WO2013190618A1 - Spectrophotofluorometer - Google Patents

Spectrophotofluorometer Download PDF

Info

Publication number
WO2013190618A1
WO2013190618A1 PCT/JP2012/065524 JP2012065524W WO2013190618A1 WO 2013190618 A1 WO2013190618 A1 WO 2013190618A1 JP 2012065524 W JP2012065524 W JP 2012065524W WO 2013190618 A1 WO2013190618 A1 WO 2013190618A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
fluorescence
peak
excitation light
spectrum
Prior art date
Application number
PCT/JP2012/065524
Other languages
French (fr)
Japanese (ja)
Inventor
渡邉 康之
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2012/065524 priority Critical patent/WO2013190618A1/en
Publication of WO2013190618A1 publication Critical patent/WO2013190618A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Definitions

  • the present invention relates to a spectrofluorometer that irradiates a sample with excitation light and detects fluorescence emitted from the sample.
  • the sample to be measured is irradiated with excitation light of a specific wavelength extracted by the excitation side spectroscope, and the fluorescence emitted from the sample by being excited by the irradiation light is subjected to fluorescence side spectroscopy.
  • the wavelength is dispersed through the detector and introduced into the detector, and the light intensity is detected.
  • it is necessary to appropriately set the wavelength of excitation light for generating fluorescence and to extract fluorescence having an appropriate wavelength from the fluorescence emitted from the sample.
  • a conventional general spectrofluorometer has a spectrum.
  • a search function is provided for determining measurement conditions using the measurement function.
  • FIG. 9 is an explanatory diagram of measurement and processing for searching for excitation light and fluorescence wavelength in a conventional spectrofluorometer.
  • an oblique straight line L having the same excitation light wavelength and fluorescence wavelength indicates Rayleigh scattered light.
  • fluorescence is emitted, a peak due to fluorescence usually exists in a region below (or to the right of) the straight line L.
  • the wavelengths of the excitation light and the fluorescence are scanned in the order as indicated by the one-dot chain line, and the presence / absence of fluorescence is determined and the wavelengths of the excitation light and the fluorescence are calculated based on the spectrum obtained by the scanning. Is done.
  • the excitation light wavelength is set to the initial wavelength on the shortest wavelength side in a predetermined excitation light wavelength range, and the fluorescence wavelength is scanned at a specified wavelength interval over the predetermined wavelength range (FIG. 9A).
  • the fluorescence spectrum is acquired while moving in the right lateral direction.
  • the excitation light wavelength is increased by the specified wavelength interval ⁇ X (in FIG. 9A).
  • the fluorescence spectrum is acquired again while scanning the fluorescence wavelength at a specified wavelength interval over a predetermined wavelength range.
  • the fluorescence spectrum is acquired while increasing the excitation light wavelength by the specified wavelength interval ⁇ X.
  • the fluorescence wavelength of the peak top is stored. Keep it. Then, finally obtains a fluorescence wavelength showing the maximum peak intensity, and stores it as the optimal emission wavelength lambda EM.
  • the best fluorescence wavelength lambda EM stored wavelength taken out by fluorescence side spectroscope while scanning Te than at wavelength intervals specified excitation light wavelength over a predetermined wavelength range 9 ( An excitation light spectrum as shown in c) is acquired.
  • the excitation light ⁇ EX and the fluorescence wavelength ⁇ EM thus obtained are output as the optimum excitation light wavelength and fluorescence wavelength for the sample to be measured, and the operator determines measurement conditions such as the measurement wavelength and the measurement wavelength interval with reference to this, A detailed measurement is performed on the sample to be measured.
  • the number of fluorescence spectra to be acquired in order to find one fluorescence is large, and the measurement takes time.
  • the fluorescence peak is found.
  • Patent Document 1 there is an apparatus described in Patent Document 1 as a spectrofluorophotometer for the purpose of quickly obtaining optimum excitation light wavelength and fluorescence wavelength.
  • the spectrofluorometer described in this document one of the excitation light wavelength and the fluorescence wavelength is not fixed, and the wavelength scan is synchronously performed between the excitation side spectrometer and the fluorescence side spectrometer while keeping the wavelength difference constant.
  • the fluorescence spectrum (the fluorescence spectrum obtained by synchronously scanning the excitation light wavelength and the fluorescence wavelength in this manner is referred to as “synchronous fluorescence spectrum” in this specification) is obtained.
  • the slit width of the excitation-side spectrometer is set to 20 nm
  • the slit width of the fluorescence-side spectrometer is set to 40 nm
  • the wavelength difference between the excitation light wavelength and the fluorescence wavelength is as wide as 100 nm and 150 nm.
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to detect the presence or absence of fluorescence and search for the optimum excitation light wavelength and fluorescence wavelength in a short time when fluorescence is detected. Even if the fluorescence peak is close to the peak derived from the Rayleigh scattered light or the peak due to the Raman scattered light is generated, the fluorescence is surely excluded except for the influence thereof.
  • An object of the present invention is to provide a spectrofluorometer capable of detecting a peak and obtaining an accurate excitation light wavelength and fluorescence wavelength.
  • the present invention includes an excitation light spectroscopic means for extracting light of a specific wavelength from light emitted from a light source and irradiating the sample as excitation light, and receiving the excitation light from the sample.
  • a spectrofluorometer comprising a fluorescence spectroscopic means for spectrally separating emitted fluorescence, and a detection means for detecting the spectroscopic fluorescence
  • a) The excitation light spectroscopic means and the fluorescence spectroscopic means so as to scan the excitation light wavelength and the fluorescence wavelength synchronously while maintaining a constant wavelength difference between the excitation light wavelength and the fluorescence wavelength longer than the wavelength.
  • the synchronous fluorescence spectrum acquisition means for creating a synchronous fluorescence spectrum based on the data obtained by the detection means for the synchronous wavelength scanning, b) performing peak detection on the synchronous fluorescence spectrum, and when a peak is detected, peak detection means for obtaining an approximate value of at least one of the excitation light wavelength and the fluorescence wavelength corresponding to the peak; c) fixing one of the excitation light wavelength and the fluorescence wavelength whose approximate value is obtained by the peak detection means, and controlling the excitation light spectroscopy means and the fluorescence spectroscopy means so as to scan the other of the excitation light wavelength and the fluorescence wavelength.
  • a wavelength detail value acquisition means for obtaining the other detail value of the excitation light wavelength or the fluorescence wavelength based on the data obtained by the detection means while controlling the excitation light spectroscopy means and the fluorescence spectroscopy means so as to scan; d) While controlling the excitation light spectroscopic means and the fluorescence spectroscopic means so that the excitation light wavelength is fixed to a wavelength separated from the excitation light wavelength detailed value obtained by the wavelength detailed value acquisition means, and the fluorescence wavelength is scanned.
  • the fluorescence wavelength is obtained based on the data obtained by the detection means, and the peak detected by the peak detection means based on the fluorescence wavelength and the fluorescence wavelength detail value obtained by the wavelength detail value acquisition means is derived from fluorescence.
  • Fluorescence authenticity determination means for determining whether or not It is characterized by having.
  • the synchronous fluorescence spectrum acquisition means is such that the difference between the wavelength of the excitation light extracted by the excitation light spectroscopy means and the wavelength of the fluorescence extracted by the fluorescence spectroscopy means is maintained constant.
  • Both spectroscopic means are controlled to synchronously scan the excitation light wavelength and the fluorescence wavelength. Then, based on the data obtained by the detection means during the period in which the synchronous wavelength scanning is performed, a synchronous fluorescence spectrum in which the horizontal axis is the wavelength and the vertical axis is the intensity is created. Synchronous wavelength scanning with a constant wavelength difference is performed along a straight line parallel to a straight line (a straight line L in FIG. 9) indicated by a peak due to Rayleigh scattered light on a map having two axes of an excitation light wavelength and a fluorescence wavelength. This corresponds to scanning.
  • the peak detection means performs peak detection on the synchronous fluorescence spectrum, and if a peak is detected, the peak is extracted as a candidate for the fluorescence peak, and an outline of at least one of the excitation light wavelength and the fluorescence wavelength corresponding to the peak is extracted. Find the value. Since the peak obtained on the synchronous fluorescence spectrum is not necessarily the peak top of the original fluorescence peak, what is obtained by the peak detection means is only an approximate value of the wavelength.
  • the wavelength detailed value acquisition means obtains the excitation light spectrum and the fluorescence spectrum by fixing one of the excitation light wavelength and the fluorescence wavelength and scanning only the other, not the synchronous wavelength scanning as described above. By obtaining the peak wavelength above, the detailed values of the excitation light wavelength and the fluorescence wavelength at a position closer to the peak top of the original fluorescence peak are obtained.
  • the peak detected by the peak detection means may actually be a peak derived from Raman scattered light rather than a peak derived from fluorescence.
  • the fluorescence peak is an isolated peak in which the fluorescence intensity becomes maximum at a certain excitation light wavelength and fluorescence wavelength, and the intensity decreases as the wavelength shifts from the position.
  • Raman scattered light is emitted from the sample as light having a wavelength that depends on the wavelength of incident light in a wide wavelength range, so the peak due to Raman scattered light is a mountain-shaped peak that covers a wide wavelength range in a band shape. Become.
  • the fluorescence authenticity determination means confirms whether or not there is a shift in the wavelength of the fluorescence peak on the fluorescence spectrum when the excitation light wavelength is changed by a predetermined amount (strictly speaking, the peak estimated to be fluorescence). Accordingly, it is determined whether or not the peak is derived from fluorescence. This eliminates false fluorescence peaks, that is, peaks due to Raman scattered light.
  • the excitation light wavelength calculated by the wavelength detailed value acquisition unit and the detailed value of the fluorescence wavelength are displayed and output for the peak determined to be fluorescence-derived by the fluorescence authenticity determination unit.
  • the display processing means may be further provided.
  • the peak detecting means performs peak detection, and the wavelength detailed value acquiring means is detected.
  • the fluorescence authenticity determination means determines whether or not the detected peak is derived from fluorescence, and if it is determined that the detected peak is not derived from fluorescence
  • the synchronous fluorescence spectrum acquisition unit may acquire the next synchronous fluorescence spectrum by increasing the wavelength difference.
  • the wavelength difference between the wavelength of excitation light causing fluorescence and the fluorescence wavelength caused by the excitation is not so large. Therefore, the initial value of the wavelength difference of the synchronous wavelength scanning is set as small as possible, and when the fluorescence-derived peak is not detected based on the obtained synchronous fluorescence spectrum, the wavelength difference is sequentially increased and newly set. If a simple synchronous fluorescence spectrum is acquired, it is possible to detect a fluorescence-derived peak in a short time.
  • the display processing means may perform display output indicating that no fluorescence is detected. Thereby, it is possible to inform the analyst whether or not the sample generates fluorescence within a limited time.
  • the initial value of the wavelength difference of the synchronous wavelength scanning is set to be small so that the fluorescence peak is not hidden behind the peak of the Rayleigh scattered light on the synchronous fluorescence spectrum.
  • the wavelength width of the detected fluorescence depends on the slit width included in the excitation light spectroscopic means and the slit width included in the fluorescent spectroscopic means, but when these slit widths are set to 3 nm, the wavelength difference of The initial value should be 5 nm. Thereby, it is possible to reliably detect a fluorescence peak having a very small wavelength difference without being affected by Rayleigh scattered light. Further, by acquiring the synchronous fluorescence spectrum while gradually increasing the wavelength difference from the initial value by about 10 nm, for example, the fluorescence peak can be found in a short time without missing the fluorescence peak.
  • a peak derived from fluorescence can be found reliably and in a short time without being affected by Rayleigh scattered light or Raman scattered light.
  • a sample emits fluorescence
  • an analyst wants to know the optimum excitation light wavelength and fluorescence wavelength in a sample these information can be provided in a short time.
  • the sample is a biological sample or the like, there is a risk of damaging the original characteristics due to photochemical changes when irradiated with light for a long time. By shortening, these problems can be avoided and good measurement can be performed.
  • the schematic block diagram of the spectrofluorometer which is one Example of this invention.
  • FIG. 1 is a schematic configuration diagram of the spectrofluorophotometer of the present embodiment.
  • the light emitted from the light source unit 1 is introduced into an excitation-side spectroscope 2 having a diffraction grating and a slit (not shown), and monochromatic light having a specific wavelength set by the analysis control unit 8 is taken out as excitation light.
  • the sample 3 is irradiated.
  • the fluorescence emitted from the sample 3 by being excited by the excitation light is introduced into a fluorescence side spectroscope 4 having a diffraction grating and a slit (not shown), and the fluorescence having a specific wavelength set by the analysis control unit 8 (and other scattering).
  • Light etc. is taken out and introduced into the detector 5.
  • the detector 5 outputs a detection signal corresponding to the intensity of the incident fluorescence.
  • the detection signal is converted into a digital value by the A / D converter 6 and sent to the data processing unit 7.
  • the data processing unit 7 includes functional blocks such as a spectrum creation unit 71, a peak detection unit 72, a fluorescence / Raman light identification unit 73, and a wavelength information storage unit 74, and performs normal fluorescence spectrum creation processing and the like. Thus, the data processing for searching the measurement conditions (excitation light wavelength, fluorescence wavelength, etc.) for obtaining the fluorescence spectrum is performed.
  • the analysis control unit 8 controls the operation of each unit in order to perform measurement, and particularly includes a spectrometer control unit 81 for setting or scanning the wavelength of excitation light or fluorescence. .
  • an operation unit 10 and a display unit 11 are connected to the central control unit 9 that controls the entire apparatus in an integrated manner, and accepts input of measurement conditions by the operation unit 10 and displays measurement results on the display unit 11. Perform display control and so on. All or part of the functions of the central control unit 9, the analysis control unit 8, and the data processing unit 7 should be achieved by executing dedicated control / processing software installed in the personal computer. Can do.
  • the spectrofluorometer of this embodiment has a search function for finding an appropriate measurement condition in order to obtain a highly accurate fluorescence spectrum.
  • the measurement operation and data processing in this characteristic function will be described with reference to FIGS.
  • FIG. 2 is a flowchart of measurement and processing for searching for excitation light / fluorescence wavelength
  • FIG. 3 is an explanatory diagram of measurement and processing for searching for excitation light / fluorescence wavelength
  • FIG. 4 is a graph showing fluorescence-derived peaks and Raman-scattered light-derived peaks. It is explanatory drawing of the method of identifying.
  • the analyst sets the sample 3 to be measured at a predetermined position of the apparatus (step S1), and the scanning start excitation light wavelength (or scanning start) is set as a wavelength scanning condition for acquiring the synchronous fluorescence spectrum from the operation unit 10.
  • the scanning start excitation wavelength is 220 nm
  • the scanning end fluorescence wavelength is 900 nm
  • the initial value of the wavelength difference ⁇ is 5 nm.
  • the difference between the excitation light wavelength and the fluorescence wavelength is not so large. Therefore, the initial value of the wavelength difference ⁇ is preferably small in order to prevent the fluorescence from being overlooked.
  • the excitation light wavelength and the fluorescence wavelength are the same, a large intensity of Rayleigh scattered light is observed instead of fluorescence. Therefore, if the wavelength difference ⁇ is too small, it is difficult to distinguish it from the Rayleigh scattered light. Become.
  • the peak width depends on the slit width in each of the spectrometers 2 and 4, but when the slit width is set to 3 nm or less in order to obtain high wavelength resolution, the initial value (minimum value) of the wavelength difference ⁇ is about 5 nm. Is appropriate.
  • the spectroscope control unit 81 detects the wavelength of the excitation light extracted by the excitation side spectroscope 2 and the fluorescence extracted by the fluorescence side spectroscope 4 (strictly speaking, it is fluorescence.
  • the excitation-side spectrometer 2 and the fluorescence-side spectroscopy are so scanned that the excitation light wavelength and the fluorescence wavelength are scanned synchronously while the difference from the wavelength of the light emitted from the sample 3 is not limited to ⁇ .
  • Each device 4 is controlled. That is, on the map having the excitation light wavelength and the fluorescence wavelength as two axes shown in FIG.
  • the scanning is performed on the straight line P indicated by the alternate long and short dash line from the lower left scanning start point P1 to the upper right scanning end point P2.
  • the light intensity signal obtained by the detector 5 is digitized by the A / D converter 6 at regular time intervals and input to the data processing unit 7. Therefore, fluorescence spectrum data (synchronous fluorescence spectrum data) accompanying synchronous scanning with a constant ⁇ from the scanning start point P1 to the scanning end point P2 is obtained (step S3).
  • the spectrum creating unit 71 creates a synchronized fluorescence spectrum as shown in FIG. 3 (c) based on the collected synchronized fluorescence spectrum data, and the peak detecting unit 72 is displayed on the synchronized fluorescence spectrum.
  • Peak detection is executed (step S4). Then, it is determined whether or not at least one peak has been detected (step S5). If even one peak has been detected, the process proceeds from step S5 to S6, where the wavelength of the peak top (fluorescence) of the detected peak is detected. Wavelength) is temporarily stored in the wavelength information storage unit 74 as ⁇ EMn .
  • the amount of Stokes shift between the excitation light wavelength causing fluorescence and the fluorescence wavelength may be large, and fluorescence may be observed in a wavelength region far away from the excitation light wavelength to the long wavelength side.
  • the wavelength difference ⁇ between the excitation light wavelength and the fluorescence wavelength is small, no peak appears on the synchronous fluorescence spectrum. Therefore, if it is determined in step S5 that no peak is detected, it is first determined whether or not the wavelength difference ⁇ at that time is 200 nm or less, which is the maximum wavelength difference (step S18). If the wavelength difference ⁇ is 200 nm or less, the wavelength difference ⁇ is increased by 10 nm (step S19), and the process returns to step S3. For example, if no peak is detected on the synchronous fluorescence spectrum at 5 nm, which is the initial value of the wavelength difference ⁇ , then the wavelength difference ⁇ is changed to 15 nm and the synchronous fluorescence spectrum is acquired again.
  • the acquisition of the synchronous fluorescence spectrum and the peak detection are repeated while further increasing the wavelength difference ⁇ by 10 nm.
  • the Stokes shift amount between the excitation light wavelength and the fluorescence wavelength is smaller than 200 nm. Therefore, when the sample 3 has fluorescence, it is usually unnecessary to repeat acquisition of the synchronous fluorescence spectrum until the wavelength difference ⁇ reaches 200 nm, and before that (that is, the wavelength difference ⁇ reaches 200 nm). By the time, a synchronous fluorescence spectrum with at least one peak is obtained.
  • step S18 since the fluorescence wavelength is not usually longer than 200 nm longer than the excitation light wavelength, if it is determined in step S18 that the wavelength difference ⁇ exceeds 200 nm, the process proceeds to step S22, and the sample 3 Is determined that no fluorescence is detected, a display output indicating that no fluorescence is detected is performed on the display unit 11 through the fluorescence central control unit 9 (step S17), and the process is terminated.
  • the spectroscope control unit 81 selects ⁇ EMn in ascending order of n and sets the fluorescence wavelength to ⁇ EMn.
  • the side spectroscope 4 is controlled, and the excitation side spectroscope 2 is controlled so as to scan the excitation light wavelength in a predetermined wavelength range while fixing the side spectroscope 4. Thereby, wavelength scanning is achieved so that the vertical dotted line in FIG.
  • the spectrum creation unit 71 creates an excitation light spectrum (step S7).
  • This excitation light spectrum shows a wavelength distribution of excitation light that generates fluorescence having a wavelength of ⁇ EMn . Therefore, the peak detector 72 performs peak detection on the excitation light spectrum, and sets the peak top wavelength (excitation light wavelength) of the detected peak as the optimum excitation light wavelength ⁇ EXn for obtaining the optimum fluorescence wavelength. Stored in the wavelength information storage unit 74 (step S8).
  • the spectroscope control unit 81 controls the excitation side spectroscope 2 so as to set the excitation light wavelength to ⁇ EXn , and the fluorescence side spectroscope so as to scan the fluorescence wavelength in a predetermined wavelength range with this being fixed. 4 is controlled. Thereby, wavelength scanning is achieved so that the horizontal dotted line in FIG. Then, during this scanning, the spectrum creation unit 71 creates a fluorescence spectrum based on the light intensity signal obtained by the detector 5 (step S9).
  • the peak detection unit 72 performs peak detection on the fluorescence spectrum, and stores the peak top wavelength (fluorescence wavelength) of the detected peak in the wavelength information storage unit 74 as the optimum fluorescence wavelength ⁇ EMn ′ (step S10). .
  • the peak detected in step S4 is only a fluorescence peak candidate and is derived from fluorescence. That is not guaranteed. This is because in addition to fluorescence, Raman scattered light may be observed in a region below (rightward) the straight line L indicating Rayleigh scattered light in FIG. Therefore, the peak derived from the fluorescence and the peak derived from the Raman scattered light are identified by the measurement and data processing in subsequent steps S11 to S14.
  • the wavelength of the excitation light applied to the sample 3 is changed to a wavelength ⁇ EXn +10 nm obtained by adding 10 nm to the excitation light wavelength ⁇ EXn (step S11), and the excitation light wavelength is changed to the wavelength ⁇ EXn +10 nm.
  • the excitation-side spectroscope 2 and the fluorescence-side spectroscope 4 are each controlled so that the fluorescence wavelength is scanned in a predetermined wavelength range while being fixed to ⁇ . And during this wavelength scanning, the spectrum preparation part 71 newly produces a fluorescence spectrum based on the light intensity signal obtained by the detector 5 (step S12).
  • the peak detector 72 performs peak detection on the fluorescence spectrum, and whether or not the peak top wavelength (fluorescence wavelength) of the detected peak is shifted from the previously stored optimum fluorescence wavelength ⁇ EMn ′. Is determined (step S13). Specifically, an allowable range in consideration of a measurement error or the like is set for the wavelength ⁇ EMn ′, and if the newly detected fluorescence wavelength is within the allowable range, it may be determined that there is no peak shift.
  • the peak derived from the Raman scattered light is different from the fluorescence peak and appears over a relatively wide excitation light wavelength range, and the relationship between the excitation light wavelength and the Raman scattered light wavelength is substantially band-shaped. Extend. Therefore, when the fluorescence spectrum is acquired by slightly changing the excitation light wavelength to the longer wavelength side as described above, the peak wavelength appearing in the fluorescence spectrum is shifted from the peak wavelength before the excitation light wavelength change. On the other hand, since the fluorescence peak is an isolated peak that maximizes the light intensity at a certain excitation light wavelength and fluorescence wavelength, the fluorescence spectrum is acquired by slightly changing the excitation light wavelength to the longer wavelength side.
  • step S13 the peak wavelength appearing in the fluorescence spectrum is substantially the same as the peak wavelength before the excitation light wavelength change. Therefore, if it is determined in step S13 that the fluorescence wavelength has shifted, it is determined in step S6 that the peak stored as the fluorescence wavelength as ⁇ EMn is not actually derived from fluorescence but from Raman scattered light. Proceed from S13 to S20.
  • step S20 it is determined whether or not a peak derived from fluorescence that is not derived from Raman scattered light has already been detected, and if detected, the process proceeds to step S16 described later. On the other hand, if no fluorescence-derived peak has been detected, it is next determined whether or not the measurement and processing from steps S3 to S5 have been performed until the wavelength difference ⁇ reaches 200 nm (step S21). If not, a fluorescence-derived peak may still be found, so the process proceeds to step S19 described above, and the wavelength difference ⁇ is set again to measure the synchronous fluorescence spectrum.
  • step S21 if it is determined Yes in step S21, there is almost no possibility of finding a fluorescence peak, and thus the process proceeds to step S22 described above.
  • step S22 As a result, even if a false fluorescence peak derived from Raman scattered light is found prior to a peak derived from true fluorescence, it is identified that the false fluorescence peak is actually a peak derived from Raman scattered light. It is possible to return to the search for the fluorescence peak again.
  • the fluorescence-derived peak can be reliably found even if a false peak due to Raman scattered light exists. it can.
  • step S13 If it is determined in step S13 that the fluorescence peak wavelength is not shifted, it is determined that the peak is not derived from Raman scattered light but is actually derived from fluorescence (step S14), and excitation light is emitted in steps S7 and S8.
  • the combination of the excitation light wavelength ⁇ EXn obtained from the spectrum and the fluorescence wavelength ⁇ EMn ′ obtained from the fluorescence spectrum in steps S9 and S10 is stored in the wavelength information storage unit 74 as output information (step S15).
  • step S16 If it is determined in step S16 that another peak wavelength ⁇ EM_n does not exist, the combination of the excitation light wavelength and the fluorescence wavelength stored as output information in step S15 is displayed through the central control unit 9 to the display unit 11. Are displayed on the display screen in a predetermined format (step S17), and the process is terminated.
  • FIG. 7 shows a display example when a peak derived from fluorescence is found.
  • FIG. 5A is an actual measurement example of a synchronous fluorescence spectrum obtained by measuring a cell filled with tap water as a sample 3.
  • the scanning start excitation light wavelength was set to 220 nm
  • the scanning start fluorescence wavelength was set to 225 nm
  • the wavelength difference ⁇ was maintained at 5 nm until the fluorescence wavelength reached 900 nm.
  • the slit width in the excitation side spectroscope 2 and the fluorescence side spectroscope 4 is set to 3 nm
  • the wavelength width of the extracted light is about 3 nm.
  • step S8 this is stored as the excitation light wavelength ⁇ EX1 for obtaining the optimum fluorescence wavelength.
  • the dotted line in FIG. 5C is this fluorescence spectrum.
  • the excitation light spectrum and the fluorescence spectrum are obtained in order to obtain the optimum excitation light wavelength and fluorescence wavelength, and the optimum excitation light wavelength although the fluorescence intensity itself is small.
  • the wavelength information about the two detected fluorescence peaks is displayed in an easy-to-understand manner, for example, as shown in FIG.
  • FIG. 8 shows the fluorescence intensity mapping data of the excitation light wavelength range: 300 to 600 nm and the fluorescence wavelength range: 300 to 600 nm, and the excitation light wavelength and the excitation wavelength calculated based on the data for the sample subjected to the above-described wavelength search function. It is the figure which showed the relationship of the fluorescence wavelength. In addition to the wavelength pair of ⁇ EX11 and ⁇ EM11 showing the highest fluorescence intensity, the wavelength pair of ⁇ EX22 and ⁇ EM22 having the lowest fluorescence intensity is correctly determined.
  • Raman scattered light does not appear, but even when the wavelengths of the fluorescence-derived peak and the Raman scattered light-derived peak are close by the above-described method, they can be accurately identified. Further, even when the fluorescence-derived peak exists in the very vicinity of the Rayleigh scattered light, the fluorescence-derived peak can be accurately detected. This point will be described with reference to FIG.
  • FIG. 6A is a diagram showing a fluorescence spectrum obtained by fixing the excitation light wavelength as in the prior art when a fluorescence-derived peak occurs in the vicinity of Rayleigh scattered light.
  • the wavelength scanning traverses the Rayleigh scattered light, and the spectrum peak derived from the fluorescence overlaps with the large peak derived from the Rayleigh scattered light in the fluorescence spectrum. Therefore, the fluorescence peak cannot be detected, or the fluorescence peak is completely overlapped with the base of the peak derived from Rayleigh scattered light, and the fluorescence peak itself may not be recognized.
  • the wavelength difference between the excitation light wavelength and the fluorescence wavelength is small, and the fluorescence peak often exists in the vicinity of the Rayleigh scattered light.
  • the fluorescence-derived peak can be reliably detected even in such a case.
  • a peak derived from fluorescence can be found with a small number of synchronized fluorescence spectra. it can.
  • the two fluorescent peaks can be detected from the synchronous fluorescent spectrum obtained by one synchronous wavelength scanning.

Abstract

A synchronized fluorescent light spectrum for a sample is acquired by setting the wavelength difference between an excitation light wavelength and a fluorescent light wavelength to a minimum initial value, and synchronously scanning both wavelengths at a constant wavelength difference (S1 to S3). If there is a peak in the spectrum, the peak wavelength is treated as a fluorescent light wavelength (λEMn), and while holding this constant, an excitation light spectrum is acquired by scanning the excitation light wavelength (S4 to S7). A peak wavelength in the excitation light spectrum is treated as the optimal excitation light wavelength (λEXn), and while holding this constant, a fluorescent light spectrum obtained by scanning the fluorescent light wavelength is acquired, and the peak wavelength of the fluorescent light spectrum is treated as the optimal fluorescent light wavelength λEXn' (S8 to S10). The excitation light wavelength is increased by 10 nm and the fluorescent light spectrum is acquired in the same manner; if there is no wavelength shift in the acquired fluorescent light peak, the detected peak is the true fluorescent light-derived peak (S13 to S14), so the fact that fluorescence has been detected is output to a display along with the optimal wavelength information (S15, S17).

Description

分光蛍光光度計Spectrofluorometer
 本発明は、試料に励起光を照射し該試料から放出される蛍光を検出する分光蛍光光度計に関する。 The present invention relates to a spectrofluorometer that irradiates a sample with excitation light and detects fluorescence emitted from the sample.
 一般的な分光蛍光光度計では、励起側分光器で取り出された特定波長の励起光を測定対象の試料に照射し、その照射光により励起されることで試料から放出された蛍光を蛍光側分光器を通して波長分散させて検出器に導入し、その光強度を検出する。こうした蛍光強度の測定を正確に行うには、蛍光を生じさせるための励起光の波長を適切に設定するとともに、試料から発せられる蛍光の中から適切な波長の蛍光を取り出す必要がある。しかしながら、或る試料の測定を行う際に、該試料が蛍光を発することは判明しているものの、適切な励起光波長条件や蛍光が観測され得る蛍光波長範囲が不明である、ということが時々ある。また、蛍光を発する物質は限られているため、そもそも測定対象試料が実際に蛍光を発するものなのか否か自体が不明である、ということもある。 In a general spectrofluorometer, the sample to be measured is irradiated with excitation light of a specific wavelength extracted by the excitation side spectroscope, and the fluorescence emitted from the sample by being excited by the irradiation light is subjected to fluorescence side spectroscopy. The wavelength is dispersed through the detector and introduced into the detector, and the light intensity is detected. In order to accurately measure the fluorescence intensity, it is necessary to appropriately set the wavelength of excitation light for generating fluorescence and to extract fluorescence having an appropriate wavelength from the fluorescence emitted from the sample. However, it is sometimes known that when a sample is measured, the sample emits fluorescence, but the appropriate excitation light wavelength condition and the fluorescence wavelength range in which fluorescence can be observed are unknown. is there. In addition, since substances that emit fluorescence are limited, it may be unclear whether or not the sample to be measured actually emits fluorescence.
 そこで、測定対象試料から蛍光が得られるのか否かを調べるため、或いは、蛍光が得られる場合に励起光波長などの測定条件を求めるために、従来の一般的な分光蛍光光度計には、スペクトル測定機能を用いた測定条件割り出しのための探索機能が用意されている。 Therefore, in order to investigate whether fluorescence is obtained from a sample to be measured, or to obtain measurement conditions such as the excitation light wavelength when fluorescence is obtained, a conventional general spectrofluorometer has a spectrum. A search function is provided for determining measurement conditions using the measurement function.
 図9は、従来の分光蛍光光度計における励起光・蛍光波長探索のための測定及び処理の説明図である。図9(a)に示すように、励起光波長を縦軸、蛍光波長を横軸にとったグラフ中で、励起光波長と蛍光波長とが同一である斜めの直線Lがレーリー散乱光を示し、蛍光を発する場合には、通常、その直線Lよりも下方(又は右方)の領域に蛍光によるピークが存在する。 FIG. 9 is an explanatory diagram of measurement and processing for searching for excitation light and fluorescence wavelength in a conventional spectrofluorometer. As shown in FIG. 9A, in the graph with the excitation light wavelength on the vertical axis and the fluorescence wavelength on the horizontal axis, an oblique straight line L having the same excitation light wavelength and fluorescence wavelength indicates Rayleigh scattered light. When fluorescence is emitted, a peak due to fluorescence usually exists in a region below (or to the right of) the straight line L.
 蛍光の有無が事前に不明である場合や、蛍光が生じることは判明しているものの最大の蛍光強度を生じる励起光の波長とそのときに放出される蛍光の波長とが不明である場合には、図9(a)中に一点鎖線で示すような順序で励起光及び蛍光の波長がそれぞれ走査され、その走査によって得られたスペクトルに基づいて蛍光の有無の判定や励起光及び蛍光の波長算出が行われる。即ち、まず励起光波長が所定の励起光波長範囲の中の最短波長側の初期波長に設定され、所定波長範囲に亘り蛍光波長を指定された波長間隔で以て走査しながら(図9(a)中で右横方向に移動しながら)蛍光スペクトルを取得していく。一つの励起光波長に対して図9(b)に示すような蛍光スペクトルを取得し終えたならば、励起光波長を指定された波長間隔ΔλX分だけ増加させ(図9(a)中では上方向に移動させ)、再び、所定波長範囲に亘り蛍光波長を指定された波長間隔で以て走査しながら蛍光スペクトルを取得する。 If the presence or absence of fluorescence is unknown in advance, or if the wavelength of the excitation light that produces the maximum fluorescence intensity and the wavelength of the fluorescence emitted at that time is unknown, although it is known that fluorescence will occur 9A, the wavelengths of the excitation light and the fluorescence are scanned in the order as indicated by the one-dot chain line, and the presence / absence of fluorescence is determined and the wavelengths of the excitation light and the fluorescence are calculated based on the spectrum obtained by the scanning. Is done. That is, first, the excitation light wavelength is set to the initial wavelength on the shortest wavelength side in a predetermined excitation light wavelength range, and the fluorescence wavelength is scanned at a specified wavelength interval over the predetermined wavelength range (FIG. 9A). ) The fluorescence spectrum is acquired while moving in the right lateral direction. When the fluorescence spectrum as shown in FIG. 9B is obtained for one excitation light wavelength, the excitation light wavelength is increased by the specified wavelength interval Δλ X (in FIG. 9A). The fluorescence spectrum is acquired again while scanning the fluorescence wavelength at a specified wavelength interval over a predetermined wavelength range.
 こうして励起光波長を指定された波長間隔ΔλXずつ増加させながら蛍光スペクトルを取得していき、その過程において、レーリー散乱光以外のピークが観測された場合にはそのピークトップの蛍光波長を記憶しておく。そして、最終的に最大のピーク強度を示す蛍光波長を求め、これを最適な蛍光波長λEMとして記憶する。次に、蛍光側分光器により取り出される波長を記憶されている最適な蛍光波長λEMに設定し、所定の波長範囲に亘り励起光波長を指定された波長間隔で以て走査しながら図9(c)に示すような励起光スペクトルを取得する。そして、得られた励起光スペクトルに対してピーク検出を行い、最大のピーク強度を示す波長を最適な励起光波長λEXとして記憶する。こうして求めた励起光λEX及び蛍光波長λEMを、測定対象試料に対する最適な励起光波長及び蛍光波長として出力し、オペレータはこれを参考に、測定波長や測定波長間隔などの測定条件を定め、測定対象試料に対する詳細な測定を実行する。 In this way, the fluorescence spectrum is acquired while increasing the excitation light wavelength by the specified wavelength interval Δλ X. In the process, if a peak other than the Rayleigh scattered light is observed, the fluorescence wavelength of the peak top is stored. Keep it. Then, finally obtains a fluorescence wavelength showing the maximum peak intensity, and stores it as the optimal emission wavelength lambda EM. Next, for the best fluorescence wavelength lambda EM stored wavelength taken out by fluorescence side spectroscope, while scanning Te than at wavelength intervals specified excitation light wavelength over a predetermined wavelength range 9 ( An excitation light spectrum as shown in c) is acquired. Then, peak detection is performed on the obtained excitation light spectrum, and the wavelength exhibiting the maximum peak intensity is stored as the optimum excitation light wavelength λ EX . The excitation light λ EX and the fluorescence wavelength λ EM thus obtained are output as the optimum excitation light wavelength and fluorescence wavelength for the sample to be measured, and the operator determines measurement conditions such as the measurement wavelength and the measurement wavelength interval with reference to this, A detailed measurement is performed on the sample to be measured.
 しかしながら、上述したような従来の励起光・蛍光波長探索法では、一般に、一つの蛍光を見出すために取得すべき蛍光スペクトルの数が多く、測定に時間が掛かる。特に、極めて長波長である励起光波長条件の下で蛍光が得られるような試料(つまり図9(a)で蛍光ピークが右上部に存在するような試料)に対しては、蛍光ピークを見つけるまでに多数回の蛍光波長走査を繰り返す必要があり、結果を出力するまでに非常に長い時間を要することになる。もちろん、励起光波長を短波長側でなく長波長側に初期設定することも可能であるが、そうすると今度は、極めて短波長である励起光波長条件の下で蛍光が得られるような試料(つまり図9(a)で蛍光ピークが左下部に存在するような試料)に対して、結果を出力するまでに非常に長い時間を要することになる。 However, in the conventional excitation light / fluorescence wavelength searching method as described above, in general, the number of fluorescence spectra to be acquired in order to find one fluorescence is large, and the measurement takes time. In particular, for a sample in which fluorescence is obtained under an excitation light wavelength condition that is an extremely long wavelength (that is, a sample in which the fluorescence peak exists in the upper right part in FIG. 9A), the fluorescence peak is found. Thus, it is necessary to repeat the fluorescence wavelength scanning a number of times, and it takes a very long time to output the result. Of course, it is possible to initialize the excitation light wavelength to the long wavelength side instead of the short wavelength side, but this time, in this case, a sample that can obtain fluorescence under the excitation light wavelength condition that is an extremely short wavelength (that is, It takes a very long time to output the result for a sample having a fluorescence peak in the lower left part in FIG. 9A.
 上述したように、特殊な物質を除き多くの物質では、励起光波長よりも長波長側に蛍光波長が存在するため、レーリー散乱光を示す直線Lよりも下方のストークス領域だけを波長走査の対象領域とすれば実質的に十分な波長探索が行える。これによって蛍光スペクトルを取得するための蛍光波長の走査範囲を限定し、測定時間を或る程度短縮することは可能である。しかしながら、それでも励起光波長を変化させながら繰り返し蛍光スペクトルを取得する回数自体は減らないため、結果を出力するまでに要する時間の短縮にはあまり繋がらない。 As described above, since many substances except for special substances have a fluorescence wavelength longer than the excitation light wavelength, only the Stokes region below the straight line L indicating the Rayleigh scattered light is subject to wavelength scanning. If the area is selected, a substantially sufficient wavelength search can be performed. As a result, the scanning range of the fluorescence wavelength for acquiring the fluorescence spectrum is limited, and the measurement time can be shortened to some extent. However, since the number of times of repeatedly acquiring the fluorescence spectrum itself while changing the excitation light wavelength is not reduced, the time required to output the result is not significantly reduced.
 一方、最適な励起光波長及び蛍光波長を迅速に求めることを目的とした分光蛍光光度計として、特許文献1に記載の装置がある。該文献に記載の分光蛍光光度計では、励起光波長と蛍光波長との一方を固定せず、その波長差を一定に保ちながら励起側分光器と蛍光側分光器とで同期的に波長走査を行い、蛍光スペクトル(このように励起光波長及び蛍光波長を同期的に走査して得られた蛍光スペクトルを、本明細書では「同期蛍光スペクトル」という)を取得する。該文献の記載によれば、励起側分光器のスリット幅は20nm、蛍光側分光器のスリット幅は40nmと、比較的大きく設定され、励起光波長と蛍光波長の波長差も100nm及び150nmと広く設定されており、これによって、二通りの同期蛍光スペクトルを取得するのみで、予想されるほぼ全ての蛍光領域をカバーし得るとされている。 On the other hand, there is an apparatus described in Patent Document 1 as a spectrofluorophotometer for the purpose of quickly obtaining optimum excitation light wavelength and fluorescence wavelength. In the spectrofluorometer described in this document, one of the excitation light wavelength and the fluorescence wavelength is not fixed, and the wavelength scan is synchronously performed between the excitation side spectrometer and the fluorescence side spectrometer while keeping the wavelength difference constant. The fluorescence spectrum (the fluorescence spectrum obtained by synchronously scanning the excitation light wavelength and the fluorescence wavelength in this manner is referred to as “synchronous fluorescence spectrum” in this specification) is obtained. According to the description of this document, the slit width of the excitation-side spectrometer is set to 20 nm, the slit width of the fluorescence-side spectrometer is set to 40 nm, and the wavelength difference between the excitation light wavelength and the fluorescence wavelength is as wide as 100 nm and 150 nm. Thus, it is said that it is possible to cover almost all expected fluorescent regions by only acquiring two kinds of synchronous fluorescence spectra.
 確かに上記条件の下での同期的な波長走査を行って同期蛍光スペクトルを得ることで、試料に関する多くの情報を一度に得ることができるという利点はあるものの、励起光波長と蛍光波長との差が小さい場合には有効な情報が得ることができない。また、試料に複数の蛍光を発する成分が混在している場合には、同期蛍光スペクトル上でそれぞれの成分に由来するピーク同士が重なり合い、平坦化した大きな緩いピーク形状になってしまうため、明確な波長情報が得られない可能性が高いという問題がある。また、蛍光ピークとレーリー散乱光によるピークとが近接している場合や、ラマン散乱光によるピークが存在している場合に、蛍光ピークを選択的に検出することが難しいという問題もある。 Although there is an advantage that a lot of information about the sample can be obtained at once by performing synchronous wavelength scanning under the above conditions to obtain a synchronous fluorescence spectrum, the excitation light wavelength and the fluorescence wavelength If the difference is small, effective information cannot be obtained. In addition, if the sample contains a plurality of components that emit fluorescence, the peaks derived from the components overlap on the synchronized fluorescence spectrum, resulting in a flat and large loose peak shape. There is a problem that there is a high possibility that wavelength information cannot be obtained. There is also a problem that it is difficult to selectively detect the fluorescence peak when the fluorescence peak and the peak due to Rayleigh scattered light are close to each other or when the peak due to Raman scattered light exists.
特開昭60-239652号公報JP-A-60-239652
 本発明は上記課題を解決するためになされたものであり、その目的とするところは、蛍光の有無の検出や蛍光が検出される場合にその最適な励起光波長及び蛍光波長の探索を短時間で且つ確実に行うことができるとともに、蛍光ピークがレーリー散乱光由来のピークに近接していたりラマン散乱光によるピークが生じたりしている場合であっても、それらの影響を除いて確実に蛍光ピークを検出し、正確な励起光波長及び蛍光波長を取得することができる分光蛍光光度計を提供することにある。 The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to detect the presence or absence of fluorescence and search for the optimum excitation light wavelength and fluorescence wavelength in a short time when fluorescence is detected. Even if the fluorescence peak is close to the peak derived from the Rayleigh scattered light or the peak due to the Raman scattered light is generated, the fluorescence is surely excluded except for the influence thereof. An object of the present invention is to provide a spectrofluorometer capable of detecting a peak and obtaining an accurate excitation light wavelength and fluorescence wavelength.
 上記課題を解決するために成された本発明は、光源から発せられた光から特定の波長の光を取り出して励起光として試料に照射する励起光分光手段と、該励起光を受けて試料から放出される蛍光を分光する蛍光分光手段と、その分光された蛍光を検出する検出手段と、を具備する分光蛍光光度計において、
 a)励起光波長と該波長よりも長波長である蛍光波長との波長差を一定に維持しつつ該励起光波長及び蛍光波長を同期的に走査するように前記励起光分光手段及び蛍光分光手段を制御しつつ、その同期的な波長走査に対して前記検出手段で得られるデータに基づいて同期蛍光スペクトルを作成する同期蛍光スペクトル取得手段と、
 b)前記同期蛍光スペクトル上でピーク検出を行い、ピークが検出された場合に該ピークに対応した励起光波長と蛍光波長との少なくとも一方の概略値を求めるピーク検出手段と、
 c)該ピーク検出手段により概略値が求まった励起光波長又は蛍光波長の一方を固定し、励起光波長又は蛍光波長の他方を走査するように前記励起光分光手段及び前記蛍光分光手段を制御しつつ前記検出手段で得られるデータに基づいて励起光波長又は蛍光波長の詳細値を求め、その詳細値が求まった励起光波長又は蛍光波長の一方を固定し、励起光波長又は蛍光波長の他方を走査するように前記励起光分光手段及び前記蛍光分光手段を制御しつつ前記検出手段で得られるデータに基づいて励起光波長又は蛍光波長の他方の詳細値を求める波長詳細値取得手段と、
 d)該波長詳細値取得手段により求まった励起光波長詳細値から所定分離れた波長に励起光波長を固定し蛍光波長を走査するように前記励起光分光手段及び前記蛍光分光手段を制御しつつ前記検出手段で得られるデータに基づいて蛍光波長を求め、該蛍光波長と前記波長詳細値取得手段により求まった蛍光波長詳細値とに基づいて前記ピーク検出手段により検出されたピークが蛍光由来か否かを判定する蛍光真偽判定手段と、
 を備えることを特徴としている。
In order to solve the above problems, the present invention includes an excitation light spectroscopic means for extracting light of a specific wavelength from light emitted from a light source and irradiating the sample as excitation light, and receiving the excitation light from the sample. In a spectrofluorometer comprising a fluorescence spectroscopic means for spectrally separating emitted fluorescence, and a detection means for detecting the spectroscopic fluorescence,
a) The excitation light spectroscopic means and the fluorescence spectroscopic means so as to scan the excitation light wavelength and the fluorescence wavelength synchronously while maintaining a constant wavelength difference between the excitation light wavelength and the fluorescence wavelength longer than the wavelength. The synchronous fluorescence spectrum acquisition means for creating a synchronous fluorescence spectrum based on the data obtained by the detection means for the synchronous wavelength scanning,
b) performing peak detection on the synchronous fluorescence spectrum, and when a peak is detected, peak detection means for obtaining an approximate value of at least one of the excitation light wavelength and the fluorescence wavelength corresponding to the peak;
c) fixing one of the excitation light wavelength and the fluorescence wavelength whose approximate value is obtained by the peak detection means, and controlling the excitation light spectroscopy means and the fluorescence spectroscopy means so as to scan the other of the excitation light wavelength and the fluorescence wavelength. While obtaining the detailed value of the excitation light wavelength or the fluorescence wavelength based on the data obtained by the detection means, fixing one of the excitation light wavelength or the fluorescence wavelength for which the detailed value was obtained, and fixing the other of the excitation light wavelength or the fluorescence wavelength. A wavelength detail value acquisition means for obtaining the other detail value of the excitation light wavelength or the fluorescence wavelength based on the data obtained by the detection means while controlling the excitation light spectroscopy means and the fluorescence spectroscopy means so as to scan;
d) While controlling the excitation light spectroscopic means and the fluorescence spectroscopic means so that the excitation light wavelength is fixed to a wavelength separated from the excitation light wavelength detailed value obtained by the wavelength detailed value acquisition means, and the fluorescence wavelength is scanned. The fluorescence wavelength is obtained based on the data obtained by the detection means, and the peak detected by the peak detection means based on the fluorescence wavelength and the fluorescence wavelength detail value obtained by the wavelength detail value acquisition means is derived from fluorescence. Fluorescence authenticity determination means for determining whether or not
It is characterized by having.
 本発明に係る分光蛍光光度計において、同期蛍光スペクトル取得手段は、励起光分光手段により取り出される励起光の波長と蛍光分光手段により取り出される蛍光の波長との差が一定に維持されるように、励起光波長及び蛍光波長を同期的に走査するべく両分光手段を制御する。そして、その同期的な波長走査を実施している期間に検出手段で得られるデータに基づいて、横軸が波長で縦軸が強度である同期蛍光スペクトルを作成する。波長差一定の同期的な波長走査は、励起光波長と蛍光波長とを二軸とするマップ上で、レーリー散乱光によるピークが示す直線(図9中の直線L)に平行な直線に沿って走査を行うことに相当する。 In the spectrofluorometer according to the present invention, the synchronous fluorescence spectrum acquisition means is such that the difference between the wavelength of the excitation light extracted by the excitation light spectroscopy means and the wavelength of the fluorescence extracted by the fluorescence spectroscopy means is maintained constant. Both spectroscopic means are controlled to synchronously scan the excitation light wavelength and the fluorescence wavelength. Then, based on the data obtained by the detection means during the period in which the synchronous wavelength scanning is performed, a synchronous fluorescence spectrum in which the horizontal axis is the wavelength and the vertical axis is the intensity is created. Synchronous wavelength scanning with a constant wavelength difference is performed along a straight line parallel to a straight line (a straight line L in FIG. 9) indicated by a peak due to Rayleigh scattered light on a map having two axes of an excitation light wavelength and a fluorescence wavelength. This corresponds to scanning.
 ピーク検出手段は同期蛍光スペクトル上でピーク検出を行い、ピークが検出されたならば、該ピークを蛍光ピークの候補として抽出して該ピークに対応した励起光波長と蛍光波長との少なくとも一方の概略値を求める。同期蛍光スペクトル上で得られたピークは本来の蛍光ピークのピークトップであるとは限らないから、ピーク検出手段により得られるのはあくまで波長の概略値である。波長詳細値取得手段は、上記のような同期的な波長走査ではなく、励起光波長又は蛍光波長の一方を固定し、他方のみを走査することで、励起光スペクトル及び蛍光スペクトルを求め、それらスペクトル上でピーク波長を求めることで、本来の蛍光ピークのピークトップにより近い位置における励起光波長及び蛍光波長の詳細値を求める。 The peak detection means performs peak detection on the synchronous fluorescence spectrum, and if a peak is detected, the peak is extracted as a candidate for the fluorescence peak, and an outline of at least one of the excitation light wavelength and the fluorescence wavelength corresponding to the peak is extracted. Find the value. Since the peak obtained on the synchronous fluorescence spectrum is not necessarily the peak top of the original fluorescence peak, what is obtained by the peak detection means is only an approximate value of the wavelength. The wavelength detailed value acquisition means obtains the excitation light spectrum and the fluorescence spectrum by fixing one of the excitation light wavelength and the fluorescence wavelength and scanning only the other, not the synchronous wavelength scanning as described above. By obtaining the peak wavelength above, the detailed values of the excitation light wavelength and the fluorescence wavelength at a position closer to the peak top of the original fluorescence peak are obtained.
 ただし、ピーク検出手段により検出されたピークは実際には蛍光由来のピークではなくラマン散乱光由来のピークである可能性もある。蛍光ピークは或る励起光波長及び蛍光波長で蛍光強度が最大となり、該位置から波長がずれるほど強度が低下する孤立状のピークである。これに対し、ラマン散乱光は広い波長範囲の入射光に対しその波長に依存する波長を有する光として試料から出射するから、ラマン散乱光によるピークは帯状に広い波長範囲に亘る山脈状のピークとなる。そのため、試料に照射する励起光(入射光)の波長を長波長側に少し変化させると、蛍光由来のピークであれば蛍光波長は殆どシフトしないが、ラマン散乱光由来のピークであれば蛍光(出射光)の波長は長波長側に明確にシフトする。そこで、蛍光真偽判定手段は、励起光波長を所定分だけ変化させたときの蛍光スペクトル上での蛍光ピーク(厳密には蛍光であると推測されるピーク)の波長のシフトの有無を確認し、これに応じてピークが蛍光由来か否かを判定する。これによって、偽の蛍光ピーク、つまりはラマン散乱光によるピークを除外できる。 However, the peak detected by the peak detection means may actually be a peak derived from Raman scattered light rather than a peak derived from fluorescence. The fluorescence peak is an isolated peak in which the fluorescence intensity becomes maximum at a certain excitation light wavelength and fluorescence wavelength, and the intensity decreases as the wavelength shifts from the position. On the other hand, Raman scattered light is emitted from the sample as light having a wavelength that depends on the wavelength of incident light in a wide wavelength range, so the peak due to Raman scattered light is a mountain-shaped peak that covers a wide wavelength range in a band shape. Become. Therefore, when the wavelength of the excitation light (incident light) irradiated to the sample is slightly changed to the longer wavelength side, the fluorescence wavelength hardly shifts if it is a peak derived from fluorescence, but fluorescence ( The wavelength of the emitted light is clearly shifted to the long wavelength side. Therefore, the fluorescence authenticity determination means confirms whether or not there is a shift in the wavelength of the fluorescence peak on the fluorescence spectrum when the excitation light wavelength is changed by a predetermined amount (strictly speaking, the peak estimated to be fluorescence). Accordingly, it is determined whether or not the peak is derived from fluorescence. This eliminates false fluorescence peaks, that is, peaks due to Raman scattered light.
 本発明に係る分光蛍光光度計では、上記蛍光真偽判定手段により蛍光由来であると判定されたピークについて、上記波長詳細値取得手段により算出された励起光波長及び蛍光波長の詳細値を表示出力する表示処理手段をさらに備える構成とするとよい。これにより、高い正確性を以て蛍光が得られると判断した場合に、その蛍光を得るために最適な励起光波長及び蛍光波長を、最適な測定条件として分析者に知らせることができる。 In the spectrofluorometer according to the present invention, the excitation light wavelength calculated by the wavelength detailed value acquisition unit and the detailed value of the fluorescence wavelength are displayed and output for the peak determined to be fluorescence-derived by the fluorescence authenticity determination unit. The display processing means may be further provided. As a result, when it is determined that fluorescence can be obtained with high accuracy, it is possible to inform the analyst of the optimum excitation light wavelength and fluorescence wavelength for obtaining the fluorescence as optimum measurement conditions.
 また本発明に係る分光蛍光光度計では、好ましくは、一つの波長差に対する同期蛍光スペクトルが得られる毎に、上記ピーク検出手段はピーク検出を実行し、上記波長詳細値取得手段はその検出されたピークについて励起光波長及び蛍光波長の詳細値を求め、上記蛍光真偽判定手段はその検出されたピークが蛍光由来か否かを判定し、その検出されたピークが蛍光由来でないと判定されたならば、上記同期蛍光スペクトル取得手段は波長差を増加させて次の同期蛍光スペクトルを取得するとよい。 In the spectrofluorometer according to the present invention, preferably, every time a synchronous fluorescence spectrum with respect to one wavelength difference is obtained, the peak detecting means performs peak detection, and the wavelength detailed value acquiring means is detected. Obtain the detailed values of the excitation light wavelength and the fluorescence wavelength for the peak, and the fluorescence authenticity determination means determines whether or not the detected peak is derived from fluorescence, and if it is determined that the detected peak is not derived from fluorescence For example, the synchronous fluorescence spectrum acquisition unit may acquire the next synchronous fluorescence spectrum by increasing the wavelength difference.
 一般的な蛍光性の物質においては、蛍光を生じさせる励起光の波長と該励起によって生じる蛍光波長との波長差はそれほど大きくない。したがって、同期的波長走査の波長差の初期値をできるだけ小さく設定しておき、得られた同期蛍光スペクトルに基づいて蛍光由来のピークが検出されなかったときに順次波長差を増加させていって新たな同期蛍光スペクトルを取得するようにすれば、短い時間で蛍光由来ピークを検出することが可能である。 In a general fluorescent substance, the wavelength difference between the wavelength of excitation light causing fluorescence and the fluorescence wavelength caused by the excitation is not so large. Therefore, the initial value of the wavelength difference of the synchronous wavelength scanning is set as small as possible, and when the fluorescence-derived peak is not detected based on the obtained synchronous fluorescence spectrum, the wavelength difference is sequentially increased and newly set. If a simple synchronous fluorescence spectrum is acquired, it is possible to detect a fluorescence-derived peak in a short time.
 なお、蛍光が生じる試料であるか否かを知りたいような場合には、少なくとも一つの蛍光由来ピークが検出されたならば、それ以降、同期蛍光スペクトルの取得やピーク検出などを続行する必要はない。即ち、少なくとも一つの蛍光由来ピークが検出された時点で、処理を打ち切ることができる。一方、異なる励起光波長、蛍光波長を持つ複数の蛍光由来ピークの全てを検出したい場合には、一つの蛍光由来ピークが検出されても同期蛍光スペクトルの取得やピーク検出などを続行すればよい。 When it is desired to know whether the sample is fluorescent or not, if at least one fluorescence-derived peak is detected, there is no need to continue acquisition of synchronous fluorescence spectrum or peak detection thereafter. . That is, the processing can be terminated when at least one fluorescence-derived peak is detected. On the other hand, when it is desired to detect all of a plurality of fluorescence-derived peaks having different excitation light wavelengths and fluorescence wavelengths, acquisition of a synchronized fluorescence spectrum, peak detection, etc. may be continued even if one fluorescence-derived peak is detected.
 いずれにしても、一般的な蛍光性物質では励起光波長と蛍光波長との差は或る程度限られているから、波長差が所定の最大波長差に達するまでに蛍光由来のピークが検出されない場合には、上記表示処理手段は、蛍光が検出されないことを示す表示出力を行うようにするとよい。これにより、限られた時間内で蛍光が生じる試料であるか否かを分析者に知らせることができる。 In any case, since the difference between the excitation light wavelength and the fluorescence wavelength is limited to some extent in a general fluorescent substance, a fluorescence-derived peak is not detected until the wavelength difference reaches a predetermined maximum wavelength difference. In this case, the display processing means may perform display output indicating that no fluorescence is detected. Thereby, it is possible to inform the analyst whether or not the sample generates fluorescence within a limited time.
 また本発明に係る分光蛍光光度計において、同期的な波長走査の波長差の初期値は、同期蛍光スペクトル上で蛍光によるピークがレーリー散乱光によるピークの裾に隠れない範囲で小さく設定されることが望ましい。具体的には、検出される蛍光の波長幅は励起光分光手段に含まれるスリット幅及び蛍光分光手段に含まれるスリット幅に依存するが、これらスリット幅を3nmに設定したときに、波長差の初期値を5nmとするとよい。これにより、レーリー散乱光の影響を受けることなく、波長差が非常に小さい蛍光ピークも確実に検出することができる。また、上記初期値から波長差を徐々に、例えば10nm程度ずつ増加させつつ同期蛍光スペクトルを取得することにより、蛍光ピークを見逃すことなく、短時間で蛍光ピークを見つけることができる。 In the spectrofluorometer according to the present invention, the initial value of the wavelength difference of the synchronous wavelength scanning is set to be small so that the fluorescence peak is not hidden behind the peak of the Rayleigh scattered light on the synchronous fluorescence spectrum. Is desirable. Specifically, the wavelength width of the detected fluorescence depends on the slit width included in the excitation light spectroscopic means and the slit width included in the fluorescent spectroscopic means, but when these slit widths are set to 3 nm, the wavelength difference of The initial value should be 5 nm. Thereby, it is possible to reliably detect a fluorescence peak having a very small wavelength difference without being affected by Rayleigh scattered light. Further, by acquiring the synchronous fluorescence spectrum while gradually increasing the wavelength difference from the initial value by about 10 nm, for example, the fluorescence peak can be found in a short time without missing the fluorescence peak.
 本発明に係る分光蛍光光度計によれば、レーリー散乱光やラマン散乱光の影響を受けることなく、確実に且つ短時間で、蛍光由来のピークを見つけ出すことができる。それにより、例えば試料が蛍光を生じるものか否かを分析者が知りたい場合に、短時間で蛍光の有無を知らせることが可能である。また、試料における最適な励起光波長及び蛍光波長を分析者が知りたい場合には、短時間でこれら情報を提供することができる。また、試料が生体由来試料等である場合、長時間に亘る光の照射を受けると光化学変化などにより本来の特性を損ねるおそれもあるが、本発明によれば、試料に光を照射する時間を短縮することでこうした問題を回避し、良好な測定を行うことができる。 According to the spectrofluorometer according to the present invention, a peak derived from fluorescence can be found reliably and in a short time without being affected by Rayleigh scattered light or Raman scattered light. Thereby, for example, when an analyst wants to know whether or not a sample emits fluorescence, it is possible to notify the presence or absence of fluorescence in a short time. In addition, when an analyst wants to know the optimum excitation light wavelength and fluorescence wavelength in a sample, these information can be provided in a short time. In addition, when the sample is a biological sample or the like, there is a risk of damaging the original characteristics due to photochemical changes when irradiated with light for a long time. By shortening, these problems can be avoided and good measurement can be performed.
本発明の一実施例である分光蛍光光度計の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the spectrofluorometer which is one Example of this invention. 本実施例の分光蛍光光度計における励起光・蛍光波長探索のための測定及び処理のフローチャート。The flowchart of the measurement for the excitation light and fluorescence wavelength search in the spectrofluorometer of a present Example, and a process. 本実施例の分光蛍光光度計における励起光・蛍光波長探索のための測定及び処理の説明図。Explanatory drawing of the measurement and process for excitation light and fluorescence wavelength search in the spectrofluorometer of a present Example. 本実施例による分光蛍光光度計における蛍光由来ピークとラマン散乱光由来ピークとを識別する方法の説明図。Explanatory drawing of the method of identifying the fluorescence origin peak and Raman scattering light origin peak in the spectrofluorometer by a present Example. 本実施例による分光蛍光光度計による実測例であり、(a)は同期蛍光スペクトル、(b)は励起光スペクトル、(c)は蛍光スペクトルを示す図。It is an actual measurement example by the spectrofluorometer by a present Example, (a) is a synchronous fluorescence spectrum, (b) is an excitation light spectrum, (c) is a figure which shows a fluorescence spectrum. レーリー散乱光と蛍光とが近接している場合における従来の波長探索方法と本実施例による波長探索方法との相違を説明する図。The figure explaining the difference with the wavelength search method by the present Example and the present Example in case Rayleigh scattered light and fluorescence adjoin. 本実施例による分光蛍光光度計における波長探索結果の表示出力の一例を示す図。The figure which shows an example of the display output of the wavelength search result in the spectrofluorometer by a present Example. 本実施例による波長探索機能を実施した試料についての蛍光強度マッピングデータ及び該データに基づき割り出された励起光波長及び蛍光波長の関係を示す図。The figure which shows the relationship between the fluorescence intensity mapping data about the sample which implemented the wavelength search function by a present Example, and the excitation light wavelength and fluorescence wavelength which were calculated based on this data. 従来の分光蛍光光度計における励起光・蛍光波長探索のための測定及び処理の説明図。Explanatory drawing of the measurement and process for the excitation light and fluorescence wavelength search in the conventional spectrofluorometer.
 以下、本発明の一実施例である分光蛍光光度計について、添付図面を参照して説明する。図1は本実施例の分光蛍光光度計の概略構成図である。 Hereinafter, a spectrofluorometer which is an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of the spectrofluorophotometer of the present embodiment.
 図1において、光源部1から出射された光は図示しない回折格子やスリットを備える励起側分光器2に導入され、分析制御部8により設定された特定波長の単色光が取り出され、励起光として試料3に照射される。励起光により励起されることで試料3から放出された蛍光は図示しない回折格子やスリットを備える蛍光側分光器4に導入され、分析制御部8により設定された特定波長の蛍光(及びそのほかの散乱光など)が取り出されて検出器5に導入される。検出器5は入射した蛍光の強度に応じた検出信号を出力し、この検出信号がA/D変換器6でデジタル値に変換され、データ処理部7に送られる。 In FIG. 1, the light emitted from the light source unit 1 is introduced into an excitation-side spectroscope 2 having a diffraction grating and a slit (not shown), and monochromatic light having a specific wavelength set by the analysis control unit 8 is taken out as excitation light. The sample 3 is irradiated. The fluorescence emitted from the sample 3 by being excited by the excitation light is introduced into a fluorescence side spectroscope 4 having a diffraction grating and a slit (not shown), and the fluorescence having a specific wavelength set by the analysis control unit 8 (and other scattering). Light etc.) is taken out and introduced into the detector 5. The detector 5 outputs a detection signal corresponding to the intensity of the incident fluorescence. The detection signal is converted into a digital value by the A / D converter 6 and sent to the data processing unit 7.
 データ処理部7は、スペクトル作成部71、ピーク検出部72、蛍光/ラマン光識別部73、波長情報記憶部74などの機能ブロックを含み、通常の蛍光スペクトルの作成処理などを行うほか、後述するように蛍光スペクトルを得るための測定条件(励起光波長や蛍光波長など)を探索するためのデータ処理を実施する。また、分析制御部8は、測定を実行するために各部の動作を制御するものであって、特に、励起光や蛍光の波長を設定したり走査したりするための分光器制御部81を含む。また、装置全体を統括的に制御する中央制御部9には、操作部10及び表示部11が接続され、操作部10による測定条件の入力設定などの受け付けや、表示部11への測定結果の表示制御などを実行する。
 なお、中央制御部9、分析制御部8、データ処理部7の全て又は一部の機能は、パーソナルコンピュータにインストールされた専用の制御・処理ソフトウエアを実行することにより達成されるようにすることができる。
The data processing unit 7 includes functional blocks such as a spectrum creation unit 71, a peak detection unit 72, a fluorescence / Raman light identification unit 73, and a wavelength information storage unit 74, and performs normal fluorescence spectrum creation processing and the like. Thus, the data processing for searching the measurement conditions (excitation light wavelength, fluorescence wavelength, etc.) for obtaining the fluorescence spectrum is performed. The analysis control unit 8 controls the operation of each unit in order to perform measurement, and particularly includes a spectrometer control unit 81 for setting or scanning the wavelength of excitation light or fluorescence. . In addition, an operation unit 10 and a display unit 11 are connected to the central control unit 9 that controls the entire apparatus in an integrated manner, and accepts input of measurement conditions by the operation unit 10 and displays measurement results on the display unit 11. Perform display control and so on.
All or part of the functions of the central control unit 9, the analysis control unit 8, and the data processing unit 7 should be achieved by executing dedicated control / processing software installed in the personal computer. Can do.
 本実施例の分光蛍光光度計は、高精度の蛍光スペクトルを得るために適切な測定条件を見出すための探索機能を有する。図2~図8を参照して、この特徴的な機能における測定動作及びデータ処理について説明する。
 図2は励起光・蛍光波長探索のための測定及び処理のフローチャート、図3は励起光・蛍光波長探索のための測定及び処理の説明図、図4は蛍光由来ピークとラマン散乱光由来ピークとを識別する方法の説明図である。
The spectrofluorometer of this embodiment has a search function for finding an appropriate measurement condition in order to obtain a highly accurate fluorescence spectrum. The measurement operation and data processing in this characteristic function will be described with reference to FIGS.
FIG. 2 is a flowchart of measurement and processing for searching for excitation light / fluorescence wavelength, FIG. 3 is an explanatory diagram of measurement and processing for searching for excitation light / fluorescence wavelength, and FIG. 4 is a graph showing fluorescence-derived peaks and Raman-scattered light-derived peaks. It is explanatory drawing of the method of identifying.
 まず分析者は、測定対象である試料3を装置の所定位置にセットし(ステップS1)、操作部10から同期蛍光スペクトル取得のための波長走査の条件として、走査開始励起光波長(又は走査開始蛍光波長)、走査終了励起光波長(又は走査終了蛍光波長)のほか、励起光波長と蛍光波長との波長差(波長間隔)Δλの初期値、を入力する(ステップS2)。例えば、後述する実測例では、走査開始励起波長を220nm、走査終了蛍光波長を900nmとし、波長差Δλの初期値を5nmとしている。これらパラメータはデフォルト値であってもよい。物質によって相違するが、一般に、励起光波長と蛍光波長との差はそれほど大きくないため、蛍光の見逃しを防止するには波長差Δλの初期値は小さいほうがよい。ただし、励起光波長と蛍光波長とが同じであるとの条件では、蛍光ではなく大きな強度のレーリー散乱光が観測されるため、波長差Δλを小さくしすぎるとレーリー散乱光との区別が困難になる。ピークの幅は各分光器2、4におけるスリット幅に依存するが、高い波長分解能を得るためにスリット幅を3nm又はそれ以下に設定した場合、波長差Δλの初期値(最小値)は5nm程度が適切である。 First, the analyst sets the sample 3 to be measured at a predetermined position of the apparatus (step S1), and the scanning start excitation light wavelength (or scanning start) is set as a wavelength scanning condition for acquiring the synchronous fluorescence spectrum from the operation unit 10. In addition to the fluorescence wavelength) and the scanning end excitation light wavelength (or scanning end fluorescence wavelength), an initial value of the wavelength difference (wavelength interval) Δλ between the excitation light wavelength and the fluorescence wavelength is input (step S2). For example, in an actual measurement example to be described later, the scanning start excitation wavelength is 220 nm, the scanning end fluorescence wavelength is 900 nm, and the initial value of the wavelength difference Δλ is 5 nm. These parameters may be default values. Although it differs depending on the substance, in general, the difference between the excitation light wavelength and the fluorescence wavelength is not so large. Therefore, the initial value of the wavelength difference Δλ is preferably small in order to prevent the fluorescence from being overlooked. However, under the condition that the excitation light wavelength and the fluorescence wavelength are the same, a large intensity of Rayleigh scattered light is observed instead of fluorescence. Therefore, if the wavelength difference Δλ is too small, it is difficult to distinguish it from the Rayleigh scattered light. Become. The peak width depends on the slit width in each of the spectrometers 2 and 4, but when the slit width is set to 3 nm or less in order to obtain high wavelength resolution, the initial value (minimum value) of the wavelength difference Δλ is about 5 nm. Is appropriate.
 分析者の指示を受けて測定が開始されると、分光器制御部81は、励起側分光器2により取り出される励起光の波長と、蛍光側分光器4で取り出される蛍光(厳密には蛍光であるとは限らず試料3から発せられる光)の波長との差をΔλ一定に維持したまま励起光波長と蛍光波長とが同期的に走査されるように、励起側分光器2及び蛍光側分光器4をそれぞれ制御する。即ち、図3(a)に示す励起光波長、蛍光波長を二軸とするマップ上で、一点鎖線で示す直線P上を左下の走査開始点P1から右上の走査終了点P2まで走査する。この走査の間に、検出器5により得られる光強度信号はA/D変換器6において一定時間間隔でデジタル化されデータ処理部7に入力される。したがって、走査開始点P1から走査終了点P2までのΔλ一定の同期的走査に伴う蛍光スペクトルデータ(同期蛍光スペクトルデータ)が得られる(ステップS3)。 When measurement is started in response to an instruction from the analyst, the spectroscope control unit 81 detects the wavelength of the excitation light extracted by the excitation side spectroscope 2 and the fluorescence extracted by the fluorescence side spectroscope 4 (strictly speaking, it is fluorescence. The excitation-side spectrometer 2 and the fluorescence-side spectroscopy are so scanned that the excitation light wavelength and the fluorescence wavelength are scanned synchronously while the difference from the wavelength of the light emitted from the sample 3 is not limited to Δλ. Each device 4 is controlled. That is, on the map having the excitation light wavelength and the fluorescence wavelength as two axes shown in FIG. 3A, the scanning is performed on the straight line P indicated by the alternate long and short dash line from the lower left scanning start point P1 to the upper right scanning end point P2. During this scanning, the light intensity signal obtained by the detector 5 is digitized by the A / D converter 6 at regular time intervals and input to the data processing unit 7. Therefore, fluorescence spectrum data (synchronous fluorescence spectrum data) accompanying synchronous scanning with a constant Δλ from the scanning start point P1 to the scanning end point P2 is obtained (step S3).
 このときに得られる同期蛍光スペクトル中に蛍光等によるピークが存在する場合、そのピークは、ちょうど試料3における励起光スペクトルと蛍光スペクトルとが図3(b)のようにオーバーラップする波長領域に、シャープに現れる(図3(c)参照)、という特徴がある。蛍光が生じない場合には、図3(b)において蛍光スペクトルは起伏がなくベースラインに沿った状態となるため、同期蛍光スペクトルにピークは現れない。このため、この同期蛍光スペクトル上にピークが無いことを確認することで、直ちに蛍光がないと判断することができる。 When a peak due to fluorescence or the like exists in the synchronous fluorescence spectrum obtained at this time, the peak is in a wavelength region where the excitation light spectrum and the fluorescence spectrum in the sample 3 overlap as shown in FIG. It is characterized by appearing sharply (see FIG. 3C). When fluorescence does not occur, the fluorescence spectrum in FIG. 3 (b) has no undulations and is in a state along the baseline, so that no peak appears in the synchronous fluorescence spectrum. For this reason, it can be immediately judged that there is no fluorescence by confirming that there is no peak in this synchronous fluorescence spectrum.
 そこで、データ処理部7においてスペクトル作成部71は、収集された同期蛍光スペクトルデータに基づいて図3(c)に示すような同期蛍光スペクトルを作成し、ピーク検出部72は該同期蛍光スペクトル上でピーク検出を実行する(ステップS4)。そして、少なくとも1個のピークが検出されたか否かを判定し(ステップS5)、1個でもピークが検出されていればステップS5からS6へと進み、検出されたピークのピークトップの波長(蛍光波長)をλEMnとして波長情報記憶部74に一時的に記憶する。ここで、nは検出されたピークに付された連番であり、1回の同期的波長走査においてピークが1個のみ検出された場合にはnは1のみであり、ピークが複数個検出された場合にはn=1、2、…、である。 Therefore, in the data processing unit 7, the spectrum creating unit 71 creates a synchronized fluorescence spectrum as shown in FIG. 3 (c) based on the collected synchronized fluorescence spectrum data, and the peak detecting unit 72 is displayed on the synchronized fluorescence spectrum. Peak detection is executed (step S4). Then, it is determined whether or not at least one peak has been detected (step S5). If even one peak has been detected, the process proceeds from step S5 to S6, where the wavelength of the peak top (fluorescence) of the detected peak is detected. Wavelength) is temporarily stored in the wavelength information storage unit 74 as λEMn . Here, n is a serial number assigned to the detected peak. When only one peak is detected in one synchronous wavelength scan, n is only 1, and a plurality of peaks are detected. In this case, n = 1, 2,...
 試料の種類によっては、蛍光を生じさせる励起光波長と蛍光波長とのストークスシフト量が大きく、励起光波長から長波長側に大きく離れた波長領域に蛍光が観測される場合がある。その場合、励起光波長と蛍光波長との波長差Δλが小さいと、同期蛍光スペクトル上にはピークが現れない。そこで、ステップS5においてピークが1個も検出されないと判定された場合には、まずそのときの波長差Δλが波長差最大値である200nm以下であるか否かを判定する(ステップS18)。波長差Δλが200nm以下であれば、波長差Δλを10nmだけ増加させ(ステップS19)ステップS3へと戻る。例えば波長差Δλの初期値である5nmにおける同期蛍光スペクトル上でピークが検出されなかった場合には、次に波長差Δλを15nmに変更して同期蛍光スペクトルを再び取得することになる。 Depending on the type of sample, the amount of Stokes shift between the excitation light wavelength causing fluorescence and the fluorescence wavelength may be large, and fluorescence may be observed in a wavelength region far away from the excitation light wavelength to the long wavelength side. In that case, when the wavelength difference Δλ between the excitation light wavelength and the fluorescence wavelength is small, no peak appears on the synchronous fluorescence spectrum. Therefore, if it is determined in step S5 that no peak is detected, it is first determined whether or not the wavelength difference Δλ at that time is 200 nm or less, which is the maximum wavelength difference (step S18). If the wavelength difference Δλ is 200 nm or less, the wavelength difference Δλ is increased by 10 nm (step S19), and the process returns to step S3. For example, if no peak is detected on the synchronous fluorescence spectrum at 5 nm, which is the initial value of the wavelength difference Δλ, then the wavelength difference Δλ is changed to 15 nm and the synchronous fluorescence spectrum is acquired again.
 そうして、新たに取得した同期蛍光スペクトル上で再びピークが1個も検出されなかった場合には、さらに波長差Δλを10nmずつ増やしながら同期蛍光スペクトルの取得とピーク検出とを繰り返す。一般に、多くの蛍光性物質において励起光波長と蛍光波長とのストークスシフト量は200nmよりも小さい。そのため、試料3が蛍光性を有している場合には、通常、波長差Δλが200nmに到達するまで同期蛍光スペクトルの取得を繰り返す必要はなく、それ以前に(つまり波長差Δλが200nmに達するまでに)、ピークが少なくとも1個は存在する同期蛍光スペクトルが得られる。 Then, when no peak is detected again on the newly acquired synchronous fluorescence spectrum, the acquisition of the synchronous fluorescence spectrum and the peak detection are repeated while further increasing the wavelength difference Δλ by 10 nm. In general, in many fluorescent substances, the Stokes shift amount between the excitation light wavelength and the fluorescence wavelength is smaller than 200 nm. Therefore, when the sample 3 has fluorescence, it is usually unnecessary to repeat acquisition of the synchronous fluorescence spectrum until the wavelength difference Δλ reaches 200 nm, and before that (that is, the wavelength difference Δλ reaches 200 nm). By the time, a synchronous fluorescence spectrum with at least one peak is obtained.
 上述したように、通常、蛍光波長が励起光波長よりも200nm以上長波長であることはないので、ステップS18において波長差Δλが200nmを超えたと判断したならばステップS22へと進み、該試料3からは蛍光が検出されないものと判断し、蛍光中央制御部9を通して表示部11に、蛍光は検出されない旨の表示出力を行い(ステップS17)、処理を終了する。 As described above, since the fluorescence wavelength is not usually longer than 200 nm longer than the excitation light wavelength, if it is determined in step S18 that the wavelength difference Δλ exceeds 200 nm, the process proceeds to step S22, and the sample 3 Is determined that no fluorescence is detected, a display output indicating that no fluorescence is detected is performed on the display unit 11 through the fluorescence central control unit 9 (step S17), and the process is terminated.
 ステップS6において1個以上の蛍光ピーク波長がλEMnとして記録されると、次に、分光器制御部81は、nが小さい順にλEMnを選択し、蛍光波長をλEMnに設定するように蛍光側分光器4を制御し、これを固定したまま励起光波長を所定波長範囲で走査するように励起側分光器2を制御する。これにより、図4(a)中の垂直の点線を矢印Aの方向に移動するように波長走査が達成される。そして、この波長走査の間に検出器5により得られる光強度信号に基づいて、スペクトル作成部71は励起光スペクトルを作成する(ステップS7)。この励起光スペクトルは、波長がλEMnである蛍光を生じさせるような励起光の波長分布を示すものである。そこで、ピーク検出部72は該励起光スペクトル上でピーク検出を実行し、検出されたピークのピークトップの波長(励起光波長)を最適な蛍光波長を求めるための最適な励起光波長λEXnとして波長情報記憶部74に記憶する(ステップS8)。 If one or more fluorescence peak wavelengths are recorded as λEMn in step S6, then the spectroscope control unit 81 selects λEMn in ascending order of n and sets the fluorescence wavelength to λEMn. The side spectroscope 4 is controlled, and the excitation side spectroscope 2 is controlled so as to scan the excitation light wavelength in a predetermined wavelength range while fixing the side spectroscope 4. Thereby, wavelength scanning is achieved so that the vertical dotted line in FIG. Then, based on the light intensity signal obtained by the detector 5 during this wavelength scanning, the spectrum creation unit 71 creates an excitation light spectrum (step S7). This excitation light spectrum shows a wavelength distribution of excitation light that generates fluorescence having a wavelength of λEMn . Therefore, the peak detector 72 performs peak detection on the excitation light spectrum, and sets the peak top wavelength (excitation light wavelength) of the detected peak as the optimum excitation light wavelength λ EXn for obtaining the optimum fluorescence wavelength. Stored in the wavelength information storage unit 74 (step S8).
 次に、分光器制御部81は、励起光波長をλEXnに設定するように励起側分光器2を制御し、これを固定したまま蛍光波長を所定波長範囲で走査するように蛍光側分光器4を制御する。これにより、図4(a)中の水平の点線を矢印Bの方向に移動するように波長走査が達成される。そして、この走査の間に、検出器5により得られる光強度信号に基づいて、スペクトル作成部71は蛍光スペクトルを作成する(ステップS9)。ピーク検出部72は該蛍光スペクトル上でピーク検出を実行し、検出されたピークのピークトップの波長(蛍光波長)を最適な蛍光波長λEMn’として波長情報記憶部74に記憶する(ステップS10)。 Next, the spectroscope control unit 81 controls the excitation side spectroscope 2 so as to set the excitation light wavelength to λ EXn , and the fluorescence side spectroscope so as to scan the fluorescence wavelength in a predetermined wavelength range with this being fixed. 4 is controlled. Thereby, wavelength scanning is achieved so that the horizontal dotted line in FIG. Then, during this scanning, the spectrum creation unit 71 creates a fluorescence spectrum based on the light intensity signal obtained by the detector 5 (step S9). The peak detection unit 72 performs peak detection on the fluorescence spectrum, and stores the peak top wavelength (fluorescence wavelength) of the detected peak in the wavelength information storage unit 74 as the optimum fluorescence wavelength λEMn ′ (step S10). .
 以上の処理により、最適な蛍光波長λEMn’とそれを求めるための最適な励起光波長λEXnとが求まるが、ステップS4において検出されたピークはあくまでも蛍光ピークの候補であって蛍光由来であることは保証されていない。何故なら、図3(a)においてレーリー散乱光を示す直線Lよりも下方(右方)の領域には、蛍光のほかにラマン散乱光が観測される可能性があるためである。そこで、続くステップS11~S14の測定及びデータ処理により、蛍光由来のピークとラマン散乱光由来のピークとを識別する。 With the above processing, the optimum fluorescence wavelength λ EMn ′ and the optimum excitation light wavelength λ EXn for obtaining it are obtained, but the peak detected in step S4 is only a fluorescence peak candidate and is derived from fluorescence. That is not guaranteed. This is because in addition to fluorescence, Raman scattered light may be observed in a region below (rightward) the straight line L indicating Rayleigh scattered light in FIG. Therefore, the peak derived from the fluorescence and the peak derived from the Raman scattered light are identified by the measurement and data processing in subsequent steps S11 to S14.
 即ち、試料3に照射する励起光の波長を上記の励起光波長λEXnに所定値、ここでは10nmを加えた波長λEXn+10nmに変更し(ステップS11)、励起光波長を該波長λEXn+10nmに固定したまま蛍光波長を所定波長範囲で走査するように、励起側分光器2及び蛍光側分光器4をそれぞれ制御する。そして、この波長走査の間に、検出器5により得られる光強度信号に基づいて、スペクトル作成部71は新たに蛍光スペクトルを作成する(ステップS12)。そして、ピーク検出部72は該蛍光スペクトル上でピーク検出を実行し、検出されたピークのピークトップの波長(蛍光波長)が先に記憶した最適な蛍光波長λEMn’からシフトしているか否かを判定する(ステップS13)。具体的には、波長λEMn’に対し測定誤差等を考慮した許容範囲を設定し、新たに検出された蛍光波長が該許容範囲内に収まっていればピークシフトなしと判定すればよい。 That is, the wavelength of the excitation light applied to the sample 3 is changed to a wavelength λ EXn +10 nm obtained by adding 10 nm to the excitation light wavelength λ EXn (step S11), and the excitation light wavelength is changed to the wavelength λ EXn +10 nm. The excitation-side spectroscope 2 and the fluorescence-side spectroscope 4 are each controlled so that the fluorescence wavelength is scanned in a predetermined wavelength range while being fixed to λ. And during this wavelength scanning, the spectrum preparation part 71 newly produces a fluorescence spectrum based on the light intensity signal obtained by the detector 5 (step S12). Then, the peak detector 72 performs peak detection on the fluorescence spectrum, and whether or not the peak top wavelength (fluorescence wavelength) of the detected peak is shifted from the previously stored optimum fluorescence wavelength λ EMn ′. Is determined (step S13). Specifically, an allowable range in consideration of a measurement error or the like is set for the wavelength λ EMn ′, and if the newly detected fluorescence wavelength is within the allowable range, it may be determined that there is no peak shift.
 図4(b)に示すように、ラマン散乱光由来のピークは蛍光ピークとは異なり、比較的広い励起光波長範囲に亘り出現し、励起光波長とラマン散乱光波長との関係は略帯状に延在する。そのため、上述したように励起光波長を僅かに長波長側に変化させて蛍光スペクトルを取得すると、該蛍光スペクトルに現れるピークの波長は励起光波長変化前のピーク波長からシフトする。これに対し、蛍光ピークは或る励起光波長及び蛍光波長において光強度が最大となるような孤立状のピークであるため、励起光波長を僅かに長波長側に変化させて蛍光スペクトルを取得しても、該蛍光スペクトルに現れるピークの波長は励起光波長変化前のピーク波長とほぼ同じとなる。そこで、ステップS13において蛍光波長がシフトしていると判定された場合には、ステップS6において蛍光波長がλEMnとして記憶されたピークは実は蛍光由来ではなくラマン散乱光由来であると判断し、ステップS13からS20へと進む。 As shown in FIG. 4 (b), the peak derived from the Raman scattered light is different from the fluorescence peak and appears over a relatively wide excitation light wavelength range, and the relationship between the excitation light wavelength and the Raman scattered light wavelength is substantially band-shaped. Extend. Therefore, when the fluorescence spectrum is acquired by slightly changing the excitation light wavelength to the longer wavelength side as described above, the peak wavelength appearing in the fluorescence spectrum is shifted from the peak wavelength before the excitation light wavelength change. On the other hand, since the fluorescence peak is an isolated peak that maximizes the light intensity at a certain excitation light wavelength and fluorescence wavelength, the fluorescence spectrum is acquired by slightly changing the excitation light wavelength to the longer wavelength side. Even so, the peak wavelength appearing in the fluorescence spectrum is substantially the same as the peak wavelength before the excitation light wavelength change. Therefore, if it is determined in step S13 that the fluorescence wavelength has shifted, it is determined in step S6 that the peak stored as the fluorescence wavelength as λEMn is not actually derived from fluorescence but from Raman scattered light. Proceed from S13 to S20.
 ステップS20においては、既にラマン散乱光由来でない蛍光由来のピーク検出済みであるか否かを判定し、検出済みであれば後述のステップS16へと進む。他方、蛍光由来のピークが未検出であれば、次に、ステップS3~S5までの測定及び処理を波長差Δλが200nmに達するまで実行したか否かを判定し(ステップS21)、実行していなければ未だ蛍光由来のピークが見つかる可能性があるので、既述のステップS19へと進み、波長差Δλを再び設定して同期蛍光スペクトルの測定を行う。一方、ステップS21においてYesと判定された場合には、蛍光ピークを見つけられる可能性は殆どないので、既述のステップS22に進む。これにより、真の蛍光由来のピークよりも先にラマン散乱光に由来する偽の蛍光ピークが見つかってしまった場合でも、該偽の蛍光ピークが実はラマン散乱光由来のピークであることを識別し、再び蛍光ピークの探索に戻ることができる。その結果、波長差Δλが200nm以下である範囲に蛍光由来のピークが1個でも存在しさえすれば、ラマン散乱光による偽のピークが存在していたとしても蛍光由来ピークを確実に見つけることができる。 In step S20, it is determined whether or not a peak derived from fluorescence that is not derived from Raman scattered light has already been detected, and if detected, the process proceeds to step S16 described later. On the other hand, if no fluorescence-derived peak has been detected, it is next determined whether or not the measurement and processing from steps S3 to S5 have been performed until the wavelength difference Δλ reaches 200 nm (step S21). If not, a fluorescence-derived peak may still be found, so the process proceeds to step S19 described above, and the wavelength difference Δλ is set again to measure the synchronous fluorescence spectrum. On the other hand, if it is determined Yes in step S21, there is almost no possibility of finding a fluorescence peak, and thus the process proceeds to step S22 described above. As a result, even if a false fluorescence peak derived from Raman scattered light is found prior to a peak derived from true fluorescence, it is identified that the false fluorescence peak is actually a peak derived from Raman scattered light. It is possible to return to the search for the fluorescence peak again. As a result, as long as even one fluorescence-derived peak exists in a range where the wavelength difference Δλ is 200 nm or less, the fluorescence-derived peak can be reliably found even if a false peak due to Raman scattered light exists. it can.
 上記ステップS13において蛍光ピーク波長がシフトしていないと判定された場合には、それはラマン散乱光由来ではなく真に蛍光由来のピークであると判断し(ステップS14)、ステップS7及びS8において励起光スペクトルから求まった励起光波長λEXnとステップS9及びS10において蛍光スペクトルから求まった蛍光波長λEMn’との組み合わせを波長情報記憶部74に出力用情報として記憶する(ステップS15)。 If it is determined in step S13 that the fluorescence peak wavelength is not shifted, it is determined that the peak is not derived from Raman scattered light but is actually derived from fluorescence (step S14), and excitation light is emitted in steps S7 and S8. The combination of the excitation light wavelength λ EXn obtained from the spectrum and the fluorescence wavelength λ EMn ′ obtained from the fluorescence spectrum in steps S9 and S10 is stored in the wavelength information storage unit 74 as output information (step S15).
 その後、ステップS6において記憶された別のピーク波長λEM_nが存在するか否かを判定し(ステップS16)、例えばn=1のみの処理が終了し未だn=2のピーク波長が存在するのであれば、ステップS7へと戻り、該ピーク波長について上述した処理を繰り返す。 Thereafter, it is determined whether or not another peak wavelength λ EM_n stored in step S6 exists (step S16). For example, if only n = 1 is completed, there is still a peak wavelength of n = 2. Then, the process returns to step S7, and the above-described processing is repeated for the peak wavelength.
 ステップS16において別のピーク波長λEM_nが存在しないと判定された場合には、ステップS15において出力用情報として記憶されている励起光波長と蛍光波長との組み合わせを、中央制御部9を通して表示部11に出力し、所定様式で表示画面上に表示させて(ステップS17)、処理を終了する。図7は蛍光由来のピークが見つかった場合の表示例である。 If it is determined in step S16 that another peak wavelength λEM_n does not exist, the combination of the excitation light wavelength and the fluorescence wavelength stored as output information in step S15 is displayed through the central control unit 9 to the display unit 11. Are displayed on the display screen in a predetermined format (step S17), and the process is terminated. FIG. 7 shows a display example when a peak derived from fluorescence is found.
 上記処理について具体的な実測例に則して説明する。図5(a)は、水道水を満たしたセルを試料3として測定して得られた同期蛍光スペクトルの実測例である。ここでは、上述したように走査開始励起光波長を220nm、走査開始蛍光波長を225nmに設定し、波長差Δλを5nmに維持したまま、蛍光波長が900nmに達するまで測定を行った。また、励起側分光器2及び蛍光側分光器4におけるスリット幅は3nmに設定しており、取り出される光の波長幅は約3nmである。 The above processing will be described according to a specific measurement example. FIG. 5A is an actual measurement example of a synchronous fluorescence spectrum obtained by measuring a cell filled with tap water as a sample 3. Here, as described above, the scanning start excitation light wavelength was set to 220 nm, the scanning start fluorescence wavelength was set to 225 nm, and the wavelength difference Δλ was maintained at 5 nm until the fluorescence wavelength reached 900 nm. In addition, the slit width in the excitation side spectroscope 2 and the fluorescence side spectroscope 4 is set to 3 nm, and the wavelength width of the extracted light is about 3 nm.
 図5(a)に示すように、この同期蛍光スペクトル上には、505nmと590nmの二つの波長にピークが観測される。したがって、上記ステップS4においては2個のピークが検出され、ステップS6において最適な励起光波長を求めるための蛍光波長は、λEM1=505nm、λEM2=590nmと記憶される。図5(b)は、蛍光波長をλEM1=505nmに固定したまま試料3に照射する励起光の波長を走査することにより取得された実測の励起光スペクトルである。この励起光スペクトル上では、495nmの波長にピークが観測される。そこで、上記ステップS8においてこれを最適な蛍光波長を求めるための励起光波長λEX1として記憶する。次に、試料3に照射する励起光の波長をλEX1=495nmに固定したまま、検出する蛍光波長を走査することにより蛍光スペクトルを取得する。図5(c)中の実線は励起光波長をλEX1=495nmに設定して取得した蛍光スペクトルである。この蛍光スペクトルでは、510nmの波長にピークが観測されるから、これを最適な蛍光波長λEM1’として記憶する。 As shown in FIG. 5A, peaks are observed at two wavelengths of 505 nm and 590 nm on the synchronous fluorescence spectrum. Accordingly, two peaks are detected in step S4, and the fluorescence wavelengths for obtaining the optimum excitation light wavelength in step S6 are stored as λ EM1 = 505 nm and λ EM2 = 590 nm. FIG. 5B is an actually measured excitation light spectrum obtained by scanning the wavelength of the excitation light with which the sample 3 is irradiated with the fluorescence wavelength fixed at λ EM1 = 505 nm. On this excitation light spectrum, a peak is observed at a wavelength of 495 nm. Therefore, in step S8, this is stored as the excitation light wavelength λ EX1 for obtaining the optimum fluorescence wavelength. Next, a fluorescence spectrum is acquired by scanning the fluorescence wavelength to be detected while fixing the wavelength of the excitation light applied to the sample 3 to λ EX1 = 495 nm. The solid line in FIG. 5C is a fluorescence spectrum obtained by setting the excitation light wavelength to λ EX1 = 495 nm. In this fluorescence spectrum, since a peak is observed at a wavelength of 510 nm, this is stored as an optimum fluorescence wavelength λ EM1 ′.
 続いて、上で求めたλEX1=495nmに10nmを加算した505nmに励起光波長を変化させて、これを固定して蛍光スペクトルを取得する。図5(c)中の点線はこの蛍光スペクトルである。実線と点線のスペクトルを比較すれば判るように、ピーク強度自体は下がるものの、励起光波長変化前と同様に510nmの波長にピークが、殆どピークシフトすることなく検出されている。これは、510nmに最大強度を有するピークがラマン散乱光によるものではなく、蛍光由来であることを示している。したがって、この試料について、最大の蛍光強度を示す蛍光を得るための最適な励起光波長及び蛍光波長はそれぞれ、λEX11=495nm、λEM11=510nmであるとして出力する。 Subsequently, the excitation light wavelength is changed to 505 nm obtained by adding 10 nm to λ EX1 = 495 nm obtained above, and this is fixed to obtain a fluorescence spectrum. The dotted line in FIG. 5C is this fluorescence spectrum. As can be seen by comparing the spectrum of the solid line and the dotted line, although the peak intensity itself decreases, the peak is detected at a wavelength of 510 nm with almost no peak shift, as before the change of the excitation light wavelength. This indicates that the peak having the maximum intensity at 510 nm is not due to Raman scattered light but originates from fluorescence. Therefore, the optimum excitation light wavelength and fluorescence wavelength for obtaining the fluorescence exhibiting the maximum fluorescence intensity are output as λ EX11 = 495 nm and λ EM11 = 510 nm, respectively.
 他の一つの蛍光波長λEM2=590nmについても、同様にして、最適な励起光波長及び蛍光波長を求めるべく励起光スペクトル及び蛍光スペクトルを取得して、蛍光強度自体は小さいものの最適な励起光波長λEX22=560nm、蛍光波長λEM22=590nmという波長情報を得る。検出された二つの蛍光ピークについての波長情報は、例えば図7に示すように分かり易く表示される。 Similarly, with respect to the other fluorescence wavelength λ EM2 = 590 nm, the excitation light spectrum and the fluorescence spectrum are obtained in order to obtain the optimum excitation light wavelength and fluorescence wavelength, and the optimum excitation light wavelength although the fluorescence intensity itself is small. Wavelength information of λ EX22 = 560 nm and fluorescence wavelength λ EM22 = 590 nm is obtained. The wavelength information about the two detected fluorescence peaks is displayed in an easy-to-understand manner, for example, as shown in FIG.
 図8は、上述の波長探索機能を実施した試料についての励起光波長範囲:300~600nm及び蛍光波長範囲:300~600nmの蛍光強度マッピングデータと、該データに基づき割り出された励起光波長及び蛍光波長の関係を示した図である。最も大きい蛍光強度を示すλEX11、λEM11の波長ペアに加え、蛍光強度の小さいλEX22、λEM22の波長ペアも正しく割り出されている。 FIG. 8 shows the fluorescence intensity mapping data of the excitation light wavelength range: 300 to 600 nm and the fluorescence wavelength range: 300 to 600 nm, and the excitation light wavelength and the excitation wavelength calculated based on the data for the sample subjected to the above-described wavelength search function. It is the figure which showed the relationship of the fluorescence wavelength. In addition to the wavelength pair of λ EX11 and λ EM11 showing the highest fluorescence intensity, the wavelength pair of λ EX22 and λ EM22 having the lowest fluorescence intensity is correctly determined.
 図8の例では、ラマン散乱光は現れていないが、上述した手法で蛍光由来ピークとラマン散乱光由来ピークとの波長が近い場合にも、それらを的確に識別することが可能である。また、蛍光由来ピークがレーリー散乱光のごく近傍に存在している場合でも、蛍光由来ピークを的確に検出することができる。この点について図6により説明する。 In the example of FIG. 8, Raman scattered light does not appear, but even when the wavelengths of the fluorescence-derived peak and the Raman scattered light-derived peak are close by the above-described method, they can be accurately identified. Further, even when the fluorescence-derived peak exists in the very vicinity of the Rayleigh scattered light, the fluorescence-derived peak can be accurately detected. This point will be described with reference to FIG.
 図6(a)は、蛍光由来ピークがレーリー散乱光のごく近傍に生じている場合において従来のように励起光波長を固定して得られる蛍光スペクトルを示す図である。この場合、波長走査はレーリー散乱光を横切り、蛍光スペクトルには蛍光に由来するスペクトルピークがレーリー散乱光に由来する大きなピークと重なってしまう。そのため、蛍光ピークを検出することができないか、或いはレーリー散乱光に由来するピークの裾野に蛍光ピークが完全にオーバーラップされてしまい、蛍光ピーク自体を認識できない可能性がある。これに対し、上述した波長差Δλを一定に保って取得される同期蛍光スペクトルにおいては、波長差Δλが5nm程度と小さい場合であっても、レーリー散乱光の影響は殆ど現れず、蛍光に由来するピークのみを検出することができる。このように、レーリー散乱光と蛍光ピークとの識別性も良好である。 FIG. 6A is a diagram showing a fluorescence spectrum obtained by fixing the excitation light wavelength as in the prior art when a fluorescence-derived peak occurs in the vicinity of Rayleigh scattered light. In this case, the wavelength scanning traverses the Rayleigh scattered light, and the spectrum peak derived from the fluorescence overlaps with the large peak derived from the Rayleigh scattered light in the fluorescence spectrum. Therefore, the fluorescence peak cannot be detected, or the fluorescence peak is completely overlapped with the base of the peak derived from Rayleigh scattered light, and the fluorescence peak itself may not be recognized. On the other hand, in the synchronous fluorescence spectrum obtained by keeping the above-mentioned wavelength difference Δλ constant, even if the wavelength difference Δλ is as small as about 5 nm, the influence of Rayleigh scattered light hardly appears and is derived from fluorescence. Only the peak to be detected can be detected. Thus, the distinguishability between the Rayleigh scattered light and the fluorescence peak is also good.
 実際に、多くの蛍光性の物質では、励起光波長と蛍光波長との波長差は小さく、蛍光ピークはレーリー散乱光の近傍に存在することが多い。上記手法では、こうした場合にも、蛍光由来のピークを確実に検出することができる。また、波長差の初期値が例えば5nmのように小さい状態から段階的に波長差を増加させつつ同期蛍光スペクトルを取得することで、少ない同期蛍光スペクトルで以て、蛍光由来のピークを見つけることができる。例えば、図8に示す実測例のように二つの蛍光ピークが存在する場合でも、1回の同期的波長走査で得られる同期蛍光スペクトルで二つの蛍光ピークを検出することができる。図9に示したような従来の手法であれば、二つの蛍光ピークを検出するために多数の蛍光スペ区クトルを取得する必要があり、本発明による波長探索方法による時間短縮効果は明らかである。 Actually, in many fluorescent substances, the wavelength difference between the excitation light wavelength and the fluorescence wavelength is small, and the fluorescence peak often exists in the vicinity of the Rayleigh scattered light. In the above method, the fluorescence-derived peak can be reliably detected even in such a case. In addition, by acquiring a synchronized fluorescence spectrum while gradually increasing the wavelength difference from a state where the initial value of the wavelength difference is as small as 5 nm, for example, a peak derived from fluorescence can be found with a small number of synchronized fluorescence spectra. it can. For example, even when two fluorescent peaks exist as in the actual measurement example shown in FIG. 8, the two fluorescent peaks can be detected from the synchronous fluorescent spectrum obtained by one synchronous wavelength scanning. In the case of the conventional technique as shown in FIG. 9, it is necessary to acquire a large number of fluorescence spectra in order to detect two fluorescence peaks, and the time shortening effect by the wavelength search method according to the present invention is clear. .
 なお、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願請求の範囲に包含されることは当然である。 It should be noted that the above-described embodiment is an example of the present invention, and it is a matter of course that modifications, corrections, and additions are appropriately made within the scope of the present invention.
1…光源部
2…励起側分光器
3…試料
4…蛍光側分光器
5…検出器
6…A/D変換器
7…データ処理部
71…スペクトル作成部
72…ピーク検出部
73…蛍光/ラマン光識別部
74…波長情報記憶部
8…分析制御部
81…分光器制御部
9…中央制御部
10…操作部
11…表示部
DESCRIPTION OF SYMBOLS 1 ... Light source part 2 ... Excitation side spectroscope 3 ... Sample 4 ... Fluorescence side spectroscope 5 ... Detector 6 ... A / D converter 7 ... Data processing part 71 ... Spectrum preparation part 72 ... Peak detection part 73 ... Fluorescence / Raman Optical identification unit 74 ... wavelength information storage unit 8 ... analysis control unit 81 ... spectroscope control unit 9 ... central control unit 10 ... operation unit 11 ... display unit

Claims (6)

  1.  光源から発せられた光から特定の波長の光を取り出して励起光として試料に照射する励起光分光手段と、該励起光を受けて試料から放出される蛍光を分光する蛍光分光手段と、その分光された蛍光を検出する検出手段と、を具備する分光蛍光光度計において、
     a)励起光波長と該波長よりも長波長である蛍光波長との波長差を一定に維持しつつ該励起光波長及び蛍光波長を同期的に走査するように前記励起光分光手段及び蛍光分光手段を制御しつつ、その同期的な波長走査に対して前記検出手段で得られるデータに基づいて同期蛍光スペクトルを作成する同期蛍光スペクトル取得手段と、
     b)前記同期蛍光スペクトル上でピーク検出を行い、ピークが検出された場合に該ピークに対応した励起光波長と蛍光波長との少なくとも一方の概略値を求めるピーク検出手段と、
     c)該ピーク検出手段により概略値が求まった励起光波長又は蛍光波長の一方を固定し、励起光波長又は蛍光波長の他方を走査するように前記励起光分光手段及び前記蛍光分光手段を制御しつつ前記検出手段で得られるデータに基づいて励起光波長又は蛍光波長の詳細値を求め、その詳細値が求まった励起光波長又は蛍光波長の一方を固定し、励起光波長又は蛍光波長の他方を走査するように前記励起光分光手段及び前記蛍光分光手段を制御しつつ前記検出手段で得られるデータに基づいて励起光波長又は蛍光波長の他方の詳細値を求める波長詳細値取得手段と、
     d)該波長詳細値取得手段により求まった励起光波長詳細値から所定分離れた波長に励起光波長を固定し蛍光波長を走査するように前記励起光分光手段及び前記蛍光分光手段を制御しつつ前記検出手段で得られるデータに基づいて蛍光波長を求め、該蛍光波長と前記波長詳細値取得手段により求まった蛍光波長詳細値とに基づいて前記ピーク検出手段により検出されたピークが蛍光由来か否かを判定する蛍光真偽判定手段と、
     を備えることを特徴とする分光蛍光光度計。
    An excitation light spectroscopic means for extracting light of a specific wavelength from light emitted from a light source and irradiating the sample as excitation light, a fluorescence spectroscopic means for receiving the excitation light and dispersing fluorescence emitted from the sample, and its spectrum A spectrofluorometer comprising: a detecting means for detecting the emitted fluorescence;
    a) The excitation light spectroscopic means and the fluorescence spectroscopic means so as to scan the excitation light wavelength and the fluorescence wavelength synchronously while maintaining the wavelength difference between the excitation light wavelength and the fluorescence wavelength longer than the wavelength constant. The synchronous fluorescence spectrum acquisition means for creating a synchronous fluorescence spectrum based on the data obtained by the detection means for the synchronous wavelength scanning,
    b) performing peak detection on the synchronous fluorescence spectrum, and when a peak is detected, peak detection means for obtaining an approximate value of at least one of the excitation light wavelength and the fluorescence wavelength corresponding to the peak;
    c) fixing one of the excitation light wavelength and the fluorescence wavelength whose approximate value is obtained by the peak detection means, and controlling the excitation light spectroscopy means and the fluorescence spectroscopy means so as to scan the other of the excitation light wavelength and the fluorescence wavelength. While obtaining the detailed value of the excitation light wavelength or the fluorescence wavelength based on the data obtained by the detection means, fixing one of the excitation light wavelength or the fluorescence wavelength for which the detailed value was obtained, and fixing the other of the excitation light wavelength or the fluorescence wavelength. A wavelength detail value acquisition means for obtaining the other detail value of the excitation light wavelength or the fluorescence wavelength based on the data obtained by the detection means while controlling the excitation light spectroscopy means and the fluorescence spectroscopy means so as to scan;
    d) While controlling the excitation light spectroscopic means and the fluorescence spectroscopic means so as to scan the fluorescence wavelength while fixing the excitation light wavelength to a predetermined wavelength separated from the excitation light wavelength detailed value obtained by the wavelength detailed value acquisition means The fluorescence wavelength is obtained based on the data obtained by the detection means, and the peak detected by the peak detection means based on the fluorescence wavelength and the fluorescence wavelength detail value obtained by the wavelength detail value acquisition means is derived from fluorescence. Fluorescence authenticity determination means for determining whether or not
    A spectrofluorometer characterized by comprising:
  2.  請求項1に記載の分光蛍光光度計であって、
     前記蛍光真偽判定手段により蛍光由来であると判定されたピークについて、前記波長詳細値取得手段により算出された励起光波長及び蛍光波長の詳細値を表示出力する表示処理手段をさらに備えることを特徴とする分光蛍光光度計。
    The spectrofluorometer according to claim 1, wherein
    A display processing means for displaying and outputting the excitation light wavelength and the detailed value of the fluorescence wavelength calculated by the wavelength detailed value acquisition means for the peak determined to be fluorescence-derived by the fluorescence authenticity determination means. Spectral fluorometer.
  3.  請求項1又は2に記載の分光蛍光光度計であって、
     一つの波長差に対する同期蛍光スペクトルが得られる毎に、前記ピーク検出手段はピーク検出を実行し、前記波長詳細値取得手段はその検出されたピークについて励起光波長及び蛍光波長の詳細値を求め、前記蛍光真偽判定手段はその検出されたピークが蛍光由来か否かを判定し、その検出されたピークが蛍光由来でないと判定されたならば、前記同期蛍光スペクトル取得手段は波長差を増加させて次の同期蛍光スペクトルを取得することを特徴とする分光蛍光光度計。
    The spectrofluorometer according to claim 1 or 2,
    Each time a synchronous fluorescence spectrum for one wavelength difference is obtained, the peak detection means performs peak detection, and the wavelength detailed value acquisition means obtains the detailed values of the excitation light wavelength and the fluorescence wavelength for the detected peak, The fluorescence authenticity determining means determines whether or not the detected peak is derived from fluorescence, and if it is determined that the detected peak is not derived from fluorescence, the synchronized fluorescence spectrum acquiring means increases the wavelength difference. A spectrofluorometer characterized by acquiring the next synchronized fluorescence spectrum.
  4.  請求項3に記載の分光蛍光光度計であって、
     波長差が所定の最大波長差に達するまでに蛍光由来のピークが検出されない場合に、前記表示処理手段は、蛍光が検出されないことを示す表示出力を行うことを特徴とする分光蛍光光度計。
    The spectrofluorometer according to claim 3, wherein
    A spectrofluorometer characterized in that, when a peak derived from fluorescence is not detected before the wavelength difference reaches a predetermined maximum wavelength difference, the display processing means performs display output indicating that fluorescence is not detected.
  5.  請求項1~4のいずれか記載の分光蛍光光度計であって、
     前記同期蛍光スペクトル取得手段における同期的な波長走査の波長差の初期値は、同期蛍光スペクトル上で蛍光によるピークがレーリー散乱光によるピークの裾に隠れない範囲で小さく設定されることを特徴とする蛍光分光光度計。
    The spectrofluorometer according to any one of claims 1 to 4,
    The initial value of the wavelength difference of the synchronous wavelength scanning in the synchronous fluorescence spectrum acquisition means is set to be small so that the peak due to fluorescence is not hidden behind the peak due to Rayleigh scattered light on the synchronous fluorescence spectrum. Fluorescence spectrophotometer.
  6.  請求項5に記載の分光蛍光光度計であって、
     前記波長差の初期値は5nmであることを特徴とする蛍光分光光度計。
    The spectrofluorometer according to claim 5, wherein
    An initial value of the wavelength difference is 5 nm, a fluorescence spectrophotometer.
PCT/JP2012/065524 2012-06-18 2012-06-18 Spectrophotofluorometer WO2013190618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065524 WO2013190618A1 (en) 2012-06-18 2012-06-18 Spectrophotofluorometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065524 WO2013190618A1 (en) 2012-06-18 2012-06-18 Spectrophotofluorometer

Publications (1)

Publication Number Publication Date
WO2013190618A1 true WO2013190618A1 (en) 2013-12-27

Family

ID=49768249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065524 WO2013190618A1 (en) 2012-06-18 2012-06-18 Spectrophotofluorometer

Country Status (1)

Country Link
WO (1) WO2013190618A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062274A (en) * 2014-04-29 2014-09-24 江西农业大学 Genetic optimization algorithm-based synchronous fluorescence spectrum characteristic wavelength selection method
US20180067048A1 (en) * 2016-09-06 2018-03-08 Hitachi High-Tech Science Corporation Unknown Sample Determining Method, Unknown Sample Determining Instrument, and Unknown Sample Determining Program
JP2019020363A (en) * 2017-07-21 2019-02-07 株式会社日立ハイテクサイエンス Display device for optical analysis apparatus
JP2019020362A (en) * 2017-07-21 2019-02-07 株式会社日立ハイテクサイエンス Spectrofluoro-photometer, and spectrofluorometric measurement and image capturing method
JP7298778B2 (en) 2020-10-27 2023-06-27 コニカミノルタ株式会社 Information processing device, information processing system, and trained model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239652A (en) * 1984-05-14 1985-11-28 Shimadzu Corp Measurement of spectrum for spectrophotofluorometer
JPS6221952Y2 (en) * 1979-12-18 1987-06-04
JP2010500546A (en) * 2006-08-11 2010-01-07 バイオクアンタ Method for assaying nucleic acid by fluorescence

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221952Y2 (en) * 1979-12-18 1987-06-04
JPS60239652A (en) * 1984-05-14 1985-11-28 Shimadzu Corp Measurement of spectrum for spectrophotofluorometer
JP2010500546A (en) * 2006-08-11 2010-01-07 バイオクアンタ Method for assaying nucleic acid by fluorescence

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062274A (en) * 2014-04-29 2014-09-24 江西农业大学 Genetic optimization algorithm-based synchronous fluorescence spectrum characteristic wavelength selection method
US20180067048A1 (en) * 2016-09-06 2018-03-08 Hitachi High-Tech Science Corporation Unknown Sample Determining Method, Unknown Sample Determining Instrument, and Unknown Sample Determining Program
JP2019020363A (en) * 2017-07-21 2019-02-07 株式会社日立ハイテクサイエンス Display device for optical analysis apparatus
JP2019020362A (en) * 2017-07-21 2019-02-07 株式会社日立ハイテクサイエンス Spectrofluoro-photometer, and spectrofluorometric measurement and image capturing method
JP7298778B2 (en) 2020-10-27 2023-06-27 コニカミノルタ株式会社 Information processing device, information processing system, and trained model

Similar Documents

Publication Publication Date Title
WO2013190618A1 (en) Spectrophotofluorometer
EP2710353B1 (en) SPECTROSCOPIC APPARATUS AND METHOD of DETERMINING COMPONENTS PRESENT IN A SAMPLE
US7456951B2 (en) Fluorescence detection method, detection apparatus and fluorescence detection program
JP6831094B2 (en) Unknown sample judgment method, unknown sample judgment device and unknown sample judgment program
JP3132835U (en) 3D measuring device
JP2006275892A (en) Emission spectrophotometer
WO2011092766A1 (en) Spectrophotofluorometer and fluorescence detector for liquid chromatograph
JPS6337224A (en) Fluorescent spectrophotometer
JP5968201B2 (en) Colorant identification method and colorant identification device
JP2007147357A (en) Raman microscope and display method of raman spectrum image
JP4754888B2 (en) Emission spectroscopy analysis method and emission spectroscopy analyzer
JPH01214723A (en) Spectral fluorescence photometer
US5212538A (en) Fluorescence measurement apparatus with an automatic recorder full-scale setting function
JP5488360B2 (en) Spectrofluorometer
Höhl et al. Efficient procedure for the measurement of preresonant excitation profiles in UV Raman spectroscopy
JP2019060815A (en) Automatic chemical image creation
US11927536B2 (en) Spectroscopic apparatus and methods
JP2007024679A (en) Analyzer and analyzing processing method
JP2022041186A (en) Temperature measurement method by raman scattered light and raman scattered light analyzer
JP4626572B2 (en) Optical emission spectrometer
JP5033531B2 (en) Spectrofluorometer
WO2018198364A1 (en) Fluorescence spectrophotometer, spectrometry method, and control software for fluorescence spectrophotometer
JP4891363B2 (en) Fluorescence detection method and fluorescence detection apparatus
JPH07128260A (en) Fluorescent x-ray analyzing device
JP2016053560A (en) Spectrofluoro-photometer and acquisition method of three-dimensional fluorescence spectrum using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP