WO2013190610A1 - 電源システム - Google Patents

電源システム Download PDF

Info

Publication number
WO2013190610A1
WO2013190610A1 PCT/JP2012/065477 JP2012065477W WO2013190610A1 WO 2013190610 A1 WO2013190610 A1 WO 2013190610A1 JP 2012065477 W JP2012065477 W JP 2012065477W WO 2013190610 A1 WO2013190610 A1 WO 2013190610A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
battery
power
power supply
supply system
Prior art date
Application number
PCT/JP2012/065477
Other languages
English (en)
French (fr)
Inventor
寛 岩澤
啓 角谷
伸治 今井
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2012/065477 priority Critical patent/WO2013190610A1/ja
Publication of WO2013190610A1 publication Critical patent/WO2013190610A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to a power supply system.
  • a DC power supply and an inverter unit combined circuit are connected to a plurality of motors, and a PWM (Pulse Width Modulation) signal is generated for each inverter unit to switch the semiconductor elements of each inverter unit.
  • PWM Pulse Width Modulation
  • Multiple power converters that convert AC to AC power and output to a motor are used.
  • a selection signal synchronized with a carrier wave is generated, and a PWM signal is distributed to each inverter unit based on the selection signal, thereby equalizing the power burden between the inverter units.
  • the present invention has been made in view of the above points, and an object thereof is to obtain the SOC of a plurality of batteries with high accuracy.
  • the power supply system is connected to each of a plurality of batteries and a plurality of batteries, and can convert DC power from each battery into AC power, and can convert AC power from the outside into DC power, A value indicating the charge state of each battery based on a plurality of power converters connected in series, a battery state detection device that detects the state of each battery, and the state of each battery detected by the battery state detection device And a control device for controlling a plurality of power converters.
  • the control device selects some of the plurality of batteries as operation target batteries when the SOCs of the plurality of batteries are all within a predetermined range between the low SOC region and the high SOC region. Then, the plurality of power converters are controlled so that the SOC of the battery to be operated becomes a low SOC region or a high SOC region.
  • the SOC of a plurality of batteries can be obtained with high accuracy.
  • FIG. 1 shows the hardware constitutions of the power supply system by the 1st Embodiment of this invention. It is a figure which shows the schematic circuit structure of a power converter. It is the figure which showed the relationship between the switching state of each switching element and operation mode in the circuit structure shown to Fig.2 (a) by the list form. It is a figure which shows the structure of a control apparatus. It is a figure which shows the example of the various time series waveforms at the time of the switching signal generation part producing
  • a power supply system using a system (hereinafter referred to as a multistage inverter system) that realizes AC output by connecting a large number of combinations of DC power supplies and inverters in series and outputting a large number of voltage levels as a whole.
  • a multistage inverter system that realizes AC output by connecting a large number of combinations of DC power supplies and inverters in series and outputting a large number of voltage levels as a whole.
  • FIG. 1 is a diagram showing a hardware configuration of a power supply system 1 according to the first embodiment of the present invention.
  • the power supply system 1 includes a control device 10 and power supply packs 21, 22 and 23, and is connected to a load 3.
  • the power packs 21, 22, and 23 are connected to the load 3 in series with each other.
  • the load 3 may consume AC power supplied from the power supply system 1 (when receiving power) or supply AC power to the power supply system 1 (when transmitting power). It shall be.
  • a load includes, for example, an electric motor that is mounted on an electric vehicle or a hybrid vehicle and can also operate as a generator.
  • the power pack 21 includes a battery 211, a battery state detection device 212, and a power converter 213.
  • the power pack 22 includes a battery 221, a battery state detection device 222, and a power converter 223.
  • the power pack 23 includes a battery 231, a battery state detection device 232, and a power converter 233. It consists of and.
  • the batteries 211, 221 and 231 are composed of one or a plurality of single cells (battery cells).
  • a module in which a plurality of battery cells which are lithium ion secondary batteries are connected in series or in parallel can be used as the batteries 211, 221 and 231.
  • a controller that performs detailed monitoring and management is generally used to ensure safety. This controller may be built in each of the batteries 211, 221, and 231 or may be provided outside the batteries 211, 221, and 231.
  • the battery state detection devices 212, 222, and 232 include a voltage sensor and a current sensor, respectively, and measure the voltage and current of each battery as the state of the batteries 211, 221, and 231 using these sensors. And based on these measurement results, the battery state signal 201 which shows the state detection result of each battery is output to the control apparatus 10, respectively.
  • this controller may be used as the battery state detection devices 212, 222, 232.
  • the power converters 213, 223, and 233 convert DC power from the batteries 211, 221, and 231 to AC power and output the load 3 to the load 3 at the time of discharging. Thereby, AC power is supplied from the power supply system 1 to the load 3. At the time of charging, AC power from the load 3 is converted into DC power and output to the batteries 211, 221, and 231 respectively. Thereby, the batteries 211, 221, and 231 are charged.
  • the operations of the power converters 213, 223, and 233 are controlled by the switching signal 202 from the control device 10, respectively.
  • FIG. 2A is a diagram showing a schematic circuit configuration of the power converter 213.
  • the circuit configuration of the power converter 213 of the power pack 21 is shown, but the power converters 223 and 233 of the other power packs 22 and 23 have the same circuit configuration as this. Yes.
  • the power converter 213 includes an H bridge circuit in which switching elements 41, 42, 43, and 44 are arranged in an H shape and wired.
  • This circuit is connected to the positive electrode side and the negative electrode side of the battery 211 via a DC positive electrode terminal 45 and a DC negative electrode terminal 46, and is connected to the positive electrode side and the negative electrode side of the load 3 via an AC positive electrode terminal 47 and an AC negative electrode terminal 48.
  • the AC negative terminal 48 is connected to the negative side of the load 3 via the power converters 223 and 233 of the other power packs 22 and 23.
  • the switching elements 41, 42, 43, 44 perform a switching operation according to the switching signal 202 from the control device 10.
  • the control device 10 converts the DC power from the battery 211 to AC power and outputs it to the load 3 during discharging, and converts the AC power from the load 3 to DC power and outputs it to the battery 211 during charging.
  • a switching signal 202 is generated to control the switching operation of each switching element.
  • MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • bipolar transistors bipolar transistors
  • IGBTs Insulated Gate Bipolar Transistors
  • the power converter 213 may further include a diode for escaping back electromotive force, a rectifier circuit, and the like in addition to the switching elements 41, 42, 43, and 44 described above.
  • the power converter 213 may have various well-known circuit configurations, but a detailed description of the circuit configuration and operation is omitted.
  • FIG. 2B is a table showing the relationship between the switching state of each switching element and the operation mode in the circuit configuration shown in FIG.
  • the power converter 213 includes four output modes, a positive output mode, a bypass 1 mode, a bypass 2 mode, and a negative output mode, depending on the switching state of the switching elements 41, 42, 43, and 44. Any of the operation modes can be selectively executed.
  • “ON” indicates that each switching element is in an ON state, that is, a conduction state
  • OFF indicates that each switching element is in an OFF state, that is, a non-conduction (cutoff) state. It shows that there is.
  • the switching element 41 is turned on, the switching element 42 is turned off, the switching element 43 is turned off, and the switching element is turned on.
  • the voltage of the battery 211 applied between the DC positive terminal 45 and the DC negative terminal 46 is output from the AC positive terminal 47 and the AC negative terminal 48 to the load 3 as it is.
  • the switching element 41 In the negative output mode, the switching element 41 is turned off, the switching element 42 is turned on, the switching element 43 is turned on, and the switching element is turned off. At this time, the voltage of the battery 211 applied between the DC positive terminal 45 and the DC negative terminal 46 is inverted and output from the AC positive terminal 47 and the AC negative terminal 48 to the load 3.
  • the switching element 41 is turned on, the switching element 42 is turned off, the switching element 43 is turned on, and the switching element is turned off.
  • the DC positive terminal 45 and the DC negative terminal 46 are opened, and the AC positive terminal 47 and the AC negative terminal 48 are short-circuited.
  • the switching element 41 is turned off, the switching element 42 is turned on, the switching element 43 is turned off, and the switching element is turned on.
  • the DC positive terminal 45 and the DC negative terminal 46 are opened, and the AC positive terminal 47 and the AC negative terminal 48 are short-circuited.
  • bypass 1 mode and the bypass 2 mode are collectively referred to simply as a bypass mode.
  • the power converter 213 is supplied from the battery 211 applied between the DC positive terminal 45 and the DC negative terminal 46 in accordance with any one of the positive output mode, the negative output mode, and the bypass mode.
  • the DC voltage is switched and output to the AC positive terminal 47 and the AC negative terminal 48.
  • an AC voltage is generated between the AC positive terminal 47 and the AC negative terminal 48 and is output to the load 3 at the time of discharging.
  • movement at the time of discharge is demonstrated above, it is the same also at the time of charge.
  • FIG. 3 is a diagram showing the configuration of the control device 10. As illustrated in FIG. 3, the control device 10 functionally includes a reference signal generation unit 11, a switching signal generation unit 12, an allocation unit 13, and an SOC estimation unit 14. The control device 10 realizes the functions of these parts by processing such as a microcomputer.
  • the SOC estimation unit 14 determines the battery state of each power pack represented by the battery state signal 201 input from the battery state detection devices 212, 222, and 232 of each power pack, that is, the voltage and current of the batteries 211, 221, and 231. Based on this, the SOC, which is a value indicating the state of charge of each of the batteries 211, 221, 231 is estimated. Then, an SOC signal 203 indicating the estimated SOC of each battery is generated and output to allocation section 13.
  • the assigning unit 13 assigns a role number for each power pack based on the SOC signal 203 from the SOC estimating unit 14. And the role signal 131 which shows the role number of each power supply pack is produced
  • FIG. The role number is an AC voltage output from the power supply system 1 to the load 3 at the time of discharging or an AC voltage input from the load 3 to the power supply system 1 at the time of charging. It is for assigning each range. The assignment of the voltage range by the role number will be described in detail later with reference to FIG.
  • the reference signal generator 11 generates a reference signal 111 that serves as a reference for an AC waveform input and output in the power supply system 1 and outputs the reference signal 111 to the switching signal generator 12.
  • the reference signal 111 is output as a voltage waveform that changes with time, and is, for example, a sine wave with a period of 50 Hz having an amplitude equivalent to an effective value of 100V.
  • the amplitude and cycle of the reference signal 111 can be determined according to the operating voltage and operating cycle of the load 3 during discharging.
  • the switching signal generation unit 12 generates the switching signal 202 for each power pack based on the reference signal 111 from the reference signal generation unit 11 and the role signal 131 from the allocation unit 13, and power converters 213 and 223. 233. Specifically, from the role number of each power pack indicated by the role signal 131, the voltage range in charge of the batteries 211, 221, and 231 of each power pack is determined. At this time, the voltage range may be determined based on the voltages of the batteries 211, 221, and 231 represented by the battery state signal 201. Then, the switching signal 202 can be generated by comparing the determined voltage range of each battery with the voltage represented by the reference signal 111 and determining the output timing from each power pack based on the comparison result.
  • FIG. 4 is a diagram illustrating examples of various time-series waveforms when the switching signal generation unit 12 generates the switching signal 202 in the first embodiment.
  • the horizontal axis represents time
  • the vertical axis represents voltage.
  • the assignment unit 13 in FIG. 3 assigns a role number to each power pack as described above, and outputs the assignment result to the switching signal generation unit 12 by the role signal 131.
  • the assignment unit 13 in FIG. 3 assigns a role number to each power pack as described above, and outputs the assignment result to the switching signal generation unit 12 by the role signal 131.
  • any role number A, B, or C is assigned to each power pack.
  • FIG. 4 shows an example of the waveform of the reference signal 111 generated by the reference signal generator 11.
  • the switching signal generator 12 uses the predetermined voltage range corresponding to the role numbers A, B, and C indicated by the role signal 131 as the voltage range in charge of each power pack. Assign to signal 111. That is, as shown in the upper part of FIG. 4, three voltage ranges corresponding to the role numbers A, B, and C are set with a predetermined width in the positive and negative directions around the voltage 0 of the reference signal 111, respectively. .
  • the voltage range of the role number A is set to the most central side, the voltage range of the role number B is on the outer side, the voltage range of the role number C is further on the outer side, and the positive and negative sides are centered on 0V. Is set. Note that the widths of these voltage ranges can be determined based on the voltages of the batteries 211, 221, and 231 represented by the battery state signal 201 as described above.
  • the switching signal generation unit 12 After setting the voltage ranges of the role numbers A, B, and C that each power pack is responsible for in the reference signal 111 as described above, the switching signal generation unit 12 next sets a threshold value for each of these voltage ranges. To do. That is, as shown in the upper part of FIG. 4, a positive threshold value Vs_Ap and a negative threshold value Vs_An are set for the role number A voltage range, and a positive threshold value for the role number B voltage range. Vs_Bp and negative threshold value Vs_Bn are set, and for the voltage range of role number C, positive threshold value Vs_Cp and negative threshold value Vs_Cn are set. Any voltage can be set for these thresholds within the voltage range.
  • half the voltage can be set as the above threshold values Vs_Ap, Vs_Bp, and Vs_Cp with respect to the upper limit of each voltage range corresponding to the role numbers A, B, and C.
  • half of the voltage can be set as the threshold values Vs_An, Vs_Bn, and Vs_Cn.
  • the switching signal generation unit 12 After setting the threshold values Vs_Ap, Vs_Bp, Vs_Cp, Vs_An, Vs_Bn, and Vs_Cn as described above for each voltage range of the role numbers A, B, and C, the switching signal generation unit 12 subsequently sets these threshold values and the reference signal. 111 is compared. Based on the comparison result, a switching signal 202 for each power pack is generated. That is, when the reference signal 111 is larger than the threshold values Vs_Ap, Vs_Bp, and Vs_Cp, the switching signal 202 is generated so that each switching element is switched to the positive output mode in the corresponding power pack. Similarly, when the reference signal 111 is smaller than the threshold values Vs_An, Vs_Bn, and Vs_Cn, the switching signal 202 is generated so that each switching element is switched to the negative output mode in the corresponding power pack.
  • the switching signal generator 12 is provided for each power pack of role numbers A, B, and C based on the reference signal 111 and the threshold values Vs_Ap, Vs_Bp, Vs_Cp, Vs_An, Vs_Bn, and Vs_Cn.
  • Examples of waveforms of the switching signals 202a, 202b, and 202c that are generated are shown.
  • the switching signal 202 for the role number A power pack is the switching signal 202a
  • the switching signal 202 for the role number B power pack is the switching signal 202b
  • the switching signal 202 for the role number C power pack is the switching signal 202c.
  • “P” represents a positive output mode
  • “B” represents a bypass mode
  • “N” represents a non-output mode.
  • the reference signal 111 is not more than the threshold value Vs_Ap and not less than the threshold value Vs_An. Therefore, during this period, as shown in the middle part of FIG. 4, all the power packs are set to “B”, and switching signals 202a, 202b and 202c corresponding to the power packs are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is not less than the threshold value Vs_Ap and not more than the threshold value Vs_Bp. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack with the role number A from “B” to “P” at time t1, the power pack with the role number A is set to “P”.
  • the power supply packs of the role numbers B and C are set as “B”, and the switching signals 202a, 202b and 202c corresponding to the power packs are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is not less than the threshold value Vs_Bp and not more than the threshold value Vs_Cp. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack of role number B from “B” to “P” at time t2, the power packs of role numbers A and B are set to “P”.
  • the power supply pack of the role number C is set to “B”, and switching signals 202a, 202b and 202c corresponding to the power pack are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is equal to or higher than the threshold value Vs_Cp. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack of the role number C from “B” to “P” at time t3, all the power packs are set to “P”, and accordingly Switching signals 202a, 202b and 202c are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is not less than the threshold value Vs_Bp and not more than the threshold value Vs_Cp, similarly to the period from time t2 to time t3. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack of role number C from “P” to “B” at time t4, the power packs of role numbers A and B are set to “P”.
  • the power supply pack of the role number C is set to “B”, and switching signals 202a, 202b and 202c corresponding to the power pack are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is not less than the threshold value Vs_Ap and not more than the threshold value Vs_Bp, as in the period from time t1 to time t2. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack with the role number B from “P” to “B” at time t5, the power pack with the role number A is set to “P”.
  • the power supply packs with role numbers B and C are set to “B”, and switching signals 202a, 202b, and 202c corresponding to the power packs are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is equal to or lower than the threshold value Vs_Ap and equal to or higher than the threshold value Vs_An, similarly to the period from time t1. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack of the role number A from “P” to “B” at time t6, all the power packs are set to “B”, and accordingly Switching signals 202a, 202b and 202c are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is equal to or lower than the threshold value Vs_An and equal to or higher than the threshold value Vs_Bn. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack of role number A from “B” to “N” at time t7, the power pack of role number A is changed to “N”
  • the power supply packs of the role numbers B and C are set as “B”, and the switching signals 202a, 202b and 202c corresponding to the power packs are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is equal to or lower than the threshold value Vs_Bn and equal to or higher than the threshold value Vs_Cn. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack of role number B from “B” to “N” at time t8, the power packs of role numbers A and B are set to “N”
  • the power supply pack of the role number C is set to “B”, and switching signals 202a, 202b and 202c corresponding to the power pack are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is equal to or lower than the threshold value Vs_Cn. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack with the role number C from “B” to “N” at time t9, all the power packs are set to “N”. Switching signals 202a, 202b and 202c are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is not more than the threshold value Vs_Bn and not less than the threshold value Vs_Cn, similarly to the period from time t8 to time t9. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack of role number C from “N” to “B” at time t10, the power packs of role numbers A and B are set to “N” The power supply pack of the role number C is set to “B”, and switching signals 202a, 202b and 202c corresponding to the power pack are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the reference signal 111 is equal to or lower than the threshold value Vs_An and equal to or higher than the threshold value Vs_Bn, similarly to the period from time t7 to time t8. Therefore, during this period, as shown in the middle part of FIG. 4, by switching the power pack with the role number B from “N” to “B” at time t11, the power pack with the role number A is set to “N”.
  • the power supply packs with role numbers B and C are set to “B”, and switching signals 202a, 202b, and 202c corresponding to the power packs are generated. And it outputs to the power converters 213, 223, 233 of each power pack from the switching signal generation unit 12.
  • the switching signals 202a, 202b and 202c as described above are repeatedly generated according to the change of the reference signal 111, and the switching signal generator 12 supplies the power converters 213, 223 and 233 of each power pack. Output.
  • the operating states of the power converters 213, 223, and 233 of each power pack are set, and the switching in each power converter is accordingly performed.
  • Each element switching state is controlled.
  • the AC voltage output from each power supply pack is synthesized, and the output voltage 250 of the power supply system 1 is generated according to the reference signal 111 by the waveform as shown in the lower part of FIG. And output from the power supply system 1 to the load 3.
  • the power supply system 1 can synthesize
  • threshold values Vs_Ap, Vs_Bp, Vs_Cp, Vs_An, Vs_Bn, and Vs_Cn are set for the voltage ranges of role numbers A, B, and C, and this is compared with the reference signal 111.
  • the switching signals 202a, 202b, and 202c are generated.
  • the switching signals 202a, 202b, and 202c of each power pack can be generated according to the voltage ranges of the role numbers A, B, and C, the switching signal generation method is not limited to this.
  • the switching signals 202a, 202b, and 202c are generated by comparing the reference signal 111 with a triangular wave that reciprocates up and down in a predetermined cycle within each voltage range of the role numbers A, B, and C. You can also.
  • the method for comparing the reference signal 111 with the threshold value is not particularly defined.
  • a voltage may be directly compared using an analog signal, or a method of logically comparing values with a digital signal. May be used.
  • FIG. 5 is a diagram illustrating an example of time-series waveforms of currents of the batteries 211, 221, and 231 in each power pack when the power system 1 performs AC output according to the switching signals 202a, 202b, and 202c illustrated in FIG. .
  • switching signals 202a, 202b and 202c similar to those shown in FIG. 4 are shown.
  • the middle part of FIG. 5 shows a waveform example of the output current 251 in the output of the entire power supply system 1.
  • the lower part of FIG. 5 shows waveform examples of battery currents 251a, 251b, and 251c output from the batteries 211, 221, and 231 of the power packs 21, 22, and 23 corresponding to the role numbers A, B, and C, respectively. .
  • the horizontal axis represents time.
  • the battery currents 251a, 251b, and 251c are the parts of the period of “P” or “B” in the switching signals 202a, 202b, and 202c after full-wave rectification of the output current 251, respectively.
  • the waveform looks like it was cut out.
  • the average battery load current of the power packs of the role numbers A, B, and C in one cycle of the reference signal 111 is the largest in the role number A, followed by the role code B. It can be seen that the role number C is the smallest.
  • the role number for each power pack is temporarily fixed, the load power of the power pack assigned role number A is larger than that of the other power packs.
  • the battery of the power supply pack reaches the limit of overcharge or overdischarge before the batteries of other power supply packs, and the battery capacity of each power supply pack cannot be effectively used. Therefore, in the present invention, the role number is equally assigned to each power pack by executing the processing described later in the assigning unit 13.
  • the SOC estimation unit 14 determines the batteries 211, 221, and 231 of the power packs 21, 22, and 23 based on the voltage and current indicated by the battery state signals 201 from the battery state detection devices 212, 222, and 232. Is estimated. At this time, the SOC estimation unit 14 switches between the estimation of the SOC based on the voltage and the estimation of the SOC based on the current based on the magnitude of the SOC estimated immediately before.
  • FIG. 6 is a diagram showing an example of SOC vs. OCV characteristics showing the relationship between SOC and OCV for the batteries 211, 221, and 231.
  • the horizontal axis indicates the SOC
  • the vertical axis indicates the OCV.
  • the SOC value at the point 61 on the low SOC side is expressed as SOCL, and the SOC region lower than this is defined as the low SOC region.
  • the SOC value at the high SOC side point 62 is represented as SOCH, and the SOC region higher than this is defined as the high SOC region.
  • the slope of the SOC vs. OCV characteristic is larger than the slope at the points 61 and 62, that is, the average value of the slope in the entire SOC range. That is, in these regions, since the OCV largely fluctuates according to the change in the SOC, the sensitivity of the SOC to the OCV is high. Therefore, the SOC can be estimated with relatively high accuracy from the measurement result of the battery voltage.
  • the SOC-to-OCV specific gradient is smaller than the gradient at points 61 and 62, that is, the average value of the gradient in the entire SOC range. That is, in this region, since the variation of the OCV is small even if the SOC changes, the sensitivity of the SOC to the OCV is low compared to the low SOC region and the high SOC region. Therefore, it becomes difficult to estimate the SOC with high accuracy from the measurement result of the battery voltage.
  • the SOC estimation unit 14 determines the battery voltage when the SOC estimated immediately before is in the low SOC region or the high SOC region of FIG. 6 for each of the batteries 211, 221, and 231.
  • the SOC is estimated based on. That is, by using the voltage of the battery indicated by the battery state signal 201, the SOC of the battery is estimated by referring to the table information stored in advance from the SOC vs. OCV characteristics of FIG.
  • the SOC estimation unit 14 is based on the current with respect to the battery according to the following equation (1).
  • the SOC is estimated.
  • SOC (t) and i (t) represent the SOC and current at time t, respectively, and SOC (t 0 ) represents the SOC at time t 0 .
  • Q max is the maximum charge amount of the battery. That is, the equation (1) determines the amount of charge input / output to / from the battery cell by integrating the current flowing through the battery from time t 0 to time t, and calculates the maximum charge amount Q By adding the value divided by max to the SOC (t 0 ) obtained at time t 0 , the SOC (t) at time t is obtained.
  • the maximum charge amount Qmax can be determined based on the initial capacity of the battery.
  • the assignment unit 13 devises the assignment of the role number to each power pack, The SOC of some power pack batteries is actively changed to the low SOC region or the high SOC region described above. Accordingly, the SOC of the battery can be detected with high accuracy using the measurement result of the battery voltage.
  • FIG. 7 is a diagram showing a role number assigned to each power supply pack by the assigning unit 13 in the first embodiment and a state of change in SOC over time in each power supply pack.
  • a graph 72 indicated by a solid line in the upper part of FIG. 7 shows a change with time in the SOC of the battery 211 in the power supply pack 21, and a graph 73 indicated by a solid line in the lower part of FIG. 7 indicates the other power supply packs 22, 23. 2 shows the time-dependent change in SOC of the batteries 221 and 231 in FIG.
  • a graph 71 indicated by a broken line shows a change with time of SOC in the entire power supply system 1.
  • charging and discharging are alternately repeated between the power supply system 1 and the load 3, and the average SOC of the entire power supply system 1 changes in the vicinity of the center so that the low SOC region and the high SOC are obtained.
  • An example is shown in a situation where the region never enters.
  • the power packs 21, 22, and 23 have the same SOC, and all of them are within the range between the low SOC region and the high SOC region.
  • the allocating unit 13 operates the battery of one of the power supply packs (here, the battery 211 of the power supply pack 21).
  • the role number A having the largest load is continuously assigned to the power pack 21 in order to shift the SOC to the high SOC region.
  • the remaining role numbers B and C are assigned to the other power supply packs 22 and 23, respectively. At this time, the role number B and the role number C may be alternately assigned to the power supply pack 22 and the power supply pack 23.
  • the switching signals 202a, 202b, and 202c corresponding to the role numbers A, B, and C are output from the switching signal generator 12 to the power converters 213, 223, and 233 of the power packs 21, 22, and 23, respectively.
  • the power converters 213, 223, and 233 are controlled.
  • the allocating unit 13 assigns the role number C of a light load to the power pack 21 so that the SOC is maintained in the high SOC area. Are assigned consecutively.
  • the remaining role numbers A and B are assigned to the other power supply packs 22 and 23, respectively.
  • the role number A and the role number B may be alternately assigned to the power supply pack 22 and the power supply pack 23.
  • the average load current of the battery 211 is The operations of the power converters 213, 223, and 233 of each power pack are controlled so as to be smaller than the average load current of the other batteries 221 and 231.
  • the SOC estimation unit 14 estimates the SOC based on the voltage of the battery 211 as described above. At this time, by assigning the role number C of the light load to the power supply pack 21 as described above, the battery voltage is measured while suppressing the influence of the error due to the internal resistance or polarization component of the battery 211, and the SOC is estimated. To be able to. Once the SOC is estimated based on the battery voltage, the SOC estimation based on the current integration may be performed using the above equation (1) with the SOC estimation result as SOC (t0).
  • the assigning unit 13 causes the SOC of the battery 211 of the power pack 21 and the SOCs of the batteries 221 and 231 of the other power packs 22 and 23 to be approximately the same.
  • the role number A is continuously assigned to the power supply pack 21 again.
  • the remaining role numbers B and C are assigned to the other power supply packs 22 and 23, respectively.
  • the role number B and the role number C may be alternately assigned to the power pack 22 and the power pack 23 as described above.
  • the assigning unit 13 assigns role numbers A, B, and C to the power packs 21, 22, and 23. It shifts to the normal state in which it is equally allocated alternately.
  • the power converters 213, 223, 233 of the power packs 21, 22, 23 are respectively set so that the SOCs of the batteries 211, 221, 231 of the power packs 21, 22, 23 change evenly. Control.
  • the SOC of the battery 211 of the power pack 21 can be actively moved to the high SOC region, the battery voltage can be measured, and the SOC can be estimated. As a result, the SOC detection accuracy can be improved.
  • the battery 211 of the power pack 21 is used as the operation target battery. A process of changing the SOC to a high SOC region is performed. Subsequently, in contrast to the first half part, when the power supply system 1 is charged after being discharged, the battery 211 of the power pack 21 is used as the operation target battery, and the SOC is changed to the low SOC region.
  • the latter half of FIG. 7 will be described.
  • the SOCs of the power supply packs 21, 22, and 23 are almost the same, and all of them are within the range between the low SOC region and the high SOC region.
  • the allocating unit 13 replaces the battery of any power supply pack (the battery 211 of the power supply pack 21 in this case) with the operation target battery. Then, in order to transition the SOC to the low SOC region, the role number A having the largest load is continuously assigned to the power pack 21. On the other hand, the remaining role numbers B and C are assigned to the other power supply packs 22 and 23, respectively.
  • the role number B and the role number C may be alternately assigned to the power supply pack 22 and the power supply pack 23.
  • the switching signals 202a, 202b, and 202c corresponding to the role numbers A, B, and C are output from the switching signal generator 12 to the power converters 213, 223, and 233 of the power packs 21, 22, and 23, respectively.
  • the power converters 213, 223, and 233 are controlled.
  • the allocating unit 13 assigns the role number C of a light load to the power pack 21 so that the SOC is maintained in the low SOC region. Are assigned consecutively.
  • the SOC estimation unit 14 estimates the SOC based on the voltage of the battery 211 as in the case of the above-described high SOC region.
  • the remaining role numbers A and B are assigned to the other power supply packs 22 and 23, respectively. At this time, the role number A and the role number B may be alternately assigned to the power supply pack 22 and the power supply pack 23.
  • the average load current of the battery 211 is made smaller than the average load current of the other batteries 221 and 231.
  • the operation of the power converters 213, 223, and 233 of each power pack is controlled.
  • the allocating unit 13 causes the SOC of the battery 211 of the power pack 21 and the SOCs of the batteries 221 and 231 of the other power packs 22 and 23 to be approximately the same.
  • the role number A is continuously assigned to the power supply pack 21 again.
  • the remaining role numbers B and C are assigned to the other power supply packs 22 and 23, respectively.
  • the assigning unit 13 assigns role numbers A, B, and C to the power supply packs 21, 22, and 23. It shifts to the normal state in which it is equally allocated alternately.
  • the SOC of the battery 211 is positively changed focusing on the power pack 21, but the same processing as that of the power pack 21 is alternately performed on the other power packs 22 and 23. It can be carried out. In this way, the SOC can be measured with high accuracy from the battery voltage for all of the power supply packs 21, 22, and 23 constituting the power supply system 1.
  • FIG. 8A is a diagram showing the SOC size of each power pack 21, 22, 23 at time T0
  • FIG. 8B is a diagram showing each power pack 21, 22, 23 at time T1. It is the figure which showed the magnitude
  • the SOCs of the power supply packs 21, 22, and 23 are all about the same size.
  • the SOC is indicated by SOCa.
  • the SOCs of the power supply packs 21, 22, and 23 are changed by executing the processing as described above.
  • time T1 is reached, the state changes to the state shown in FIG. 8B. That is, the SOC of the power supply pack 21 increases from the SOCa and falls within the high SOC region, while the SOCs of the other power supply packs 22 and 23 decrease from the SOCa.
  • the assigning unit 13 switches the assigning operation to each power pack based on the SOC of the battery of each power pack.
  • a configuration of the assigning unit 13 that switches the assigning operation to each power pack based on the battery voltage instead of the SOC is also conceivable.
  • these regions are regions where the slope of the SOC-to-OCV characteristic is large, and thus the above-described error influence is small and does not cause any particular problem.
  • the power supply system 1 is connected to a plurality of batteries 211, 221 and 231 and each of the batteries 211, 221 and 231 to convert DC power from each battery into AC power, and from an external load 3
  • a control device 10 that estimates the SOC of each battery based on the state of each battery detected by the state detection devices 212, 222, and 232, and controls the power converters 213, 223, and 233.
  • the control device 10 controls some of the batteries 211, 221 and 231 as operation target batteries. Choose as. Then, power converters 213, 223, and 233 are controlled so that the SOC of the battery to be operated becomes a low SOC region or a high SOC region. Since it did in this way, SOC of a some battery can be calculated
  • the power supply system 1 generates combined AC power that periodically changes by combining AC power output from the power converters 213, 223, and 233.
  • the control device 10 operates the operation target battery in a period obtained by multiplying one cycle of the combined AC power by the number of components of the power converters 213, 223, and 233.
  • the power converters 213, 223, and 233 are controlled so that the average load current of the battery becomes smaller than the average load current of the other batteries. Since it did in this way, even if SOC in the whole power supply system 1 changes, SOC of an operation object battery can be maintained in a low SOC area
  • the battery state detection devices 212, 222, and 232 measure the current and voltage of each battery as the state of each battery. For the battery whose SOC estimated immediately before is in the low SOC region or the high SOC region, the control device 10 estimates the SOC based on the battery voltage, so that the battery state detection devices 212, 222, and 232 measure the SOC. The SOC of the battery is estimated based on the voltage of the battery. In addition, for a battery whose SOC estimated immediately before is in the range between the low SOC region and the high SOC region, by estimating the SOC based on the current according to Equation (1), the battery state detection devices 212, 222, and Based on the current of the battery measured by H.232, the SOC of the battery is estimated. Since it did in this way, according to the estimation result of SOC just before, this time SOC can be estimated by the optimal method.
  • the control device 10 is based on the reference signal generation unit 11 that generates a reference signal having a voltage waveform that changes with time, and the state of each battery detected by the battery state detection devices 212, 222, and 232.
  • An SOC estimation unit 14 that estimates the SOC of each battery
  • an allocation unit 13 that allocates a voltage range for each battery based on the SOC of each battery estimated by the SOC estimation unit 14, and the reference signal and allocation described above
  • a switching signal generation unit 12 that generates a switching signal for operating each of the power converters 213, 223, and 233 based on the voltage range of each battery assigned by the unit 13.
  • the power converters 213, 223, and 233 operate in response to the switching signal from the switching signal generation unit 12, respectively. Since it did in this way, the control apparatus 10 is easily realizable using processes, such as a microcomputer.
  • Each of the batteries 211, 221 and 231 can be configured by connecting a plurality of battery cells which are lithium ion secondary batteries. Therefore, a large-capacity battery can be easily realized.
  • FIG. 9 is a diagram showing a hardware configuration of the power supply system 2 according to the second embodiment of the present invention.
  • this power supply system 2 includes a power supply pack 24 connected in series in addition to the power supply packs 21, 22 and 23, and accordingly The difference is that the measurement signal 201 input to the control device 10 and the switching signal 202 output from the control signal 10 are each in four systems.
  • the power pack 24 includes a battery 241, a battery state detection device 242, and a power converter 243.
  • the sum of the voltages of the batteries 211, 221, 231, and 241 of all the power packs 21, 22, 23, and 24 is larger than the maximum voltage output from the power system 2 by one power pack or more. It is set to be.
  • the load current is zero in at least one power supply pack in any period in which AC power is supplied from the power supply system 2 to the load 3.
  • the charging current is zero in at least one power supply pack.
  • FIG. 10 is a diagram illustrating examples of various time-series waveforms when the switching signal generation unit 12 generates the switching signal 202 in the second embodiment.
  • the assigning unit 13 assigns one of the role numbers A, B, C, and D to the power packs 21, 22, 23, and 24, respectively.
  • the horizontal axis represents time
  • the vertical axis represents voltage.
  • FIG. 10 shows an example of the waveform of the reference signal 111 generated by the reference signal generator 11 as in FIG. 4 described in the first embodiment.
  • the switching signal generator 12 receives the role signal 131 from the assigning unit 13
  • a predetermined voltage range corresponding to the role numbers A, B, C, and D indicated by the role signal 131 is set as a voltage range in charge of each power pack.
  • And assigned to the reference signal 111 that is, as shown in the upper part of FIG. 10, four types of voltage ranges corresponding to the role numbers A, B, C, and D with a predetermined width in the positive and negative directions around the voltage 0V of the reference signal 111 are shown. Set.
  • Each voltage range of the role numbers A, B, and C is the same as that of FIG. 4, and the voltage range of the role number D is set outside thereof.
  • the switching signal generation unit 12 After setting the voltage ranges of the role numbers A, B, C, and D that each power supply pack is responsible for in the reference signal 111 as described above, the switching signal generation unit 12 next sets a threshold for each of the positive and negative values of these voltage ranges. Set. That is, as shown in the upper part of FIG. 10, in addition to the threshold values Vs_Ap, Vs_Bp, Vs_Cp, Vs_An, Vs_Bn, and Vs_Cn for the voltage ranges of the role numbers A, B, and C described in the first embodiment, A positive threshold value Vs_Dp and a negative threshold value Vs_Dn are set for the voltage range of D.
  • the switching signal generation unit 12 When the threshold values Vs_Ap, Vs_Bp, Vs_Cp, Vs_Dp, Vs_An, Vs_Bn, Vs_Cn and Vs_Dn are set as described above for each voltage range of the role numbers A, B, C and D, the switching signal generation unit 12 then These threshold values are compared with the reference signal 111. Based on this comparison result, switching signals 202a, 202b, 202c, and 202d having waveforms as shown in the middle of FIG. 10 are generated for the power supply packs of role numbers A, B, C, and D, respectively. In these waveforms, “P” represents a positive output mode, “B” represents a bypass mode, and “N” represents a non-output mode.
  • the total voltage of the battery voltages of all the power supply packs 21, 22, 23, and 24 is larger than the maximum voltage output from the power supply system 2 by one power supply pack or more. Therefore, since the reference signal 111 does not reach the voltage range corresponding to the outermost role number D, the waveform of the switching signal 202d for the power pack to which the role number D is assigned is always bypassed as shown in FIG. Mode. In addition, the waveforms of the switching signals 202a, 202b, and 202c for the power packs to which the role numbers A, B, and C are assigned are the same as those shown in FIG.
  • the operating states of the power converters 213, 223, 233, and 243 of each power pack are set, respectively,
  • the switching state of the switching element in the converter is controlled.
  • the output voltage 252 of the power supply system 2 is generated according to the reference signal 111 by the waveform shown in the lower part of FIG.
  • the power is output from the power supply system 2 to the load 3.
  • the power supply system 2 makes AC power output from at least one of the power converters 213, 223, 233, and 243 substantially zero, and outputs from these power converters.
  • the synthesized AC power that is periodically changed can be generated.
  • FIG. 11 shows examples of time-series waveforms of currents of the batteries 211, 221, 231, and 241 in each power pack when the power supply system 2 performs AC output according to the switching signals 202 a, 202 b, 202 c, and 202 d shown in FIG. 10.
  • FIG. 11 shows examples of time-series waveforms of currents of the batteries 211, 221, 231, and 241 in each power pack when the power supply system 2 performs AC output according to the switching signals 202 a, 202 b, 202 c, and 202 d shown in FIG. 10.
  • FIG. 11 shows switching signals 202a, 202b, 202c and 202d similar to those shown in FIG.
  • the middle part of FIG. 11 shows a waveform example of the output current 253 in the output of the entire power supply system 2.
  • battery currents 253a, 253b, 253c output from the batteries 211, 221, 231, 241 of the power packs 21, 22, 23, 24 corresponding to the role numbers A, B, C, D, respectively,
  • a waveform example of 253d is shown.
  • the horizontal axis represents time.
  • the same switching operation as that described in the first embodiment is performed in each power pack to which the role numbers A, B, and C are assigned. Therefore, the waveforms of the battery currents 253a, 253b, and 253c corresponding to these are the same as the battery currents 251a, 251b, and 251c shown in FIG.
  • the switching signal 202d for the power supply pack to which the role number D is assigned is always in the bypass mode as described above. Accordingly, the corresponding battery current 253d is always zero as shown in FIG.
  • FIG. 12 is a diagram illustrating a role number assigned by the allocating unit 13 to each power pack in the second embodiment and a state of change with time of the SOC in each power pack.
  • a graph 82 indicated by a solid line in the upper part of FIG. 7 indicates a change with time in the SOC of the battery 211 in the power supply pack 21, and a graph 83 indicated by a solid line in the lower part of FIG. 8 indicates the other power supply packs 22, 23.
  • a graph 81 indicated by a broken line indicates a change with time of SOC in the entire power supply system 2.
  • charging and discharging are alternately repeated between the power supply system 2 and the load 3, and the average SOC of the entire power supply system 2 changes in the vicinity of the center, resulting in a low SOC region.
  • region is shown.
  • the power packs 21, 22, 23 and 24 have the same SOC, and all of them are within the range between the low SOC region and the high SOC region.
  • the allocating unit 13 causes the battery (
  • the battery 211) of the power pack 21 is set as the operation target battery, and the role number A having the largest load is continuously assigned to the power pack 21 in order to shift the SOC to the high SOC region.
  • the remaining role numbers B, C, and D are assigned to the other power packs 22, 23, and 24, respectively. At this time, the role numbers B, C, and D may be alternately assigned to the power packs 22, 23, and 24.
  • the switching signal 202a corresponding to each role number A, B, C, D is sent from the switching signal generator 12 to the power converters 213, 223, 233, 243 of the power packs 21, 22, 23, 24.
  • 202b, 202c, 202d are output, and the power converters 213, 223, 233, 243 are controlled.
  • the assigning unit 13 continuously assigns an unloaded role number D to the power pack 21 so that the SOC does not change any more. assign.
  • the remaining role numbers A, B, and C are assigned to the other power packs 22, 23, and 24, respectively.
  • the role numbers A, B, and C may be alternately assigned to the power packs 22, 23, and 24.
  • the SOC estimation unit 14 estimates the SOC based on the voltage of the battery 211.
  • the battery voltage is measured by eliminating the influence of errors due to the internal resistance and polarization components of the battery 211, and the SOC is estimated. To be able to.
  • the SOC estimation result based on the current integration is calculated using the above equation (1), with the SOC estimation result as SOC (t0). An estimation may be performed.
  • the power converters 213 and 223 of each power supply pack are set to zero.
  • 233, 243 by combining the AC power output from the power supply system 2 in one cycle, that is, one cycle of the output current 253 in the entire power supply system 2 shown in FIG. 2 is preferably at least a period longer than the period multiplied by 4, which is the number of components of the power converters 213, 223, 233, and 243.
  • a specific length of the period may be determined according to characteristics of the battery 211 or the like.
  • allocating unit 13 determines that the SOC of battery 211 of power supply pack 21 and the SOCs of batteries 221, 231, and 241 of other power supply packs 22, 23, and 24 are the same.
  • the role number A is continuously assigned again to the power supply pack 21 so as to be approximately.
  • the remaining role numbers B, C, and D are assigned to the other power packs 22, 23, and 24, respectively.
  • the role numbers B, C, and D may be alternately assigned to the power supply packs 22, 23, and 24 as described above.
  • the assigning unit 13 assigns the role number to the power packs 21, 22, 23, and 24.
  • a transition is made to a normal state in which A, B, C, and D are alternately and evenly allocated.
  • the power converters 213 of the power packs 21, 22, 23, 24 so that the SOCs of the batteries 211, 221, 231, 241 of the power packs 21, 22, 23, 24 change evenly. 223, 233 and 243 are respectively controlled.
  • the SOC of the battery 211 of the power pack 21 can be positively moved to the high SOC region and the SOC can be measured, as in the first embodiment. As a result, the SOC detection accuracy can be improved.
  • the battery 211 of the power pack 21 is used as the operation target battery.
  • a process of changing the SOC to a high SOC region is performed.
  • the operation opposite to that of the first half is performed as described in the first embodiment, but the description thereof is omitted.
  • the SOC of the battery 211 is positively changed focusing on the power pack 21, but the same processing as that of the power pack 21 is performed on the other power packs 22, 23, and 24. It can be done alternately. In this way, it is possible to measure the SOC with high accuracy from the battery voltage for all of the power supply packs 21, 22, 23, 24 constituting the power supply system 2.
  • the power supply system 2 generates combined AC power with the AC power output from at least one of the plurality of power converters 213, 223, 233, and 243 being substantially zero.
  • the control device 10 converts the AC power output from the power converter corresponding to the operation target battery into one cycle of the combined AC power.
  • the power converters 213, 223, 233, and 243 are controlled so that the power converters 213, 223, 233, and 243 are continuously set to approximately zero for a period longer than the period multiplied by the number of components of the capacitors 213, 223, 233, and 243. Since it did in this way, the voltage of an operation object battery can be measured in a no-load state, and SOC can be estimated still more accurately based on the voltage.
  • the number of power packs constituting the power supply system 1 is three and the number of power packs constituting the power supply system 2 is four.
  • the number of power packs is as follows. It is not limited to these examples. If there are two or more, the power supply system of the present invention can be configured using any number of power supply packs.
  • the present invention can also be applied to a power supply system that operates in synchronization with an external AC power system and inputs and outputs power in response to an external request.
  • Lithium ion secondary batteries have a great need for management against overcharge and overdischarge, and therefore there is a high demand for estimation accuracy of the SOC, so that the present invention can be suitably applied.
  • the present invention can also be applied when a battery other than a lithium ion secondary battery is used. For example, if it is an electricity storage device whose voltage changes depending on the SOC, such as a lead battery, a nickel-cadmium battery, a nickel metal hydride battery, an electric double layer capacitor, or a lithium ion capacitor, the same processing as described in each of the above embodiments is performed.
  • the present invention can be applied.
  • the example of the control using the battery voltage as the parameter of the battery correlated with the SOC has been described, but other parameters correlated with the SOC can be used instead of the battery voltage.
  • the internal resistance and polarization component of the battery have a large correlation with the SOC, and the slope of these values with respect to the change in the SOC changes according to the magnitude of the SOC.
  • these may be used instead of the battery voltage, and the same processing as described in each of the above embodiments may be performed. Even if it does in this way, the effect equivalent to having demonstrated in each embodiment can be acquired.

Abstract

 電源システムは、複数の電池と、複数の電池の各々と接続されて互いに直列に接続された複数の電力変換器と、各電池の状態を検知する電池状態検知装置と、各電池の充電状態を示す値であるSOCを推定し、複数の電力変換器を制御する制御装置とを備える。制御装置は、複数の電池のSOCが全て所定の低SOC領域と高SOC領域の間の範囲内であるときに、複数の電池のうち一部の電池を操作対象電池として選択し、当該操作対象電池のSOCが低SOC領域または高SOC領域となるように、複数の電力変換器を制御する。

Description

電源システム
 本発明は、電源システムに関する。
 従来、直流電源とインバータユニットを組み合わせた回路を複数個モータに接続し、各インバータユニットに対してPWM(Pulse Width Modulation)信号を発生して各インバータユニットの半導体素子をスイッチングすることで、直流電力を交流電力に変換してモータに出力する多重電力変換装置が利用されている。このような多重電力変換装置において、搬送波に同期した選択信号を生成し、この選択信号に基づいてPWM信号を各インバータユニットに分配することで、各インバータユニット間の電力負担を均等化させるものが知られている(特許文献1)。
日本国特開2002-58257号公報
 充放電可能な電池(蓄電池)を直流電源として用いる場合、電池の過充電や過放電を避けるために、電池の充電状態(SOC:State Of Charge)を正確に推定する必要がある。ここで、一般的なSOCの推定方法として、電池の開放電圧(OCV:Open Circuit Voltage)を測定し、このOCVの測定結果に対応するSOCを予め記憶されたOCVとSOCの関係から求めることで、SOCを推定する方法が広く知られている。
 上記のようなSOCの推定方法において、OCVからSOCを高精度に推定するためには、SOCとOCVの関係を表したグラフ(SOC対OCV特性)の傾きが大きい領域、すなわちSOCの変化に応じてOCVが大きく変動する領域で電池電圧を測定することが好ましい。しかし、特許文献1に記載の従来技術では、各インバータユニット間の電力負担を均等化させることはできるが、複数の電池について上記のような領域での電池電圧の測定を積極的に行うことができるものではない。
 本発明は、上記の点に鑑みてなされたものであり、複数の電池のSOCを高精度に求めることを目的とする。
 本発明による電源システムは、複数の電池と、複数の電池の各々と接続され、各電池からの直流電力を交流電力に変換すると共に、外部からの交流電力を直流電力に変換することができ、互いに直列に接続された複数の電力変換器と、各電池の状態を検知する電池状態検知装置と、電池状態検知装置により検知された各電池の状態に基づいて、各電池の充電状態を示す値であるSOCを推定し、複数の電力変換器を制御する制御装置とを備える。この電源システムにおいて、制御装置は、複数の電池のSOCが全て所定の低SOC領域と高SOC領域の間の範囲内であるときに、複数の電池のうち一部の電池を操作対象電池として選択し、当該操作対象電池のSOCが低SOC領域または高SOC領域となるように、複数の電力変換器を制御する。
 本発明によれば、複数の電池のSOCを高精度に求めることができる。
本発明の第1の実施形態による電源システムのハードウェア構成を示す図である。 電力変換器の概略回路構成を示す図である。 図2(a)に示した回路構成における各スイッチング素子の切り替え状態と動作モードとの関係を一覧表形式で示した図である。 制御装置の構成を示す図である。 第1の実施形態においてスイッチング信号生成部がスイッチング信号を生成する際の各種の時系列波形の例を示す図である。 図4に示したスイッチング信号に従って電源システムが交流出力を行う際の各電源パックにおける電池電流の時系列波形の例を示す図である。 SOCとOCVの関係を表したSOC対OCV特性の例を示す図である。 第1の実施形態において各電源パックに対して割り当てる役割番号と、各電源パックでのSOCの経時変化の様子とを示す図である。 時刻T0における各電源パックのSOCの大きさをそれぞれ示した図である。 時刻T1における各電源パックのSOCの大きさをそれぞれ示した図である。 本発明の第2の実施形態による電源システムのハードウェア構成を示す図である。 第2の実施形態においてスイッチング信号生成部がスイッチング信号を生成する際の各種の時系列波形の例を示す図である。 図10に示したスイッチング信号に従って電源システムが交流出力を行う際の各電源パックにおける電池電流の時系列波形の例を示す図である。 第2の実施形態において各電源パックに対して割り当てる役割番号と、各電源パックでのSOCの経時変化の様子とを示す図である。
(第1の実施形態)
 以下、本発明の第1の実施形態による電源システムについて、図面を用いて説明する。本実施形態では、直流電源とインバータの組合せを多数直列に接続し、全体として多数の電圧レベルを出力できるようにして交流出力を実現する方式(以下、多段インバータ方式と記す)を用いた電源システムの動作について説明する。
 図1は、本発明の第1の実施形態による電源システム1のハードウェア構成を示す図である。電源システム1は、制御装置10と、電源パック21、22および23とを備え、負荷3に接続されている。電源パック21、22、23は、負荷3に対して互いに直列に接続される。なお、負荷3は、電源システム1から供給される交流電力を消費する場合(電力を受電する場合)もあれば、電源システム1に対して交流電力を供給する場合(電力を送電する場合)もあるものとする。このような負荷には、たとえば、電気自動車やハイブリッド自動車に搭載されており、発電機としても動作可能な電気モータ等がある。
 電源パック21は、電池211と、電池状態検知装置212と、電力変換器213とから構成されている。同様に、電源パック22は、電池221と、電池状態検知装置222と、電力変換器223とから構成されており、電源パック23は、電池231と、電池状態検知装置232と、電力変換器233とから構成されている。
 電池211、221および231は、一つまたは複数の単電池(電池セル)から構成されている。たとえば、リチウムイオン二次電池である電池セルを複数個直列または並列に接続したモジュールを、電池211、221および231として用いることができる。なお、リチウムイオン二次電池を用いる場合は、安全性を確保するためにきめ細かな監視および管理を行うコントローラが一般的に使用される。このコントローラは、電池211、221、231にそれぞれ内蔵されていてもよいし、電池211、221、231の外部に設けられていてもよい。
 電池状態検知装置212、222、232は、電圧センサと電流センサをそれぞれ備えており、これらのセンサにより、電池211、221、231の状態として、各電池の電圧と電流をそれぞれ測定する。そして、これらの測定結果に基づいて、各電池の状態検知結果を示す電池状態信号201を制御装置10にそれぞれ出力する。なお、前述のようなコントローラが電池211、221、231に対して設けられている場合は、このコントローラを電池状態検知装置212、222、232として用いてもよい。
 電力変換器213、223、233は、放電時には、電池211、221、231からの直流電力をそれぞれ交流電力に変換して負荷3に出力する。これにより、電源システム1から負荷3へ交流電力が供給される。また、充電時には、負荷3からの交流電力を直流電力に変換し、電池211、221、231へそれぞれ出力する。これにより、電池211、221、231が充電される。電力変換器213、223、233の動作は、制御装置10からのスイッチング信号202によりそれぞれ制御される。
 図2(a)は、電力変換器213の概略回路構成を示す図である。なお、ここでは代表例として電源パック21の電力変換器213の回路構成を示しているが、他の電源パック22、23の電力変換器223、233についてもこれと同様の回路構成を有している。
 図2(a)に示すように、電力変換器213は、スイッチング素子41、42、43、44をH型に並べて配線したHブリッジ回路で構成される。この回路は、直流正極端子45と直流負極端子46を介して電池211の正極側と負極側に接続されると共に、交流正極端子47と交流負極端子48を介して負荷3の正極側と負極側に接続される。なお、交流負極端子48は、他の電源パック22、23の電力変換器223、233を介して負荷3の負極側に接続されている。
 スイッチング素子41、42、43、44は、制御装置10からのスイッチング信号202に応じてスイッチング動作をそれぞれ行う。制御装置10は、放電時には電池211からの直流電力が交流電力に変換されて負荷3へ出力され、充電時には負荷3からの交流電力が直流電力に変換されて電池211へ出力されるように、スイッチング信号202を生成して各スイッチング素子のスイッチング動作を制御する。たとえば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、バイポーラトランジスタ、IGBT(Insulated Gate Bipolar Trasisor)、リレーなどをスイッチング素子41、42、43、44として利用することができる。
 なお、電力変換器213は、以上説明したスイッチング素子41、42、43、44の他に、逆起電力を逃がすためのダイオードや、整流回路などをさらに有していてもよい。電力変換器213には周知の様々な回路構成のものを用いることができるが、具体的な回路構成や動作についての説明は省略する。
 図2(b)は、図2(a)に示した回路構成における各スイッチング素子の切り替え状態と動作モードとの関係を一覧表形式で示した図である。図2(b)に示すように、電力変換器213は、スイッチング素子41、42、43、44の切り替え状態に応じて、正出力モード、バイパス1モード、バイパス2モード、負出力モードの4つの動作モードのいずれかを選択的に実行可能である。なお、図2(b)において、「ON」は各スイッチング素子がON状態、すなわち導通状態であることを示しており、「OFF」は各スイッチング素子がOFF状態、すなわち非導通(遮断)状態であることを示している。
 図2(b)に示す4つの動作モードのうち、正出力モードでは、スイッチング素子41をON状態、スイッチング素子42をOFF状態、スイッチング素子43をOFF状態、スイッチング素子をON状態とする。このとき、直流正極端子45と直流負極端子46の間に印加される電池211の電圧がそのまま交流正極端子47と交流負極端子48から負荷3に出力される。
 負出力モードでは、スイッチング素子41をOFF状態、スイッチング素子42をON状態、スイッチング素子43をON状態、スイッチング素子をOFF状態とする。このとき、直流正極端子45と直流負極端子46の間に印加される電池211の電圧が反転されて、交流正極端子47と交流負極端子48から負荷3に出力される。
 バイパス1モードでは、スイッチング素子41をON状態、スイッチング素子42をOFF状態、スイッチング素子43をON状態、スイッチング素子をOFF状態とする。このとき、直流正極端子45と直流負極端子46の間がオープンとなり、交流正極端子47と交流負極端子48の間が短絡される。
 バイパス2モードでは、スイッチング素子41をOFF状態、スイッチング素子42をON状態、スイッチング素子43をOFF状態、スイッチング素子をON状態とする。このときもバイパスモード1と同様に、直流正極端子45と直流負極端子46の間がオープンとなり、交流正極端子47と交流負極端子48の間が短絡される。
 上記のように、バイパス1モードとバイパス2モードとでは機能的な違いはないため、どちらを用いてもよい。以下では、バイパス1モードとバイパス2モードを総称して単にバイパスモードと記す。
 以上説明したような動作により、電力変換器213は、正出力モード、負出力モードまたはバイパスモードのいずれかに応じて、直流正極端子45と直流負極端子46の間に印加される電池211からの直流電圧をスイッチングし、交流正極端子47と交流負極端子48に出力する。こうした動作を繰り返すことで、放電時には、交流正極端子47と交流負極端子48の間に交流電圧を生成して負荷3に出力する。なお、上記では放電時の動作について説明しているが、充電時についても同様である。
 図3は、制御装置10の構成を示す図である。図3に示すように、制御装置10は、基準信号発生部11、スイッチング信号生成部12、割当部13およびSOC推定部14を機能的に有している。制御装置10は、これらの各部分の機能を、たとえばマイクロコンピュータ等の処理により実現する。
 SOC推定部14は、各電源パックの電池状態検知装置212、222、232から入力される前述の電池状態信号201が表す各電源パックの電池状態、すなわち電池211、221、231の電圧および電流に基づいて、電池211、221、231の充電状態をそれぞれ示す値であるSOCを推定する。そして、推定した各電池のSOCを示すSOC信号203を生成し、割当部13に出力する。
 割当部13は、SOC推定部14からのSOC信号203に基づいて、各電源パックに対する役割番号をそれぞれ割り当てる。そして、各電源パックの役割番号を示す役割信号131を生成し、スイッチング信号生成部12に出力する。役割番号とは、放電時に電源システム1から負荷3へ出力する交流電圧、または充電時に負荷3から電源システム1へ入力される交流電圧において、各電源パックの電池211、221、231が担当する電圧範囲をそれぞれ割り当てるためのものである。なお、役割番号による電圧範囲の割り当てについては、後で図4を用いて詳細に説明する。
 基準信号発生部11は、電源システム1において入出力される交流波形の基準となる基準信号111を生成し、スイッチング信号生成部12に出力する。基準信号111は、時間に応じて変化する電圧波形として出力されるものであり、たとえば実効値100V相当の振幅を有する周期50Hzの正弦波である。この基準信号111の振幅や周期は、放電時であれば、負荷3の動作電圧や動作周期に応じて決定することができる。一方、充電時であれば、負荷3から電源システム1に入力される交流電圧の振幅や周期を特定し、これに合わせて基準信号111の振幅や周期を決定することが好ましい。
 スイッチング信号生成部12は、基準信号発生部11からの基準信号111と、割当部13からの役割信号131とに基づいて、各電源パックに対するスイッチング信号202をそれぞれ生成し、電力変換器213、223、233に出力する。具体的には、役割信号131が示す各電源パックの役割番号から、各電源パックの電池211、221、231が担当する電圧範囲をそれぞれ決定する。このとき、電池状態信号201が表す電池211、221、231の電圧を基に電圧範囲を決定してもよい。そして、決定した各電池の電圧範囲と基準信号111が表す電圧とを比較し、その比較結果に基づいて各電源パックからの出力タイミングを決定することで、スイッチング信号202を生成することができる。
 ここで、上記のスイッチング信号生成部12の動作について、図4を参照してさらに詳しく説明する。図4は、第1の実施形態においてスイッチング信号生成部12がスイッチング信号202を生成する際の各種の時系列波形の例を示す図である。なお、図4に示す各波形は、いずれも横軸が時刻を表し、縦軸が電圧を表している。
 本実施形態では、図3の割当部13において、前述のように各電源パックに対して役割番号の割り当てを行い、その割り当て結果を役割信号131によりスイッチング信号生成部12へ出力する。以下では、各電源パックに対してA,B,Cいずれかの役割番号がそれぞれ割り当てられるものとして説明する。
 図4の上段には、基準信号発生部11が発生する基準信号111の波形例を示している。スイッチング信号生成部12は、割当部13から役割信号131を受けると、この役割信号131が示す役割番号A,B,Cに応じた所定の電圧範囲を各電源パックの担当する電圧範囲として、基準信号111に対して割り当てる。すなわち、図4の上段に示すように、基準信号111の電圧0を中心に、正負それぞれの方向に所定の幅で、役割番号A、B,Cにそれぞれ対応する3種類の電圧範囲を設定する。役割番号Aの電圧範囲は最も中心側に設定されており、その外側には役割番号Bの電圧範囲が、さらにその外側には役割番号Cの電圧範囲が、0Vを中心に正負それぞれの側に設定されている。なお、これらの電圧範囲の幅は、前述のように電池状態信号201が表す電池211、221、231の電圧を基に決定することができる。
 上記のように基準信号111において各電源パックが担当する役割番号A,B,Cの電圧範囲を設定したら、次にスイッチング信号生成部12は、これらの電圧範囲の正負それぞれに対して閾値を設定する。すなわち、図4の上段に示すように、役割番号Aの電圧範囲に対しては正方向の閾値Vs_Apおよび負方向の閾値Vs_Anを設定し、役割番号Bの電圧範囲に対しては正方向の閾値Vs_Bpおよび負方向の閾値Vs_Bnを設定し、役割番号Cの電圧範囲に対しては正方向の閾値Vs_Cpおよび負方向の閾値Vs_Cnを設定する。これらの閾値には、当該電圧範囲内であれば任意の電圧を設定することができる。たとえば、役割番号A,B,Cに対応する各電圧範囲の上限に対して、その半分の電圧を上記の閾値Vs_Ap、Vs_Bp、Vs_Cpとして設定することができる。同様に、役割番号A,B,Cに対応する各電圧範囲の下限に対して、その半分の電圧を上記の閾値Vs_An、Vs_Bn、Vs_Cnとして設定することができる。
 役割番号A,B,Cの各電圧範囲に対して、上記のように閾値Vs_Ap、Vs_Bp、Vs_Cp、Vs_An、Vs_BnおよびVs_Cnを設定したら、続いてスイッチング信号生成部12は、これらの閾値と基準信号111とを比較する。この比較結果を基に、各電源パックに対するスイッチング信号202を生成する。すなわち、基準信号111が閾値Vs_Ap、Vs_Bp、Vs_Cpよりも大きい場合は、これらに対応する電源パックにおいて各スイッチング素子が正出力モードに切り替えられるようにスイッチング信号202を生成する。同様に、基準信号111が閾値Vs_An、Vs_Bn、Vs_Cnよりも小さい場合は、これらに対応する電源パックにおいて各スイッチング素子が負出力モードに切り替えられるようにスイッチング信号202を生成する。
 図4の中段には、上記の基準信号111と閾値Vs_Ap、Vs_Bp、Vs_Cp、Vs_An、Vs_BnおよびVs_Cnとに基づいて、スイッチング信号生成部12が役割番号A,B,Cの各電源パックに対してそれぞれ生成するスイッチング信号202a、202b、202cの波形例をそれぞれ示している。ここでは、役割番号Aの電源パックに対するスイッチング信号202をスイッチング信号202aとし、役割番号Bの電源パックに対するスイッチング信号202をスイッチング信号202bとし、役割番号Cの電源パックに対するスイッチング信号202をスイッチング信号202cとした。なお、これらの波形において、「P」は正出力モードを、「B」はバイパスモードを、「N」は不出力モードをそれぞれ表している。
 具体的には、図4の上段に示すように最初の時刻t1までの期間において、基準信号111は閾値Vs_Ap以下、閾値Vs_An以上である。したがってこの期間では、図4の中段に示すように、全ての電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 次の時刻t1から時刻t2の期間において、基準信号111は閾値Vs_Ap以上、閾値Vs_Bp以下である。したがってこの期間では、図4の中段に示すように、役割番号Aの電源パックを時刻t1で「B」から「P」に切り替えることで、役割番号Aの電源パックを「P」とし、他の役割番号B、Cの各電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 続く時刻t2から時刻t3の期間において、基準信号111は閾値Vs_Bp以上、閾値Vs_Cp以下である。したがってこの期間では、図4の中段に示すように、役割番号Bの電源パックを時刻t2で「B」から「P」に切り替えることで、役割番号AおよびBの電源パックを「P」とし、役割番号Cの電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t3から時刻t4の期間において、基準信号111は閾値Vs_Cp以上である。したがってこの期間では、図4の中段に示すように、役割番号Cの電源パックを時刻t3で「B」から「P」に切り替えることで、全ての電源パックを「P」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t4から時刻t5の期間において、基準信号111は時刻t2から時刻t3までの期間と同様に、閾値Vs_Bp以上、閾値Vs_Cp以下である。したがってこの期間では、図4の中段に示すように、役割番号Cの電源パックを時刻t4で「P」から「B」に切り替えることで、役割番号AおよびBの電源パックを「P」とし、役割番号Cの電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t5から時刻t6の期間において、基準信号111は時刻t1から時刻t2までの期間と同様に、閾値Vs_Ap以上、閾値Vs_Bp以下である。したがってこの期間では、図4の中段に示すように、役割番号Bの電源パックを時刻t5で「P」から「B」に切り替えることで、役割番号Aの電源パックを「P」とし、他の役割番号B、Cの電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t6から時刻t7の期間において、基準信号111は時刻t1までの期間と同様に、閾値Vs_Ap以下、閾値Vs_An以上である。したがってこの期間では、図4の中段に示すように、役割番号Aの電源パックを時刻t6で「P」から「B」に切り替えることで、全ての電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t7から時刻t8の期間において、基準信号111は閾値Vs_An以下、閾値Vs_Bn以上である。したがってこの期間では、図4の中段に示すように、役割番号Aの電源パックを時刻t7で「B」から「N」に切り替えることで、役割番号Aの電源パックを「N」とし、他の役割番号B、Cの各電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t8から時刻t9の期間において、基準信号111は閾値Vs_Bn以下、閾値Vs_Cn以上である。したがってこの期間では、図4の中段に示すように、役割番号Bの電源パックを時刻t8で「B」から「N」に切り替えることで、役割番号AおよびBの電源パックを「N」とし、役割番号Cの電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t9から時刻t10の期間において、基準信号111は閾値Vs_Cn以下である。したがってこの期間では、図4の中段に示すように、役割番号Cの電源パックを時刻t9で「B」から「N」に切り替えることで、全ての電源パックを「N」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t10から時刻t11の期間において、基準信号111は時刻t8から時刻t9までの期間と同様に、閾値Vs_Bn以下、閾値Vs_Cn以上である。したがってこの期間では、図4の中段に示すように、役割番号Cの電源パックを時刻t10で「N」から「B」に切り替えることで、役割番号AおよびBの電源パックを「N」とし、役割番号Cの電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t11から時刻t12の期間において、基準信号111は時刻t7から時刻t8までの期間と同様に、閾値Vs_An以下、閾値Vs_Bn以上である。したがってこの期間では、図4の中段に示すように、役割番号Bの電源パックを時刻t11で「N」から「B」に切り替えることで、役割番号Aの電源パックを「N」とし、他の役割番号B、Cの電源パックを「B」として、これに応じたスイッチング信号202a、202bおよび202cを生成する。そして、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 時刻t12以降では、基準信号111の変化に応じて、以上説明したようなスイッチング信号202a、202bおよび202cを繰り返し生成し、スイッチング信号生成部12から各電源パックの電力変換器213、223、233へ出力する。
 以上説明したようにして出力されるスイッチング信号202a、202bおよび202cに基づいて、各電源パックの電力変換器213、223、233の作動状態がそれぞれセットされ、それに応じて、各電力変換器におけるスイッチング素子の切り替え状態がそれぞれ制御される。こうしてスイッチング素子を切り替えることにより、放電時には、各電源パックから出力される交流電圧が合成されて図4の下段に示すような波形により、基準信号111に応じて電源システム1の出力電圧250が生成され、電源システム1から負荷3へ出力される。このようにすることで、電源システム1は、電力変換器213、223、233から出力される交流電力を合成し、周期的に変化する合成交流電力を発生することができる。
 なお、上記の説明では放電時のスイッチング信号生成部12の動作について説明したが、充電時の動作についても同様である。すなわち、図4の上段に示したような基準信号111に対して、各電源パックの役割番号ごとに電圧範囲と閾値がそれぞれ設定され、これと基準信号111を比較することで、図4の中段に示したようなスイッチング信号202a、202bおよび202cがスイッチング信号生成部12において生成される。
 なお、上記の例では、簡単のために、各電源パックの電池211、221、231の電圧が等しい場合について説明している。しかし、電池211、221、231の電圧が互いに異なる場合でも、上記と同様の演算により、基準信号111に応じた出力電圧波形を電源システム1において得ることができる。
 また、上記の説明では、簡単のために、役割番号A,B,Cの各電圧範囲に対して閾値Vs_Ap、Vs_Bp、Vs_Cp、Vs_An、Vs_BnおよびVs_Cnを設定し、これと基準信号111を比較することでスイッチング信号202a、202bおよび202cを生成する例を示した。しかし、役割番号A,B,Cの各電圧範囲に応じて各電源パックのスイッチング信号202a、202bおよび202cを生成できるものであれば、スイッチング信号の生成方法はこれに限られない。たとえば、役割番号A,B,Cの各電圧範囲内を所定の周期で上下に往復する三角波を用いて、これと基準信号111を比較することで、スイッチング信号202a、202bおよび202cを生成することもできる。
 上記の説明では、基準信号111と閾値とを比べる方法について特に規定しなかったが、たとえばアナログ信号を用いて電圧同士を直接比較してもよいし、デジタル信号で論理的に値を比較する手法を用いてもよい。
 以上が、スイッチング信号生成部12の動作に関する説明である。
 次に、本実施形態における各電源パックに対する役割番号とその負担電流との関係について、図5を用いて説明する。図5は、図4に示したスイッチング信号202a、202bおよび202cに従って電源システム1が交流出力を行う際の各電源パックにおける電池211、221、231の電流の時系列波形の例を示す図である。
 図5の上段には、図4に示したのと同様のスイッチング信号202a、202bおよび202cを示している。図5の中段には、電源システム1全体での出力における出力電流251の波形例を示している。図5の下段には、各役割番号A,B,Cに対応する電源パック21、22、23の電池211、221、231がそれぞれ出力する電池電流251a、251b、251cの波形例を示している。これらの波形は、いずれも横軸が時刻を表している。
 ここで、役割番号A、B、Cに対応する各電源パックが負荷3に対して出力する電流は、スイッチング信号202a、202b、202cの各波形をP=+1、B=0、N=-1にそれぞれ置き換え、これらと出力電流251とを乗算したものである。すなわち、図5に示すように、電池電流251a、251b、251cは、出力電流251を全波整流した後に、スイッチング信号202a、202b、202cにおいて「P」または「B」である期間の部分をそれぞれ切り取った様な波形となる。これらの電池電圧波形から、基準信号111の1周期における役割番号A、B,Cの各電源パックの平均電池負荷電流の大きさは、役割番号Aが最も大きく、その次に役割暗号Bが大きく、役割番号Cが最も小さいことが分かる。
 したがって、各電源パックに対する役割番号を仮に固定したとすると、役割番号Aを割り当てられた電源パックの負荷電力は他の電源パックよりも大きくなる。この場合、当該電源パックの電池が他の電源パックの電池よりも先に過充電または過放電の制限に達してしまうことになり、各電源パックの電池容量を有効活用できない。そこで本発明では、割当部13において後述するような処理を実行することで、各電源パックに対して役割番号を均等に割り当てるようにする。
 次に、SOC推定部14での処理について説明する。SOC推定部14は、前述のように、電池状態検知装置212、222、232からの電池状態信号201が示す電圧および電流に基づいて、各電源パック21、22、23の電池211、221、231のSOCを推定する。このときSOC推定部14は、直前に推定したSOCの大きさに基づいて、電圧に基づいたSOCの推定と、電流に基づいたSOCの推定とを、以下のように切り替えて使用する。
 図6は、電池211、221、231について、SOCとOCVの関係を表したSOC対OCV特性の例を示す図である。図6において、横軸はSOCを示し、縦軸はOCVを示している。
 図6のSOC対OCV特性には、その傾きが全SOC範囲(0~100%)における傾きの平均値と一致する2つの点61、62が存在する。図中に示したように、低SOC側の点61におけるSOCの値をSOCLと表し、これより低いSOC領域を低SOC領域と定義する。また、高SOC側の点62におけるSOCの値をSOCHと表し、これより高いSOC領域を高SOC領域と定義する。
 上記の低SOC領域および高SOC領域では、いずれもSOC対OCV特性の傾きが点61、62での傾き、すなわち全SOC範囲における傾きの平均値よりも大きい。すなわち、これらの領域では、SOCの変化に応じてOCVが大きく変動することから、OCVに対するSOCの感度が高い。したがって、電池電圧の測定結果からSOCを比較的高精度に推定することが可能となる。
 一方、低SOC領域と高SOC領域の間の範囲内では、SOC対OCV特定の傾きが点61、62での傾き、すなわち全SOC範囲における傾きの平均値よりも小さい。すなわち、この領域では、低SOC領域や高SOC領域に比べて、SOCが変化してもOCVの変動が小さいことから、OCVに対するSOCの感度が低い。したがって、電池電圧の測定結果からSOCを高精度に推定することが困難となる。
 以上説明したようなことを踏まえて、SOC推定部14は、電池211、221、231の各々について、直前に推定したSOCが図6の低SOC領域または高SOC領域にあった場合は、電池電圧に基づくSOCの推定を行う。すなわち、電池状態信号201が示す当該電池の電圧を用いて、図6のSOC対OCV特性から予め記憶されたテーブル情報等を参照することで、当該電池のSOCを推定する。
 一方、直前に推定したSOCが図6の低SOC領域と高SOC領域の間の範囲内にあった場合、SOC推定部14は、下記の式(1)により、当該電池に対して電流に基づくSOCの推定を行う。
Figure JPOXMLDOC01-appb-M000001
・・・(1)
 式(1)において、SOC(t)、i(t)は時刻tにおけるSOCと電流をそれぞれ表し、SOC(t)は時刻tにおけるSOCを表している。また、Qmaxは当該電池の最大電荷量である。すなわち式(1)は、時刻tから時刻tまでの間に当該電池に流れた電流を積算することで当該電池セルに対して入出力された電荷量を決定し、これを最大電荷量Qmaxで除算した値を時刻tで求めたSOC(t)に加えることにより、時刻tにおけるSOC(t)が求められることを表している。なお、最大電荷量Qmaxは、当該電池の初期容量等に基づいて決定することができる。
 次に、割当部13での処理について説明する。本発明では、各電源パックの電池のSOCが前述の低SOC領域と高SOC領域の間の範囲内にある場合に、割当部13において各電源パックに対する役割番号の割り当てを工夫することで、そのうち一部の電源パックの電池のSOCを前述の低SOC領域または高SOC領域に積極的に変化させるようにする。これにより、電池電圧の測定結果を用いて当該電池のSOCを高精度で検出できるようにする。
 以下では、電源パック21の電池211をSOCの操作対象電池として選択し、この電池211のSOCを低SOC領域または高SOC領域とする場合について、図7を用いて説明する。図7は、第1の実施形態において割当部13が各電源パックに対して割り当てる役割番号と、各電源パックでのSOCの経時変化の様子とを示す図である。図7の上段に実線で示したグラフ72は、電源パック21における電池211のSOCの経時変化を示しており、図7の下段に実線で示したグラフ73は、それ以外の電源パック22、23における電池221、231のSOCの経時変化を共通に示している。また破線で示したグラフ71は、電源システム1全体でのSOCの経時変化を示している。なお、図7では簡単のために、電源システム1と負荷3の間で充電と放電が交互に繰り返され、電源システム1全体の平均でのSOCは中心付近を推移して低SOC領域や高SOC領域に入ることがない状況での例を示している。
 時刻T0では、電源パック21、22および23のSOCはいずれも同程度であり、その全てが低SOC領域と高SOC領域の間の範囲内にある。このような状態で電源システム1の充電が開始されて電源システム1全体のSOCが上昇を開始すると、割当部13は、いずれかの電源パックの電池(ここでは電源パック21の電池211)を操作対象電池として、そのSOCを高SOC領域に遷移させるべく、当該電源パック21に対して最も負荷の大きい役割番号Aを連続して割り当てる。一方、他の電源パック22、23に対しては、残りの役割番号B、Cをそれぞれ割り当てる。このとき、役割番号Bと役割番号Cを電源パック22と電源パック23に交互に割り当ててもよい。これにより、スイッチング信号生成部12から電源パック21、22、23の電力変換器213、223、233に対して、それぞれの役割番号A、B、Cに応じたスイッチング信号202a、202b、202cが出力され、電力変換器213、223、233が制御される。
 時刻T1において電源パック21の電池211のSOCが高SOC領域に入ったら、割当部13は、このSOCが高SOC領域内に維持されるように、電源パック21に対して軽負荷の役割番号Cを連続して割り当てる。一方、他の電源パック22、23に対しては、残りの役割番号A、Bをそれぞれ割り当てる。このとき、役割番号Aと役割番号Bを電源パック22と電源パック23に交互に割り当ててもよい。これにより、SOCの操作対象電池として選択した電源パック21の電池211が高SOC領域となった後には、電源システム1により発生される合成交流電力の1周期、すなわち図4に示した出力電圧250の波形および図5に示した出力電流251の波形の1周期に、電源システム1における電力変換器213、223および233の構成数である3を乗じた期間において、この電池211の平均負荷電流が他の電池221、231の平均負荷電流よりも小さくなるように、各電源パックの電力変換器213、223、233の動作が制御される。
 以上説明したように電源パック21の電池211のSOCが高SOC領域に入っているときに、SOC推定部14は、前述のように電池211の電圧に基づいてSOCを推定する。このとき、電源パック21に対して前述のように軽負荷の役割番号Cを割り当てることで、電池211の内部抵抗や分極成分による誤差影響を抑えつつ電池電圧を測定し、SOCの推定を行うことができるようにしている。なお、一度電池電圧に基づいてSOCを推定した後は、そのSOCの推定結果をSOC(t0)として、前述の式(1)により電流積算に基づいたSOCの推定を行ってもよい。
 時刻T2において電源システム1が充電から放電に切り替えられると、割当部13は、電源パック21の電池211のSOCと他の電源パック22、23の電池221、231のSOCとが同程度となるように、電源パック21に対して再び役割番号Aを連続して割り当てる。一方、他の電源パック22、23に対しては、残りの役割番号B、Cをそれぞれ割り当てる。このとき、前述のように役割番号Bと役割番号Cを電源パック22と電源パック23に交互に割り当ててもよい。
 その後、時刻T3において電源パック21、22、23の電池211、221、231の各SOCが概ね一致したら、割当部13は、電源パック21、22、23に対して役割番号A、B、Cを交互に均等に割り当てる通常状態に移行する。これにより、通常状態では、電源パック21、22、23の電池211、221、231の各SOCが均等に変化するように、電源パック21、22、23の電力変換器213、223、233をそれぞれ制御する。
 以上説明したような処理を行うことで、電源パック21の電池211のSOCを積極的に高SOC領域に移動させて電池電圧を測定し、SOCを推定することができる。これにより、SOC検知精度の向上を図ることができる。
 以上説明したように、図7の前半部分では、時刻T0において電源システム1の充電が開始され、その後に時刻T2から放電が開始される場合に、電源パック21の電池211を操作対象電池として、そのSOCを高SOC領域に変化させる処理を行う。続いて、上記の前半部分とは反対に、電源システム1が放電された後に充電される場合に、電源パック21の電池211を操作対象電池として、そのSOCを低SOC領域に変化させる処理を行う図7の後半部分について説明する。
 時刻T4では、前述の時刻T0と同様に、電源パック21、22および23のSOCはいずれも同程度であり、その全てが低SOC領域と高SOC領域の間の範囲内にある。このような状態で電源システム1が放電されて電源システム1全体のSOCが低下し始めると、割当部13は、いずれかの電源パックの電池(ここでは電源パック21の電池211)を操作対象電池として、そのSOCを低SOC領域に遷移させるべく、当該電源パック21に対して最も負荷の大きい役割番号Aを連続して割り当てる。一方、他の電源パック22、23に対しては、残りの役割番号B、Cをそれぞれ割り当てる。このとき、役割番号Bと役割番号Cを電源パック22と電源パック23に交互に割り当ててもよい。これにより、スイッチング信号生成部12から電源パック21、22、23の電力変換器213、223、233に対して、それぞれの役割番号A、B、Cに応じたスイッチング信号202a、202b、202cが出力され、電力変換器213、223、233が制御される。
 時刻T5において電源パック21の電池211のSOCが低SOC領域に入ったら、割当部13は、このSOCが低SOC領域内に維持されるように、電源パック21に対して軽負荷の役割番号Cを連続して割り当てる。このときSOC推定部14は、前述の高SOC領域内の場合と同様に、電池211の電圧に基づいてSOCを推定する。一方、他の電源パック22、23に対しては、残りの役割番号A、Bをそれぞれ割り当てる。このとき、役割番号Aと役割番号Bを電源パック22と電源パック23に交互に割り当ててもよい。これにより、SOCの操作対象電池として選択した電源パック21の電池211が低SOC領域となった後には、この電池211の平均負荷電流が他の電池221、231の平均負荷電流よりも小さくなるように、各電源パックの電力変換器213、223、233の動作が制御される。
 時刻T6において電源システム1が放電から充電に切り替えられると、割当部13は、電源パック21の電池211のSOCと他の電源パック22、23の電池221、231のSOCとが同程度となるように、電源パック21に対して再び役割番号Aを連続して割り当てる。一方、他の電源パック22、23に対しては、残りの役割番号B、Cをそれぞれ割り当てる。その後、時刻T7において電源パック21、22、23の電池211、221、231の各SOCが概ね一致したら、割当部13は、電源パック21、22、23に対して役割番号A、B、Cを交互に均等に割り当てる通常状態に移行する。
 なお、以上の処理では、電源パック21に着目してその電池211のSOCを積極的に変化させたが、他の電源パック22、23に対しても、電源パック21と同様の処理を交互に行うことができる。このようにすれば、電源システム1を構成する電源パック21、22、23の全てについて、電池電圧から高精度にSOCを測定することができる。
 図8(a)は、時刻T0における各電源パック21、22、23のSOCの大きさをそれぞれ示した図であり、図8(b)は、時刻T1における各電源パック21、22、23のSOCの大きさをそれぞれ示した図である。図8(a)に示すように、時刻T0において、電源パック21、22、23のSOCは全て同程度の大きさである。図8(a)では、このSOCの大きさをSOCaで示している。その後、前述のような処理が実行されることにより電源パック21、22、23のSOCがそれぞれ変化して、時刻T1になると、図8(b)に示す状態へと推移する。すなわち、電源パック21のSOCについては、SOCaから増加して高SOC領域内となる一方で、他の電源パック22、23のSOCについてはSOCaから減少する。
 なお、上記の説明では便宜上、割当部13は、各電源パックの電池のSOCを基準として、各電源パックに対する割り当て動作を切り替えるようにした。しかし、前述のようにSOCと電池電圧の間には対応関係があるため、SOCではなく電池電圧を基準として、各電源パックに対する割り当て動作を切り替えるような割当部13の構成も考えられる。ここで、SOCと電池電圧との間には前述のように、電池の内部抵抗や分極による誤差影響が存在する。しかし、低SOC領域や高SOC領域に入ったかどうかの判定であれば、これらの領域はSOC対OCV特性の傾きが大きい領域であるので、上記の誤差影響は小さく特に問題とならない。
 以上説明した本発明の第1の実施形態によれば、次の作用効果を奏する。
(1)電源システム1は、複数の電池211、221および231と、この電池211、221および231の各々と接続され、各電池からの直流電力を交流電力に変換すると共に、外部の負荷3からの交流電力を直流電力に変換することができる、互いに直列に接続された複数の電力変換器213、223および233と、各電池の状態を検知する電池状態検知装置212、222および232と、電池状態検知装置212、222および232により検知された各電池の状態に基づいて各電池のSOCを推定し、電力変換器213、223および233を制御する制御装置10とを備える。制御装置10は、電池211、221および231のSOCが全て所定の低SOC領域と高SOC領域の間の範囲内であるときに、電池211、221および231のうち一部の電池を操作対象電池として選択する。そして、当該操作対象電池のSOCが低SOC領域または高SOC領域となるように、電力変換器213、223および233を制御する。このようにしたので、複数の電池のSOCを高精度に求めることができる。その結果、広いSOC範囲内で電池の蓄電能力を有効利用できるため、小型軽量化、省資源化、低コスト化等を図ることができる。
(2)電源システム1は、電力変換器213、223および233から出力される交流電力を合成することにより、周期的に変化する合成交流電力を発生する。制御装置10は、操作対象電池のSOCが低SOC領域または高SOC領域となったら、上記の合成交流電力の1周期に電力変換器213、223および233の構成数を乗じた期間における操作対象電池の平均負荷電流が他の電池の平均負荷電流よりも小さくなるように、電力変換器213、223および233を制御する。このようにしたので、電源システム1全体でのSOCが変化しても、操作対象電池のSOCを低SOC領域または高SOC領域内に維持することができる。
(3)各電池のSOCとOCVの関係を表した図6のようなSOC対OCV特性において、その傾きが全SOC範囲における傾きの平均値よりも大きい2つの領域のうち、SOCが低い方の領域を低SOC領域とし、SOCが高い方の領域を高SOC領域とした。このようにして低SOC領域および高SOC領域を定義したので、これらの領域において、電池電圧の測定結果からSOCを比較的高精度に推定することができる。
(4)電池状態検知装置212、222および232は、各電池の状態として、各電池の電流および電圧を測定する。制御装置10は、直前に推定したSOCが低SOC領域または高SOC領域にある電池については、電池電圧に基づくSOCの推定を行うことで、電池状態検知装置212、222および232により測定された当該電池の電圧に基づいて当該電池のSOCを推定する。また、直前に推定したSOCが低SOC領域と高SOC領域の間の範囲内にある電池については、式(1)により電流に基づくSOCの推定を行うことで、電池状態検知装置212、222および232により測定された当該電池の電流に基づいて当該電池のSOCを推定する。このようにしたので、直前のSOCの推定結果に応じて、今回のSOCを最適な方法で推定することができる。
(5)制御装置10は、時間に応じて変化する電圧波形の基準信号を発生する基準信号発生部11と、電池状態検知装置212、222および232により検知された各電池の状態に基づいて、各電池のSOCを推定するSOC推定部14と、SOC推定部14により推定された各電池のSOCに基づいて、各電池が担当する電圧範囲をそれぞれ割り当てる割当部13と、上記の基準信号および割当部13により割り当てられた各電池の電圧範囲に基づいて、電力変換器213、223、233をそれぞれ動作させるためのスイッチング信号を生成するスイッチング信号生成部12とを備える。電力変換器213、223、233は、このスイッチング信号生成部12からのスイッチング信号に応じてそれぞれ動作する。このようにしたので、マイクロコンピュータ等の処理を利用して制御装置10を容易に実現することができる。
(6)各電池211、221および231は、リチウムイオン二次電池である電池セルを複数個接続して構成することができる。そのため、大容量の電池を容易に実現することができる。
(第2の実施形態)
 次に、本発明の第2の実施形態による電源システムについて説明する。本実施形態では、前述の第1の実施形態で説明した役割番号の割り当てをさらに発展させた例を説明する。具体的には、SOCの操作対象電池として選択した電池のSOCが低SOC領域または高SOC領域内にあるときは、その電池に流れる電流を完全に遮断することで、当該電池の内部抵抗や分極成分の影響を大きく抑えてさらに高精度にSOCを求めるようにした例を本実施形態では説明する。
 図9は、本発明の第2の実施形態による電源システム2のハードウェア構成を示す図である。図1に示した第1の実施形態による電源システム1と比べて、この電源システム2は、電源パック21、22および23に加えてさらに電源パック24が直列に接続されている点と、それに伴って制御装置10に入力される測定信号201と制御信号10から出力されるスイッチング信号202がそれぞれ4系統になっている点とが異なっている。電源パック24は、他の電源パック21、22および23と同様に、電池241と、電池状態検知装置242と、電力変換器243とから構成されている。
 なお、本実施形態では、全ての電源パック21、22、23、24の電池211、221、231および241の電圧を合計すると、電源システム2が出力する最大電圧よりも電源パック1個分以上大きくなるように設定されている。換言すると、本実施形態では、電源システム2から負荷3へ交流電力を供給する期間のいずれでも、少なくとも1つの電源パックにおいては負荷電流がゼロである。同様に、負荷3から電源システム2へ交流電力が入力される期間のいずれでも、少なくとも1つの電源パックにおいては充電電流がゼロである。
 本実施形態におけるスイッチング信号生成部12の動作について、以下に図10を参照して説明する。図10は、第2の実施形態においてスイッチング信号生成部12がスイッチング信号202を生成する際の各種の時系列波形の例を示す図である。本実施形態では、割当部13により、電源パック21、22、23、24に対して、A,B,C,Dいずれかの役割番号がそれぞれ割り当てられるものとして説明する。なお、図10に示す各波形は、いずれも横軸が時刻を表し、縦軸が電圧を表している。
 図10の上段には、第1の実施形態で説明した図4と同様に、基準信号発生部11が発生する基準信号111の波形例を示している。スイッチング信号生成部12は、割当部13から役割信号131を受けると、この役割信号131が示す役割番号A,B,C,Dに応じた所定の電圧範囲を各電源パックの担当する電圧範囲として、基準信号111に対して割り当てる。すなわち、図10の上段に示すように、基準信号111の電圧0Vを中心に、正負それぞれの方向に所定の幅で、役割番号A、B,C,Dにそれぞれ対応する4種類の電圧範囲を設定する。役割番号A、B、Cの各電圧範囲は図4と同様であり、さらにその外側には、役割番号Dの電圧範囲が設定されている。
 上記のように基準信号111において各電源パックが担当する役割番号A,B,C,Dの電圧範囲を設定したら、次にスイッチング信号生成部12は、これらの電圧範囲の正負それぞれに対して閾値を設定する。すなわち、図10の上段に示すように、第1の実施形態で説明した役割番号A、B、Cの各電圧範囲に対する閾値Vs_Ap、Vs_Bp、Vs_Cp、Vs_An、Vs_BnおよびVs_Cnに加えて、さらに役割番号Dの電圧範囲に対する正方向の閾値Vs_Dpおよび負方向の閾値Vs_Dnを設定する。
 役割番号A,B,C,Dの各電圧範囲に対して、上記のように閾値Vs_Ap、Vs_Bp、Vs_Cp、Vs_Dp、Vs_An、Vs_Bn、Vs_CnおよびVs_Dnを設定したら、続いてスイッチング信号生成部12は、これらの閾値と基準信号111とを比較する。この比較結果を基に、役割番号A,B,C、Dの各電源パックに対して、図10の中段に示すような波形のスイッチング信号202a、202b、202c、202dをそれぞれ生成する。なお、これらの波形において、「P」は正出力モードを、「B」はバイパスモードを、「N」は不出力モードをそれぞれ表している。
 ここで、本実施形態では前述のように、全ての電源パック21、22、23、24の電池電圧を合計した電圧は、電源システム2が出力する最大電圧よりも電源パック1個分以上大きい。したがって、基準信号111が最も外側の役割番号Dに対応する電圧範囲に達することはないため、役割番号Dが割り当てられた電源パックに対するスイッチング信号202dの波形は、図10に示されるように常にバイパスモードである。また、役割番号A,B,Cが割り当てられた各電源パックに対するスイッチング信号202a、202b、202cの波形は、図4に示したのとそれぞれ同じである。
 以上説明したようにして出力されるスイッチング信号202a、202b、202cおよび202dに基づいて、各電源パックの電力変換器213、223、233、243の作動状態がそれぞれセットされ、それに応じて、各電力変換器におけるスイッチング素子の切り替え状態がそれぞれ制御される。こうしてスイッチング素子を切り替えることによって各電源パックから出力される交流電圧を合成することで、図10の下段に示すような波形により、基準信号111に応じて電源システム2の出力電圧252が生成され、電源システム2から負荷3へ出力される。このようにすることで、電源システム2は、電力変換器213、223、233、243のうちいずれか少なくとも1つの電力変換器から出力される交流電力を略0として、これらの電力変換器から出力される交流電力を合成し、周期的に変化する合成交流電力を発生することができる。
 なお、上記の説明では放電時のスイッチング信号生成部12の動作について説明したが、充電時の動作についても同様である。すなわち、図10の上段に示したような基準信号111に対して、各電源パックの役割番号ごとに電圧範囲と閾値がそれぞれ設定され、これと基準信号111を比較することで、図10の中段に示したようなスイッチング信号202a、202b、202cおよび202dがスイッチング信号生成部12において生成される。
 次に、本実施形態における各電源パックに対する役割番号とその負担電流との関係について、図11を用いて説明する。図11は、図10に示したスイッチング信号202a、202b、202cおよび202dに従って電源システム2が交流出力を行う際の各電源パックにおける電池211、221、231、241の電流の時系列波形の例を示す図である。
 図11の上段には、図10に示したのと同様のスイッチング信号202a、202b、202cおよび202dを示している。図11の中段には、電源システム2全体での出力における出力電流253の波形例を示している。図11の下段には、各役割番号A,B,C、Dに対応する電源パック21、22、23、24の電池211、221、231、241がそれぞれ出力する電池電流253a、253b、253c、253dの波形例を示している。これらの波形は、いずれも横軸が時刻を表している。
 本実施形態において、役割番号A,B,Cが割り当てられた各電源パックでは、第1の実施形態で説明したのと同様のスイッチング動作が行われる。したがって、これらに対応する電池電流253a、253b、253cの波形は、図5に示した電池電流251a、251b、251cとそれぞれ同一である。一方、役割番号Dが割り当てられた電源パックに対するスイッチング信号202dは、前述のように常にバイパスモードである。したがって、これに対応する電池電流253dは、図11に示すとおり常にゼロとなる。
 次に、本実施形態における割当部13の処理について説明する。以下では、第1の実施形態と同様に電源パック21の電池211をSOCの操作対象電池として選択し、この電池211のSOCを低SOC領域または高SOC領域とする場合について、図12を用いて説明する。図12は、第2の実施形態において各電源パックに対して割当部13が割り当てる役割番号と、各電源パックでのSOCの経時変化の様子とを示す図である。図7の上段に実線で示したグラフ82は、電源パック21における電池211のSOCの経時変化を示しており、図8の下段に実線で示したグラフ83は、それ以外の電源パック22、23、24における電池221、231、241のSOCの経時変化を共通に示している。また破線で示したグラフ81は、電源システム2全体でのSOCの経時変化を示している。なお、図12でも前述の図7と同様に、電源システム2と負荷3の間で充電と放電が交互に繰り返され、電源システム2全体の平均でのSOCは中心付近を推移して低SOC領域や高SOC領域に入ることがない状況の例を示している。
 時刻T0では、電源パック21、22、23および24のSOCはいずれも同程度であり、その全てが低SOC領域と高SOC領域の間の範囲内にある。このような状態で電源システム2の充電が開始されて電源システム2全体のSOCが上昇を開始すると、前述の第1の実施形態と同様に、割当部13は、いずれかの電源パックの電池(ここでは電源パック21の電池211)を操作対象電池として、そのSOCを高SOC領域に遷移させるべく、電源パック21に対して最も負荷の大きい役割番号Aを連続して割り当てる。また、他の電源パック22、23、24に対しては、残りの役割番号B、C、Dをそれぞれ割り当てる。このとき、役割番号B、C、Dを電源パック22、23、24に交互に割り当ててもよい。これにより、スイッチング信号生成部12から電源パック21、22、23、24の電力変換器213、223、233、243に対して、それぞれの役割番号A、B、C、Dに応じたスイッチング信号202a、202b、202c、202dが出力され、電力変換器213、223、233、243が制御される。
 時刻T1において電源パック21の電池211のSOCが高SOC領域に入ったら、割当部13は、このSOCがそれ以上変化しないように、電源パック21に対して無負荷の役割番号Dを連続して割り当てる。一方、他の電源パック22、23、24に対しては、残りの役割番号A、B、Cをそれぞれ割り当てる。このとき、役割番号A、B、Cを電源パック22、23、24に交互に割り当ててもよい。これにより、SOCの操作対象電池として選択した電源パック21の電池211が高SOC領域となった後には、この電池211の平均負荷電流がゼロとなり、それによって電力変換器213から出力される交流電力もゼロとなるように、各電源パックの電力変換器213、223、233、243の動作が制御される。
 以上説明したように電源パック21の電池211のSOCが高SOC領域に入っているときに、SOC推定部14は、電池211の電圧に基づいてSOCを推定する。このとき、電源パック21に対して前述のように無負荷の役割番号Dを割り当てることで、電池211の内部抵抗や分極成分による誤差影響を排除して電池電圧を測定し、SOCの推定を行うことができるようにしている。なお、一度電池電圧に基づいてSOCを推定した後は、第1の実施形態と同様に、そのSOCの推定結果をSOC(t0)として、前述の式(1)により電流積算に基づいたSOCの推定を行ってもよい。
 ここで、上記のように電源パック21に対して無負荷の役割番号Dを連続して割り当てることでそこから出力される交流電力を0とする期間は、各電源パックの電力変換器213、223、233、243から出力される交流電力を合成することで電源システム2が発生する合成交流電力の1周期、すなわち図11に示した電源システム2全体での出力電流253の1周期に、電源システム2における電力変換器213、223、233および243の構成数である4を乗じた期間よりも、少なくとも長い期間とすることが好ましい。このようにすれば、電池211のSOCを推定する際に、上記の誤差影響を効果的に排除することができる。なお、具体的な期間の長さは、電池211の特性等に応じて決定すればよい。
 時刻T2において電源システム1が充電から放電に切り替えられると、割当部13は、電源パック21の電池211のSOCと他の電源パック22、23、24の電池221、231、241のSOCとが同程度となるように、電源パック21に対して再び役割番号Aを連続して割り当てる。一方、他の電源パック22、23、24に対しては、残りの役割番号B、C、Dをそれぞれ割り当てる。このとき、前述のように役割番号B、C、Dを電源パック22、23、24に交互に割り当ててもよい。
 その後、時刻T3において電源パック21、22、23、24の電池211、221、231、241の各SOCが概ね一致したら、割当部13は、電源パック21、22、23、24に対して役割番号A、B、C、Dを交互に均等に割り当てる通常状態に移行する。これにより、通常状態では、電源パック21、22、23、24の電池211、221、231、241の各SOCが均等に変化するように、電源パック21、22、23、24の電力変換器213、223、233、243をそれぞれ制御する。
 以上説明したような処理を行うことで、第1の実施形態と同様に、電源パック21の電池211のSOCを積極的に高SOC領域に移動させてSOCを測定することができる。これにより、SOC検知精度の向上を図ることができる。
 以上説明したように、図12の前半部分では、時刻T0において電源システム2の充電が開始され、その後に時刻T2から放電が開始される場合に、電源パック21の電池211を操作対象電池として、そのSOCを高SOC領域に変化させる処理を行う。なお、図12の後半部分では、第1の実施形態で説明したのと同様に、前半部分とは反対の動作が行われるが、その説明については省略する。
 なお、以上の処理では、電源パック21に着目してその電池211のSOCを積極的に変化させたが、他の電源パック22、23、24に対しても、電源パック21と同様の処理を交互に行うことができる。このようにすれば、電源システム2を構成する電源パック21、22、23、24の全てについて、電池電圧から高精度にSOCを測定することができる。
 以上説明した本発明の第2の実施形態によれば、第1の実施形態で説明した(1)~(6)の各作用効果に加えて、さらに下記(7)の作用効果も奏することができる。
(7)電源システム2は、複数の電力変換器213、223、233および243のうちいずれか少なくとも1つの電力変換器から出力される交流電力を略0として合成交流電力を発生する。制御装置10は、操作対象電池のSOCが低SOC領域または高SOC領域となったら、その操作対象電池に対応する電力変換器から出力される交流電力が上記の合成交流電力の1周期に電力変換器213、223、233および243の構成数を乗じた期間よりも長い期間連続して略0となるように、電力変換器213、223、233および243を制御する。このようにしたので、無負荷状態で操作対象電池の電圧を測定し、その電圧を基に、より一層高精度にSOCを推定することができる。
 なお、以上説明した各実施の形態では、電源システム1を構成する電源パックの数を3つとし、電源システム2を構成する電源パックの数を4つとしてそれぞれ説明したが、電源パックの数はこれらの例に限定されない。2つ以上であれば、任意の個数の電源パックを用いて本発明の電源システムを構成することができる。
 また、以上説明した各実施の形態では、1つの電源パックの電池のみをSOCの操作対象電池として選択する例をそれぞれ説明したが、SOCの操作対象とする電池は必ずしも1つである必要はない。本発明の電源システムを構成する電源パック数が多数である場合は、同時に複数の電源パック(ただし、電源パックの総数と比べて少数)の電池をSOCの操作対象電池として選択しても構わない。
 また、上記の各実施形態では、単体で交流電圧出力を生成する電源システム1および2の例を説明したが、さらに必要な制御構成を追加することで、外部との系統連携を行う電源システムとすることも考えられる。すなわち、外部の交流電力系統と同期して動作し、外部からの要求に応じて電力を入出力するような電源システムにおいても、本発明は適用可能である。
 上記の各実施形態では、各電源パックにおいてリチウムイオン二次電池を用いた例を説明した。リチウムイオン二次電池は、過充電や過放電に対する管理の必要性が大きく、そのためSOCの推定精度に対する要求が高いことから、本発明を好適に適用できる。しかし、リチウムイオン二次電池以外を用いた場合にも本発明は適用可能である。たとえば、鉛電池、ニカド電池、ニッケル水素電池、電気二重層キャパシタ、リチウムイオンキャパシタなど、SOCによって電圧が変化する蓄電デバイスであれば、上記の各実施形態で説明したのと同様の処理を行うことで本発明を適用することができる。
 上記の各実施形態では、SOCと相関のある電池のパラメータとして電池電圧を用いた制御の例を説明したが、SOCと相関の有る他のパラメータを電池電圧の代わりに用いることもできる。たとえば、電池の内部抵抗や分極成分がSOCに対して大きな相関を持ち、さらに、SOCの変化に対するこれらの値の傾きがSOCの大きさに応じて変化しており図6のような低SOC領域や高SOC領域が定義できるような場合は、これらを電池電圧の代わりに用いて、上記の各実施形態で説明したのと同様の処理を行ってもよい。このようにしても、各実施形態で説明したのと同等の作用効果を得ることができる。
 なお、以上説明したような各種の変形例は、それぞれ単独で適用しても、任意に組み合わせて適用してもよい。
 以上説明した各実施形態や各種の変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。

Claims (7)

  1.  複数の電池と、
     前記複数の電池の各々と接続され、各電池からの直流電力を交流電力に変換すると共に、外部からの交流電力を直流電力に変換することができ、互いに直列に接続された複数の電力変換器と、
     前記各電池の状態を検知する電池状態検知装置と、
     前記電池状態検知装置により検知された前記各電池の状態に基づいて、前記各電池の充電状態を示す値であるSOCを推定し、前記複数の電力変換器を制御する制御装置とを備え、
     前記制御装置は、前記複数の電池のSOCが全て所定の低SOC領域と高SOC領域の間の範囲内であるときに、前記複数の電池のうち一部の電池を操作対象電池として選択し、当該操作対象電池のSOCが前記低SOC領域または前記高SOC領域となるように、前記複数の電力変換器を制御する電源システム。
  2.  請求項1に記載の電源システムにおいて、
     前記電源システムは、前記複数の電力変換器から出力される交流電力を合成することにより、周期的に変化する合成交流電力を発生し、
     前記制御装置は、前記操作対象電池のSOCが前記低SOC領域または前記高SOC領域となったら、前記合成交流電力の1周期に前記複数の電力変換器の構成数を乗じた期間における前記操作対象電池の平均負荷電流が他の電池の平均負荷電流よりも小さくなるように、前記複数の電力変換器を制御する電源システム。
  3.  請求項2に記載の電源システムにおいて、
     前記電源システムは、前記複数の電力変換器のうちいずれか少なくとも1つの電力変換器から出力される交流電力を略0として前記合成交流電力を発生し、
     前記制御装置は、前記操作対象電池のSOCが前記低SOC領域または前記高SOC領域となったら、前記操作対象電池に対応する電力変換器から出力される交流電力が前記合成交流電力の1周期に前記複数の電力変換器の構成数を乗じた期間よりも長い期間連続して略0となるように、前記複数の電力変換器を制御する電源システム。
  4.  請求項1乃至3のいずれか一項に記載の電源システムにおいて、
     前記低SOC領域は、前記各電池のSOCとOCVの関係を表したSOC対OCV特性において、その傾きが全SOC範囲における傾きの平均値よりも大きい2つの領域のうちSOCが低い方の領域であり、
     前記高SOC領域は、前記2つの領域のうちSOCが高い方の領域である電源システム。
  5.  請求項1乃至3のいずれか一項に記載の電源システムにおいて、
     前記電池状態検知装置は、前記各電池の状態として、前記各電池の電流および電圧を測定し、
     前記制御装置は、
     直前に推定したSOCが前記低SOC領域または前記高SOC領域にある電池については、前記電池状態検知装置により測定された当該電池の電圧に基づいて当該電池のSOCを推定し、
     直前に推定したSOCが前記低SOC領域と前記高SOC領域の間の範囲内にある電池については、前記電池状態検知装置により測定された当該電池の電流に基づいて当該電池のSOCを推定する電源システム。
  6.  請求項1乃至3のいずれか一項に記載の電源システムにおいて、
     前記制御装置は、
     時間に応じて変化する電圧波形の基準信号を発生する基準信号発生部と、
     前記電池状態検知装置により検知された前記各電池の状態に基づいて、前記各電池のSOCを推定するSOC推定部と、
     前記SOC推定部により推定された前記各電池のSOCに基づいて、前記各電池が担当する電圧範囲をそれぞれ割り当てる割当部と、
     前記基準信号および前記割当部により割り当てられた前記各電池の電圧範囲に基づいて、前記複数の電力変換器をそれぞれ動作させるためのスイッチング信号を生成するスイッチング信号生成部とを備え、
     前記複数の電力変換器は、前記スイッチング信号に応じてそれぞれ動作する電源システム。
  7.  請求項1乃至3のいずれか一項に記載の電源システムにおいて、
     前記各電池は、リチウムイオン二次電池である電池セルを複数個接続して構成される電源システム。
PCT/JP2012/065477 2012-06-18 2012-06-18 電源システム WO2013190610A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065477 WO2013190610A1 (ja) 2012-06-18 2012-06-18 電源システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065477 WO2013190610A1 (ja) 2012-06-18 2012-06-18 電源システム

Publications (1)

Publication Number Publication Date
WO2013190610A1 true WO2013190610A1 (ja) 2013-12-27

Family

ID=49768241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065477 WO2013190610A1 (ja) 2012-06-18 2012-06-18 電源システム

Country Status (1)

Country Link
WO (1) WO2013190610A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147311A1 (ja) * 2015-03-17 2016-09-22 株式会社東芝 蓄電池管理装置、方法及びプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058257A (ja) * 2000-08-08 2002-02-22 Fuji Electric Co Ltd 多重電力変換器の制御装置
JP2010228523A (ja) * 2009-03-26 2010-10-14 Hitachi Ltd 車両用電池システム
JP2010283922A (ja) * 2009-06-02 2010-12-16 Toyota Motor Corp 車両の制御装置
JP2011095023A (ja) * 2009-10-28 2011-05-12 Honda Motor Co Ltd 容量劣化蓄電池セル群の検出方法、および蓄電池セル群容量劣化抑制制御装置
WO2012050207A1 (ja) * 2010-10-15 2012-04-19 三洋電機株式会社 蓄電システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058257A (ja) * 2000-08-08 2002-02-22 Fuji Electric Co Ltd 多重電力変換器の制御装置
JP2010228523A (ja) * 2009-03-26 2010-10-14 Hitachi Ltd 車両用電池システム
JP2010283922A (ja) * 2009-06-02 2010-12-16 Toyota Motor Corp 車両の制御装置
JP2011095023A (ja) * 2009-10-28 2011-05-12 Honda Motor Co Ltd 容量劣化蓄電池セル群の検出方法、および蓄電池セル群容量劣化抑制制御装置
WO2012050207A1 (ja) * 2010-10-15 2012-04-19 三洋電機株式会社 蓄電システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147311A1 (ja) * 2015-03-17 2016-09-22 株式会社東芝 蓄電池管理装置、方法及びプログラム
JPWO2016147311A1 (ja) * 2015-03-17 2018-01-11 株式会社東芝 蓄電池管理装置、方法及びプログラム
EP3273524A4 (en) * 2015-03-17 2018-04-11 Kabushiki Kaisha Toshiba Storage-battery management device, method, and program

Similar Documents

Publication Publication Date Title
US9979209B2 (en) Battery management system for generating a periodic alternating voltage based on battery state of wear
JP5715694B2 (ja) 電池制御装置、電池システム
JP5771210B2 (ja) 複数の電気セルをバランスするための方法及びシステム
CN110383620B (zh) 用于运行模块化电池组存储器系统的方法、模块化电池组存储器系统和用于其的电池组管理系统
JP5397013B2 (ja) 組電池の制御装置
EP2548282A2 (en) Cell balancing system
JP2018011454A (ja) 電池監視システム
EP3081425A1 (en) Vehicle power management device
JP2017083268A (ja) 蓄電装置、輸送機器及び制御方法
Pham et al. A new cell-to-cell fast balancing circuit for lithium-ion batteries in electric vehicles and energy storage system
JP6220904B2 (ja) 蓄電装置
US10525835B2 (en) Power control apparatus and power control system
US20130070901A1 (en) Optimized switching for a multilevel generator
JP2021019400A (ja) 蓄電システム
JP2011130534A (ja) 車両用電源装置
JP2012157162A (ja) 電力伝達用絶縁回路および電力変換装置
WO2013190610A1 (ja) 電源システム
US10461642B2 (en) Boosting a regenerative voltage and selecting a boost converter based on efficiency
CN107046306B (zh) 电池控制装置
JP2017112734A (ja) バッテリ制御システム
JP2017139082A (ja) 蓄電システム、および電圧検出装置
JP2011019328A (ja) 蓄電装置システムおよび蓄電装置出力制限方法
JP4706886B1 (ja) 電力伝達用絶縁回路および電力変換装置
JP2016119167A (ja) 電源システム
JP2019102136A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879353

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP