WO2013190852A1 - Acoustic matching member and method for manufacturing same, ultrasonic wave transmitter/receiver using same, and ultrasonic flow meter - Google Patents

Acoustic matching member and method for manufacturing same, ultrasonic wave transmitter/receiver using same, and ultrasonic flow meter Download PDF

Info

Publication number
WO2013190852A1
WO2013190852A1 PCT/JP2013/003892 JP2013003892W WO2013190852A1 WO 2013190852 A1 WO2013190852 A1 WO 2013190852A1 JP 2013003892 W JP2013003892 W JP 2013003892W WO 2013190852 A1 WO2013190852 A1 WO 2013190852A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic matching
matching member
particles
dry gel
ultrasonic
Prior art date
Application number
PCT/JP2013/003892
Other languages
French (fr)
Japanese (ja)
Inventor
永原 英知
佐藤 真人
足立 明久
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014520963A priority Critical patent/JPWO2013190852A1/en
Publication of WO2013190852A1 publication Critical patent/WO2013190852A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Definitions

  • the present invention relates to an acoustic matching member for an ultrasonic transducer and a method for manufacturing the same.
  • an acoustic matching member to which dry gel is applied in order to transmit and receive ultrasonic waves to and from various gases with high sensitivity, an acoustic matching member to which dry gel is applied, a manufacturing method thereof, an ultrasonic transducer and an ultrasonic flowmeter using the acoustic matching member.
  • Patent Document 1 is an ultrasonic transducer including a piezoelectric body and an acoustic matching layer, wherein the acoustic matching layer is made of a dry gel of an inorganic oxide or an organic polymer, and the solid skeleton portion of the dry gel is hydrophobized.
  • An ultrasonic transmitter / receiver is disclosed.
  • An object of the present invention is to provide an acoustic matching member having an acoustic impedance that is difficult to obtain with only a dry gel, using the dry gel.
  • an ultrasonic transducer including the acoustic matching member, a manufacturing method thereof, and an ultrasonic flowmeter including the ultrasonic transducer is there.
  • the acoustic matching member of the present invention is an acoustic matching member composed of dry gel particles and binding particles, and the dry gel particles have fine pores therein and hold interparticle voids between the dry gel particles.
  • the binding particles are present between the dry gel particles to bond the dry gel particles, and the average particle diameter of the binding particles is larger than the average size of the fine pores of the dry gel particles, It is smaller than the average size of the interparticle voids of the dried gel particles.
  • the dry gel particle may have a solid skeleton portion made of silica.
  • the average size of the fine holes may be 100 nm or less.
  • the average size of the fine holes may be less than 50 nm.
  • an average particle diameter of the dry gel particles may be 1 ⁇ m or more.
  • the average particle diameter of the binding particles may be 50 nm or more and 10 ⁇ m or less.
  • the binding particles may be an organic polymer.
  • the organic polymer may be epoxy.
  • the epoxy may have an average molecular weight of 1000 to 100,000.
  • the ultrasonic transducer of the present invention includes an electromechanical transducer having electrodes on both surfaces, and any one of the acoustic matching members bonded to the acoustic wave emitting surface of the electromechanical transducer.
  • the ultrasonic flowmeter of the present invention uses any of the ultrasonic transducers described above.
  • the method for producing an acoustic matching member of the present invention includes a step of removing the aqueous solvent from the dispersion obtained by mixing the dried gel particles and the emulsion resin dispersed in the aqueous solvent, and performing a heat treatment to integrate them.
  • the average particle diameter of the emulsion resin may be smaller than the average particle diameter of the dried gel particles.
  • the average size of the fine pores of the dried gel particles may be smaller than the average particle size of the emulsion resin.
  • the acoustic matching member of the present invention can provide an acoustic matching member having an acoustic impedance that is difficult to obtain by using only the dried gel, using the dried gel.
  • An acoustic matching member having various acoustic impedances, an ultrasonic transducer including the acoustic matching member, a manufacturing method thereof, and an ultrasonic flowmeter including the ultrasonic transducer can be provided.
  • FIG. 1 is a perspective view showing the appearance of the ultrasonic transducer according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the fine structure of the acoustic matching member in the first embodiment.
  • FIG. 3 is a diagram illustrating a manufacturing process procedure of the ultrasonic transducer according to the first embodiment.
  • FIG. 4 is a diagram illustrating a manufacturing process procedure of the ultrasonic transducer according to the first embodiment.
  • FIG. 5 is a diagram showing the relationship between the binding particle size and the molecular weight in the first embodiment.
  • FIG. 6 is a diagram illustrating a casting jig for the acoustic matching member according to the first embodiment.
  • FIG. 7A is a diagram showing the transmission / reception characteristics of the ultrasonic transducer with respect to 1 atmosphere of air.
  • FIG. 7B is a diagram illustrating the transmission / reception characteristics of the ultrasonic transducer with respect to 1 atmosphere of air.
  • FIG. 8A is a diagram showing the transmission / reception characteristics of the ultrasonic transducer with respect to air at 50 atmospheres.
  • FIG. 8B is a diagram illustrating the transmission / reception characteristics of the ultrasonic transducer with respect to air at 50 atmospheres.
  • FIG. 9 is a cross-sectional view showing the structure of a conventional ultrasonic flowmeter.
  • FIG. 10 is a cross-sectional view showing the structure of a conventional ultrasonic transducer.
  • FIG. 9 shows a cross-sectional configuration diagram of the main part of this type of ultrasonic flowmeter.
  • the fluid to be measured whose flow rate is to be measured is arranged to flow in the pipe.
  • a pair of ultrasonic transducers 101a and 101b are installed facing each other.
  • the ultrasonic transducers 101a and 101b are configured using a piezoelectric material such as a piezoelectric ceramic as an electromechanical transducer, and exhibit resonance characteristics like a piezoelectric buzzer and a piezoelectric oscillator.
  • the ultrasonic transducer 101a is used as an ultrasonic transmitter and the ultrasonic transducer 101b is used as an ultrasonic receiver.
  • an alternating voltage having a frequency near the resonance frequency of the ultrasonic transducer 101a is applied to the piezoelectric body in the ultrasonic transducer 101a.
  • the ultrasonic transducer 101a functions as an ultrasonic transducer and radiates ultrasonic waves into a fluid (for example, natural gas or hydrogen gas).
  • the emitted ultrasonic wave propagates to the path L1 and reaches the ultrasonic wave receiver 101b.
  • the ultrasonic transmitter / receiver 101b functions as a receiver, and receives the ultrasonic wave and converts it into a voltage.
  • the ultrasonic transducer 101b functions as an ultrasonic transducer
  • the ultrasonic transducer 101a functions as an ultrasonic receiver. That is, by applying an AC voltage having a frequency near the resonance frequency of the ultrasonic transducer 101b to the piezoelectric body in the ultrasonic transducer 101b, ultrasonic waves are radiated from the ultrasonic transducer 101b into the fluid. .
  • the emitted ultrasonic wave propagates along the path L2 and reaches the ultrasonic transducer 101a.
  • the ultrasonic transducer 101a receives the transmitted ultrasonic wave and converts it into a voltage.
  • the ultrasonic transducers 101a and 101b are generally collectively referred to as “ultrasonic transducers” in order to alternately function as a transmitter and a function as a receiver.
  • the ultrasonic flow meter shown in FIG. 9 when alternating voltage is continuously applied, ultrasonic waves are continuously emitted from the ultrasonic transducer and it becomes difficult to measure the propagation time.
  • the burst voltage signal is used as the drive voltage so that only ultrasonic waves are transmitted.
  • an ultrasonic burst signal is radiated from the ultrasonic transducer 101a by applying a burst voltage signal for driving to the ultrasonic transducer 101a.
  • the ultrasonic burst signal propagates through the path L1 and reaches the ultrasonic transducer 101b after time t.
  • the distance of the path L1 is equal to the distance of the path L2, and is L.
  • the ultrasonic transducer 101b can convert only the transmitted ultrasonic burst signal into an electric burst signal with a high S / N ratio.
  • the flow velocity of the fluid flowing in the pipe is V
  • the velocity of the ultrasonic wave in the fluid is C
  • the angle between the direction of flow of the fluid and the propagation direction of the ultrasonic pulse is ⁇ .
  • the flow velocity V of the fluid can be obtained from the distance L of the propagation path of ultrasonic waves and the propagation times t1 and t2.
  • the flow rate can be determined from the flow velocity V and the cross-sectional area of the flow path.
  • the acoustic impedance of the acoustic matching member formed on the ultrasonic wave transmitting / receiving surface of the piezoelectric body in the ultrasonic wave transmitter / receiver is important.
  • the acoustic matching member plays an important role when the ultrasonic transducer radiates (transmits) an ultrasonic wave to a gas and receives an ultrasonic wave that has propagated through the gas.
  • FIG. 10 shows a cross-sectional configuration of a conventional ultrasonic transducer 103.
  • the illustrated ultrasonic transducer 103 includes a piezoelectric body 104 and an acoustic matching member 105 bonded to one surface of the piezoelectric body 103.
  • the acoustic matching member 105 is bonded to one surface of the piezoelectric body 105 with an epoxy adhesive.
  • the ultrasonic vibration of the piezoelectric body 104 is transmitted to the acoustic matching member 105 through the adhesive layer made of this adhesive. Thereafter, the ultrasonic vibration is radiated as a sound wave to a fluid (ultrasonic propagation medium) such as a gas or a liquid in contact with the acoustic matching member 105.
  • a fluid ultrasonic propagation medium
  • the role of the acoustic matching member 105 is to efficiently propagate the vibration of the piezoelectric body to the fluid.
  • the acoustic impedance Z of a substance is defined by the following formula (Formula 5) using the speed of sound C in the substance and the density ⁇ of the substance.
  • the acoustic impedance of the gas to be radiated by ultrasonic waves is significantly different from the acoustic impedance of the piezoelectric body.
  • An acoustic impedance Z 1 of a piezoelectric ceramic such as PZT (lead zirconate titanate) which is a general piezoelectric body is about 2.9 ⁇ 10 7 kg / m 2 / sec.
  • the acoustic impedance Z 3 of air is 4.0 ⁇ 10 2 kg / m of about 2 / sec.
  • the acoustic impedance Z 1 of the piezoelectric body is 2.9 ⁇ 10 7 kg / m 2 / sec and the acoustic impedance Z 3 of the air is 4.0 ⁇ 10 2 kg / m 2 / sec, (Equation 6) is satisfied.
  • the acoustic impedance Z 2 is about 1.1 ⁇ 10 5 kg / m 2 / sec.
  • the acoustic matching material disclosed in Patent Document 1 sufficiently satisfies (Equation 6).
  • This material is produced using a dry gel imparted with durability, has a low density ⁇ , and a low sound velocity C.
  • An ultrasonic transducer equipped with an acoustic matching member made of a material with extremely low acoustic impedance, such as dry gel, can transmit and receive ultrasonic waves efficiently and with high sensitivity to gas. The gas flow rate can be measured with high accuracy.
  • the dry gel as described above is a porous body formed by a sol-gel reaction, and a network is formed in such a way that particles of several nm are joined to each other, and a skeleton of about several nm and a size of about several nm. It is formed from holes.
  • an acoustic matching member suitable for such a gas is required, and this is an acoustic matching member having an acoustic impedance different from that of an acoustic matching member formed only of dry gel. Is required.
  • the present inventors have conceived the following embodiment as a result of the above examination.
  • FIG. 1 shows a section of the ultrasonic transducer according to the first embodiment.
  • the illustrated ultrasonic transducer 1 includes a piezoelectric body 2 (electromechanical transducer), a pair of electrodes 3a and 3b provided on both surfaces of the piezoelectric body 2, and the main body of the piezoelectric body 2 via the electrodes 3a. And an acoustic matching member 4 joined to a surface (ultrasonic wave transmitting / receiving surface).
  • the piezoelectric body 2 is formed of a piezoelectric material and is polarized in the thickness direction (vertical direction in FIG. 1).
  • a voltage signal is applied between the electrode 3 a provided on the upper surface side of the piezoelectric body 2 and the electrode 3 b provided on the lower surface side, the piezoelectric body 2 expands and contracts based on the voltage signal and Ultrasonic waves are emitted from the acoustic wave transmitting / receiving surface.
  • the ultrasonic waves are radiated to an ultrasonic propagation medium (for example, gas) 5 through the acoustic matching member 4.
  • the ultrasonic wave propagating through the propagation medium 5 reaches the piezoelectric body 2 via the acoustic matching member 4, and generates a voltage signal between the electrodes 3a and 3b.
  • the ultrasonic transducer 1 of this Embodiment can perform both transmission and reception of an ultrasonic wave with one.
  • the material of the piezoelectric body 2 used in the present embodiment is arbitrary, and a known piezoelectric material can be used. Further, instead of the piezoelectric body 2, an electrostrictive body may be used. Also when using an electrostrictive body, the material is arbitrary and a well-known material can be used.
  • the electrodes 3a and 3b are also formed from a known conductive material.
  • the acoustic matching member 4 plays a role of efficiently propagating the ultrasonic waves generated in the piezoelectric body 2 to the propagation medium 5 and also plays a role of efficiently transmitting the ultrasonic waves propagated in the propagation medium 5 to the piezoelectric body 2. .
  • the acoustic matching member 4 of the present embodiment is composed of a block body in which dry gel particles 8 to which silica particles of about several nanometers are bonded while having pores of the same level are bonded by the bonded particles 10.
  • the thickness of the acoustic matching member 4 in the sound wave propagation direction is set to be about 1 ⁇ 4 of the wavelength of ultrasonic waves to be transmitted and received.
  • FIG. 2 shows a schematic diagram of the internal structure of the acoustic matching member 4 of the present embodiment.
  • 6 is a solid particle constituting the skeleton portion
  • 7 is a void existing between the solid particles
  • 8 is a dry gel particle
  • a plurality of solid particles 6 have voids. It is formed by being held and held.
  • the binding particles 10 in the present embodiment have a size larger than the internal pores (fine pores) of the dry gel particles 8 and smaller than the gaps between the dry gel particles 8. Since the binding particles 10 having such a size are too small to enter the pores in the dry gel particles 8, the low density characteristics that are characteristic of the dry gel are not lost.
  • the average particle size of the bonded particles 10 is measured by a laser diffraction method (for example, SALD manufactured by Shimadzu Corporation).
  • the average particle diameter of the dried gel particles 8 is measured by a laser diffraction method (for example, SALD manufactured by Shimadzu Corporation).
  • the average size of the internal pores of the dried gel particles 8 is measured by a gas adsorption method (for example, BELSORP-miniII manufactured by Nippon Bell Co., Ltd.).
  • the intergranular space 9 of the dried gel particle 8 is measured by a mercury intrusion method (for example, Autopore manufactured by Shimadzu Corporation).
  • the binding particles 10 in the present embodiment are made of a resin material.
  • the acoustic matching member 4 of the present embodiment can realize various acoustic impedances by adjusting the ratio of the binding particles 10 as compared with the acoustic matching member composed only of the dry gel, An ultrasonic transducer that efficiently transmits and receives ultrasonic waves can be realized by realizing an appropriate acoustic impedance according to the characteristics.
  • the acoustic matching member according to the present embodiment is a composite material in which dry gel particles having micro to meso-sized pores are bound together with binding particles, and the binding particles binding the dry gel particles are the internal voids of the dry gel particles. It has a size larger than the pore size and smaller than the gap between the dried gel particles.
  • the binding particles cannot enter the pores in the dry gel particles, and can enter the gaps between the dry gel particles.
  • the binding particles cannot enter the fine pores of the dried gel, the low density characteristics of the dried gel are not lost. Moreover, since it can penetrate
  • a piezoelectric body 2 is prepared according to the wavelength of ultrasonic waves to be transmitted and / or received.
  • a material having high piezoelectricity such as piezoelectric ceramics or a piezoelectric single crystal may be used.
  • the piezoelectric ceramic lead zirconate titanate, barium titanate, lead titanate, lead niobate, or the like can be used.
  • the piezoelectric single crystal lead zirconate titanate single crystal, lithium niobate, quartz, or the like can be used.
  • lead zirconate titanate ceramics are used as the piezoelectric body 2, and the frequency of ultrasonic waves to be transmitted and received is set to 500 kHz.
  • the resonance frequency of the piezoelectric body 2 is designed to be about 500 kHz.
  • the piezoelectric body 2 resonates strongly when its thickness is set to half the wavelength of the ultrasonic wave, and the transmission / reception efficiency of the ultrasonic wave is improved. Since the sound velocity of the lead zirconate titanate ceramic is about 3800 m / sec, the wavelength of the ultrasonic wave having a frequency of 500 kHz in the piezoelectric body 2 is 7.6 mm. For this reason, in this embodiment, the piezoelectric body 2 having a cylindrical shape with a thickness of about 3.8 mm and a diameter of 12 mm is used.
  • the upper and lower surfaces of the piezoelectric body 2 are provided with silver electrodes 3a and 3b by baking, and the piezoelectric body 2 is polarized in this direction.
  • the acoustic matching member 4 has the same diameter 12 mm as that of the piezoelectric body 2 and has a thickness of 1 ⁇ 4 wavelength as described above. Since the sound velocity of the acoustic matching member used in the present embodiment is 1500 m / sec, it is about 0.75 mm, which is a quarter wavelength at 500 kHz. The density is 500 kg / m 3 and the acoustic impedance is 7.5 ⁇ 10 5 kg / m 2 / sec.
  • FIG. 3 shows a manufacturing flow of the dry gel particles 8 of the acoustic matching member 4
  • FIG. 4 shows a manufacturing flow of bonding the dry gel particles 8 with the binding particles 10.
  • the gel particle dispersion obtained by the flow of FIG. 3 is an input of the production flow in FIG. 4, and the process of FIG. 4 is serially followed after the process of FIG.
  • the overall flow of FIG. 3 is to prepare dry gel particles 8 by preparing a gel-like raw material liquid and forming a block-shaped dry gel and then pulverizing it.
  • a dry gel is used in which the solid particles 6 that are solid skeleton portions are made of silica (SiO 2 ).
  • the size of the solid particles serving as the skeleton part of the dried gel is about several nm, and the pore size in the dried gel particles 8 has a relatively wide dispersion of about several nm to several tens of nm.
  • the dried gel particles 8 may be alumina, chromium oxide, tin oxide, carbon, or a copolymer polymer of resorcinol and formaldehyde.
  • the size of the dried gel particles 8 finally formed is about several to several tens of ⁇ m.
  • a dry gel material solution is prepared.
  • a raw material liquid is prepared by mixing alkoxysilane such as tetraethoxysilane, which is a raw material of the skeleton portion of the dried gel, with ethanol, water, and a catalyst (ammonia, hydrochloric acid, etc.).
  • the mixing ratio of the gel raw material liquid may be 6% tetraethoxysilane, 20% ethanol, and 74% 0.1N ammonia water.
  • the volume ratio of tetraethoxysilane in the gel raw material solution directly affects the density of the dried gel formed.
  • the blending ratio of the gel raw material liquid is set to a density of about 0.1. Further, this density is set so as to be a density that can be easily handled and can maintain strength when bonded by the binding particles 10 in this process and used as an acoustic matching member.
  • the prepared gel raw material solution is heated in a thermostatic chamber or the like to start and accelerate the polymerization reaction.
  • the polymerization reaction is completed by leaving it in a constant temperature bath at 60 ° C. for 24 hours. Since the temperature and the rate of the polymerization reaction are in a substantially proportional relationship, and the rate of the polymerization reaction greatly affects the particle size of the gel raw material liquid, it is important to control the reaction temperature in order to obtain a desired gel.
  • the polymerization reaction rate is also related to the stability of the properties of the gel.
  • the particle size and the pore size tend to be small, and when the reaction rate is low, the particle size and the pore size tend to be large.
  • the sound speed is slower, so that the reaction rate, that is, the heating temperature, may be controlled so that the particle size is about several nanometers.
  • the specific gravity of the gel skeleton and pore particles is appropriately set to 0.1, and the internal pore size is about 1 to 20 nm A gel can be obtained.
  • the alkoxysilane remaining in the wet gel may start a polymerization reaction in an environment such as an external temperature.
  • decomposition and dissolution reactions may start together with the polymerization reaction in an environment where a catalyst such as ammonia exists. Therefore, these residual solutions may be removed.
  • the solvent to be substituted may be any solvent that does not affect the reaction of the gel skeleton, such as pure water, an alcohol solvent such as ethanol, or an organic solvent such as pentane or hexane, and any substitution solvent can be selected. .
  • pure water is selected as a solvent in consideration of mixing with an aqueous emulsion resin used in a later process.
  • the formed wet gel is taken out from the reaction vessel and left in a vessel containing pure water having a volume about 10 times that of the wet gel for 24 hours to remove residual alkoxysilane and catalyst in the wet gel.
  • the obtained block-shaped wet gel is pulverized by a ball mill in order to obtain particles having a desired size of about several ⁇ m.
  • the principle of pulverization with a ball mill is that it moves in a cylindrical container by filling a cylindrical container such as Teflon (registered trademark) with a wet gel and hard balls such as zirconia and rotating the cylindrical container. The gel is crushed by the collision of the zirconia balls.
  • the particle size decreases with time. Further, when the rotational speed of the cylindrical container is increased, the size of particles obtained in the same processing time is reduced, that is, the pulverization efficiency is increased.
  • the size (diameter) of the ball for grinding affects the grinding efficiency and the particle size after grinding.
  • the impact at the time of the collision of the ball is large, so that the grinding efficiency is increased. That is, the change in particle size per unit time is large.
  • a zirconia ball having a diameter of 3 mm is used.
  • Zirconia is suitable as a material for balls for grinding because it is hard and hard to wear.
  • alumina or the like can also be used.
  • the pulverization efficiency is improved. In this embodiment, it is about 60%.
  • 20% airgel and 20% zirconia balls are placed in a cylindrical container made of Teflon (registered trademark) having an inner diameter of 150 mm, and 20% zirconia balls are further added, followed by grinding at 90 rpm for 1 hour.
  • dry gel particles 8 having an average particle diameter of about 8 ⁇ m can be obtained.
  • the average particle diameter of the dried gel particles 8 was measured by a laser diffraction method (SALD manufactured by Shimadzu Corporation), and as a result, it was about 8 ⁇ m.
  • the average size of the fine pores of the dried gel particles 8 was measured by a gas adsorption method (BELSORP-mini II manufactured by Nippon Bell Co., Ltd.) and found to be about 10 nm.
  • the balls used for pulverization are removed from the dried gel particles 8 thus obtained to obtain a gel particle-dispersed solution having a constant average particle diameter. Since the grinding balls used as described above have a diameter of 3 mm and gel particles have a size of about 10 ⁇ m, they can be easily separated with a mesh having an opening of about 1 mm.
  • the gel particle dispersion thus obtained is subjected to a binding process using the binding particles 10 as the next process.
  • FIG. 4 shows a coupling process using the coupled particles 10 and a process from the acoustic matching member to the ultrasonic transducer.
  • an emulsion resin dispersion is added to the obtained gel particle dispersion.
  • the emulsion resin dispersion is obtained by dispersing fine particulate resin in an aqueous solvent such as water.
  • an acrylic resin, an epoxy resin, a urethane resin, a vinyl acetate resin, a styrene resin, an olefin resin, or the like can be used.
  • an emulsion resin dispersion in which an epoxy resin having a particle size of about 800 nm is dispersed is used.
  • FIG. 5 shows the relationship between the molecular weight of the epoxy resin and the size of the particle diameter.
  • the horizontal axis represents the particle diameter
  • the vertical axis represents the molecular weight.
  • FIG. 5 shows the maximum particle size that can be taken by the molecular weight. In other words, it shows the theoretical value when the chain molecule of epoxy, which is a polymer, is perfectly linear. In fact, the polymer is linear and hardly exists in the solution, and is bent. Or, it may be spherical like a rounded thread, and the size shown in FIG. 5 is the maximum size and is usually smaller than this.
  • the epoxy resin Since the epoxy resin is in a normal state and a liquid state when the average molecular weight is less than 600, it cannot be used in the acoustic matching member of the present embodiment. Further, there is a correlation between the molecular weight and the softening point (flow, curing), and the fluidity at the same temperature decreases as the molecular weight increases.
  • a homogenization process is performed.
  • the homogenization process can be performed with a normal stirrer or the like.
  • a rotary mixer or the like can be used.
  • the homogenization process is performed for 5 minutes using a rotary mixer.
  • the average molecular weight is measured by a liquid chromatographic method (for example, Nexera manufactured by Shimadzu Corporation).
  • the dispersion of the gel particles and the binding particles 10 thus obtained is molded into a necessary shape, and an operation of removing excess water is performed. For this reason, in this embodiment, a gypsum mold that simultaneously performs the functions of molding and removing excessive water is used.
  • a hollow 12 having substantially the same shape as the size of the acoustic matching member 4 is provided on a plaster plaster plate 11, and a gel particle / binding particle 10 dispersion is cast into this portion.
  • the diameter of the recess is 20 mm and the depth is 5 mm.
  • the mold made of gypsum does not completely block liquid such as water and has fine pores that block gel particles and binding particles 10, not only from the surface of the cast dispersion, Since it is possible to remove moisture from the gypsum body itself, it is possible to efficiently remove moisture.
  • the dispersion liquid cast into a plaster mold was left in a constant temperature bath at 40 ° C. for 2 days (STEP 11). By performing this treatment, 90% or more of the moisture can be removed. In this way, a dried product of the composite of the dried gel particles 8 and the binding particles 10 from which moisture has been removed can be obtained.
  • the dried gel particles 8 and the binding particles 10 are in a state of being joined only by a weak intermolecular force, and the strength is insufficient for use as an acoustic matching member.
  • the temperature of the thermostatic chamber is raised to 150 ° C. while being installed in the gypsum mold.
  • the temperature is about 150 ° C.
  • a component having a particularly small particle size of the bonded particles 10 is melted to be in a liquid state. Since only such a resin having a small particle diameter, that is, a binding particle 10 having a small molecular weight, selectively flows on the surface of the large resin, it does not enter the fine pores inside the dry gel particle 8. .
  • the dried gel particles 8 can be integrated with each other with a strong bond without substantially destroying the pores inside the dried gel particles 8. After the heat treatment, if there is an abrupt temperature change, the composite that becomes the formed acoustic matching member is distorted, which may cause cracking or chipping.
  • the composite block thus formed had a thickness of 2 mm and a diameter of 15 mm.
  • the outer periphery is processed and the thickness is adjusted.
  • the thickness of the sound wave emitting surface or the surface coupled with the piezoelectric body 2 is adjusted to a predetermined thickness of 1 mm by a polishing machine. Thereafter, the polished surface is held and outer periphery processing is performed.
  • the outer peripheral machining was adjusted by holding with a jig slightly smaller than a disk-shaped acoustic matching member having a diameter of 12 mm, and polishing the portion exposed from the jig while rotating with a file.
  • the acoustic matching member 4 thus obtained has a density of 0.50 and a sound velocity of 1500 m / s.
  • the acoustic matching member 4 thus obtained is joined to the sound wave emitting surface of the piezoelectric body 2 in STEP14.
  • an emulsion resin may be used for bonding to the piezoelectric body 2.
  • an emulsion resin is applied to the upper surface of the piezoelectric body 2, and water is removed by heating at a low temperature of 60 ° C.
  • a molded acoustic matching member is placed on the emulsion-like resin layer thus formed, and further heated to 150 ° C. while being pressurized.
  • an ultrasonic transducer in which the piezoelectric body 2 is provided with an acoustic matching member composed of the dried gel particles 8 and the binding particles 10 is obtained.
  • FIG. 7 and FIG. 7 and 8 An example of the characteristics of the ultrasonic transducer 1 formed in this way is shown in FIG. 7 and FIG. 7 and 8, the horizontal axis indicates time, and the vertical axis indicates the relative amplitude.
  • FIG. 7 is a diagram illustrating characteristics when ultrasonic waves are transmitted / received to / from air at 1 atmosphere.
  • FIG. 7A shows the result of the acoustic matching member (acoustic impedance 0.1 ⁇ 10 ⁇ 6) formed only with the dried gel
  • FIG. 7B shows the acoustic matching member (acoustic impedance) produced according to the present embodiment. 0.75 ⁇ 10 ⁇ 6). It can be seen that higher sensitivity can be obtained when using an acoustic matching member made of only a conventional dry gel for air at normal temperature and normal pressure.
  • FIG. 8 shows characteristics when ultrasonic waves are transmitted / received to / from air of 50 atm.
  • the gas density increases proportionally. Since the speed of sound has no correlation with pressure, when the pressure increases 50 times, the acoustic impedance increases 50 times. For this reason, the optimum acoustic impedance as the acoustic matching member is larger than that in the case of atmospheric pressure air.
  • FIG. 8A is a result of an acoustic matching member (acoustic impedance 0.1 ⁇ 10 ⁇ 6) formed only with a dry gel
  • FIG. 8B is an acoustic matching produced by the present embodiment. It is a result by a member (acoustic impedance 0.75 ⁇ 10 ⁇ 6).
  • the ultrasonic sensor using the acoustic matching member in the present embodiment can obtain higher sensitivity, that is, the measurement accuracy of the ultrasonic flowmeter can be improved.
  • an acoustic matching member having a wide range of characteristics can be formed by using a dry gel material combined with another material.
  • STEP 8 or later in which the particulate dry gel and the emulsion resin are mixed is performed.
  • such a method since the procedure up to STEP 7 can be omitted, such a method may be adopted in consideration of time cost. However, it is possible to select the optimum method in consideration of the total cost.
  • the acoustic matching member of the present invention can be widely used in devices for transmitting and receiving ultrasonic waves between various media centered on gas, and in particular, sensing and flow rate required to detect ultrasonic waves with high accuracy. It can be suitably used for a measuring device.
  • Ultrasonic transducer Piezoelectric body (electromechanical transducer) 3a, 3b Electrode 4 Acoustic matching member 5 Propagation medium 6 Solid particle 7 Fine pore 8 Dry gel particle 9 Interparticle void 10 Bonded particle

Abstract

An acoustic matching member (4) comprising dry gel particles (8) and binding particles (10), wherein the dry gel particles have micropores (7) therein and hold interparticle voids among the dry gel particles, the binding particles that are present among the dry gel particles bind the dry gel particles together, and the average particle diameter of the binding particles is larger than the average size of the micropores of the dry gel particles but smaller than the average size of the interparticle voids (9) of the dry gel particles.

Description

音響整合部材及びその製造方法、及びこれを用いた超音波送受波器、超音波流量計Acoustic matching member, manufacturing method therefor, ultrasonic transducer and ultrasonic flowmeter using the same
 本発明は、超音波送受波器の音響整合部材、およびその製造方法に関するものである。特に多様な気体との間で超音波の送受信を高感度に送受波するために、乾燥ゲルを適用した音響整合部材及びその製造方法、及びこれを用いた超音波送受波器、超音波流量計に関する。 The present invention relates to an acoustic matching member for an ultrasonic transducer and a method for manufacturing the same. In particular, in order to transmit and receive ultrasonic waves to and from various gases with high sensitivity, an acoustic matching member to which dry gel is applied, a manufacturing method thereof, an ultrasonic transducer and an ultrasonic flowmeter using the acoustic matching member. About.
 特許文献1は、圧電体と音響整合層を含む超音波送受波器であって、前記音響整合層が無機酸化物または有機高分子の乾燥ゲルからなり、前記乾燥ゲルの固体骨格部が疎水化されてなることを特徴とする超音波送受波器を開示する。 Patent Document 1 is an ultrasonic transducer including a piezoelectric body and an acoustic matching layer, wherein the acoustic matching layer is made of a dry gel of an inorganic oxide or an organic polymer, and the solid skeleton portion of the dry gel is hydrophobized. An ultrasonic transmitter / receiver is disclosed.
特開2002-262394号公報JP 2002-262394 A
 本発明の目的は、乾燥ゲルのみによっては得にくい音響インピーダンスを持つ音響整合部材を、乾燥ゲルを用いて提供することにある。 An object of the present invention is to provide an acoustic matching member having an acoustic impedance that is difficult to obtain with only a dry gel, using the dry gel.
 そして、多種の音響インピーダンスを持つ音響整合部材、およびこの音響整合部材を備えた超音波送受波器、およびその製造方法、ならびに当該超音波送受波器を備えた超音波流量計を提供することにある。 To provide an acoustic matching member having various acoustic impedances, an ultrasonic transducer including the acoustic matching member, a manufacturing method thereof, and an ultrasonic flowmeter including the ultrasonic transducer is there.
 本発明の音響整合部材は、乾燥ゲル粒子と、結合粒子からなる音響整合部材であって、前記乾燥ゲル粒子は、内部に微細空孔を持つと共に、前記乾燥ゲル粒子間に粒子間空隙を保持し、前記結合粒子は、前記乾燥ゲル粒子間に存在して前記乾燥ゲル粒子同士を結合し、前記結合粒子の平均粒子径は、前記乾燥ゲル粒子の前記微細空孔の平均サイズより大きく、前記乾燥ゲル粒子の前記粒子間空隙の平均サイズより小さいものである。 The acoustic matching member of the present invention is an acoustic matching member composed of dry gel particles and binding particles, and the dry gel particles have fine pores therein and hold interparticle voids between the dry gel particles. The binding particles are present between the dry gel particles to bond the dry gel particles, and the average particle diameter of the binding particles is larger than the average size of the fine pores of the dry gel particles, It is smaller than the average size of the interparticle voids of the dried gel particles.
 上記音響整合部材において、前記乾燥ゲル粒子は、固体骨格部がシリカからなっていてもよい。 In the acoustic matching member, the dry gel particle may have a solid skeleton portion made of silica.
 上記音響整合部材において、前記微細空孔の平均サイズは100nm以下であってもよい。 In the acoustic matching member, the average size of the fine holes may be 100 nm or less.
 上記音響整合部材において、前記微細空孔の平均サイズは50nm未満であってもよい。 In the acoustic matching member, the average size of the fine holes may be less than 50 nm.
 上記音響整合部材において、前記乾燥ゲル粒子の平均粒子径は1μm以上であってもよい。 In the acoustic matching member, an average particle diameter of the dry gel particles may be 1 μm or more.
 上記音響整合部材において、前記結合粒子の平均粒子径は、50nm以上、10μm以下であってもよい。 In the acoustic matching member, the average particle diameter of the binding particles may be 50 nm or more and 10 μm or less.
 上記音響整合部材において、前記結合粒子は、有機系高分子であってもよい。 In the acoustic matching member, the binding particles may be an organic polymer.
 上記音響整合部材において、前記有機系高分子は、エポキシ系であってもよい。 In the acoustic matching member, the organic polymer may be epoxy.
 上記音響整合部材において、前記エポキシの平均分子量は1000~100000であってもよい。 In the acoustic matching member, the epoxy may have an average molecular weight of 1000 to 100,000.
 また、本発明の超音波送受波器は、両面に電極を有する電気機械変換素子と、前記電気機械変換素子の音波放射面に接合された上記いずれかの音響整合部材を有する。 Moreover, the ultrasonic transducer of the present invention includes an electromechanical transducer having electrodes on both surfaces, and any one of the acoustic matching members bonded to the acoustic wave emitting surface of the electromechanical transducer.
 また、本発明の超音波流量計は、上記いずれかの超音波送受波器を用いている。 Also, the ultrasonic flowmeter of the present invention uses any of the ultrasonic transducers described above.
 また、本発明の音響整合部材の製造方法は、乾燥ゲル粒子と、水系溶媒に分散したエマルジョン樹脂を混合した分散液から、水系溶媒を除去し、熱処理を行って一体化する工程を含む。 Also, the method for producing an acoustic matching member of the present invention includes a step of removing the aqueous solvent from the dispersion obtained by mixing the dried gel particles and the emulsion resin dispersed in the aqueous solvent, and performing a heat treatment to integrate them.
 上記製造方法において、乾燥ゲル粒子の平均粒子径よりもエマルジョン樹脂の平均粒子径の方が小さくてもよい。上記製造方法において、エマルジョン樹脂の平均粒子径よりも乾燥ゲル粒子の微細空孔の平均サイズの方が小さくてもよい。 In the above production method, the average particle diameter of the emulsion resin may be smaller than the average particle diameter of the dried gel particles. In the above production method, the average size of the fine pores of the dried gel particles may be smaller than the average particle size of the emulsion resin.
 本発明の音響整合部材は、乾燥ゲルのみによっては得にくい音響インピーダンスを持つ音響整合部材を、乾燥ゲルを用いて提供することができる。多種の音響インピーダンスを持つ音響整合部材、およびこの音響整合部材を備えた超音波送受波器、およびその製造方法、ならびに当該超音波送受波器を備えた超音波流量計を提供することができる。 The acoustic matching member of the present invention can provide an acoustic matching member having an acoustic impedance that is difficult to obtain by using only the dried gel, using the dried gel. An acoustic matching member having various acoustic impedances, an ultrasonic transducer including the acoustic matching member, a manufacturing method thereof, and an ultrasonic flowmeter including the ultrasonic transducer can be provided.
図1は、実施の形態1における超音波送受波器の外観を示す斜視図である。FIG. 1 is a perspective view showing the appearance of the ultrasonic transducer according to the first embodiment. 図2は、実施の形態1における音響整合部材の微細構造を示す模式図である。FIG. 2 is a schematic diagram showing the fine structure of the acoustic matching member in the first embodiment. 図3は、実施の形態1における超音波送受波器の製造工程手順を示す図である。FIG. 3 is a diagram illustrating a manufacturing process procedure of the ultrasonic transducer according to the first embodiment. 図4は、実施の形態1における超音波送受波器の製造工程手順を示す図である。FIG. 4 is a diagram illustrating a manufacturing process procedure of the ultrasonic transducer according to the first embodiment. 図5は、実施の形態1における結合粒子サイズと分子量との関係を示す図である。FIG. 5 is a diagram showing the relationship between the binding particle size and the molecular weight in the first embodiment. 図6は、実施の形態1における音響整合部材の鋳込み冶具を示す図である。FIG. 6 is a diagram illustrating a casting jig for the acoustic matching member according to the first embodiment. 図7Aは、1気圧の空気に対しての超音波送受波器の送受波特性を示す図である。FIG. 7A is a diagram showing the transmission / reception characteristics of the ultrasonic transducer with respect to 1 atmosphere of air. 図7Bは、1気圧の空気に対しての超音波送受波器の送受波特性を示す図である。FIG. 7B is a diagram illustrating the transmission / reception characteristics of the ultrasonic transducer with respect to 1 atmosphere of air. 図8Aは、50気圧の空気に対しての超音波送受波器の送受波特性を示す図である。FIG. 8A is a diagram showing the transmission / reception characteristics of the ultrasonic transducer with respect to air at 50 atmospheres. 図8Bは、50気圧の空気に対しての超音波送受波器の送受波特性を示す図である。FIG. 8B is a diagram illustrating the transmission / reception characteristics of the ultrasonic transducer with respect to air at 50 atmospheres. 図9は、従来の超音波流量計の構造を示す断面図である。FIG. 9 is a cross-sectional view showing the structure of a conventional ultrasonic flowmeter. 図10は、従来の超音波送受波器の構造を示す断面図である。FIG. 10 is a cross-sectional view showing the structure of a conventional ultrasonic transducer.
 はじめに本発明の音響整合部材が搭載された超音波センサの一用途である超音波流量計について説明する。 First, an ultrasonic flowmeter that is one application of an ultrasonic sensor equipped with the acoustic matching member of the present invention will be described.
 近年、超音波が伝搬路を伝達する時間を計測し、流体の移動速度を測定して流量を計測する超音波流計がガスメータ等に利用されつつある。図9は、このようなタイプの超音波流量計の主要部断面構成図を示している。 In recent years, an ultrasonic flowmeter that measures the time during which ultrasonic waves travel through a propagation path, measures the moving speed of a fluid, and measures the flow rate is being used in gas meters and the like. FIG. 9 shows a cross-sectional configuration diagram of the main part of this type of ultrasonic flowmeter.
 図9に示す超音波流量計では、流量を測定すべき被測定対象流体が管内を流れるように配置されている。管壁102には、一対の超音波送受波器101a、101bが相対して設置されている。超音波送受波器101a、101bは、電気機械変換素子として圧電セラミック等の圧電体を用いて構成されており、圧電ブザー、圧電発振子と同様に共振特性を示す。 In the ultrasonic flow meter shown in FIG. 9, the fluid to be measured whose flow rate is to be measured is arranged to flow in the pipe. On the tube wall 102, a pair of ultrasonic transducers 101a and 101b are installed facing each other. The ultrasonic transducers 101a and 101b are configured using a piezoelectric material such as a piezoelectric ceramic as an electromechanical transducer, and exhibit resonance characteristics like a piezoelectric buzzer and a piezoelectric oscillator.
 図9の例では、最初の段階で、超音波送受波器101aが超音波送波器として用いられ、超音波送受波器101bが超音波受波器として用いられる。この段階においては、超音波送受波器101aの共振周波数近傍における周波数を持つ交流電圧を超音波送受波器101a内の圧電体に印加する。すると、超音波送受波器101aは超音波送波器として機能し、流体(例えば、天然ガスや水素ガス)中に超音波を放射する。放射された超音波は、経路L1に伝搬して、超音波受波器101bに到達する。このとき、超音波送受波器101bは受波器として機能し、超音波を受けて電圧に変換する。 In the example of FIG. 9, at the first stage, the ultrasonic transducer 101a is used as an ultrasonic transmitter and the ultrasonic transducer 101b is used as an ultrasonic receiver. In this stage, an alternating voltage having a frequency near the resonance frequency of the ultrasonic transducer 101a is applied to the piezoelectric body in the ultrasonic transducer 101a. Then, the ultrasonic transducer 101a functions as an ultrasonic transducer and radiates ultrasonic waves into a fluid (for example, natural gas or hydrogen gas). The emitted ultrasonic wave propagates to the path L1 and reaches the ultrasonic wave receiver 101b. At this time, the ultrasonic transmitter / receiver 101b functions as a receiver, and receives the ultrasonic wave and converts it into a voltage.
 次に、超音波送受波器101bが超音波送波器として機能し、超音波送受波器101aが超音波受波器として機能する。すなわち、超音波送受波器101bの共振周波数近傍の周波数を持つ交流電圧を超音波送受波器101b内の圧電体に印加することにより、超音波送受波器101bから流体中に超音波を放射させる。放射された超音波は、経路L2を伝搬して、超音波送受波器101aに到達する。超音波送受波器101aは伝搬してきた超音波を受けて電圧に変換する。 Next, the ultrasonic transducer 101b functions as an ultrasonic transducer, and the ultrasonic transducer 101a functions as an ultrasonic receiver. That is, by applying an AC voltage having a frequency near the resonance frequency of the ultrasonic transducer 101b to the piezoelectric body in the ultrasonic transducer 101b, ultrasonic waves are radiated from the ultrasonic transducer 101b into the fluid. . The emitted ultrasonic wave propagates along the path L2 and reaches the ultrasonic transducer 101a. The ultrasonic transducer 101a receives the transmitted ultrasonic wave and converts it into a voltage.
 このように、超音波送受波器101aおよび101bは、送波器としての機能と受波器としての機能を交互に果たすために、一般に「超音波送受波器」と総称される。 Thus, the ultrasonic transducers 101a and 101b are generally collectively referred to as “ultrasonic transducers” in order to alternately function as a transmitter and a function as a receiver.
 図9に示す超音波流量計では、連続的に交流電圧を印加すると、超音波送受波器から連続的に超音波が放射されて伝搬時間を測定することが困難になるので、通常は一定時間のみ超音波を送波するようバースト電圧信号が駆動電圧として用いられる。 In the ultrasonic flow meter shown in FIG. 9, when alternating voltage is continuously applied, ultrasonic waves are continuously emitted from the ultrasonic transducer and it becomes difficult to measure the propagation time. The burst voltage signal is used as the drive voltage so that only ultrasonic waves are transmitted.
 以下、上記超音波流量計の測定原理を、より詳細に説明する。 Hereinafter, the measurement principle of the ultrasonic flowmeter will be described in more detail.
 まず、駆動用のバースト電圧信号を超音波送受波器101aに印加することにより、超音波送受波器101aから超音波バースト信号を放射する。これにより、超音波バースト信号は経路L1を伝搬してt時間後に超音波送受波器101bに到達する。経路L1の距離は、経路L2の距離と等しく、Lであるとする。超音波送受波器101bは、伝達して来た超音波バースト信号のみを高いSN比で電気バースト信号に変換することができる。 First, an ultrasonic burst signal is radiated from the ultrasonic transducer 101a by applying a burst voltage signal for driving to the ultrasonic transducer 101a. As a result, the ultrasonic burst signal propagates through the path L1 and reaches the ultrasonic transducer 101b after time t. The distance of the path L1 is equal to the distance of the path L2, and is L. The ultrasonic transducer 101b can convert only the transmitted ultrasonic burst signal into an electric burst signal with a high S / N ratio.
 図9において、管の中を流れる流体の流速をV、流体中の超音波の速度をC、流体の流れる方向と超音波パルスの伝搬方向の角度をθとする。超音波送受波器101aを超音波送波器、超音波送受波器101bを超音波受波器として用いたときに、超音波送受波器101aから出た超音波パルスが超音波送受波器101bに到達する時間をt1とすれば、次式(式1)が成立する。 9, the flow velocity of the fluid flowing in the pipe is V, the velocity of the ultrasonic wave in the fluid is C, and the angle between the direction of flow of the fluid and the propagation direction of the ultrasonic pulse is θ. When the ultrasonic transducer 101a is used as an ultrasonic transmitter and the ultrasonic transducer 101b is used as an ultrasonic receiver, an ultrasonic pulse emitted from the ultrasonic transmitter / receiver 101a is converted into an ultrasonic transducer 101b. If the time to reach is t1, the following equation (Equation 1) holds.
  t1=L/(C+Vcosθ) ・・・(1)
 逆に、超音波送受波器101bを超音波送波器として、超音波送受波器101を超音波受波器として用いたときの到達する時間をt2とすれば、次式(式2)の関係が成立する。
t1 = L / (C + V cos θ) (1)
On the other hand, if the arrival time when the ultrasonic transducer 101b is used as the ultrasonic transmitter and the ultrasonic transducer 101 is used as the ultrasonic receiver is t2, the following equation (Equation 2) is satisfied. A relationship is established.
  t2=L/(C-Vcosθ) ・・・(2)
 ここで伝搬時間t1,t2の逆数の差は、次式(式3)で示される。
t2 = L / (C−Vcos θ) (2)
Here, the difference between the reciprocals of the propagation times t1 and t2 is expressed by the following equation (Equation 3).
  1/t1-1/t2=2Vcosθ/L ・・・(3)
 また、(式3)を変形すると次式(式4)が得られる。
1 / t1-1 / t2 = 2Vcos θ / L (3)
Further, when (Expression 3) is modified, the following expression (Expression 4) is obtained.
  V=(L/2cosθ)・(1/t1-1/t2) ・・・(4)
 (式4)によれば、超音波の伝搬経路の距離Lと、伝搬時間t1、t2とから、流体の流速Vを求めることができる。そしてその流速Vと、流路の断面積から流量を決定することができる。
V = (L / 2 cos θ) · (1 / t1-1 / t2) (4)
According to (Formula 4), the flow velocity V of the fluid can be obtained from the distance L of the propagation path of ultrasonic waves and the propagation times t1 and t2. The flow rate can be determined from the flow velocity V and the cross-sectional area of the flow path.
 このような超音波流量計では高い精度が求められる。精度を高めるためには、超音波信号のSN比が高いことが必要となる。 Such an ultrasonic flowmeter requires high accuracy. In order to improve accuracy, it is necessary that the S / N ratio of the ultrasonic signal is high.
 超音波信号のSN比を高めるために、超音波送受波器内の圧電体の超音波送受波面に形成される音響整合部材の音響インピーダンスが重要となる。音響整合部材は、超音波送受波器が気体に超音波を放射(送波)する場合、および、気体を伝搬してきた超音波を受け取る場合に重要な役割を果たす。 In order to increase the S / N ratio of the ultrasonic signal, the acoustic impedance of the acoustic matching member formed on the ultrasonic wave transmitting / receiving surface of the piezoelectric body in the ultrasonic wave transmitter / receiver is important. The acoustic matching member plays an important role when the ultrasonic transducer radiates (transmits) an ultrasonic wave to a gas and receives an ultrasonic wave that has propagated through the gas.
 以下、図10を参照しながら、音響整合部材の役割を説明する。図10は、従来の超音波送受波器103の断面構成を示している。 Hereinafter, the role of the acoustic matching member will be described with reference to FIG. FIG. 10 shows a cross-sectional configuration of a conventional ultrasonic transducer 103.
 図示されている超音波送受波器103は、圧電体104と、圧電体103の一方の面に接合された音響整合部材105とを備えている。音響整合部材105は、エポキシ系の接着剤によって圧電体105の一方の面に接着されている。 The illustrated ultrasonic transducer 103 includes a piezoelectric body 104 and an acoustic matching member 105 bonded to one surface of the piezoelectric body 103. The acoustic matching member 105 is bonded to one surface of the piezoelectric body 105 with an epoxy adhesive.
 圧電体104の超音波振動は、この接着剤からなる接着層を介して音響整合部材105に伝わる。この後、超音波振動は、音響整合部材105と接する気体や、液体などの流体(超音波伝搬媒体)に音波として放射される。 The ultrasonic vibration of the piezoelectric body 104 is transmitted to the acoustic matching member 105 through the adhesive layer made of this adhesive. Thereafter, the ultrasonic vibration is radiated as a sound wave to a fluid (ultrasonic propagation medium) such as a gas or a liquid in contact with the acoustic matching member 105.
 音響整合部材105の役割は、圧電体の振動を効率良く流体に伝搬させることにある。 The role of the acoustic matching member 105 is to efficiently propagate the vibration of the piezoelectric body to the fluid.
 以下、この点をより詳細に説明する。 Hereinafter, this point will be described in more detail.
 物質の音響インピーダンスZは、その物質中の音速Cと物質の密度ρとを用いて次式(式5)によって定義される。 The acoustic impedance Z of a substance is defined by the following formula (Formula 5) using the speed of sound C in the substance and the density ρ of the substance.
  Z=ρ×C ・・・(5)
 超音波の放射対象となる気体の音響インピーダンスは、圧電体の音響インピーダンスと大きく異なっている。一般的な圧電体であるPZT(チタン酸ジルコン酸鉛)等のピエゾセラミックスの音響インピーダンスZは、2.9×10kg/m/秒程度である。これに対して、空気の音響インピーダンスZは4.0×10kg/m/秒程度である。
Z = ρ × C (5)
The acoustic impedance of the gas to be radiated by ultrasonic waves is significantly different from the acoustic impedance of the piezoelectric body. An acoustic impedance Z 1 of a piezoelectric ceramic such as PZT (lead zirconate titanate) which is a general piezoelectric body is about 2.9 × 10 7 kg / m 2 / sec. In contrast, the acoustic impedance Z 3 of air is 4.0 × 10 2 kg / m of about 2 / sec.
 音響インピーダンスの異なる境界面では、音波が反射しやすく、境界面を透過する音波の強度が低下する。このため、圧電体と気体の間に、次式(式6)で示す音響インピーダンスZを持つ物質を挿入することが行われている。 At the boundary surfaces with different acoustic impedances, the sound waves are easily reflected, and the intensity of the sound waves transmitted through the boundary surfaces is reduced. Therefore, between the piezoelectric body and the gas, and it is the practice to insert a material having an acoustic impedance Z 2 represented by the following formula (6).
 Z=(Z×Z)^(1/2) ・・・(6)
 このような音響インピーダンスZをもつ物質を挿入すると、境界面での反射が抑えられ、音波の透過率が向上する事が知られている。
Z 2 = (Z 1 × Z 3 ) ^ (1/2) (6)
Upon insertion of the substances with such acoustic impedance Z 2, is suppressed reflection at the interface, the transmittance of the wave are known to improve.
 ここで空気のような気体の流量を計測する場合を考える。 Suppose here that the flow rate of a gas such as air is measured.
 圧電体の音響インピーダンスZを2.9×10kg/m/秒、空気の音響インピーダンスZを4.0×10kg/m/秒とした場合、(式6)を満たす音響インピーダンスZは、1.1×10kg/m/秒程度となる。 When the acoustic impedance Z 1 of the piezoelectric body is 2.9 × 10 7 kg / m 2 / sec and the acoustic impedance Z 3 of the air is 4.0 × 10 2 kg / m 2 / sec, (Equation 6) is satisfied. The acoustic impedance Z 2 is about 1.1 × 10 5 kg / m 2 / sec.
 1.1×10kg/m/秒の値を持つ物質は、当然に、(式5)、すなわち、Z=ρ×Cを満足しなければならない。このような物質を固体材料の中から見出すことは極めて難しい。その理由は、固体でありながら、密度ρが十分に小さく、かつ、音速Cが低いことが要求されるからである。 A substance with a value of 1.1 × 10 5 kg / m 2 / sec must of course satisfy (Equation 5), ie Z 2 = ρ × C. It is extremely difficult to find such substances from solid materials. The reason is that it is required to have a sufficiently low density ρ and a low sound velocity C while being solid.
 特許文献1に開示された音響整合材料は、(式6)を充分に満足する。この材料は、耐久性を付与した乾燥ゲルを用いて作製され、密度ρが小さく、かつ、音速Cも低い。乾燥ゲルなどの音響インピーダンスの極めて低い材料から形成した音響整合部材を備えた超音波送受波器は、気体との間で効率的かつ高感度で超音波の送受波を行うことができ、その結果、気体の流量を高い精度で測定することが可能になる。 The acoustic matching material disclosed in Patent Document 1 sufficiently satisfies (Equation 6). This material is produced using a dry gel imparted with durability, has a low density ρ, and a low sound velocity C. An ultrasonic transducer equipped with an acoustic matching member made of a material with extremely low acoustic impedance, such as dry gel, can transmit and receive ultrasonic waves efficiently and with high sensitivity to gas. The gas flow rate can be measured with high accuracy.
 以上のような乾燥ゲルはゾルゲル反応で形成される多孔質体であり、数nmの粒子が互いに一部を接合する形でネットワークを形成しており、数nm程度の骨格と、数nm程度の空孔から形成されている。 The dry gel as described above is a porous body formed by a sol-gel reaction, and a network is formed in such a way that particles of several nm are joined to each other, and a skeleton of about several nm and a size of about several nm. It is formed from holes.
 このような数nmレベルの微細な空孔に液状物質が出入りする際には、毛管力による大きな力が発生し、乾燥ゲル本体の骨格構造を破壊してしまう場合がある。骨格構造が壊れるとブロック状の形状が保持できず、また低密度特性も失われてしまう。このため、液状の接着剤を用いたブロック化や、接合は極めて困難である。 When a liquid substance enters and exits such fine pores on the order of several nanometers, a large force is generated by capillary force, which may destroy the skeleton structure of the dried gel body. If the skeletal structure is broken, the block shape cannot be maintained and the low density characteristics are lost. For this reason, it is very difficult to form a block using a liquid adhesive or to join it.
 また、空気より音響インピーダンスの大きなガスを計測する用途があり、このような場合には、より音響インピーダンスの大きな音響整合部材が必要とされる。 Also, there is an application for measuring a gas having a larger acoustic impedance than air. In such a case, an acoustic matching member having a larger acoustic impedance is required.
 具体的には、圧縮空気や、臭素などの比重の大きな気体がある。このような気体の計測を高精度に行うには、このような気体に適した音響整合部材が必要となり、これは乾燥ゲルのみで形成される音響整合部材とは異なる音響インピーダンスを持つ音響整合部材が必要となる。 Specifically, there are gases with large specific gravity such as compressed air and bromine. In order to perform such gas measurement with high accuracy, an acoustic matching member suitable for such a gas is required, and this is an acoustic matching member having an acoustic impedance different from that of an acoustic matching member formed only of dry gel. Is required.
 本発明者らは、上記検討の結果、以下の実施形態を着想した。 The present inventors have conceived the following embodiment as a result of the above examination.
 以下、添付の図面を参照しながら、本発明の実施の形態を説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、超音波送受波器の実施の形態1における一断面を示している。図示されている超音波送受波器1は、圧電体2(電気機械変換素子)と、圧電体2の両面に設けられた一対の電極3a、3bと、電極3aを介して圧電体2の主面(超音波送受波面)に接合された音響整合部材4と、を備えている。
(Embodiment 1)
FIG. 1 shows a section of the ultrasonic transducer according to the first embodiment. The illustrated ultrasonic transducer 1 includes a piezoelectric body 2 (electromechanical transducer), a pair of electrodes 3a and 3b provided on both surfaces of the piezoelectric body 2, and the main body of the piezoelectric body 2 via the electrodes 3a. And an acoustic matching member 4 joined to a surface (ultrasonic wave transmitting / receiving surface).
 圧電体2は、圧電性を有する材料から形成され、厚さ方向(図1の上下方向)に分極されている。圧電体2の上面側に設けられた電極3aと下面側に設けられた電極3bとの間に電圧信号が印加されると、電圧信号に基づいて圧電体2が伸縮し、圧電体2の超音波送受波面から超音波が放射されることになる。この超音波は、音響整合部材4を介して、超音波の伝搬媒体(例えば、気体)5へ放射される。 The piezoelectric body 2 is formed of a piezoelectric material and is polarized in the thickness direction (vertical direction in FIG. 1). When a voltage signal is applied between the electrode 3 a provided on the upper surface side of the piezoelectric body 2 and the electrode 3 b provided on the lower surface side, the piezoelectric body 2 expands and contracts based on the voltage signal and Ultrasonic waves are emitted from the acoustic wave transmitting / receiving surface. The ultrasonic waves are radiated to an ultrasonic propagation medium (for example, gas) 5 through the acoustic matching member 4.
 一方、伝搬媒体5を伝搬してきた超音波は、音響整合部材4を介して圧電体2へ達し、電極3a、3bの間に電圧信号を発生させる。このように本実施の形態の超音波送受波器1は、1つで超音波の送信および受信の両方を行うことができる。 On the other hand, the ultrasonic wave propagating through the propagation medium 5 reaches the piezoelectric body 2 via the acoustic matching member 4, and generates a voltage signal between the electrodes 3a and 3b. Thus, the ultrasonic transducer 1 of this Embodiment can perform both transmission and reception of an ultrasonic wave with one.
 本実施の形態で用いる圧電体2の材料は任意であり、公知の圧電性材料を用いることができる。また、圧電体2の代わりに、電歪体を用いてもよい。電歪体を用いる場合にも、その材料は任意であり、公知の材料を用いることができる。また、電極3a、3bも公知の導電材料から形成される。 The material of the piezoelectric body 2 used in the present embodiment is arbitrary, and a known piezoelectric material can be used. Further, instead of the piezoelectric body 2, an electrostrictive body may be used. Also when using an electrostrictive body, the material is arbitrary and a well-known material can be used. The electrodes 3a and 3b are also formed from a known conductive material.
 音響整合部材4は、圧電体2で発生した超音波を伝搬媒体5へ効率よく伝搬させる役割を果たすとともに、伝搬媒体5の中を伝搬してきた超音波を効率よく圧電体2へ伝える役割を果たす。 The acoustic matching member 4 plays a role of efficiently propagating the ultrasonic waves generated in the piezoelectric body 2 to the propagation medium 5 and also plays a role of efficiently transmitting the ultrasonic waves propagated in the propagation medium 5 to the piezoelectric body 2. .
 本実施の形態の音響整合部材4は、数nm程度のシリカ粒子が、同レベルの空孔を持ちながら結合した乾燥ゲル粒子8を、結合粒子10で接合したブロック体からなる。音響整合部材4の音波伝搬方向の厚さは、送受信する超音波の波長の1/4程度となるように設定されている。 The acoustic matching member 4 of the present embodiment is composed of a block body in which dry gel particles 8 to which silica particles of about several nanometers are bonded while having pores of the same level are bonded by the bonded particles 10. The thickness of the acoustic matching member 4 in the sound wave propagation direction is set to be about ¼ of the wavelength of ultrasonic waves to be transmitted and received.
 本実施の形態の音響整合部材4の、内部構造の模式図を図2に示す。図2において、6は骨格部分を構成する中実粒子であり、7は中実粒子間に存在する空孔であり、8は乾燥ゲル粒子であり、複数の中実粒子6が、空孔を持ちながら結合されて形成されたものである。 FIG. 2 shows a schematic diagram of the internal structure of the acoustic matching member 4 of the present embodiment. In FIG. 2, 6 is a solid particle constituting the skeleton portion, 7 is a void existing between the solid particles, 8 is a dry gel particle, and a plurality of solid particles 6 have voids. It is formed by being held and held.
 9は乾燥ゲル粒子8の間に存在する空隙であり、10は乾燥ゲル粒子8を結合する結合粒子である。 9 is a void existing between the dry gel particles 8, and 10 is a binding particle that binds the dry gel particles 8.
 本実施の形態における結合粒子10は、乾燥ゲル粒子8の内部空孔(微細空孔)より大きく、かつ乾燥ゲル粒子8間の空隙より小さなサイズである。このようなサイズの結合粒子10は、乾燥ゲル粒子8内の空孔にはサイズが小さすぎて侵入することができないため、乾燥ゲルの特徴である低密度特性を失うことがない。 The binding particles 10 in the present embodiment have a size larger than the internal pores (fine pores) of the dry gel particles 8 and smaller than the gaps between the dry gel particles 8. Since the binding particles 10 having such a size are too small to enter the pores in the dry gel particles 8, the low density characteristics that are characteristic of the dry gel are not lost.
 結合粒子10の平均粒子径は、レーザー回折法(例えば、島津製作所社製SALD)により測定する。乾燥ゲル粒子8の平均粒子径は、レーザー回折法(例えば、島津製作所社製SALD)により測定する。 The average particle size of the bonded particles 10 is measured by a laser diffraction method (for example, SALD manufactured by Shimadzu Corporation). The average particle diameter of the dried gel particles 8 is measured by a laser diffraction method (for example, SALD manufactured by Shimadzu Corporation).
 乾燥ゲル粒子8の内部空孔の平均サイズは、ガス吸着法(例えば、日本ベル株式会社製BELSORP-miniII)により測定する。乾燥ゲル粒子8の粒子間空隙9は、水銀圧入法(例えば、島津製作所社製オートポア)により測定する。 The average size of the internal pores of the dried gel particles 8 is measured by a gas adsorption method (for example, BELSORP-miniII manufactured by Nippon Bell Co., Ltd.). The intergranular space 9 of the dried gel particle 8 is measured by a mercury intrusion method (for example, Autopore manufactured by Shimadzu Corporation).
 また、乾燥ゲル粒子8の粒子間空隙9に対しては、結合粒子10のサイズが十分に小さいため、容易に侵入し、乾燥ゲル粒子8同士を接合することが可能である。本実施の形態における結合粒子10は樹脂系材料からなる。 Further, since the size of the binding particle 10 is sufficiently small with respect to the inter-particle gap 9 of the dry gel particle 8, it is possible to easily enter and join the dry gel particles 8 to each other. The binding particles 10 in the present embodiment are made of a resin material.
 本実施の形態の音響整合部材4は、乾燥ゲルのみで構成された音響整合部材に比べ、結合粒子10の比率を調整することで、多様な音響インピーダンスを実現することが出来るため、幅広い気体の特性に応じた適切な音響インピーダンスを実現して、効率的な超音波の送受信を行う超音波送受波器を実現することが出来る。 Since the acoustic matching member 4 of the present embodiment can realize various acoustic impedances by adjusting the ratio of the binding particles 10 as compared with the acoustic matching member composed only of the dry gel, An ultrasonic transducer that efficiently transmits and receives ultrasonic waves can be realized by realizing an appropriate acoustic impedance according to the characteristics.
 本実施の形態の音響整合部材は、内部にマイクロ~メソサイズの空孔を有する乾燥ゲル粒子を結合粒子で結合した複合材料であり、乾燥ゲル粒子を結合する結合粒子は、乾燥ゲル粒子の内部空孔サイズより大きく、かつ乾燥ゲル粒子間の空隙より小さなサイズを持つ。 The acoustic matching member according to the present embodiment is a composite material in which dry gel particles having micro to meso-sized pores are bound together with binding particles, and the binding particles binding the dry gel particles are the internal voids of the dry gel particles. It has a size larger than the pore size and smaller than the gap between the dried gel particles.
 このため結合粒子は乾燥ゲル粒子内の空孔に侵入が出来ず、かつ乾燥ゲル粒子の隙間に侵入することが可能である。 For this reason, the binding particles cannot enter the pores in the dry gel particles, and can enter the gaps between the dry gel particles.
 結合粒子は乾燥ゲルの微細な空孔に入り込めないため、乾燥ゲルの低密度特性を失うことがない。また乾燥ゲル粒子の粒子間の空隙には侵入することが可能なため、乾燥ゲル粒子同士を接合することが可能である。 Since the binding particles cannot enter the fine pores of the dried gel, the low density characteristics of the dried gel are not lost. Moreover, since it can penetrate | invade into the space | gap between the particle | grains of a dry gel particle, it is possible to join dry gel particle | grains.
 更に、乾燥ゲル粒子を結合する粒子樹脂の配合比率を調整することで、音響整合部材の密度、および音速を大きく変えることが容易にできるため、多くの用途に適した音響整合部材を容易に形成することが出来る。 Furthermore, by adjusting the blending ratio of the particle resin that binds the dry gel particles, it is easy to change the density and sound speed of the acoustic matching member, so it is easy to form an acoustic matching member suitable for many applications. I can do it.
 以下、本実施の形態における超音波送受波器1の製造方法を説明する。 Hereinafter, a method for manufacturing the ultrasonic transducer 1 in the present embodiment will be described.
 まず、送信および/または受信の対象となる超音波の波長に合わせた圧電体2を用意する。圧電体2としては、圧電セラミックスや圧電単結晶など圧電性の高い材料を用いてもよい。圧電セラミックとしては、チタン酸ジルコン酸鉛、チタン酸バリウム、チタン酸鉛、ニオブ酸鉛などを用いることができる。また圧電単結晶としては、チタン酸ジルコン酸鉛単結晶、ニオブ酸リチウム、水晶などを用いることができる。 First, a piezoelectric body 2 is prepared according to the wavelength of ultrasonic waves to be transmitted and / or received. As the piezoelectric body 2, a material having high piezoelectricity such as piezoelectric ceramics or a piezoelectric single crystal may be used. As the piezoelectric ceramic, lead zirconate titanate, barium titanate, lead titanate, lead niobate, or the like can be used. As the piezoelectric single crystal, lead zirconate titanate single crystal, lithium niobate, quartz, or the like can be used.
 本実施の形態では、圧電体2としてチタン酸ジルコン酸鉛系セラミックスを用い、送受波する超音波の周波数を500kHzに設定している。このような超音波を圧電体2が効率よく送受波できるようにするため、圧電体2の共振周波数を約500kHzに設計する。 In this embodiment, lead zirconate titanate ceramics are used as the piezoelectric body 2, and the frequency of ultrasonic waves to be transmitted and received is set to 500 kHz. In order for the piezoelectric body 2 to efficiently transmit and receive such ultrasonic waves, the resonance frequency of the piezoelectric body 2 is designed to be about 500 kHz.
 圧電体2は、その厚さを超音波の波長の1/2の大きさに設定したときに強く共振し、超音波の送受信効率が良くなる。チタン酸ジルコン酸鉛系セラミックスの音速は約3800m/秒であるので、圧電体2における周波数が500kHzの超音波の波長は、7.6mmとなる。このため、本実施の形態では、厚さが約3.8mmで、直径が12mmの円柱形状を有する圧電体2を用いる。 The piezoelectric body 2 resonates strongly when its thickness is set to half the wavelength of the ultrasonic wave, and the transmission / reception efficiency of the ultrasonic wave is improved. Since the sound velocity of the lead zirconate titanate ceramic is about 3800 m / sec, the wavelength of the ultrasonic wave having a frequency of 500 kHz in the piezoelectric body 2 is 7.6 mm. For this reason, in this embodiment, the piezoelectric body 2 having a cylindrical shape with a thickness of about 3.8 mm and a diameter of 12 mm is used.
 圧電体2の上下両面には、焼付けによる銀製の電極3a、3bが設けられ、圧電体2は、この方向に分極処理されている。 The upper and lower surfaces of the piezoelectric body 2 are provided with silver electrodes 3a and 3b by baking, and the piezoelectric body 2 is polarized in this direction.
 音響整合部材4は、図1に示したように圧電体2と同じ直径12mmを有し、厚さは先に述べたように1/4波長としている。本実施の形態で用いている音響整合部材の音速は1500m/秒であるので、500kHzにおける1/4波長である約0.75mmとしている。密度は500kg/mであり、音響インピーダンスは7.5×10kg/m/秒である。 As shown in FIG. 1, the acoustic matching member 4 has the same diameter 12 mm as that of the piezoelectric body 2 and has a thickness of ¼ wavelength as described above. Since the sound velocity of the acoustic matching member used in the present embodiment is 1500 m / sec, it is about 0.75 mm, which is a quarter wavelength at 500 kHz. The density is 500 kg / m 3 and the acoustic impedance is 7.5 × 10 5 kg / m 2 / sec.
 以下、図3、および図4を参照しながら、音響整合部材4の製造方法について説明する。 Hereinafter, a method for manufacturing the acoustic matching member 4 will be described with reference to FIGS. 3 and 4.
 図3は、音響整合部材4の乾燥ゲル粒子8の製造フローを示しており、図4は乾燥ゲル粒子8を結合粒子10で結合する製造フローを示している。 FIG. 3 shows a manufacturing flow of the dry gel particles 8 of the acoustic matching member 4, and FIG. 4 shows a manufacturing flow of bonding the dry gel particles 8 with the binding particles 10.
 図3のフローで得られるゲル粒子分散液が、図4における製造フローの入力になっており、図3のプロセスの後に、図4のプロセスがシリアルに続いていく関係にある。 The gel particle dispersion obtained by the flow of FIG. 3 is an input of the production flow in FIG. 4, and the process of FIG. 4 is serially followed after the process of FIG.
 はじめに図3を参照しながら、乾燥ゲル粒子8の製造方法について説明する。図3全体の流れは、ゲル原料液を調合し、ブロック状の乾燥ゲルを形成した後、これを粉砕することで乾燥ゲル粒子8とするものである。 First, a method for producing the dried gel particles 8 will be described with reference to FIG. The overall flow of FIG. 3 is to prepare dry gel particles 8 by preparing a gel-like raw material liquid and forming a block-shaped dry gel and then pulverizing it.
 本実施の形態では、乾燥ゲルは固体骨格部である中実粒子6がシリカ(SiO)からなる乾燥ゲルを用いる。乾燥ゲルの骨格部分となる中実粒子のサイズは数nm程度であり、乾燥ゲル粒子8内の空孔サイズは数nm~数十nm程度の比較的広い分散を持っている。 In the present embodiment, a dry gel is used in which the solid particles 6 that are solid skeleton portions are made of silica (SiO 2 ). The size of the solid particles serving as the skeleton part of the dried gel is about several nm, and the pore size in the dried gel particles 8 has a relatively wide dispersion of about several nm to several tens of nm.
 なお、乾燥ゲル粒子8としては、上記の他、アルミナ、酸化クロム、酸化スズ、カーボン、あるいはレゾルシノールとホルムアルデヒドの共重合体ポリマー等を用いてもよい。 In addition to the above, the dried gel particles 8 may be alumina, chromium oxide, tin oxide, carbon, or a copolymer polymer of resorcinol and formaldehyde.
 また、最終的に形成される乾燥ゲル粒子8の大きさは数~数十μm程度のサイズである。 Further, the size of the dried gel particles 8 finally formed is about several to several tens of μm.
 以下、より具体的な製造手順について説明する。 Hereinafter, a more specific manufacturing procedure will be described.
 はじめに、STEP1では乾燥ゲル原料液の調合を行う。乾燥ゲルの骨格部分の原料となるテトラエトキシシラン等のアルコキシシランと、エタノール、水、触媒(アンモニア、塩酸等)を混合した原料液を作製する。 First, in STEP 1, a dry gel material solution is prepared. A raw material liquid is prepared by mixing alkoxysilane such as tetraethoxysilane, which is a raw material of the skeleton portion of the dried gel, with ethanol, water, and a catalyst (ammonia, hydrochloric acid, etc.).
 ゲル原料液の配合比率は一例として、テトラエトキシシラン6%、エタノール20%、0.1規定のアンモニア水74%とすることが出来る。テトラエトキシシランのゲル原料液中における体積比率が形成される乾燥ゲルの密度に直接影響する。 As an example, the mixing ratio of the gel raw material liquid may be 6% tetraethoxysilane, 20% ethanol, and 74% 0.1N ammonia water. The volume ratio of tetraethoxysilane in the gel raw material solution directly affects the density of the dried gel formed.
 テトラエトキシシランの体積比が小さいと、密度の小さい乾燥ゲルが生成され、体積比が大きいと密度の大きい乾燥ゲルが生成される。 When the volume ratio of tetraethoxysilane is small, a dry gel with a low density is generated, and when the volume ratio is large, a dry gel with a high density is generated.
 本実施の形態の乾燥ゲルでは、一例として乾燥ゲルの低密度特性を活かすため、密度0.1程度となるようなゲル原料液の配合比率を設定している。またこの密度は、このプロセスで結合粒子10によって接合し、音響整合部材として用いる際に取り扱いが容易で、強度の保てる密度となるように設定している。 In the dry gel of the present embodiment, for example, in order to take advantage of the low density characteristics of the dry gel, the blending ratio of the gel raw material liquid is set to a density of about 0.1. Further, this density is set so as to be a density that can be easily handled and can maintain strength when bonded by the binding particles 10 in this process and used as an acoustic matching member.
 次に、STEP2では、調合したゲル原料液を恒温槽などの中で加熱し重合反応を開始、加速させる。一例として60℃の恒温槽中で24時間放置することで重合反応を完了する。温度と重合反応の速度はほぼ比例関係にあり、重合反応の速度はゲル原料液の粒子サイズに大きく影響を与えるため、所望のゲルを得るために反応温度の制御は重要である。また重合反応速度は、ゲルの特性の安定性にも関係している。 Next, in STEP 2, the prepared gel raw material solution is heated in a thermostatic chamber or the like to start and accelerate the polymerization reaction. As an example, the polymerization reaction is completed by leaving it in a constant temperature bath at 60 ° C. for 24 hours. Since the temperature and the rate of the polymerization reaction are in a substantially proportional relationship, and the rate of the polymerization reaction greatly affects the particle size of the gel raw material liquid, it is important to control the reaction temperature in order to obtain a desired gel. The polymerization reaction rate is also related to the stability of the properties of the gel.
 重合速度が早いと、粒子サイズ、および空孔サイズが小さくなる傾向にあり、逆に反応速度が遅いと粒子サイズ、および空孔サイズが大きくなる傾向にある。 When the polymerization rate is high, the particle size and the pore size tend to be small, and when the reaction rate is low, the particle size and the pore size tend to be large.
 粒子サイズが小さい乾燥ゲルは音速が低い傾向があり、逆に粒子サイズが大きい乾燥ゲルは音速が高い傾向がある。 ¡Dry gels with small particle size tend to have low sound speed, and conversely dry gels with large particle size tend to have high sound speed.
 気体用音響整合部材として用いる場合には、音速が遅いほうが有利であるため、数nm程度の粒子サイズとなるように反応速度、すなわち加熱温度を早めになるように制御してもよい。 When using it as an acoustic matching member for gas, it is advantageous that the sound speed is slower, so that the reaction rate, that is, the heating temperature, may be controlled so that the particle size is about several nanometers.
 先に述べたようにゲル原料液の配合比率と、反応温度を調整することで、ゲル骨格および空孔粒子が適切に設定された比重0.1、内部空孔サイズが1~20nm程度の乾燥ゲルを得ることが出来る。 As described above, by adjusting the blending ratio of the gel raw material liquid and the reaction temperature, the specific gravity of the gel skeleton and pore particles is appropriately set to 0.1, and the internal pore size is about 1 to 20 nm A gel can be obtained.
 以上のプロセスで、STEP3に記載したシリカ骨格の間に液体が充填された湿潤ゲルが得られる。シリカ骨格の間には、ゲル原料液に含まれていたエタノール、水、触媒、そして一部の未反応のアルコキシシランが存在している。 By the above process, a wet gel in which a liquid is filled between silica skeletons described in STEP 3 is obtained. Between the silica skeleton, ethanol, water, catalyst, and some unreacted alkoxysilane contained in the gel raw material liquid are present.
 この湿潤ゲルに残留しているアルコキシシランは、外部の温度などの環境で重合反応を開始することがある。またアンモニア等の触媒が存在している環境で重合反応と共に、分解、溶解反応が開始することがある。そのため、これらの残留溶液は取り除いておいてもよい。 The alkoxysilane remaining in the wet gel may start a polymerization reaction in an environment such as an external temperature. In addition, decomposition and dissolution reactions may start together with the polymerization reaction in an environment where a catalyst such as ammonia exists. Therefore, these residual solutions may be removed.
 STEP4では、以上のような特性を変動させる不安定要素を取り除くため、残留したゲル原料液、および触媒からの溶媒置換を行う。 In STEP4, in order to remove unstable elements that change the characteristics as described above, solvent replacement from the remaining gel raw material liquid and catalyst is performed.
 置換する溶媒は、純水や、エタノール等のアルコール系溶媒、あるいはペンタン、ヘキサン等の有機系溶媒など、ゲル骨格の反応に影響を与えないものならよく、任意の置換溶媒を選択することが出来る。 The solvent to be substituted may be any solvent that does not affect the reaction of the gel skeleton, such as pure water, an alcohol solvent such as ethanol, or an organic solvent such as pentane or hexane, and any substitution solvent can be selected. .
 本実施の形態では、後のプロセスで用いる水系エマルジョン樹脂と混合することを考慮して、溶媒として純水を選択する。形成された湿潤ゲルを反応容器から取り出し、湿潤ゲルの10倍程度の体積の純水を入れた容器中で24時間放置することで、湿潤ゲル中の残留アルコキシシラン、および触媒を除去する。 In this embodiment, pure water is selected as a solvent in consideration of mixing with an aqueous emulsion resin used in a later process. The formed wet gel is taken out from the reaction vessel and left in a vessel containing pure water having a volume about 10 times that of the wet gel for 24 hours to remove residual alkoxysilane and catalyst in the wet gel.
 STEP5、およびSTEP6では、得られたブロック状の湿潤ゲルを数μm程度の、所望の大きさの粒子とするため、ボールミルによる粉砕処理を行う。 In STEP5 and STEP6, the obtained block-shaped wet gel is pulverized by a ball mill in order to obtain particles having a desired size of about several μm.
 ボールミルによる粉砕処理の原理は、テフロン(登録商標)製などの円筒型の容器に、湿潤ゲルと、ジルコニア製などの硬質のボールと共に充填し、円筒容器を回転させることで、円筒容器内で移動するジルコニアボールの衝突によりゲルが粉砕されるものである。 The principle of pulverization with a ball mill is that it moves in a cylindrical container by filling a cylindrical container such as Teflon (registered trademark) with a wet gel and hard balls such as zirconia and rotating the cylindrical container. The gel is crushed by the collision of the zirconia balls.
 ボールミルによる粉砕の場合、時間とともに粒子径は小さくなっていく。また円筒容器の回転数が高くなると同一処理時間で得られる粒子のサイズは小さくなる、すなわち粉砕効率が高くなる。 In the case of pulverization with a ball mill, the particle size decreases with time. Further, when the rotational speed of the cylindrical container is increased, the size of particles obtained in the same processing time is reduced, that is, the pulverization efficiency is increased.
 ただし、円筒容器内の粉砕用ボールが、円筒容器内の壁に張り付いたまま回転するほど回転数が早くなると粉砕効果が得られないため、ある一定の回転数以下で処理が行われる必要がある。 However, since the grinding effect cannot be obtained if the number of revolutions becomes so fast that the grinding balls in the cylindrical container rotate while sticking to the wall in the cylindrical container, the processing needs to be performed at a certain number of revolutions or less. is there.
 また、粉砕用ボールのサイズ(直径)は、粉砕効率および、粉砕後の粒子径に影響を与える。ボールが大きいと、ボールの衝突時の衝撃が大きいため、粉砕効率が高くなる。すなわち単位時間あたりの粒径の変化が大きい。 Also, the size (diameter) of the ball for grinding affects the grinding efficiency and the particle size after grinding. When the ball is large, the impact at the time of the collision of the ball is large, so that the grinding efficiency is increased. That is, the change in particle size per unit time is large.
 しかしながら、ボールのサイズが大きい場合には、粉砕され出来る粒子サイズの分散が大きい傾向があり、本実施の形態では直径3mmのジルコニア製のボールを用いる。ジルコニアは固く、磨耗しにくい特性があるため、粉砕用ボールの素材として適切である。ジルコニアの他にアルミナ等を用いることも出来る。 However, when the ball size is large, there is a tendency that the dispersion of the particle size that can be crushed tends to be large. In this embodiment, a zirconia ball having a diameter of 3 mm is used. Zirconia is suitable as a material for balls for grinding because it is hard and hard to wear. In addition to zirconia, alumina or the like can also be used.
 また、円筒容器内のゲル、溶媒、ジルコニアボールの体積が、円筒容器の体積に対してある一定範囲以下で量が多い時に、粉砕効率が良くなる。本実施の形態では60%程度としている。 Also, when the volume of the gel, solvent, and zirconia balls in the cylindrical container is less than a certain range with respect to the volume of the cylindrical container, the pulverization efficiency is improved. In this embodiment, it is about 60%.
 一例として、内径が150mmのテフロン(登録商標)製の円筒容器に、体積割合で20%のエアロゲルと、20%のジルコニアボールを入れ、更に水を20%入れて、90rpmで、1時間粉砕することで、平均粒子径が約8μmの乾燥ゲル粒子8を得ることが出来る。 As an example, 20% airgel and 20% zirconia balls are placed in a cylindrical container made of Teflon (registered trademark) having an inner diameter of 150 mm, and 20% zirconia balls are further added, followed by grinding at 90 rpm for 1 hour. Thus, dry gel particles 8 having an average particle diameter of about 8 μm can be obtained.
 ここで、乾燥ゲル粒子8の平均粒子径を、レーザ回折法(島津製作所社製SALD)により測定した結果、約8μmであった。乾燥ゲル粒子8の微細空孔の平均サイズをガス吸着法(日本ベル株式会社製BELSORP-miniII)により測定した結果、約10nmであった。 Here, the average particle diameter of the dried gel particles 8 was measured by a laser diffraction method (SALD manufactured by Shimadzu Corporation), and as a result, it was about 8 μm. The average size of the fine pores of the dried gel particles 8 was measured by a gas adsorption method (BELSORP-mini II manufactured by Nippon Bell Co., Ltd.) and found to be about 10 nm.
 こうして得られた乾燥ゲル粒子8から、粉砕用に用いたボールを除去して、一定の平均粒子径となったゲル粒子分散した溶液を得る。先に述べたように用いた粉砕用ボールは直径3mmであり、ゲル粒子は10μm程度であるため、1mm程度の目の開いたメッシュで容易に分離することができる。 The balls used for pulverization are removed from the dried gel particles 8 thus obtained to obtain a gel particle-dispersed solution having a constant average particle diameter. Since the grinding balls used as described above have a diameter of 3 mm and gel particles have a size of about 10 μm, they can be easily separated with a mesh having an opening of about 1 mm.
 このようにして得られたゲル粒子分散液を、次のプロセスである結合粒子10による結合プロセスを行う。 The gel particle dispersion thus obtained is subjected to a binding process using the binding particles 10 as the next process.
 結合粒子10による結合プロセス、および音響整合部材、超音波送受波器に至るプロセスを図4で示す。 FIG. 4 shows a coupling process using the coupled particles 10 and a process from the acoustic matching member to the ultrasonic transducer.
 図4のSTEP8では、得られたゲル粒子分散液にエマルジョン樹脂分散液を添加する。エマルジョン樹脂分散液は、水などの水系溶媒に、微細な粒子状樹脂を分散させたものである。 In STEP 8 of FIG. 4, an emulsion resin dispersion is added to the obtained gel particle dispersion. The emulsion resin dispersion is obtained by dispersing fine particulate resin in an aqueous solvent such as water.
 近年、環境負荷低減対応に適した塗料や、コーティング剤などとして広く用いられるようになっている材料である。このようなエマルジョン樹脂分散液中の結合粒子10として、様々な素材を用いることが可能である。一例として、アクリル系や、エポキシ系、ウレタン系、酢酸ビニル系、スチレン系、オレフィン系などの樹脂を分散させたものが利用することが出来る。 In recent years, it is a material that is widely used as a paint or coating agent suitable for reducing environmental impact. Various materials can be used as the binding particles 10 in the emulsion resin dispersion. As an example, an acrylic resin, an epoxy resin, a urethane resin, a vinyl acetate resin, a styrene resin, an olefin resin, or the like can be used.
 本実施の形態では、粒子径が800nm程度のエポキシ樹脂を分散させたエマルジョン樹脂分散液を用いている。 In this embodiment, an emulsion resin dispersion in which an epoxy resin having a particle size of about 800 nm is dispersed is used.
 図5にはエポキシ樹脂の分子量と、粒子径の大きさの関係を示す。図5は横軸に粒子径、縦軸に分子量をとっている。図5では分子量で取りうる最大の粒子径を表記している。すなわち高分子であるエポキシの鎖状分子が完全に直線上になった場合の理論値を示しており、実際には、高分子は直線状で溶液中で存在していることは殆どなく、屈曲するか、あるいは丸まった糸のように球状になっている場合もあり、図5に示したサイズが最大サイズであり、通常はこれより小さい。 FIG. 5 shows the relationship between the molecular weight of the epoxy resin and the size of the particle diameter. In FIG. 5, the horizontal axis represents the particle diameter, and the vertical axis represents the molecular weight. FIG. 5 shows the maximum particle size that can be taken by the molecular weight. In other words, it shows the theoretical value when the chain molecule of epoxy, which is a polymer, is perfectly linear. In fact, the polymer is linear and hardly exists in the solution, and is bent. Or, it may be spherical like a rounded thread, and the size shown in FIG. 5 is the maximum size and is usually smaller than this.
 エポキシ樹脂の平均粒子径を、レーザー回折法(島津製作所社製SALD)により測定した結果、約1μmであった。 As a result of measuring the average particle diameter of the epoxy resin by a laser diffraction method (SALD manufactured by Shimadzu Corporation), it was about 1 μm.
 エポキシ樹脂では、平均分子量が600未満では通常状態で液体状態であるため、本実施の形態の音響整合部材では利用することができない。また分子量と軟化点(流動、硬化)の間には、相関関係があり、分子量が大きくなると、同一温度における流動性は低くなる。 Since the epoxy resin is in a normal state and a liquid state when the average molecular weight is less than 600, it cannot be used in the acoustic matching member of the present embodiment. Further, there is a correlation between the molecular weight and the softening point (flow, curing), and the fluidity at the same temperature decreases as the molecular weight increases.
 STEP9では、ゲル粒子と、結合粒子10が混合した分散液の均一性を高めるために、均一化の処理を行う。均一化の処理は、通常のスターラーなどで行うことが出来る。あるいは分散液の粘度が高い場合には、回転ミキサーなどを用いることも出来る。本実施の形態では、回転ミキサーを用いて、5分の均一化処理を行う。 In STEP9, in order to improve the uniformity of the dispersion liquid in which the gel particles and the binding particles 10 are mixed, a homogenization process is performed. The homogenization process can be performed with a normal stirrer or the like. Alternatively, when the dispersion has a high viscosity, a rotary mixer or the like can be used. In this embodiment, the homogenization process is performed for 5 minutes using a rotary mixer.
 平均分子量は、液体クロマトグラフ法(例えば、島津製作所社製Nexera)により測定される。 The average molecular weight is measured by a liquid chromatographic method (for example, Nexera manufactured by Shimadzu Corporation).
 STEP10では、こうして得られたゲル粒子と結合粒子10の分散液を、必要な形状に成型し、過剰な水分を除去する操作を行う。このために本実施の形態では、成型と過剰な水分除去の機能を同時に果たす石膏性の鋳型を用いる。 In STEP 10, the dispersion of the gel particles and the binding particles 10 thus obtained is molded into a necessary shape, and an operation of removing excess water is performed. For this reason, in this embodiment, a gypsum mold that simultaneously performs the functions of molding and removing excessive water is used.
 具体的には図6のように板状の石膏板11に、音響整合部材4のサイズとほぼ同形状のくぼみ12を設け、この部分にゲル粒子・結合粒子10分散液を鋳込み成型する。本実施の形態では、最終形状として音響整合部材4のサイズである直径12mm、厚さ1mmのペレットを得るため、くぼみの直径を20mmとし、深さを5mmとしている。 Specifically, as shown in FIG. 6, a hollow 12 having substantially the same shape as the size of the acoustic matching member 4 is provided on a plaster plaster plate 11, and a gel particle / binding particle 10 dispersion is cast into this portion. In the present embodiment, in order to obtain a pellet having a final shape of 12 mm in diameter and 1 mm in thickness, which is the size of the acoustic matching member 4, the diameter of the recess is 20 mm and the depth is 5 mm.
 これは水分が除去され、収縮する寸法と、最終的には外周、および厚さを機械加工する必要があるため、余裕を見てこのサイズとしている。このサイズは実験的に決めたものである。 This is because the moisture is removed and the shrinking dimension, and finally the outer periphery and thickness need to be machined. This size was determined experimentally.
 石膏製の型は、水等の液体を完全には遮断せず、かつゲル粒子、結合粒子10を遮断する微細な空孔を保有しているため、鋳込みした分散液の表面からだけでなく、石膏素体自体からも水分を除去することが可能なため、効率的な水分の除去が可能となる。 Since the mold made of gypsum does not completely block liquid such as water and has fine pores that block gel particles and binding particles 10, not only from the surface of the cast dispersion, Since it is possible to remove moisture from the gypsum body itself, it is possible to efficiently remove moisture.
 これは乾燥工程の時間を短縮することができるだけでなく、例えば表面のみから水分が除去する場合に比べ、全体の形状が同じように収縮する為に、歪が低減し、成形や、組み立て時などの割れなどが発生しにくい。 This not only shortens the time of the drying process, but also reduces the distortion because the entire shape shrinks in the same way compared to when moisture is removed from the surface alone, for example during molding and assembly. It is difficult for cracks to occur.
 本実施の形態では、水分除去のため、石膏型に鋳込みした分散液を40℃の恒温槽中で2日間放置した(STEP11)。この処理を行うことで水分の90%以上除去できる。こうして水分を除去した乾燥ゲル粒子8と結合粒子10の複合体の乾燥体を得ることができる。 In this embodiment, in order to remove moisture, the dispersion liquid cast into a plaster mold was left in a constant temperature bath at 40 ° C. for 2 days (STEP 11). By performing this treatment, 90% or more of the moisture can be removed. In this way, a dried product of the composite of the dried gel particles 8 and the binding particles 10 from which moisture has been removed can be obtained.
 ただし、この時点では、乾燥ゲル粒子8と結合粒子10は弱い分子間力によってのみ接合している状態であり、音響整合部材として用いるには強度が不足している。 However, at this point, the dried gel particles 8 and the binding particles 10 are in a state of being joined only by a weak intermolecular force, and the strength is insufficient for use as an acoustic matching member.
 STEP12では、これをさらに強固な結合とするため、石膏型に設置したまま、恒温槽の温度を150℃に上昇させる。150℃程度になると結合粒子10の粒径が特に小さい成分が溶融して液体状態になる。このような粒子径の小さい樹脂、すなわち分子量の小さい結合粒子10のみが選択的に、しかもほとんどが大きな樹脂の表面で流れていくため、乾燥ゲル粒子8内部の微細空孔に侵入することはない。 In STEP12, in order to make this a stronger bond, the temperature of the thermostatic chamber is raised to 150 ° C. while being installed in the gypsum mold. When the temperature is about 150 ° C., a component having a particularly small particle size of the bonded particles 10 is melted to be in a liquid state. Since only such a resin having a small particle diameter, that is, a binding particle 10 having a small molecular weight, selectively flows on the surface of the large resin, it does not enter the fine pores inside the dry gel particle 8. .
 このような適切な温度を選ぶと、乾燥ゲル粒子8内部の空孔を殆ど破壊すること無く、乾燥ゲル粒子8同士を強固な結合で一体化することが可能となる。熱処理後は、急激な温度変化があると、形成した音響整合部材となる複合体に歪が発生し、割れや、欠けの原因となる可能性があるため、ゆっくりと除冷してもよい。 When such an appropriate temperature is selected, the dried gel particles 8 can be integrated with each other with a strong bond without substantially destroying the pores inside the dried gel particles 8. After the heat treatment, if there is an abrupt temperature change, the composite that becomes the formed acoustic matching member is distorted, which may cause cracking or chipping.
 本実施の形態では150℃の加熱、効果の後、常温まで約6時間をかけて除冷した。こうして形成された複合体ブロックのサイズは、厚さ2mm、直径15mmであった。 In this embodiment, after heating at 150 ° C. and the effect, it was cooled down to room temperature over about 6 hours. The composite block thus formed had a thickness of 2 mm and a diameter of 15 mm.
 このようにして強固な結合で構成された乾燥ゲル粒子8と結合粒子10の複合ブロック体を、音響整合として用いるために、STEP13では、外周加工と厚さ調整を行う。 In order to use the composite block body of the dry gel particles 8 and the binding particles 10 thus configured with strong bonds as acoustic matching, in STEP13, the outer periphery is processed and the thickness is adjusted.
 まず、音波放射面、あるいは圧電体2と結合する面を研磨機により所定の厚さ1mmにまで厚さを調整する。その後、研磨面をホールドして、外周加工を行う。外周加工は直径12mmの円盤状の音響整合部材より一回り小さい治具によりホールドし、治具から露出している部分をヤスリにより回転させながら研磨することで調整した。 First, the thickness of the sound wave emitting surface or the surface coupled with the piezoelectric body 2 is adjusted to a predetermined thickness of 1 mm by a polishing machine. Thereafter, the polished surface is held and outer periphery processing is performed. The outer peripheral machining was adjusted by holding with a jig slightly smaller than a disk-shaped acoustic matching member having a diameter of 12 mm, and polishing the portion exposed from the jig while rotating with a file.
 乾燥ゲル粒子8の粒子間空隙の平均サイズを、水銀圧入法(島津製作所社製オートポア)により測定した結果、10μmであった。 As a result of measuring the average size of the interparticle voids of the dried gel particles 8 by a mercury intrusion method (Autopore manufactured by Shimadzu Corporation), it was 10 μm.
 こうして得られた音響整合部材4は先に述べたように、密度0.50であり、音速は1500m/sである。このようにして得られた音響整合部材4を、STEP14では圧電体2の音波放射面に接合する。 As described above, the acoustic matching member 4 thus obtained has a density of 0.50 and a sound velocity of 1500 m / s. The acoustic matching member 4 thus obtained is joined to the sound wave emitting surface of the piezoelectric body 2 in STEP14.
 この場合にも、分子量の小さいエポキシ樹脂を圧電体2との接合に用いると、硬化前の樹脂が流動して乾燥ゲル粒子8内部の空孔に侵入し、得られた音響整合部材の密度と特性が変動する可能性がある。また接着剤が少ない場合には、接合が実現できない可能性がある。 Also in this case, when an epoxy resin having a low molecular weight is used for bonding to the piezoelectric body 2, the resin before curing flows and enters the pores inside the dried gel particles 8, and the density of the obtained acoustic matching member Characteristics may vary. Moreover, when there is little adhesive agent, joining may not be implement | achieved.
 このため圧電体2との接合にもエマルジョン状樹脂を用いてもよい。 For this reason, an emulsion resin may be used for bonding to the piezoelectric body 2.
 まず、圧電体2の上面にエマルジョン状樹脂を塗布し、60℃の低温で過熱することで水分を除去する。こうして形成されたエマルジョン状樹脂層の上に、成形した音響整合部材を設置し、加圧しながら150℃まで更に加熱を行う。こうして圧電体2に乾燥ゲル粒子8と、結合粒子10からなる音響整合部材を設けた超音波送受波器が得られる。 First, an emulsion resin is applied to the upper surface of the piezoelectric body 2, and water is removed by heating at a low temperature of 60 ° C. A molded acoustic matching member is placed on the emulsion-like resin layer thus formed, and further heated to 150 ° C. while being pressurized. Thus, an ultrasonic transducer in which the piezoelectric body 2 is provided with an acoustic matching member composed of the dried gel particles 8 and the binding particles 10 is obtained.
 このようにして形成した超音波送受波器1の特性の一例を図7、および図8に示す。図7,8において、横軸は時間、縦軸は振幅の相対的な大きさを示すものである。 An example of the characteristics of the ultrasonic transducer 1 formed in this way is shown in FIG. 7 and FIG. 7 and 8, the horizontal axis indicates time, and the vertical axis indicates the relative amplitude.
 図7は、1気圧の空気に対して超音波を送受波した場合の特性を示す図である。図7(a)が乾燥ゲルのみで形成した音響整合部材(音響インピーダンス0.1×10^6)による結果であり、図7(b)が本実施の形態によって作製した音響整合部材(音響インピーダンス0.75×10^6)による結果である。常温、常圧の空気に対しては、従来の乾燥ゲルのみからなる音響整合部材を用いた場合のほうが、高い感度が得られることがわかる。 FIG. 7 is a diagram illustrating characteristics when ultrasonic waves are transmitted / received to / from air at 1 atmosphere. FIG. 7A shows the result of the acoustic matching member (acoustic impedance 0.1 × 10 ^ 6) formed only with the dried gel, and FIG. 7B shows the acoustic matching member (acoustic impedance) produced according to the present embodiment. 0.75 × 10 ^ 6). It can be seen that higher sensitivity can be obtained when using an acoustic matching member made of only a conventional dry gel for air at normal temperature and normal pressure.
 一方、図8には50気圧の空気に対して超音波を送受信した場合の特性を示す。高圧になると気体の密度が比例して上昇する。音速は圧力と相関が無い為、圧力が50倍になると音響インピーダンスは50倍となる。このため、音響整合部材として最適な音響インピーダンスは、常圧の空気の場合よりも大きくなる。 On the other hand, FIG. 8 shows characteristics when ultrasonic waves are transmitted / received to / from air of 50 atm. At high pressure, the gas density increases proportionally. Since the speed of sound has no correlation with pressure, when the pressure increases 50 times, the acoustic impedance increases 50 times. For this reason, the optimum acoustic impedance as the acoustic matching member is larger than that in the case of atmospheric pressure air.
 図8において、図8(a)が乾燥ゲルのみで形成した音響整合部材(音響インピーダンス0.1×10^6)による結果であり、図8(b)が本実施の形態によって作製した音響整合部材(音響インピーダンス0.75×10^6)による結果である。 8A is a result of an acoustic matching member (acoustic impedance 0.1 × 10 ^ 6) formed only with a dry gel, and FIG. 8B is an acoustic matching produced by the present embodiment. It is a result by a member (acoustic impedance 0.75 × 10 ^ 6).
 図8より分かるように、本実施の形態における音響整合部材を用いた超音波センサのほうが、高い感度が得られ、すなわち超音波流量計の計測精度を向上することが可能となる。 As can be seen from FIG. 8, the ultrasonic sensor using the acoustic matching member in the present embodiment can obtain higher sensitivity, that is, the measurement accuracy of the ultrasonic flowmeter can be improved.
 以上のように、本実施の形態の音響整合部材を用いると、乾燥ゲル材料を別の材料と複合して用いることにより、幅広い特性を持つ音響整合部材を形成することが出来、様々な気体、あるいは用途の超音波送受波器、超音波流量計を実現することが出来るものである。 As described above, when the acoustic matching member of the present embodiment is used, an acoustic matching member having a wide range of characteristics can be formed by using a dry gel material combined with another material. Alternatively, it is possible to realize an ultrasonic transducer and an ultrasonic flowmeter for use.
 以上では、粒子状乾燥ゲルの重合からのプロセスを例に説明したが、市販の粒子状乾燥ゲルを用いることも可能である。 In the above, the process from the polymerization of the particulate dry gel has been described as an example, but a commercially available particulate dry gel can also be used.
 このような場合、粒子状乾燥ゲルと、エマルジョン樹脂と、を混合するSTEP8以降を行うこととなる。この場合にはSTEP7までの手順が省略できる為、時間的コストを考慮してかかる方法を採用してもよい。しかし総合的なコストを勘案の上最適な方法を選択することが出来る。 In such a case, STEP 8 or later in which the particulate dry gel and the emulsion resin are mixed is performed. In this case, since the procedure up to STEP 7 can be omitted, such a method may be adopted in consideration of time cost. However, it is possible to select the optimum method in consideration of the total cost.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明の音響整合部材は、気体を中心にした各種媒体との間で、超音波を送受波する装置に広く用いることができ、特に超音波を高精度に検出することが求められるセンシング、流量計測装置に好適に用いることが出来る。 The acoustic matching member of the present invention can be widely used in devices for transmitting and receiving ultrasonic waves between various media centered on gas, and in particular, sensing and flow rate required to detect ultrasonic waves with high accuracy. It can be suitably used for a measuring device.
 1 超音波送受波器
 2 圧電体(電気機械変換素子)
 3a,3b 電極
 4 音響整合部材
 5 伝搬媒体
 6 中実粒子
 7 微細空孔
 8 乾燥ゲル粒子
 9 粒子間空隙
 10 結合粒子
1 Ultrasonic transducer 2 Piezoelectric body (electromechanical transducer)
3a, 3b Electrode 4 Acoustic matching member 5 Propagation medium 6 Solid particle 7 Fine pore 8 Dry gel particle 9 Interparticle void 10 Bonded particle

Claims (13)

  1.  乾燥ゲル粒子と、結合粒子からなる音響整合部材であって、
     前記乾燥ゲル粒子は、内部に微細空孔を持つと共に、前記乾燥ゲル粒子間に粒子間空隙を保持し、
     前記結合粒子は、前記乾燥ゲル粒子間に存在して前記乾燥ゲル粒子同士を結合し、
     前記結合粒子の平均粒子径は、前記乾燥ゲル粒子の前記微細空孔の平均サイズより大きく、前記乾燥ゲル粒子の前記粒子間空隙の平均サイズより小さい音響整合部材。
    An acoustic matching member comprising dry gel particles and binding particles,
    The dry gel particles have fine pores inside, and retain inter-particle voids between the dry gel particles,
    The binding particles exist between the dry gel particles to bond the dry gel particles to each other,
    The acoustic matching member, wherein an average particle diameter of the binding particles is larger than an average size of the fine pores of the dry gel particles and smaller than an average size of the interparticle voids of the dry gel particles.
  2.  前記乾燥ゲル粒子は、固体骨格部がシリカからなる請求項1記載の音響整合部材。 The acoustic matching member according to claim 1, wherein the dry gel particles have a solid skeleton portion made of silica.
  3.  前記微細空孔の平均サイズは、100nm以下である請求項1記載の音響整合部材。 The acoustic matching member according to claim 1, wherein an average size of the fine holes is 100 nm or less.
  4.  前記乾燥ゲル粒子の平均粒子径は、1μm以上である請求項1記載の音響整合部材。 The acoustic matching member according to claim 1, wherein an average particle diameter of the dry gel particles is 1 µm or more.
  5.  前記結合粒子の平均粒子径は、50nm以上、かつ、10μm以下である請求項1記載の音響整合部材。 The acoustic matching member according to claim 1, wherein an average particle size of the binding particles is 50 nm or more and 10 µm or less.
  6.  前記結合粒子は、有機系高分子である請求項1記載の音響整合部材。 The acoustic matching member according to claim 1, wherein the binding particle is an organic polymer.
  7.  前記有機系高分子は、エポキシ系である請求項6記載の音響整合部材。 The acoustic matching member according to claim 6, wherein the organic polymer is epoxy.
  8.  前記エポキシの平均分子量は、1000~100000である請求項7記載の音響整合部材。 The acoustic matching member according to claim 7, wherein the epoxy has an average molecular weight of 1,000 to 100,000.
  9.  両面に電極を有する電気機械変換素子と、前記電気機械変換素子の音波放射面に接合された請求項1~8のいずれか1項に記載の前記音響整合部材を有する超音波送受波器。 An ultrasonic transducer having the electromechanical transducer having electrodes on both surfaces and the acoustic matching member according to any one of claims 1 to 8 joined to a sound wave emitting surface of the electromechanical transducer.
  10.  前記音響整合部材は前記結合粒子で電気機械変換素子と接合された請求項9に記載の超音波送受波器。 10. The ultrasonic transducer according to claim 9, wherein the acoustic matching member is joined to an electromechanical transducer with the coupling particles.
  11.  請求項9または10記載の超音波送受波器を用いた超音波流量計。 An ultrasonic flowmeter using the ultrasonic transducer according to claim 9 or 10.
  12.  請求項9または10記載の超音波送受波器を備えた超音波流量計。 An ultrasonic flowmeter comprising the ultrasonic transducer according to claim 9 or 10.
  13.  乾燥ゲル粒子と、水系溶媒に分散したエマルジョン樹脂を混合した分散液から、水系溶媒を除去し、熱処理を行って一体化する音響整合部材の製造方法。 A method for producing an acoustic matching member in which an aqueous solvent is removed from a dispersion obtained by mixing dry gel particles and an emulsion resin dispersed in an aqueous solvent, and heat treatment is performed for integration.
PCT/JP2013/003892 2012-06-22 2013-06-21 Acoustic matching member and method for manufacturing same, ultrasonic wave transmitter/receiver using same, and ultrasonic flow meter WO2013190852A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014520963A JPWO2013190852A1 (en) 2012-06-22 2013-06-21 Acoustic matching member, manufacturing method therefor, ultrasonic transducer and ultrasonic flowmeter using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-140486 2012-06-22
JP2012140486 2012-06-22

Publications (1)

Publication Number Publication Date
WO2013190852A1 true WO2013190852A1 (en) 2013-12-27

Family

ID=49768463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003892 WO2013190852A1 (en) 2012-06-22 2013-06-21 Acoustic matching member and method for manufacturing same, ultrasonic wave transmitter/receiver using same, and ultrasonic flow meter

Country Status (2)

Country Link
JP (1) JPWO2013190852A1 (en)
WO (1) WO2013190852A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158796A (en) * 2001-11-21 2003-05-30 Matsushita Electric Ind Co Ltd Ultrasonic wave generator and its manufacturing method
WO2003064980A1 (en) * 2002-01-28 2003-08-07 Matsushita Electric Industrial Co., Ltd. Acoustic matching layer, ultrasonic transmitter/receiver, their manufacturing methods, and ultrasonic flowmeter
JP2004323752A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Shaped article containing dry gel and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158796A (en) * 2001-11-21 2003-05-30 Matsushita Electric Ind Co Ltd Ultrasonic wave generator and its manufacturing method
WO2003064980A1 (en) * 2002-01-28 2003-08-07 Matsushita Electric Industrial Co., Ltd. Acoustic matching layer, ultrasonic transmitter/receiver, their manufacturing methods, and ultrasonic flowmeter
JP2004323752A (en) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd Shaped article containing dry gel and method for producing the same

Also Published As

Publication number Publication date
JPWO2013190852A1 (en) 2016-02-08

Similar Documents

Publication Publication Date Title
US6788620B2 (en) Acoustic matching member, ultrasound transducer, ultrasonic flowmeter and method for manufacturing the same
CN100491930C (en) Acoustic matching layer, ultrasonic transmitter/receiver and its manufacture method, and ultrasonic flowmeter
JP3764162B2 (en) Ultrasonic transducer, method of manufacturing the same, and ultrasonic flow meter
JPH0257099A (en) Complex piezoelectric vibrator
WO2017212511A1 (en) Laminate, ultrasonic transducer, and ultrasonic flowmeter
JP4702349B2 (en) Ultrasonic transducer and ultrasonic flow measuring device using it
JP2008261732A (en) Ultrasonic transmitting/receiving device and ultrasonic current flow meter
TWI337655B (en) Ultrasonic sensor and method for producing ultrasonic sensor and ultrasonic wave transmitting/receiving system
WO2013190852A1 (en) Acoustic matching member and method for manufacturing same, ultrasonic wave transmitter/receiver using same, and ultrasonic flow meter
JP4080374B2 (en) Acoustic matching member, ultrasonic transducer, ultrasonic flow meter, and manufacturing method thereof
JP2017220844A (en) Laminate, ultrasonic transducer and ultrasonic flowmeter
JP2003111195A (en) Acoustic matching member, ultrasonic transmitting/ receiving device, ultrasonic flow meter, and method of manufacturing these
JP2006023099A (en) Acoustic matching layer, ultrasonic transducer using it, and ultrasonic flow measuring apparatus having ultrasonic transducer
JP2004029038A (en) Ultrasonic flowmeter
JP4153796B2 (en) Ultrasonic transducer and ultrasonic flowmeter
Nagahara et al. Airborne Ultrasonic Transducer
JP2018061209A (en) Laminate, ultrasonic transducer and ultrasonic flowmeter
JP2004085579A (en) Ultrasonic flowmeter
JP4702345B2 (en) Ultrasonic transducer and fluid flow measurement device using it
JP2004343658A (en) Ultrasonic echo sounder transducer, its manufacturing method and ultrasonic flowmeter using the same
JP2003329501A (en) Acoustic matching member, ultrasonic wave transceiver, and ultrasonic wave flowmeter
JP2022086097A (en) Aerial acoustic matching layer and sensor using the same
JP2008157850A (en) Ultrasonic vibrator and manufacturing method thereof, and ultrasonic flow velocity flowmeter
JP2008193290A (en) Acoustic matching member, ultrasonic transmitter receiver, and ultrasonic flowmeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520963

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807469

Country of ref document: EP

Kind code of ref document: A1