WO2013190870A1 - Bearing beam - Google Patents

Bearing beam Download PDF

Info

Publication number
WO2013190870A1
WO2013190870A1 PCT/JP2013/056899 JP2013056899W WO2013190870A1 WO 2013190870 A1 WO2013190870 A1 WO 2013190870A1 JP 2013056899 W JP2013056899 W JP 2013056899W WO 2013190870 A1 WO2013190870 A1 WO 2013190870A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing cap
bearing
aluminum alloy
bearing beam
protrusion
Prior art date
Application number
PCT/JP2013/056899
Other languages
French (fr)
Japanese (ja)
Inventor
増田 真也
渉 荒井
篤 橋本
匡哉 中島
洋孝 赤松
裕聡 星川
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013190870A1 publication Critical patent/WO2013190870A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/04Casting in, on, or around objects which form part of the product for joining parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0043Arrangements of mechanical drive elements
    • F02F7/0053Crankshaft bearings fitted in the crankcase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/08Attachment of brasses, bushes or linings to the bearing housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0043Arrangements of mechanical drive elements
    • F02F7/0053Crankshaft bearings fitted in the crankcase
    • F02F2007/0056Crankshaft bearings fitted in the crankcase using bearing beams, i.e. bearings interconnected by a beam or multiple beams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines

Definitions

  • the present invention relates to a bearing beam that supports a crankshaft of an internal combustion engine.
  • a bearing beam in which a bearing cap is cast into an aluminum beam is known in order to suppress the collapse of the bearing cap that supports the crankshaft of the internal combustion engine and to prevent the cylinder block from being bent or twisted (see JP3993988B). .
  • An object of the present invention is to provide a bearing beam in which a journal receiving portion is not easily deformed.
  • the bearing beam according to the present invention is formed by casting a bearing cap with a metal having a thermal contraction rate larger than that of a metal bearing cap.
  • the bearing cap includes a journal receiving portion that comes into contact with the crankshaft, and a protrusion that protrudes from a surface orthogonal to the axial direction of the crankshaft and that is exposed so as to be visible even after being cast. To do.
  • FIG. 1 is a perspective view showing a bearing beam in the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a problem that occurs in a conventional bearing beam.
  • FIG. 3 is a structural diagram showing the bearing cap in the first embodiment.
  • FIG. 4A shows a bearing cap cast into the beam.
  • 4B is a diagram showing a cross section 4B-4B of FIG. 4A.
  • FIG. 5A is a diagram for explaining the function and effect of the protrusion of the bearing cap.
  • FIG. 5B is a diagram illustrating a bearing cap without a protrusion.
  • FIG. 6 is a structural diagram showing a bearing cap in the second embodiment.
  • FIG. 7 is a view showing a bearing cap cast into the beam.
  • FIG. 8 is an external view relating to a bearing cap in the third embodiment.
  • FIG. 9 is an external view of a bearing cap according to the fourth embodiment.
  • FIG. 10 is an external view relating to a bearing cap in the fifth embodiment.
  • FIG. 1 is a perspective view showing a bearing beam in the first embodiment of the present invention.
  • the bearing beam 1 is formed by casting a bearing cap 20 on a ladder-shaped beam 10.
  • the beam 10 is made of a metal having a thermal contraction rate larger than that of the bearing cap 20, and is made of, for example, aluminum or an aluminum alloy.
  • the journal receiving portion 22 of the bearing cap 20 is concave in a semicircular shape when viewed from the front, and constitutes a main bearing that supports the crankshaft together with a part of the lower end of a cylinder block (not shown).
  • the bearing cap 20 is made of metal, for example, iron or iron alloy.
  • the bearing cap 20 is provided with a protrusion 23 integrally with the journal receiving portion 22.
  • the protrusion 23 is formed so as to be visible on a surface orthogonal to the axial direction of the crankshaft.
  • the other part of the bearing cap 20 is encased in the beam 10.
  • the bearing cap 20 is provided with a bearing beam 1 and a fastening hole 25a and a fastening hole 25b for the cylinder block.
  • a crankshaft bearing surface 22a is formed between the fastening hole 25a and the fastening hole 25b.
  • FIG. 2 is a diagram for explaining a problem that occurs in a conventional bearing beam.
  • FIGS. 2A to 2D are diagrams showing states of the bearing cap 90 used for the bearing beam after casting, after processing, during actual operation, and after deterioration.
  • the shape of the bearing cap 90 is greatly deformed for easy understanding.
  • the bearing cap 90 is not provided with the protrusion 23 shown in FIG.
  • the bearing cap 90 is cast by pouring a molten aluminum alloy around the bearing cap 90. As the poured molten metal cools and hardens, stress is generated inside and the stress remains. In particular, the temperature of the molten metal at the bottom of the bearing cap 90 is less likely to drop than other portions. After the molten metal has cooled and solidified, stress directed toward the center tends to remain in the aluminum alloy as indicated by the dashed arrows in FIG. Due to such residual stress, an aluminum alloy formed on the side surface 90 a and the side surface 90 b of the bearing cap 90 is pulled to the center of the bearing cap 90.
  • the side surface 90a and the side surface 90b of the bearing cap 90 receive a pressing force as indicated by the thick arrow in FIG. 2A from the aluminum alloy 10, and the journal of the bearing cap 90 is generated by this pressing force.
  • the receiving portion is opened and the entire bearing cap 90 is deformed into a fan shape.
  • the bearing cap 90 is fastened to the cylinder block 2 by the fastening bolt 3 as shown in FIG. 2B in a state where the bearing cap 90 is subjected to the urging force caused by the aluminum alloy 10, and is connected to the journal receiving portion of the bearing cap 90 with a perfect circle. Processing is applied.
  • the crankshaft 4 is assembled to the journal receiving portion of the cylinder block 2 and the bearing beam 1.
  • the aluminum alloy 10 gradually plastically deforms as time elapses due to the influence of the force received from the crankshaft 4 and the heat generated by combustion of the engine. Residual stress generated in the aluminum alloy 10 is released. Such plastic deformation is commonly referred to as “slip”.
  • the bearing cap 90 is released from the tightening force received from the aluminum alloy 10 and tries to return to its original shape, and is deformed in a direction opposite to the direction of the tightening force received during the circular processing. .
  • the journal receiving portion which is a perfect circle is deformed so as to close inward. For this reason, seizure with the crankshaft 4 is likely to occur. Therefore, in the present embodiment, the projection 23 is provided on the bearing cap in order to reduce the residual stress generated in the aluminum alloy 10.
  • the bearing cap provided with the protrusion 23 will be described with reference to the drawings.
  • FIG. 3 is a view showing the structure of the bearing cap 20 in the first embodiment.
  • the bearing cap 20 is a cast-in part that supports the crankshaft.
  • the bearing cap 20 includes a main body portion 21, a journal receiving portion 22, a protruding portion 23, and through space portions 24a to 24d.
  • the main body 21 is a part that is provided in order to improve adhesion with the aluminum alloy 10 and is encased in the aluminum alloy 10.
  • the journal receiving portion 22 supports the clan shaft by the bearing surface 22a.
  • the journal receiving portion 22 is formed so as to be exposed from the beam 10 as shown in FIG.
  • the protrusion 23 divides the aluminum alloy 10 formed around the bearing cap 20.
  • the protrusion 23 is provided on the bottom side of the main body 21.
  • the protrusion 23 is formed to protrude from the surface 21a of the main body 21 that is orthogonal to the axial direction of the crankshaft. As shown in FIG. 1, the protrusion 23 is formed so as to be visible even after being cast into the aluminum alloy 10.
  • the protrusion 23 is formed from the bottom of the bearing surface 22 a of the journal receiver 22 to the bottom 21 e of the main body 21. After the bearing cap 20 is cast, the aluminum alloy 10 formed around the main body 21 is divided by the protrusion 23.
  • the through space portions 24 a to 24 d are holes that are formed in the main body portion 21.
  • four through space portions 24 a to 24 d are formed in the main body portion 21 symmetrically with respect to the protrusion 23.
  • the aluminum alloy 10 is present in the through spaces 24a to 24d. That is, the aluminum alloy 10 formed on the surface 21a of the main body 21 and the aluminum alloy 10 formed on the surface opposite to the surface 21a are combined. For this reason, the fall of the adhesiveness of the aluminum alloy 10 and the bearing cap 20 accompanying the aluminum alloy 10 being parted by the projection part 23 can be compensated. Further, since the through space portions 24a to 24d are formed at the portions where the force received from the crankshaft is weak, the bearing beam 1 itself can be lightened while maintaining the strength of the bearing cap 20.
  • FIG. 4A and 4B are diagrams showing the bearing cap 20 after being cast into the aluminum alloy 10.
  • FIG. 4A is a front view of the bearing cap 20.
  • 4B is a cross-sectional view of the bearing cap 20 taken along 4B-4B.
  • journal receiving portion 22 and the protruding portion 23 are exposed from the aluminum alloy 10 and are visible even after the bearing cap 20 is cast into the aluminum alloy 10.
  • the journal receiving portion 22 and the protruding portion 23 are integrally formed from the bearing surface 22a to the bottom surface 21e of the bearing cap 20.
  • the protrusion 23 is provided not only on the front surface 21a orthogonal to the axial direction of the crankshaft but also on the back surface 21b.
  • the aluminum alloy 10 is divided into left and right portions by the protrusions 23 provided on both the front surface 21a and the back surface 21b. Therefore, the residual stress of the aluminum alloy 10 is reduced, and the tension force with which the left side surface 21c and the right side surface 21d of the bearing cap 20 are pulled toward the center is weakened.
  • FIG. 5A and 5B are views for explaining the residual stress of the aluminum alloy 10 formed around the bearing cap 20.
  • FIG. 5A is a diagram illustrating the residual stress generated in the aluminum alloy 10 divided by the protrusion 23.
  • FIG. 5B is a diagram showing the residual stress of the aluminum alloy 10 formed around the bearing cap 90 without the protrusion 23.
  • the aluminum alloy 10 is divided into two at the protrusion 23.
  • the separated aluminum alloy 10 has a smaller residual stress than the aluminum alloy shown in FIG. 5B.
  • the bearing cap 20 has a journal receiving portion 22 that abuts against the crankshaft and a surface 21a perpendicular to the axial direction of the crankshaft and is cast and cast. A protrusion 23 that is exposed so as to be visible is formed.
  • the bearing cap 20 is formed by casting with an aluminum alloy 10 having a thermal contraction rate larger than that of the bearing cap 20.
  • the aluminum alloy 10 formed around the bearing cap 20 is divided in the middle by the protrusion 23, the residual stress generated in the aluminum alloy 10 can be reduced. Therefore, in the bearing beam 1, the deformation of the journal receiving portion 22 due to the residual stress of the aluminum alloy 10 can be suppressed to be small, and as a result, occurrence of seizure of the crankshaft can be suppressed.
  • deformation of the journal receiving portion 22 can be suppressed by forming the bearing cap 20 from iron or iron alloy.
  • the bearing beam 1 can be lightened by using aluminum or aluminum alloy as a metal which casts the bearing cap 20. Therefore, it is possible to reduce the weight of the bearing beam 1 itself while maintaining the strength of the journal receiving portion 22.
  • the protrusion 23 of the bearing cap 20 is formed from the journal receiving portion 22 to the bottom surface 21e.
  • the protrusion 23 of the bearing cap 20 is formed from the journal receiving portion 22 to the bottom surface 21e.
  • through space portions 24a to 24d that are formed in the bearing cap 20 are formed. For this reason, after the bearing cap 20 is cast into the aluminum alloy 10, the aluminum alloy 10 is also present in the through spaces 24a to 24d of the bearing cap 20.
  • the penetration spaces 24a to 24d can improve the adhesion of the aluminum alloy 10 divided by the protrusion 23.
  • FIG. 6 is a view showing the structure of the bearing cap 201 in the second embodiment.
  • the bearing cap 201 is provided with a protruding portion 231 and penetrating space portions 241a to 241c at positions different from the protruding portion 23 and the penetrating space portions 24a to 24d shown in FIG.
  • the same components as those shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the through space portions 241 a to 241 c are provided below the journal receiving portion 22.
  • the through-space portions 241a to 241c are formed by being thinned at portions where the force received from the crankshaft is weak.
  • the through space 241 a is formed below the bottom of the journal receiving portion 22.
  • the through space 241b is formed between the through space 241a and the fastening hole 25a.
  • the through space portion 241c is formed between the through space portion 241a and the fastening hole 25b.
  • the protrusion 231 is provided on the bottom surface side of the bearing cap 201 with respect to the through space 241a.
  • the protruding portion 231 is formed at the lower end portion from the bottom surface 21e of the bearing cap 201 to the through space portion 241a.
  • FIG. 7 is an external view showing the bearing beam 1 in which the bearing cap 201 is cast.
  • a protrusion 231 provided at the lower end of the bearing cap 201 is exposed.
  • the aluminum alloy 10 formed at the lower end portion of the bearing cap 201 is divided into the left and right by the protrusions 231, the residual stress generated in the aluminum alloy at the lower end portion of the bearing cap 201 is reduced.
  • a through space 241 a shown in FIG. 6 is provided between the journal receiving portion 22 and the protrusion 231 of the bearing cap 201. As described with reference to FIG. 6, the tension force applied to the bearing cap 201 is weakened by the aluminum alloy 10 formed in the through space 241a.
  • the bearing beam 1 is provided with an oil drain hole 29 provided through the aluminum alloy 10 existing in the through space 241a.
  • the oil drain hole 29 is, for example, a passage for returning oil leaked from the bearing beam 1 to the transmission to an oil pan provided under the bearing beam 1.
  • the oil drain hole 29 is opened using a cutting tool, it is not necessary to open the hole in the bearing cap 201. Therefore, the oil drain hole 29 can be easily provided. Furthermore, deterioration of the cutting tool can be reduced. Further, since the oil drain hole 29 is formed between the journal receiving portion 22 and the protrusion 231, the aluminum alloy 10 is divided by the oil drain hole 29, and the residual stress of the aluminum alloy 10 is further reduced. .
  • the bearing cap 201 is formed with the through space portions 241a to 241c being thinned, and the protruding portion 231 is provided on the bottom side of the through space portion 241a.
  • the aluminum alloy 10 formed on the bottom surface side of the bearing cap 201 is divided by the protrusions 231, the residual stress of the aluminum alloy 10 is reduced, and the tightening force received by the bearing cap 201 is also reduced.
  • the aluminum alloy 10 formed between the protruding portion 231 and the journal receiving portion 22 the residual stress is dispersed in the direction perpendicular to the pressing force by the aluminum alloy 10 formed in the through space portions 241a to 241c. As a result, the tension will be weakened.
  • the bearing cap 201 can be made lighter than in the first embodiment, the lighter bearing beam 1 can be realized.
  • the oil drain hole 29 is provided through the aluminum alloy 10 existing in the through space 241a.
  • the oil drain hole 29 can be easily provided by drilling a hole that passes through the through space portion 241 a formed of the aluminum alloy 10. Moreover, the deterioration of the blade can be reduced.
  • FIG. 8 is an external view of the bearing cap 202 according to the third embodiment.
  • the bearing cap 202 is provided with a protrusion 232 in the direction of the force received from the crankshaft.
  • FIG. 8A is a view showing the structure of the bearing cap 202.
  • FIG. 8B shows the bearing beam 1 in which the bearing cap 202 is cast into the aluminum alloy 10.
  • the bearing cap 202 is constructed on the assumption that it receives a force from the crankshaft in the piston stroke direction, as indicated by an arrow. For example, in a four-cylinder engine, a large force is applied in the piston stroke direction of the bearing cap 202 from the crankshaft.
  • a protrusion 232 extends in the piston stroke direction from the journal receiving portion 22 to the bottom surface 21e of the bearing cap 202.
  • a through space 242a is formed between the protrusion 232 and the fastening hole 25a.
  • a through space 242b is formed between the protrusion 232 and the fastening hole 25b.
  • the bearing beam 1 is provided with an oil drain hole 292a and an oil drain hole 292b so as to overlap the through space 242a.
  • An oil drain hole 292c and an oil drain hole 292d are provided so as to overlap the through space 242b.
  • the protrusion 232 extends in the direction of the force received from the crankshaft. For this reason, the strength of the bearing cap 202 with respect to the crankshaft can be improved. Therefore, the strength of the bearing cap 202 can be maintained while reducing the residual stress of the aluminum alloy 10 formed around the bearing cap 202.
  • FIG. 9 is an external view of the bearing cap 203 that receives force from the crankshaft in the diagonally right and diagonal directions with respect to the piston stroke direction.
  • the bearing cap 203 is used for the bearing beam 1 of a V6 engine, for example.
  • FIG. 9A shows the structure of the bearing cap 203.
  • FIG. 9B shows the bearing beam 1 in which the bearing cap 203 is cast in the aluminum alloy 10.
  • the bearing cap 203 is provided with a protrusion 233a obliquely rightward from the journal receiving portion 22 and a protrusion 233b obliquely leftward.
  • a through space 243a is formed between the protrusion 233a and the fastening hole 25a.
  • a through space 243b is formed between the protrusion 233a and the protrusion 233b.
  • a through space 243c is formed between the protrusion 233b and the fastening hole 25b.
  • the bearing beam 1 is provided with an oil drain hole 293a so as to overlap the through space 243a.
  • An oil drain hole 293b is provided so as to overlap the through space 243b.
  • an oil drain hole 293c and an oil drain hole 292d are provided so as to overlap the through space portion 243c.
  • the increase in the weight of the bearing cap 20 is minimized by the protrusion 233a extending diagonally to the right and the protrusion 233b extending obliquely to the left. Meanwhile, the strength of the crankshaft such as the V6 engine can be increased.
  • FIG. 10 is an external view of the bearing cap 204 that is suitable when the force received from the crankshaft is particularly large in the diagonally right direction.
  • FIG. 10A shows the structure of the bearing cap 204.
  • FIG. 10B is a view showing the bearing beam 1 in which the bearing cap 204 is cast in the aluminum alloy 10.
  • the bearing cap 204 is provided with a protrusion 234 obliquely to the right from the journal receiving portion 22.
  • a through space 244a is formed between the protrusion 234 and the fastening hole 25a.
  • a through space 244b is formed between the protrusion 234 and the fastening hole 25b.
  • the bearing beam 1 is provided with an oil drain hole 294a and an oil drain hole 294b so as to overlap the through space 244a.
  • An oil drain hole 294c is provided so as to overlap the through space 244b.
  • the strength against the crankshaft is effectively improved while reducing the residual stress of the aluminum alloy 10. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

This bearing beam is formed by casting bearing caps into metal having a higher rate of thermal contraction than that of the metal bearing caps. The bearing cap comprises a journal-receiving part which is in contact with the crankshaft, and a protruding part which protrudes from the surface orthogonal to the axial direction of the crankshaft and is exposed to enable visual inspection even after casting.

Description

ベアリングビームBearing beam
 この発明は、内燃機関エンジンのクランクシャフトを支持するベアリングビームに関する。 The present invention relates to a bearing beam that supports a crankshaft of an internal combustion engine.
 内燃エンジンのクランクシャフトを支持するベアリングキャップの倒れを抑制するとともにシリンダーブロックの曲げやねじれを防止するために、ベアリングキャップをアルミニウム製のビームに鋳込んだベアリングビームが知られている(JP3939788B参照)。 A bearing beam in which a bearing cap is cast into an aluminum beam is known in order to suppress the collapse of the bearing cap that supports the crankshaft of the internal combustion engine and to prevent the cylinder block from being bent or twisted (see JP3993988B). .
 しかしながら、上述の先行技術では、内燃エンジンの実動中にベアリングのジャーナル受け部が徐々に変形し、次第にフリクションが増大して焼き付く可能性があることが発明者によって知見された。 However, in the above-described prior art, the inventors have found that there is a possibility that the journal receiving portion of the bearing is gradually deformed during actual operation of the internal combustion engine, and the friction gradually increases and seizes.
 本発明は、このような従来の問題点に着目してなされた。本発明の目的は、ジャーナル受け部が変形しにくいベアリングビームを提供することである。 The present invention was made paying attention to such conventional problems. An object of the present invention is to provide a bearing beam in which a journal receiving portion is not easily deformed.
 本発明によるベアリングビームは、金属製のベアリングキャップよりも熱収縮率が大きな金属でベアリングキャップを鋳込んで形成される。ベアリングキャップは、クランクシャフトに当接するジャーナル受け部と、クランクシャフトの軸方向と直交する面から突出し、鋳込まれた後であっても目視可能に露出する突起部と、を含むことを特徴とする。 The bearing beam according to the present invention is formed by casting a bearing cap with a metal having a thermal contraction rate larger than that of a metal bearing cap. The bearing cap includes a journal receiving portion that comes into contact with the crankshaft, and a protrusion that protrudes from a surface orthogonal to the axial direction of the crankshaft and that is exposed so as to be visible even after being cast. To do.
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。 Embodiments of the present invention and advantages of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、本発明の第1実施形態におけるベアリングビームを示す斜視図である。FIG. 1 is a perspective view showing a bearing beam in the first embodiment of the present invention. 図2は、コンベンショナルなベアリングビームに生じる課題を説明するための図である。FIG. 2 is a diagram for explaining a problem that occurs in a conventional bearing beam. 図3は、第1実施形態におけるベアリングキャップを示す構造図である。FIG. 3 is a structural diagram showing the bearing cap in the first embodiment. 図4Aは、ビームに鋳込まれたベアリングキャップを示す図である。FIG. 4A shows a bearing cap cast into the beam. 図4Bは、図4Aの4B-4B断面を示す図である。4B is a diagram showing a cross section 4B-4B of FIG. 4A. 図5Aは、ベアリングキャップの突起部による作用効果を説明するための図である。FIG. 5A is a diagram for explaining the function and effect of the protrusion of the bearing cap. 図5Bは、突起部が設けられていないベアリングキャップを示す図である。FIG. 5B is a diagram illustrating a bearing cap without a protrusion. 図6は、第2実施形態におけるベアリングキャップを示す構造図である。FIG. 6 is a structural diagram showing a bearing cap in the second embodiment. 図7は、ビームに鋳込まれたベアリングキャップを示す図である。FIG. 7 is a view showing a bearing cap cast into the beam. 図8は、第3実施形態におけるベアリングキャップに関する外観図である。FIG. 8 is an external view relating to a bearing cap in the third embodiment. 図9は、第4実施形態におけるベアリングキャップに関する外観図である。FIG. 9 is an external view of a bearing cap according to the fourth embodiment. 図10は、第5実施形態におけるベアリングキャップに関する外観図である。FIG. 10 is an external view relating to a bearing cap in the fifth embodiment.
 (第1実施形態)
 図1は、本発明の第1実施形態におけるベアリングビームを示す斜視図である。
(First embodiment)
FIG. 1 is a perspective view showing a bearing beam in the first embodiment of the present invention.
 ベアリングビーム1は、ラダー状のビーム10にベアリングキャップ20が鋳込まれて形成されている。ビーム10は、ベアリングキャップ20よりも熱収縮率が大きな金属製であり、例えばアルミニウム製又はアルミニウム合金製である。 The bearing beam 1 is formed by casting a bearing cap 20 on a ladder-shaped beam 10. The beam 10 is made of a metal having a thermal contraction rate larger than that of the bearing cap 20, and is made of, for example, aluminum or an aluminum alloy.
 ベアリングキャップ20のジャーナル受け部22は、正面から見たときに半円状に凹であり、不図示のシリンダーブロックの下端の一部とともに、クランクシャフトを支持する主軸受を構成する。ベアリングキャップ20は、金属製であり、例えば鉄製又は鉄合金製である。 The journal receiving portion 22 of the bearing cap 20 is concave in a semicircular shape when viewed from the front, and constitutes a main bearing that supports the crankshaft together with a part of the lower end of a cylinder block (not shown). The bearing cap 20 is made of metal, for example, iron or iron alloy.
 ベアリングキャップ20には、ジャーナル受け部22と一体的に突起部23が設けられている。突起部23は、クランクシャフトの軸方向と直交する面に目視可能に露出するように形成されている。ベアリングキャップ20の他の部分は、ビーム10に包み込まれている。なお、ベアリングキャップ20には、ベアリングビーム1とシリンダーブロックの締結孔25a及び締結孔25bが設けられている。締結孔25aと締結孔25bの間にクランクシャフトの軸受け面22aが形成される。 The bearing cap 20 is provided with a protrusion 23 integrally with the journal receiving portion 22. The protrusion 23 is formed so as to be visible on a surface orthogonal to the axial direction of the crankshaft. The other part of the bearing cap 20 is encased in the beam 10. The bearing cap 20 is provided with a bearing beam 1 and a fastening hole 25a and a fastening hole 25b for the cylinder block. A crankshaft bearing surface 22a is formed between the fastening hole 25a and the fastening hole 25b.
 図2は、コンベンショナルなベアリングビームに生じる課題について説明する図である。図2(a)~図2(d)は、ベアリングビームに用いられるベアリングキャップ90の鋳造時、加工後、実動時、劣化後の各状態を示す図である。図2(a)~図2(d)では、理解を容易にするために、ベアリングキャップ90の形状が大幅にデフォルメされている。 FIG. 2 is a diagram for explaining a problem that occurs in a conventional bearing beam. FIGS. 2A to 2D are diagrams showing states of the bearing cap 90 used for the bearing beam after casting, after processing, during actual operation, and after deterioration. In FIGS. 2A to 2D, the shape of the bearing cap 90 is greatly deformed for easy understanding.
 図2(a)に示すように、ベアリングキャップ90には、図1に示した突起部23が設けられていない。このようなベアリングキャップ90の周囲にアルミニウム合金の溶湯を注湯することで、ベアリングキャップ90を鋳込む。注湯した溶湯が冷え固まるにつれて、内部に応力が発生して、その応力が残留する。特にベアリングキャップ90の底部の溶湯は、他の部分よりも温度が下がりにくい。溶湯が冷え固まった後には、アルミニウム合金の内部に、図2(a)の破線の矢印で示したように中心方向に向かう応力が残留しやすい。このような残留応力によって、ベアリングキャップ90の側面90aと側面90bに形成されたアルミニウム合金同士が互いにベアリングキャップ90の中心に引っ張られる緊迫力が生じることになる。このため、ベアリングキャップ90の側面90aと側面90bでは、アルミニウム合金10から、図2(a)の太線の矢印で示したような緊迫力を受けることになり、この緊迫力によりベアリングキャップ90のジャーナル受け部が開いてベアリングキャップ90の全体が扇形に変形する。 As shown in FIG. 2 (a), the bearing cap 90 is not provided with the protrusion 23 shown in FIG. The bearing cap 90 is cast by pouring a molten aluminum alloy around the bearing cap 90. As the poured molten metal cools and hardens, stress is generated inside and the stress remains. In particular, the temperature of the molten metal at the bottom of the bearing cap 90 is less likely to drop than other portions. After the molten metal has cooled and solidified, stress directed toward the center tends to remain in the aluminum alloy as indicated by the dashed arrows in FIG. Due to such residual stress, an aluminum alloy formed on the side surface 90 a and the side surface 90 b of the bearing cap 90 is pulled to the center of the bearing cap 90. For this reason, the side surface 90a and the side surface 90b of the bearing cap 90 receive a pressing force as indicated by the thick arrow in FIG. 2A from the aluminum alloy 10, and the journal of the bearing cap 90 is generated by this pressing force. The receiving portion is opened and the entire bearing cap 90 is deformed into a fan shape.
 ベアリングキャップ90は、アルミニウム合金10に起因する緊迫力を受けた状態で、図2(b)に示すように、締結ボルト3によりシリンダーブロック2と締結され、ベアリングキャップ90のジャーナル受け部に真円加工が施される。 The bearing cap 90 is fastened to the cylinder block 2 by the fastening bolt 3 as shown in FIG. 2B in a state where the bearing cap 90 is subjected to the urging force caused by the aluminum alloy 10, and is connected to the journal receiving portion of the bearing cap 90 with a perfect circle. Processing is applied.
 その後、シリンダーブロック2とベアリングビーム1のジャーナル受け部にクランクシャフト4が組み付けられる。エンジンの実動中には、図2(c)に示すように、クランクシャフト4から受ける力やエンジンの燃焼による熱などの影響で、時間が経過するにつれてアルミニウム合金10が徐々に塑性変形し、アルミニウム合金10に生じていた残留応力が解放される。このような塑性変形は、俗に「へたり」と称される。その結果、ベアリングキャップ90は、アルミニウム合金10から受けていた緊迫力から解放され、本来の形状に戻ろうとし、真円加工時に受けていた緊迫力の向きと反対の向きに変形することになる。 After that, the crankshaft 4 is assembled to the journal receiving portion of the cylinder block 2 and the bearing beam 1. During actual operation of the engine, as shown in FIG. 2 (c), the aluminum alloy 10 gradually plastically deforms as time elapses due to the influence of the force received from the crankshaft 4 and the heat generated by combustion of the engine. Residual stress generated in the aluminum alloy 10 is released. Such plastic deformation is commonly referred to as “slip”. As a result, the bearing cap 90 is released from the tightening force received from the aluminum alloy 10 and tries to return to its original shape, and is deformed in a direction opposite to the direction of the tightening force received during the circular processing. .
 具体的には、図2(d)に示すように、ベアリングキャップ90が劣化した後では、真円であったジャーナル受け部が内側に閉じるように変形してしまう。このため、クランクシャフト4との焼き付きが発生しやすくなってしまう。そこで本実施形態では、アルミニウム合金10に生じる残留応力を低減するために、ベアリングキャップに突起部23が設けられている。以下、突起部23を設けたベアリングキャップについて図面を参照して説明する。 Specifically, as shown in FIG. 2D, after the bearing cap 90 is deteriorated, the journal receiving portion which is a perfect circle is deformed so as to close inward. For this reason, seizure with the crankshaft 4 is likely to occur. Therefore, in the present embodiment, the projection 23 is provided on the bearing cap in order to reduce the residual stress generated in the aluminum alloy 10. Hereinafter, the bearing cap provided with the protrusion 23 will be described with reference to the drawings.
 図3は、第1実施形態におけるベアリングキャップ20の構造を示す図である。 FIG. 3 is a view showing the structure of the bearing cap 20 in the first embodiment.
 ベアリングキャップ20は、クランクシャフトを支持する鋳込み部品である。ベアリングキャップ20は、本体部21と、ジャーナル受け部22と、突起部23と、貫通空間部24a~24dと、を有する。 The bearing cap 20 is a cast-in part that supports the crankshaft. The bearing cap 20 includes a main body portion 21, a journal receiving portion 22, a protruding portion 23, and through space portions 24a to 24d.
 本体部21は、アルミニウム合金10と密着性を高めるために設けられ、アルミニウム合金10に包み込まれる部位である。 The main body 21 is a part that is provided in order to improve adhesion with the aluminum alloy 10 and is encased in the aluminum alloy 10.
 ジャーナル受け部22は、軸受け面22aでクランシャフトを支持する。ジャーナル受け部22は、例えば、図1に示したようにビーム10から露出するように形成される。 The journal receiving portion 22 supports the clan shaft by the bearing surface 22a. The journal receiving portion 22 is formed so as to be exposed from the beam 10 as shown in FIG.
 突起部23は、ベアリングキャップ20の周囲に形成されるアルミニウム合金10を分断するものである。突起部23は、本体部21の底面側に設けられる。突起部23は、クランクシャフトの軸方向と直交する本体部21の表面21aから突出して形成される。突起部23は、図1に示したように、アルミニウム合金10に鋳込まれた後であっても目視可能に露出するように形成される。 The protrusion 23 divides the aluminum alloy 10 formed around the bearing cap 20. The protrusion 23 is provided on the bottom side of the main body 21. The protrusion 23 is formed to protrude from the surface 21a of the main body 21 that is orthogonal to the axial direction of the crankshaft. As shown in FIG. 1, the protrusion 23 is formed so as to be visible even after being cast into the aluminum alloy 10.
 本実施形態では、突起部23は、ジャーナル受け部22の軸受け面22aの底部から本体部21の底面21eにかけて形成される。ベアリングキャップ20が鋳込まれた後には、本体部21の周囲に形成されるアルミニウム合金10は、突起部23により分断されることになる。 In the present embodiment, the protrusion 23 is formed from the bottom of the bearing surface 22 a of the journal receiver 22 to the bottom 21 e of the main body 21. After the bearing cap 20 is cast, the aluminum alloy 10 formed around the main body 21 is divided by the protrusion 23.
 貫通空間部24a~24dは、本体部21において肉抜き形成される孔である。本実施形態では、4つの貫通空間部24a~24dが、突起部23を挟んで左右対称に本体部21に形成されている。 The through space portions 24 a to 24 d are holes that are formed in the main body portion 21. In the present embodiment, four through space portions 24 a to 24 d are formed in the main body portion 21 symmetrically with respect to the protrusion 23.
 ベアリングキャップ20が鋳込まれた後には、貫通空間部24a~24dにアルミニウム合金10が存在することになる。つまり、本体部21の表面21aに形成されるアルミニウム合金10と、表面21aに対して反対の面に形成されるアルミニウム合金10と、が結合される。このため、アルミニウム合金10が突起部23で分断されることに伴うアルミニウム合金10とベアリングキャップ20の密着性の低下を補うことができる。また、貫通空間部24a~24dは、クランクシャフトから受ける力の弱い箇所に肉抜き形成されるので、ベアリングキャップ20の強度を維持しつつ、ベアリングビーム1自体を軽くすることができる。 After the bearing cap 20 is cast, the aluminum alloy 10 is present in the through spaces 24a to 24d. That is, the aluminum alloy 10 formed on the surface 21a of the main body 21 and the aluminum alloy 10 formed on the surface opposite to the surface 21a are combined. For this reason, the fall of the adhesiveness of the aluminum alloy 10 and the bearing cap 20 accompanying the aluminum alloy 10 being parted by the projection part 23 can be compensated. Further, since the through space portions 24a to 24d are formed at the portions where the force received from the crankshaft is weak, the bearing beam 1 itself can be lightened while maintaining the strength of the bearing cap 20.
 図4A及び図4Bは、アルミニウム合金10に鋳込まれた後のベアリングキャップ20を示す図である。図4Aは、ベアリングキャップ20を正面から見た図である。図4Bは、ベアリングキャップ20の4B-4B断面図である。 4A and 4B are diagrams showing the bearing cap 20 after being cast into the aluminum alloy 10. FIG. FIG. 4A is a front view of the bearing cap 20. 4B is a cross-sectional view of the bearing cap 20 taken along 4B-4B.
 図4Aに示すように、ジャーナル受け部22と突起部23は、ベアリングキャップ20がアルミニウム合金10に鋳込まれた後であっても、アルミニウム合金10から露出して目視可能である。ここでは、ジャーナル受け部22と突起部23は、ベアリングキャップ20の軸受け面22aから底面21eにかけて一体的に形成されている。 As shown in FIG. 4A, the journal receiving portion 22 and the protruding portion 23 are exposed from the aluminum alloy 10 and are visible even after the bearing cap 20 is cast into the aluminum alloy 10. Here, the journal receiving portion 22 and the protruding portion 23 are integrally formed from the bearing surface 22a to the bottom surface 21e of the bearing cap 20.
 図4Bに示すように、突起部23は、クランクシャフトの軸方向と直交する表面21aだけでなく、その裏面21bにも設けられる。表面21a及び裏面21bの両方に設けられた突起部23により、アルミニウム合金10が左右に分断される。よって、アルミニウム合金10の残留応力は小さくなり、ベアリングキャップ20の左側面21cと右側面21dとが互いに中央に引っ張られる緊迫力が弱くなる。 As shown in FIG. 4B, the protrusion 23 is provided not only on the front surface 21a orthogonal to the axial direction of the crankshaft but also on the back surface 21b. The aluminum alloy 10 is divided into left and right portions by the protrusions 23 provided on both the front surface 21a and the back surface 21b. Therefore, the residual stress of the aluminum alloy 10 is reduced, and the tension force with which the left side surface 21c and the right side surface 21d of the bearing cap 20 are pulled toward the center is weakened.
 図5A及び図5Bは、ベアリングキャップ20の周囲に形成されるアルミニウム合金10の残留応力について説明するための図である。図5Aは、突起部23で分断されたアルミニウム合金10に生じる残留応力を示す図である。図5Bは、突起部23のないベアリングキャップ90の周囲に形成されたアルミニウム合金10の残留応力を示す図である。 5A and 5B are views for explaining the residual stress of the aluminum alloy 10 formed around the bearing cap 20. FIG. 5A is a diagram illustrating the residual stress generated in the aluminum alloy 10 divided by the protrusion 23. FIG. 5B is a diagram showing the residual stress of the aluminum alloy 10 formed around the bearing cap 90 without the protrusion 23.
 図5Bに示すように、突起部23のないベアリングキャップ90では、図2で述べた通り、アルミニウム合金10内部にベアリングキャップ90の中心に向かう残留応力が生じる。 As shown in FIG. 5B, in the bearing cap 90 without the projecting portion 23, as described in FIG. 2, a residual stress toward the center of the bearing cap 90 is generated inside the aluminum alloy 10.
 これに対し、図5Aに示すように、突起部23を有するベアリングキャップ20では、突起部23でアルミニウム合金10が2つに分断される。その結果、ベアリングキャップ20の側面に形成されたアルミニウム合金10同士が互いに引っ張り合うことがなくなるので、分断されたアルミニウム合金10では、図5Bに示したアルミニウム合金と比較して残留応力が小さくなる。 On the other hand, as shown in FIG. 5A, in the bearing cap 20 having the protrusion 23, the aluminum alloy 10 is divided into two at the protrusion 23. As a result, since the aluminum alloys 10 formed on the side surfaces of the bearing cap 20 do not pull each other, the separated aluminum alloy 10 has a smaller residual stress than the aluminum alloy shown in FIG. 5B.
 このため、ベアリングキャップ20の側面を押す緊迫力が小さくなり、ジャーナル受け部22を上に広げる力が弱くなる。この状態でジャーナル受け部22は真円加工されるため、アルミニウム合金10に生じていた残留応力が消滅してもジャーナル受け部22は変形しにくくなる。 For this reason, the pressing force that presses the side surface of the bearing cap 20 is reduced, and the force for spreading the journal receiving portion 22 upward is weakened. In this state, since the journal receiving portion 22 is processed into a perfect circle, the journal receiving portion 22 is not easily deformed even if the residual stress generated in the aluminum alloy 10 disappears.
 本発明の第1実施形態によれば、ベアリングキャップ20には、クランクシャフトに当接するジャーナル受け部22と、クランクシャフトの軸方向と直交する面21aから突出し、鋳込まれた後であっても目視可能に露出する突起部23と、が形成される。そしてベアリングキャップ20は、ベアリングキャップ20よりも熱収縮率が大きなアルミニウム合金10で鋳込まれて形成される。 According to the first embodiment of the present invention, the bearing cap 20 has a journal receiving portion 22 that abuts against the crankshaft and a surface 21a perpendicular to the axial direction of the crankshaft and is cast and cast. A protrusion 23 that is exposed so as to be visible is formed. The bearing cap 20 is formed by casting with an aluminum alloy 10 having a thermal contraction rate larger than that of the bearing cap 20.
 このため、突起部23により、ベアリングキャップ20の周囲に形成されたアルミニウム合金10が途中で分断されるので、アルミニウム合金10に生じる残留応力を低減することができる。よって、ベアリングビーム1では、アルミニウム合金10の残留応力に起因するジャーナル受け部22の変形が小さく抑えられ、その結果、クランクシャフトの焼き付の発生を抑制することができる。 For this reason, since the aluminum alloy 10 formed around the bearing cap 20 is divided in the middle by the protrusion 23, the residual stress generated in the aluminum alloy 10 can be reduced. Therefore, in the bearing beam 1, the deformation of the journal receiving portion 22 due to the residual stress of the aluminum alloy 10 can be suppressed to be small, and as a result, occurrence of seizure of the crankshaft can be suppressed.
 また、本実施形態では、ベアリングキャップ20を鉄製又は鉄合金製で形成することにより、ジャーナル受け部22の変形を抑制することができる。また、ベアリングキャップ20を鋳込む金属として、アルミニウム又はアルミニウム合金を用いることにより、ベアリングビーム1を軽くすることができる。よって、ジャーナル受け部22の強度を維持しつつ、ベアリングビーム1自体を軽量化することができる。 Further, in the present embodiment, deformation of the journal receiving portion 22 can be suppressed by forming the bearing cap 20 from iron or iron alloy. Moreover, the bearing beam 1 can be lightened by using aluminum or aluminum alloy as a metal which casts the bearing cap 20. Therefore, it is possible to reduce the weight of the bearing beam 1 itself while maintaining the strength of the journal receiving portion 22.
 さらに本実施形態では、ベアリングキャップ20の突起部23は、ジャーナル受け部22から底面21eにかけて形成されている。一般的に、ベアリングキャップ20の周囲に形成されるアルミニウム合金10のうち、ジャーナル受け部22の下側のアルミニウム合金10には大きな残留応力が生じやすい。このため、突起部23によってジャーナル受け部22の下側のアルミニウム合金10を全て分断することで、ベアリングキャップ20が側面から受けるアルミニウム合金10の緊迫力を最小限に抑えることが可能となる。 Further, in the present embodiment, the protrusion 23 of the bearing cap 20 is formed from the journal receiving portion 22 to the bottom surface 21e. Generally, out of the aluminum alloy 10 formed around the bearing cap 20, a large residual stress tends to occur in the aluminum alloy 10 below the journal receiving portion 22. For this reason, all the aluminum alloy 10 below the journal receiving portion 22 is divided by the protruding portion 23, so that the tension force of the aluminum alloy 10 received by the bearing cap 20 from the side surface can be minimized.
 また、本実施形態では、ベアリングキャップ20において肉抜き形成された貫通空間部24a~24dが設けられている。このため、アルミニウム合金10にベアリングキャップ20が鋳込まれた後は、ベアリングキャップ20の貫通空間部24a~24dにもアルミニウム合金10が存在することになる。この貫通空間部24a~24dにより、突起部23で分断されたアルミニウム合金10の密着性を高めることができる。 Further, in the present embodiment, through space portions 24a to 24d that are formed in the bearing cap 20 are formed. For this reason, after the bearing cap 20 is cast into the aluminum alloy 10, the aluminum alloy 10 is also present in the through spaces 24a to 24d of the bearing cap 20. The penetration spaces 24a to 24d can improve the adhesion of the aluminum alloy 10 divided by the protrusion 23.
 以下に、ベアリングキャップ20の他の実施形態について説明する。 Hereinafter, other embodiments of the bearing cap 20 will be described.
 (第2実施形態)
 図6は、第2実施形態におけるベアリングキャップ201の構造を示す図である。ベアリングキャップ201には、図3に示した突起部23及び貫通空間部24a~24dと異なる場所に突起部231及び貫通空間部241a~241cが設けられる。なお、以下では、図3で示した構成と同じものについては同一符号を付して詳細な説明を省略する。
(Second Embodiment)
FIG. 6 is a view showing the structure of the bearing cap 201 in the second embodiment. The bearing cap 201 is provided with a protruding portion 231 and penetrating space portions 241a to 241c at positions different from the protruding portion 23 and the penetrating space portions 24a to 24d shown in FIG. In the following description, the same components as those shown in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
 貫通空間部241a~241cは、ジャーナル受け部22よりも下に設けられる。貫通空間部241a~241cは、クランクシャフトから受ける力の弱い部分に肉抜き形成される。貫通空間部241aは、ジャーナル受け部22の底部から下に形成される。貫通空間部241bは、貫通空間部241aと締結孔25aの間に形成される。貫通空間部241cは、貫通空間部241aと締結孔25bの間に形成される。 The through space portions 241 a to 241 c are provided below the journal receiving portion 22. The through-space portions 241a to 241c are formed by being thinned at portions where the force received from the crankshaft is weak. The through space 241 a is formed below the bottom of the journal receiving portion 22. The through space 241b is formed between the through space 241a and the fastening hole 25a. The through space portion 241c is formed between the through space portion 241a and the fastening hole 25b.
 貫通空間部241a~241cには、ベアリングキャップ201が鋳込まれた後に、アルミニウム合金10が存在することになる。このため、貫通空間部241a~241cに形成されるアルミニウム合金10には、クランクシャフトの軸方向、すなわち緊迫力と直交方向に残留応力が働くことになる。よって、ベアリングキャップ201の左側面21cと右側面21dの両側に形成されたアルミニウム合金10同士の互いに引っ張り合う緊迫力が直交方向に分散されて弱くなる。 In the through spaces 241a to 241c, after the bearing cap 201 is cast, the aluminum alloy 10 is present. Therefore, residual stress acts on the aluminum alloy 10 formed in the through space portions 241a to 241c in the axial direction of the crankshaft, that is, in the direction orthogonal to the tightening force. Therefore, the tension forces that pull the aluminum alloys 10 formed on both sides of the left side surface 21c and the right side surface 21d of the bearing cap 201 are dispersed in the orthogonal direction and weakened.
 突起部231は、貫通空間部241aよりもベアリングキャップ201の底面側に設けられる。本実施形態では、突起部231は、ベアリングキャップ201の底面21eから貫通空間部241aまでの下端部に形成される。 The protrusion 231 is provided on the bottom surface side of the bearing cap 201 with respect to the through space 241a. In the present embodiment, the protruding portion 231 is formed at the lower end portion from the bottom surface 21e of the bearing cap 201 to the through space portion 241a.
 図7は、ベアリングキャップ201が鋳込まれたベアリングビーム1を示す外観図である。 FIG. 7 is an external view showing the bearing beam 1 in which the bearing cap 201 is cast.
 ベアリングビーム1では、ベアリングキャップ201の下端部に設けられた突起部231が露出している。この場合、突起部231により、ベアリングキャップ201の下端部に形成されるアルミニウム合金10が左右に分断されているので、ベアリングキャップ201の下端部のアルミニウム合金に生じる残留応力は小さくなる。 In the bearing beam 1, a protrusion 231 provided at the lower end of the bearing cap 201 is exposed. In this case, since the aluminum alloy 10 formed at the lower end portion of the bearing cap 201 is divided into the left and right by the protrusions 231, the residual stress generated in the aluminum alloy at the lower end portion of the bearing cap 201 is reduced.
 また、ベアリングキャップ201のジャーナル受け部22と突起部231の間には、図6で示した貫通空間部241aが設けられている。図6で述べた通り、貫通空間部241aに形成されたアルミニウム合金10によってベアリングキャップ201への緊迫力は弱まる。 Further, a through space 241 a shown in FIG. 6 is provided between the journal receiving portion 22 and the protrusion 231 of the bearing cap 201. As described with reference to FIG. 6, the tension force applied to the bearing cap 201 is weakened by the aluminum alloy 10 formed in the through space 241a.
 さらにベアリングビーム1には、貫通空間部241aに存在するアルミニウム合金10を貫通して設けられたオイル抜き孔29が設けられている。オイル抜き孔29は、例えば、ベアリングビーム1からトランスミッションに漏れたオイルをベアリングビーム1の下に備え付けられるオイルパンへ戻すための通路である。刃具を使用してオイル抜き孔29を空けるときに、ベアリングキャップ201には孔を空ける必要がないので、容易にオイル抜き孔29を設けることが可能となる。さらに刃具の劣化を軽減することができる。また、ジャーナル受け部22と突起部231との間にオイル抜き孔29が形成されるので、オイル抜き孔29によりアルミニウム合金10が分断され、アルミニウム合金10の残留応力がより低減されることになる。 Further, the bearing beam 1 is provided with an oil drain hole 29 provided through the aluminum alloy 10 existing in the through space 241a. The oil drain hole 29 is, for example, a passage for returning oil leaked from the bearing beam 1 to the transmission to an oil pan provided under the bearing beam 1. When the oil drain hole 29 is opened using a cutting tool, it is not necessary to open the hole in the bearing cap 201. Therefore, the oil drain hole 29 can be easily provided. Furthermore, deterioration of the cutting tool can be reduced. Further, since the oil drain hole 29 is formed between the journal receiving portion 22 and the protrusion 231, the aluminum alloy 10 is divided by the oil drain hole 29, and the residual stress of the aluminum alloy 10 is further reduced. .
 本発明の第2実施形態によれば、ベアリングキャップ201には、貫通空間部241a~241cが肉抜き形成され、貫通空間部241aよりも底面側に突起部231が設けられる。 According to the second embodiment of the present invention, the bearing cap 201 is formed with the through space portions 241a to 241c being thinned, and the protruding portion 231 is provided on the bottom side of the through space portion 241a.
 このため、ベアリングキャップ201の底面側に形成されたアルミニウム合金10については、突起部231で分断されるので、アルミニウム合金10の残留応力が小さくなり、ベアリングキャップ201が受ける緊迫力も小さくなる。そして突起部231とジャーナル受け部22との間に形成されたアルミニウム合金10については、貫通空間部241a~241cに形成されたアルミニウム合金10により、緊迫力と直交する方向に残留応力が分散されることになるので、緊迫力も弱まる。 For this reason, since the aluminum alloy 10 formed on the bottom surface side of the bearing cap 201 is divided by the protrusions 231, the residual stress of the aluminum alloy 10 is reduced, and the tightening force received by the bearing cap 201 is also reduced. As for the aluminum alloy 10 formed between the protruding portion 231 and the journal receiving portion 22, the residual stress is dispersed in the direction perpendicular to the pressing force by the aluminum alloy 10 formed in the through space portions 241a to 241c. As a result, the tension will be weakened.
 このように、ベアリングキャップ201の突起部231を設けることができない部分に貫通空間部241a~241cを形成することでも、アルミニウム合金10の残留応力に起因する緊迫力を緩和することができる。この場合には、第1実施形態よりもベアリングキャップ201を軽くすることができるので、より軽量化されたベアリングビーム1を実現することができる。 As described above, even when the through space portions 241a to 241c are formed in the portion where the protrusion portion 231 of the bearing cap 201 cannot be provided, it is possible to relieve the tightening force caused by the residual stress of the aluminum alloy 10. In this case, since the bearing cap 201 can be made lighter than in the first embodiment, the lighter bearing beam 1 can be realized.
 また、第2実施形態では、オイル抜き孔29が、貫通空間部241aに存在するアルミニウム合金10を貫通して設けられる。刃具を使用してベアリングビーム1にオイル抜き孔29を空けるときには、アルミニウム合金10で形成された貫通空間部241aを通過する孔を空けることで、オイル抜き孔29を容易に設けることができる。また、刃具の劣化を軽減できる。 Further, in the second embodiment, the oil drain hole 29 is provided through the aluminum alloy 10 existing in the through space 241a. When drilling the oil drain hole 29 in the bearing beam 1 using a cutting tool, the oil drain hole 29 can be easily provided by drilling a hole that passes through the through space portion 241 a formed of the aluminum alloy 10. Moreover, the deterioration of the blade can be reduced.
 (第3実施形態)
 図8は、第3実施形態におけるベアリングキャップ202に関する外観図である。ベアリングキャップ202は、クランクシャフトから受ける力の方向に突起部232が設けられている。図8(a)は、ベアリングキャップ202の構造を示す図である。図8(b)は、ベアリングキャップ202がアルミニウム合金10に鋳込まれたベアリングビーム1を示す図である。
(Third embodiment)
FIG. 8 is an external view of the bearing cap 202 according to the third embodiment. The bearing cap 202 is provided with a protrusion 232 in the direction of the force received from the crankshaft. FIG. 8A is a view showing the structure of the bearing cap 202. FIG. 8B shows the bearing beam 1 in which the bearing cap 202 is cast into the aluminum alloy 10.
 図8(a)では、ベアリングキャップ202は、矢印で示したように、クランクシャフトからピストンストローク方向に力を受けることを想定して造られている。例えば、4気筒エンジンでは、クランクシャフトからベアリングキャップ202のピストンストローク方向に大きな力が加わる。 In FIG. 8 (a), the bearing cap 202 is constructed on the assumption that it receives a force from the crankshaft in the piston stroke direction, as indicated by an arrow. For example, in a four-cylinder engine, a large force is applied in the piston stroke direction of the bearing cap 202 from the crankshaft.
 ベアリングキャップ202では、ジャーナル受け部22からベアリングキャップ202の底面21eにかけてピストンストローク方向に突起部232が延設される。突起部232と締結孔25aの間には貫通空間部242aが肉抜き形成される。また、突起部232と締結孔25bの間には、貫通空間部242bが形成される。 In the bearing cap 202, a protrusion 232 extends in the piston stroke direction from the journal receiving portion 22 to the bottom surface 21e of the bearing cap 202. A through space 242a is formed between the protrusion 232 and the fastening hole 25a. A through space 242b is formed between the protrusion 232 and the fastening hole 25b.
 図8(b)に示すように、ベアリングキャップ202がアルミニウム合金10に鋳込まれた後でも、ジャーナル受け部22から底面21eにかけて突起部232が露出する。また、ベアリングビーム1には、貫通空間部242aに重ねてオイル抜き孔292a及びオイル抜き孔292bが設けられている。そして貫通空間部242bに重ねてオイル抜き孔292c及びオイル抜き孔292dが設けられている。 As shown in FIG. 8B, even after the bearing cap 202 is cast into the aluminum alloy 10, the protruding portion 232 is exposed from the journal receiving portion 22 to the bottom surface 21e. Further, the bearing beam 1 is provided with an oil drain hole 292a and an oil drain hole 292b so as to overlap the through space 242a. An oil drain hole 292c and an oil drain hole 292d are provided so as to overlap the through space 242b.
 本発明の第3実施形態によれば、ベアリングキャップ202において、突起部232がクランクシャフトから受ける力の方向に延設される。このため、クランクシャフトに対するベアリングキャップ202の強度を向上させることができる。したがって、ベアリングキャップ202の周囲に形成されたアルミニウム合金10の残留応力を低減しつつ、ベアリングキャップ202の強度を維持することができる。次に第4実施形態について図9を参照して簡単に説明する。 According to the third embodiment of the present invention, in the bearing cap 202, the protrusion 232 extends in the direction of the force received from the crankshaft. For this reason, the strength of the bearing cap 202 with respect to the crankshaft can be improved. Therefore, the strength of the bearing cap 202 can be maintained while reducing the residual stress of the aluminum alloy 10 formed around the bearing cap 202. Next, a fourth embodiment will be briefly described with reference to FIG.
 (第4実施形態)
 図9は、クランクシャフトからピストンストローク方向に対して右斜め方向と左斜め方向とに力を受けるベアリングキャップ203に関する外観図である。ベアリングキャップ203は、例えば、V6エンジンのベアリングビーム1に用いられる。図9(a)は、ベアリングキャップ203の構造を示す図である。図9(b)は、ベアリングキャップ203がアルミニウム合金10に鋳込まれたベアリングビーム1を示す図である。
(Fourth embodiment)
FIG. 9 is an external view of the bearing cap 203 that receives force from the crankshaft in the diagonally right and diagonal directions with respect to the piston stroke direction. The bearing cap 203 is used for the bearing beam 1 of a V6 engine, for example. FIG. 9A shows the structure of the bearing cap 203. FIG. 9B shows the bearing beam 1 in which the bearing cap 203 is cast in the aluminum alloy 10.
 図9(a)に示すように、ベアリングキャップ203では、ジャーナル受け部22から斜め右方向に突起部233aが設けられ、斜め左方向に突起部233bが設けられている。突起部233aと締結孔25aの間には貫通空間部243aが肉抜き形成されている。また、突起部233aと突起部233bの間には貫通空間部243bが肉抜き形成されている。さらに突起部233bと締結孔25bの間には貫通空間部243cが形成されている。 As shown in FIG. 9A, the bearing cap 203 is provided with a protrusion 233a obliquely rightward from the journal receiving portion 22 and a protrusion 233b obliquely leftward. A through space 243a is formed between the protrusion 233a and the fastening hole 25a. In addition, a through space 243b is formed between the protrusion 233a and the protrusion 233b. Further, a through space 243c is formed between the protrusion 233b and the fastening hole 25b.
 図9(b)に示すように、ベアリングキャップ203がアルミニウム合金10に鋳込まれると、ジャーナル受け部22から底面21eにかけて突起部233a及び233bが露出する。また、ベアリングビーム1には、貫通空間部243aに重ねてオイル抜き孔293aが設けられている。そして貫通空間部243bに重ねてオイル抜き孔293bが設けられている。さらに貫通空間部243cに重ねてオイル抜き孔293c及びオイル抜き孔292dが設けられている。 As shown in FIG. 9B, when the bearing cap 203 is cast into the aluminum alloy 10, the protruding portions 233a and 233b are exposed from the journal receiving portion 22 to the bottom surface 21e. Further, the bearing beam 1 is provided with an oil drain hole 293a so as to overlap the through space 243a. An oil drain hole 293b is provided so as to overlap the through space 243b. Further, an oil drain hole 293c and an oil drain hole 292d are provided so as to overlap the through space portion 243c.
 本発明の第4実施形態によれば、斜め右方向に延設された突起部233aと、斜め左方向に延設された突起部233bとにより、ベアリングキャップ20の重量の増大を最低限に抑えつつ、V6エンジンなどのクランクシャフトに対する強度を高めることができる。次に第5実施形態について図10を参照して説明する。 According to the fourth embodiment of the present invention, the increase in the weight of the bearing cap 20 is minimized by the protrusion 233a extending diagonally to the right and the protrusion 233b extending obliquely to the left. Meanwhile, the strength of the crankshaft such as the V6 engine can be increased. Next, a fifth embodiment will be described with reference to FIG.
 (第5実施形態)
 図10は、クランクシャフトから受ける力が特に右斜め方向に大きい場合に好適なベアリングキャップ204に関する外観図である。図10(a)は、ベアリングキャップ204の構造を示す図である。図10(b)は、ベアリングキャップ204がアルミニウム合金10に鋳込まれたベアリングビーム1を示す図である。
(Fifth embodiment)
FIG. 10 is an external view of the bearing cap 204 that is suitable when the force received from the crankshaft is particularly large in the diagonally right direction. FIG. 10A shows the structure of the bearing cap 204. FIG. 10B is a view showing the bearing beam 1 in which the bearing cap 204 is cast in the aluminum alloy 10.
 図10(a)に示すように、ベアリングキャップ204には、ジャーナル受け部22から右斜め方向に突起部234が設けられている。突起部234と締結孔25aの間には貫通空間部244aが肉抜き形成される。また、突起部234と締結孔25bの間には貫通空間部244bが形成される。 As shown in FIG. 10A, the bearing cap 204 is provided with a protrusion 234 obliquely to the right from the journal receiving portion 22. A through space 244a is formed between the protrusion 234 and the fastening hole 25a. Further, a through space 244b is formed between the protrusion 234 and the fastening hole 25b.
 図10(b)に示すように、ベアリングキャップ204がアルミニウム合金10に鋳込まれると、ジャーナル受け部22から底面21eにかけて突起部234が露出する。また、ベアリングビーム1には、貫通空間部244aに重ねてオイル抜き孔294a及びオイル抜き孔294bが設けられている。そして貫通空間部244bに重ねてオイル抜き孔294cが設けられている。 As shown in FIG. 10B, when the bearing cap 204 is cast into the aluminum alloy 10, the protruding portion 234 is exposed from the journal receiving portion 22 to the bottom surface 21e. Further, the bearing beam 1 is provided with an oil drain hole 294a and an oil drain hole 294b so as to overlap the through space 244a. An oil drain hole 294c is provided so as to overlap the through space 244b.
 本発明の第5実施形態によれば、クランクシャフトから受ける力の方向に合わせて突起部234を設けることにより、アルミニウム合金10の残留応力を低減しつつ、クランクシャフトに対する強度を効果的に向上させることができる。 According to the fifth embodiment of the present invention, by providing the protrusion 234 in accordance with the direction of the force received from the crankshaft, the strength against the crankshaft is effectively improved while reducing the residual stress of the aluminum alloy 10. be able to.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 なお、上記実施形態は、適宜組み合わせ可能である。 In addition, the said embodiment can be combined suitably.
 本願は、2012年6月19日に日本国特許庁に出願された特願2012-138023に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-138023 filed with the Japan Patent Office on June 19, 2012, the entire contents of which are incorporated herein by reference.

Claims (7)

  1.  金属製のベアリングキャップを、ベアリングキャップよりも熱収縮率が大きな金属で鋳込んで形成されるベアリングビームであって、
     前記ベアリングキャップは、クランクシャフトに当接するジャーナル受け部と、クランクシャフトの軸方向と直交する面から突出し、鋳込まれた後であっても目視可能に露出する突起部と、を含む、
    ベアリングビーム。
    A bearing beam formed by casting a metal bearing cap with a metal having a thermal contraction rate larger than that of the bearing cap,
    The bearing cap includes a journal receiving portion that comes into contact with the crankshaft, and a protruding portion that protrudes from a surface orthogonal to the axial direction of the crankshaft and is visibly exposed even after being cast.
    Bearing beam.
  2.  請求項1に記載のベアリングビームにおいて、
     前記ベアリングキャップは、鉄製又は鉄合金製であり、
     前記ベアリングキャップを鋳込む金属は、アルミニウム又はアルミニウム合金である、
    ベアリングビーム。
    The bearing beam according to claim 1,
    The bearing cap is made of iron or iron alloy,
    The metal into which the bearing cap is cast is aluminum or an aluminum alloy,
    Bearing beam.
  3.  請求項1又は請求項2に記載のベアリングビームにおいて、
     前記ベアリングキャップは、肉抜き形成されて、鋳込まれた後に鋳込み金属が存在する貫通空間部を含み、
     前記突起部は、貫通空間部よりも底面側に設けられる、
    ベアリングビーム。
    The bearing beam according to claim 1 or 2,
    The bearing cap includes a through space portion in which a cast metal is present after being formed and being cast.
    The protrusion is provided on the bottom side of the through space.
    Bearing beam.
  4.  請求項1から請求項3までのいずれか1項に記載のベアリングビームにおいて、
     前記突起部は、ジャーナル受け部から底面にかけて設けられる、
    ベアリングビーム。
    In the bearing beam according to any one of claims 1 to 3,
    The protruding portion is provided from the journal receiving portion to the bottom surface.
    Bearing beam.
  5.  請求項1から請求項4までのいずれか1項に記載のベアリングビームにおいて、
     前記ベアリングキャップは、肉抜き形成されて、鋳込まれた後に鋳込み金属が存在する貫通空間部を含む、
    ベアリングビーム。
    In the bearing beam according to any one of claims 1 to 4,
    The bearing cap includes a through space portion in which a cast metal exists after being formed by being thinned and cast.
    Bearing beam.
  6.  請求項1から請求項5までのいずれか1項に記載のベアリングビームにおいて、
     前記突起部は、クランクシャフトから受ける力の方向に延設される、
    ベアリングビーム。
    In the bearing beam according to any one of claims 1 to 5,
    The protrusion is extended in the direction of the force received from the crankshaft.
    Bearing beam.
  7.  請求項5に記載のベアリングビームにおいて、
     前記貫通空間部に存在する鋳込み金属を貫通して設けられたオイル抜き孔をさらに含む、
    ベアリングビーム。
    The bearing beam according to claim 5,
    Further including an oil drain hole provided through the cast metal present in the through space,
    Bearing beam.
PCT/JP2013/056899 2012-06-19 2013-03-13 Bearing beam WO2013190870A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-138023 2012-06-19
JP2012138023 2012-06-19

Publications (1)

Publication Number Publication Date
WO2013190870A1 true WO2013190870A1 (en) 2013-12-27

Family

ID=49768479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056899 WO2013190870A1 (en) 2012-06-19 2013-03-13 Bearing beam

Country Status (1)

Country Link
WO (1) WO2013190870A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013179A (en) * 2022-06-27 2022-09-06 东风商用车有限公司 Insert structure in fishbone-shaped arched aluminum alloy cylinder body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432914U (en) * 1987-08-24 1989-03-01
JPH0450509A (en) * 1990-06-20 1992-02-19 Isuzu Motors Ltd Rudder frame
JPH0468215U (en) * 1990-06-15 1992-06-17
JP2001170755A (en) * 1999-12-15 2001-06-26 Tp Kogyo Kk Cast iron member for inserting, inserted product using same and method of manufacturing cast iron member for inserting
WO2012032888A1 (en) * 2010-09-06 2012-03-15 日産自動車株式会社 Iron-based metal bearing cap cast into light-alloy member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432914U (en) * 1987-08-24 1989-03-01
JPH0468215U (en) * 1990-06-15 1992-06-17
JPH0450509A (en) * 1990-06-20 1992-02-19 Isuzu Motors Ltd Rudder frame
JP2001170755A (en) * 1999-12-15 2001-06-26 Tp Kogyo Kk Cast iron member for inserting, inserted product using same and method of manufacturing cast iron member for inserting
WO2012032888A1 (en) * 2010-09-06 2012-03-15 日産自動車株式会社 Iron-based metal bearing cap cast into light-alloy member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013179A (en) * 2022-06-27 2022-09-06 东风商用车有限公司 Insert structure in fishbone-shaped arched aluminum alloy cylinder body

Similar Documents

Publication Publication Date Title
JP4998233B2 (en) Crankshaft for multi-cylinder engine
US10267352B2 (en) Bearing cap of internal combustion engine
WO2013190870A1 (en) Bearing beam
JP5920530B2 (en) Internal combustion engine
WO2013094320A1 (en) Cast metal component for internal combustion engine, bearing cap, and manufacturing method therefor
JP2009030542A (en) Cylinder block and cylinder block structure
JP5932557B2 (en) Internal combustion engine
JP4087320B2 (en) Cylinder block for internal combustion engine
JP4475327B2 (en) Bracket fastening structure
JP4039539B2 (en) Piston for internal combustion engine
JP6653566B2 (en) Flange fixing structure
JP6394899B2 (en) Cylinder block
JP2010151063A (en) Cylinder block
WO2013186055A3 (en) Metal cast component and method for producing a metal cast component
WO2013190897A1 (en) Bearing beam
JP2016223402A (en) Cylinder block of internal combustion engine
JP6904232B2 (en) Internal combustion engine rudder frame
EP1637724A1 (en) Casing for an internal combustion engine, particularly for motor-vehicles
JP7421417B2 (en) crankshaft bearing structure
JP4237576B2 (en) Piston of internal combustion engine
JP4134689B2 (en) Assembly method of cylinder block and crank cap
JP2016102450A (en) Internal combustion engine
WO2015156025A1 (en) Bearing cap
JP5479881B2 (en) Cylinder block structure
JP4386246B2 (en) Fan blade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP