WO2013190164A1 - Solid oxide electrolyte membrane supported on doped silicon ribs for uses in micro solid-oxide fuel cells - Google Patents

Solid oxide electrolyte membrane supported on doped silicon ribs for uses in micro solid-oxide fuel cells Download PDF

Info

Publication number
WO2013190164A1
WO2013190164A1 PCT/ES2013/070406 ES2013070406W WO2013190164A1 WO 2013190164 A1 WO2013190164 A1 WO 2013190164A1 ES 2013070406 W ES2013070406 W ES 2013070406W WO 2013190164 A1 WO2013190164 A1 WO 2013190164A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic
silicon
membrane
doped silicon
ribs
Prior art date
Application number
PCT/ES2013/070406
Other languages
Spanish (es)
French (fr)
Inventor
Iñigo GARBAYO SENOSIAIN
María de les Neus SABATÉ VIZCARRA
Marc SALLERAS FREIXES
Albert TARANCÓN RUBIO
Alex MORATA GARCÍA
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Fundació Institut De Recerca En Energia De Catalunya (Irec)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Fundació Institut De Recerca En Energia De Catalunya (Irec) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2013190164A1 publication Critical patent/WO2013190164A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention is located within the area of microelectronics, more specifically in the manufacture of microsystems and the energy production sector.
  • the invention relates to solid oxide micro fuel cells, in particular to increasing the effective area of self-supporting electrolytic membranes.
  • micro-batteries and the micro fuel cells appear to be the most viable to manufacture, due to their high lifetime, high energy density and integration capacity.
  • micro fuel cells In the face of micro-batteries, nowadays developed and marketed as an energy source for portable devices, micro fuel cells have recently received great interest from the community scientific Although the concept has been known for decades (for large-scale energy production), now the goal has been to develop them on a small scale, for applications in the low power regime. Advantages such as its high energy density, the emission of non-polluting waste (water) and the possibility of avoiding possible moving parts (micro motors, micro turbines ...) make micro fuel cells really attractive.
  • electrolyte acts as a barrier for electrons that are exchanged in redox reactions, forcing them to travel an external circuit and thus generating the electric current.
  • electrolyte must allow the passage of certain ions through it, in order to complete the ion exchange between the two reactions.
  • the different types of fuel cell differ basically in the material that the electrolyte is made of and, as a consequence, in the ionic species that are exchanged through it during the process.
  • PEMFC polymeric electrolytic membrane fuel cells
  • SOFC solid oxide fuel cells
  • the electrolyte is made of a protonic conductive polymer (H + )
  • H + protonic conductive polymer
  • SOFC solid oxide fuel cells
  • the reactions that occur on each side of the electrolyte are the reduction of oxygen to oxide ions in the cathode (O2 + 2e ⁇ 20 2 ⁇ ) and the oxidation of fuel (3 ⁇ 4, for example) to protons in the anode (3 ⁇ 4 2H + + 2e ⁇ ).
  • the electrons generated in this reaction travel through an external circuit until they reach the cathode, thus closing the electronic exchange in the reaction and generating the electric current.
  • Protons (H + ) and ions (0 2 ⁇ ) combine well in the cathode (in PEMFCs), or in the anode (SOFC) forming 3 ⁇ 40 as a residue.
  • SOFCs solid oxide micro fuel cells
  • the invention presented here proposes a new approach to the objective of obtaining self-supported membranes of large area, with the aim of improving the maximum power achievable in a single SOFC thus improving its energy density.
  • the invention consists in the development and manufacturing of large surface solid oxide micro fuel cells.
  • the micro fuel cells are based on self-supported membranes on silicon-based micro platforms.
  • the process includes the manufacture of electrolytic membranes based on thin ceramic layers and the inclusion of electrodes on both sides of the membrane.
  • a unique aspect of the invention is the manufacture of the electrolytic membrane.
  • This membrane is manufactured supported on the silicon platform, in whose center a silicon-free area is defined, where the membrane is located.
  • the electrolytic membrane can be made of any electrolytic material typically used in SOFC, for example YSZ or CGO.
  • the material is deposited by means of any thin layer deposition technique, including pulsed laser deposition (PLD), chemical vapor vapor deposition (CVD), sputtering, evaporation ... and can comprise a thickness range between 5 nm and the 5 ⁇ .
  • PLD pulsed laser deposition
  • CVD chemical vapor vapor deposition
  • sputtering evaporation ...
  • Another unique aspect of the invention is the use of silicon ribs as a support for electrolytic membranes, since they have larger areas than usual. During the manufacturing process of the silicon platform that supports the membranes, a series of silicon ribs is defined by crossing the silicon-free zone for the membrane. These nerves act as a support for the ceramic membrane, thus allowing the silicon-free zone to be larger than normal.
  • the membrane may have some dimensions of between 500x500 ⁇ and 50x50 mm, taking into account that part of this area will be occupied by the nerves.
  • Doped silicon nerves have a thickness between 1 and 50 ⁇ and a width between 1 and 200 ⁇ . Being crosslinked, they define a series of singular membranes that, together, form the membrane of large area. These singular membranes can have different geometries, depending on the design of the network of nerves, including the circular, square, hexagonal, triangular geometry ... The dimensions of these singular membranes must always be greater than the width intended for the silicon ribs that define them.
  • the geometry of the large area membrane can also vary depending on the design of the nerve network, in order to optimize the distribution of the singular membranes. In this sense, large area membranes can comprise series of singular membranes between 2x2 and 50x50 membranes.
  • the electrodes are deposited (anode and cathode). These electrodes can be made of any metal, for example Pt, Ag, Ni ... but also of ceramic materials or cermets. The electrodes can be deposited using the same thin layer deposition technique as for the electrolyte, or a different one depending on the material chosen as the electrode.
  • Another particular aspect of the invention is the use of doped silicon ribs also as current collectors for one of the electrodes, as well as as support ribs.
  • doped silicon ribs also as current collectors for one of the electrodes, as well as as support ribs.
  • both electrodes it allows the electrical contacts of both electrodes to be made from the same side of the silicon platform, through the use of buried doped silicon tracks that contact the network of nerves in the membrane and the contact point.
  • the invention contemplates the possibility of adding an extra metallic current collector on the opposite electrode, which is not in contact with the doped silicon.
  • This current collector would be formed by a network of metal tracks in the form of a mesh. The metal tracks would be deposited on the electrode, in the same areas as the doped silicon nerves. In this way, it would be possible to have current collectors for both electrodes while maintaining the total active area of the battery.
  • the dimensions of the metal tracks are therefore limited by the dimensions of the ribs, always being as wide as possible and following the architecture of the rib network.
  • the thickness of the metal collector could vary between 50 nm and 5 ⁇ .
  • Another particular aspect of the invention consists in the inclusion of a micro heater to locally heat the electrolytic membrane.
  • the invention includes the possibility of implementing a resistive type micro heater based on metal tracks forming a coil.
  • the heater is located on the silicon ribs, so it does not imply any loss of effective membrane area.
  • the heater is passivated with layers dielectrics that prevent electrical leakage.
  • the dimensions of the metal tracks are always determined by the dimensions of the ribs, so that the metal tracks of the heater are always narrower than the ribs.
  • the thickness of the heater tracks can vary between 10 nm and 2 ⁇ and can be made of various materials, including metals typically used to manufacture micro heaters in micro electronics (Pt, Au, W ).
  • This element is particularly useful considering that the operating temperatures of SOFCs are between 400 and 600 ° C.
  • the implementation of a micro heater allows the active part of the micro stack (the electrolytic membrane, plus the two electrodes) to reach the corresponding working temperature while the support platform is practically maintained at room temperature. This fact greatly simplifies the maneuverability of the device, also making it easier to seal the platform with the interconnects. When sealing at room temperature, the risks of rupture are drastically reduced due to the different thermal expansion of the materials involved.
  • Figure 1 (a) Scheme of a solid oxide micro fuel cell according to the invention, (b) Scheme of a solid oxide micro fuel cell according to the invention, including a micro heater.
  • FIG. 3 Diagram of a large surface electrolytic membrane supported on nerves of doped silicon with different geometries of the singular membranes (top view): (a) hexagonal, (b) square, (c) circular. In (a) a scheme of a membrane is also represented Large surface electrolytic including a micro heater (top view).
  • the present invention consists in the use of doped silicon ribs for the manufacture of large surface solid oxide micro fuel cells.
  • Figure 1 (a) shows a diagram of a complete SOFC supported on a silicon platform ⁇ substrate), where the different components of the device can be distinguished.
  • the silicon ribs located below the fine electrolyte allow the manufacture of membranes with larger areas.
  • the porous anode and the porous cathode are deposited on both sides of the electrolyte completing the battery.
  • the porous anode also covers the silicon nerves, establishing contact with them and thus allowing the collection of the current generated at the anode through them ⁇ contact of the anode).
  • the electrical connections of both electrodes are, therefore, on the cathode side.
  • Figure 1 (b) also shows a scheme of a SOFC according to the invention, but in this case including a micro heater to locally heat the membrane, while the rest of the device ⁇ substrate) is kept at room temperature.
  • the metal tracks of the heater are deposited on the silicon ribs coated on both sides with insulating dielectric layers.
  • the heater contacts are also placed on the cathode side, as are the anode and cathode contacts.
  • Figure 2 shows the manufacturing process for obtaining the device described in Figure 1 (b).
  • the manufacture of the device as described in Figure 1 (a) is similar, only that steps 2 (d) and 2 (e) They must skip.
  • the different components of the device are marked with numbers so that they can be easily identified.
  • Table (table 1) shows what each number corresponds to.
  • the areas (2) where you wish to dop the silicon substrate (1) are defined by photolithography. These areas correspond to the future nerves of doped silicon.
  • the silicon ribs have a width wl and are separated from each other by a distance w2.
  • the ribs have a circular section due to semi ⁇ isotropic doping process.
  • the tracks where the metal is deposited are defined by photolithography (5). Through a lift-off process, the metal remains only in the defined areas, giving rise to the coil-shaped heater. In the same process, a metallic layer is also deposited on the area destined to contact the silicon ribs (anode current collection). Thus, a good electrical contact with the doped silicon is ensured.
  • the metal tracks of the heater have a thickness ti and a width w4.
  • a dielectric layer is deposited on the entire substrate, except in the areas destined for the electrical contacts for the anode and the heater ⁇ 5a and 5b, respectively).
  • the dielectric layer is deposited on the entire substrate, and subsequently, by a photolithography process, it is selectively removed from the desired areas (contacts).
  • the layers of silicon nitride and silicon oxide are removed in certain areas of the back side of the substrate. Thus, the areas where the silicon will be subsequently engraved to create the membranes are defined. The defined area will have a width w5.
  • the silicon substrate (1) and the silicon oxide layer (3) of the upper face are removed by wet etching with KOH and HF respectively, made from the face back of the substrate.
  • the silicon nitride layer on the back side acts as a mask allowing the etching of silicon only in the desired areas.
  • These zones define large surface silicon nitride membranes supported on the silicon ribs, which will act as a substrate during the electrolyte deposition in the next step. Doped silicon is selective when taxed with KOH, so the nerves are not recorded during this step. Due to the anisotropic etching of silicon, the width of the w6 membrane will always be smaller than the width defined during the etching of the silicon nitride on the back side in the previous step (w5).
  • the ceramic electrolyte (7), with a thickness t2, is deposited by a thin layer deposition technique on the insulating layer (6).
  • the cathode (8) and anode (5) electrodes, with thicknesses t3 and t4 respectively, are deposited on both sides of the substrate and the membrane.
  • the possible materials are multiple, including metals and ceramics or cermets. Also, these electrodes can be deposited by different thin layer deposition techniques.
  • Figure 3 shows top views of different large surface electrolytic membranes.
  • the support silicon ribs (2) define self-supporting singular membranes (1), with different geometries: hexagonal (a), square (b) or circular (c). In all three cases, a large surface membrane consisting of a set of 5x5 singular membranes is illustrated, although the number of singular membranes per large surface membrane may vary, forming larger or smaller membranes.
  • the coil shape of the micro heater (3) can be seen in Figure 3 (a).
  • the metal tracks of the heater follow the geometry of the ribs (2) on which they are supported.
  • Figure 4 shows optical microscope images of some of the large surface membranes manufactured in accordance with the manufacturing process detailed in Figure 2.
  • the membranes correspond to the geometry detailed in Figure 3 (a), although in In this case a series of "secondary" (much finer) silicon nerves were added forming triangles within the hexagons, to ensure a good distribution of heat throughout the entire membrane.
  • Example 1 Manufacture of a large surface YSZ membrane supported on nerves of doped silicon.
  • a 200 nm thick YSZ membrane was manufactured according to the manufacturing process detailed in Figure 2 (skipping steps d and d).
  • a 300 nm silicon nitride pre-membrane supported on the network of doped silicon ribs was manufactured.
  • the dimensions of the doped silicon nerves were defined as 85 ⁇ in width and 10 ⁇ in maximum thickness, and distributed so as to define singular hexagonal membranes with a side of 150 ⁇ .
  • the YSZ was deposited on said nitride pre-membrane by PLD. Subsequently, silicon nitride was removed by RIE from the back side of the membrane, thus releasing the self-supported YSZ membrane in the silicon nerves.
  • Example 2 Manufacture of a SOFC based on a large surface YSZ membrane supported on doped silicon ribs.
  • a large surface SOFC can be manufactured following the same steps as in example 1 but adding the electrode reservoir and current collectors.
  • platinum electrodes were deposited by sputtering, thus completing the fuel cell.
  • the thickness of the electrode was defined as 80 nm, to form a porous layer by heat treatment of the platinum layers at 600 ° C.
  • doped silicon nerves were also used as current collectors.
  • the Pt layer it was not only deposited on the YSZ membrane but also on the silicon ribs (see figure 2j, element 9).
  • a good electrical contact between the electrode and the current collector was ensured.
  • a contact was opened through the dielectric layers on the cathode side to be able to contact the doped silicon ribs (see Figure 2c). Therefore, the current collection of both electrodes was made from the same side of the cathode.
  • Example 3 Manufacture of a SOFC based on a large surface YSZ membrane supported on doped silicon ribs, including a buried micro heater.
  • a large surface SOFC with a micro heater integrated in the membrane can be manufactured following the same steps as in examples 1 and 2, but including the corresponding manufacturing steps with the tank and micro heater insulation (dye steps in figure 2).
  • a coil-shaped tungsten heater was deposited on the silicon nitride on the cathode side, defining W tracks on the silicon ribs (see figure 3a).
  • the thickness of the heater tracks was set at 500 nm, while its width at 50 ⁇ .
  • a 500 nm insulating layer of silicon oxide was subsequently deposited covering the heater to avoid short circuits with the electrodes or the current collector.

Abstract

The invention relates to a solid oxide fuel cell comprising: (a) a substrate having at least one cavity for forming a membrane; (b) an electrolyte membrane based on a thin layer of a solid oxide of more than 5 nm but less than 5 μm in thickness, covering the cavity formed in the substrate; (c) a network of doped silicon ribs crossing the cavity just below the electrolyte membrane, such as to serve as a support for the electrolyte, said silicon ribs defining individual electrolyte membranes, the size of which is always greater than the thickness of the ribs and which together form the large-surface electrolyte membrane; and (d) two fine layers acting as electrodes, deposited on each side of the electrolyte membrane. The invention also relates to the method for producing said fuel cell.

Description

MEMBRANA ELECTROLÍTICA DE ÓXIDO SÓLIDO SOPORTADA SOBRE NERVIOS DE SILICIO DOPADO PARA APLICACIONES EN MICRO PILAS DE COMBUSTIBLE DE ÓXIDO SÓLIDO  SOLID OXIDE ELECTROLYTIC MEMBRANE SUPPORTED ON DOPED SILICON NERVES FOR APPLICATIONS IN MICRO BATTERIES OF SOLID OXIDE FUEL
DESCRIPCIÓN DESCRIPTION
Sector de la técnica Technical sector
La invención se emplaza dentro del área de la microelectrónica, más concretamente en la fabricación de microsistemas y el sector de producción de energía. La invención se refiere a micro pilas de combustible de óxido sólido, en particular al incremento del área efectiva de membranas electrolíticas auto-soportadas. The invention is located within the area of microelectronics, more specifically in the manufacture of microsystems and the energy production sector. The invention relates to solid oxide micro fuel cells, in particular to increasing the effective area of self-supporting electrolytic membranes.
Estado de la técnica State of the art
La proliferación de dispositivos electrónicos portátiles en la vida diaria (incluyendo teléfonos móviles, portátiles...) requiere de la búsqueda de nuevas fuentes de energía compatibles con este tipo de dispositivos. Desde el punto de vista de la funcionalidad, la integración de una fuente de energía en el mismo dispositivo es una solución muy apropiada. Esto implica la fabricación de sistemas de pequeño tamaño, de alta densidad energética, y compatibles con los demás componentes del dispositivo. El desarrollo de estas fuentes de energía para aparatos portátiles se ha convertido en un campo de investigación tremendamente activo en los últimos años. The proliferation of portable electronic devices in daily life (including mobile phones, laptops ...) requires the search for new energy sources compatible with this type of device. From the point of view of functionality, the integration of a power source in the same device is a very appropriate solution. This implies the manufacture of systems of small size, high energy density, and compatible with the other components of the device. The development of these energy sources for portable devices has become a tremendously active research field in recent years.
Dentro de todas las diferentes alternativas, las micro- baterías y las micro pilas de combustible aparecen como las más viables de fabricar, debido a su alto tiempo de vida, alta densidad energética y capacidad de integración. Within all the different alternatives, the micro-batteries and the micro fuel cells appear to be the most viable to manufacture, due to their high lifetime, high energy density and integration capacity.
Frente a las micro-baterías, hoy en día ya desarrolladas y comercializadas como fuente energética para dispositivos portátiles, las micro pilas de combustible han recibido recientemente un gran interés por parte de la comunidad científica. Aunque el concepto es conocido desde hace décadas (para producción de energía a gran escala) , ahora el objetivo se ha puesto en desarrollarlas en pequeña escala, para aplicaciones en el régimen de baja potencia. Ventajas tales como su alta densidad energética, la emisión de residuos no contaminantes (agua) y la posibilidad de evitar posibles partes móviles (micro motores, micro turbinas...) hacen a las micro pilas de combustible realmente atractivas . In the face of micro-batteries, nowadays developed and marketed as an energy source for portable devices, micro fuel cells have recently received great interest from the community scientific Although the concept has been known for decades (for large-scale energy production), now the goal has been to develop them on a small scale, for applications in the low power regime. Advantages such as its high energy density, the emission of non-polluting waste (water) and the possibility of avoiding possible moving parts (micro motors, micro turbines ...) make micro fuel cells really attractive.
El principio de actuación de una pila de combustible se basa en dos reacciones de oxidación y reducción que ocurren a ambos lados de una membrana electrolítica. Dicha membrana, conocida como electrolito, actúa como barrera para los electrones que se intercambian en las reacciones redox, forzándolos a recorrer un circuito externo y generando así la corriente eléctrica. Por el contrario, el electrolito debe permitir el paso de ciertos iones a su través, para así completar el intercambio iónico entre las dos reacciones. The principle of action of a fuel cell is based on two oxidation and reduction reactions that occur on both sides of an electrolytic membrane. This membrane, known as electrolyte, acts as a barrier for electrons that are exchanged in redox reactions, forcing them to travel an external circuit and thus generating the electric current. On the contrary, the electrolyte must allow the passage of certain ions through it, in order to complete the ion exchange between the two reactions.
Los diferentes tipos de pila de combustible se diferencian básicamente en el material de que está hecho el electrolito y, como consecuencia, en las especies iónicas que son intercambiadas a su través durante el proceso. Entre todos los tipos, las más prometedoras para ser miniaturizadas y así ser integradas en dispositivos portátiles son las pilas de combustible de membrana electrolítica polimérica (PEMFC, por sus siglas en inglés) y las pilas de combustible de óxido sólido (SOFC) . En el caso de las PEMFC el electrolito está hecho de un polímero conductor protónico (H+) , mientras que en una SOFC el electrolito es una cerámica con propiedades de conductor iónico (02~) . Las reacciones que ocurren a cada lado del electrolito son la reducción del oxígeno a iones óxido en el cátodo (O2 + 2e~ 202~) y la oxidación del combustible (¾, por ejemplo) a protones en el ánodo (¾ 2H+ + 2e~) . Los electrones generados en esta reacción recorren un circuito externo hasta llegar al cátodo, cerrando asi el intercambio electrónico en la reacción y generando la corriente eléctrica. Los protones (H+) y los iones (02~) se combinan bien en el cátodo (en las PEMFC) , bien en el ánodo (SOFC) formando ¾0 como residuo. The different types of fuel cell differ basically in the material that the electrolyte is made of and, as a consequence, in the ionic species that are exchanged through it during the process. Among all types, the most promising to be miniaturized and thus be integrated into portable devices are polymeric electrolytic membrane fuel cells (PEMFC) and solid oxide fuel cells (SOFC). In the case of PEMFCs, the electrolyte is made of a protonic conductive polymer (H + ), while in an SOFC the electrolyte is a ceramic with ionic conductor properties (0 2 ~ ). The reactions that occur on each side of the electrolyte are the reduction of oxygen to oxide ions in the cathode (O2 + 2e ~ 20 2 ~ ) and the oxidation of fuel (¾, for example) to protons in the anode (¾ 2H + + 2e ~ ). The electrons generated in this reaction travel through an external circuit until they reach the cathode, thus closing the electronic exchange in the reaction and generating the electric current. Protons (H + ) and ions (0 2 ~ ) combine well in the cathode (in PEMFCs), or in the anode (SOFC) forming ¾0 as a residue.
Estudios recientes muestran que las micro pilas de combustible de óxido sólido ( SOFC) presentan importantes ventajas comparadas con otras micro pilas, ya que pueden generar una gran eficiencia en conversión energética, una alta densidad energética y tienen la capacidad de funcionar con diferentes tipos de combustible (incluyendo hidrocarburos) . Además, la típica alta temperatura de operación de las SOFC que podría considerarse un problema de cara a la miniaturización, puede reducirse cuando se trabaja con SOFC, disminuyendo así el consumo energético derivado de trabajar a tan altas temperaturas. Para ello, es necesario reducir drásticamente el grosor del electrolito, pero también integrar el dispositivo en estructuras de baja inercia térmica. En este sentido, por un lado resulta fundamental el uso de técnicas de depósito de capas finas que permitan reducir el grosor del electrolito por debajo de 1 μπι. Por otro lado, es muy importante también el desarrollo de estructuras de soporte que contribuyan lo menor posible a la pérdida de eficiencia de la pila y que sean compatibles con los materiales típicos usados en una SOFC. En este sentido, el uso de procesos de fabricación asociados a la tecnología micro electrónica resulta realmente prometedor, debido a la alta reproducibilidad de dichos procesos y a la posibilidad de reducir el tamaño de los diferentes componentes de la pila a la micro escala. Recent studies show that solid oxide micro fuel cells (SOFCs) have important advantages compared to other micro batteries, since they can generate high efficiency in energy conversion, high energy density and have the ability to run on different types of fuel. (including hydrocarbons). In addition, the typical high operating temperature of SOFCs that could be considered a problem in the face of miniaturization, can be reduced when working with SOFCs, thus reducing the energy consumption derived from working at such high temperatures. For this, it is necessary to drastically reduce the thickness of the electrolyte, but also integrate the device into structures with low thermal inertia. In this sense, on the one hand it is essential to use thin layer deposition techniques that allow reducing the thickness of the electrolyte below 1 μπι. On the other hand, it is also very important to develop support structures that contribute as little as possible to the loss of battery efficiency and that are compatible with the typical materials used in a SOFC. In this sense, the use of manufacturing processes associated with micro electronic technology is really promising, due to the high reproducibility of these processes and the possibility of reducing the size of the different components of the battery to the micro scale.
El desarrollo de SOFC se ha centrado principalmente en la fabricación de electrolitos finos para reducir la resistencia iónica y así poder reducir la temperatura de operación de la pila. Los materiales usados más frecuentemente como electrolitos tanto en SOFC como en SOFC son la zirconia estabilizada con ytria (YSZ) y la ceria dopada con gadolinio (CGO) . Los resultados más prometedores en el desarrollo de SOFC se han obtenido en sistemas cuyo diseño está basado en membranas electrolíticas de alguno de estos dos materiales, auto- soportadas en micro plataformas basadas en silicio o vidrio. Se han obtenido membranas auto-soportadas con un ratio área-grosor realmente alto (hasta 1000:1), aunque sin embargo el hecho de que las capas cerámicas de que están fabricadas las membranas tengan un grosor de menos de 0.5 μπι genera un problema en el área máxima que se puede obtener, siendo ésta siempre menor de lxl rom2. Membranas con áreas más grandes normalmente sufren roturas, lo cual provoca fugas entre los dos lados del electrolito cortocircuitando ánodo y cátodo. Esta limitación en el área máxima se traduce en una limitación en la potencia máxima que puede obtenerse en un solo dispositivo. The development of SOFC has focused mainly on the manufacture of fine electrolytes to reduce ionic resistance and thus reduce the operating temperature of the battery. The most frequently used materials as electrolytes in both SOFC and SOFC are ytria stabilized zirconia (YSZ) and ceria doped with gadolinium (CGO). The most promising results in the development of SOFCs have been obtained in systems whose design is based on electrolytic membranes of one of these two materials, self-supported on micro platforms based on silicon or glass. Self-supported membranes with a really high area-thickness ratio (up to 1000: 1) have been obtained, although the fact that the ceramic layers from which the membranes are made have a thickness of less than 0.5 μπι creates a problem in the maximum area that can be obtained, this being always less than lxl rom 2 . Membranes with larger areas usually suffer breakage, which causes leaks between the two sides of the electrolyte by short-circuiting anode and cathode. This limitation in the maximum area translates into a limitation in the maximum power that can be obtained in a single device.
Si se quiere mejorar la potencia máxima generada por dispositivo, aparecen dos posibilidades. Por un lado, la posibilidad de apilar una serie de dispositivos y conectarlos entre sí. Por otro lado, y independientemente de la primera opción (ya que pueden combinarse ambas), es interesante pensar en la posibilidad de desarrollar áreas mayores en un dispositivo singular. En este sentido, sólo unos pocos trabajos se han presentado recientemente. En ellos, se consigue fabricar membranas con mayores áreas (desde 1 mm2 hasta 1 cm2) soportadas en mallas metálicas que se depositan sobre la capa cerámica electrolítica antes de liberar la membrana auto-soportada. If you want to improve the maximum power generated by device, two possibilities appear. On the one hand, the possibility of stacking a series of devices and connecting them to each other. On the other hand, and regardless of the first option (since both can be combined), it is interesting to think about the possibility of developing larger areas in a single device. In this sense, only a few papers have been submitted recently. In them, it is possible to manufacture membranes with larger areas (from 1 mm 2 to 1 cm 2 ) supported on metal meshes that are deposited on the electrolytic ceramic layer before releasing the self-supported membrane.
La invención que aquí se presenta propone una nueva aproximación al objetivo de obtener membranas auto- soportadas de gran área, con el objetivo de mejorar la potencia máxima alcanzable en una sola SOFC mejorando así su densidad energética. The invention presented here proposes a new approach to the objective of obtaining self-supported membranes of large area, with the aim of improving the maximum power achievable in a single SOFC thus improving its energy density.
Descripción de la invención Breve descripción de la invención Description of the invention Brief Description of the Invention
La invención consiste en el desarrollo y fabricación de micro pilas de combustible de óxido sólido de gran superficie. Las micro pilas de combustible están basadas en membranas auto-soportadas sobre micro plataformas basadas en silicio. El proceso incluye la fabricación de membranas electrolíticas basadas en capas cerámicas finas y la inclusión de electrodos a ambos lados de la membrana. The invention consists in the development and manufacturing of large surface solid oxide micro fuel cells. The micro fuel cells are based on self-supported membranes on silicon-based micro platforms. The process includes the manufacture of electrolytic membranes based on thin ceramic layers and the inclusion of electrodes on both sides of the membrane.
Un aspecto singular de la invención es la fabricación de la membrana electrolítica. Esta membrana está fabricada soportada en la plataforma de silicio, en cuyo centro se define un área libre de silicio, donde se encuentra la membrana. A unique aspect of the invention is the manufacture of the electrolytic membrane. This membrane is manufactured supported on the silicon platform, in whose center a silicon-free area is defined, where the membrane is located.
La membrana electrolítica puede fabricarse de cualquier material electrolítico usado típicamente en SOFC, por ejemplo YSZ o CGO. El material se deposita por medio de cualquier técnica de depósito de capas finas, incluyendo depósito por láser pulsado (PLD) , depósito químico en fase vapor (CVD) , sputtering, evaporación... y puede comprender un rango de grosores entre los 5 nm y las 5 μπι. Otro aspecto singular de la invención es el uso de nervios de silicio como soporte de las membranas electrolíticas, ya que éstas tienen áreas mayores que lo usual. Durante el proceso de fabricación de la plataforma de silicio que soporta las membranas, se define una serie de nervios de silicio cruzando la zona libre de silicio destinada a la membrana. Estos nervios actúan como soporte de la membrana cerámica, permitiendo así que la zona libre de silicio sea mayor que de normal. Usando un proceso de dopaje del silicio, se previenen determinadas zonas (los nervios dopados) del ataque con los principales agentes químicos usados para grabar el silicio. Así, se consigue no grabar selectivamente las zonas deseadas, que actuarán como nervios de soporte. La membrana puede tener unas dimensiones de entre 500x500 μπι y 50x50 mm , teniendo en cuenta que parte de esta área será ocupada por los nervios. The electrolytic membrane can be made of any electrolytic material typically used in SOFC, for example YSZ or CGO. The material is deposited by means of any thin layer deposition technique, including pulsed laser deposition (PLD), chemical vapor vapor deposition (CVD), sputtering, evaporation ... and can comprise a thickness range between 5 nm and the 5 μπι. Another unique aspect of the invention is the use of silicon ribs as a support for electrolytic membranes, since they have larger areas than usual. During the manufacturing process of the silicon platform that supports the membranes, a series of silicon ribs is defined by crossing the silicon-free zone for the membrane. These nerves act as a support for the ceramic membrane, thus allowing the silicon-free zone to be larger than normal. Using a silicon doping process, certain areas (the doped nerves) of the attack with the main chemical agents used to etch the silicon are prevented. Thus, it is possible not to selectively record the desired areas, which will act as support nerves. The membrane may have some dimensions of between 500x500 μπι and 50x50 mm, taking into account that part of this area will be occupied by the nerves.
Los nervios de silicio dopado tienen un grosor comprendido entre 1 y 50 μπι y una anchura de entre 1 y 200 μπι. Al estar entrecruzados, definen una serie de membranas singulares que, todas juntas, forman la membrana de gran área. Estas membranas singulares pueden tener diferentes geometrías, dependiendo en el diseño de la red de nervios, incluyendo la geometría circular, cuadrada, hexagonal, triangular... Las dimensiones de estas membranas singulares deben ser siempre mayores que la anchura destinada a los nervios de silicio que las definen. La geometría de la membrana de gran área puede variar también dependiendo en el diseño de la red de nervios, con el objetivo de optimizar la distribución de las membranas singulares. En este sentido, las membranas de gran área pueden comprender series de membranas singulares de entre 2x2 y 50x50 membranas. A ambos lados de la membrana electrolítica soportada en los nervios, se depositan los electrodos (ánodo y cátodo) . Estos electrodos pueden fabricarse de cualquier metal, por ejemplo Pt, Ag, Ni... pero también de materiales cerámicos o cermets. Los electrodos pueden depositarse usando la misma técnica de depósito de capas finas que para el electrolito, u otra diferente dependiendo del material escogido como electrodo . Doped silicon nerves have a thickness between 1 and 50 μπι and a width between 1 and 200 μπι. Being crosslinked, they define a series of singular membranes that, together, form the membrane of large area. These singular membranes can have different geometries, depending on the design of the network of nerves, including the circular, square, hexagonal, triangular geometry ... The dimensions of these singular membranes must always be greater than the width intended for the silicon ribs that define them. The geometry of the large area membrane can also vary depending on the design of the nerve network, in order to optimize the distribution of the singular membranes. In this sense, large area membranes can comprise series of singular membranes between 2x2 and 50x50 membranes. On both sides of the electrolytic membrane supported on the nerves, the electrodes are deposited (anode and cathode). These electrodes can be made of any metal, for example Pt, Ag, Ni ... but also of ceramic materials or cermets. The electrodes can be deposited using the same thin layer deposition technique as for the electrolyte, or a different one depending on the material chosen as the electrode.
Otro aspecto particular de la invención es el uso de nervios de silicio dopado también como colectores de corriente para uno de los electrodos, además de como nervios de soporte. En uno de los lados de la membrana, al depositar el electrodo éste queda en contacto con los nervios de silicio además de con el electrolito. Este hecho es aprovechado para colectar la corriente del electrodo a través de los nervios, ya que éstos presentan una alta conductividad electrónica al estar fabricados de silicio dopado. Varias ventajas muy significativas se derivan del hecho de usar estos nervios como colectores de corriente: Another particular aspect of the invention is the use of doped silicon ribs also as current collectors for one of the electrodes, as well as as support ribs. On one side of the membrane, when the electrode is deposited it is in contact with the silicon ribs in addition to the electrolyte. This fact is used to collect the electrode current through the nerves, since they have a high electronic conductivity as they are made of silicon doped Several very significant advantages derive from the fact of using these nerves as current collectors:
1) Se reduce la resistencia derivada de la ba a conductividad a lo largo del plano de algunos electrodos en formato capa fina.  1) The resistance derived from the conductivity ba along the plane of some electrodes in thin layer format is reduced.
2) Se evita la necesidad de añadir más componentes a la micro pila si la colección de electrones a través de los electrodos no es suficientemente buena.  2) The need to add more components to the micro stack is avoided if the collection of electrons through the electrodes is not good enough.
3) Permite hacer los contactos eléctricos de ambos electrodos desde el mismo lado de la plataforma de silicio, mediante el uso de pistas de silicio dopado enterradas que contacten la red de nervios en la membrana y el punto de contacto. Asi mismo, la invención contempla la posibilidad de añadir un colector de corriente metálico extra sobre el electrodo opuesto, el que no está en contacto con el silicio dopado. Este colector de corriente estaría formado por una red de pistas metálicas en forma de malla. Las pistas metálicas irían depositadas sobre el electrodo, en las mismas zonas que los nervios de silicio dopado. De esta forma, se conseguiría tener colectores de corriente para ambos electrodos manteniendo el área activa total de la pila. Las dimensiones de las pistas metálicas están por tanto limitadas por las dimensiones de los nervios, siendo siempre lo más ancho posible y siguiendo la arquitectura de la red de nervios. El grosor del colector metálico podría variar entre 50 nm y 5 μπι. Otro aspecto particular de la invención consiste en la inclusión de un micro calefactor para calentar localmente la membrana electrolítica. En caso de no poseer una fuente de calor externa en el dispositivo, la invención incluye la posibilidad de implementar un micro calefactor de tipo resistivo basado en pistas metálicas formando un serpentín. El calefactor está situado sobre los nervios de silicio, así que no supone ninguna pérdida de área efectiva en la membrana. El calefactor está pasivado con capas dieléctricas que evitan fugas eléctricas. Las dimensiones de las pistas metálicas siempre están determinadas por las dimensiones de los nervios, de manera que las pistas metálicas del calefactor sean siempre más estrechas que los nervios. El grosor de las pistas del calefactor puede variar entre los 10 nm y las 2 μπι y puede fabricarse de diversos materiales, incluyendo los metales usados típicamente para fabricación de micro calefactores en micro electrónica (Pt, Au, W...) . 3) It allows the electrical contacts of both electrodes to be made from the same side of the silicon platform, through the use of buried doped silicon tracks that contact the network of nerves in the membrane and the contact point. Likewise, the invention contemplates the possibility of adding an extra metallic current collector on the opposite electrode, which is not in contact with the doped silicon. This current collector would be formed by a network of metal tracks in the form of a mesh. The metal tracks would be deposited on the electrode, in the same areas as the doped silicon nerves. In this way, it would be possible to have current collectors for both electrodes while maintaining the total active area of the battery. The dimensions of the metal tracks are therefore limited by the dimensions of the ribs, always being as wide as possible and following the architecture of the rib network. The thickness of the metal collector could vary between 50 nm and 5 μπι. Another particular aspect of the invention consists in the inclusion of a micro heater to locally heat the electrolytic membrane. In case of not having an external heat source in the device, the invention includes the possibility of implementing a resistive type micro heater based on metal tracks forming a coil. The heater is located on the silicon ribs, so it does not imply any loss of effective membrane area. The heater is passivated with layers dielectrics that prevent electrical leakage. The dimensions of the metal tracks are always determined by the dimensions of the ribs, so that the metal tracks of the heater are always narrower than the ribs. The thickness of the heater tracks can vary between 10 nm and 2 μπι and can be made of various materials, including metals typically used to manufacture micro heaters in micro electronics (Pt, Au, W ...).
Este elemento es particularmente útil teniendo en cuenta que las temperaturas de operación de las SOFC se comprenden entre los 400 y los 600°C. La implementación de un micro calefactor permite que la parte activa de la micro pila (la membrana electrolítica, más los dos electrodos) alcance la temperatura de trabajo correspondiente mientras que la plataforma de soporte se mantiene prácticamente a temperatura ambiente. Este hecho simplifica mucho la mane abilidad del dispositivo, haciendo más fácil también el sellado de la plataforma con los interconectores . Al hacer el sellado a temperatura ambiente, se reduce drásticamente los riesgos de ruptura debido a la diferente expansión térmica de los materiales involucrados. This element is particularly useful considering that the operating temperatures of SOFCs are between 400 and 600 ° C. The implementation of a micro heater allows the active part of the micro stack (the electrolytic membrane, plus the two electrodes) to reach the corresponding working temperature while the support platform is practically maintained at room temperature. This fact greatly simplifies the maneuverability of the device, also making it easier to seal the platform with the interconnects. When sealing at room temperature, the risks of rupture are drastically reduced due to the different thermal expansion of the materials involved.
Breve descripción del contenido de las figuras Brief description of the content of the figures
Figura 1. (a) Esquema de una micro pila de combustible de óxido sólido de acuerdo con la invención, (b) Esquema de una micro pila de combustible de óxido sólido de acuerdo con la invención, incluyendo un micro calefactor. Figure 1. (a) Scheme of a solid oxide micro fuel cell according to the invention, (b) Scheme of a solid oxide micro fuel cell according to the invention, including a micro heater.
Figura 2. Esquema del proceso de fabricación para la obtención de una micro pila de combustible de óxido sólido de acuerdo con la invención (secciones transversales) . Figure 2. Scheme of the manufacturing process for obtaining a solid oxide micro fuel cell according to the invention (cross sections).
Figura 3. Esquema de una membrana electrolítica de gran superficie soportada en nervios de silicio dopado con diferentes geometrías de las membranas singulares (vista superior) : (a) hexagonal, (b) cuadrada, (c) circular. En (a) también se representa un esquema de una membrana electrolítica de gran superficie incluyendo un micro calefactor (vista superior) . Figure 3. Diagram of a large surface electrolytic membrane supported on nerves of doped silicon with different geometries of the singular membranes (top view): (a) hexagonal, (b) square, (c) circular. In (a) a scheme of a membrane is also represented Large surface electrolytic including a micro heater (top view).
Figura 4. Imágenes de microscopio óptico de membranas electrolíticas de acuerdo con el esquema mostrado en la figura 3 (a) .  Figure 4. Optical microscope images of electrolytic membranes according to the scheme shown in Figure 3 (a).
Descripción detallada de la invención Detailed description of the invention
La presente invención consiste en el uso de nervios de silicio dopado para la fabricación de micro pilas de combustible de óxido sólido de gran superficie. La figura 1 (a) muestra un esquema de una SOFC completa soportada en una plataforma de silicio {sustrato), donde se pueden distinguir los diferentes componentes del dispositivo. Los nervios de silicio situados debajo del electrolito fino permiten la fabricación de membranas con áreas mayores. El ánodo poroso y el cátodo poroso se depositan a ambos lados del electrolito completando la pila. El ánodo poroso también cubre los nervios de silicio, estableciendo contacto con ellos y permitiendo así la colección de la corriente generada en el ánodo a través de ellos {contacto del ánodo) . Las conexiones eléctricas de ambos electrodos se encuentran, por tanto, en el lado del cátodo. La figura 1 (b) también muestra un esquema de una SOFC de acuerdo con la invención, pero en este caso incluyendo un micro calefactor para calentar localmente la membrana, mientras el resto del dispositivo {sustrato) se mantiene a temperatura ambiente. Las pistas metálicas del calefactor se depositan sobre los nervios de silicio recubiertas por ambos lados con capas dieléctricas aislantes . Los contactos del calefactor se colocan también en el lado del cátodo, al igual que los contactos del ánodo y del cátodo. La figura 2 muestra el proceso de fabricación para la obtención del dispositivo descrito en la figura 1 (b) . La fabricación del dispositivo tal y como está descrito en la figura 1 (a) es similar, sólo que los pasos 2 (d) and 2 (e) deben saltarse. Los diferentes componentes del dispositivo están marcados con números para poderlos identificar fácilmente. La siguiente tabla (tabla 1) muestra a qué corresponde cada número. The present invention consists in the use of doped silicon ribs for the manufacture of large surface solid oxide micro fuel cells. Figure 1 (a) shows a diagram of a complete SOFC supported on a silicon platform {substrate), where the different components of the device can be distinguished. The silicon ribs located below the fine electrolyte allow the manufacture of membranes with larger areas. The porous anode and the porous cathode are deposited on both sides of the electrolyte completing the battery. The porous anode also covers the silicon nerves, establishing contact with them and thus allowing the collection of the current generated at the anode through them {contact of the anode). The electrical connections of both electrodes are, therefore, on the cathode side. Figure 1 (b) also shows a scheme of a SOFC according to the invention, but in this case including a micro heater to locally heat the membrane, while the rest of the device {substrate) is kept at room temperature. The metal tracks of the heater are deposited on the silicon ribs coated on both sides with insulating dielectric layers. The heater contacts are also placed on the cathode side, as are the anode and cathode contacts. Figure 2 shows the manufacturing process for obtaining the device described in Figure 1 (b). The manufacture of the device as described in Figure 1 (a) is similar, only that steps 2 (d) and 2 (e) They must skip. The different components of the device are marked with numbers so that they can be easily identified. The following table (table 1) shows what each number corresponds to.
Figure imgf000012_0001
Figure imgf000012_0001
Tabla 1. Descripción de los números de referencia  Table 1. Description of reference numbers
A continuación se describe cada uno de los pasos del proceso : Figura 2(a) : Dopado isotrópico del silicio. Mediante fotolitografía se define las zonas (2) donde se desea dopar el sustrato de silicio (1) . Estas zonas se corresponden con los futuros nervios de silicio dopado. Los nervios de silicio tienen una anchura wl y están separados entre ellos una distancia w2. Los nervios tienen una sección semi¬ circular debido al proceso isotrópico de dopaje. Each of the process steps is described below: Figure 2 (a): Isotropic silicon doping. The areas (2) where you wish to dop the silicon substrate (1) are defined by photolithography. These areas correspond to the future nerves of doped silicon. The silicon ribs have a width wl and are separated from each other by a distance w2. The ribs have a circular section due to semi ¬ isotropic doping process.
Figura 2(b) : Depósito de las capas dieléctricas. Se hace crecer una capa fina de dióxido de silicio (3) mediante tratamiento térmico y una capa de nitruro de silicio {4) es depositada posteriormente mediante CVD. Estas capas actúan como capas aislantes para evitar corto circuitos entre ánodo, cátodo y calefactor en el dispositivo final. Figura 2 (c) : Apertura de contactos para la colección de corriente del ánodo. Mediante fotolitografía se definen unos cuadrados de dimensiones w3, donde las capas dieléctricas 3 y 4 son eliminadas por grabado iónico reactivo (RIE) . En este paso se libera una zona de los nervios de silicio dopado de sus capas pasivantes. La colección de corriente del ánodo se hará por tanto a través de estos contactos rectangulares desde el lado del cátodo. Figura 2(d) : Depósito del micro calefactor metálico. Mediante fotolitografía se definen las pistas donde se deposita el metal (5) . Mediante un proceso de lift-off, el metal permanece únicamente en las zonas definidas, dando lugar al calefactor con forma de serpentín. En el mismo proceso, se deposita también una capa metálica sobre la zona destinada a contactar con los nervios de silicio (colección de corriente del ánodo) . Así, se asegura un buen contacto eléctrico con el silicio dopado. Las pistas metálicas del calefactor tienen un grosor ti y una anchura w4. Figure 2 (b): Deposit of the dielectric layers. A thin layer of silicon dioxide (3) is grown by heat treatment and a layer of silicon nitride {4) is subsequently deposited by CVD. These layers act as insulating layers to avoid short circuits between anode, cathode and heater in the final device. Figure 2 (c): Opening contacts for the anode current collection. Photolithography defines squares of dimensions w3, where the dielectric layers 3 and 4 are removed by reactive ionic etching (RIE). In this step, an area of the doped silicon nerves is released from its passivating layers. The anode current collection will therefore be made through these rectangular contacts from the cathode side. Figure 2 (d): Metal micro heater tank. The tracks where the metal is deposited are defined by photolithography (5). Through a lift-off process, the metal remains only in the defined areas, giving rise to the coil-shaped heater. In the same process, a metallic layer is also deposited on the area destined to contact the silicon ribs (anode current collection). Thus, a good electrical contact with the doped silicon is ensured. The metal tracks of the heater have a thickness ti and a width w4.
Figura 2(e) : Aislamiento del micro calefactor. Se deposita una capa dieléctrica sobre todo el sustrato, menos en las zonas destinadas para los contactos eléctricos para el ánodo y el calefactor {5a y 5b, respectivamente) . En primer lugar, la capa dieléctrica se deposita sobre todo el sustrato, y posteriormente mediante un proceso de fotolitografía se elimina selectivamente de las zonas deseadas (contactos) . Figure 2 (e): Isolation of the micro heater. A dielectric layer is deposited on the entire substrate, except in the areas destined for the electrical contacts for the anode and the heater {5a and 5b, respectively). First, the dielectric layer is deposited on the entire substrate, and subsequently, by a photolithography process, it is selectively removed from the desired areas (contacts).
Figura 2(f) : Grabado por iones reactivos desde el lado posterior del sustrato. Las capas de nitruro de silicio y óxido de silicio son eliminadas en determinadas zonas del lado posterior del sustrato. Así, se definen las áreas donde el silicio se grabará posteriormente para crear las membranas. El área definida tendrá una anchura w5. Figura 2(g) : Grabado húmedo del silicio. El sustrato de silicio (1) y la capa de óxido de silicio (3) de la cara superior (que quedará expuesta desde el lado posterior tras grabar el silicio) se eliminan mediante un grabado húmedo con KOH y HF respectivamente, realizado desde la cara posterior del sustrato. La capa de nitruro de silicio de la cara posterior actúa como máscara permitiendo el grabado del silicio únicamente en las zonas deseadas. Estas zonas definen membranas de nitruro de silicio de gran superficie soportadas en los nervios de silicio, que actuarán como sustrato durante el depósito de electrolito en el siguiente paso. El silicio dopado es selectivo al gravado con KOH, por lo que los nervios no se graban durante este paso. Debido al grabado anisótropo del silicio, la anchura de la membrana w6 siempre será menor que la anchura definida durante el grabado del nitruro de silicio de la cara posterior en el paso anterior (w5) . Figure 2 (f): Engraving by reactive ions from the back side of the substrate. The layers of silicon nitride and silicon oxide are removed in certain areas of the back side of the substrate. Thus, the areas where the silicon will be subsequently engraved to create the membranes are defined. The defined area will have a width w5. Figure 2 (g): Wet etching of silicon. The silicon substrate (1) and the silicon oxide layer (3) of the upper face (which will be exposed from the back side after etching the silicon) are removed by wet etching with KOH and HF respectively, made from the face back of the substrate. The silicon nitride layer on the back side acts as a mask allowing the etching of silicon only in the desired areas. These zones define large surface silicon nitride membranes supported on the silicon ribs, which will act as a substrate during the electrolyte deposition in the next step. Doped silicon is selective when taxed with KOH, so the nerves are not recorded during this step. Due to the anisotropic etching of silicon, the width of the w6 membrane will always be smaller than the width defined during the etching of the silicon nitride on the back side in the previous step (w5).
Figura 2(h) : Depósito de la capa de electrolito. El electrolito cerámico (7), con un grosor t2, se deposita por una técnica de depósito de capas finas sobre la capa aislante ( 6) . Figure 2 (h): Deposit of the electrolyte layer. The ceramic electrolyte (7), with a thickness t2, is deposited by a thin layer deposition technique on the insulating layer (6).
Figura 2 (i) : Grabado seco del nitruro de silicio y demás capas dieléctricas. El nitruro de silicio y demás capas dieléctricas que actuaban como sustrato para el depósito del electrolito son eliminados de la zona de la membrana mediante un grabado con iones reactivos desde la cara posterior del sustrato. La progresión del ataque debe controlarse para no sobre-atacar la capa electrolítica. Figure 2 (i): Dry etching of silicon nitride and other dielectric layers. Silicon nitride and other dielectric layers that acted as a substrate for electrolyte deposition are removed from the membrane area by etching with reactive ions from the back face of the substrate. The progression of the attack must be controlled so as not to over-attack the electrolytic layer.
Figura 2(j) : Depósito de los electrodos. Los electrodos cátodo (8) y ánodo (5), con grosores t3 y t4 respectivamente, se depositan a ambos lados del sustrato y la membrana. Los materiales posibles son múltiples, incluyendo metales y cerámicas o cermets. Así mismo, estos electrodos pueden depositarse mediante diferentes técnicas de depósito de capa fina. En la figura 3 se representa vistas superiores de diferentes membranas electrolíticas de gran superficie. Los nervios de silicio (2) de soporte definen membranas singulares auto-soportadas (1), con diferentes geometrías: hexagonal (a) , cuadrada (b) o circular (c) . En los tres casos se ilustra una membrana de gran superficie consistente en un set de 5x5 membranas singulares, aunque el número de membranas singulares por membrana de gran superficie puede variar, formando membranas más grandes o más pequeñas. La forma de serpentín del micro calefactor (3) puede observarse en la figura 3(a) . Las pistas metálicas del calefactor siguen la geometría de los nervios (2) sobre los que van soportados. Figure 2 (j): Deposit of the electrodes. The cathode (8) and anode (5) electrodes, with thicknesses t3 and t4 respectively, are deposited on both sides of the substrate and the membrane. The possible materials are multiple, including metals and ceramics or cermets. Also, these electrodes can be deposited by different thin layer deposition techniques. Figure 3 shows top views of different large surface electrolytic membranes. The support silicon ribs (2) define self-supporting singular membranes (1), with different geometries: hexagonal (a), square (b) or circular (c). In all three cases, a large surface membrane consisting of a set of 5x5 singular membranes is illustrated, although the number of singular membranes per large surface membrane may vary, forming larger or smaller membranes. The coil shape of the micro heater (3) can be seen in Figure 3 (a). The metal tracks of the heater follow the geometry of the ribs (2) on which they are supported.
En la figura 4 se muestran imágenes de microscopio óptico de algunas de las membranas de gran superficie fabricadas de acuerdo con el proceso de fabricación detallado en la figura 2. Las membranas se corresponden con la geometría detallada en la figura 3 (a) , aunque en este caso una serie de nervios de silicio "secundarios" (mucho más finos) se añadieron formando triángulos dentro de los hexágonos, para asegurar así una buena distribución del calor a lo largo de toda la membrana. Figure 4 shows optical microscope images of some of the large surface membranes manufactured in accordance with the manufacturing process detailed in Figure 2. The membranes correspond to the geometry detailed in Figure 3 (a), although in In this case a series of "secondary" (much finer) silicon nerves were added forming triangles within the hexagons, to ensure a good distribution of heat throughout the entire membrane.
Ejemplos de realización de la invención Examples of embodiment of the invention
Ejemplo 1: Fabricación de una membrana de YSZ de gran superficie soportada en nervios de silicio dopado. Example 1: Manufacture of a large surface YSZ membrane supported on nerves of doped silicon.
Se fabricó una membrana de YSZ de grosor 200 nm de acuerdo con el proceso de fabricación detallado en la figura 2 (saltando los pasos d y e) . En primer lugar, se fabricó una pre-membrana de nitruro de silicio de 300 nm soportada en la red de nervios de silicio dopado. Se definieron las dimensiones de los nervios de silicio dopado como 85 μπι de anchura y 10 μπι de grosor máximo, y se distribuyeron de forma que definieran membranas singulares hexagonales de lado 150 μπι. La membrana de gran superficie, compuesta por un set de 7x7 membranas singulares, tenia un área total de 2300x2300 μπι2 (ver figura 3a) . A 200 nm thick YSZ membrane was manufactured according to the manufacturing process detailed in Figure 2 (skipping steps d and d). First, a 300 nm silicon nitride pre-membrane supported on the network of doped silicon ribs was manufactured. The dimensions of the doped silicon nerves were defined as 85 μπι in width and 10 μπι in maximum thickness, and distributed so as to define singular hexagonal membranes with a side of 150 μπι. The large surface membrane, composed of a set of 7x7 singular membranes, had a total area of 2300x2300 μπι 2 (see figure 3a).
El YSZ se depositó sobre dicha pre-membrana de nitruro mediante PLD. Posteriormente, se eliminó el nitruro de silicio mediante RIE desde el lado posterior de la membrana, liberando asi la membrana de YSZ auto-soportada en los nervios de silicio.  The YSZ was deposited on said nitride pre-membrane by PLD. Subsequently, silicon nitride was removed by RIE from the back side of the membrane, thus releasing the self-supported YSZ membrane in the silicon nerves.
Ejemplo 2: Fabricación de una SOFC basada en una membrana de YSZ de gran superficie soportada en nervios de silicio dopado . Example 2: Manufacture of a SOFC based on a large surface YSZ membrane supported on doped silicon ribs.
Se puede fabricar una SOFC de gran superficie siguiendo los mismos pasos que en el ejemplo 1 pero añadiendo el depósito de electrodos y colectores de corriente.  A large surface SOFC can be manufactured following the same steps as in example 1 but adding the electrode reservoir and current collectors.
A ambos lados de la membrana de YSZ se depositaron electrodos de platino por sputtering, completando asi la pila de combustible. El grosor del electrodo se definió como 80nm, para formar una capa porosa mediante un tratamiento térmico de las capas de platino a 600°C. On both sides of the YSZ membrane, platinum electrodes were deposited by sputtering, thus completing the fuel cell. The thickness of the electrode was defined as 80 nm, to form a porous layer by heat treatment of the platinum layers at 600 ° C.
En el lado del ánodo, los nervios de silicio dopado se usaron también como colectores de corriente. Durante el proceso de depósito de la capa de Pt, éste no sólo se depositó sobre la membrana de YSZ sino también sobre los nervios de silicio (ver figura 2j, elemento 9) . Asi, se aseguró un buen contacto eléctrico entre el electrodo y el colector de corriente. Además, se abrió un contacto a través de las capas dieléctricas del lado del cátodo para poder contactar con los nervios de silicio dopado (ver figura 2c) . Por lo tanto, la colección de corriente de ambos electrodos se hizo desde el mismo lado del cátodo. On the anode side, doped silicon nerves were also used as current collectors. During the deposition process of the Pt layer, it was not only deposited on the YSZ membrane but also on the silicon ribs (see figure 2j, element 9). Thus, a good electrical contact between the electrode and the current collector was ensured. In addition, a contact was opened through the dielectric layers on the cathode side to be able to contact the doped silicon ribs (see Figure 2c). Therefore, the current collection of both electrodes was made from the same side of the cathode.
Ejemplo 3: Fabricación de una SOFC basada en una membrana de YSZ de gran superficie soportada en nervios de silicio dopado, incluyendo un micro calefactor enterrado. Example 3: Manufacture of a SOFC based on a large surface YSZ membrane supported on doped silicon ribs, including a buried micro heater.
Una SOFC de gran superficie con un micro calefactor integrado en la membrana puede fabricarse siguiendo los mismos pasos que en los ejemplos 1 y 2, pero incluyendo los pasos de fabricación correspondientes con el depósito y aislamiento del micro calefactor (pasos d y e de la figura 2) . A large surface SOFC with a micro heater integrated in the membrane can be manufactured following the same steps as in examples 1 and 2, but including the corresponding manufacturing steps with the tank and micro heater insulation (dye steps in figure 2).
Un calefactor de tungsteno con forma de serpentín fue depositado sobre el nitruro de silicio en el lado del cátodo, definiendo pistas de W sobre los nervios de silicio (ver figura 3a) . El grosor de las pistas del calefactor se fijó en 500 nm, mientras que su anchura en 50 μπι. Una capa aislante de 500 nm de óxido de silicio se depositó posteriormente cubriendo el calefactor para evitar cortocircuitos con los electrodos o el colector de corriente .  A coil-shaped tungsten heater was deposited on the silicon nitride on the cathode side, defining W tracks on the silicon ribs (see figure 3a). The thickness of the heater tracks was set at 500 nm, while its width at 50 μπι. A 500 nm insulating layer of silicon oxide was subsequently deposited covering the heater to avoid short circuits with the electrodes or the current collector.
Una vez depositada la capa aislante, el proceso se continuó con el depósito de YSZ, tal y como se detalla en el ejemplo 1.  Once the insulating layer was deposited, the process was continued with the deposit of YSZ, as detailed in example 1.

Claims

RE IVI DICACIONES RE IVI DICATIONS
1. Una pila de combustible de óxido sólido que consta de: a . un sustrato con al menos una cavidad para formar una membrana; 1. A solid oxide fuel cell consisting of: a. a substrate with at least one cavity to form a membrane;
b . una membrana electrolítica basada en una capa delgada de un óxido sólido de más de 5 nm pero menos de 5 μπι de grosor, cubriendo la cavidad formada en el sustrato; b. an electrolytic membrane based on a thin layer of a solid oxide more than 5 nm but less than 5 μπι thick, covering the cavity formed in the substrate;
cuna red de nervios de silicio dopado cruzando la cavidad, justo por debajo de la membrana electrolítica, de forma que sirvan como soporte del electrolito; los nervios de silicio determinan membranas electrolíticas singulares de un tamaño siempre mayor que el grosor de los nervios, las cuales sumadas forman la membrana electrolítica de gran superficie; cradle a network of doped silicon nerves crossing the cavity, just below the electrolytic membrane, so that they serve as support for the electrolyte; The silicon ribs determine singular electrolytic membranes of a size always greater than the thickness of the nerves, which together form the large-surface electrolytic membrane;
d. dos capas finas que actúan como electrodos, depositadas una a cada lado de la citada membrana electrolítica. d. two thin layers that act as electrodes, deposited one on each side of the aforementioned electrolytic membrane.
2. Una pila según la reivindicación 1, donde los nervios de silicio dopado tienen una anchura dentro del rango comprendido entre 1 y 200 μπι y un grosor entre 1 y 50 μπι. 2. A cell according to claim 1, wherein the doped silicon ribs have a width within the range between 1 and 200 μπι and a thickness between 1 and 50 μπι.
3. Una pila según la reivindicación 1 o 2, donde la red de nervios de silicio dopado tiene una combinación de nervios de diferentes grosores. 3. A cell according to claim 1 or 2, wherein the network of doped silicon ribs has a combination of ribs of different thicknesses.
4. Una pila según la reivindicación 1, donde las membranas electrolíticas singulares tienen un diseño poligonal, incluyendo geometrías como la hexagonal, la triangular, la circular o la cuadrada. 4. A battery according to claim 1, wherein the unique electrolytic membranes have a polygonal design, including geometries such as hexagonal, triangular, circular or square.
5. Una pila según la reivindicación 1, donde la red de nervios de silicio dopado define membranas electrolíticas singulares con formas irregulares. 5. A cell according to claim 1, wherein the network of doped silicon nerves defines singular electrolyte membranes with irregular shapes.
Una pila según la reivindicación 1, donde la red de nervios de silicio define una serie de membranas electrolíticas singulares, formando una membrana electrolítica de gran superficie de entre 2x2 y 50x50 membranas electrolíticas singulares. A battery according to claim 1, wherein the silicon nerve network defines a series of singular electrolytic membranes, forming a large surface electrolytic membrane of between 2x2 and 50x50 singular electrolytic membranes.
Una pila según una cualquiera de las reivindicaciones 1 a 6, donde la red de nervios de silicio dopado se usa como colector de corriente para el electrodo del lado de la membrana electrolítica donde se encuentra la cavidad en el sustrato. A cell according to any one of claims 1 to 6, wherein the doped silicon nerve network is used as a current collector for the electrode on the side of the electrolytic membrane where the cavity in the substrate is located.
8. Una pila según la reivindicación 7, donde un colector de corriente se añade en el lado opuesto a los nervios de silicio de la membrana electrolítica, teniendo la misma forma y tamaño que la red de nervios de silicio dopado, o teniendo diferente forma pero depositado correspondiendo con la red de nervios de silicio. 8. A cell according to claim 7, wherein a current collector is added on the opposite side to the silicon ribs of the electrolytic membrane, having the same shape and size as the network of doped silicon ribs, or having a different shape but deposited corresponding to the network of silicon nerves.
9. Una pila según la reivindicación 7, donde una zona es liberada en el lado de la capa electrolítica opuesto al de la red de nervios de silicio de forma que permita el contacto eléctrico con la red de silicio dopado situado en la membrana, a través de una pista enterrada fabricada del mismo silicio dopado; estando el contacto eléctrico para el electrodo opuesto en el mismo lado que este nuevo contacto. 9. A cell according to claim 7, wherein an area is released on the side of the electrolytic layer opposite to that of the silicon nerve network so as to allow electrical contact with the doped silicon network located in the membrane, through of a buried track made of the same doped silicon; the electrical contact for the opposite electrode being on the same side as this new contact.
10. Una pila según una cualquiera de las reivindicaciones 1 a 6, donde un micro calefactor en forma de serpentín es fabricado enterrado entre los nervios de silicio dopado y la capa electrolítica; teniendo un grosor limitado por el grosor de los nervios de silicio dopado, por lo tanto entre 1 y 50 μπι. 10. A battery according to any one of claims 1 to 6, wherein a coil-shaped micro heater is manufactured buried between the doped silicon ribs and the electrolytic layer; having a thickness limited by the thickness of the doped silicon ribs, therefore between 1 and 50 μπι.
11. Una pila según la reivindicación 10, donde el material del micro calefactor es seleccionado de un grupo que incluye a todos los metales. 11. A battery according to claim 10, wherein the material of the micro heater is selected from a group that includes all metals.
12. Una pila según la reivindicación 10, donde el grosor de las pistas del micro calefactor es de entre 10 nm y 2 μπι. 12. A cell according to claim 10, wherein the thickness of the micro heater tracks is between 10 nm and 2 μπι.
13. Una pila según una cualquiera de las reivindicaciones 1 a 12, donde el material de la capa electrolítica se selecciona de un grupo que incluye la zirconia estabilizada con ytria, la ceria dopada con gadolinio y cualquier otro conductor de iones óxido. 13. A cell according to any one of claims 1 to 12, wherein the material of the electrolytic layer is selected from a group that includes yttria-stabilized zirconia, gadolinium-doped ceria and any other oxide ion conductor.
14. Una pila según una cualquiera de las reivindicaciones 1 a 12, donde la capa electrolítica es fabricada por un método seleccionado de entre un grupo que incluye la deposición por láser pulsado, la deposición química en fase vapor, sputtering, evaporación o cualquier otra técnica de depósito de óxidos sólidos en capa fina. 14. A battery according to any one of claims 1 to 12, wherein the electrolytic layer is manufactured by a method selected from a group that includes pulsed laser deposition, chemical vapor deposition, sputtering, evaporation or any other technique. deposit of solid oxides in a thin layer.
15. Una pila según una cualquiera de las reivindicaciones 1 a 12, donde el material de la capa de electrodo se selecciona de entre un grupo constituido por capas metálicas porosas, cermets o materiales cerámicos conductores mixtos iónico- electrónico . 15. A cell according to any one of claims 1 to 12, wherein the material of the electrode layer is selected from a group consisting of porous metallic layers, cermets or mixed ionic-electronic conductive ceramic materials.
16. Una pila según una cualquiera de las reivindicaciones 1 a 12, donde la capa de electrodo se fabrica por un método seleccionado de entre un grupo que incluye la deposición por láser pulsado, la deposición química en fase vapor, sputtering, evaporación o cualquier otra técnica de depósito en capa fina. 16. A cell according to any one of claims 1 to 12, wherein the electrode layer is manufactured by a method selected from a group that includes pulsed laser deposition, chemical vapor deposition, sputtering, evaporation or any other thin layer deposition technique.
17. Una serie de pilas según una cualquiera de las reivindicaciones 1 a 12, en un sustrato único, o fabricadas en diferentes sustratos y conectadas entre ellas formando un stack de pilas de combustible de óxido sólido. 17. A series of cells according to any one of claims 1 to 12, on a single substrate, or manufactured on different substrates and connected together forming a stack of solid oxide fuel cells.
18. Un método de fabricación de una pila según una cualquiera de las reivindicaciones precedentes, en el que se incluye procesos de fotolitografía, procesado físico o químico y grabados secos o húmedos. 18. A method of manufacturing a battery according to any one of the preceding claims, which includes photolithography processes, physical or chemical processing and dry or wet etching.
PCT/ES2013/070406 2012-06-21 2013-06-21 Solid oxide electrolyte membrane supported on doped silicon ribs for uses in micro solid-oxide fuel cells WO2013190164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201230973A ES2446465B1 (en) 2012-06-21 2012-06-21 SOLID OXIDE ELECTROLYTIC MEMBRANE SUPPORTED ON DOPED SILICON NERVES FOR APPLICATIONS IN MICRO BATTERIES OF SOLID OXIDE FUEL
ESP201230973 2012-06-21

Publications (1)

Publication Number Publication Date
WO2013190164A1 true WO2013190164A1 (en) 2013-12-27

Family

ID=49768168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070406 WO2013190164A1 (en) 2012-06-21 2013-06-21 Solid oxide electrolyte membrane supported on doped silicon ribs for uses in micro solid-oxide fuel cells

Country Status (2)

Country Link
ES (1) ES2446465B1 (en)
WO (1) WO2013190164A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042179A1 (en) * 2015-09-10 2017-03-16 Robert Bosch Gmbh Semiconductor component
WO2017042034A1 (en) * 2015-09-10 2017-03-16 Robert Bosch Gmbh Micromechanical solid-state electrolyte sensor element and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448865A (en) * 1981-10-30 1984-05-15 International Business Machines Corporation Shadow projection mask for ion implantation and ion beam lithography
JP2003346842A (en) * 2002-05-23 2003-12-05 Nissan Motor Co Ltd Cell plate for solid oxide fuel cell and method of manufacturing the cell plate
US7189471B2 (en) * 1999-02-01 2007-03-13 The Regents Of The University Of California Solid oxide MEMS-based fuel cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448865A (en) * 1981-10-30 1984-05-15 International Business Machines Corporation Shadow projection mask for ion implantation and ion beam lithography
US7189471B2 (en) * 1999-02-01 2007-03-13 The Regents Of The University Of California Solid oxide MEMS-based fuel cells
JP2003346842A (en) * 2002-05-23 2003-12-05 Nissan Motor Co Ltd Cell plate for solid oxide fuel cell and method of manufacturing the cell plate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GARBAYO: "Electrical characterization of thermomechanically stable YSZ membranes for micro solid oxide fuels applications", SOLID STATE IONICS 2010, vol. 181, 7 January 2010 (2010-01-07), pages 322 - 331 *
JUAN PABLO ESQUIVEL ET AL.: "fuel cell-powered microfluid platform for lab-on-a-chip applications", LAB ON A CHIP., vol. 12, no. 1, 7 January 2012 (2012-01-07), pages 73 - 79 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042179A1 (en) * 2015-09-10 2017-03-16 Robert Bosch Gmbh Semiconductor component
WO2017042034A1 (en) * 2015-09-10 2017-03-16 Robert Bosch Gmbh Micromechanical solid-state electrolyte sensor element and method for producing same

Also Published As

Publication number Publication date
ES2446465B1 (en) 2015-03-10
ES2446465A1 (en) 2014-03-07

Similar Documents

Publication Publication Date Title
JP2004152761A (en) Fuel cell with current collector embedded therein
JP6001193B2 (en) Solid oxide fuel cell with vertical and horizontal channels
KR20080085092A (en) Membrane electrode assembly in solid oxide fuel cells
JP2004055564A (en) Fuel cell assembly
BRPI0708345A2 (en) integrated micro fuel cell apparatus
CN101485019A (en) Fuel cell having patterned solid proton conducting electrolytes
US7892693B2 (en) Fuel cell planarly integrated on a monocrystalline silicon chip and process of fabrication
WO2007027274A1 (en) Integrated micro fuel cell apparatus
ES2289179T3 (en) FUEL BATTERY AND MANUFACTURING PROCEDURE OF SUCH IMPORTANT ACTIVE SURFACE BATTERIES AND REDUCED VOLUME.
JP5130244B2 (en) Metal support and solid oxide fuel cell comprising the same
US6994884B1 (en) High performance fuel cell electrode and method for manufacturing same
TWI431845B (en) Stack structure of solid oxide fuel cells
JP5021756B2 (en) Solid oxide fuel cell
WO2013190164A1 (en) Solid oxide electrolyte membrane supported on doped silicon ribs for uses in micro solid-oxide fuel cells
US20060172167A1 (en) Thin film fuel cell electrolyte and method for making
US20080061027A1 (en) Method for forming a micro fuel cell
EP4068436A1 (en) Cell stack device, module, module accommodation device, and metal member
KR101222836B1 (en) Solid oxide fuel cell module
KR102083710B1 (en) Solid oxide fuel cell
KR102123714B1 (en) Planar type solid oxide fuel cell
KR100665391B1 (en) Advanced Planar Type of Solid Oxide Fuel Cells
ES2628517T3 (en) Fuel cell with electrolyte assembly-monolithic membrane
KR20160007764A (en) Fuel cell module and method for manufacturing the same
Larsen et al. Micro Direct Methanol Fuel Cell Utilizing Silicon Supported Ionomer Membrane
KR20150075431A (en) Structure of air electrode for solid oxide fuel cell and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807763

Country of ref document: EP

Kind code of ref document: A1