JP2013052371A - Denitration method - Google Patents

Denitration method Download PDF

Info

Publication number
JP2013052371A
JP2013052371A JP2011193588A JP2011193588A JP2013052371A JP 2013052371 A JP2013052371 A JP 2013052371A JP 2011193588 A JP2011193588 A JP 2011193588A JP 2011193588 A JP2011193588 A JP 2011193588A JP 2013052371 A JP2013052371 A JP 2013052371A
Authority
JP
Japan
Prior art keywords
catalyst
denitration
ammonium sulfate
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011193588A
Other languages
Japanese (ja)
Other versions
JP5931377B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Naomi Imada
尚美 今田
Keiichiro Kai
啓一郎 甲斐
Kiyoshi Ikemoto
清司 池本
Kotoe Matsuyama
琴衣 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011193588A priority Critical patent/JP5931377B2/en
Publication of JP2013052371A publication Critical patent/JP2013052371A/en
Application granted granted Critical
Publication of JP5931377B2 publication Critical patent/JP5931377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a denitration method operative at a temperature equal to or lower than the precipitation temperature of acid ammonium sulfate determined by an equilibrium constant.SOLUTION: The denitration method includes blowing, as a reducing agent, ammonia (NH) or urea which is a precursor of NHinto exhaust gas that contains sulfur trioxide (SO), and then bringing the exhaust gas into contact with a catalyst to reduce and eliminate a nitrogen oxide (NOx) contained in the exhaust gas. The catalyst in use comprises an oxide of titanium (Ti), at least one of molybdenum (Mo) and tungsten (W), vanadium (V), and phosphorus (P), and a denitration reaction is performed at the temperature equal to or lower than the precipitation temperature of acid ammonium sulfate determined by the product of the respective concentration of NH, SOand water (HO).

Description

本発明は、NOx及びSOを含有する排ガスの脱硝方法に係り、特に、酸性硫安の析出温度以下でNHもしくはNHの前駆体である尿素を吹き込んでも触媒が劣化することなく、高い脱硝性能を維持することができる脱硝方法に関する。 TECHNICAL FIELD The present invention relates to a denitration method for exhaust gas containing NOx and SO 3 , and in particular, high denitration without deterioration of the catalyst even when NH 3 or urea which is a precursor of NH 3 is blown below the precipitation temperature of acidic ammonium sulfate. The present invention relates to a denitration method capable of maintaining performance.

ボイラ等からの排ガスに、アンモニア(NH)やNHの前駆体として尿素を添加した後に触媒と接触させることにより、排ガス中の窒素酸化物(NOx)を還元除去する所謂、接触還元脱硝方法は、比較的簡単な装置構成で高い性能が得られるため広く用いられている。 A so-called catalytic reductive denitration method in which nitrogen oxide (NOx) in exhaust gas is reduced and removed by adding urea as a precursor of ammonia (NH 3 ) or NH 3 to exhaust gas from a boiler or the like and then contacting with a catalyst. Is widely used because high performance can be obtained with a relatively simple device configuration.

ところで、この種の脱硝方法において還元剤として用いられるNHは、排ガス中のSOと反応して酸性硫安を生成する。この酸性硫安が触媒の細孔を閉塞させて触媒活性を低下させることが知られている。この点については、例えば、非特許文献1等に記載されている。 By the way, NH 3 used as a reducing agent in this type of denitration method reacts with SO 3 in exhaust gas to produce acidic ammonium sulfate. It is known that this acidic ammonium sulfate closes the pores of the catalyst and lowers the catalyst activity. This point is described in, for example, Non-Patent Document 1 and the like.

このため、脱硝装置の起動時や夜間等に行われるボイラの低負荷運転時等、排ガス温度が酸性硫安の析出温度以下になる条件では、(1)NH注入を行わないか、(2)排ガス温度が酸性硫安の析出温度以上になるようにボイラを運転したり、高温の排ガスを脱硝装置の上流に吹き込む等の対策を採って、酸性硫安の析出による触媒の劣化を防止することが提案されている(例えば、特許文献1参照)。 For this reason, under conditions where the exhaust gas temperature is equal to or lower than the precipitation temperature of acidic ammonium sulfate, such as when the denitration device is started up or when the boiler is operated at low load at night, (1) NH 3 injection is not performed or (2) Proposal to prevent deterioration of the catalyst due to precipitation of acidic ammonium sulfate by taking measures such as operating the boiler so that the exhaust gas temperature becomes equal to or higher than the precipitation temperature of acidic ammonium sulfate, or blowing high temperature exhaust gas upstream of the denitration equipment (For example, refer to Patent Document 1).

また、排ガス中のSOやNOの成分とNHとの化合物の析出温度範囲については、特許文献2の第2図に示されている。 Further, the precipitation temperature range of the compound of SO 3 or NO 2 component and NH 3 in the exhaust gas is shown in FIG.

特開平11−319482号公報Japanese Patent Laid-Open No. 11-319482 特開平4−118025号公報Japanese Patent Laid-Open No. 4-118025 S.Matsuda etc,Ind.Eng.Chem.Prod.Res.Dev.21(1982),P48S.Matsuda etc, Ind. Eng. Chem. Prod. Res. Dev. 21 (1982), P48

しかしながら、例えば、特許文献1において、NHの注入を停止する間は、脱硝を行うことができないため、環境保全の観点から好ましくない。また、脱硝装置に投入する排ガス濃度を酸性硫安の析出温度以上に保持すると、エネルギーの浪費にあたり、CO排出量の増加に繋がる。 However, for example, in Patent Document 1, denitration cannot be performed while NH 3 injection is stopped, which is not preferable from the viewpoint of environmental protection. Further, if the exhaust gas concentration to be introduced into the denitration apparatus is maintained at a temperature equal to or higher than the precipitation temperature of acidic ammonium sulfate, energy is wasted, leading to an increase in CO 2 emission.

近年では、米国等で高S炭を燃料とするボイラが増加しており、その場合には排ガス中のSO濃度が高く、50ppmを超えることも少なくない。SOとNHとから酸性硫安の析出反応は、式(1)及び式(2)で示される平衡定数を持った平衡反応である。
NH(ガス)+SO(ガス)+HO(ガス)
→ NHHSO(液体)・・・・・・(1)
K=1/([NH][SO][HO]) ・・・・・・(2)
In recent years, boilers using high-S coal as fuel in the United States and the like are increasing. In that case, the concentration of SO 3 in the exhaust gas is high and often exceeds 50 ppm. The precipitation reaction of acidic ammonium sulfate from SO 3 and NH 3 is an equilibrium reaction having equilibrium constants represented by the formulas (1) and (2).
NH 3 (gas) + SO 3 (gas) + H 2 O (gas)
→ NH 4 HSO 4 (Liquid) (1)
K = 1 / ([NH 3 ] [SO 3 ] [H 2 O]) (2)

このため、SO濃度が高ければ、酸性硫安の析出開始温度、つまり劣化防止のため維持しなければならない温度が益々高温化する傾向にある。 For this reason, if the SO 3 concentration is high, the acid ammonium sulfate precipitation start temperature, that is, the temperature that must be maintained to prevent deterioration, tends to increase more and more.

本発明の課題は、平衡定数で決定される酸性硫安の析出温度以下での運用が可能な脱硝技術を提案することにある。   An object of the present invention is to propose a denitration technique that can be operated at a temperature below the precipitation temperature of acidic ammonium sulfate determined by the equilibrium constant.

まず、本発明で使用する触媒の作用について説明する。   First, the action of the catalyst used in the present invention will be described.

式(2)で説明したように、酸性硫安の析出温度は、熱力学的な平衡定数に基づいて決定される。ここで、酸性硫安は300℃付近でも液体であり、これが触媒細孔内に毛管凝縮すると、熱力学的な析出温度よりも高い温度で触媒中に堆積するようになる(非特許文献1参照。)。また、触媒に硫酸根が容易に吸着されると、酸性硫安の生成を促進するため、劣化は更に加速される。   As explained in Equation (2), the precipitation temperature of acidic ammonium sulfate is determined based on the thermodynamic equilibrium constant. Here, acidic ammonium sulfate is a liquid even at around 300 ° C., and when this is condensed into the pores of the catalyst, it deposits in the catalyst at a temperature higher than the thermodynamic deposition temperature (see Non-Patent Document 1). ). Further, when the sulfate radical is easily adsorbed on the catalyst, the deterioration is further accelerated because the formation of acidic ammonium sulfate is promoted.

この点、本発明で用いる触媒は、チタン(Ti)、モリブデン(Mo)及びタングステン(W)の少なくとも一方、及びバナジウム(V)に加えて、リン(P)の酸化物を有しているため、リン酸化物が燐酸イオンの形で酸化チタンに吸着し、触媒に硫酸根を吸着し難くする。したがって、硫酸根とNHが反応して酸性硫安が細孔内に生成されるのを抑制することができる。また、酸性硫安が生成されたとしても、酸性硫安中のNHと排ガス中のNOとが反応する式(3)及び式(3´)が進行することで、ガス状のHSOもしくはSOに戻されて排ガス中に飛散する。このため、触媒中に蓄積する酸性硫安を極めて低く維持することができる。 In this respect, the catalyst used in the present invention has an oxide of phosphorus (P) in addition to at least one of titanium (Ti), molybdenum (Mo) and tungsten (W), and vanadium (V). Phosphorus oxide is adsorbed on titanium oxide in the form of phosphate ions, making it difficult for the catalyst to adsorb sulfate radicals. Therefore, it is possible to suppress the production of acidic ammonium sulfate in the pores due to the reaction between sulfate radicals and NH 3 . Further, even if acidic ammonium sulfate is generated, the formula (3) and the formula (3 ′) in which NH 3 in the acidic ammonium sulfate reacts with NO in the exhaust gas proceeds, so that gaseous H 2 SO 4 or It is returned to SO 3 and scattered in the exhaust gas. For this reason, the acidic ammonium sulfate accumulate | stored in a catalyst can be maintained very low.

NHHSO+NO+1/4O
→ HSO+N+1/2HO・・・・・(3)
NHHSO+NO+1/4O
→ SO+N+3/2HO・・・・・・・(3´)
NH 4 HSO 4 + NO + 1 / 4O 2
→ H 2 SO 4 + N 2 + 1 / 2H 2 O (3)
NH 4 HSO 4 + NO + 1 / 4O 2
→ SO 3 + N 2 + 3 / 2H 2 O (3 ')

ここで、本発明者らは、当該触媒を脱硝触媒として使用するべく、さらに鋭意検討を進めた結果、この組成を有する触媒は、触媒劣化を抑制するだけでなく、酸性硫安の熱力学的析出温度以下でも高い活性を示すことを知見し、本発明の脱硝方法を完成するに至った。   Here, as a result of further diligent studies to use the catalyst as a denitration catalyst, the catalyst having this composition not only suppresses catalyst deterioration but also thermodynamic precipitation of acidic ammonium sulfate. It has been found that high activity is exhibited even at a temperature below, and the denitration method of the present invention has been completed.

すなわち、本発明は、三酸化イオウ(SO)を含有する排ガスに、還元剤としてアンモニア(NH)もしくはNHの前駆体である尿素を吹き込んだ後、触媒と接触させて排ガスに含有される窒素酸化物(NOx)を還元除去する脱硝方法であって、触媒として、チタン(Ti)、モリブデン(Mo)及びタングステン(W)の少なくとも一方、バナジウム(V)、及びリン(P)の酸化物からなる触媒を用い、NH、SO、及び水(HO)のそれぞれの濃度の積で決まる酸性硫安の析出温度以下の温度で脱硝反応を行わせることを特徴とする。 That is, in the present invention, ammonia (NH 3 ) or urea, which is a precursor of NH 3 , is blown into the exhaust gas containing sulfur trioxide (SO 3 ) and then brought into contact with the catalyst to be contained in the exhaust gas. A denitration method for reducing and removing nitrogen oxide (NOx), which comprises oxidizing at least one of titanium (Ti), molybdenum (Mo), and tungsten (W), vanadium (V), and phosphorus (P) as a catalyst. The catalyst is made of a product, and the denitration reaction is performed at a temperature not higher than the precipitation temperature of acidic ammonium sulfate determined by the product of the respective concentrations of NH 3 , SO 3 , and water (H 2 O).

本発明によれば、式(1)の反応が進行し、触媒上に酸性硫安が析出し始めるが、酸性硫安中のNHは、触媒作用によって、式(3)の反応により脱硝に使われるため、結果として、硫酸(HSO)もしくはSOとHOが生成される。さらに、この触媒は、SOもしくはSOの吸着能力が極めて低いため、生成したSO又はSOは直ちに脱離してガス相に移行し、触媒に蓄積することがない。 According to the present invention, the reaction of formula (1) proceeds and acid ammonium sulfate begins to precipitate on the catalyst, but NH 3 in the acid ammonium sulfate is used for denitration by the reaction of formula (3) by the catalytic action. Therefore, as a result, sulfuric acid (H 2 SO 4 ) or SO 3 and H 2 O are generated. Further, this catalyst has an extremely low adsorption capacity of SO 3 or SO 4, produced SO 3 or SO 4 and the immediately desorbed moves to the gas phase and does not accumulate in the catalyst.

したがって、例えば、排ガスに含有される窒素酸化物の脱硝反応が行われる空間の一部又は全部が、酸性硫安の析出温度以下の温度になったとしても、式(1)と式(3)が逐次起こることにより、触媒への酸性硫安や硫酸根の蓄積を抑制することができる。そのため、ボイラ等、燃焼機の起動時における温度の低い条件から脱硝が可能になるとともに、夜間等の低負荷時に起こる排ガス温度が酸性硫安の析出温度以下になる条件でも劣化することなく、脱硝装置を運転することが可能になる。加えて、本発明によれば、CO排出量を増加させることもないので、環境保全や地球の温暖化防止にも寄与する。 Therefore, for example, even if a part or all of the space where the denitration reaction of nitrogen oxides contained in the exhaust gas is performed becomes a temperature equal to or lower than the precipitation temperature of acidic ammonium sulfate, the formulas (1) and (3) are By successively occurring, accumulation of acidic ammonium sulfate and sulfate radicals in the catalyst can be suppressed. Therefore, it is possible to denitrate from low temperature conditions such as boilers when starting the combustor, and denitration equipment without deterioration even under conditions where the exhaust gas temperature that occurs at low loads such as at night falls below the precipitation temperature of acidic ammonium sulfate It becomes possible to drive. In addition, according to the present invention, the amount of CO 2 emission is not increased, which contributes to environmental conservation and prevention of global warming.

本発明によれば、平衡定数で決定される酸性硫安の析出温度以下でも運用が可能になる。   According to the present invention, operation is possible even below the precipitation temperature of acidic ammonium sulfate determined by the equilibrium constant.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

脱硝方法において、酸性硫安の析出温度以下での脱硝を可能にするために重要なのは触媒の組成である。本発明の脱硝方法における触媒は、チタン(Ti)、モリブデン(Mo)及びタングステン(W)の少なくとも一方、バナジウム(V)、及びリン(P)の酸化物であることを特徴としている。   In the denitration method, what is important in order to enable denitration below the precipitation temperature of acidic ammonium sulfate is the composition of the catalyst. The catalyst in the denitration method of the present invention is characterized by being an oxide of at least one of titanium (Ti), molybdenum (Mo), and tungsten (W), vanadium (V), and phosphorus (P).

ここで、Mo及びWは、通常1〜10atom%、Vは0を超えて7wt%以下とするのが好ましい。   Here, Mo and W are usually 1 to 10 atom%, and V is preferably more than 0 and 7 wt% or less.

また、Pは触媒中の酸化チタン表面に燐酸イオンとして吸着し、硫酸根が硫酸イオンとして吸着することを阻害する働きをするため、特に重要である。Pの添加量は酸化チタンの表面積にもよるが、酸化チタンに対し正燐酸(HPO)として1wt%〜10wt%、望ましくは2〜8wt%であることが好ましい。 P is particularly important because it acts as a phosphate ion on the surface of titanium oxide in the catalyst and inhibits the sulfate radical from adsorbing as a sulfate ion. Although the addition amount of P depends on the surface area of titanium oxide, it is preferably 1 wt% to 10 wt%, preferably 2 to 8 wt% as orthophosphoric acid (H 3 PO 4 ) with respect to titanium oxide.

添加するPの化合物としては、通常、正燐酸が用いられるが、他の縮合燐酸や焼成により燐酸を与える塩類であっても差し支えない。   As the compound of P to be added, orthophosphoric acid is usually used, but other condensed phosphoric acid or salts that give phosphoric acid by firing may be used.

触媒の形状は、原理上効果は形状によらないため、板状、ハニカム、粒状等どのような形状であっても差し支えないが、硫黄(S)含有量の大きい石炭焚の場合には、板状や大口径のハニカム等が燃焼灰による、触媒の細孔の閉塞がなく好都合である。   The shape of the catalyst does not depend on the shape in principle, so it can be any shape such as plate, honeycomb, granule, etc. However, in the case of coal soot with a high sulfur (S) content, A honeycomb having a large shape or a large diameter is convenient because the pores of the catalyst are not blocked by the combustion ash.

また、本発明の触媒が適用される酸性硫安の析出温度Tとは、式(1)で示される反応のギブスの自由エネルギー変化ΔGを用いて、以下の式(5)のように求められる。
T=ΔG/(−R*lnK) ・・・・・・・・・・・・ (5)
ここで、Kは式(2)に示した析出の平衡定数である。
Further, the precipitation temperature T of the acidic ammonium sulfate to which the catalyst of the present invention is applied is obtained by the following equation (5) using the Gibbs free energy change ΔG of the reaction represented by the equation (1).
T = ΔG / (− R * lnK) (5)
Here, K is the equilibrium constant of precipitation shown in Equation (2).

次に、本発明の脱硝方法を実際に実施してみた。以下、その実施例について詳細に説明する。   Next, the denitration method of the present invention was actually carried out. Hereinafter, the embodiment will be described in detail.

(実施例1〜4)
酸化チタン(石原産業製、比表面積150m/g)、ヘキサモリブデン酸アンモニウム、メタバナジン酸アンモニウム、シリカゾル(日産化学製、OSゾル)、85%リン酸の各原料をそれぞれ表1に示した分量に秤量してニーダに投入、これに更に水50gを添加後、60分混練した。その後、シリカアルミナ系無機繊維(東芝ファインフレックス)を徐々に添加しながら、30分間混練して水分27%の触媒ペーストを得た。得られたペーストを、厚さ0.16mmのSUS430製鋼板をメタルラス加工した厚さ0.7mmの基材の上に置き、これを二枚のポリエチレンシートに挟んで一対の加圧ローラに通して、メタルラス基材の網目を埋めるように塗布した。そして、これを風で乾燥後、500℃で2時間焼成して触媒を得た。
(Examples 1-4)
The raw materials of titanium oxide (made by Ishihara Sangyo, specific surface area 150 m 2 / g), ammonium hexamolybdate, ammonium metavanadate, silica sol (manufactured by Nissan Chemical Industries, OS sol), and 85% phosphoric acid are each in the quantities shown in Table 1. The sample was weighed and put into a kneader, and 50 g of water was further added thereto, followed by kneading for 60 minutes. Thereafter, the mixture was kneaded for 30 minutes while gradually adding silica-alumina inorganic fibers (Toshiba Fineflex) to obtain a catalyst paste having a moisture content of 27%. The obtained paste was placed on a 0.7 mm-thick base material obtained by metallizing a 0.16 mm-thick SUS430 steel plate, and this was sandwiched between two polyethylene sheets and passed through a pair of pressure rollers. Then, it was applied so as to fill the mesh of the metal lath substrate. And after drying this with a wind, it baked at 500 degreeC for 2 hours, and obtained the catalyst.

Figure 2013052371
Figure 2013052371

(実施例5)
実施例1のヘキサモリブデン酸アンモニウムに代えて、メタタングステン酸アンモニウムを用いた。そして、酸化チタン、メタタングステン酸アンモニウム、メタバナジン酸アンモニウム、シリカゾル、85%リン酸の各原料をそれぞれ表2に示した分量に秤量して、実施例1〜4の場合と同様な操作を行って触媒を調整した。
(Example 5)
Instead of ammonium hexamolybdate in Example 1, ammonium metatungstate was used. Then, each raw material of titanium oxide, ammonium metatungstate, ammonium metavanadate, silica sol, and 85% phosphoric acid was weighed in the amounts shown in Table 2, and the same operation as in Examples 1 to 4 was performed. The catalyst was prepared.

Figure 2013052371
Figure 2013052371

(比較例1〜5)
表1(実施例1〜4)及び表2(実施例5)に示した各原料のうち、Pの添加量を0gにし、他は各実施例1〜5と同様にして触媒を調整した。
(Comparative Examples 1-5)
Among the raw materials shown in Table 1 (Examples 1 to 4) and Table 2 (Example 5), the addition amount of P was set to 0 g, and others were adjusted in the same manner as in Examples 1 to 5, respectively.

次に、上記実施例1〜5及び比較例1〜5で調整した触媒を用いて、下記の実験を行った。   Next, the following experiment was conducted using the catalysts prepared in Examples 1 to 5 and Comparative Examples 1 to 5.

(実験例1)
実施例1〜5及び比較例1〜5の触媒について、SOを100ppm添加した水分濃度10%−300℃のプロパン燃焼排ガス中に500時間曝露し、その前後の触媒について触媒中の硫酸根を蛍光X線分析により測定した。得られた結果を表3に示す。
(Experimental example 1)
The catalysts of Examples 1 to 5 and Comparative Examples 1 to 5 were exposed to propane combustion exhaust gas having a water concentration of 10% -300 ° C. to which 100 ppm of SO 3 had been added for 500 hours. It was measured by fluorescent X-ray analysis. The obtained results are shown in Table 3.

Figure 2013052371
Figure 2013052371

表3を見てみると、本発明における実施例1〜5の触媒は、100ppmという高濃度のSOに曝されても、SO量の増加が少なく、触媒への硫酸根の吸着・蓄積が大幅に低減されていることが分かる。 Looking at Table 3, the catalysts of Examples 1 to 5 in the present invention showed little increase in SO 4 amount even when exposed to SO 3 at a high concentration of 100 ppm, and the adsorption and accumulation of sulfate radicals on the catalyst. It can be seen that is significantly reduced.

(実験例2)
本発明の触媒が酸性硫安の析出領域で劣化し難いことを明らかにするため、実施例1〜5及び比較例1〜5の触媒について、SOを100ppm、NHを300ppm添加するとともに、温度を酸性硫安の析出温度以下にするために270℃に低下させて、実験例1と同様の試験を実施した。なお、本実験例における酸性硫安析出温度は、式(5)を用いて計算すると、約293℃に相当する。
(Experimental example 2)
To clarify that the catalyst of the present invention is hardly deteriorated by deposition area of acidic ammonium sulfate, a catalyst for the Examples 1-5 and Comparative Examples 1-5, the SO 3 100 ppm, the NH 3 with addition of 300 ppm, a temperature Was reduced to 270 ° C. in order to make the temperature below the precipitation temperature of acidic ammonium sulfate, and the same test as in Experimental Example 1 was performed. In addition, the acidic ammonium sulfate precipitation temperature in this experimental example corresponds to about 293 ° C. when calculated using Equation (5).

試験後の触媒の硫酸根を蛍光X線分析で測定するとともに、表4の条件で脱硝率を測定した。   The sulfate radical of the catalyst after the test was measured by fluorescent X-ray analysis, and the denitration rate was measured under the conditions shown in Table 4.

Figure 2013052371
Figure 2013052371

得られたSO分析の結果を表3に、脱硝性能に関する結果を表5にまとめて示す。 The obtained SO 4 analysis results are summarized in Table 3, and the results regarding the denitration performance are summarized in Table 5.

Figure 2013052371
Figure 2013052371

表3および表5を見ると、実施例1〜5の触媒は触媒中への硫酸根の蓄積が極めて小さく、また本実験によっても脱硝率の低下が殆ど起こっていないことが分かる。   From Table 3 and Table 5, it can be seen that in the catalysts of Examples 1 to 5, accumulation of sulfate radicals in the catalyst was extremely small, and even in this experiment, there was almost no decrease in the denitration rate.

Claims (3)

三酸化イオウ(SO)を含有する排ガスに、還元剤としてアンモニア(NH)もしくはNHの前駆体である尿素を吹き込んだ後、触媒と接触させて前記排ガスに含有される窒素酸化物(NOx)を還元除去する脱硝方法であって、
前記触媒として、チタン(Ti)、モリブデン(Mo)及びタングステン(W)の少なくとも一方、バナジウム(V)、及びリン(P)の酸化物からなる触媒を用い、
NH、SO、及び水(HO)のそれぞれの濃度の積で決まる酸性硫安の析出温度以下の温度で脱硝反応を行わせることを特徴とする脱硝方法。
After injecting ammonia (NH 3 ) or urea as a precursor of NH 3 into the exhaust gas containing sulfur trioxide (SO 3 ), nitrogen oxide ( A NOx removal method for reducing and removing NOx),
As the catalyst, a catalyst comprising an oxide of at least one of titanium (Ti), molybdenum (Mo) and tungsten (W), vanadium (V), and phosphorus (P) is used.
A denitration method, wherein the denitration reaction is performed at a temperature not higher than the precipitation temperature of acidic ammonium sulfate determined by the product of concentrations of NH 3 , SO 3 , and water (H 2 O).
Mo及びWは1〜10atom%、Vは0を超えて7wt%以下であることを特徴とする請求項1に記載の脱硝方法。   The denitration method according to claim 1, wherein Mo and W are 1 to 10 atom%, and V is more than 0 and 7 wt% or less. Pの添加量は、酸化チタンに対し正燐酸(HPO)として、1wt%〜10wt%であることを特徴とする請求項1又は2に記載の脱硝方法。 The addition amount of P is as orthophosphoric acid to titanium oxide (H 3 PO 4), denitration process according to claim 1 or 2, characterized in that a 1 wt% 10 wt%.
JP2011193588A 2011-09-06 2011-09-06 Denitration method Active JP5931377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011193588A JP5931377B2 (en) 2011-09-06 2011-09-06 Denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011193588A JP5931377B2 (en) 2011-09-06 2011-09-06 Denitration method

Publications (2)

Publication Number Publication Date
JP2013052371A true JP2013052371A (en) 2013-03-21
JP5931377B2 JP5931377B2 (en) 2016-06-08

Family

ID=48129846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011193588A Active JP5931377B2 (en) 2011-09-06 2011-09-06 Denitration method

Country Status (1)

Country Link
JP (1) JP5931377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2561087A (en) * 2017-03-31 2018-10-03 Johnson Matthey Plc A catalyst for treating an exhaust gas, an exhaust system and a method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719192A (en) * 1985-08-13 1988-01-12 Sud-Chemie Aktiengesellschaft Catalyst for decreasing the content of nitrogen oxides in flue gases
JPH01176453A (en) * 1987-12-28 1989-07-12 Babcock Hitachi Kk Catalyst for removing nitrogen oxide and its production
JPH11300213A (en) * 1998-04-22 1999-11-02 Mitsubishi Heavy Ind Ltd Denitration catalyst
JP2002292245A (en) * 2001-03-30 2002-10-08 Nichias Corp Denitration catalyst and dioxin decomposing catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719192A (en) * 1985-08-13 1988-01-12 Sud-Chemie Aktiengesellschaft Catalyst for decreasing the content of nitrogen oxides in flue gases
JPH01176453A (en) * 1987-12-28 1989-07-12 Babcock Hitachi Kk Catalyst for removing nitrogen oxide and its production
JPH11300213A (en) * 1998-04-22 1999-11-02 Mitsubishi Heavy Ind Ltd Denitration catalyst
JP2002292245A (en) * 2001-03-30 2002-10-08 Nichias Corp Denitration catalyst and dioxin decomposing catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2561087A (en) * 2017-03-31 2018-10-03 Johnson Matthey Plc A catalyst for treating an exhaust gas, an exhaust system and a method
WO2018178710A1 (en) * 2017-03-31 2018-10-04 Johnson Matthey Public Limited Company A catalyst for treating an exhaust gas, an exhaust system and a method
JP2020515384A (en) * 2017-03-31 2020-05-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Catalyst, exhaust system and method for treating exhaust gas
US10882031B2 (en) 2017-03-31 2021-01-05 Johnson Matthey Public Limited Company Catalyst for treating an exhaust gas, an exhaust system and a method
GB2561087B (en) * 2017-03-31 2021-08-11 Johnson Matthey Plc A catalyst for treating an exhaust gas, an exhaust system and a method

Also Published As

Publication number Publication date
JP5931377B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP4813830B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
TWI418395B (en) Clean catalyst for exhaust gas
Hong et al. Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions
JP5636577B2 (en) Method for purifying exhaust gas containing metallic mercury and oxidation catalyst for metallic mercury in exhaust gas
KR101373372B1 (en) Mercury oxidation catalyst and method for producing the same
KR101843214B1 (en) Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
JP2014522305A (en) Catalyst with improved poison resistance
US8815194B2 (en) NOx removal catalyst for high-temperature flue gas, manufacturing method thereof, and NOx removal method for high-temperature flue gas
KR101717319B1 (en) Nox reduction catalyst for exhaust gas of biomass combustion and nox reduction method
US20150151293A1 (en) Scr catalyst and method of preparation thereof
JP5916527B2 (en) Denitration method of exhaust gas
JP4508584B2 (en) Denitration catalyst for high temperature exhaust gas
JP5931377B2 (en) Denitration method
GB2562611A (en) A catalyst for treating an exhaust gas, an exhaust system and a method
JP2005087815A (en) Exhaust gas treatment method
KR101892973B1 (en) Preparation method for denitration catalyst
KR101606218B1 (en) Exhaust gas purification catalyst on which influence of iron compound has been suppressed
JP2008126124A (en) Cleaning apparatus for exhaust gas containing nitrogen oxide and metallic mercury
WO2014119067A1 (en) Catalyst for decomposing ammonia
JP2012035150A (en) Catalyst for treating exhaust gas and method for producing the same
TWI670112B (en) Catalyst and method for removing nox from combustion exhaust
WO2010016250A1 (en) Catalyst for removing nitrogen oxide, system for removing nitrogen oxide using same and method for removing nitrogen oxide using same
JP2010184171A (en) Catalyst and method for purification of exhaust gas
JP5638982B2 (en) Denitration equipment
JP2013099715A (en) Catalyst for removing nitrogen oxide contained in combustion exhaust gas, method for removing nitrogen oxide using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160427

R150 Certificate of patent or registration of utility model

Ref document number: 5931377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350