JP2013099715A - Catalyst for removing nitrogen oxide contained in combustion exhaust gas, method for removing nitrogen oxide using the catalyst - Google Patents

Catalyst for removing nitrogen oxide contained in combustion exhaust gas, method for removing nitrogen oxide using the catalyst Download PDF

Info

Publication number
JP2013099715A
JP2013099715A JP2011244504A JP2011244504A JP2013099715A JP 2013099715 A JP2013099715 A JP 2013099715A JP 2011244504 A JP2011244504 A JP 2011244504A JP 2011244504 A JP2011244504 A JP 2011244504A JP 2013099715 A JP2013099715 A JP 2013099715A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nitrogen oxide
removing nitrogen
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011244504A
Other languages
Japanese (ja)
Inventor
Susumu Hizuya
進 日数谷
Kana Shimizu
香奈 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2011244504A priority Critical patent/JP2013099715A/en
Priority to PCT/JP2012/078911 priority patent/WO2013069713A1/en
Publication of JP2013099715A publication Critical patent/JP2013099715A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method that can efficiently remove a nitrogen oxide contained in an exhaust gas at a temperature around an ammonium sulfate precipitation temperature.SOLUTION: The method for removing a nitrogen oxide contained in an exhaust gas includes bringing exhaust gas into contact with a catalyst at a temperature ranging from 200 to 350°C, wherein the catalyst is produced by ion exchange of an MFI-type zeolite with at least one element selected from Fe, Co and Mn.

Description

本発明は、燃焼排ガス中の窒素酸化物(以下、NOxと記す)の除去触媒および同触媒を用いるNOxの除去方法に関する。   The present invention relates to a catalyst for removing nitrogen oxides (hereinafter referred to as NOx) in combustion exhaust gas and a method for removing NOx using the catalyst.

燃焼排ガス中に含まれているNOxを除去する方法は、アンモニアを還元剤として排ガスに添加しバナジウムやチタニアを主成分とする脱硝触媒に排ガスを接触させることでNOxを除去するアンモニア選択的接触還元法(以下、アンモニアSCR法と記す)が主流である。   A method for removing NOx contained in combustion exhaust gas is an ammonia selective catalytic reduction in which ammonia is added to exhaust gas as a reducing agent and NOx is removed by contacting the exhaust gas with a denitration catalyst mainly composed of vanadium or titania. The method (hereinafter referred to as the ammonia SCR method) is the mainstream.

重油等の硫黄を含む燃料の燃焼排ガス中にはNOxと共に硫黄酸化物(以下、SOxと記す)が存在する。このような燃焼排ガスの脱硝温度は、触媒上への硫安の析出を防止する観点から硫安の析出温度以上でなければならない。硫安の析出温度は排ガス中のSOおよびアンモニア濃度に関係する。その関係を図1に示す。図1からわかるようにSOおよびアンモニア濃度が高くなると硫安の析出温度が高くなる。 Sulfur oxide (hereinafter referred to as SOx) is present together with NOx in the combustion exhaust gas of fuel containing sulfur such as heavy oil. The denitration temperature of such combustion exhaust gas must be equal to or higher than the precipitation temperature of ammonium sulfate from the viewpoint of preventing the precipitation of ammonium sulfate on the catalyst. The precipitation temperature of ammonium sulfate is related to the SO 3 and ammonia concentrations in the exhaust gas. The relationship is shown in FIG. As can be seen from FIG. 1, as the SO 3 and ammonia concentrations increase, the precipitation temperature of ammonium sulfate increases.

石炭焚きボイラーの燃焼排ガスでは、一般的にSOx濃度は100ppmであるためS0濃度はその10%の10ppm、NOx濃度は500ppmであるためアンモニア濃度は最大500ppmである。この条件における硫安の析出温度は約250℃となる。この時の排ガス温度は通常300〜400℃であり、硫安の析出温度250℃より高いため触媒上への硫安の析出は起こらず、安定した触媒性能を維持することができる。 The flue gas of a coal-fired boiler, generally SOx concentration S0 3 concentration thereof of 10% 10ppm for a 100 ppm, ammonia concentration for a NOx concentration is 500ppm is maximum 500ppm. The precipitation temperature of ammonium sulfate under this condition is about 250 ° C. The exhaust gas temperature at this time is usually 300 to 400 ° C., and since the ammonium sulfate precipitation temperature is higher than 250 ° C., ammonium sulfate does not precipitate on the catalyst, and stable catalyst performance can be maintained.

一方、舶用機関から排出されている排ガスは燃料がC重油であるため排ガス中のSOx濃度が1000ppm、のNOx濃度も1000ppmと高く、硫安の析出温度は約280℃と高くなる。しかし、排ガス温度は250℃と低いため、この条件では硫安が析出し、安定した触媒性能を維持することができない。   On the other hand, since the exhaust gas discharged from the marine engine is C heavy oil, the SOx concentration in the exhaust gas is 1000 ppm, the NOx concentration is as high as 1000 ppm, and the precipitation temperature of ammonium sulfate is as high as about 280 ° C. However, since the exhaust gas temperature is as low as 250 ° C., ammonium sulfate precipitates under these conditions, and stable catalyst performance cannot be maintained.

従って、舶用機関排ガスを上記選択的接触還元法で処理するには排ガス温度を硫安析出温度以上に加熱する必要がある。   Therefore, in order to treat marine engine exhaust gas by the selective catalytic reduction method, it is necessary to heat the exhaust gas temperature to a temperature higher than the ammonium sulfate precipitation temperature.

高濃度のSOxおよびNOxが存在し、排ガス温度が低い舶用機関排ガスの処理にアンモニアSCR触媒を使用するには硫安の析出温度を排ガス温度以下にする必要がある。硫安の析出温度は図1に示されるとおりS0濃度とアンモニア濃度で決定される。アンモニア濃度は排ガス中のNOx濃度と目標脱硝率で決まるため、この値を低減することできない。したがって、排ガス温度が低い舶用機関ではアンモニアSCR法を使用することができない。 In order to use an ammonia SCR catalyst for the treatment of marine engine exhaust gas having a high concentration of SOx and NOx and a low exhaust gas temperature, it is necessary to set the precipitation temperature of ammonium sulfate below the exhaust gas temperature. Precipitation temperature of ammonium sulfate is determined by S0 3 concentration and ammonia concentration as shown in FIG. Since the ammonia concentration is determined by the NOx concentration in the exhaust gas and the target denitration rate, this value cannot be reduced. Therefore, the ammonia SCR method cannot be used in a marine engine having a low exhaust gas temperature.

アンモニアSCR法以外の脱硝方法としては、イオン導電性を有する金属複合酸化物からなる触媒等にNOxを接触させるだけで窒素と酸素に分解する直接分解法(特許文献1など)や、還元剤として炭化水素を用い触媒にNOxを接触させる脱硝方法があり、後者の触媒としてβゼオライトに金属を担持した触媒(特許文献2)や、アルミナ、硫酸アルミニウム、銀を主成分とする触媒(特許文献3)が知られている。しかし、反応温度は前者の方法では600℃以上と高く、後者の方法では350℃程度である。   As a denitration method other than the ammonia SCR method, a direct decomposition method (such as Patent Document 1) in which NOx is simply brought into contact with a catalyst made of a metal composite oxide having ionic conductivity and decomposed into nitrogen and oxygen, or as a reducing agent. There is a denitration method in which NOx is brought into contact with a catalyst using hydrocarbons. As the latter catalyst, a catalyst in which a metal is supported on β zeolite (Patent Document 2), a catalyst mainly composed of alumina, aluminum sulfate, and silver (Patent Document 3) )It has been known. However, the reaction temperature is as high as 600 ° C. or more in the former method, and about 350 ° C. in the latter method.

特許文献4には還元剤を用いない直接分解法が記載され、その対照例3には水素化したゼオライトに金属を担持させた触媒を用い、温度400℃でNOx除去率は10%以下であったことが示されている。しかし、この触媒では金属担持後も金属の酸点より強い酸点であるプロトン酸点が一部残るため、NOはより強い酸点を優先的にアタックし、脱硝反応が進行しにくい。   Patent Document 4 describes a direct cracking method that does not use a reducing agent. In Comparative Example 3, a catalyst in which a metal is supported on hydrogenated zeolite is used, and the NOx removal rate is 10% or less at a temperature of 400 ° C. It has been shown. However, in this catalyst, a part of the proton acid point, which is an acid point stronger than the metal acid point, remains even after the metal is supported, so that NO preferentially attacks the stronger acid point and the denitration reaction does not proceed easily.

特開平11−151440号公報Japanese Patent Laid-Open No. 11-151440 特開2004−358454号公報JP 2004-358454 A 特開2010−29783号公報JP 2010-29783 A 特公平07−106300号公報Japanese Patent Publication No. 07-106300

上述のとおり、従来、舶用機関のように温度250℃付近の低温排ガスに対しては実用的な触媒性能を有する触媒は見い出せていなかった。   As described above, conventionally, no catalyst having practical catalytic performance has been found for low-temperature exhaust gas at a temperature around 250 ° C. like a marine engine.

その原因は、直接分解法および還元除去法では、触媒上でNOが分解した際に生成する酸素が触媒表面から除去されないことにある。従って、触媒表面の酸素を除去することが可能となれば直接分解法および還元除去法が可能と考えられる。   The cause is that in the direct decomposition method and the reduction removal method, oxygen generated when NO decomposes on the catalyst is not removed from the catalyst surface. Therefore, if it is possible to remove oxygen on the catalyst surface, it is considered that a direct decomposition method and a reduction removal method are possible.

本発明者らは検討を重ねた結果、MFI型ゼオライトをFe、CoおよびMnのうちの少なくとも一種でイオン交換させた触媒に排ガスを温度200〜350℃、好ましくは220〜320℃、より好ましくは230〜300℃、より好ましくは230〜270℃の範囲で接触させることで効果的にNOxを低減できることを見出した。   As a result of repeated investigations, the inventors of the present invention conducted exhaust gas to a temperature of 200 to 350 ° C., preferably 220 to 320 ° C., more preferably, a catalyst in which MFI type zeolite was ion-exchanged with at least one of Fe, Co, and Mn. It has been found that NOx can be effectively reduced by contacting in the range of 230 to 300 ° C, more preferably 230 to 270 ° C.

MFI型ゼオライトは市販品であってよい。   The MFI type zeolite may be a commercially available product.

イオン交換方法は、たとえば、Fe、Coおよび/またはMnの前駆体化合物を含む水溶液にMFI型ゼオライトを懸濁させ、濾過、洗浄の後、該ゼオライトを乾燥ついで焼成する方法であってよい。前駆体化合物はFe、Coおよび/またはMnの無機酸塩(例えば硝酸塩、硫酸塩)、有機酸塩(例えば酢酸塩)であってよい。   The ion exchange method may be, for example, a method of suspending MFI-type zeolite in an aqueous solution containing a precursor compound of Fe, Co and / or Mn, drying and then firing the zeolite after filtration and washing. The precursor compound may be an inorganic acid salt (eg, nitrate, sulfate) or an organic acid salt (eg, acetate) of Fe, Co and / or Mn.

Fe、CoおよびMnのうちの少なくとも一種でイオン交換させた後のゼオライトには、ナトリウム、上記イオン交換金属、プロトンの部分に酸点があり、各酸点における酸強度はプロトン>イオン交換金属>ナトリウムの順となる。脱硝反応は、イオン交換金属の酸点で一酸化窒素が分解されることで進行する。
The zeolite after ion exchange with at least one of Fe, Co, and Mn has an acid point in the sodium, the above ion exchange metal, and the proton, and the acid strength at each acid point is proton> ion exchange metal> Sodium order. The denitration reaction proceeds by decomposing nitric oxide at the acid sites of the ion exchange metal.

硫酸アンモニウム/硫酸水素アンモニウムの析出温度が三酸化硫黄濃度とアンモニア濃度に関係することを示すグラフである。It is a graph which shows that the precipitation temperature of ammonium sulfate / ammonium hydrogen sulfate is related to sulfur trioxide concentration and ammonia concentration. 触媒の性能評価を行うための試験装置を示す概略フロー図である。It is a schematic flowchart which shows the test apparatus for performing the performance evaluation of a catalyst.

次に本発明を実施例に基づいて具体的に説明する。   Next, the present invention will be specifically described based on examples.

実施例1
Fe/ゼオライト触媒
市販のMFI型ゼオライト4gを0.05MのFe(NO・9H0水溶液500m1に50℃で6時間懸濁させた後、これを濾過、洗浄し、120℃で12時間乾燥し、さらに400℃で6時間焼成した。こうしてFeイオン交換ゼオライト触媒を得た。この触媒のFe担持量は2.0wt%であった。
Example 1
After Fe / zeolite catalyst commercially available MFI zeolite 4g of 0.05M of Fe (NO 3) 3 · 9H 2 0 aqueous 500m1, and the suspension 6 hours at 50 ° C., filtered, washed, 12 at 120 ° C. It was dried for 4 hours and then calcined at 400 ° C. for 6 hours. Thus, an Fe ion exchange zeolite catalyst was obtained. The Fe loading of this catalyst was 2.0 wt%.

実施例2
Co/ゼオライト触媒
市販のMFI型ゼオライト4gを0.01MのCo(NO水溶液500mlに80℃で18時間懸濁させた後、これを濾過、洗浄し、120℃で12時間乾燥し、さらに500℃で4時間焼成した。こうしてCoイオン交換ゼオライト触媒を得た。この触媒のCo担持量は2.31wt%であった。
Example 2
Co / zeolite catalyst 4 g of commercially available MFI type zeolite was suspended in 500 ml of 0.01 M Co (NO 3 ) 2 aqueous solution at 80 ° C. for 18 hours, then filtered, washed, and dried at 120 ° C. for 12 hours. Furthermore, it baked at 500 degreeC for 4 hours. In this way, a Co ion exchange zeolite catalyst was obtained. The amount of Co supported by this catalyst was 2.31 wt%.

実施例3
Mn/ゼオライト触媒
市販のMFI型ゼオライト4gを0.01MのMn(CHCOO)水溶液500m1に80℃で18時間懸濁させた後、これを濾過、洗浄し、120℃で12時間乾燥し、さらに500℃で4時間焼成した。こうしてMnイオン交換ゼオライト触媒を得た。この触媒のMn担持量は4.0wt%であった。
Example 3
Mn / zeolite catalyst 4 g of commercially available MFI-type zeolite was suspended in 500 ml of 0.01M Mn (CH 3 COO) 2 aqueous solution at 80 ° C. for 18 hours, then filtered, washed and dried at 120 ° C. for 12 hours. Further, it was calcined at 500 ° C. for 4 hours. In this way, a Mn ion exchange zeolite catalyst was obtained. The amount of Mn supported by this catalyst was 4.0 wt%.

比較例1
A1 4gを0.05MのFe(NO・9H0水溶液500mlに80℃で6時間懸濁させた後、これを濾過し、120℃で12時間乾燥し、さらに400℃で6時間焼成した。こうしてFe担持A1触媒を得た。この触媒のFe担持量は2.0wt%であった。
Comparative Example 1
A1 2 0 3 4g of 0.05M of Fe (NO 3) 3 · 9H 2 0 was suspended 6 hours at 80 ° C. in an aqueous solution 500 ml, which was filtered, dried at 120 ° C. 12 hours, further 400 ° C. For 6 hours. Thus, an Fe-supported A1 2 0 3 catalyst was obtained. The Fe loading of this catalyst was 2.0 wt%.

比較例2
市販のβ型ゼオライト4gを0.01MのCo(NO水溶液500m1に80℃で18時間懸濁させた後、これを濾過、洗浄し、120℃で12時間乾燥し、さらに500℃で4時間焼成した。こうしてCoイオン交換ゼオライト触媒を得た。この触媒のCo担持量は3.8wt%であった。
Comparative Example 2
After suspending 4 g of commercially available β-type zeolite in 500 ml of 0.01 M Co (NO 3 ) 2 aqueous solution at 80 ° C. for 18 hours, this was filtered, washed, dried at 120 ° C. for 12 hours, and further at 500 ° C. Baked for 4 hours. In this way, a Co ion exchange zeolite catalyst was obtained. The amount of Co supported by this catalyst was 3.8 wt%.

触媒性能評価
上記で得られた触媒をプレス成形後に粉砕し、メッシュサイズ28から14に整粒し、得られた粒状触媒を、図2に示す試験装置を用いる評価試験に供した。図2中,(1)は脱硝反応器、(2)は蒸発器、(3)はポンプ、(4)は水槽である。試験条件を表1に示す。

Figure 2013099715
Evaluation of Catalyst Performance The catalyst obtained above was pulverized after press molding and sized to a mesh size of 28 to 14, and the obtained granular catalyst was subjected to an evaluation test using the test apparatus shown in FIG. In FIG. 2, (1) is a denitration reactor, (2) is an evaporator, (3) is a pump, and (4) is a water tank. Table 1 shows the test conditions.
Figure 2013099715

表2に試験結果を示す。出口でNOが生じているのは、平衡の関係からである。供給ガス中の空気中の酸素によってNOがNOに酸化される。触媒量を増すことで脱硝率を向上させることができる。

Figure 2013099715
Table 2 shows the test results. The reason why NO 2 is generated at the outlet is due to the equilibrium relationship. NO is oxidized to NO 2 by oxygen in the air in the supply gas. The denitration rate can be improved by increasing the amount of catalyst.
Figure 2013099715

実施例においてはいずれの触媒においても比較例より高い脱硝率が得られており、本発明の触媒が反応温度250℃で高い触媒性能を有することがわかる。   In the examples, the denitration rate higher than that of the comparative example was obtained in any of the catalysts, indicating that the catalyst of the present invention has a high catalytic performance at a reaction temperature of 250 ° C.

Claims (3)

MFI型ゼオライトをFe、CoおよびMnのうちの少なくとも一種でイオン交換させたことを特徴とする、燃焼排ガス中の窒素酸化物の除去触媒。   A catalyst for removing nitrogen oxides in combustion exhaust gas, wherein MFI-type zeolite is ion-exchanged with at least one of Fe, Co, and Mn. 請求項1記載の触媒に排ガスを温度200〜350℃の範囲で接触させることを特徴とする、排ガス中の窒素酸化物の除去方法。   A method for removing nitrogen oxides in exhaust gas, wherein the exhaust gas is brought into contact with the catalyst according to claim 1 at a temperature of 200 to 350 ° C. 触媒に排ガスを温度220〜320℃の範囲で接触させることを特徴とする請求項2記載の方法。   The method according to claim 2, wherein the exhaust gas is brought into contact with the catalyst at a temperature of 220 to 320 ° C.
JP2011244504A 2011-11-08 2011-11-08 Catalyst for removing nitrogen oxide contained in combustion exhaust gas, method for removing nitrogen oxide using the catalyst Pending JP2013099715A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011244504A JP2013099715A (en) 2011-11-08 2011-11-08 Catalyst for removing nitrogen oxide contained in combustion exhaust gas, method for removing nitrogen oxide using the catalyst
PCT/JP2012/078911 WO2013069713A1 (en) 2011-11-08 2012-11-08 Catalyst for removing nitrogen oxide contained in combustion exhaust gas, and method for removing nitrogen oxide using said catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244504A JP2013099715A (en) 2011-11-08 2011-11-08 Catalyst for removing nitrogen oxide contained in combustion exhaust gas, method for removing nitrogen oxide using the catalyst

Publications (1)

Publication Number Publication Date
JP2013099715A true JP2013099715A (en) 2013-05-23

Family

ID=48290083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244504A Pending JP2013099715A (en) 2011-11-08 2011-11-08 Catalyst for removing nitrogen oxide contained in combustion exhaust gas, method for removing nitrogen oxide using the catalyst

Country Status (2)

Country Link
JP (1) JP2013099715A (en)
WO (1) WO2013069713A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6964479B2 (en) 2017-10-03 2021-11-10 エヌ・イーケムキャット株式会社 Rare earth element skeleton-substituted zeolite and its production method, NOx adsorbent using them, selective reduction catalyst and automobile exhaust gas catalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106300B2 (en) * 1989-12-08 1995-11-15 財団法人産業創造研究所 Method for removing nitrogen oxides in combustion exhaust gas
US5260043A (en) * 1991-08-01 1993-11-09 Air Products And Chemicals, Inc. Catalytic reduction of NOx and carbon monoxide using methane in the presence of oxygen
JPH08294629A (en) * 1995-04-27 1996-11-12 Osaka Gas Co Ltd Preparation of catalyst for reducing nitrogen oxide
DE10112444A1 (en) * 2001-03-13 2002-10-02 Krupp Uhde Gmbh Reducing the nitrogen oxide and nitrous oxide content of a gas comprises adding a gaseous reducing agent and contacting the gas with an iron-loaded zeolite catalyst

Also Published As

Publication number Publication date
WO2013069713A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
RU2623356C2 (en) Method and device for ice exhaust gas purification
JP7270157B2 (en) Ship exhaust gas purification device and method
JP2801423B2 (en) Nitrogen oxide purification catalyst
JP5071193B2 (en) SCR catalyst and nitrogen oxide purification method using the same
WO2012133764A1 (en) Exhaust gas purification method and device
WO2013069713A1 (en) Catalyst for removing nitrogen oxide contained in combustion exhaust gas, and method for removing nitrogen oxide using said catalyst
JP7181188B2 (en) Method for regenerating deNOX catalyst
JP3276678B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
WO2014119067A1 (en) Catalyst for decomposing ammonia
JP2019534782A (en) Method for reducing nitrogen oxide compounds
KR102363752B1 (en) Combustion exhaust gas purifying catalyst and method for purifying combustion exhaust gas
JP2004074139A (en) Exhaust gas purification catalyst and purification method
WO2014087910A1 (en) Catalyst for combustion exhaust gas purification and denitration purification method using this catalyst
JP2012045521A (en) Exhaust gas treatment apparatus
JP4948331B2 (en) Ship exhaust gas treatment method
JPH06126184A (en) Catalyst for purifying exhaust gas and purifying method for exhaust gas by using it
JP2010000481A (en) Catalyst for removing nitrogen oxide and apparatus for removing nitrogen oxide
JP3579745B2 (en) Exhaust gas purification method
JP3366342B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH06154602A (en) Catalyst for removal of nitrogen oxide
JP2009056459A (en) Catalyst and method for cleaning exhaust gas
JPH06254352A (en) Method for purifying waste combustion gas and catalyst used in this method
Heylen New adsorptive, catalytic and photocatalytic approaches for elimination of NOx and NH3 from a gas stream