 本発明は、排ガスの脱硝方法に係り、特にバイオマスを燃焼させたときに発生する燃焼排ガスの脱硝処理に好適な脱硝方法に関する。 The present invention relates to a denitration method for exhaust gas, and more particularly to a denitration method suitable for denitration treatment of combustion exhaust gas generated when biomass is burned.
 大気中のCO2濃度増大に起因する地球温暖化が予想を上回る速度で進行し、CO2排出量の低減が緊急の課題となっている。CO2排出量の低減策として、省エネルギーによる化石燃料使用量の低減、燃焼排ガス中のCO2の回収および分離など化石燃料を使用する上での対策、太陽電池や風力発電などの自然エネルギーの利用などが進められている。また、近年では、化石燃料に替えてバイオマスを燃料にした発電がCO2の増加を招かない方法として注目され、特に欧州を中心にバイオマス専焼又はバイオマスと化石燃料との混焼の形で採用され始めている。 Global warming due to increased CO2 concentration in the atmosphere is proceeding at a faster rate than expected, and reducing CO2 emissions is an urgent issue. Measures to reduce CO2 emissions include reduction of fossil fuel consumption through energy saving, measures for using fossil fuels such as recovery and separation of CO2 in combustion exhaust gas, use of natural energy such as solar cells and wind power generation, etc. It is being advanced. In recent years, power generation using biomass as fuel instead of fossil fuel has attracted attention as a method that does not lead to an increase in CO2, and has begun to be adopted in the form of biomass burning or mixed combustion of biomass and fossil fuel, especially in Europe. .
 ところで、バイオマスの燃焼排ガスは、化石燃料に比べて硫黄分の含有量が少ない利点があるが、木材チップやビートなど植物由来の材料の燃焼灰には、アルカリ性無機塩が含まれており、触媒を劣化させることが知られている。特に炭酸カルシウムは潮解性があり、触媒にしみ込むことによって触媒活性が低下する。 By the way, biomass flue gas has the advantage of having a lower sulfur content than fossil fuels, but the combustion ash of plant-derived materials such as wood chips and beets contains alkaline inorganic salts, It is known to deteriorate. In particular, calcium carbonate has deliquescent properties, and its catalytic activity is reduced by soaking into the catalyst.
 例えば、酸化チタンを主成分とするアンモニア接触還元用の脱硝触媒に炭酸カリウムのカリウムイオンがしみ込むと、酸化チタン上に存在するアンモニア(還元剤)の吸着点にカリウムイオンが先に吸着することで、アンモニアの吸着を阻害し、触媒活性を低下させることが知られている。 For example, when potassium ion of potassium carbonate soaks into a denitration catalyst for catalytic catalytic reduction with titanium oxide as the main component, potassium ion is first adsorbed to the adsorption point of ammonia (reducing agent) present on titanium oxide. It is known to inhibit the adsorption of ammonia and reduce the catalytic activity.
 これに対し、出願人は、特許文献1において、この種の触媒のアンモニアの吸着点にリン酸イオンを予め吸着させておくことで、触媒活性の低下を遅らせる技術を報告している。これによれば、触媒中に進入するカリウムイオンの大半が触媒に吸着するリン酸イオンとまず反応し、この反応によって酸化チタン上にアンモニアの吸着点を新たに作り出すことから、アンモニアの吸着点の減少を抑制し、触媒活性の低下を遅らせることができる。 On the other hand, in the patent document 1, the applicant has reported a technique for delaying the decrease in catalyst activity by preliminarily adsorbing phosphate ions to the ammonia adsorption point of this type of catalyst. According to this, most of the potassium ions entering the catalyst first react with the phosphate ions adsorbed on the catalyst, and this reaction creates a new ammonia adsorption point on the titanium oxide. The decrease can be suppressed and the decrease in catalyst activity can be delayed.
特開2011-161364号公報JP 2011-161364 A
 ところで、特許文献1では、使用前の触媒表面にリン酸を吸着させておくために、触媒(酸化チタン)とリン酸を水の存在下で混練又は加熱混練する方法が取られている。しかし、この方法では、排ガスの処理中、触媒表面にリン酸を補充することができなくなる。つまり、触媒活性を一定のレベルに維持するためには、定期的な触媒の交換作業が必要となることから、触媒交換の頻度をより少なくする技術が求められている。 Incidentally, in Patent Document 1, a method of kneading or heating and kneading the catalyst (titanium oxide) and phosphoric acid in the presence of water is used in order to adsorb phosphoric acid on the catalyst surface before use. However, this method makes it impossible to replenish phosphoric acid on the catalyst surface during the treatment of exhaust gas. In other words, in order to maintain the catalyst activity at a certain level, periodic catalyst replacement work is required, and therefore a technique for reducing the frequency of catalyst replacement is required.
 本発明は、バイオマスの燃焼排ガスの処理に用いる脱硝触媒の劣化を抑制することができ、かつ触媒交換の頻度を少なくすることを課題とする。 An object of the present invention is to suppress the deterioration of a denitration catalyst used for the treatment of biomass combustion exhaust gas and to reduce the frequency of catalyst replacement.
 ここで、本発明の理解を容易にするために、バイオマスの燃焼排ガスによって脱硝触媒が劣化する原理について、具体的に説明する。 Here, in order to facilitate understanding of the present invention, the principle of denitration catalyst deterioration due to biomass combustion exhaust gas will be specifically described.
 触媒に付着するカリウムの多くは炭酸塩として存在する。この炭酸塩(以下、炭酸カリウム(KCO)として説明する)は、排ガス処理装置の起動停止時といった高湿潤時に潮解して触媒中に進入する。触媒中に進入した炭酸カリウムのカリウムイオンは、弱い酸である炭酸イオンと結合しているため、例えば酸化チタンを主成分とする触媒の酸化チタン上のアンモニアの吸着点であるOH基に吸着しやすい(式1)。
 1/2K2CO3+HO-Ti-(TiO2上の活性点) → K-O-Ti- +1/2H2O+1/2CO2(式1)
Most of the potassium attached to the catalyst exists as carbonate. This carbonate (hereinafter described as potassium carbonate (K 2 CO 3 )) is deliquescent at high humidity such as when the exhaust gas treatment device is started and stopped and enters the catalyst. Since the potassium ion of potassium carbonate that has entered the catalyst is bonded to carbonate ion, which is a weak acid, for example, it adsorbs to the OH group that is the adsorption point of ammonia on titanium oxide of the catalyst mainly composed of titanium oxide. Easy (Formula 1).
1 / 2K 2 CO 3 + HO-Ti- (active point on TiO 2 ) → KO-Ti- + 1 / 2H 2 O + 1 / 2CO 2 (Formula 1)
 他方、脱硝反応の還元剤であるアンモニアも酸化チタン上のOH基(アンモニア吸着点)に吸着される(式2)。ここで、カリウムイオンとアンモニアの酸化チタン上のOH基への吸着力はカリウムイオンの方が強いことから、カリウムイオンがOH基に吸着することによって、アンモニアのOH基への吸着が阻害されてしまう。
 NH3+HO-Ti-(TiO2上の活性点) → NH4-O-Ti-      (式2)
On the other hand, ammonia, which is a reducing agent for the denitration reaction, is also adsorbed to OH groups (ammonia adsorption points) on titanium oxide (Formula 2). Here, since the adsorption power of potassium ions and ammonia to OH groups on titanium oxide is stronger for potassium ions, adsorption of ammonia to OH groups is inhibited by adsorption of potassium ions to OH groups. End up.
NH 3 + HO-Ti- (active point on TiO 2 ) → NH 4 -O-Ti- (Formula 2)
 そこで、本発明では、脱硝触媒の上流側の排ガス中に硫酸(HSO)又はSOガスを酸化させたSOを噴霧することを特徴とする。このように排ガス中に噴霧された硫酸の一部は、脱硝触媒が設置される温度域では、式3のごとく分解してSOになる。そして、式4、5に示すように、脱硝触媒に付着した炭酸カリウムが、添加された硫酸又はSOと反応して徐々に硫酸カリウムに変化する。ここで、硫酸カリウムは潮解性がないことから、触媒に付着しても炭酸カリウムのように湿潤による触媒中への移動が生じ難い。また、硫酸カリウムが触媒中に進入したとしても、硫酸カリウムのカリウムイオンは、強い酸である硫酸イオンと結合しているため、酸化チタン上のOH基に吸着されることが殆どない。これにより、アンモニアの吸着点であるOH基の減少を抑制することができるため、触媒活性の低下(触媒劣化)を緩やかにすることができる。
Figure JPOXMLDOC01-appb-I000001
Therefore, the present invention is characterized by spraying sulfuric acid (H 2 SO 4 ) or SO 3 obtained by oxidizing SO 2 gas into the exhaust gas upstream of the denitration catalyst. A part of the sulfuric acid sprayed in the exhaust gas in this way is decomposed into SO 3 as shown in Equation 3 in the temperature range where the denitration catalyst is installed. Then, as shown in Equation 4, 5, potassium carbonate adhered to the denitration catalyst is gradually changed to potassium sulfate reacts with the added sulfuric acid or SO 3. Here, since potassium sulfate does not have deliquescence, even if it adheres to the catalyst, it does not easily move into the catalyst due to moisture like potassium carbonate. Even if potassium sulfate enters the catalyst, the potassium ion of potassium sulfate is hardly adsorbed to the OH group on titanium oxide because it binds to sulfate ion, which is a strong acid. Thereby, since the reduction | decrease of OH group which is an adsorption point of ammonia can be suppressed, the fall of catalyst activity (catalyst deterioration) can be made loose.
Figure JPOXMLDOC01-appb-I000001
 具体的に、本発明は、上記課題を解決するため、バイオマス専焼、又はバイオマス燃料と石炭とを混焼した排ガスに、還元剤としてアンモニア又は尿素を噴き込んで、酸化チタンを主成分とする脱硝触媒と接触させて排ガス中に含まれる窒素酸化物を還元除去する排ガスの脱硝方法において、脱硝触媒の上流側を流れる排ガス中に、硫酸又はSOガスを注入することを特徴とする。 Specifically, in order to solve the above-mentioned problems, the present invention provides a denitration catalyst mainly composed of titanium oxide by injecting ammonia or urea as a reducing agent into exhaust gas obtained by burning biomass exclusively or by co-firing biomass fuel and coal. In the exhaust gas denitration method in which nitrogen oxides contained in the exhaust gas are reduced and removed by contacting with the catalyst, sulfuric acid or SO 3 gas is injected into the exhaust gas flowing upstream of the denitration catalyst.
 これによれば、排ガス処理中であっても、排ガスに同伴させて、硫酸又はSOガスを触媒表面へ連続的又は断続的に供給することができるから、触媒表面に付着又は触媒表面から進入するカリウムイオンを継続的に硫酸カリウムに変化させることができる。したがって、触媒活性を長期間高く維持することができ、触媒交換の頻度を格段に少なくすることができる。 According to this, even during exhaust gas treatment, sulfuric acid or SO 3 gas can be continuously or intermittently supplied to the catalyst surface accompanying the exhaust gas, so that it adheres to the catalyst surface or enters from the catalyst surface. The potassium ion can be continuously changed to potassium sulfate. Therefore, the catalyst activity can be maintained high for a long period of time, and the frequency of catalyst replacement can be significantly reduced.
 この場合において、硫酸又はSOガスの噴霧量は、脱硝触媒の上流側を流れる排ガス中のSO濃度が10ppm以上100ppm以下となるように調節することが好ましい。これにより、硫酸又はSOガスの効果と経済性をバランスさせることができる。 In this case, the spray amount of sulfuric acid or SO 3 gas is preferably adjusted so that the SO 3 concentration in the exhaust gas flowing upstream of the denitration catalyst is 10 ppm or more and 100 ppm or less. Thus, it is possible to balance the effect and economy of sulfuric acid or SO 3 gas.
 本発明によれば、バイオマスの燃焼排ガスの処理に用いる脱硝触媒の劣化を抑制することができ、かつ触媒交換の頻度を少なくすることができる。 According to the present invention, it is possible to suppress deterioration of the denitration catalyst used for the treatment of biomass combustion exhaust gas, and to reduce the frequency of catalyst replacement.
本発明に係る排ガスの脱硝方法を適用した排ガス処理装置の概略構成を示す図である。1 is a diagram showing a schematic configuration of an exhaust gas treatment apparatus to which an exhaust gas denitration method according to the present invention is applied.
 以下、本発明を適用してなる排ガスの脱硝方法の一実施の形態を、図面を用いて具体的に説明する。図1に、本実施の形態の排ガスの脱硝方法を適用した排ガス処理装置の概略構成を示す。本実施の形態の排ガス処理装置は、例えばバイオマスの専焼、或いは、バイオマスと石炭との混焼を行うボイラの燃焼排ガスを処理するのに適した構成を有している。 Hereinafter, an embodiment of an exhaust gas denitration method to which the present invention is applied will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration of an exhaust gas treatment apparatus to which the exhaust gas denitration method of the present embodiment is applied. The exhaust gas treatment apparatus of the present embodiment has a configuration suitable for treating the combustion exhaust gas of a boiler that performs, for example, exclusive combustion of biomass or mixed combustion of biomass and coal.
 本実施の形態の排ガス処理装置1は、ボイラ3に接続され、燃焼排ガスが通流する煙道5と、煙道5に配設される脱硝装置7と、脱硝装置7の上流側の煙道5に配設される還元剤噴霧装置9と、還元剤噴霧装置9と脱硝装置7との間の煙道5に配設される硫酸噴霧装置11とを備える。 The exhaust gas treatment apparatus 1 of the present embodiment is connected to a boiler 3, a flue 5 through which combustion exhaust gas flows, a denitration device 7 disposed in the flue 5, and a flue upstream of the denitration device 7 5 and a sulfuric acid spraying device 11 disposed in the flue 5 between the reducing agent spraying device 9 and the denitration device 7.
 脱硝装置7は、脱硝触媒成分を例えばハニカム状に成形して用いられる他、網状に加工した金属基材やセラミック繊維の網状物に目を埋めるように塗布して板状化した後、波型などにスペーサ部を成形したものを積層した触媒構造体を含んで構成することができる。しかし、触媒の形態は、これに限定されるものではない。脱硝触媒成分は、特に限定されないが、例えば、酸化チタンを主成分とし、その他、タングステン(W)、モリブデン(Mo)、バナジウム(V)、リン(P)、硫酸アルミニウムなどを触媒成分として添加したものが好適である。 The denitration device 7 is used, for example, by forming the denitration catalyst component into a honeycomb shape, or by applying it so as to fill a mesh with a metal substrate or ceramic fiber network processed into a mesh shape, The catalyst structure which laminated | stacked what shape | molded the spacer part in the above can be comprised. However, the form of the catalyst is not limited to this. The denitration catalyst component is not particularly limited. For example, titanium oxide is the main component, and tungsten (W), molybdenum (Mo), vanadium (V), phosphorus (P), aluminum sulfate, and the like are added as catalyst components. Those are preferred.
 還元剤噴霧装置9は、煙道5内に挿入される注入ノズル13からアンモニアや尿素などの還元剤を噴霧するようになっている。本実施の形態では、還元剤としてアンモニアを使用する例を説明する。 The reducing agent spraying device 9 sprays a reducing agent such as ammonia or urea from an injection nozzle 13 inserted into the flue 5. In this embodiment, an example in which ammonia is used as a reducing agent will be described.
 硫酸噴霧装置11は、硫酸の貯蔵タンク15と、煙道5内に挿入された注入ノズル17と、貯蔵タンク15と配管19を介して接続され、貯蔵タンク15から抜き出した硫酸を注入ノズル17へ送り出すポンプ21を備えて構成される。ポンプ21は、図示しない制御手段によって硫酸の吐出量が制御されるようになっている。注入ノズル17は、煙道5内で硫酸をスプレー状に噴霧可能なものであれば、どのような構成でも構わない。硫酸噴霧装置11が煙道5内に硫酸を噴霧する位置は、脱硝装置7の上流側であれば、特に限定されないが、還元剤噴霧装置9の注入ノズル13の挿入位置よりも下流側であることが好ましい。これにより、注入ノズル13の硫酸による影響(酸腐食など)を緩和することができる。 The sulfuric acid spraying device 11 is connected to the sulfuric acid storage tank 15, the injection nozzle 17 inserted into the flue 5, and the storage tank 15 via the pipe 19, and the sulfuric acid extracted from the storage tank 15 is supplied to the injection nozzle 17. A pump 21 is provided for delivery. The pump 21 is configured such that the discharge amount of sulfuric acid is controlled by control means (not shown). The injection nozzle 17 may have any configuration as long as it can spray sulfuric acid in the flue 5 in a spray form. The position where the sulfuric acid spraying device 11 sprays sulfuric acid into the flue 5 is not particularly limited as long as it is upstream of the denitration device 7, but is downstream of the insertion position of the injection nozzle 13 of the reducing agent spraying device 9. It is preferable. Thereby, the influence (acid corrosion etc.) by the sulfuric acid of the injection | pouring nozzle 13 can be relieved.
 硫酸噴霧装置11の注入ノズル17から煙道5内に注入される硫酸の量は、ボイラ3で燃焼させるバイオマス中のカリウムの含有量によって異なるが、触媒に付着した燃焼灰は滞留時間が長く、排ガス中のSOと徐々に反応するため、脱硝装置7の上流側の煙道5内を流れる排ガスのSO濃度は低くても良く、例えば10ppm以上100ppm以下になるように硫酸の噴霧量を調節するのがよい。これは、脱硝装置7に導入される排ガスのSO濃度が10ppmよりも低ければ、SOによる触媒活性の低下を抑制する効果が小さくなる一方、100ppmよりも高ければ、SOの過剰供給となって経済性が低下したり、機器類の腐食をもたらすおそれがあるからである。 The amount of sulfuric acid injected into the flue 5 from the injection nozzle 17 of the sulfuric acid spray device 11 varies depending on the potassium content in the biomass burned in the boiler 3, but the combustion ash adhering to the catalyst has a long residence time, Since it reacts gradually with SO 3 in the exhaust gas, the concentration of SO 3 in the exhaust gas flowing in the flue 5 upstream of the denitration device 7 may be low, for example, the amount of sulfuric acid sprayed to be 10 ppm or more and 100 ppm or less. It is good to adjust. This is because if the SO 3 concentration of the exhaust gas introduced into the denitration device 7 is lower than 10 ppm, the effect of suppressing the decrease in catalytic activity due to SO 3 is reduced, while if it is higher than 100 ppm, the SO 3 is excessively supplied. This is because there is a possibility that the economy is lowered and the equipment is corroded.
 本実施の形態では、硫酸噴霧装置11の注入ノズル17から硫酸を注入(噴霧)する例を説明するが、硫酸に代えて、例えばSOガスを酸化させて得られるSOガスや、硫安を分解して得られるSOガスを注入することもでき、SOガスを精製する方法については、特に限定されるものではない。 In the present embodiment, an example in which sulfuric acid is injected (sprayed) from the injection nozzle 17 of the sulfuric acid spraying device 11 will be described. However, instead of sulfuric acid, for example, SO 3 gas obtained by oxidizing SO 2 gas or ammonium sulfate is used. SO 3 gas obtained by decomposition can also be injected, and the method for purifying the SO 3 gas is not particularly limited.
 このような構成において、ボイラ3には、燃料としてバイオマスのみか、バイオマスと石炭の両方が投入されて燃焼が行われる。ボイラ3の燃焼により発生した燃焼排ガスは、煙道5を通じて脱硝装置7に導かれ、排ガス中の窒素酸化物などが除去される。煙道5内には、還元剤噴霧装置9の注入ノズル13からアンモニアが噴霧されるとともに、還元剤噴霧装置9の注入ノズル17から硫酸が噴霧される。 In such a configuration, the boiler 3 is burned by supplying only biomass or both biomass and coal as fuel. The combustion exhaust gas generated by the combustion of the boiler 3 is guided to the denitration device 7 through the flue 5 to remove nitrogen oxides and the like in the exhaust gas. In the flue 5, ammonia is sprayed from the injection nozzle 13 of the reducing agent spraying device 9 and sulfuric acid is sprayed from the injection nozzle 17 of the reducing agent spraying device 9.
 煙道5内に噴霧された硫酸は、排ガスに同伴されて脱硝装置7の触媒表面に到達する一方、ボイラ3の燃焼灰に含まれる炭酸カリウムが、排ガスに同伴されて触媒表面に到達する。ここで、炭酸カリウムのカリウムイオンは、硫酸と反応して潮解性がない硫酸カリウムとなるため、触媒中への移動が起こり難い。仮に移動したとしても、カリウムイオンがアンモニアの吸着点である触媒のOH基に吸着され難くなる。したがって、煙道5内に硫酸を連続的又は断続的に注入することによって、所定量のアンモニアを継続的に触媒に吸着させることができるから、触媒活性の低下を大幅に低減することができる。また、これにより、バイオマス燃料の排ガス処理装置1の性能を長期間、高く維持することができるから、触媒交換の頻度を大幅に低減することができる。 The sulfuric acid sprayed in the flue 5 is accompanied by the exhaust gas and reaches the catalyst surface of the denitration device 7, while the potassium carbonate contained in the combustion ash of the boiler 3 is accompanied by the exhaust gas and reaches the catalyst surface. Here, since the potassium ion of potassium carbonate reacts with sulfuric acid to become potassium sulfate having no deliquescence, it is unlikely to move into the catalyst. Even if it moves, it becomes difficult for potassium ions to be adsorbed to the OH group of the catalyst, which is the adsorption point of ammonia. Accordingly, by continuously or intermittently injecting sulfuric acid into the flue 5, a predetermined amount of ammonia can be continuously adsorbed on the catalyst, so that a decrease in catalyst activity can be greatly reduced. Moreover, since the performance of the biomass fuel exhaust gas treatment device 1 can be maintained high for a long period of time, the frequency of catalyst replacement can be greatly reduced.
 次に、本発明の実施例を用いて本発明を詳細に説明する。 Next, the present invention will be described in detail using embodiments of the present invention.
 [触媒例]
 酸化チタン(石原産業製、比表面積100m/g)1200g、三酸化モリブデン108.1kg、メタバナジン酸アンモニウム79.1kg、シリカゾル(日産化学製,OSゾル,SiOとして20wt%含有)553gに水を加えてニーダで60分混練した後、シリカアルミナ系セラミック繊維(ニチアス製)207.4gを徐々に添加しながら30分混練して水分27%の触媒ペーストを得た。
[Catalyst example]
Water was added to 1200 g of titanium oxide (Ishihara Sangyo, specific surface area 100 m 2 / g), 108.1 kg of molybdenum trioxide, 79.1 kg of ammonium metavanadate, 553 g of silica sol (manufactured by Nissan Chemical, OS sol, containing 20 wt% as SiO 2 ). In addition, after kneading with a kneader for 60 minutes, 207.4 g of silica-alumina ceramic fiber (manufactured by Nichias) was gradually added for 30 minutes to obtain a catalyst paste having a moisture content of 27%.
 得られたペーストを厚さ0.2mmのSUS430製鋼板をメタルラス加工し厚さ0.7mmの基板の上に置き、1対の加圧ローラを通して、メタルラス基材の網目を埋めるように塗布した。これを乾燥後、450℃で2時間焼成して初期触媒を得た。本触媒の組成は、原子比でTi/Mo/V=93.5/5/4.5である。 The obtained paste was subjected to metal lath processing on a 0.2 mm thick SUS430 steel plate, placed on a 0.7 mm thick substrate, and applied through a pair of pressure rollers to fill the mesh of the metal lath substrate. This was dried and calcined at 450 ° C. for 2 hours to obtain an initial catalyst. The composition of this catalyst is Ti / Mo / V = 93.5 / 5 / 4.5 by atomic ratio.
 [実施例1]
 バイオマスの燃焼排ガス中に硫酸を噴霧することでカリウムが硫酸塩化して触媒活性の低下が軽減されるかどうかを確認するため、触媒例で得られた触媒を100mm角に切り出し、これに硫酸カリウムの水溶液を触媒成分に対しKOとして0.5wt%の添加量になるように含浸後、150℃で乾燥した。
 続いて、得られた触媒を20mm幅×100mm長さに切り出した後、これを三枚用い、表1の条件で脱硝性能を測定し、触媒のカリウム劣化に対する耐毒性を評価した。
[Example 1]
In order to check whether potassium is sulfated by spraying sulfuric acid into the combustion exhaust gas of biomass and the decrease in catalytic activity is reduced, the catalyst obtained in the catalyst example is cut into 100 mm squares, and potassium sulfate is cut into this. Was impregnated so that the added amount of K 2 O was 0.5 wt% with respect to the catalyst component, and then dried at 150 ° C.
Subsequently, the obtained catalyst was cut into a width of 20 mm and a length of 100 mm, and then three of them were used to measure the denitration performance under the conditions shown in Table 1, and the toxicity resistance against the potassium deterioration of the catalyst was evaluated.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 [比較例1]
 実施例1の硫酸カリウムを炭酸カリウムに変更した以外は、実施例1と同様の処理を行い、触媒を得た。実施例1と比較例1の結果を表2に纏めて示す。
[Comparative Example 1]
A catalyst was obtained in the same manner as in Example 1 except that the potassium sulfate in Example 1 was changed to potassium carbonate. The results of Example 1 and Comparative Example 1 are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2の結果をみると、実施例1の硫酸カリウムを含浸した触媒は、比較例1の炭酸カリウムを含浸したものよりも脱硝性能の低下が小さい。このことから,硫酸カリウムの方が炭酸カリウムよりも脱硝性能への影響が小さいことがわかる。したがって、本実施の形態の方法によって炭酸カリウムを硫酸カリウムに変化させれば,触媒の耐久性が大幅に向上することは明白である。 From the results shown in Table 2, the catalyst impregnated with potassium sulfate of Example 1 has a smaller decrease in denitration performance than that of Comparative Example 1 impregnated with potassium carbonate. This shows that potassium sulfate has less influence on the denitration performance than potassium carbonate. Therefore, it is clear that the durability of the catalyst is greatly improved if the potassium carbonate is changed to potassium sulfate by the method of the present embodiment.
 [実施例2]
 硫酸噴霧による効果を確認するため、以下の試験を実施した。まず、触媒例で得られた触媒を100mm角に切り出し、これに炭酸カリウムの水溶液を触媒成分に対しKOとして0.5wt%の添加量になるように含浸後、150℃で乾燥した。
 その後、この触媒を20mm幅×100mm長さに切り出し、流通系の反応管に充填して、表3に示す条件でガスに曝した。ここで、ガス条件として、硫酸水溶液をガス中のSO濃度が100ppmになるように注入した。その後、得られた触媒の脱硝性能を表1の条件で測定し、硫酸噴霧による性能への影響を評価した。
[Example 2]
In order to confirm the effect of sulfuric acid spray, the following tests were conducted. First, the catalyst obtained in the catalyst example was cut into a 100 mm square, impregnated with an aqueous solution of potassium carbonate in an amount of 0.5 wt% as K 2 O, and dried at 150 ° C.
Thereafter, the catalyst was cut into a width of 20 mm × 100 mm, filled into a reaction tube in a flow system, and exposed to gas under the conditions shown in Table 3. Here, as a gas condition, an aqueous sulfuric acid solution was injected so that the SO 3 concentration in the gas was 100 ppm. Thereafter, the denitration performance of the obtained catalyst was measured under the conditions shown in Table 1, and the influence of sulfuric acid spray on the performance was evaluated.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [比較例2]
 実施例2の表3の条件で、硫酸水溶液を水に変更した以外は同様の処理を行った。実施例2と比較例2の結果を表4に纏めて示す。
[Comparative Example 2]
The same treatment was performed except that the sulfuric acid aqueous solution was changed to water under the conditions shown in Table 3 of Example 2. The results of Example 2 and Comparative Example 2 are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例2と比較例2とを比較すると、実施例2の場合の触媒活性の低下は、極めて小さい。このように本願発明の方法は、多量の炭酸アルカリで劣化した触媒の活性回復にも効果があることが分かる。 When comparing Example 2 and Comparative Example 2, the decrease in catalyst activity in Example 2 is extremely small. Thus, it can be seen that the method of the present invention is effective in recovering the activity of a catalyst deteriorated by a large amount of alkali carbonate.
 [実施例3]
 湿潤条件下での潮解性を比較するため、以下の試験を実施した。20wt%の炭酸カリウムを含んだ草木灰を1g/mになるように100mm角に切り出した触媒表面に均一になるようにふりかけた後、2枚の薬包紙の内側にこの触媒を挟んで、灰を触媒に圧着させた。そして、この触媒を20mm幅×100mm長さに切り出し、流通系の反応管に充填して、表3に示す条件でガスに曝した。ここで、ガス条件として、硫酸水溶液をガス中のSO濃度が100ppmになるように注入した。その後、得られた触媒を30℃相対湿度100%密閉容器に100時間静置した後、120℃で2時間乾燥した。
 続いて、得られた触媒に付着している灰を除去した後、触媒中に移動したカリウムを蛍光X線により測定した。
[Example 3]
In order to compare deliquescence under wet conditions, the following tests were performed. After sprinkling grass ash containing 20 wt% potassium carbonate uniformly on the surface of a 100 mm square cut to 1 g / m 2 , sandwich the catalyst inside the two medicine wrapping papers, Crimped to the catalyst. The catalyst was cut into a width of 20 mm × 100 mm, filled into a reaction tube in a flow system, and exposed to gas under the conditions shown in Table 3. Here, as a gas condition, an aqueous sulfuric acid solution was injected so that the SO 3 concentration in the gas was 100 ppm. Thereafter, the obtained catalyst was allowed to stand in a sealed container at 30 ° C. and 100% relative humidity for 100 hours, and then dried at 120 ° C. for 2 hours.
Subsequently, after removing the ash adhering to the obtained catalyst, potassium moved into the catalyst was measured by fluorescent X-ray.
 [比較例3]
 実施例3の硫酸水溶液を水に変更した以外は同様の処理を行った。実施例3と比較例3の結果を表5に纏めて示す。
[Comparative Example 3]
The same treatment was performed except that the sulfuric acid aqueous solution of Example 3 was changed to water. The results of Example 3 and Comparative Example 3 are summarized in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5より、脱硝触媒の上流に硫酸を添加した後、湿潤条件下に曝された実施例3の触媒は、硫酸を添加せず、湿潤条件下に曝された比較例2の触媒と比べ、触媒中に移動したカリウム量は極めて僅かである。このように、本実施の形態の脱硝方法を用いれば、炭酸カリウム含有灰の吸湿による触媒活性の低下(触媒劣化)を大幅に改善することができる。 From Table 5, the catalyst of Example 3 exposed to wet conditions after adding sulfuric acid upstream of the denitration catalyst was compared with the catalyst of Comparative Example 2 exposed to wet conditions without adding sulfuric acid. The amount of potassium transferred into the catalyst is very small. Thus, if the denitration method of this Embodiment is used, the fall of catalyst activity (catalyst degradation) by the moisture absorption of potassium carbonate containing ash can be improved significantly.
  1 排ガス処理装置
  3 ボイラ
  5 煙道
  7 脱硝装置
  9 還元剤噴霧装置
 11 硫酸噴霧装置
 13、17 注入ノズル
DESCRIPTION OF SYMBOLS 1 Exhaust gas treatment apparatus 3 Boiler 5 Flue 7 Denitration apparatus 9 Reducing agent spray apparatus 11 Sulfuric acid spray apparatus 13, 17 Injection nozzle

Claims (2)

  1.  バイオマス専焼、又はバイオマス燃料と石炭とを混焼した排ガスに、還元剤としてアンモニア又は尿素を噴き込んで、酸化チタンを主成分とする脱硝触媒と接触させて排ガス中に含まれる窒素酸化物を還元除去する排ガスの脱硝方法であって、前記脱硝触媒の上流側を流れる前記排ガス中に、硫酸又はSOガスを注入することを特徴とする排ガスの脱硝方法。 Nitrogen oxides contained in the exhaust gas are reduced and removed by injecting ammonia or urea as a reducing agent into the exhaust gas mixed with biomass exclusively or biomass fuel and coal, and contacting with a denitration catalyst mainly composed of titanium oxide. An exhaust gas denitration method, wherein sulfuric acid or SO 3 gas is injected into the exhaust gas flowing upstream of the denitration catalyst.
  2.  前記硫酸又はSOガスの噴霧量は、前記脱硝触媒の上流側を流れる前記排ガス中のSO濃度が10ppm以上100ppm以下となるように調節することを特徴とする請求項1に記載の排ガスの脱硝方法。 The amount of spray of the sulfuric acid or SO 3 gas is adjusted so that the SO 3 concentration in the exhaust gas flowing upstream of the denitration catalyst is 10 ppm or more and 100 ppm or less. Denitration method.
PCT/JP2013/066195 2012-06-19 2013-06-12 Method for discharge gas denitration WO2013191053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13807776.3A EP2862621A4 (en) 2012-06-19 2013-06-12 Method for discharge gas denitration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012137548A JP5916527B2 (en) 2012-06-19 2012-06-19 Denitration method of exhaust gas
JP2012-137548 2012-06-19

Publications (1)

Publication Number Publication Date
WO2013191053A1 true WO2013191053A1 (en) 2013-12-27

Family

ID=49768653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066195 WO2013191053A1 (en) 2012-06-19 2013-06-12 Method for discharge gas denitration

Country Status (3)

Country Link
EP (1) EP2862621A4 (en)
JP (1) JP5916527B2 (en)
WO (1) WO2013191053A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621677A (en) * 2018-12-29 2019-04-16 山东九和节能环保科技有限公司 A kind of composite denitration medicament and preparation method thereof
CN114574262A (en) * 2022-03-04 2022-06-03 安徽工业大学 Coal-fired catalyst produced by using titanium white waste acid and preparation method thereof
US11959638B2 (en) 2018-09-11 2024-04-16 Ihi Corporation Boiler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277719A (en) * 2016-08-26 2017-01-04 湖北新华光信息材料有限公司 A kind of wide plate material molding material leakage mouth device
CN109248688B (en) * 2018-10-26 2021-03-02 山东省科学院能源研究所 Method for in-situ preparation of carbon-based NOx adsorption reduction catalyst from coal-biomass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074817A1 (en) * 2006-12-27 2010-03-25 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas
JP2011050941A (en) * 2009-08-05 2011-03-17 Mitsubishi Heavy Ind Ltd Device for treating exhaust gas
JP2011161364A (en) 2010-02-09 2011-08-25 Babcock Hitachi Kk Denitration catalyst for biomass combustion exhaust gas, and denitration method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082103A (en) * 2002-08-27 2004-03-18 Asahi Glass Co Ltd Method of treating gas containing so2
JP2011062663A (en) * 2009-09-18 2011-03-31 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Method for treating exhaust gas
JP2012035216A (en) * 2010-08-09 2012-02-23 Babcock Hitachi Kk Catalyst for treating exhaust gas, method for producing the same, and method for treating nitrogen oxide in exhaust gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100074817A1 (en) * 2006-12-27 2010-03-25 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas
JP2011050941A (en) * 2009-08-05 2011-03-17 Mitsubishi Heavy Ind Ltd Device for treating exhaust gas
JP2011161364A (en) 2010-02-09 2011-08-25 Babcock Hitachi Kk Denitration catalyst for biomass combustion exhaust gas, and denitration method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2862621A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11959638B2 (en) 2018-09-11 2024-04-16 Ihi Corporation Boiler
CN109621677A (en) * 2018-12-29 2019-04-16 山东九和节能环保科技有限公司 A kind of composite denitration medicament and preparation method thereof
CN114574262A (en) * 2022-03-04 2022-06-03 安徽工业大学 Coal-fired catalyst produced by using titanium white waste acid and preparation method thereof

Also Published As

Publication number Publication date
JP5916527B2 (en) 2016-05-11
JP2014000522A (en) 2014-01-09
EP2862621A4 (en) 2016-02-24
EP2862621A1 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
CN102059156B (en) Denitration catalyst regenerating solution and regenerating method thereof
WO2013191053A1 (en) Method for discharge gas denitration
CN101708422B (en) Method for simultaneously desulphurizing and denitrating coal-fired flue gas by limestone-gypsum method
CN106582225A (en) SNCR-SCR combined denitration system based on demercuration and deamination modified catalyst and denitration method achieved by adopting system
CN101632897B (en) Method for simultaneously removing sulfur oxides and nitric oxides in flue gas
CN103203176B (en) Method for flue gas desulfurization, denitrification and demercuration by semidry method
CN102764657B (en) Nano V205/activated coke denitration catalyst and preparation method of catalyst
CN102847418A (en) Additive for limestone-gypsum wet flue gas desulfurization and denitration process
BR112012014390B1 (en) CATALYST FOR SELECTIVE CATALYTIC REDUCTION OF NOx IN GAS WASTE, USE, METHODS OF PRODUCTION OF A CATALYST, AND TREATMENT OF AN UNCOATED CATALYST
US8673250B2 (en) Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
JP5596992B2 (en) Denitration catalyst for biomass combustion exhaust gas and denitration method
JP2012024669A (en) Method for regenerating denitration catalyst
CN102728215B (en) Composition and method for removing nitrogen oxides in desulfurizing tower
KR20080059958A (en) Simultaneous flue gas desulfurization and denitrification with ozone and active coke
CN114887475A (en) Tail gas treatment method for lithium battery material production
TW200948462A (en) Exhaust gas purification catalyst on which influence of iron compound has been suppressed
KR102143932B1 (en) Absorption composition for removing NOx and SOx simultaneously
CN103341306B (en) A kind of method of poor ammonia SNCR reduction and oxidative absorption combined denitration demercuration
CN102698600A (en) System for intelligently controlling flue gas denitrification of cement plant based on selective catalytic reduction (SCR) method
CN105169906A (en) Method for injecting sodium sulfide into ozone to denitrate
CN106559989A (en) The process of nitrogen oxides in flue gas stream
KR100970337B1 (en) A catalyst for selective catalytic reduction of nitrogen oxides and A method for preparing the same
CN102872698A (en) Desulphurization and denitrification device used for flue gas
CN110917829A (en) Desulfurization and denitrification flue gas advanced treatment method
JP2013052371A (en) Denitration method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE