WO2013190826A1 - Clothing treatment device - Google Patents

Clothing treatment device Download PDF

Info

Publication number
WO2013190826A1
WO2013190826A1 PCT/JP2013/003779 JP2013003779W WO2013190826A1 WO 2013190826 A1 WO2013190826 A1 WO 2013190826A1 JP 2013003779 W JP2013003779 W JP 2013003779W WO 2013190826 A1 WO2013190826 A1 WO 2013190826A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
water
steam generator
storage tank
wall
Prior art date
Application number
PCT/JP2013/003779
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 三垣
伸一郎 小林
仁一 園田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380032047.XA priority Critical patent/CN104395521B/en
Priority to SI201330820T priority patent/SI2840180T1/en
Priority to EP13807422.4A priority patent/EP2840180B1/en
Publication of WO2013190826A1 publication Critical patent/WO2013190826A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/40Steam generating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K5/00Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type
    • F01K5/02Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type used in regenerative installation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/42Safety arrangements, e.g. for stopping rotation of the receptacle upon opening of the casing door
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/203Laundry conditioning arrangements

Definitions

  • the present invention relates to a clothing processing apparatus for washing, dehydrating and / or drying clothing.
  • Patent Document 1 a washing machine that supplies steam to clothes and sterilizes has been developed.
  • the washing machine described in Patent Document 1 has a configuration in which steam is generated using a heater immersed in water, and the steam is supplied to a drum in which clothing is stored.
  • a clothing processing apparatus of the present invention includes a storage tank that stores clothing, and a steam supply mechanism that injects steam into the storage tank.
  • the steam supply mechanism includes a steam generator having a wall surface that defines a chamber for generating steam, a heater that heats the wall surface, a water supply mechanism that emits water to the wall surface, a case that covers the steam generator, and steam generation And a spacer for separating the container and the case.
  • the steam generator has a wall surface that defines a chamber for generating steam.
  • the water supply mechanism emits water to the wall surface heated by the heater. The emitted water hits the wall surface heated by the heater and becomes water vapor.
  • the pressure in the chamber of a steam generator increases rapidly by the vaporization pressure when water turns into water vapor
  • the steam generator is separated from the case by the spacer. Therefore, the temperature rise of the case can be suppressed and safety can be improved.
  • FIG. 1 is a schematic longitudinal sectional view of a washing machine exemplified as a clothing processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of the washing machine according to the embodiment.
  • FIG. 3 is a schematic perspective view of the steam supply mechanism housed in the casing of the washing machine in the same embodiment.
  • FIG. 4A is a schematic perspective view of a steam generation unit of the steam supply mechanism according to the embodiment.
  • FIG. 4B is a schematic perspective view of a steam generation unit of the steam supply mechanism according to the embodiment.
  • FIG. 5A is a schematic perspective view of an attachment structure for connecting the lid of the steam generating unit and the housing in the same embodiment.
  • FIG. 5B is a schematic perspective view showing an exploded structure of the steam generation unit in the same embodiment.
  • FIG. 6A is a schematic perspective view of the steam generator of the steam generating unit according to the embodiment.
  • FIG. 6B is a schematic perspective view of the steam generator of the steam generation unit according to the embodiment.
  • FIG. 7 is a schematic perspective view of the main piece of the steam generator in the same embodiment.
  • FIG. 8 is a schematic exploded perspective view of the steam generator in the same embodiment.
  • FIG. 9 is a schematic perspective view of a lid piece of the steam generator in the same embodiment.
  • FIG. 10 is a schematic plan view of a main piece of the steam generator in the same embodiment.
  • FIG. 11 is a schematic view of a water supply mechanism of the steam supply mechanism in the same embodiment.
  • FIG. 12 is a schematic rear view of the front portion of the storage tub of the washing machine in the same embodiment.
  • FIG. 12 is a schematic rear view of the front portion of the storage tub of the washing machine in the same embodiment.
  • FIG. 13 is an explanatory diagram schematically illustrating the relationship between the intermittent operation of the pump of the water supply mechanism and the temperature in the chamber space in the embodiment.
  • FIG. 14 is an explanatory diagram schematically illustrating a change in the temperature of water supplied to the water tub of the washing machine according to the embodiment.
  • FIG. 15 is a block diagram schematically showing control on the door body based on the temperature of the steam generator in the embodiment.
  • a clothing processing apparatus according to an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
  • a washing machine will be described as an example of the clothing processing apparatus.
  • terms used in the following description to indicate directions such as “up”, “down”, “left”, and “right” are merely for the purpose of clarifying the explanation and limit the principle of the clothing processing apparatus. It is not a thing.
  • the principle of the clothing processing apparatus can also be applied to an apparatus having the ability to wash and dry clothes and an apparatus for drying clothes.
  • FIG. 1 is a schematic longitudinal sectional view of a washing machine exemplified as a clothing processing apparatus according to an embodiment of the present invention.
  • the washing machine 100 includes at least a housing 110 and a storage tank 200 that stores clothing in the housing 110.
  • the storage tank 200 includes a rotary drum 210 having a substantially cylindrical (including a cylindrical shape) peripheral wall 211 that surrounds the rotation axis RX, and a water tank 220 that stores the rotary drum 210.
  • the housing 110 extends substantially horizontally (including horizontal) with a front wall 111 in which an insertion port for putting clothes into the storage tub 200 is formed, and a rear wall 112 opposite to the front wall 111.
  • a housing top wall 113, a housing bottom wall 114 opposite to the housing top wall 113, a left wall and a right wall described later, and the like are provided.
  • the rotating drum 210 and the water tank 220 of the storage tank 200 open toward the front wall 111.
  • the washing machine 100 further includes a door body 120 attached to the front wall 111 of the housing 110.
  • the door body 120 rotates between a closed position that closes the charging port formed in the front wall 111 and an open position that opens the charging port. Accordingly, the user can turn the door 120 to the open position and put the clothes into the storage tank 200 through the insertion port of the front wall 111. Thereafter, the user can move the door 120 to the closed position and wash the clothes put into the washing machine 100.
  • FIG. 1 shows the door 120 in the closed position.
  • the rotating drum 210 includes a peripheral wall 211 and a bottom wall 212, and rotates around a rotation axis RX extending between the front wall 111 and the rear wall 112 of the housing 110. At this time, the clothes put in the storage tank 200 move in the rotary drum 210 as the rotary drum 210 rotates. Thereby, the garment is subjected to various treatments such as washing, rinsing and / or dehydration.
  • the bottom wall 212 of the rotary drum 210 is provided to face the door body 120 in the closed position.
  • the water tank 220 includes at least a bottom part 221 and a front part 222.
  • the bottom 221 surrounds a part of the bottom wall 212 and the peripheral wall 211 of the rotary drum 210.
  • the front part 222 is disposed between the bottom part 221 of the water tank 220 and the door body 120 and surrounds the remaining part of the peripheral wall 211 of the rotating drum 210 facing each other.
  • the storage tank 200 has a rotating shaft 230 that is attached to the bottom wall 212 of the rotating drum 210 and extends toward the rear wall 112 of the housing 110 along the rotation axis RX. Therefore, the rotating shaft 230 is provided so as to penetrate the bottom 221 of the water tank 220 and protrude between the water tank 220 and the rear wall 112.
  • the washing machine 100 includes a motor 231 installed below the water tank 220, a pulley 232 attached to the rotating shaft 230 exposed outside the water tank 220, and a belt 233 that transmits the power of the motor 231 to the pulley 232.
  • the motor 231 When the motor 231 is activated, the power of the motor 231 is transmitted to the belt 233, the pulley 232, and the rotating shaft 230. As a result, the rotating drum 210 rotates in the water tank 220.
  • the washing machine 100 further includes a packing structure 130 disposed between the front portion 222 of the water tank 220 and the door body 120.
  • the packing structure 130 is compressed by the door body 120.
  • the compressed packing structure 130 forms a watertight seal structure between the door body 120 and the front portion 222.
  • the washing machine 100 also includes a water supply port 140 connected to a faucet (not shown), and a distribution unit 141 for distributing water introduced through the water supply port 140.
  • the water supply port 140 is provided so as to protrude on the housing top wall 113, and the distribution unit 141 is provided between the housing top wall 113 and the storage tank 200.
  • the washing machine 100 includes a detergent container (not shown) in which detergent is accommodated and a steam supply mechanism 300 (described later) that injects steam into the container 200.
  • the distribution unit 141 includes a plurality of water supply valves for selectively supplying water to the storage tank 200, the detergent storage unit, and the steam supply mechanism 300 via a water supply path (not shown).
  • the technique used for the known washing machine can be applied suitably with respect to the water supply to the storage tank 200 and the detergent storage part.
  • FIG. 2 is a schematic perspective view of the washing machine according to the embodiment.
  • FIG. 3 is a schematic perspective view of the steam supply mechanism housed in the casing of the washing machine in the same embodiment. 2 and 3, the housing 110 is represented by a dotted line, and the storage tank 200 is not shown in FIG. 3. Moreover, the arrow in FIG. 3 represents the water supply path
  • the steam supply mechanism 300 includes at least a water supply valve 310 used as a part of the distribution unit 141 and a water storage tank 320 disposed below the storage tank 200.
  • the water supply valve 310 controls water supply to the water storage tank 320. That is, when the water supply valve 310 is opened, water is supplied from the water supply port 140 to the water storage tank 320. When the water supply valve 310 is closed, the water supply to the water storage tank 320 is stopped.
  • the steam supply mechanism 300 further includes a pump 330 attached to the water storage tank 320 and a steam generator 400 that receives water discharged from the pump 330.
  • the pump 330 performs a water supply operation intermittently or continuously to the steam generation unit 400. At this time, during the intermittent water supply operation, the pump 330 supplies an appropriate amount of water adjusted so that instantaneous steam generation occurs to the steam generation unit 400 described later.
  • impurities (scale) and the like contained in the water used for generating steam can be washed away from the steam generation unit 400.
  • the steam supply mechanism 300 further includes a steam conduction pipe 340 extending downward from the steam generation unit 400.
  • the front portion 222 of the water tank 220 forms a watertight seal structure in cooperation with the peripheral wall portion 223 that surrounds the peripheral wall 211 of the rotating drum 210 and the packing structure 130.
  • the steam conduction pipe 340 of the steam supply mechanism 300 is connected to the peripheral wall part 223 of the front part 222. Thereby, the steam generated in the steam generating unit 400 is supplied to the storage tank 200 through the steam conduction pipe 340.
  • it is preferable that at least a part of the steam conduction pipe 340 has, for example, a bellows shape so that vibration generated by the rotation of the storage tank 200 is not transmitted to the steam generation unit 400.
  • the pump 330 can forcibly supply water from the water storage tank 320 to the steam generator 420 (see FIG. 8) in the steam generator 400. it can. Therefore, the steam generator 420 can be disposed above the water storage tank 320.
  • the water in the water storage tank 320 must be sent to the steam generator 420 by the action of gravity. Therefore, the steam generator 420 must be disposed below the water storage tank 320 without fail. That is, by arranging the pump 330, water can be forcibly supplied from the water storage tank 320 to the steam generator 420 with the pressure of the pump 330.
  • the steam generator 420 is disposed above the water storage tank 320, but water can be supplied from the water storage tank 320 to the steam generator 420 by the pump 330 without any problem.
  • the steam generator 420 in the case where the pump 330 is not provided, the steam generator 420 must be disposed below the water storage tank 320. Therefore, for example, when a control component such as an on-off valve that controls the supply of water from the water storage tank 320 to the steam generator 420 fails, the supply of water to the steam generator 420 cannot be controlled. Then, water is inadvertently supplied to the steam generator 420 by the action of gravity from a water storage tank 320 provided above the steam generator 420.
  • the pump 330 as in the present embodiment, it is possible to avoid inadvertently supplying water from the steam generator 420 provided above the water storage tank 320.
  • the steam generator 420 of the steam generation unit 400 is disposed above the storage tank 200.
  • the impurities contained in the water supplied to the steam generator 420 normally cause the outer chamber wall 431, the inner chamber wall 432, the upper surface 429 of the main piece 423 constituting the steam generator 420, and It adheres to or deposits on the wall surface of the chamber space 430 formed by the lower surface 434 of the lid piece 424.
  • Impurities are deposited or deposited on the wall surface forming the chamber space 430. In that case, the heat is not properly transferred between the wall surface of the chamber space 430 and the supplied water due to the impurities, so that the water supplied to the steam generator 420 is difficult to evaporate.
  • the adhered or deposited impurities are discharged or dropped below the steam generator 420 by the action of pressure or gravity when water is vaporized.
  • impurities are easily discharged from the chamber space 430 to the storage tank 200.
  • the water storage tank 320 is disposed in the lower left space of the casing 110 when viewed from the front wall 111 of the casing 110, and the steam generator 420 is disposed in the casing 110. Place in the upper right space. That is, the steam generator 420 and the water storage tank 320 are disposed at substantially symmetrical positions (including symmetry) with respect to the central axis (rotation axis RX) of the storage tank 200.
  • a detergent container (not shown) that stores detergent is disposed on one of the left side and the right side in front of the upper part of the housing 110. Therefore, in order to arrange the water storage tank 320 and the steam generator 420 in the space formed by the storage tank 200 and the casing 110 having a substantially cylindrical shape (including a cylindrical shape) excluding the position occupied by the detergent storage section. It can be used effectively.
  • the water storage tank 320 is disposed on the rear left side of the housing 110 as shown in FIG. 2.
  • the steam generator 420 when the steam generator 420 is disposed in front of the upper right side of the casing 110, the steam generator 420 is formed between the inner surface of the substantially rectangular box shape (including the rectangular box shape) casing 110 and the outer peripheral surface of the storage tank 200.
  • the space can be effectively utilized to arrange the water storage tank 320 and the steam generator 420.
  • the design dimensions of the water storage tank 320 and the steam generator 420 can be designed to be maximally accommodated in the space allowed by the washing machine 100.
  • the water storage tank 320 is disposed at a position substantially symmetrical to the detergent container with respect to the central axis (rotation axis RX) of the container tank 200, and the steam generator 420 is accommodated.
  • FIG. Also in this case, the space inside the housing 110 can be effectively utilized as described above.
  • the water tank 320 may be disposed below the detergent container, and the steam generator 420 may be disposed above the water tank 320.
  • the steam generator 420 may be disposed at a position substantially symmetrical to the water storage tank 320 with respect to a vertical plane including the rotation axis RX of the storage tank 200.
  • the water storage tank 320 and the steam generator 420 may be disposed at substantially symmetrical positions with respect to the rotation axis RX of the storage tank 200 or the horizontal plane HP including the rotation axis RX.
  • the water storage tank 320 and the steam generator 420 are disposed at positions that are substantially symmetrical with respect to a vertical plane that passes through the approximate center (including the center) of the casing 110 in the front-rear direction.
  • FIGS. 4A and 4B are schematic perspective views of a steam generation unit of the steam supply mechanism in the same embodiment.
  • the steam generation unit 400 includes a case 410 having a substantially rectangular box shape (including a rectangular box shape), and a steam generator 420 accommodated in the case 410.
  • the case 410 includes a container part 411 having a bottom wall part 414 for accommodating the steam generator 420, and a cover part 412 including a cover part peripheral wall 416 provided with an upper wall 415 and a protruding piece 417 covering the container part 411.
  • the steam generator 420 is covered by the case 410.
  • the steam generator 420 is connected to the pump 330 via the connection pipe 421 and a tube (not shown), and is connected to the steam conduction pipe 340 via the exhaust pipe 422.
  • an opening 413 is formed in the bottom wall portion 414 of the container portion 411.
  • the connection pipe 421 and the exhaust pipe 422 are provided so as to protrude downward through the opening 413.
  • FIG. 5A is a schematic perspective view of an attachment structure for connecting the lid of the steam generating unit and the housing in the same embodiment.
  • the housing 110 is composed of at least a right wall 115 erected between the front wall 111 and the rear wall 112, and a left wall 116 opposite to the right wall 115. Is done.
  • the housing 110 further includes a first reinforcement frame 117 disposed along the upper edge of the right wall 115 and a second reinforcement frame 118 disposed along the upper edge of the front wall 111.
  • the lid portion 412 constituting the steam generating unit 400 includes a substantially rectangular (including rectangular) upper wall 415 and a lower side from the edge of the upper wall 415 (case 410 side). ) And a projecting piece 417 projecting forward (to the front wall 111 side of the housing 110) from the lid peripheral wall 416.
  • casing 110 of the washing machine 100 and the upper wall 415 of the cover part 412 of the steam generation part 400 are connected by the 1st attachment piece 151 shown to the upper right figure of FIG. 5A.
  • the 2nd reinforcement frame 118 and the protrusion piece 417 are connected by the 2nd attachment piece 152 shown to the upper left figure of FIG. 5A.
  • the lid portion 412 of the steam generation unit 400 and the housing top wall 113 of the housing 110 are separated from each other via the first attachment piece 151 and the second attachment piece 152 provided so as to protrude upward from the lid portion 412. Attached. As a result, it is possible to mitigate (suppress) the heat generated in the steam generation unit 400 from being transmitted to the housing 110.
  • FIG. 5B the structure of the steam generator 400 of the steam supply mechanism 300, particularly the steam generator 420 housed in the lid 412 and the case 410 via the spacer 451 will be described with reference to FIG. 5B.
  • the structure of the steam generator 420 of the steam generation part 400 of the steam supply mechanism 300 is demonstrated using FIG. 6A and FIG. 6B.
  • FIG. 5B is a schematic perspective view showing an exploded structure of the steam generation unit in the same embodiment.
  • 6A and 6B are schematic perspective views of the steam generator of the steam generation unit according to the embodiment.
  • the steam generator 420 includes a main piece 423 having a substantially rectangular shape (including a rectangular shape), a lid piece 424 disposed on the main piece 423, and a main piece 423.
  • a linear heater 425 such as a sheathed heater is disposed in the main piece 423 from the peripheral surface 428.
  • the main piece 423 and the lid piece 424 are formed of a material having higher thermal conductivity than a spacer 451 described later, such as aluminum. Thereby, the main piece 423 and the lid piece 424 are appropriately and efficiently heated by the heater 425.
  • a thermistor 426 is further attached to the main piece lower surface 427 of the main piece 423 of the steam generator 420.
  • the connection pipe 421 and the exhaust pipe 422 are also attached to the main piece 423 constituting the steam generator 420.
  • the heater 425 is controlled by temperature information obtained by the thermistor 426. Thereby, the temperature of the main piece 423 and the lid piece 424 is kept substantially constant (including constant). Instead of the thermistor 426, a thermostat that controls on / off of power to the heater 425 at a predetermined temperature may be used, and the same effect can be obtained.
  • the steam generator 420 is attached to the case 410 via a spacer 451. That is, the steam generator 420 and the case 410 are mounted to be separated by the spacer 451. That is, the steam generator 420 is heated by the heater 425 and becomes high temperature.
  • the structure in which the steam generator 420 and the case 410 are separated from each other by the spacer 451 can make it difficult for the heat generated by the steam generator 420 to be transmitted to the case 410. As a result, temperature rise of the case 410 can be suppressed, and safety and reliability can be improved.
  • the spacer 451 preferably has a hollow cylindrical shape. Thereby, the heat conduction to the case 410 of the heat generated by the steam generator 420 can be further reduced. As a result, the temperature rise of the case 410 can be further suppressed. Further, by making the spacer 451 cylindrical, sufficient mechanical strength can be obtained even when the wall thickness is thin, and thermal conduction can be further reduced.
  • the spacer 451 As a material constituting the spacer 451, it is preferable to use a material having a thermal conductivity lower than that of the steam generator 420, for example, aluminum, such as iron or stainless steel. Thereby, the heat conduction from the steam generator 420 to the case 410 can be further reduced. As a result, the temperature rise of the case 410 can be more effectively suppressed.
  • a material having a thermal conductivity lower than that of the steam generator 420 for example, aluminum, such as iron or stainless steel.
  • FIG. 7 is a schematic perspective view of the main piece of the steam generator in the same embodiment.
  • the main piece 423 has a main piece lower surface 427, a peripheral surface 428, and an upper surface 429.
  • a thermistor 426, a connection pipe 421 and an exhaust pipe 422 are attached to the main piece lower surface 427.
  • a heater 425 is disposed on the peripheral surface 428.
  • the main piece 423 is erected from the upper surface 429 toward the lid piece 424 constituting one of the steam generators 420 to form, for example, a substantially triangular (including triangular) chamber space 430.
  • the chamber space 430 is defined and formed by an outer chamber wall 431 and an inner chamber wall 432 having, for example, a substantially J shape (including a J shape) that defines a flow path for steam in the chamber space 430. .
  • FIG. 8 is a schematic exploded perspective view of the steam generator in the same embodiment.
  • FIG. 9 is a schematic perspective view of a lid piece of the steam generator in the same embodiment.
  • the steam generator 420 includes a packing ring 433 made of, for example, heat-resistant rubber, which is attached to the main piece 423 so as to surround the outer chamber wall 431.
  • the lid piece 424 includes a lower surface 434 facing the main piece 423, and a shield wall 435 having substantially the same shape (including the same shape) as the outer chamber wall 431 of the main piece 423.
  • the shield wall 435 of the lid piece 424 compresses the packing ring 433.
  • the chamber space 430 of the steam generator 420 is kept airtight.
  • the main piece 423 is formed with an inlet 437 for allowing water supplied through the connection pipe 421 connected to the lower surface 427 of the main piece to flow into the chamber space 430.
  • the inflow port 437 is formed substantially at the center of the chamber space 430, and its periphery is surrounded by the inner chamber wall 432.
  • the steam generator 420 of the present embodiment is configured.
  • the water is emitted upward (on the lid piece 424 side) through the connection pipe 421 and the inflow port 437. Then, the water emitted to the chamber space 430 of the steam generator 420 passes through the inner chamber wall 432, the upper surface 429 of the main piece 423 surrounded by the inner chamber wall 432 and / or the lid piece 424 located above the inflow port 437. Collide with the lower surface 434. At this time, the steam generator 420 is heated by the heater 425 (for example, about 200 ° C.) and has high thermal energy.
  • the heater 425 for example, about 200 ° C.
  • a water supply operation is intermittently performed by the pump 330 of the steam supply mechanism 300 to supply an appropriate amount of water into the chamber space 430 of the steam generator 420 (for example, about 2 cc / time).
  • the pump 330 of the steam supply mechanism 300 to supply an appropriate amount of water into the chamber space 430 of the steam generator 420 (for example, about 2 cc / time).
  • the internal pressure of the chamber space 430 rises abruptly as the water evaporates instantaneously.
  • impurities contained in the water supplied to the steam generator 420 adhere or deposit on the wall surface forming the chamber space 430 during vaporization.
  • the adhered or deposited impurities are affected by pressure due to a sudden increase in internal pressure of the chamber space 430 during vaporization. As a result, the impurities are easily discharged out of the chamber space 430.
  • FIG. 10 is a schematic plan view of the main piece of the steam generator in the same embodiment.
  • the heater 425 is disposed so as to extend along a substantially U-shaped (including U-shaped) path in the main piece 423. Thereby, the heater 425 surrounds the inflow port 437 to which the connection pipe 421 is attached. Therefore, the inner chamber wall 432 and the region surrounded by the inner chamber wall 432 become the highest temperature in the chamber space 430 due to the heating of the heater 425. As a result, the water emitted into the chamber space 430 through the inflow port 437 is instantly evaporated.
  • the inner chamber wall 432 extends in a substantially J shape within the chamber space 430 defined by the outer chamber wall 431. That is, the inner chamber wall 432 forms a spiral flow path in the chamber space 430.
  • an exhaust port 438 is formed in the main piece 423 near the end of the flow path through which water and steam flow. Therefore, the vapor generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust port 438 as the internal pressure of the chamber space 430 increases. Then, the steam that has reached the exhaust port 438 is exhausted downward in the vertical direction through the exhaust pipe 422 attached to the exhaust port 438.
  • the heater 425 is provided so as to extend in a substantially U shape (including a U shape) along the outer path of the spiral flow path. Therefore, the steam generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust pipe 422 while being heated. Thereby, high-temperature steam is exhausted from the exhaust pipe 422 of the steam generator 420.
  • FIG. 11 is a schematic view of a water supply mechanism of the steam supply mechanism in the same embodiment.
  • the water supply mechanism 500 that emits water to the chamber space 430 of the steam generator 420 has the above-described water supply valve 310, water storage tank 320, pump 330, connection pipe 421, and water level in the water storage tank 320.
  • a water level sensor 321 for measuring is provided.
  • the water supply valve 310 supplies water to the water storage tank 320 or stops water supply to the water storage tank 320 according to the water level detected by the water level sensor 321.
  • the water supply valve 310 may be controlled according to the operation time and / or operation pattern of the pump 330 (intermittent water supply operation and / or continuous water supply operation). For example, the amount of water supplied from the water supply valve 310 may be adjusted so that the water storage tank 320 becomes empty when the operation of the pump 330 ends. Thereby, even if outside temperature falls, freezing of the water in the water storage tank 320 becomes difficult to occur. As a result, the reliability of the washing machine 100 can be further improved.
  • the pump 330 supplies the water stored in the water storage tank 320 to the chamber space 430 of the steam generator 420 through the connection pipe 421. At this time, in the intermittent water supply operation by the pump 330, for example, the supply amount, the supply time, the supply interval, and the like are adjusted so that the water emitted into the chamber space 430 evaporates instantaneously.
  • the exhaust pipe 422 of the steam generator 420 is connected to the steam conduction pipe 340.
  • the steam generated in the chamber space 430 by the intermittent water supply operation of the pump 330 and the water flowing into the chamber space 430 by the continuous water supply operation of the pump 330 are passed through the exhaust pipe 422 and the steam conduction pipe 340.
  • the storage tank 200 Through the storage tank 200.
  • the water supply mechanism of the steam supply mechanism of the washing machine 100 of the present embodiment is configured.
  • FIG. 12 is a schematic rear view of the front part of the storage tub of the washing machine in the same embodiment.
  • the annular portion 224 of the front portion 222 of the water tank 220 has an inner surface 225 that faces the rotating drum 210 and an outer surface 226 that faces the front wall 111 of the housing 110.
  • FIG. 12 mainly shows the inner surface 225 of the annular portion 224 of the front portion 222 of the water tank 220.
  • the steam supply mechanism 300 described above connects the branch pipe 351 attached to the inner surface 225, the nozzle 352 disposed above the branch pipe 351, and the branch pipe 351 and the nozzle 352.
  • a steam tube 353 is further provided.
  • the steam conduction pipe 340 is connected to the branch pipe 351 through the peripheral wall portion 223 of the water tank 220.
  • the steam reaching the branch pipe 351 Since the steam reaching the branch pipe 351 has a high temperature, it is guided to the steam tube 353 and flows to the nozzle 352 disposed above the branch pipe 351. Finally, the steam is injected from the nozzle 352 into the rotating drum 210 of the storage tank 200.
  • the exhaust pipe 422, the steam conducting pipe 340, the branch pipe 351, and the steam tube 353 guide the steam generated in the chamber space 430 to the nozzle 352.
  • the pump 330 that performs the intermittent water supply operation emits an appropriate amount of water to the high-temperature chamber space 430 heated by the heater 425, whereby water is instantly evaporated.
  • the internal pressure of the chamber space 430 of the steam generator 420 rapidly increases due to water evaporation.
  • the generated steam is injected from the nozzle 352 at a high pressure.
  • the steam is injected so as to cross the internal space of the storage tank 200 up and down.
  • a branch pipe 351 for guiding steam from the steam conduction pipe 340 to the steam tube 353 includes a parent pipe 354 connected to the steam conduction pipe 340, an upper pipe 355 bent upward from the parent pipe 354, and a parent pipe 354.
  • the upper tube 355 is connected to the steam tube 353, and defines an upward path for the steam toward the nozzle 352.
  • the lower tube 356 defines a downward path. Specifically, when continuous water supply operation is performed by the pump 330, water mainly flows into the branch pipe 351 through the steam conduction pipe 340. Then, the water that has flowed into the branch pipe 351 flows down through the lower pipe 356 by gravity.
  • the parent tube 354 and the upper tube 355 of the branch tube 351 are connected at an obtuse angle ⁇ 1 and the parent tube 354 and the lower tube 356 are an acute angle.
  • the included angle ⁇ 2 is an acute angle
  • the flow loss from the parent tube 354 to the lower child tube 356 is relatively large. Therefore, the steam that has flowed into the parent pipe 354 hardly flows to the lower child pipe 356 and flows mainly to the upper child pipe 355.
  • the upper pipe 355 defines an upward flow path, the water flowing into the parent pipe 354 hardly flows into the upper pipe 355 and mainly flows into the lower pipe 356 due to the action of gravity. As a result, the flow path of steam and the flow path of water can be appropriately separated by the branch pipe 351.
  • FIG. 13 is an explanatory view schematically showing the relationship between the intermittent operation of the pump of the water supply mechanism and the temperature in the chamber space in the same embodiment.
  • the period during which the pump 330 is operating (ON period) is set shorter than the period during which the pump 330 is stopped (OFF period). Accordingly, an appropriate amount of water can be emitted into the chamber space 430 of the steam generator 420 of the steam generation unit 400.
  • intervals between the ON period and the OFF period shown in FIG. 13 are relative, and needless to say, the interval is changed depending on the volume of the chamber space 430, the heating amount of the heater, and the necessary steam amount.
  • the pump 330 supplies a predetermined amount of water to the chamber space 430 during the ON period.
  • the supplied water evaporates and becomes steam.
  • the temperature of the chamber space 430 temporarily decreases due to the heat of vaporization caused by the phase change from water to steam.
  • the heater 425 can sufficiently raise the temperature of the chamber space 430 during the OFF period by setting the OFF period to be relatively long. As a result, it is possible to continue supplying high-pressure steam to the storage tank 200 while the pump 330 performs an intermittent operation.
  • the chamber space 430 is sufficiently heated during the OFF period.
  • an appropriate amount of water that instantaneously evaporates is supplied to the thermal energy of the steam generator 420 including the chamber space 430 (for example, about 2 cc / time). Thereby, it is possible to continue to supply the high-pressure steam to the storage tank 200 satisfactorily.
  • FIG. 14 will be described below with reference to FIGS. 1, 8, and 11 with respect to the effect of the steam supplied to the storage tank via the steam supply mechanism of the embodiment of the present invention, particularly the effect in the washing step. It explains using.
  • FIG. 14 is an explanatory diagram schematically showing a change in the temperature of the water supplied to the water tank of the washing machine in the embodiment.
  • a hot water heater 160 for heating water supplied into the water tank 220 is disposed at the bottom of the water tank 220.
  • the water in the water tank 220 is heated using the hot water heater 160.
  • the hot water heater 160 since the hot water heater 160 generates a large amount of heat, the temperature of the water contained in the clothes in the water tank 220 rises rapidly. And when the predetermined temperature is reached, heating of water in the water tank 220 is stopped.
  • the dotted line after the heating stop shown in FIG. 14 represents a change in the temperature of water contained in the clothing when the heating by the hot water heater 160 is stopped and no steam is supplied.
  • the solid line after stopping the heating represents a change in the temperature of the water contained in the clothing when the heating by the hot water heater 160 is stopped and the steam is supplied to the storage tank 200.
  • the washing step high-temperature steam is directly supplied to the storage tub 200 toward the clothes. Therefore, the temperature drop of the water contained in the clothes in the water tank 220 is relieved (suppressed) by the high-temperature steam.
  • the heater 425 used for the steam generator 420 consumes less power than the hot water heater 160 attached to the water tank 220. As a result, compared with the case where the water in the water tank 220 is kept warm using the hot water heater 160, the heat keeping by supplying the high-temperature steam can be realized with less power consumption. For this reason, in the washing step, it is preferable to use the pump 330 to stop the hot water heater 160 and then perform an intermittent water supply operation to supply high temperature steam to the storage tank.
  • the rotating drum 210 is rotated at a high speed by the motor 231. At this time, as shown in FIG. 1, a large number of small holes 219 are formed in the peripheral wall 211 of the rotary drum 210.
  • the clothing housed in the rotating drum 210 is pressed against the peripheral wall 211 by centrifugal force, and moisture contained in the clothing is discharged out of the rotating drum 210 through the small hole 219. As a result, the clothing is properly dehydrated.
  • the fibers of the dehydrated clothing are likely to be hydrogen-bonded to each other, and the hydrogen bonding between the fibers becomes a factor that causes wrinkles of the clothing.
  • the power supply to the heater 425 is stopped to cool the steam generator 420.
  • a continuous water supply operation is started by the pump 330. Accordingly, water continuously flows from the water storage tank 320 into the chamber space 430 of the steam generator 420. The water that has flowed into the chamber space 430 takes heat from the steam generator 420 and then flows from the steam conduction pipe 340 into the storage tank 200 through the branch pipe 351. As a result, the steam generator 420 can be cooled in a short period of time.
  • FIG. 15 the control of the door body according to the embodiment of the present invention will be described using FIG. 15 with reference to FIGS. 1 and 6B. This is to control the user not to open the door 120 inadvertently when high-temperature steam is present in the storage tank 200.
  • FIG. 15 is a block diagram schematically showing control on the door body based on the temperature of the steam generator in the embodiment.
  • the washing machine 100 includes a lock mechanism 121 that locks the door body 120 in the closed position, and a control unit 122 that controls locking and unlocking of the lock mechanism 121.
  • a lock mechanism 121 that locks the door body 120 in the closed position
  • a control unit 122 that controls locking and unlocking of the lock mechanism 121.
  • the mechanical and electrical mechanisms of the lock mechanism 121 may use a known washing machine structure.
  • the steam generator 420 includes a thermistor 426.
  • the thermistor 426 detects the temperature of the main piece 423 of the steam generator 420 and outputs a signal corresponding to the detected temperature to the control unit 122.
  • the controller 122 keeps the door 120 locked by the lock mechanism 121 until the signal output from the thermistor 426 reaches a temperature equal to or lower than a predetermined value. Thereby, the internal space of the storage tank 200 is isolated from the outside until the steam generator 420 becomes a predetermined temperature or lower. As a result, the user can be prevented from coming into contact with high-temperature steam, and the washing machine 100 that is safe and highly reliable can be realized.
  • the present invention is suitably used for an apparatus for processing clothing using steam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

This clothing treatment device comprises: a housing tub that houses clothing; and a steam supply mechanism that jets steam towards the housing tub. The steam supply mechanism has: a steam generator (420) having wall surfaces that prescribe a chamber for generating steam; a heater that heats the wall surfaces; a water supply mechanism that sprays water on the wall surfaces; and spacers (451) interposed so as to separate the steam generator (420) and a case (410). As a result, a clothing treatment device that efficiently supplies steam to clothing and having improved stability (heat insulation characteristics) can be achieved.

Description

衣類処理装置Clothing processing equipment
 本発明は、衣類を洗濯、脱水および/または乾燥するための衣類処理装置に関する。 The present invention relates to a clothing processing apparatus for washing, dehydrating and / or drying clothing.
 近年、衣類に蒸気を供給し、殺菌を行う洗濯機が開発されている(例えば、特許文献1参照)。 Recently, a washing machine that supplies steam to clothes and sterilizes has been developed (see, for example, Patent Document 1).
 特許文献1に記載の洗濯機は、水中に浸されたヒータを用いて、蒸気を発生させ、衣類が収容されたドラムに蒸気を供給する構成を有する。 The washing machine described in Patent Document 1 has a configuration in which steam is generated using a heater immersed in water, and the steam is supplied to a drum in which clothing is stored.
 しかしながら、ヒータにより直接、水を蒸発させるため、ドラムへ供給する蒸気の圧力が低い。そのため、ドラム内の空間を蒸気で満たすには、時間がかかる。一方、時間を短縮するために、蒸気を多量に発生させると、多量の電力が必要となる。そのため、蒸気発生部を覆うケースの温度が高温になる。その結果、ケースの温度が高温になると、安全性の問題が生じる可能性がある。 However, since the water is directly evaporated by the heater, the pressure of the steam supplied to the drum is low. Therefore, it takes time to fill the space in the drum with steam. On the other hand, if a large amount of steam is generated in order to shorten the time, a large amount of electric power is required. Therefore, the temperature of the case covering the steam generating part becomes high. As a result, safety problems may arise when the temperature of the case becomes high.
欧州特許第1883727号明細書European Patent No. 1883727
 上記課題を解決するために、本発明の衣類処理装置は、衣類を収容する収容槽と、収容槽へ蒸気を噴射する蒸気供給機構と、を備える。蒸気供給機構は、蒸気を発生させるためのチャンバを規定する壁面を有する蒸気発生器と、壁面を加熱するヒータと、壁面に水を出射する給水機構と、蒸気発生器を覆うケースと、蒸気発生器とケースとを離間させるスペーサとを有する。 In order to solve the above-described problems, a clothing processing apparatus of the present invention includes a storage tank that stores clothing, and a steam supply mechanism that injects steam into the storage tank. The steam supply mechanism includes a steam generator having a wall surface that defines a chamber for generating steam, a heater that heats the wall surface, a water supply mechanism that emits water to the wall surface, a case that covers the steam generator, and steam generation And a spacer for separating the container and the case.
 上記構成によれば、蒸気発生器は、蒸気を発生させるためのチャンバを規定する壁面を有する。給水機構は、ヒータによって加熱された壁面に水を出射する。出射された水はヒータによって加熱された壁面に当たって水蒸気となる。そして、水が水蒸気となるときの気化圧によって、蒸気発生器のチャンバ内の圧力が急激に増大し、衣類が収容された収容槽へ蒸気が噴射される。 According to the above configuration, the steam generator has a wall surface that defines a chamber for generating steam. The water supply mechanism emits water to the wall surface heated by the heater. The emitted water hits the wall surface heated by the heater and becomes water vapor. And the pressure in the chamber of a steam generator increases rapidly by the vaporization pressure when water turns into water vapor | steam, and a vapor | steam is injected into the storage tank in which clothing was accommodated.
 これにより、蒸気を漏出させて、衣類を蒸気雰囲気下におく従来技術とは異なり、高い圧力の蒸気を噴射して衣類に直接的に蒸気を供給する。その結果、高い供給効率で蒸気を衣類に供給できる衣類乾燥装置を実現できる。 This makes it possible to spray steam at a high pressure and supply steam directly to the clothes, unlike the conventional technique in which steam is leaked and the clothes are placed in a steam atmosphere. As a result, a clothes drying apparatus that can supply steam to clothes with high supply efficiency can be realized.
 また、蒸気発生器がスペーサによってケースから離間させる。そのため、ケースの温度上昇を抑制して、安全性を高めることができる。 Also, the steam generator is separated from the case by the spacer. Therefore, the temperature rise of the case can be suppressed and safety can be improved.
図1は、本発明の実施の形態における衣類処理装置として例示される洗濯機の概略的な縦断面図である。FIG. 1 is a schematic longitudinal sectional view of a washing machine exemplified as a clothing processing apparatus according to an embodiment of the present invention. 図2は、同実施の形態における洗濯機の概略的な透視斜視図である。FIG. 2 is a schematic perspective view of the washing machine according to the embodiment. 図3は、同実施の形態における洗濯機の筐体に収容された蒸気供給機構の概略的な斜視図である。FIG. 3 is a schematic perspective view of the steam supply mechanism housed in the casing of the washing machine in the same embodiment. 図4Aは、同実施の形態における蒸気供給機構の蒸気発生部の概略的な斜視図である。FIG. 4A is a schematic perspective view of a steam generation unit of the steam supply mechanism according to the embodiment. 図4Bは、同実施の形態における蒸気供給機構の蒸気発生部の概略的な斜視図である。FIG. 4B is a schematic perspective view of a steam generation unit of the steam supply mechanism according to the embodiment. 図5Aは、同実施の形態における蒸気発生部の蓋部と筐体とを接続するための取付構造の概略的な斜視図である。FIG. 5A is a schematic perspective view of an attachment structure for connecting the lid of the steam generating unit and the housing in the same embodiment. 図5Bは、同実施の形態における蒸気発生部の分解構造を示した概略的な斜視図である。FIG. 5B is a schematic perspective view showing an exploded structure of the steam generation unit in the same embodiment. 図6Aは、同実施の形態における蒸気発生部の蒸気発生器の概略的な斜視図である。FIG. 6A is a schematic perspective view of the steam generator of the steam generating unit according to the embodiment. 図6Bは、同実施の形態における蒸気発生部の蒸気発生器の概略的な斜視図である。FIG. 6B is a schematic perspective view of the steam generator of the steam generation unit according to the embodiment. 図7は、同実施の形態における蒸気発生器の主片の概略的な斜視図である。FIG. 7 is a schematic perspective view of the main piece of the steam generator in the same embodiment. 図8は、同実施の形態における蒸気発生器の概略的な展開斜視図である。FIG. 8 is a schematic exploded perspective view of the steam generator in the same embodiment. 図9は、同実施の形態における蒸気発生器の蓋片の概略的な斜視図である。FIG. 9 is a schematic perspective view of a lid piece of the steam generator in the same embodiment. 図10は、同実施の形態における蒸気発生器の主片の概略的な平面図である。FIG. 10 is a schematic plan view of a main piece of the steam generator in the same embodiment. 図11は、同実施の形態における蒸気供給機構の給水機構の概略図である。FIG. 11 is a schematic view of a water supply mechanism of the steam supply mechanism in the same embodiment. 図12は、同実施の形態における洗濯機の収容槽の前部の概略的な背面図である。FIG. 12 is a schematic rear view of the front portion of the storage tub of the washing machine in the same embodiment. 図13は、同実施の形態における給水機構のポンプの間欠動作とチャンバ空間内の温度との関係を概略的に表す説明図である。FIG. 13 is an explanatory diagram schematically illustrating the relationship between the intermittent operation of the pump of the water supply mechanism and the temperature in the chamber space in the embodiment. 図14は、同実施の形態における洗濯機の水槽に供給された水の温度の変化を概略的に表す説明図である。FIG. 14 is an explanatory diagram schematically illustrating a change in the temperature of water supplied to the water tub of the washing machine according to the embodiment. 図15は、同実施の形態における蒸気発生器の温度に基づく扉体に対する制御を概略的に表すブロック図である。FIG. 15 is a block diagram schematically showing control on the door body based on the temperature of the steam generator in the embodiment.
 以下、本発明の実施の形態の衣類処理装置について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。また、以下では、衣類処理装置として、洗濯機を例に説明する。さらに、以下の説明で用いられる「上」、「下」、「左」や「右」などの方向を表す用語は、単に、説明の明瞭化を目的とし、衣類処理装置の原理を何ら限定するものではない。また、衣類処理装置の原理は、衣類を洗濯および乾燥する能力を有する装置や衣類を乾燥する装置にも適用可能である。 Hereinafter, a clothing processing apparatus according to an embodiment of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. Hereinafter, a washing machine will be described as an example of the clothing processing apparatus. Further, terms used in the following description to indicate directions such as “up”, “down”, “left”, and “right” are merely for the purpose of clarifying the explanation and limit the principle of the clothing processing apparatus. It is not a thing. The principle of the clothing processing apparatus can also be applied to an apparatus having the ability to wash and dry clothes and an apparatus for drying clothes.
 (実施の形態)
 <洗濯機の構成>
 以下に、本発明の実施の形態の洗濯機の構成について、図1を用いて説明する。
(Embodiment)
<Structure of washing machine>
Below, the structure of the washing machine of embodiment of this invention is demonstrated using FIG.
 図1は、本発明の実施の形態における衣類処理装置として例示される洗濯機の概略的な縦断面図である。 FIG. 1 is a schematic longitudinal sectional view of a washing machine exemplified as a clothing processing apparatus according to an embodiment of the present invention.
 図1に示すように、本実施の形態の洗濯機100は、少なくとも筐体110と、筐体110内で衣類を収容する収容槽200と、を備える。収容槽200は、回転軸RXを取り囲む略円筒形状(円筒形状を含む)の周壁211を有する回転ドラム210と、回転ドラム210を収容する水槽220と、を含む。 As shown in FIG. 1, the washing machine 100 according to the present embodiment includes at least a housing 110 and a storage tank 200 that stores clothing in the housing 110. The storage tank 200 includes a rotary drum 210 having a substantially cylindrical (including a cylindrical shape) peripheral wall 211 that surrounds the rotation axis RX, and a water tank 220 that stores the rotary drum 210.
 また、筐体110は、収容槽200へ衣類を投入するための投入口が形成された前壁111と、前壁111とは反対側の後壁112と、略水平(水平を含む)に延びる筐体天壁113と、筐体天壁113と反対側の筐体底壁114と、後述する左壁および右壁などを備える。このとき、収容槽200の回転ドラム210および水槽220は、前壁111に向けて開口する。 In addition, the housing 110 extends substantially horizontally (including horizontal) with a front wall 111 in which an insertion port for putting clothes into the storage tub 200 is formed, and a rear wall 112 opposite to the front wall 111. A housing top wall 113, a housing bottom wall 114 opposite to the housing top wall 113, a left wall and a right wall described later, and the like are provided. At this time, the rotating drum 210 and the water tank 220 of the storage tank 200 open toward the front wall 111.
 また、洗濯機100は、筐体110の前壁111に取り付けられた扉体120をさらに備える。扉体120は、前壁111に形成された投入口を閉塞する閉位置と投入口を開放する開位置との間で回動する。これにより、使用者は、扉体120を開位置に回動させ、前壁111の投入口を通じて、衣類を収容槽200へ投入できる。その後、使用者は、扉体120を閉位置に移動させ、洗濯機100に投入した衣類を洗濯できる。なお、図1は、扉体120が、閉位置の状態を示している。 The washing machine 100 further includes a door body 120 attached to the front wall 111 of the housing 110. The door body 120 rotates between a closed position that closes the charging port formed in the front wall 111 and an open position that opens the charging port. Accordingly, the user can turn the door 120 to the open position and put the clothes into the storage tank 200 through the insertion port of the front wall 111. Thereafter, the user can move the door 120 to the closed position and wash the clothes put into the washing machine 100. FIG. 1 shows the door 120 in the closed position.
 また、回転ドラム210は、周壁211と底壁212を備え、筐体110の前壁111と後壁112との間で延びる回転軸RX周りに回転する。このとき、収容槽200に投入された衣類は、回転ドラム210の回転に伴って回転ドラム210内を移動する。これにより、衣類は、洗い、すすぎおよび/または脱水などの様々な処理を受ける。なお、回転ドラム210の底壁212は、閉位置にある扉体120に対向して設けられる。 The rotating drum 210 includes a peripheral wall 211 and a bottom wall 212, and rotates around a rotation axis RX extending between the front wall 111 and the rear wall 112 of the housing 110. At this time, the clothes put in the storage tank 200 move in the rotary drum 210 as the rotary drum 210 rotates. Thereby, the garment is subjected to various treatments such as washing, rinsing and / or dehydration. The bottom wall 212 of the rotary drum 210 is provided to face the door body 120 in the closed position.
 また、水槽220は、少なくとも底部221と、前部222とから構成される。底部221は、回転ドラム210の底壁212および周壁211の一部を取り囲む。前部222は、水槽220の底部221と扉体120との間に配置され、対向する回転ドラム210の周壁211の残りの部分を取り囲む。 Further, the water tank 220 includes at least a bottom part 221 and a front part 222. The bottom 221 surrounds a part of the bottom wall 212 and the peripheral wall 211 of the rotary drum 210. The front part 222 is disposed between the bottom part 221 of the water tank 220 and the door body 120 and surrounds the remaining part of the peripheral wall 211 of the rotating drum 210 facing each other.
 また、収容槽200は、回転ドラム210の底壁212に取り付けられ、回転軸RXに沿って筐体110の後壁112に向けて延びる回転シャフト230を有する。そのため、回転シャフト230は、水槽220の底部221を貫通し、水槽220と後壁112との間に突出するように設けられる。 Also, the storage tank 200 has a rotating shaft 230 that is attached to the bottom wall 212 of the rotating drum 210 and extends toward the rear wall 112 of the housing 110 along the rotation axis RX. Therefore, the rotating shaft 230 is provided so as to penetrate the bottom 221 of the water tank 220 and protrude between the water tank 220 and the rear wall 112.
 さらに、洗濯機100は、水槽220の下方に据え付けられたモータ231と、水槽220の外に露出した回転シャフト230に取り付けられたプーリ232と、モータ231の動力をプーリ232に伝達するベルト233と、を備える。そして、モータ231が作動すると、モータ231の動力は、ベルト233、プーリ232および回転シャフト230に伝達される。その結果、回転ドラム210は、水槽220内で回転する。 Furthermore, the washing machine 100 includes a motor 231 installed below the water tank 220, a pulley 232 attached to the rotating shaft 230 exposed outside the water tank 220, and a belt 233 that transmits the power of the motor 231 to the pulley 232. . When the motor 231 is activated, the power of the motor 231 is transmitted to the belt 233, the pulley 232, and the rotating shaft 230. As a result, the rotating drum 210 rotates in the water tank 220.
 また、洗濯機100は、水槽220の前部222と扉体120との間に配設されたパッキン構造130をさらに備える。そして、扉体120が閉位置に回動されると、扉体120により、パッキン構造130が圧縮される。その結果、圧縮されたパッキン構造130により、扉体120と前部222との間に水密シール構造が形成される。 The washing machine 100 further includes a packing structure 130 disposed between the front portion 222 of the water tank 220 and the door body 120. When the door body 120 is turned to the closed position, the packing structure 130 is compressed by the door body 120. As a result, the compressed packing structure 130 forms a watertight seal structure between the door body 120 and the front portion 222.
 また、洗濯機100は、蛇口(図示せず)に接続される給水口140と、給水口140を介して導入された水を分配するための分配部141と、を備える。給水口140は筐体天壁113上に突出するように設けられ、分配部141は筐体天壁113と収容槽200との間に設けられる。 The washing machine 100 also includes a water supply port 140 connected to a faucet (not shown), and a distribution unit 141 for distributing water introduced through the water supply port 140. The water supply port 140 is provided so as to protrude on the housing top wall 113, and the distribution unit 141 is provided between the housing top wall 113 and the storage tank 200.
 また、図1に示すように、洗濯機100は、洗剤が収容される洗剤収容部(図示せず)および収容槽200へ蒸気を噴射する蒸気供給機構300(後述される)を備える。このとき、分配部141は、収容槽200、洗剤収容部および蒸気供給機構300に、給水経路(図示せず)を介して選択的に水を供給するための複数の給水弁を備える。なお、収容槽200および洗剤収容部への給水に対して、既知の洗濯機に用いられている技術を好適に適用できることはいうまでもない。 As shown in FIG. 1, the washing machine 100 includes a detergent container (not shown) in which detergent is accommodated and a steam supply mechanism 300 (described later) that injects steam into the container 200. At this time, the distribution unit 141 includes a plurality of water supply valves for selectively supplying water to the storage tank 200, the detergent storage unit, and the steam supply mechanism 300 via a water supply path (not shown). In addition, it cannot be overemphasized that the technique used for the known washing machine can be applied suitably with respect to the water supply to the storage tank 200 and the detergent storage part.
 <蒸気供給機構の構成>
 以下に、本発明の実施の形態の洗濯機の蒸発供給機構の構成について、図1を参照しながら、図2と図3を用いて説明する。
<Configuration of steam supply mechanism>
Hereinafter, the configuration of the evaporation supply mechanism of the washing machine according to the embodiment of the present invention will be described with reference to FIG. 1 and FIG.
 図2は、同実施の形態における洗濯機の概略的な透視斜視図である。図3は、同実施の形態における洗濯機の筐体に収容された蒸気供給機構の概略的な斜視図である。なお、図2と図3には、筐体110を点線で表し、図3には、収容槽200を示していない。また、図3中の矢印は、各部を接続する給水経路を概略的に表している。 FIG. 2 is a schematic perspective view of the washing machine according to the embodiment. FIG. 3 is a schematic perspective view of the steam supply mechanism housed in the casing of the washing machine in the same embodiment. 2 and 3, the housing 110 is represented by a dotted line, and the storage tank 200 is not shown in FIG. 3. Moreover, the arrow in FIG. 3 represents the water supply path | route which connects each part schematically.
 図2と図3に示すように、蒸気供給機構300は、少なくとも分配部141の一部として用いられる給水弁310と、収容槽200の下方に配置された貯水槽320と、を備える。給水弁310は、貯水槽320への給水を制御する。つまり、給水弁310を開くと、給水口140から貯水槽320へ水を供給する。給水弁310を閉じると、貯水槽320への給水が停止する。 2 and 3, the steam supply mechanism 300 includes at least a water supply valve 310 used as a part of the distribution unit 141 and a water storage tank 320 disposed below the storage tank 200. The water supply valve 310 controls water supply to the water storage tank 320. That is, when the water supply valve 310 is opened, water is supplied from the water supply port 140 to the water storage tank 320. When the water supply valve 310 is closed, the water supply to the water storage tank 320 is stopped.
 また、蒸気供給機構300は、貯水槽320に取り付けられたポンプ330と、ポンプ330から吐出された水を受ける蒸気発生部400と、をさらに備える。ポンプ330は、蒸気発生部400に間欠式にあるいは連続的に給水動作を行う。このとき、間欠式の給水動作の間、ポンプ330は、瞬間的な蒸気発生が生ずるように調整された適量の水を、後述する蒸気発生部400に供給する。一方、ポンプ330が蒸気発生部400に連続的に給水を行う場合、蒸気発生のために用いられた水に含まれる不純物(スケール)などを蒸気発生部400から洗い流すことができる。 The steam supply mechanism 300 further includes a pump 330 attached to the water storage tank 320 and a steam generator 400 that receives water discharged from the pump 330. The pump 330 performs a water supply operation intermittently or continuously to the steam generation unit 400. At this time, during the intermittent water supply operation, the pump 330 supplies an appropriate amount of water adjusted so that instantaneous steam generation occurs to the steam generation unit 400 described later. On the other hand, when the pump 330 continuously supplies water to the steam generation unit 400, impurities (scale) and the like contained in the water used for generating steam can be washed away from the steam generation unit 400.
 また、図2に示すように、蒸気供給機構300は、蒸気発生部400から下方に延びる蒸気導通管340をさらに備える。このとき、図1を用いて上述したように、水槽220の前部222は、回転ドラム210の周壁211を取り囲む周壁部223と、パッキン構造130と協働して水密シール構造を形成する図2に示す環状部224と、を備えている。そして、蒸気供給機構300の蒸気導通管340は、前部222の周壁部223へ接続されている。これにより、蒸気発生部400で発生した蒸気は、蒸気導通管340を通じて、収容槽200へ供給される。なお、蒸気導通管340は、収容槽200の回転により発生する振動が蒸気発生部400に伝達しないように、少なくとも一部を、例えば蛇腹形状とするのが好ましい。 Further, as shown in FIG. 2, the steam supply mechanism 300 further includes a steam conduction pipe 340 extending downward from the steam generation unit 400. At this time, as described above with reference to FIG. 1, the front portion 222 of the water tank 220 forms a watertight seal structure in cooperation with the peripheral wall portion 223 that surrounds the peripheral wall 211 of the rotating drum 210 and the packing structure 130. An annular portion 224 shown in FIG. The steam conduction pipe 340 of the steam supply mechanism 300 is connected to the peripheral wall part 223 of the front part 222. Thereby, the steam generated in the steam generating unit 400 is supplied to the storage tank 200 through the steam conduction pipe 340. In addition, it is preferable that at least a part of the steam conduction pipe 340 has, for example, a bellows shape so that vibration generated by the rotation of the storage tank 200 is not transmitted to the steam generation unit 400.
 上述したように、本実施の形態の蒸気供給機構300によれば、ポンプ330により、貯水槽320から蒸気発生部400内の蒸気発生器420(図8参照)に強制的に給水を行うことができる。そのため、蒸気発生器420を貯水槽320より上方に配置することができる。一方、ポンプ330を設けずに、貯水槽320から蒸気発生器420に給水を行う場合、貯水槽320の水を重力の作用で蒸気発生器420に送らなければならない。そのため、蒸気発生器420を貯水槽320より必ず下位に配置しなければならない。つまり、ポンプ330を配置することによって、水をポンプ330の圧力で強制的に貯水槽320から蒸気発生器420へ供給できる。これにより、蒸気発生器420と貯水槽320との配置に伴う相互の上下関係などの制約を解消できる。その結果、貯水槽320と蒸気発生器420との配置の自由度が増すため、筐体110内のスペースを有効活用できる。 As described above, according to the steam supply mechanism 300 of the present embodiment, the pump 330 can forcibly supply water from the water storage tank 320 to the steam generator 420 (see FIG. 8) in the steam generator 400. it can. Therefore, the steam generator 420 can be disposed above the water storage tank 320. On the other hand, when water is supplied from the water storage tank 320 to the steam generator 420 without providing the pump 330, the water in the water storage tank 320 must be sent to the steam generator 420 by the action of gravity. Therefore, the steam generator 420 must be disposed below the water storage tank 320 without fail. That is, by arranging the pump 330, water can be forcibly supplied from the water storage tank 320 to the steam generator 420 with the pressure of the pump 330. Thereby, restrictions, such as mutual up-and-down relationship accompanying arrangement | positioning with the steam generator 420 and the water tank 320, can be eliminated. As a result, the degree of freedom of arrangement of the water storage tank 320 and the steam generator 420 is increased, so that the space in the housing 110 can be effectively used.
 また、図2に示すように、蒸気発生器420は、貯水槽320よりも上方に配置されるが、ポンプ330により貯水槽320から蒸気発生器420へ水を問題なく供給できる。 Further, as shown in FIG. 2, the steam generator 420 is disposed above the water storage tank 320, but water can be supplied from the water storage tank 320 to the steam generator 420 by the pump 330 without any problem.
 なお、不慮の故障などの要因により、蒸気発生器420に水が不用意に流れ込むと、必要外の蒸気が発生する。しかしながら、本実施の形態のように、ポンプ330を配設することにより、貯水槽320を、蒸気発生器420より下方に配置することが可能となる。そのため、もし、ポンプ330が故障などの不具合で停止し、蒸気発生器420への水の供給が制御できない場合でも、貯水槽320およびポンプ330と蒸気発生器420とを連通するホース内に滞留する水が、蒸気発生器420に不用意に流れ込むことがない。その結果、必要外の蒸気の発生を未然に防止できる。 In addition, when water flows inadvertently into the steam generator 420 due to an unexpected failure or the like, unnecessary steam is generated. However, it is possible to arrange the water storage tank 320 below the steam generator 420 by arranging the pump 330 as in the present embodiment. Therefore, even if the pump 330 stops due to a malfunction such as failure and the supply of water to the steam generator 420 cannot be controlled, the water stays in the water tank 320 and the hose connecting the pump 330 and the steam generator 420. Water does not flow into the steam generator 420 inadvertently. As a result, generation of unnecessary steam can be prevented in advance.
 一方、ポンプ330を設けない構成の場合、蒸気発生器420は貯水槽320より必ず下位に配置しなければならない。そのため、例えば貯水槽320から蒸気発生器420へ水の供給を制御する開閉弁などの制御部品が故障した場合、蒸気発生器420への水の供給が制御できなくなる。そして、蒸気発生器420の上方に設けた貯水槽320から水が、重力の作用により蒸気発生器420へ不用意に水が供給されることになる。しかし、本実施の形態のように、ポンプ330を設けることにより、貯水槽320より上方に設けた蒸気発生器420から不用意に水を供給されることを未然に回避できる。 On the other hand, in the case where the pump 330 is not provided, the steam generator 420 must be disposed below the water storage tank 320. Therefore, for example, when a control component such as an on-off valve that controls the supply of water from the water storage tank 320 to the steam generator 420 fails, the supply of water to the steam generator 420 cannot be controlled. Then, water is inadvertently supplied to the steam generator 420 by the action of gravity from a water storage tank 320 provided above the steam generator 420. However, by providing the pump 330 as in the present embodiment, it is possible to avoid inadvertently supplying water from the steam generator 420 provided above the water storage tank 320.
 さらに、本実施の形態では、図2に示すように、蒸気発生部400の蒸気発生器420は、収容槽200よりも上方に配置される。このとき、通常、蒸気発生器420に供給する水に含有される不純物が、水の気化時に、蒸気発生器420を構成する主片423の外チャンバ壁431、内チャンバ壁432、上面429、および蓋片424の下面434により形成されるチャンバ空間430の壁面に付着あるいは析出する。そして、不純物がチャンバ空間430を形成する壁面に付着あるいは析出して、堆積する。その場合、不純物により、チャンバ空間430の壁面と供給された水との間で熱伝達が適切に行われなくなるため、蒸気発生器420に供給される水が蒸発しにくくなる。 Furthermore, in the present embodiment, as shown in FIG. 2, the steam generator 420 of the steam generation unit 400 is disposed above the storage tank 200. At this time, the impurities contained in the water supplied to the steam generator 420 normally cause the outer chamber wall 431, the inner chamber wall 432, the upper surface 429 of the main piece 423 constituting the steam generator 420, and It adheres to or deposits on the wall surface of the chamber space 430 formed by the lower surface 434 of the lid piece 424. Impurities are deposited or deposited on the wall surface forming the chamber space 430. In that case, the heat is not properly transferred between the wall surface of the chamber space 430 and the supplied water due to the impurities, so that the water supplied to the steam generator 420 is difficult to evaporate.
 しかしながら、蒸気発生器420を収容槽200よりも上方に配置することにより、付着あるいは析出した不純物は、水の気化時の圧力や重力の作用で、蒸気発生器420の下方へ排出あるいは落下する。これにより、不純物は、チャンバ空間430内から収容槽200へ容易に排出される。その結果、蒸気発生器420のチャンバ空間430の壁面に付着あるいは析出した不純物の堆積を防止できる。さらに、不純物の堆積による、水を気化する能力の低下を未然に防止できる。 However, by disposing the steam generator 420 above the storage tank 200, the adhered or deposited impurities are discharged or dropped below the steam generator 420 by the action of pressure or gravity when water is vaporized. Thereby, impurities are easily discharged from the chamber space 430 to the storage tank 200. As a result, it is possible to prevent the deposition of impurities adhered or deposited on the wall surface of the chamber space 430 of the steam generator 420. Furthermore, it is possible to prevent a decrease in the ability to vaporize water due to the accumulation of impurities.
 また、本実施の形態では、図2に示すように、筐体110の前壁111から見て、貯水槽320は筐体110の左下の空間に配置し、蒸気発生器420は筐体110の右上の空間に配置する。つまり蒸気発生器420および貯水槽320は、収容槽200の中心軸(回転軸RX)に対して、略対称(対称を含む)の位置に配置される。 Further, in the present embodiment, as shown in FIG. 2, the water storage tank 320 is disposed in the lower left space of the casing 110 when viewed from the front wall 111 of the casing 110, and the steam generator 420 is disposed in the casing 110. Place in the upper right space. That is, the steam generator 420 and the water storage tank 320 are disposed at substantially symmetrical positions (including symmetry) with respect to the central axis (rotation axis RX) of the storage tank 200.
 なお、一般的な洗濯機の場合、洗剤を収容する洗剤収容部(図示せず)は、筐体110の上部前方の左側および右側のうち一方に配設される。そこで、洗剤収容部が占める位置を除いた略円筒形状(円筒形状を含む)の収容槽200と筐体110とにより形成される空間を、貯水槽320と蒸気発生器420をそれぞれ配置するために有効に活用することができる。例えば、洗剤収容部が筐体110の上部前方の左側に配置される場合、図2に示すように、貯水槽320は、筐体110の左側下方の後方に配置する。このとき、蒸気発生器420が筐体110の右側上方の前方に配置すると、略矩形箱状(矩形箱状を含む)の筐体110の内面ならびに収容槽200外周面との間で形成される空間を、貯水槽320と蒸気発生器420を配置するために有効に活用できる。その結果、貯水槽320および蒸気発生器420の設計寸法を、洗濯機100で許容された空間内に最大限に収容できる大きさに設計することができる。 In the case of a general washing machine, a detergent container (not shown) that stores detergent is disposed on one of the left side and the right side in front of the upper part of the housing 110. Therefore, in order to arrange the water storage tank 320 and the steam generator 420 in the space formed by the storage tank 200 and the casing 110 having a substantially cylindrical shape (including a cylindrical shape) excluding the position occupied by the detergent storage section. It can be used effectively. For example, when the detergent container is disposed on the left side in front of the upper portion of the housing 110, the water storage tank 320 is disposed on the rear left side of the housing 110 as shown in FIG. 2. At this time, when the steam generator 420 is disposed in front of the upper right side of the casing 110, the steam generator 420 is formed between the inner surface of the substantially rectangular box shape (including the rectangular box shape) casing 110 and the outer peripheral surface of the storage tank 200. The space can be effectively utilized to arrange the water storage tank 320 and the steam generator 420. As a result, the design dimensions of the water storage tank 320 and the steam generator 420 can be designed to be maximally accommodated in the space allowed by the washing machine 100.
 また、洗剤収容部が前述の位置にある場合に、貯水槽320を収容槽200の中心軸(回転軸RX)に対して洗剤収容部と略対称の位置に配置し、蒸気発生器420を収容槽200の回転軸RXを含む水平面HPに対して、貯水槽320と略対称な位置に配置してもよい。この場合も、前述と同様に筐体110の内部の空間を有効に活用することができる。 Further, when the detergent container is in the above-described position, the water storage tank 320 is disposed at a position substantially symmetrical to the detergent container with respect to the central axis (rotation axis RX) of the container tank 200, and the steam generator 420 is accommodated. You may arrange | position in the substantially symmetrical position with the water storage tank 320 with respect to the horizontal surface HP containing the rotating shaft RX of the tank 200. FIG. Also in this case, the space inside the housing 110 can be effectively utilized as described above.
 さらに、洗剤収容部が前述の位置にある場合に、貯水槽320を洗剤収容部の下方に配置し、蒸気発生器420を貯水槽320より上方に配置してもよい。このとき、蒸気発生器420は、収容槽200の回転軸RXを含む鉛直面に対して、貯水槽320と略対称な位置に配置してもよい。その結果、前述と同様に筐体110の内部の空間を有効に活用することができる。 Furthermore, when the detergent container is in the above-described position, the water tank 320 may be disposed below the detergent container, and the steam generator 420 may be disposed above the water tank 320. At this time, the steam generator 420 may be disposed at a position substantially symmetrical to the water storage tank 320 with respect to a vertical plane including the rotation axis RX of the storage tank 200. As a result, the space inside the housing 110 can be effectively utilized as described above.
 また、収容槽200の回転軸RXが、筐体110の前後方向に傾斜している場合(例えば、回転ドラム210の回転軸RXが、後壁112から前壁111に向けて上方に傾斜しているような場合)、貯水槽320および蒸気発生器420は、収容槽200の回転軸RXあるいは回転軸RXを含む水平面HPに対して、略対称な位置に配置してもよい。例えば、貯水槽320および蒸気発生器420を筐体110の前後方向の略中心(中心を含む)を通る鉛直面に対し略対称な位置に配置する。これにより、筐体110の内面と収容槽200の外周面との間で形成される内部空間を、貯水槽320と蒸気発生器420とを配置するために有効に活用することができる。 Further, when the rotation axis RX of the storage tank 200 is inclined in the front-rear direction of the housing 110 (for example, the rotation axis RX of the rotation drum 210 is inclined upward from the rear wall 112 toward the front wall 111). In such a case, the water storage tank 320 and the steam generator 420 may be disposed at substantially symmetrical positions with respect to the rotation axis RX of the storage tank 200 or the horizontal plane HP including the rotation axis RX. For example, the water storage tank 320 and the steam generator 420 are disposed at positions that are substantially symmetrical with respect to a vertical plane that passes through the approximate center (including the center) of the casing 110 in the front-rear direction. Thereby, the internal space formed between the inner surface of the housing 110 and the outer peripheral surface of the storage tank 200 can be effectively utilized to arrange the water storage tank 320 and the steam generator 420.
 つぎに、蒸気供給機構300の蒸気発生部400の構成について、図3を参照しながら、図4Aと図4Bを用いて説明する。 Next, the configuration of the steam generation unit 400 of the steam supply mechanism 300 will be described with reference to FIGS. 4A and 4B with reference to FIG.
 図4Aと図4Bは、同実施の形態における蒸気供給機構の蒸気発生部の概略的な斜視図である。 4A and 4B are schematic perspective views of a steam generation unit of the steam supply mechanism in the same embodiment.
 図4Aと図4Bに示すように、蒸気発生部400は、略矩形箱状(矩形箱状を含む)のケース410と、ケース410内に収容された蒸気発生器420と、を有する。ケース410は、蒸気発生器420を収容する底壁部414を有する容器部411と、容器部411を覆う上壁415および突出片417が設けられた蓋部周壁416からなる蓋部412と、を備える。つまり、ケース410によって、蒸気発生器420が覆われる。 4A and 4B, the steam generation unit 400 includes a case 410 having a substantially rectangular box shape (including a rectangular box shape), and a steam generator 420 accommodated in the case 410. The case 410 includes a container part 411 having a bottom wall part 414 for accommodating the steam generator 420, and a cover part 412 including a cover part peripheral wall 416 provided with an upper wall 415 and a protruding piece 417 covering the container part 411. Prepare. That is, the steam generator 420 is covered by the case 410.
 このとき、蒸気発生器420は、接続管421およびチューブ(図示せず)を介して、ポンプ330に接続され、排気管422を介して蒸気導通管340に接続される。なお、容器部411の底壁部414には、開口部413が形成されている。そして、接続管421および排気管422は、開口部413を通じて下方に突出するように設けられている。 At this time, the steam generator 420 is connected to the pump 330 via the connection pipe 421 and a tube (not shown), and is connected to the steam conduction pipe 340 via the exhaust pipe 422. Note that an opening 413 is formed in the bottom wall portion 414 of the container portion 411. The connection pipe 421 and the exhaust pipe 422 are provided so as to protrude downward through the opening 413.
 つぎに、蒸気供給機構300の蒸気発生部400を洗濯機100の筐体110に取り付ける取付構造について、図3と図4Aを参照しながら、図5Aを用いて説明する。 Next, an attachment structure for attaching the steam generation unit 400 of the steam supply mechanism 300 to the casing 110 of the washing machine 100 will be described with reference to FIGS. 3 and 4A with reference to FIG. 5A.
 図5Aは、同実施の形態における蒸気発生部の蓋部と筐体とを接続するための取付構造の概略的な斜視図である。 FIG. 5A is a schematic perspective view of an attachment structure for connecting the lid of the steam generating unit and the housing in the same embodiment.
 まず、図3に示すように、筐体110は、少なくとも前壁111と後壁112との間で立設された右壁115と、右壁115とは反対側の左壁116と、から構成される。さらに、筐体110は、右壁115の上縁に沿って配設された第1補強フレーム117と、前壁111の上縁に沿って配設された第2補強フレーム118と、を備える。 First, as shown in FIG. 3, the housing 110 is composed of at least a right wall 115 erected between the front wall 111 and the rear wall 112, and a left wall 116 opposite to the right wall 115. Is done. The housing 110 further includes a first reinforcement frame 117 disposed along the upper edge of the right wall 115 and a second reinforcement frame 118 disposed along the upper edge of the front wall 111.
 また、図5Aの下図に示すように、蒸気発生部400を構成する蓋部412は、略矩形状(矩形状を含む)の上壁415と、上壁415の縁部から下方(ケース410側)に突出する蓋部周壁416と、蓋部周壁416から前方(筐体110の前壁111側)に突出する突出片417と、を有する。 Further, as shown in the lower diagram of FIG. 5A, the lid portion 412 constituting the steam generating unit 400 includes a substantially rectangular (including rectangular) upper wall 415 and a lower side from the edge of the upper wall 415 (case 410 side). ) And a projecting piece 417 projecting forward (to the front wall 111 side of the housing 110) from the lid peripheral wall 416.
 そして、図5Aの上図右に示す第1取付片151により、洗濯機100の筐体110に設けられた第1補強フレーム117と蒸気発生部400の蓋部412の上壁415とを接続する。一方、図5Aの上図左に示す第2取付片152により、第2補強フレーム118と突出片417とを接続する。 And the 1st reinforcement frame 117 provided in the housing | casing 110 of the washing machine 100 and the upper wall 415 of the cover part 412 of the steam generation part 400 are connected by the 1st attachment piece 151 shown to the upper right figure of FIG. 5A. . On the other hand, the 2nd reinforcement frame 118 and the protrusion piece 417 are connected by the 2nd attachment piece 152 shown to the upper left figure of FIG. 5A.
 つまり、蒸気発生部400の蓋部412と筐体110の筐体天壁113が、蓋部412から上方に突出して設けられた第1取付片151および第2取付片152を介して、離間して取り付けられる。その結果、蒸気発生部400で発生した熱が、筐体110へ伝達することを緩和(抑制)できる。 That is, the lid portion 412 of the steam generation unit 400 and the housing top wall 113 of the housing 110 are separated from each other via the first attachment piece 151 and the second attachment piece 152 provided so as to protrude upward from the lid portion 412. Attached. As a result, it is possible to mitigate (suppress) the heat generated in the steam generation unit 400 from being transmitted to the housing 110.
 つぎに、蒸気供給機構300の蒸気発生部400の構造、特に蓋部412とケース410内にスペーサ451を介して収容される蒸気発生器420について、図5Bを用いて説明する。また、蒸気供給機構300の蒸気発生部400の蒸気発生器420の構成について、図6Aと図6Bを用いて説明する。 Next, the structure of the steam generator 400 of the steam supply mechanism 300, particularly the steam generator 420 housed in the lid 412 and the case 410 via the spacer 451 will be described with reference to FIG. 5B. Moreover, the structure of the steam generator 420 of the steam generation part 400 of the steam supply mechanism 300 is demonstrated using FIG. 6A and FIG. 6B.
 図5Bは、同実施の形態における蒸気発生部の分解構造を示した、概略的な斜視図である。図6Aと図6Bは、同実施の形態における蒸気発生部の蒸気発生器の概略的な斜視図である。 FIG. 5B is a schematic perspective view showing an exploded structure of the steam generation unit in the same embodiment. 6A and 6B are schematic perspective views of the steam generator of the steam generation unit according to the embodiment.
 まず、図6Aと図6Bに示すように、蒸気発生器420は、略矩形状(矩形状を含む)の主片423と、主片423上に配設される蓋片424と、主片423の周面428から主片423内に配設される、例えばシーズヒータなどの線状のヒータ425と、から構成される。なお、本実施の形態では、主片423および蓋片424は、例えばアルミニウムなどの、後述するスペーサ451よりも高い熱伝導率を有する材料から形成される。これにより、主片423および蓋片424は、ヒータ425によって適切に効率よく加熱される。 First, as shown in FIGS. 6A and 6B, the steam generator 420 includes a main piece 423 having a substantially rectangular shape (including a rectangular shape), a lid piece 424 disposed on the main piece 423, and a main piece 423. For example, a linear heater 425 such as a sheathed heater is disposed in the main piece 423 from the peripheral surface 428. In the present embodiment, the main piece 423 and the lid piece 424 are formed of a material having higher thermal conductivity than a spacer 451 described later, such as aluminum. Thereby, the main piece 423 and the lid piece 424 are appropriately and efficiently heated by the heater 425.
 また、図6Bに示すように、蒸気発生器420の主片423の主片下面427には、サーミスタ426がさらに取り付けられている。同様に、上述の接続管421および排気管422も蒸気発生器420を構成する主片423に取り付けられる。 Further, as shown in FIG. 6B, a thermistor 426 is further attached to the main piece lower surface 427 of the main piece 423 of the steam generator 420. Similarly, the connection pipe 421 and the exhaust pipe 422 are also attached to the main piece 423 constituting the steam generator 420.
 そして、ヒータ425は、サーミスタ426によって得られる温度情報により制御される。これにより、主片423および蓋片424の温度は、略一定(一定を含む)に保たれる。なお、サーミスタ426の代わりに、所定の温度でヒータ425への電力の入・切を制御するサーモスタットを用いてもよく、同様の効果が得られる。 The heater 425 is controlled by temperature information obtained by the thermistor 426. Thereby, the temperature of the main piece 423 and the lid piece 424 is kept substantially constant (including constant). Instead of the thermistor 426, a thermostat that controls on / off of power to the heater 425 at a predetermined temperature may be used, and the same effect can be obtained.
 また、図5Bに示すように、蒸気発生器420は、ケース410に、スペーサ451を介して装着される。すなわち、蒸気発生器420とケース410とは、スペーサ451によって離間して装着される。つまり、蒸気発生器420はヒータ425により加熱されて高温となる。しかし、スペーサ451により、蒸気発生器420とケース410を離間して設ける構成により、蒸気発生器420で発生した熱がケース410に伝わり難くできる。その結果、ケース410の温度上昇を抑制して、安全性および信頼性を高めることができる。 Further, as shown in FIG. 5B, the steam generator 420 is attached to the case 410 via a spacer 451. That is, the steam generator 420 and the case 410 are mounted to be separated by the spacer 451. That is, the steam generator 420 is heated by the heater 425 and becomes high temperature. However, the structure in which the steam generator 420 and the case 410 are separated from each other by the spacer 451 can make it difficult for the heat generated by the steam generator 420 to be transmitted to the case 410. As a result, temperature rise of the case 410 can be suppressed, and safety and reliability can be improved.
 なお、スペーサ451は、中空の筒形状であることが好ましい。これにより、蒸気発生器420で発生した熱のケース410への熱伝導をより小さくできる。その結果、さらに、ケース410の温度上昇を抑制できる。また、スペーサ451を円筒形状とすることにより、肉厚が薄くても充分な機械的な強度を得ることができるとともに、より熱伝導を小さくできる。 Note that the spacer 451 preferably has a hollow cylindrical shape. Thereby, the heat conduction to the case 410 of the heat generated by the steam generator 420 can be further reduced. As a result, the temperature rise of the case 410 can be further suppressed. Further, by making the spacer 451 cylindrical, sufficient mechanical strength can be obtained even when the wall thickness is thin, and thermal conduction can be further reduced.
 この場合、スペーサ451を構成する材料として、熱伝導率が、蒸気発生器420を構成する材料、例えばアルミニウムよりも低い材料、例えば鉄やステンレス鋼を用いることが、好ましい。これにより、蒸気発生器420からケース410への熱伝導を、さらに小さくできる。その結果、ケース410の温度上昇をより効果的に抑制することができる。 In this case, as a material constituting the spacer 451, it is preferable to use a material having a thermal conductivity lower than that of the steam generator 420, for example, aluminum, such as iron or stainless steel. Thereby, the heat conduction from the steam generator 420 to the case 410 can be further reduced. As a result, the temperature rise of the case 410 can be more effectively suppressed.
 つぎに、蒸気発生器420を構成する主片423の構成について、図6Bと図7を用いて、説明する。 Next, the configuration of the main piece 423 constituting the steam generator 420 will be described with reference to FIGS. 6B and 7.
 図7は、同実施の形態における蒸気発生器の主片の概略的な斜視図である。 FIG. 7 is a schematic perspective view of the main piece of the steam generator in the same embodiment.
 図6Bと図7に示すように、主片423は、主片下面427と、周面428と、上面429とを有している。主片下面427には、サーミスタ426と、接続管421および排気管422が取り付けられる。周面428には、ヒータ425が配設される。 As shown in FIGS. 6B and 7, the main piece 423 has a main piece lower surface 427, a peripheral surface 428, and an upper surface 429. A thermistor 426, a connection pipe 421 and an exhaust pipe 422 are attached to the main piece lower surface 427. A heater 425 is disposed on the peripheral surface 428.
 また、主片423は、上面429から、蒸気発生器420の一方を構成する蓋片424に向けて立設して、例えば略三角形状(三角形状を含む)のチャンバ空間430が形成されている。チャンバ空間430は、外チャンバ壁431と、チャンバ空間430内で蒸気に流動経路を規定する、例えば略J字形状(J字形状を含む)の内チャンバ壁432と、により規定されて形成される。 Further, the main piece 423 is erected from the upper surface 429 toward the lid piece 424 constituting one of the steam generators 420 to form, for example, a substantially triangular (including triangular) chamber space 430. . The chamber space 430 is defined and formed by an outer chamber wall 431 and an inner chamber wall 432 having, for example, a substantially J shape (including a J shape) that defines a flow path for steam in the chamber space 430. .
 つぎに、蒸気発生器420の構成および動作について、図3、図6Bから図7を参照しながら、図8と図9を用いて、説明する。 Next, the configuration and operation of the steam generator 420 will be described using FIGS. 8 and 9 with reference to FIGS. 3 and 6B to 7.
 図8は、同実施の形態における蒸気発生器の概略的な展開斜視図である。図9は、同実施の形態における蒸気発生器の蓋片の概略的な斜視図である。 FIG. 8 is a schematic exploded perspective view of the steam generator in the same embodiment. FIG. 9 is a schematic perspective view of a lid piece of the steam generator in the same embodiment.
 図8に示すように、蒸気発生器420は、外チャンバ壁431を取り巻くように主片423に取り付けられる、例えば耐熱性ゴムなどからなるパッキンリング433を備える。 As shown in FIG. 8, the steam generator 420 includes a packing ring 433 made of, for example, heat-resistant rubber, which is attached to the main piece 423 so as to surround the outer chamber wall 431.
 また、図8と図9に示すように、蓋片424は、主片423に対向する下面434と、主片423の外チャンバ壁431と略同形状(同形状を含む)のシールド壁435と、を有する。 8 and 9, the lid piece 424 includes a lower surface 434 facing the main piece 423, and a shield wall 435 having substantially the same shape (including the same shape) as the outer chamber wall 431 of the main piece 423. Have.
 そして、蓋片424を、主片423に押しつけることにより、蓋片424のシールド壁435が、パッキンリング433を圧縮する。その結果、蒸気発生器420のチャンバ空間430が気密に保たれる。 Then, by pressing the lid piece 424 against the main piece 423, the shield wall 435 of the lid piece 424 compresses the packing ring 433. As a result, the chamber space 430 of the steam generator 420 is kept airtight.
 また、主片423は、主片下面427に接続された接続管421を通じて供給された水をチャンバ空間430内に流入するための流入口437が形成される。流入口437は、チャンバ空間430の略中央に形成され、その周囲が内チャンバ壁432に取り囲まれる。 Also, the main piece 423 is formed with an inlet 437 for allowing water supplied through the connection pipe 421 connected to the lower surface 427 of the main piece to flow into the chamber space 430. The inflow port 437 is formed substantially at the center of the chamber space 430, and its periphery is surrounded by the inner chamber wall 432.
 以上のように、本実施の形態の蒸気発生器420が構成される。 As described above, the steam generator 420 of the present embodiment is configured.
 つぎに、蒸気発生器420の動作について、詳細に説明する。 Next, the operation of the steam generator 420 will be described in detail.
 まず、ポンプ330により貯水槽320から所定量の水が蒸気発生器420に供給されると、接続管421および流入口437を通じて、水が上向き(蓋片424側)に出射される。そして、蒸気発生器420のチャンバ空間430に出射された水は、内チャンバ壁432、内チャンバ壁432によって囲まれた主片423の上面429および/または流入口437の上方に位置する蓋片424の下面434に衝突する。このとき、蒸気発生器420は、ヒータ425によって加熱され(例えば、約200℃)、高い熱エネルギを有する。 First, when a predetermined amount of water is supplied from the water storage tank 320 to the steam generator 420 by the pump 330, the water is emitted upward (on the lid piece 424 side) through the connection pipe 421 and the inflow port 437. Then, the water emitted to the chamber space 430 of the steam generator 420 passes through the inner chamber wall 432, the upper surface 429 of the main piece 423 surrounded by the inner chamber wall 432 and / or the lid piece 424 located above the inflow port 437. Collide with the lower surface 434. At this time, the steam generator 420 is heated by the heater 425 (for example, about 200 ° C.) and has high thermal energy.
 そして、蒸気供給機構300のポンプ330により、間欠式に給水動作をして適量の水を蒸気発生器420のチャンバ空間430内に供給する(例えば、約2cc/回)。これにより、蒸気発生器420の流入口437から上向きに出射された水は、蒸気発生器420が有する熱エネルギにより瞬時に蒸発する。 Then, a water supply operation is intermittently performed by the pump 330 of the steam supply mechanism 300 to supply an appropriate amount of water into the chamber space 430 of the steam generator 420 (for example, about 2 cc / time). Thereby, the water emitted upward from the inlet 437 of the steam generator 420 is instantly evaporated by the heat energy of the steam generator 420.
 そして、水が瞬時に蒸発することにより、チャンバ空間430の内圧は急激に上昇する。なお、蒸気発生器420に供給された水に含有される不純物が、気化時にチャンバ空間430を形成する壁面に付着あるいは析出する。しかし、付着あるいは析出した不純物は、気化時のチャンバ空間430の急激な内圧の上昇による圧力の作用を受ける。その結果、不純物は、チャンバ空間430の外部へ容易に排出される。 And the internal pressure of the chamber space 430 rises abruptly as the water evaporates instantaneously. It should be noted that impurities contained in the water supplied to the steam generator 420 adhere or deposit on the wall surface forming the chamber space 430 during vaporization. However, the adhered or deposited impurities are affected by pressure due to a sudden increase in internal pressure of the chamber space 430 during vaporization. As a result, the impurities are easily discharged out of the chamber space 430.
 つぎに、蒸気発生器420の主片423に設けられたヒータの構成について、図6Bを参照しながら、図10を用いて詳細に説明する。 Next, the configuration of the heater provided in the main piece 423 of the steam generator 420 will be described in detail with reference to FIG.
 図10は、同実施の形態における蒸気発生器の主片の概略的な平面図である。 FIG. 10 is a schematic plan view of the main piece of the steam generator in the same embodiment.
 図10に示すように、ヒータ425は、主片423内で略U字形状(U字形状を含む)の経路に沿って延びるように配設されている。これにより、ヒータ425は、接続管421が取り付けられた流入口437を取り囲む。そのため、内チャンバ壁432および内チャンバ壁432に取り囲まれた領域は、ヒータ425の加熱により、チャンバ空間430内で最も高温となる。その結果、流入口437を介してチャンバ空間430内に出射された水は瞬時に蒸発する。 As shown in FIG. 10, the heater 425 is disposed so as to extend along a substantially U-shaped (including U-shaped) path in the main piece 423. Thereby, the heater 425 surrounds the inflow port 437 to which the connection pipe 421 is attached. Therefore, the inner chamber wall 432 and the region surrounded by the inner chamber wall 432 become the highest temperature in the chamber space 430 due to the heating of the heater 425. As a result, the water emitted into the chamber space 430 through the inflow port 437 is instantly evaporated.
 また、内チャンバ壁432は、外チャンバ壁431によって規定されるチャンバ空間430内で略J字形状に延出して設けられている。つまり、内チャンバ壁432により、チャンバ空間430は渦巻き状の流動経路が構成される。このとき、主片423には、水や蒸気が通流する流動経路の終端近傍に排気口438が形成されている。そのため、内チャンバ壁432に取り囲まれる空間内で生じた蒸気は、チャンバ空間430の内圧の増加に伴って、排気口438へ向かう。そして、排気口438に到達した蒸気は、排気口438に取り付けられた排気管422を通じて、鉛直方向の下向きに排気される。 The inner chamber wall 432 extends in a substantially J shape within the chamber space 430 defined by the outer chamber wall 431. That is, the inner chamber wall 432 forms a spiral flow path in the chamber space 430. At this time, an exhaust port 438 is formed in the main piece 423 near the end of the flow path through which water and steam flow. Therefore, the vapor generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust port 438 as the internal pressure of the chamber space 430 increases. Then, the steam that has reached the exhaust port 438 is exhausted downward in the vertical direction through the exhaust pipe 422 attached to the exhaust port 438.
 また、ヒータ425は、渦巻き状の流動経路のうち外側の経路に沿って、略U字形状(U字形状を含む)に延びるように設けられている。そのため、内チャンバ壁432に取り囲まれる空間内で生じた蒸気は、加熱されながら、排気管422に向かう。これにより、蒸気発生器420の排気管422から高温の蒸気が排気される。 Further, the heater 425 is provided so as to extend in a substantially U shape (including a U shape) along the outer path of the spiral flow path. Therefore, the steam generated in the space surrounded by the inner chamber wall 432 moves toward the exhaust pipe 422 while being heated. Thereby, high-temperature steam is exhausted from the exhaust pipe 422 of the steam generator 420.
 <給水機構の構成>
 以下に、本発明の実施の形態の洗濯機の給水機構の構成と動作について、図11を用いて説明する。
<Configuration of water supply mechanism>
Below, the structure and operation | movement of the water supply mechanism of the washing machine of embodiment of this invention are demonstrated using FIG.
 図11は、同実施の形態における蒸気供給機構の給水機構の概略図である。 FIG. 11 is a schematic view of a water supply mechanism of the steam supply mechanism in the same embodiment.
 図11に示すように、蒸気発生器420のチャンバ空間430へ水を出射する給水機構500は、上述の給水弁310、貯水槽320、ポンプ330および接続管421と、貯水槽320内の水位を測定するための水位センサ321を備える。給水弁310は、水位センサ321によって検出された水位に応じて、貯水槽320へ給水あるいは貯水槽320への給水停止を行う。 As shown in FIG. 11, the water supply mechanism 500 that emits water to the chamber space 430 of the steam generator 420 has the above-described water supply valve 310, water storage tank 320, pump 330, connection pipe 421, and water level in the water storage tank 320. A water level sensor 321 for measuring is provided. The water supply valve 310 supplies water to the water storage tank 320 or stops water supply to the water storage tank 320 according to the water level detected by the water level sensor 321.
 このとき、ポンプ330の作動時間および/または動作パターン(間欠式の給水動作および/または連続的な給水動作)に応じて、給水弁310を制御してもよい。例えば、ポンプ330の動作が終了したときに、貯水槽320が空になるように給水弁310からの給水量を調整してもよい。これにより、例え、外気温が低下しても、貯水槽320内の水の凍結が生じにくくなる。その結果、洗濯機100の信頼性を、さらに向上できる。 At this time, the water supply valve 310 may be controlled according to the operation time and / or operation pattern of the pump 330 (intermittent water supply operation and / or continuous water supply operation). For example, the amount of water supplied from the water supply valve 310 may be adjusted so that the water storage tank 320 becomes empty when the operation of the pump 330 ends. Thereby, even if outside temperature falls, freezing of the water in the water storage tank 320 becomes difficult to occur. As a result, the reliability of the washing machine 100 can be further improved.
 そして、ポンプ330は、貯水槽320内に貯められた水を、接続管421を通じて、蒸気発生器420のチャンバ空間430に供給する。このとき、ポンプ330による間欠式の給水動作は、チャンバ空間430内に出射された水が瞬時に蒸発するように、例えば供給量、供給時間や供給間隔などが調整される。 The pump 330 supplies the water stored in the water storage tank 320 to the chamber space 430 of the steam generator 420 through the connection pipe 421. At this time, in the intermittent water supply operation by the pump 330, for example, the supply amount, the supply time, the supply interval, and the like are adjusted so that the water emitted into the chamber space 430 evaporates instantaneously.
 一方、上述したように、蒸気発生器420のチャンバ空間430内で水が蒸発すると、水に含有される不純物がチャンバ空間430内に堆積する場合がある。その場合、ポンプ330の連続的な給水動作は、堆積した不純物を押し流すのに十分な流速で水がチャンバ空間430に流入するように調整される。これにより、不純物を効果的に除去できる。その結果、蒸気発生器420と水との熱交換効率の低下を未然に防止できる。 On the other hand, as described above, when water evaporates in the chamber space 430 of the steam generator 420, impurities contained in the water may accumulate in the chamber space 430. In that case, the continuous water supply operation of the pump 330 is adjusted so that water flows into the chamber space 430 at a flow rate sufficient to flush away accumulated impurities. Thereby, impurities can be effectively removed. As a result, it is possible to prevent a decrease in heat exchange efficiency between the steam generator 420 and water.
 また、蒸気発生器420の排気管422は、蒸気導通管340に接続される。これにより、ポンプ330の間欠式の給水動作によってチャンバ空間430内で発生した蒸気、およびポンプ330の連続的な給水動作によってチャンバ空間430内に流入した水を、排気管422および蒸気導通管340を介して収容槽200に流入させることができる。 The exhaust pipe 422 of the steam generator 420 is connected to the steam conduction pipe 340. As a result, the steam generated in the chamber space 430 by the intermittent water supply operation of the pump 330 and the water flowing into the chamber space 430 by the continuous water supply operation of the pump 330 are passed through the exhaust pipe 422 and the steam conduction pipe 340. Through the storage tank 200.
 以上により、本実施の形態の洗濯機100の蒸気供給機構の給水機構が構成される。 Thus, the water supply mechanism of the steam supply mechanism of the washing machine 100 of the present embodiment is configured.
 <収容槽への蒸気および水の供給>
 以下に、本発明の実施の形態の洗濯機の収容槽に供給される蒸気および水の供給動作について、図1と図11を参照しながら、図12を用いて説明する。
<Supply of steam and water to the storage tank>
Below, the supply operation | movement of the vapor | steam and water supplied to the storage tank of the washing machine of embodiment of this invention is demonstrated using FIG. 12, referring FIG. 1 and FIG.
 図12は、同実施の形態における洗濯機の収容槽の前部の概略的な背面図である。 FIG. 12 is a schematic rear view of the front part of the storage tub of the washing machine in the same embodiment.
 まず、図1に示すように、水槽220の前部222の環状部224は、回転ドラム210に対向する内面225と筐体110の前壁111に対向する外面226と、を有する。なお、図12は、水槽220の前部222の環状部224の内面225を主に示している。 First, as shown in FIG. 1, the annular portion 224 of the front portion 222 of the water tank 220 has an inner surface 225 that faces the rotating drum 210 and an outer surface 226 that faces the front wall 111 of the housing 110. FIG. 12 mainly shows the inner surface 225 of the annular portion 224 of the front portion 222 of the water tank 220.
 図12に示すように、上述した蒸気供給機構300は、内面225に取り付けられた分岐管351と、分岐管351より上方に配設されたノズル352と、分岐管351とノズル352とを接続する蒸気チューブ353を、さらに備える。このとき、蒸気導通管340は、水槽220の周壁部223を介して、分岐管351に接続される。 As shown in FIG. 12, the steam supply mechanism 300 described above connects the branch pipe 351 attached to the inner surface 225, the nozzle 352 disposed above the branch pipe 351, and the branch pipe 351 and the nozzle 352. A steam tube 353 is further provided. At this time, the steam conduction pipe 340 is connected to the branch pipe 351 through the peripheral wall portion 223 of the water tank 220.
 以上の構成により、蒸気発生器420で発生した蒸気や水が、収容槽200内に供給される。 With the above configuration, steam and water generated by the steam generator 420 are supplied into the storage tank 200.
 つぎに、蒸気発生器420で発生した蒸気や水の通流動作について説明する。 Next, the flow operation of steam and water generated by the steam generator 420 will be described.
 まず、蒸気発生器420のチャンバ空間430内で発生した蒸気は、チャンバ空間430内での圧力増加に伴い、排気管422を通じて、蒸気導通管340に流入する。その後、蒸気は、蒸気導通管340から分岐管351に通流する。 First, steam generated in the chamber space 430 of the steam generator 420 flows into the steam conducting pipe 340 through the exhaust pipe 422 as the pressure in the chamber space 430 increases. Thereafter, the steam flows from the steam conducting pipe 340 to the branch pipe 351.
 そして、分岐管351に到達した蒸気は、高温であるので、蒸気チューブ353に案内され、分岐管351より上方に配設されたノズル352に通流する。最終的に、蒸気は、収容槽200の回転ドラム210内にノズル352から噴射される。 Since the steam reaching the branch pipe 351 has a high temperature, it is guided to the steam tube 353 and flows to the nozzle 352 disposed above the branch pipe 351. Finally, the steam is injected from the nozzle 352 into the rotating drum 210 of the storage tank 200.
 なお、本実施の形態において、排気管422、蒸気導通管340、分岐管351および蒸気チューブ353は、チャンバ空間430内で発生した蒸気をノズル352へ案内する。 In this embodiment, the exhaust pipe 422, the steam conducting pipe 340, the branch pipe 351, and the steam tube 353 guide the steam generated in the chamber space 430 to the nozzle 352.
 つまり、間欠式の給水動作を行うポンプ330は、ヒータ425で加熱された高温のチャンバ空間430に適量の水を出射することにより、水は瞬時に蒸発する。このとき、蒸気発生器420のチャンバ空間430の内圧は、水の蒸発により急激に増大する。これにより、発生した蒸気は、ノズル352から高圧で噴射される。その結果、図1や図12に示すように、蒸気は、収容槽200の内部空間を上下に横切るように噴射される。 That is, the pump 330 that performs the intermittent water supply operation emits an appropriate amount of water to the high-temperature chamber space 430 heated by the heater 425, whereby water is instantly evaporated. At this time, the internal pressure of the chamber space 430 of the steam generator 420 rapidly increases due to water evaporation. Thereby, the generated steam is injected from the nozzle 352 at a high pressure. As a result, as shown in FIGS. 1 and 12, the steam is injected so as to cross the internal space of the storage tank 200 up and down.
 また、蒸気を蒸気導通管340から蒸気チューブ353に導く分岐管351は、蒸気導通管340に接続される親管354と、親管354から上方に屈曲する上子管355と、親管354から下方に屈曲する下子管356と、を備える。親管354には、蒸気導通管340を通じて、蒸気または水が流入する。上子管355は、蒸気チューブ353に接続され、蒸気がノズル352に向かう上向きの経路を規定する。 A branch pipe 351 for guiding steam from the steam conduction pipe 340 to the steam tube 353 includes a parent pipe 354 connected to the steam conduction pipe 340, an upper pipe 355 bent upward from the parent pipe 354, and a parent pipe 354. A lower tube 356 bent downward. Steam or water flows into the parent pipe 354 through the steam conducting pipe 340. The upper tube 355 is connected to the steam tube 353, and defines an upward path for the steam toward the nozzle 352.
 一方、下子管356は、上子管355とは異なり、下向きの経路を規定する。具体的には、ポンプ330で連続的な給水動作を行う場合、蒸気導通管340を通じて分岐管351に、主に水が流入する。そして、分岐管351に流入した水は、重力作用によって、下子管356を通じて、流下する。 On the other hand, unlike the upper tube 355, the lower tube 356 defines a downward path. Specifically, when continuous water supply operation is performed by the pump 330, water mainly flows into the branch pipe 351 through the steam conduction pipe 340. Then, the water that has flowed into the branch pipe 351 flows down through the lower pipe 356 by gravity.
 また、図12に示すように、分岐管351の親管354と上子管355とは、鈍角である挟角θ1の角度で接続され、親管354と下子管356とは、鋭角である挟角θ2の角度で接続されているここで、挟角θ2は鋭角であるため、親管354から下子管356への流動損失が比較的大きくなる。そのため、親管354に流入した蒸気は、下子管356へほとんど流れず、上子管355へ主に流れる。一方、上子管355は上向きの流動経路を規定するため、親管354へ流入した水は、重力の作用により、上子管355へほとんど流れず、下子管356へ主に流れる。その結果、分岐管351により、蒸気の流動経路と水の流動経路とが適切に分離することができる。 Also, as shown in FIG. 12, the parent tube 354 and the upper tube 355 of the branch tube 351 are connected at an obtuse angle θ1 and the parent tube 354 and the lower tube 356 are an acute angle. Here, since the included angle θ2 is an acute angle, the flow loss from the parent tube 354 to the lower child tube 356 is relatively large. Therefore, the steam that has flowed into the parent pipe 354 hardly flows to the lower child pipe 356 and flows mainly to the upper child pipe 355. On the other hand, since the upper pipe 355 defines an upward flow path, the water flowing into the parent pipe 354 hardly flows into the upper pipe 355 and mainly flows into the lower pipe 356 due to the action of gravity. As a result, the flow path of steam and the flow path of water can be appropriately separated by the branch pipe 351.
 <ポンプの間欠的な動作>
 以下に、本発明の実施の形態の洗濯機の蒸気発生部に水を供給するポンプの間欠的な動作について、図8と図11を参照しながら、図13を用いて説明する。
<Intermittent pump operation>
Below, the intermittent operation | movement of the pump which supplies water to the steam generation part of the washing machine of embodiment of this invention is demonstrated using FIG. 13, referring FIG. 8 and FIG.
 図13は、同実施の形態における給水機構のポンプの間欠動作とチャンバ空間内の温度との関係を概略的に表す説明図である。 FIG. 13 is an explanatory view schematically showing the relationship between the intermittent operation of the pump of the water supply mechanism and the temperature in the chamber space in the same embodiment.
 図13に示すように、本実施の形態では、ポンプ330が作動している期間(ON期間)は、ポンプ330が停止している期間(OFF期間)と比べて短く設定している。これにより、適量の水を、蒸気発生部400の蒸気発生器420のチャンバ空間430内に出射することができる。 As shown in FIG. 13, in this embodiment, the period during which the pump 330 is operating (ON period) is set shorter than the period during which the pump 330 is stopped (OFF period). Accordingly, an appropriate amount of water can be emitted into the chamber space 430 of the steam generator 420 of the steam generation unit 400.
 なお、図13に示すON期間とOFF期間の間隔は相対的なものであり、チャンバ空間430の容積、ヒータの加熱量や、必要な蒸気量により変更されることはいうまでもない。 Note that the intervals between the ON period and the OFF period shown in FIG. 13 are relative, and needless to say, the interval is changed depending on the volume of the chamber space 430, the heating amount of the heater, and the necessary steam amount.
 具体的には、ポンプ330は、ON期間において、チャンバ空間430に所定量の水を供給する。供給された水は、蒸発し、蒸気となる。このとき、図13に示すように、水から蒸気への相変化に起因する気化熱によって、チャンバ空間430の温度は一時的に低下する。しかし、本実施の形態では、OFF期間を比較的長く設定することにより、ヒータ425は、OFF期間の間にチャンバ空間430を十分に昇温できる。その結果、ポンプ330が間欠動作を行っている間、高圧の蒸気を収容槽200に供給し続けることができる。 Specifically, the pump 330 supplies a predetermined amount of water to the chamber space 430 during the ON period. The supplied water evaporates and becomes steam. At this time, as shown in FIG. 13, the temperature of the chamber space 430 temporarily decreases due to the heat of vaporization caused by the phase change from water to steam. However, in this embodiment, the heater 425 can sufficiently raise the temperature of the chamber space 430 during the OFF period by setting the OFF period to be relatively long. As a result, it is possible to continue supplying high-pressure steam to the storage tank 200 while the pump 330 performs an intermittent operation.
 つまり、OFF期間の間にチャンバ空間430が十分に昇温される。そして、ON期間において、チャンバ空間430を含む蒸気発生器420が有する熱エネルギに対して、瞬時に蒸発する適量の水が供給される(例えば、約2cc/回)。これにより、良好に高圧の蒸気を収容槽200に供給し続けることができる。 That is, the chamber space 430 is sufficiently heated during the OFF period. In the ON period, an appropriate amount of water that instantaneously evaporates is supplied to the thermal energy of the steam generator 420 including the chamber space 430 (for example, about 2 cc / time). Thereby, it is possible to continue to supply the high-pressure steam to the storage tank 200 satisfactorily.
 <洗いステップにおける蒸気の効果>
 以下に、本発明の実施の形態の蒸気供給機構を介して収容槽に供給される蒸気の効果について、特に洗いステップにおける効果について、図1、図8および図11を参照しながら、図14を用いて説明する。
<Effect of steam in washing step>
FIG. 14 will be described below with reference to FIGS. 1, 8, and 11 with respect to the effect of the steam supplied to the storage tank via the steam supply mechanism of the embodiment of the present invention, particularly the effect in the washing step. It explains using.
 図14は、同実施の形態における洗濯機の水槽に供給された水の温度の変化を概略的に表す説明図である。 FIG. 14 is an explanatory diagram schematically showing a change in the temperature of the water supplied to the water tank of the washing machine in the embodiment.
 まず、図1に示すように、水槽220の下部には、水槽220内に供給された水を加熱する温水ヒータ160が配設されている。 First, as shown in FIG. 1, a hot water heater 160 for heating water supplied into the water tank 220 is disposed at the bottom of the water tank 220.
 そして、図14に示すように、洗いステップが開始されると、水槽220に所定量の水が供給される。この間、水槽220内の衣類に含まれる水の温度は、略一定(一定を含む)である。 And as shown in FIG. 14, when the washing step is started, a predetermined amount of water is supplied to the water tank 220. During this time, the temperature of the water contained in the clothes in the water tank 220 is substantially constant (including constant).
 その後、温水ヒータ160を用いて、水槽220内の水が加熱される。このとき、温水ヒータ160は、大きな熱量を発するので、水槽220内の衣類に含まれる水の温度は急速に上昇する。そして、所定の温度に到達すると、水槽220内の水の加熱は停止される。 Thereafter, the water in the water tank 220 is heated using the hot water heater 160. At this time, since the hot water heater 160 generates a large amount of heat, the temperature of the water contained in the clothes in the water tank 220 rises rapidly. And when the predetermined temperature is reached, heating of water in the water tank 220 is stopped.
 その後、本実施の形態では、蒸気供給機構300を介して、収容槽200内に蒸気を導入して、洗いステップを実行する。 Thereafter, in the present embodiment, steam is introduced into the storage tank 200 via the steam supply mechanism 300, and the washing step is executed.
 ここで、図14に示す加熱停止後の点線は、温水ヒータ160による加熱が停止され、かつ、蒸気の供給がないときの衣類に含まれる水の温度の変化を表している。また、加熱停止後の実線は、温水ヒータ160による加熱が停止され、かつ蒸気が収容槽200に供給されているときの衣類に含まれる水の温度の変化を表している。 Here, the dotted line after the heating stop shown in FIG. 14 represents a change in the temperature of water contained in the clothing when the heating by the hot water heater 160 is stopped and no steam is supplied. Further, the solid line after stopping the heating represents a change in the temperature of the water contained in the clothing when the heating by the hot water heater 160 is stopped and the steam is supplied to the storage tank 200.
 つまり、本実施の形態では、洗いステップにおいて、収容槽200へ、高温の蒸気を衣類に向けて直接的に供給する。そのため、水槽220内の衣類に含まれる水の温度低下が、高温の蒸気により緩和(抑制)される。また、蒸気発生器420に用いるヒータ425は、水槽220に取り付けられた温水ヒータ160よりも消費電力が少ない。その結果、温水ヒータ160を用いて水槽220内の水を保温する場合と比べて、高温の蒸気の供給による保温は、少ない消費電力で実現できる。そのため、洗いステップにおいて、ポンプ330を用いて、温水ヒータ160の停止後、間欠式の給水動作をさせて、高温の蒸気を収容槽に供給することが好ましい。 That is, in the present embodiment, in the washing step, high-temperature steam is directly supplied to the storage tub 200 toward the clothes. Therefore, the temperature drop of the water contained in the clothes in the water tank 220 is relieved (suppressed) by the high-temperature steam. The heater 425 used for the steam generator 420 consumes less power than the hot water heater 160 attached to the water tank 220. As a result, compared with the case where the water in the water tank 220 is kept warm using the hot water heater 160, the heat keeping by supplying the high-temperature steam can be realized with less power consumption. For this reason, in the washing step, it is preferable to use the pump 330 to stop the hot water heater 160 and then perform an intermittent water supply operation to supply high temperature steam to the storage tank.
 <脱水ステップにおける蒸気の利用>
 以下に、本発明の実施の形態の蒸気供給機構を介して収容槽に供給される蒸気の効果について、特に脱水ステップにおける効果について、図1、図11および図12を参照しながら、説明する。
<Use of steam in the dehydration step>
Hereinafter, the effect of the steam supplied to the storage tank via the steam supply mechanism according to the embodiment of the present invention, particularly the effect in the dehydration step will be described with reference to FIGS. 1, 11 and 12.
 脱水ステップにおいて、回転ドラム210は、モータ231により高速で回転される。このとき、図1に示すように、回転ドラム210の周壁211には、多数の小孔219が形成されている。 In the dehydration step, the rotating drum 210 is rotated at a high speed by the motor 231. At this time, as shown in FIG. 1, a large number of small holes 219 are formed in the peripheral wall 211 of the rotary drum 210.
 そのため、回転ドラム210内に収容された衣類は、遠心力によって周壁211に押しつけられ、衣類に含まれる水分は小孔219を通じて、回転ドラム210外へ放出される。その結果、衣類が、適切に脱水される。 Therefore, the clothing housed in the rotating drum 210 is pressed against the peripheral wall 211 by centrifugal force, and moisture contained in the clothing is discharged out of the rotating drum 210 through the small hole 219. As a result, the clothing is properly dehydrated.
 このとき、脱水された衣類の繊維は、互いに水素結合しやすく、繊維同士の水素結合は衣類の皺を発生させる要因となる。 At this time, the fibers of the dehydrated clothing are likely to be hydrogen-bonded to each other, and the hydrogen bonding between the fibers becomes a factor that causes wrinkles of the clothing.
 そこで、本実施の形態では、脱水ステップにおいて、回転ドラム210内に蒸気を供給する。これにより、蒸気で繊維間の水素結合を解除できる。その結果、衣類の皺の発生を低減できる。 Therefore, in the present embodiment, steam is supplied into the rotating drum 210 in the dehydration step. Thereby, the hydrogen bond between fibers can be canceled with steam. As a result, it is possible to reduce the occurrence of clothes wrinkles.
 つまり、衣類が脱水処理を受けている間、ポンプ330で間欠式の給水動作を実行し、高温の蒸気を回転ドラム210内に供給することが好ましい。具体的には、ポンプ330の間欠式の給水動作により、ノズル352から高圧で蒸気が回転ドラム210内に噴射される。ノズル352から噴射された蒸気は、収容槽200を横切る。そして、噴射された蒸気は、回転ドラム210の周壁211に張り付いて回転する衣類に満遍なく吹き付けられる。これにより、回転ドラム210内の衣類全体に亘って、蒸気で繊維間の水素結合を解除できる。その結果、衣類の皺の発生を効果的に抑制される。 That is, it is preferable to perform intermittent water supply operation with the pump 330 and supply high-temperature steam into the rotary drum 210 while the clothing is being dehydrated. Specifically, steam is injected into the rotary drum 210 from the nozzle 352 at a high pressure by the intermittent water supply operation of the pump 330. The steam sprayed from the nozzle 352 crosses the storage tank 200. Then, the sprayed steam is evenly sprayed on the rotating clothing that sticks to the peripheral wall 211 of the rotating drum 210. Thereby, the hydrogen bond between fibers can be cancelled | released with a vapor | steam throughout the clothing in the rotating drum 210. FIG. As a result, the occurrence of wrinkles on clothing is effectively suppressed.
 <蒸気発生器の冷却ステップ>
 以下に、本発明の実施の形態の蒸気発生器の冷却ステップについて、図8および図11を参照しながら、説明する。
<Cooling step of steam generator>
Below, the cooling step of the steam generator of embodiment of this invention is demonstrated, referring FIG. 8 and FIG.
 通常、蒸気を用いた衣類の処理が終了した場合、蒸気発生器420を冷却することが好ましい。 Ordinarily, it is preferable to cool the steam generator 420 when processing of clothing using steam is completed.
 そこで、蒸気発生器420を冷却するために、高温の蒸気の不必要な収容槽200内への噴射を防止する。 Therefore, in order to cool the steam generator 420, unnecessary injection of high-temperature steam into the storage tank 200 is prevented.
 具体的には、まず、蒸気発生器420の冷却のために、ヒータ425への電力供給を停止する。その後、ポンプ330により、連続的な給水動作を開始する。これにより、貯水槽320から水が連続的に蒸気発生器420のチャンバ空間430内へ流入する。そして、チャンバ空間430内へ流入した水は、蒸気発生器420から熱を奪った後、蒸気導通管340から分岐管351を介して収容槽200へ流入する。その結果、蒸気発生器420を、短期間で冷却することができる。 Specifically, first, the power supply to the heater 425 is stopped to cool the steam generator 420. Thereafter, a continuous water supply operation is started by the pump 330. Accordingly, water continuously flows from the water storage tank 320 into the chamber space 430 of the steam generator 420. The water that has flowed into the chamber space 430 takes heat from the steam generator 420 and then flows from the steam conduction pipe 340 into the storage tank 200 through the branch pipe 351. As a result, the steam generator 420 can be cooled in a short period of time.
 つぎに、本発明の実施の形態の扉体の制御について、図1および図6Bを参照しながら、図15を用いて説明する。これは、高温の蒸気が収容槽200内に存在する場合に、使用者が扉体120を不用意に開放しないように制御するものである。 Next, the control of the door body according to the embodiment of the present invention will be described using FIG. 15 with reference to FIGS. 1 and 6B. This is to control the user not to open the door 120 inadvertently when high-temperature steam is present in the storage tank 200.
 図15は、同実施の形態における蒸気発生器の温度に基づく扉体に対する制御を概略的に表すブロック図である。 FIG. 15 is a block diagram schematically showing control on the door body based on the temperature of the steam generator in the embodiment.
 図15に示すように、本実施の形態の洗濯機100は、扉体120を閉位置でロックするロック機構121と、ロック機構121のロックおよびロック解除を制御するための制御部122と、を備える。なお、ロック機構121の機械的および電気的な機構は、既知の洗濯機の構造を利用してもよいことはいうまでもない。 As shown in FIG. 15, the washing machine 100 according to the present embodiment includes a lock mechanism 121 that locks the door body 120 in the closed position, and a control unit 122 that controls locking and unlocking of the lock mechanism 121. Prepare. Needless to say, the mechanical and electrical mechanisms of the lock mechanism 121 may use a known washing machine structure.
 また、図6Bに示すように、蒸気発生器420は、サーミスタ426を備えている。 Further, as shown in FIG. 6B, the steam generator 420 includes a thermistor 426.
 そして、図15に示すように、サーミスタ426は、蒸気発生器420の主片423の温度を検出し、検出された温度に応じた信号を制御部122へ出力する。 As shown in FIG. 15, the thermistor 426 detects the temperature of the main piece 423 of the steam generator 420 and outputs a signal corresponding to the detected temperature to the control unit 122.
 このとき、制御部122は、サーミスタ426から出力された信号が、所定の値以下の温度になるまで、ロック機構121により扉体120のロックを維持する。これにより、蒸気発生器420が所定の温度以下となるまで、収容槽200の内部空間は外部から隔離される。その結果、使用者が高温の蒸気に接触することを未然に防止して、安全で信頼性に優れた洗濯機100を実現できる。 At this time, the controller 122 keeps the door 120 locked by the lock mechanism 121 until the signal output from the thermistor 426 reaches a temperature equal to or lower than a predetermined value. Thereby, the internal space of the storage tank 200 is isolated from the outside until the steam generator 420 becomes a predetermined temperature or lower. As a result, the user can be prevented from coming into contact with high-temperature steam, and the washing machine 100 that is safe and highly reliable can be realized.
 本発明は、蒸気を用いて衣類を処理する装置に好適に利用される。 The present invention is suitably used for an apparatus for processing clothing using steam.
 100  洗濯機
 110  筐体
 111  前壁
 112  後壁
 113  筐体天壁
 114  筐体底壁
 115  右壁
 116  左壁
 117  第1補強フレーム
 118  第2補強フレーム
 120  扉体
 121  ロック機構
 122  制御部
 130  パッキン構造
 140  給水口
 141  分配部
 151  第1取付片
 152  第2取付片
 160  温水ヒータ
 200  収容槽
 210  回転ドラム
 211  周壁
 212  底壁
 219  小孔
 220  水槽
 221  底部
 222  前部
 223  周壁部
 224  環状部
 225  内面
 226  外面
 230  回転シャフト
 231  モータ
 232  プーリ
 233  ベルト
 300  蒸気供給機構
 310  給水弁
 320  貯水槽
 321  水位センサ
 330  ポンプ
 340  蒸気導通管
 351  分岐管
 352  ノズル
 353  蒸気チューブ
 354  親管
 355  上子管
 356  下子管
 400  蒸気発生部
 410  ケース
 411  容器部
 412  蓋部
 413  開口部
 414  底壁部
 415  上壁
 416  蓋部周壁
 417  突出片
 420  蒸気発生器
 421  接続管
 422  排気管
 423  主片
 424  蓋片
 425  ヒータ
 426  サーミスタ
 427  主片下面
 428  周面
 429  上面
 430  チャンバ空間
 431  外チャンバ壁
 432  内チャンバ壁
 433  パッキンリング
 434  下面
 435  シールド壁
 437  流入口
 438  排気口
 451  スペーサ
 500  給水機構
DESCRIPTION OF SYMBOLS 100 Washing machine 110 Case 111 Front wall 112 Rear wall 113 Case top wall 114 Case bottom wall 115 Right wall 116 Left wall 117 First reinforcement frame 118 Second reinforcement frame 120 Door body 121 Lock mechanism 122 Control unit 130 Packing structure 140 Water supply port 141 Distribution part 151 1st attachment piece 152 2nd attachment piece 160 Hot water heater 200 Accommodating tank 210 Rotating drum 211 Peripheral wall 212 Bottom wall 219 Small hole 220 Water tank 221 Bottom part 222 Front part 223 Peripheral wall part 224 Annular part 225 Inner face 226 230 Rotating shaft 231 Motor 232 Pulley 233 Belt 300 Steam supply mechanism 310 Water supply valve 320 Water storage tank 321 Water level sensor 330 Pump 340 Steam conduction pipe 351 Branch pipe 352 Nozzle 353 Steam tube 3 4 parent pipe 355 upper pipe 356 lower child pipe 400 steam generating section 410 case 411 container section 412 lid section 413 opening section 414 bottom wall section 415 upper wall 416 lid section peripheral wall 417 projecting piece 420 steam generator 421 connecting pipe 422 exhaust pipe 423 Main piece 424 Cover piece 425 Heater 426 Thermistor 427 Main piece lower surface 428 Peripheral surface 429 Upper surface 430 Chamber space 431 Outer chamber wall 432 Inner chamber wall 433 Packing ring 434 Lower surface 435 Shield wall 437 Inlet port 438 Exhaust port 451 Spacer 500 Water supply mechanism

Claims (5)

  1. 衣類を収容する収容槽と、
    前記収容槽へ蒸気を供給する蒸気供給機構と、を備え、
    前記蒸気供給機構は、前記蒸気を発生させるためのチャンバを規定する壁面を有する蒸気発生器と、前記壁面を加熱するヒータと、前記壁面に水を出射する給水機構と、前記蒸気発生器を覆うケースと、前記蒸気発生器と前記ケースとを離間させるスペーサと、を有する衣類処理装置。
    A storage tank for storing clothing;
    A steam supply mechanism for supplying steam to the storage tank,
    The steam supply mechanism covers a steam generator having a wall surface defining a chamber for generating the steam, a heater for heating the wall surface, a water supply mechanism for emitting water to the wall surface, and the steam generator. A clothing processing apparatus comprising: a case; and a spacer that separates the steam generator and the case.
  2. 前記スペーサは、中空の筒形状である請求項1に記載の衣類処理装置。 The clothing processing apparatus according to claim 1, wherein the spacer has a hollow cylindrical shape.
  3. 前記スペーサを構成する材料の熱伝導率は、前記蒸気発生器を構成する材料の熱伝導率よりも低い請求項1に記載の衣類処理装置。 The clothing processing apparatus according to claim 1, wherein a thermal conductivity of a material constituting the spacer is lower than a thermal conductivity of a material constituting the steam generator.
  4. 前記給水機構は、前記壁面に当たった前記水が瞬時に蒸発するように前記水の量を調整する請求項1から請求項3のいずれか1項に記載の衣類処理装置。 The clothing processing apparatus according to any one of claims 1 to 3, wherein the water supply mechanism adjusts the amount of the water so that the water that hits the wall surface evaporates instantaneously.
  5. 前記給水機構は、前記水を間欠式に前記チャンバへ供給する請求項1から請求項4のいずれか1項に記載の衣類処理装置。 The clothing processing apparatus according to any one of claims 1 to 4, wherein the water supply mechanism supplies the water intermittently to the chamber.
PCT/JP2013/003779 2012-06-22 2013-06-18 Clothing treatment device WO2013190826A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380032047.XA CN104395521B (en) 2012-06-22 2013-06-18 Device for clothing processing
SI201330820T SI2840180T1 (en) 2012-06-22 2013-06-18 Clothing treatment device
EP13807422.4A EP2840180B1 (en) 2012-06-22 2013-06-18 Clothing treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-140493 2012-06-22
JP2012140493A JP2014004059A (en) 2012-06-22 2012-06-22 Clothes treatment apparatus

Publications (1)

Publication Number Publication Date
WO2013190826A1 true WO2013190826A1 (en) 2013-12-27

Family

ID=49768440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003779 WO2013190826A1 (en) 2012-06-22 2013-06-18 Clothing treatment device

Country Status (5)

Country Link
EP (1) EP2840180B1 (en)
JP (1) JP2014004059A (en)
CN (1) CN104395521B (en)
SI (1) SI2840180T1 (en)
WO (1) WO2013190826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684651A (en) * 2021-08-30 2021-11-23 无锡小天鹅电器有限公司 Steam generator, clothes treatment device and front support assembly thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122209A (en) * 1996-10-16 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Heat insulation tightening device
EP1883727A1 (en) 2005-05-23 2008-02-06 LG Electronics Inc. A structure of water level sensor for steam generator in drum washing machine
JP2009213693A (en) * 2008-03-11 2009-09-24 Toshiba Corp Drum type washing machine
JP2010504140A (en) * 2006-12-29 2010-02-12 エルジー エレクトロニクス インコーポレイティド Method for controlling a textile processing apparatus
JP2011092540A (en) * 2009-10-30 2011-05-12 Sharp Corp Washing machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672490B1 (en) * 2006-04-13 2007-01-24 엘지전자 주식회사 Steam generator for clothing process device and using the same
PL2267209T3 (en) * 2009-06-25 2012-05-31 Miele & Cie Steam production device for a laundry treatment machine and laundry treatment machine
CN102792097B (en) * 2010-03-12 2014-12-24 Lg电子株式会社 Steam generator and washing machine having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122209A (en) * 1996-10-16 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Heat insulation tightening device
EP1883727A1 (en) 2005-05-23 2008-02-06 LG Electronics Inc. A structure of water level sensor for steam generator in drum washing machine
JP2010504140A (en) * 2006-12-29 2010-02-12 エルジー エレクトロニクス インコーポレイティド Method for controlling a textile processing apparatus
JP2009213693A (en) * 2008-03-11 2009-09-24 Toshiba Corp Drum type washing machine
JP2011092540A (en) * 2009-10-30 2011-05-12 Sharp Corp Washing machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840180A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684651A (en) * 2021-08-30 2021-11-23 无锡小天鹅电器有限公司 Steam generator, clothes treatment device and front support assembly thereof
CN113684651B (en) * 2021-08-30 2023-12-15 无锡小天鹅电器有限公司 Steam generator, clothes treatment device and front support assembly thereof

Also Published As

Publication number Publication date
CN104395521A (en) 2015-03-04
EP2840180A1 (en) 2015-02-25
EP2840180B1 (en) 2017-08-09
JP2014004059A (en) 2014-01-16
EP2840180A4 (en) 2015-05-20
CN104395521B (en) 2017-06-30
SI2840180T1 (en) 2017-12-29

Similar Documents

Publication Publication Date Title
WO2014034015A1 (en) Clothes treatment device
WO2013183256A1 (en) Clothes treatment device
JP2014054400A (en) Clothes processing device
WO2013190826A1 (en) Clothing treatment device
JP2014171561A (en) Clothing processing device
WO2013190825A1 (en) Clothing treatment device
WO2013145063A1 (en) Clothing treatment device
JP2014004054A (en) Clothes treatment apparatus
CN103459698B (en) Device for clothing processing
CN103459697B (en) Device for clothing processing
JP2014042701A (en) Clothing treatment apparatus
JP2013252240A (en) Clothes treatment apparatus
WO2014024408A1 (en) Clothes treatment device
WO2013183258A1 (en) Washing machine
WO2013145068A1 (en) Clothes treatment device
WO2013145067A1 (en) Clothes treatment device
JP2017148092A (en) Clothing processing device
JP2014004062A (en) Clothes treatment apparatus
WO2013145066A1 (en) Clothes treatment device
JP2016158851A (en) Clothing treatment device
JP2018134263A (en) Clothing processing device
JP2014023674A (en) Clothing treatment apparatus
JP2017029499A (en) Clothing treatment apparatus
JP2014042700A (en) Clothing treatment apparatus
JP2014050506A (en) Clothes treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807422

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013807422

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013807422

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE