WO2013189031A1 - 通信系统、基站、用户设备及信令传输方法 - Google Patents

通信系统、基站、用户设备及信令传输方法 Download PDF

Info

Publication number
WO2013189031A1
WO2013189031A1 PCT/CN2012/077158 CN2012077158W WO2013189031A1 WO 2013189031 A1 WO2013189031 A1 WO 2013189031A1 CN 2012077158 W CN2012077158 W CN 2012077158W WO 2013189031 A1 WO2013189031 A1 WO 2013189031A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
signaling
radio bearer
configuration
air interface
Prior art date
Application number
PCT/CN2012/077158
Other languages
English (en)
French (fr)
Inventor
彭炎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280000820.XA priority Critical patent/CN103650625B/zh
Priority to EP19205517.6A priority patent/EP3691399B1/en
Priority to PCT/CN2012/077158 priority patent/WO2013189031A1/zh
Priority to EP12879577.0A priority patent/EP2863701B1/en
Priority to CN201710718813.8A priority patent/CN107645793B/zh
Priority to CN201710719531.XA priority patent/CN107645794B/zh
Priority to ES12879577T priority patent/ES2776156T3/es
Publication of WO2013189031A1 publication Critical patent/WO2013189031A1/zh
Priority to US14/573,805 priority patent/US9549430B2/en
Priority to US16/248,353 priority patent/USRE48316E1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to communication technologies, and in particular, to a communication system, a base station, a user equipment, and a signaling transmission method. Background technique
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Territorial Radio Access Network
  • SAE System Architecture Evolution
  • E-UTRAN uses a single-layer structure consisting of only evolved NodeBs (eNBs) to simplify the network and reduce latency.
  • the interface between the user equipment (UE) and the eNB is a Uu interface, which is a wireless interface connection.
  • the user plane of the Uu interface is mainly used to transmit Internet Protocol (Internet Procotol, IP) packets, mainly performing header compression, encryption, scheduling, Hybrid Automatic Repeat Request (HARQ), and automatic repeat request (Automatic Repeat). -reQuest, ARQ) and other functions.
  • the signaling plane of the Uu interface is mainly used to transmit signaling messages.
  • the control plane signaling of the UE for example, Radio Resource Control (RRC) signaling, is mapped to a Signalling Radio Bearer (SRB) for transmission; all IP packets of the user plane are mapped. Transfer to different Data Radio Bearers (DRBs).
  • the SRB and the DRB are respectively processed by the Packet Data Convergence Protocol (PDCP) sublayer and the Radio Link Control (RLC) sublayer, and then in the Media Access Control (Media Access Control, The MAC) sublayer is multiplexed.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • the MAC Media Access Control
  • the DRB and the SRB of the UE share the same MAC entity, that is, the user plane and the control plane of the same UE are anchored on the same eNB.
  • the UE with high mobility is attached to the macro eNB with a large coverage, the service interruption caused by frequent handover can be avoided and Factors such as throughput reduction affect the user experience.
  • Factors such as throughput reduction affect the user experience.
  • it since it is necessary to connect to a remote macro eNB, it is necessary to increase the transmission power and the consumption of air interface resources. If it is attached to a pico eNB that is close to the distance, it can be reduced. The consumption of the air interface resources, but the number of handovers and the handover failure rate are increased, resulting in interruption of the service of the UE.
  • the signalling base station provides the control plane connection of the UE
  • the data base station provides the data plane connection to the UE.
  • the data base station dynamically configures the radio resource of the air interface connection between the UE and the data base station according to the change of the radio channel between the UE and the data base station.
  • the present invention provides a communication system, a base station, a user equipment, and a signaling transmission method, and dynamically configures radio resources of an air interface connection between a UE and a data base station according to a change in a wireless channel between a UE and a data base station.
  • An aspect of the present invention provides a communication system, including: a first base station and a second base station; a user data transmission between the first base station and the user equipment UE, where the first base station passes the first signaling radio bearer and the Said UE performs control signaling interaction;
  • the second base station performs control signaling interaction with the UE by using a signaling radio bearer SRB0, a signaling radio bearer SRB1, or a signaling radio bearer SRB2;
  • the first signaling radio bearer is different from the SRB0, SRB1, and SRB2.
  • An aspect of the present invention provides a signaling transmission method, including:
  • the first base station performs control signaling interaction with the user equipment UE by using the first signaling radio bearer; wherein the user data transmission exists between the first base station and the UE;
  • the second base station performs control signaling interaction with the UE by using the signaling radio bearer SRB0, the signaling radio bearer SRB1, or the signaling radio bearer SRB2;
  • the first signaling radio bearer is different from the SRB0, SRB1, and SRB2.
  • Another aspect of the present invention provides a base station, where there is user data transmission between the base station and the user equipment UE, and the base station performs control signaling interaction with the UE by using the first signaling radio bearer;
  • the radio bearer is different from the signaling radio bearer SRB0, the signaling radio bearer SRB1, and the signaling radio bearer SRB2, and any one of the SRB0, SRB1, and SRB2 signaling is absent.
  • the line bearer is a signaling radio bearer used when the other base stations of the base station perform control signaling interaction with the UE.
  • Another aspect of the present invention provides a signaling transmission method, including:
  • the base station performs control signaling interaction with the user equipment UE by using the first signaling radio bearer.
  • the user equipment data transmission is performed between the base station and the UE, and the first signaling radio bearer is different from the signaling radio bearer SRB0.
  • Signaling radio bearer SRB1 and signaling radio bearer SRB2 and any one of the SRB0, SRB1, and SRB2 signaling radio bearers is a letter used when other base stations of the base station interact with the UE for control signaling Let the wireless bearer.
  • a further aspect of the present invention provides a user equipment, including: user data transmission between the UE and a base station, where the UE performs control signaling interaction with the base station by using a first signaling radio bearer;
  • the signaling radio bearer is different from the signaling radio bearer SRB0, the signaling radio bearer SRB1, and the signaling radio bearer SRB2, and any one of the SRB0, SRB1, and SRB2 signaling radio bearers is different from the other base stations of the base station.
  • the signaling radio bearer used by the UE to perform control signaling interaction.
  • a still further aspect of the present invention provides a signaling transmission method, including:
  • the user equipment UE performs control signaling interaction with the base station by using the first signaling radio bearer.
  • the user signaling data is transmitted between the UE and the base station, and the first signaling radio bearer is different from the signaling radio bearer SRB0.
  • Signaling radio bearer SRB1 and signaling radio bearer SRB2 and any one of the SRB0, SRB1, and SRB2 signaling radio bearers is a letter used when other base stations of the base station interact with the UE for control signaling Let the wireless bearer.
  • the second base station performs control signaling interaction with the UE through SRB0, SRB1, or SRB2, for example, establishing, modifying, and releasing an RRC connection, performing mobility management of the UE, etc.
  • the first base station with the user data transmission between the UEs performs the control signaling interaction with the UE by using the first signaling radio bearer, so that the first base station and the UE can timely and effectively according to the wireless channel between the first base station and the UE.
  • the wireless resource of the air interface connection between the first base station and the UE is dynamically configured.
  • the base station and the signaling transmission method provided by the other aspect of the present invention, the user data transmission exists between the base station and the UE, and the base station performs control signaling interaction with the UE through the first signaling radio bearer, and other base stations different from the base station pass the SRB0.
  • SRB1 or SRB2 performs control signaling interaction with the UE.
  • the base station can dynamically configure the radio resource of the air interface connection between the base station and the UE according to the change of the radio channel between the base station and the UE, and solve the radio resource of the air interface connection between the base station and the UE. Configuration problem.
  • the UE performs the signaling control interaction with the base station with the user data transmission between the UE through the first signaling radio bearer, and is different through SRB0, SRB1 or SRB2.
  • the other base stations of the foregoing base station perform the signaling control interaction, so that the first signaling radio bearer different from the existing signaling radio bearer exists between the UE and the base station with the user data transmission between the UE and the UE.
  • the UE can receive the configuration of the radio resource connected to the air interface between the UE and the base station according to the change of the radio channel between the base station and the UE, and the UE and the UE are solved in time according to the change of the radio channel between the UE and the UE.
  • FIG. 1 is a schematic structural diagram of a communication network according to an embodiment of the present invention.
  • FIG. 2A is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2B is a schematic diagram of a downlink mapping of a second base station according to an embodiment of the present invention
  • FIG. 2C is a schematic diagram of a downlink mapping of a first base station according to an embodiment of the present invention
  • FIG. 2D is a schematic diagram of a secondary UE according to an embodiment of the present invention
  • a schematic diagram of an uplink mapping logic 2E of an air interface is a flowchart of a signaling transmission method according to an embodiment of the present invention
  • 3A is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 3B is a flowchart of a signaling transmission method according to another embodiment of the present invention.
  • 3C is a flowchart of a signaling transmission method according to another embodiment of the present invention.
  • FIG. 4A is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 4B is a schematic structural diagram of a UE according to another embodiment of the present disclosure.
  • FIG. 4C is a flowchart of a signaling transmission method according to another embodiment of the present invention
  • FIG. 4D is a flowchart of a signaling transmission method according to another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a communication network according to an embodiment of the present invention.
  • the communication network of this embodiment includes two layers, one is a basic layer for providing seamless basic coverage, and the other is an enhancement layer for providing high-traffic transmission of hotspot areas.
  • the base layer is provided by the base layer base station, and the enhancement layer is provided by the enhancement layer base station.
  • the base layer base station is mainly responsible for the basic coverage of the signaling interaction including the air interface control plane, and the enhancement layer base station is mainly responsible for the data interaction of the air interface user plane.
  • the base layer base station is usually a high power node and may be referred to as a CeNB.
  • the basic layer of the communication network is usually covered by multiple CeNBs. Once a CeNB is missing, it will cause coverage holes.
  • the base layer base station may also be a low power node in the case of a blanket area coverage.
  • the base layer base station usually uses low frequency band to transmit control plane signaling, for example, the UE's RRC connection is established on the base layer base station.
  • the base layer base station may also carry a part of the low data volume service bearer of the UE.
  • the enhancement layer base station is usually a low power node and may be referred to as a TeNB.
  • the enhancement layer of the communication network is typically covered by multiple TeNBs.
  • the enhancement layer base station usually uses a high frequency band to transmit a large amount of service data, such as a service bearer carrying a large amount of data of the UE, such as a File Transfer Protocol (FTP), a video, and the like.
  • FTP File Transfer Protocol
  • MME Mobility Management Entity
  • a base layer base station which may have one or more enhancement layer base stations, or no enhancement layer base station.
  • the solid line between the UE and the TeNB indicates the signaling connection of the control plane
  • the dotted line between the UE and the TeNB indicates the data connection of the user plane.
  • the following embodiments of the present invention are applicable to the two-layer network structure shown in FIG. 1, and are also applicable to scenarios in which a base station overlaps coverage in a single-layer network. Whether it is the two-layer network structure shown in Figure 1, or in a single-layer network At least two base stations exist in the scenario where the base station overlaps, for example, the first base station and the second base station, where the user data transmission exists between the first base station and the UE, and the control signaling interaction with the UE is performed by using the first signaling radio bearer. .
  • the second base station performs control signaling interaction with the UE mainly through the signaling radio bearer SRB0, the signaling radio bearer SRB1, or the signaling radio bearer SRB2.
  • the following embodiments of the present invention are described by taking a network structure based on the two layers shown in FIG. 1 as an example.
  • the enhancement layer base station not only has the function of providing user data transmission to the UE, but also has the function of performing control signaling interaction with the UE to complete the configuration of the radio resource connected to the air interface between the UE. .
  • FIG. 2A is a schematic structural diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 2A, the system of this embodiment includes: a first base station 31 and a second base station 32.
  • the first base station 31 performs control signaling interaction with the UE through the first signaling radio bearer.
  • the second base station 32 performs control signaling interaction with the UE through the signaling radio bearer SRB0, the signaling radio bearer SRB1, or the signaling radio bearer SRB2.
  • the first signaling radio bearer is different from SRB0, SRB1, and SRB2.
  • the first base station 31 is an enhancement layer base station, and has all functions of the enhancement layer base station, for example, including a DRB, and can perform user data transmission and the like through the DRB and the UE.
  • the first base station 31 of this embodiment also has the function of performing control signaling interaction with the UE through the first signaling radio bearer.
  • the control signaling interaction here is mainly used to complete the configuration of the radio resource of the air interface connection between the first base station 31 and the UE.
  • the first base station 31 does not include SRB0, SRB1, and SRB2 of the UE.
  • the second base station 32 is a base layer base station, and has all functions of the base layer base station, for example, performing control signaling interaction with the UE, including establishing, modifying, and releasing an RRC connection, performing mobility management of the UE, and the like.
  • the second base station 32 of this embodiment includes SRB0, SRB1 and SRB2 of the UE.
  • the first signaling radio bearer is a newly added signaling radio bearer, and may be, for example, SRB3, but is not limited thereto.
  • the first base station 31 and the UE perform control signaling interaction through the first signaling radio bearer, so that the first base station 31 and the UE can be validly and timely according to the first base station 31 and the UE.
  • the change of the wireless channel dynamically configures the radio resource of the air interface connection between the first base station 31 and the UE, and provides a condition for the configuration of the air interface connection between the first base station 31 and the UE.
  • an application that the first base station 31 performs control signaling interaction with the UE by using the first signaling radio bearer is specifically: the first base station 31 is wireless through the first signaling.
  • the bearer performs control signaling interaction with the UE to control the radio resource configuration of the UE to connect with the air interface between the first base station 31.
  • the first base station 31 is specifically configured to configure a radio resource of the air interface connection between the first base station 31 and the UE, and generate a configuration message, where the configuration message includes a radio resource configuration of the air interface connection, and the radio resource is configured by using the first signaling.
  • the configuration message is sent to the UE, so that the UE configures the radio resource connected to the air interface according to the radio resource configuration of the air interface connection, and receives the configuration completion message sent by the UE by using the first signaling radio bearer.
  • the UE is specifically configured to receive the configuration message sent by the first base station 31 by using the first signaling radio bearer, and configure the radio resource connected by the air interface according to the radio resource configuration of the air interface connection in the configuration message. Further, after completing the configuration of the radio resource connected by the air interface, the UE generates a configuration completion message and sends the configuration completion message to the first base station 31 to inform the first base station 31 that the radio resource configuration of the air interface connection has been completed.
  • an application that the second base station 32 performs control signaling interaction with the UE by using the SRB1 is specifically: the second base station 32 performs control signaling interaction with the UE through the SRB1 to control the UE to increase.
  • the second base station 32 is specifically configured to send an RRC message to the UE by using the SRB1, so that the UE adds the first signaling radio bearer, where the RRC message includes the identifier and configuration information of the first signaling radio bearer.
  • the UE receives the RRC message, adds the first signaling radio bearer according to the RRC message, and configures the first signaling radio bearer to perform control signaling interaction with the first base station 31 by using the first signaling radio bearer. provide conditions. That is, the UE adds the first signaling radio bearer according to the control of the second base station 32.
  • the RRC message may be an RRC connection reconfiguration message, but is not limited thereto.
  • the configuration information included in the RRC message includes an RLC configuration, a logical channel identifier, a logical channel configuration, and the like.
  • the increase of the first signaling radio bearer is completed by the second base station 32 transmitting the RRC message to the UE through the SRB1, but the modification of the configuration of the first signaling radio bearer may be performed by the first base station 31 by the first letter.
  • the radio bearer is sent to the UE to complete the RRC message.
  • the RRC message here may also be an RRC connection reconfiguration message, but is not limited thereto.
  • the second base station 32 includes a DRB. Based on this, the second base station 32 can also perform user data transmission with the UE through the DRB.
  • the first base station 31 further performs data transmission with the UE through the DRB. Specifically, the first base station 31 uses the space configured by the first base station 31 and the UE. The radio resource connected to the port transmits data with the UE through the DRB.
  • the first base station 31 and the second base station 32 are respectively connected to the UE.
  • the first base station 31 is further connected to the second base station 32.
  • the communication system of the present embodiment may include a plurality of first base stations 31 and one second base station 32.
  • the first base station is responsible for performing data transmission with the UE through the DRB, and configuring the radio resource of the air interface connection between the first base station and the UE by using the first signaling radio bearer,
  • the second base station is responsible for performing control signaling interaction with the UE, establishing, modifying, and releasing the RRC connection, performing mobility management of the UE, and the like, and controlling the UE and the
  • a first signaling radio bearer is established between a base station, and the configuration of the radio resource of the air interface connected between the first base station and the UE does not need to pass through the second base station, but is directly sent by the first base station to the UE by using the first signaling radio bearer.
  • Configuring a message so that the UE completes the configuration of the radio resource connected to the air interface between the first base station according to the configuration message, reduces the delay of configuring the radio resource of the air interface connection between the UE and the first base station, and saves the saving The cost of the second base station.
  • the communication system provided in this embodiment and the first base station and the second base station in the communication system will be further described below.
  • the communication system of this embodiment can be divided into two layers, which are a basic layer and an enhancement layer, respectively.
  • the base layer may be constituted by the second base station 32 in the communication system; the enhancement layer may be constituted by the first base station 31 in the communication system.
  • the second base station 32 is typically a high power node, but is not limited thereto.
  • the second base station 32 can also be a low power node in the case of a blind spot. Once a second base station 32 on the base layer is missing, a coverage hole will result.
  • the second base station 32 typically uses low frequency band to communicate control plane signaling.
  • the RRC connection of the UE is established on the second base station 32 of the base layer.
  • the second base station 32 includes, but is not limited to, the following functions: system information broadcast, RRC connection management, paging, RRC connection establishment/remediation release, measurement configuration and reporting, handover (Handover), and enhancement layer.
  • system information broadcast RRC connection management
  • paging paging
  • RRC connection establishment/remediation release measurement configuration and reporting
  • handover handover
  • enhancement layer The activation and deactivation of a base station 31, the selection of the first base station 31 on the enhancement layer for the service bearer of the UE, and the bearer management interaction between the first base station 31 on the enhancement layer.
  • the second base station 32 can carry a part of the low data volume service bearer of the UE, that is, the second base station 32 further includes a function of DRB data transmission.
  • the first base station 31 on the enhancement layer is typically a low power node that transmits a large amount of data, such as FTP, video, to the UE using a high frequency band.
  • the first base station 31 is transparent to the EPS node, and there is no S1-MME interface between the first base station 31 and the MME.
  • the first base station 31 includes, but is not limited to, the following functions: bearer management interaction with the second base station 32 on the base layer, data transmission of the DRB with the UE according to the configuration of the second base station 32 on the base layer, and the first base station 31 and the UE Configuration of air interface connections, such as DRB modification, MAC sublayer configuration (mac-MainConfig), PHY configuration (physicalConfigDedicated), SPS configuration (sps-Config), etc.
  • bearer management interaction with the second base station 32 on the base layer data transmission of the DRB with the UE according to the configuration of the second base station 32 on the base layer
  • the first base station 31 and the UE Configuration of air interface connections such as DRB modification, MAC sublayer configuration (mac-MainConfig), PHY configuration (physicalConfigDedicated), SPS configuration (sps-Config), etc.
  • the second base station 32 of the base layer has a many-to-one relationship with the first base station 31 of the enhancement layer, that is, one UE has only one second base station 32, and there may be one or more first base stations 31.
  • the migration of the second base station 32 of the base layer necessarily results in the migration of the first base station 31 of the enhancement layer.
  • the first base station 31 of the enhancement layer is transparent to the second base station 32 of the neighbor base layer and is considered to be the node in its base layer.
  • the protocol stack includes: RRC layer/IP layer, PDCP layer, RLC layer, MAC layer and physical layer from top to bottom.
  • the PDCP layer mainly performs encryption and integrity protection functions, such as Robust Header Compression (ROHC) and Security (Security) technology.
  • the RLC layer mainly provides segmentation and retransmission services for users and control data, such as Segm and Automatic Repeat-reQues (ARQ).
  • the MAC layer mainly performs functions such as scheduling, priority handing, multiplexing by the UE, and hybrid automatic repeat request (HARQ).
  • the downlink mapping logic of the second base station 32 is as shown in FIG. 2B.
  • the complete RRC function and related channels for example, including SRB0, SRB1, SRB2, broadcast channel, paging channel, and the RRC function in the prior art are the same, no longer Detailed.
  • the second base station 32 may also have a DRB, which is mainly used for small data volume user data transmission.
  • the downlink mapping logic of the second base station 32 is substantially identical to the downlink mapping logic of the base station in the current LTE system, except that the DRB is optional (as indicated by the dashed line in Fig. 2B).
  • the downlink mapping logic of the first base station 31 is as shown in FIG. 2C.
  • the maximum difference from the base station in the current LTE system for the downlink is: the first base station 31 does not have the SRB0, SRB1, SRB2, broadcast and paging channels of the control plane of the UE; 31 DRB having a user plane of the UE for performing user data transmission, and one for configuring only the first base station 31 A module for connecting a radio resource with an air interface between the UE, and a corresponding first signaling radio bearer.
  • Figure 2D includes both the uplink mapping logic of the first base station 31 and the uplink mapping logic of the second base station 32.
  • the first signaling radio bearer is represented by SRB3, but is not limited thereto.
  • the UE On the UE, for the uplink, all the traditional RRC connection functions of the UE (through SRB0, SRB1 or SRB2) are on the second base station 32, and the function for the air interface connection configuration with the first base station 31 is passed.
  • the first signaling radio bearer is on the first base station 31; the different DRBs of the UE may be connected to the first base station 31 and the second base station 32, respectively.
  • RACH Random Access Channel
  • the first base station is responsible for performing user data transmission with the UE through the DRB, and configuring the wireless connection between the base station and the UE through the first signaling radio bearer.
  • the second base station is responsible for performing signaling interaction with the UE, establishing, modifying, and releasing the RRC connection, performing mobility management of the UE, and the like, and controlling the establishment of the first signaling radio bearer between the UE and the first base station, where the first base station and the first base station.
  • the configuration of the radio resource of the air interface connected between the UEs does not need to go through the second base station, but the first base station sends a configuration message to the UE by using the first signaling radio bearer, so that the UE completes the relationship with the first base station according to the configuration message.
  • the configuration of the radio resource connected by the air interface reduces the delay of the configuration of the radio resource connected to the air interface between the first base station, saves the overhead of the second base station, and reduces the complexity of the second
  • an embodiment of the present invention provides a signaling transmission method, as shown in FIG. 2E, which specifically includes:
  • Step 301 The first base station performs control signaling interaction with the UE by using the first signaling radio bearer, and the user data transmission exists between the first base station and the UE.
  • Step 302 The second base station performs control signaling interaction with the UE by using SRB0, SRB1, or SRB2, where the first signaling radio bearer is different from the SRB0, SRB1, and SRB2.
  • the purpose of the first base station to perform control signaling interaction with the UE by using the first signaling radio bearer is mainly to complete the configuration of the radio resource of the air interface connection between the first base station and the UE.
  • the control signaling interaction between the second base station and the UE through the SRB0, the SRB1, or the SRB2 mainly includes establishing, modifying, and releasing the RRC connection, performing mobility management of the UE, and the like, different from the first base station passing the first letter.
  • the radio bearer interacts with the control signaling performed by the UE.
  • the first base station and the second base station are not limited to respectively
  • the first base station that has user data transmission with the UE configures the radio resource connected by the air interface between the first base station and the UE by using the first signaling radio bearer different from the existing signaling radio bearer.
  • the first base station and the UE can dynamically configure the radio resource of the air interface connected between the first base station and the UE according to the change of the radio channel between the first base station and the UE, and the second base station is responsible for performing control information with the UE. Let the interaction, establish, modify and release the RRC connection, perform mobility management of the UE, and the like.
  • the configuration of the radio resource of the air interface connected between the first base station and the UE does not need to pass through the second base station, but the first base station directly sends a configuration message to the UE by using the first signaling radio bearer, so that the UE completes according to the configuration message.
  • the configuration of the radio resources of the air interface connection between the first base stations reduces the delay of the configuration of the radio resources connected to the air interface between the first base station, saves the overhead of the second base station, and reduces the complexity of the second base station. .
  • An embodiment of the present invention provides a base station.
  • the base station and the UE in this embodiment have user data transmission.
  • the base station in this embodiment performs control signaling interaction with the UE through the first signaling radio bearer.
  • the first signaling radio bearer is different from SRB0, SRB1, and SRB2, and any one of the SRB0, SRB1, and SRB2 signaling radio bearers is different from other base stations of the embodiment to perform control signaling with the UE.
  • the base station in this embodiment may be the enhancement layer base station in the embodiment shown in FIG. 1, or the first base station in the embodiment shown in FIG. 2A-2D.
  • the base station in this embodiment includes: a first radio resource configuration module 12 and a first signaling transmission module 13.
  • the first radio resource configuration module 12 is configured to configure the radio resource of the air interface connection between the base station and the UE in this embodiment, and generate a configuration message.
  • the configuration message includes a radio resource configuration of an air interface connection.
  • the first signaling transmission module 13 is configured to be connected to the first radio resource configuration module 12 and the UE, and configured to send, by using the first signaling radio bearer, a configuration message generated by the first radio resource configuration module 12 to the UE, so that the UE is configured according to the UE.
  • Configuring the radio resource configuration of the air interface connection in the message to the base of this embodiment The radio resources connected to the air interface between the stations are configured.
  • the base station in this embodiment does not include SRB0, SRB1, and SRB2.
  • the base station in this embodiment is mainly responsible for performing DRB data transmission with the UE, and is not responsible for establishing, modifying, and releasing the RRC connection of the UE, nor performing mobility management of the UE, and belongs to the enhancement layer base station.
  • the base station of the embodiment includes the first signaling radio bearer, and can perform control signaling interaction with the UE by using the first signaling radio bearer to control the radio resource that the UE completes the air interface connection with the base station of the embodiment. Configuration.
  • the base station in this embodiment further includes: a first data transmission module 11.
  • the first data transmission module 11 is connected to the first radio resource configuration module 12 and the UE, and is configured to use the radio resource of the air interface connection configured by the first radio resource configuration module 12 to perform data transmission with the UE by using the DRB.
  • the first signaling transmission module 13 is further configured to receive, by using the first signaling radio bearer, a configuration complete message sent by the UE, and send a configuration complete message to the first radio resource configuration module 12 .
  • the UE performs configuration of the radio resource connected to the air interface according to the radio resource configuration of the air interface in the configuration message, and generates a configuration completion message after completing the configuration of the radio resource connected to the air interface, and passes the A signaling radio bearer sends the configuration completion message to the base station of the embodiment to inform the base station that the configuration of the radio resource connected to the air interface is completed.
  • the base station receives the configuration completion message sent by the UE by using the first signaling radio bearer.
  • the first radio resource configuration module 12 is further configured to receive a configuration completion message sent by the first signaling transmission module 13.
  • the first signaling transmission module 13 is specifically configured to receive the UE from a logical channel identified by a logical channel identifier (LCID) associated with the first signaling radio bearer.
  • the configuration completion message is sent, and the configuration completion message is processed by the RLC sub-layer and the PDCP sub-layer, and the processed configuration completion message is sent to the first radio resource configuration module 12.
  • LCID logical channel identifier
  • RB whether SRB or DRB
  • logical channel has a unique LCID.
  • the LCIDs associated with SRB0, SRB1, and SRB2 are fixed to 0, 1, and 2, and the LCIDs associated with other DRBs are allocated by the base station to the UE through RRC signaling.
  • the first signaling wireless bearer of the base station in this embodiment The payload also corresponds to a logical channel and is associated with the LCID of the logical channel.
  • the LCID has a length of 5 bits, and is a reserved value for the downlink binary value 01011 to the binary value 11010, and a reserved value for the uplink binary value 01011 to 11000.
  • the LCID of the upper and lower logical channels associated with the first signaling radio bearer is the same value, and the value of the logical channel corresponding to the first signaling radio bearer is both uplink and downlink. Is a value between the binary value 01011 and the binary value 11000, such as 01011, which is 11 in decimal.
  • the first signaling transmission module 13 is specifically configured to acquire, by using the first radio resource configuration module 12, the configuration message generated by the first radio resource configuration module 12, and perform PDCP on the configuration message.
  • the layer and the RLC sub-layer process, and the processed configuration message is mapped to the logical channel identified by the LCID associated with the first signaling radio bearer and sent to the UE.
  • the first signaling transmission module 13 maps the processed configuration message to the logical channel identified by the LCID associated with the first signaling radio bearer, and sends the processed configuration message to the UE.
  • the logical sub-channel identified by the LCID associated with the first signaling radio bearer is sent to the MAC sublayer of the base station of the embodiment, and then the MAC sublayer is responsible for sending the processed configuration message to the physical layer (Physical, PHY) layer, and finally Send to the UE through the air interface.
  • the radio resource configuration of the air interface connection between the base station and the UE in this embodiment may include at least one of the following information: a MAC sublayer parameter between the UE and the base station in this embodiment, and a UE and a base station in this embodiment.
  • the PHY layer parameter, the DRB parameter between the UE and the base station of the embodiment, and the Semi-Persistent Scheduling (SPS) parameter between the UE and the base station of the embodiment are not limited thereto.
  • the air interface connection between the base station and the UE in this embodiment includes the MAC sublayer parameters; the MAC sublayer parameters are related to the prior art.
  • the information in the RRC connection reconfiguration message sent to the UE when the base station modifies the MAC sublayer parameters is the same and will not be described in detail herein.
  • the air interface connection between the base station and the UE in this embodiment includes a PHY layer parameter; the PHY layer parameter.
  • PUCCH Physical Uplink Control CHannel
  • the air interface connection between the base station and the UE in this embodiment includes a MAC sublayer parameter and a PHY layer parameter.
  • the air interface connection between the base station and the UE in this embodiment includes the DRB parameter between the UE and the base station in this embodiment.
  • the air interface connection between the base station and the UE in this embodiment includes between the UE and the base station in this embodiment. SPS parameters.
  • the base station of the embodiment of the present invention includes a DRB, and performs user data transmission mainly by using the DRB and the UE; and further includes a first signaling radio bearer without including SRB0, SRB1, and SRB2, and an air interface between the base station and the UE.
  • the configuration message is generated, and the configuration message is sent to the UE by using the first signaling radio bearer different from the existing signaling radio bearer, so that the UE performs the radio resource configuration according to the air interface connection in the configuration message.
  • the configuration of the radio resource connected to the air interface enables the base station and the UE in this embodiment to dynamically configure the radio resource connected between the base station and the UE in this embodiment according to the radio channel change between the base station and the UE in this embodiment.
  • the problem of configuring radio resources of the air interface connection between the base station and the UE in this embodiment is solved.
  • the base station sends the radio resource configuration of the air interface connection between the UE to the UE through the first signaling radio bearer, and completes the configuration of the radio resource connected to the air interface between the UE, so that the base station and the UE in this embodiment are configured.
  • the radio resource configuration of the air interface connection is not sent to the UE by the base layer, and the delay of configuring the radio resource of the air interface connection between the base station and the UE in this embodiment is reduced, and the cost of the base layer base station is also saved. .
  • another embodiment of the present invention provides a signaling transmission method, which specifically includes: The base station performs control signaling interaction with the UE by using the first signaling radio bearer. There is a user data transmission between the base station and the UE, where the first signaling radio bearer is different from the SRB0, SRB1, and SRB2, and any one of the SRB0, SRB1, and SRB2 signaling radio bearers It is a signaling radio bearer used when the other base stations of the base station perform control signaling interaction with the UE.
  • an implementation manner in which a base station performs control signaling interaction with a UE by using a first signaling wireless bearer includes:
  • Step 101 The base station configures the radio resource of the air interface connected between the base station and the UE, and generates a configuration message, where the configuration message includes the radio resource configuration of the air interface connection.
  • Step 102 The base station sends a configuration message to the UE by using the first signaling radio bearer, so that the UE configures an air interface between the local UE and the base station according to the radio resource connected by the air interface in the configuration message. Connected wireless resources are configured.
  • the base station in this embodiment is the base station provided in the embodiment shown in FIG. 3A, and does not include SRB0, SRB1, and SRB2, but includes the first signaling radio bearer and the DRB.
  • the base station of this embodiment belongs to the enhancement layer base station, and is mainly responsible for providing user data transmission to the UE, and also has the function of performing control signaling interaction with the UE, and the control signaling interaction is mainly used to complete the wireless connection with the UE.
  • the configuration of the resource is the base station provided in the embodiment shown in FIG. 3A, and does not include SRB0, SRB1, and SRB2, but includes the first signaling radio bearer and the DRB.
  • the base station of this embodiment belongs to the enhancement layer base station, and is mainly responsible for providing user data transmission to the UE, and also has the function of performing control signaling interaction with the UE, and the control signaling interaction is mainly used to complete the wireless connection with the UE.
  • the configuration of the resource is the configuration of the resource.
  • the method in this embodiment further includes: the base station performs data transmission with the UE by using the DRB. Further, the base station specifically uses the radio resource connected by the air interface configured by the base station, and performs user data transmission between the DRB and the UE.
  • step 102 includes: the base station performs a PDCP sublayer on the configuration message and
  • the RLC sub-layer processes, and the processed configuration message is mapped to the logical channel identified by the LCID associated with the first signaling radio bearer and sent to the UE.
  • the radio resource configuration of the air interface connection between the base station and the UE in this embodiment may include at least one of the following information: a MAC sublayer parameter between the UE and the base station in this embodiment, and a UE and a base station in this embodiment.
  • the PHY layer parameters between the UE, the DRB between the UE and the base station of the embodiment, and the SPS parameters between the UE and the base station of the embodiment are not limited thereto.
  • the LCID associated with the first signaling radio bearer of the base station in this embodiment is a value between a binary value of 01011 and a binary value of 11000, such as 01011, that is, a decimal eleven.
  • the base station and the UE there is user data transmission between the base station and the UE, and the data transmission is performed by the DRB and the UE, and the control signaling interaction between the UE and the UE is performed through the first signaling radio bearer, so that the base station and the UE can be timely.
  • the radio resource of the air interface connection between the base station and the UE is dynamically configured according to the radio channel change between the base station and the UE, and the configuration problem of the radio resource of the air interface connection between the base station and the UE in this embodiment is solved.
  • the radio resource configuration of the air interface connection between the enhancement layer base station and the UE does not need to be sent by the base layer base station, and the configuration of the radio resource of the air interface connection between the enhancement layer base station and the UE is reduced.
  • the delay is also beneficial to save the overhead of the base layer base station.
  • the method of this embodiment includes after step 102:
  • Step 103 The base station receives, by using the first signaling radio bearer, a configuration complete message sent by the UE.
  • An optional implementation of step 103 includes: the base station is associated with the first signaling radio bearer The configuration completion message sent by the UE is received in the logical channel identified by the LCID. Then, the base station performs RLC sub-layer and PDCP sub-layer processing on the configuration completion message, and completes the configuration according to the processed configuration completion message to learn that the UE completes the configuration of the radio resource connected to the air interface.
  • the UE sends a configuration complete message to the base station in this embodiment after completing the configuration of the radio resource connected to the air interface.
  • the base station in this embodiment receives the configuration completion message through the first signaling radio bearer, and completes the message according to the configuration. It is known that the UE completes the configuration of the radio resource connected to the air interface. If the base station does not receive the configuration completion message sent by the UE, it can determine that the UE fails to complete the configuration of the radio resource connected to the air interface, and can resend the configuration message to the UE in time. It is beneficial to improve the success rate of the configuration of wireless resources connected by air interface.
  • An embodiment of the present invention provides a UE.
  • the user data transmission between the UE and the base station in this embodiment is performed.
  • the UE in this embodiment performs control signaling interaction with the base station by using the first signaling radio bearer.
  • the first signaling radio bearer is different from SRB0, SRB1, and SRB2, and any one of the SRB0, SRB1, and SRB2 signaling radio bearers is different from the other base stations of the base station and the UE of the embodiment performs a control signal.
  • the first signaling radio bearer is a newly defined signaling radio bearer, which may be, for example, SRB3, but is not limited thereto.
  • the base station that performs the control signaling interaction with the UE in the first signaling radio bearer belongs to the enhancement layer base station, and the enhanced layer base station not only has the function of performing data transmission through the DRB and the UE, but also has the same implementation.
  • the UE performs a control signaling interaction function, where the control signaling interaction is mainly used to control the configuration of the radio resource of the air interface connection between the base station and the UE in this embodiment.
  • the base station may be the first base station in the embodiment shown in Figures 2A-2D.
  • the other base stations different from the base station mainly refer to base layer base stations, including SRB0, SRB1, and SRB2.
  • the UE in this embodiment includes: a second signaling transmission module 22 and a second radio resource configuration module 23.
  • the second signaling transmission module 22 is connected to the base station, and is configured to receive, by using the first signaling radio bearer, a configuration message sent by the base station, where the configuration message includes an air interface connection between the base station and the UE. Wireless resource configuration.
  • the base station sends the configuration message to the UE in this embodiment by using the first signaling radio bearer.
  • the second radio resource configuration module 23 is connected to the second signaling transmission module 22, and configured to perform, according to the radio resource configuration of the air interface connection in the configuration message received by the second signaling transmission module 22, Configure the wireless resources connected to the port.
  • the UE in this embodiment further includes: a second data transmission module 21.
  • the second data transmission module 21 is configured to perform data transmission with the base station by using the DRB.
  • the second data transmission module 21 is connected to the second radio resource configuration module 23, and is configured to perform data transmission with the base station by using the radio resource connected by the air interface configured by the second radio resource configuration module 23.
  • the second radio resource configuration module 23 is further configured to generate a configuration completion message after completing the configuration of the air interface connection.
  • the second signaling transmission module 22 of the embodiment is further configured to send a configuration completion message to the base station by using the first signaling radio bearer.
  • the second signaling transmission module 22 is specifically configured to obtain, from the second radio resource configuration module 23, the configuration completion message generated by the second radio resource configuration module 23, and perform PDCP on the configuration completion message.
  • the sub-layer and the RLC sub-layer process, and the processed configuration completion message is mapped to the logical channel identified by the LCID associated with the first signaling radio bearer and sent to the base station.
  • the second signaling transmission module 22 is specifically configured to receive, by using a logical channel identified by the LCID associated with the first signaling radio bearer, a configuration message sent by the base station, and perform configuration message The RLC sublayer and the PDCP sublayer process, and send the processed configuration message to the second radio resource configuration module 23.
  • the radio resource configuration of the air interface connection between the UE and the base station in this embodiment may include at least one of the following information: a MAC sublayer parameter between the UE and the base station in this embodiment, and the UE in this embodiment.
  • the PHY layer parameter between the base station and the base station, the DRB between the UE and the base station in this embodiment, and the SPS parameter between the UE and the base station in this embodiment are not limited thereto.
  • FIG. 3A For an illustration of which information is included in the radio resource configuration of the air interface connection, see the description of the embodiment shown in FIG. 3A.
  • the LCID associated with the first signaling radio bearer is a value between a binary value of 01011 and a binary value of 11000, and may be, for example, 01011, that is, a decimal eleven.
  • the UE in this embodiment further includes: a third signaling transmission module 24 and a radio bearer configuration module 25.
  • the third signaling transmission mode Block 24 configured to receive, by using the SRB1, an RRC message sent by another base station that is different from the base station, where the RRC message includes an identifier and configuration information of the first signaling radio bearer.
  • the radio bearer configuration module 25 is connected to the third signaling transmission module 24, and configured to locally configure the first signaling radio bearer according to the RRC message received by the third signaling transmission module 24.
  • the radio bearer configuration module 25 is further connected to the second signaling transmission module 22, and configured to provide the first signaling radio bearer to the second signaling transmission module 22.
  • the above RRC message may be an RRC connection reconfiguration message, but is not limited thereto.
  • the configuration information in the foregoing RRC message includes an RLC configuration, a logical channel identifier, a logical channel configuration, and the like.
  • the first signaling radio bearer on the UE in this embodiment is newly added by the UE according to the RRC reconfiguration message sent by the base layer base station (that is, other base stations different from the base station) accessed by the UE. For example, if the identifier of the newly added first signaling radio bearer is 3, the newly added first signaling radio bearer is SRB3.
  • the UE in this embodiment has a first signaling radio bearer and a DRB, and further includes: SRB0, SRB1, and SRB2. That is to say, in addition to the functions implemented by the foregoing functional modules, the UE in this embodiment has the RRC connection function of the UE in the prior art, and the function is implemented on the base layer base station accessed by the UE. In addition, different DRBs of the UE in this embodiment may be respectively performed on the base layer base station and the base station (ie, the enhancement layer base station) in this embodiment.
  • the UE in this embodiment receives the configuration message sent by the enhancement layer base station through the first signaling radio bearer through the first signaling radio bearer different from the existing signaling radio bearer, and is connected according to the air interface in the configuration message.
  • the radio resource configuration configures the radio resource of the air interface connection between the UE and the enhancement layer base station, so that the UE and the enhancement layer base station in this embodiment can dynamically and dynamically configure the radio channel between the two according to the change between the two.
  • the radio resource connected to the air interface solves the problem of configuring the radio resource of the air interface connection between the UE and the enhancement layer base station in this embodiment.
  • the UE in this embodiment receives the radio resource configuration of the air interface connection that the enhancement layer base station sends through the first signaling radio bearer, and completes the radio layer connection with the enhancement layer by using the first signaling radio bearer different from the existing signaling radio bearer.
  • the configuration of the radio resource connected between the air interface and the UE is not required to be sent by the base layer base station, and the air interface between the enhancement layer base station and the UE in the embodiment is reduced.
  • the delay of the configuration of the connected radio resources is beneficial to save the overhead of the base layer base station.
  • another embodiment of the present invention provides a signaling transmission method. Specifically, the UE performs control signaling interaction with the base station by using the first signaling radio bearer.
  • the first signaling radio bearer is different from SRB0, SRB1, and SRB2, and any one of the SRB0, SRB1, and SRB2 signaling radio bearers is different from the base station.
  • the signaling radio bearer used by the other base station to perform control signaling interaction with the UE in this embodiment.
  • the base station that performs the control signaling interaction with the UE in the first signaling radio bearer belongs to the enhancement layer base station, and the enhanced layer base station not only has the function of performing data transmission through the DRB and the UE, but also has the same implementation.
  • the UE performs a control signaling interaction function, where the control signaling interaction is mainly used to control the configuration of the radio resource of the air interface connection between the base station and the UE in this embodiment.
  • the base station may be the first base station in the embodiment shown in Figures 2A-2D.
  • the other base stations different from the base station mainly refer to base layer base stations, including SRB0, SRB1, and SRB2.
  • an implementation manner in which the UE performs control signaling interaction with the base station by using the first signaling wireless bearer includes:
  • Step 201 The UE receives, by using the first signaling radio bearer, a configuration message sent by the base station, where the configuration message includes a radio resource configuration of an air interface connection between the base station and the UE.
  • the base station also sends the configuration message to the UE by using the first signaling radio bearer.
  • Step 202 The UE configures the radio resource connected to the air interface according to the radio resource configuration of the air interface connected in the configuration message.
  • the method in this embodiment further includes:
  • the DRB performs data transmission with the base station.
  • the UE uses the radio resource connected by the air interface configured by the UE to perform data transmission with the base station by using the DRB.
  • An optional implementation manner of the step 201 includes: receiving, by the UE, a configuration message sent by the base station from a logical channel identified by the LCID associated with the first signaling radio bearer. Then, the UE performs RLC sublayer and PDCP sublayer processing on the configuration message.
  • the step 202 is specifically: the UE obtains the radio resource configuration of the air interface connection from the processed configuration message, and then configures the radio resource connected to the air interface according to the obtained radio resource configuration of the air interface.
  • the air interface connection between the UE and the base station in this embodiment may include at least one of the following information: the MAC sublayer parameter between the UE and the base station in this embodiment, and the UE and the base station in this embodiment.
  • the PHY layer parameter between the UE, the DRB between the UE and the base station in this embodiment, and the SPS parameter between the UE and the base station in this embodiment are not limited thereto.
  • the LCID associated with the first signaling radio bearer is a value between a binary value of 01011 and a binary value of 11000, and may be, for example, 01011, that is, a decimal eleven.
  • the UE receives the configuration message sent by the enhancement layer base station by using the first signaling radio bearer different from the existing signaling radio bearer, and according to the radio resource configuration of the air interface connection in the configuration message,
  • the radio resources of the air interface connection between the UE and the enhancement layer base station are configured to solve the problem of configuring radio resources of the air interface connection between the UE and the enhancement layer base station.
  • the UE receives the radio resource configuration of the air interface that the enhanced layer base station sends through the first signaling radio bearer, and completes the air interface by using the first signaling radio bearer different from the existing signaling radio bearer.
  • the configuration of the connected radio resources is such that the radio resource configuration of the air interface connection between the enhancement layer base station and the UE does not need to be sent by the base layer base station, and the configuration of the radio resource connection between the enhancement layer base station and the UE is reduced.
  • the delay is also beneficial to save the overhead of the base layer base station.
  • FIG. 4D is a flowchart of a signaling transmission method according to another embodiment of the present invention. This embodiment is implemented based on the embodiment shown in Fig. 4C. As shown in FIG. 4D, the method in this embodiment further includes after step 202:
  • Step 203 After completing configuration of the radio resource connected to the air interface, the UE generates a configuration completion message.
  • Step 204 The UE sends a configuration complete message to the base station by using the first signaling radio bearer.
  • An optional implementation manner of the step 204 includes: performing, by the UE, the PDCP sub-layer and the RLC sub-layer processing on the configuration completion message, and mapping the processed configuration completion message to the identifier identified by the LCID associated with the first signaling radio bearer.
  • the logical channel is sent to the base station.
  • the UE after completing the air interface connection configuration, the UE sends a configuration completion message to the base station in this embodiment.
  • the base station in this embodiment receives the configuration completion message by using the first signaling radio bearer, and learns the UE according to the configuration completion message.
  • the configuration of the radio resource connected to the air interface is completed. If the base station in the implementation does not receive the configuration completion message sent by the UE, the UE may determine that the UE fails to complete the configuration of the radio resource connected to the air interface, and may resend the configuration message to the UE in time. It is beneficial to improve the success rate of the configuration of the radio resources connected to the air interface.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明提供一种通信系统、基站、用户设备及信令传输方法。其中,系统包括:第一基站和第二基站;第一基站与UE之间存在用户数据传输,第一基站通过第一信令无线承载与UE进行控制信令交互;第二基站通过SRBO、SRBl或SRB2与UE进行控制信令交互;其中第一信令无线承载不同于SRBO、SRBl和SRB2。本发明技术方案可解决了增强层基站与UE之间的空口连接的无线资源的配置问题。

Description

通信系统、 基站、 用户设备及信令传输方法
技术领域
本发明涉及通信技术, 尤其涉及一种通信系统、 基站、 用户设备及信令 传输方法。 背景技术
在网络向宽带化、 移动化发展的过程中, 第三代合作伙伴计划 (3rd Generation Partnership Program, 3GPP )组织在移动接入网提出了长期演进 ( Long Term Evolution, LTE )方案, 即演进通用陆地无线接入网 (Evolved Universal Territorial Radio Access Network, E-UTRAN ) ; 在移动核心网提出 了系统架构演进( System Architecture Evolution, SAE )方案, 即演进分组核 心网 (Evolved Packet Core, EPC ) 。
E-UTRAN釆用只有演进型基站(evolved NodeB, eNB )构成的单层结 构, 以便简化网络和减少时延。 用户设备 ( User Equipment, UE )和 eNB之 间的接口为 Uu接口, 为无线接口连接。 Uu接口的用户面主要用于传递网际 协议(Internet Procotol, IP )数据包, 主要完成头压缩、 加密、 调度、 混合自 动重传请求 ( Hybrid Automatic Repeat Request, HARQ )及自动重传请求 ( Automatic Repeat-reQuest, ARQ )等功能。 Uu接口的信令面主要用于传输 信令消息。 其中, UE 的控制面信令, 例如无线资源控制 (Radio Resource Control, RRC )信令,被映射到信令无线承载( Signalling Radio Bearer, SRB ) 上进行传输; 用户面所有的 IP数据包被映射到不同的数据无线承载(Data Radio Bearer, DRB )上进行传输。 其中, SRB和 DRB首先分别经过分组数 据汇聚协议 ( Packet Data Convergence Protocol , PDCP )子层以及无线链路控 制( Radio Link Control, RLC )子层的处理,然后在媒体接入控制( Media Access Control, MAC ) 子层进行复用。 UE的 DRB和 SRB共用同一个 MAC实体, 也就是同一个 UE的用户面和控制面锚定在同一 eNB上。
在宏微小区重叠覆盖的情况下,对于移动性高的 UE,如果将其附着在覆 盖范围大的宏(macro ) eNB上, 可以避免频繁切换可能带来的业务中断以及 吞吐量降低等影响用户体验的因素, 但是, 由于需要连接到比较远的 macro eNB, 需要增加发送功率以及空口资源的消耗; 如果将其附着在距离较近的 微(pico ) eNB 上, 可以减少空口资源的消耗, 但会增加切换的次数及切换 失败率, 导致 UE的业务中断。
针对上述问题, 现有技术提出了将空口控制面和用户面分离的思路, 由 信令基站( signalling BS )提供 UE的控制面连接, 由数据基站( Data BS )提 供对 UE的数据面连接。 在实现空口控制面和用户面分离的过程中, 需要解 决数据基站根据 UE与数据基站之间无线信道的变化,动态配置 UE与其数据 基站之间的空口连接的无线资源的问题。 发明内容
本发明提供一种通信系统、 基站、 用户设备及信令传输方法, 用以及时 有效的根据 UE与数据基站之间无线信道的变化,动态配置 UE与其数据基站 之间的空口连接的无线资源。
本发明一方面提供一种通信系统, 包括: 第一基站和第二基站; 所述第一基站与用户设备 UE之间存在用户数据传输, 所述第一基站通 过第一信令无线承载与所述 UE进行控制信令交互;
所述第二基站通过信令无线承载 SRB0、信令无线承载 SRB1或信令无线 承载 SRB2与所述 UE进行控制信令交互;
其中所述第一信令无线承载不同于所述 SRB0、 SRB1和 SRB2。
本发明一方面还提供一种信令传输方法, 包括:
第一基站通过第一信令无线承载与用户设备 UE之间进行控制信令交互; 其中所述第一基站与所述 UE之间存在用户数据传输;
第二基站通过信令无线承载 SRB0、信令无线承载 SRB1或信令无线承载 SRB2与所述 UE进行控制信令交互;
其中所述第一信令无线承载不同于所述 SRB0、 SRB1和 SRB2。
本发明另一方面提供一种基站, 所述基站与用户设备 UE之间存在用户 数据传输, 所述基站通过第一信令无线承载与所述 UE进行控制信令交互; 其中所述第一信令无线承载不同于信令无线承载 SRB0、 信令无线承载 SRB1和信令无线承载 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无 线承载是不同于所述基站的其他基站与所述 UE进行控制信令交互时使用的 信令无线承载。
本发明另一方面还提供一种信令传输方法, 包括:
基站通过第一信令无线承载与用户设备 UE进行控制信令交互; 其中, 所述基站与所述 UE之间存在用户数据传输, 所述第一信令无线 承载不同于信令无线承载 SRB0、信令无线承载 SRB1和信令无线承载 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无线承载是不同于所述基站的其 他基站与所述 UE进行控制信令交互时使用的信令无线承载。
本发明又一方面提供一种用户设备, 包括: 所述 UE与基站之间存在用 户数据传输, 所述 UE通过第一信令无线承载与所述基站进行控制信令交互; 其中所述第一信令无线承载不同于信令无线承载 SRB0、 信令无线承载 SRB1和信令无线承载 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无 线承载是不同于所述基站的其他基站与所述 UE进行控制信令交互时使用的 信令无线承载。
本发明又一方面还提供一种信令传输方法, 包括:
用户设备 UE通过第一信令无线承载与基站进行控制信令交互; 其中, 所述 UE与所述基站之间存在用户数据传输, 所述第一信令无线 承载不同于信令无线承载 SRB0、信令无线承载 SRB1和信令无线承载 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无线承载是不同于所述基站的其 他基站与所述 UE进行控制信令交互时使用的信令无线承载。
本发明一方面提供的通信系统及信令传输方法, 第二基站通过 SRB0、 SRB1或 SRB2与 UE进行控制信令交互, 例如建立、 修改和释放 RRC连接, 进行 UE的移动性管理等, 而与 UE之间存在用户数据传输的第一基站,则通 过第一信令无线承载与 UE进行控制信令交互,使得第一基站与 UE可以及时 有效的根据第一基站与 UE之间的无线信道的变化,动态配置第一基站与 UE 之间的空口连接的无线资源。
本发明另一方面提供的基站及信令传输方法, 基站与 UE之间存在用户 数据传输, 基站通过第一信令无线承载与 UE进行控制信令交互, 而不同于 本基站的其他基站通过 SRB0、 SRB1或 SRB2与 UE进行控制信令交互, 可 见由于本基站与 UE之间存在不同于现有信令无线承载的第一信令无线承载, 使得本基站可以及时有效的根据本基站与 UE之间的无线信道的变化, 动态 配置本基站与 UE之间的空口连接的无线资源,解决了本基站与 UE之间的空 口连接的无线资源的配置问题。
本发明又一方面提供的用户设备及信令传输方法, UE通过第一信令无线 承载, 和与 UE之间存在用户数据传输的基站进行信令控制交互, 而通过 SRB0、 SRB1或 SRB2与不同于上述基站的其他基站进行信令控制交互, 由 此可见,本 UE和与 UE之间存在用户数据传输的基站之间存在不同于现有信 令无线承载的第一信令无线承载,使得本 UE可以及时接收来自与 UE之间存 在用户数据传输的基站根据本基站与 UE之间的无线信道的变化, 对本 UE 与上述基站之间的空口连接的无线资源的配置,解决了 UE和与 UE之间存在 用户数据传输的基站之间空口连接的无线资源的配置问题。 附图说明
施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的通信网络的结构示意图;
图 2A为本发明一实施例提供的通信系统的结构示意图;
图 2B为本发明一实施例提供的第二基站的下行映射逻辑示意图; 图 2C为本发明一实施例提供的第一基站的下行映射逻辑示意图; 图 2D为本发明一实施例提供的从 UE角度来看空口的上行映射逻辑示意 图 2E为本发明一实施例提供的信令传输方法的流程图;
图 3A为本发明一实施例提供的基站的结构示意图;
图 3B为本发明另一实施例提供的信令传输方法的流程图;
图 3C为本发明又一实施例提供的信令传输方法的流程图;
图 4A为本发明一实施例提供的 UE的结构示意图;
图 4B为本发明另一实施例提供的 UE的结构示意图;
图 4C为本发明又一实施例提供的信令传输方法的流程图; 图 4D为本发明又一实施例提供的信令传输方法的流程图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明一实施例提供的通信网络的结构示意图。 如图 1所示, 本 实施例的通信网络包括两层, 一种是基本层, 用于提供无缝的基本覆盖; 一 种是增强层, 用于提供热点区域的高流量传输。 其中, 基本层由基本层基站 提供覆盖, 增强层由增强层基站提供覆盖。 基本层基站主要负责包括空口控 制面的信令交互的基本覆盖,而增强层基站主要负责空口用户面的数据交互。
其中, 基本层基站通常是高功率节点, 可称为 CeNB。 通信网络的基本 层通常会由多个 CeNB进行覆盖, 一旦某个 CeNB缺失, 会导致出现覆盖空 洞。 另夕卜, 基本层基站也可以是覆盖盲区 (blank area coverage )情况下的低 功率节点。 基本层基站通常釆用低频段传递控制面信令, 例如 UE的 RRC连 接建立在基本层基站上。 可选的, 基本层基站还可以承载 UE的部分低数据 量的业务承载。
其中, 增强层基站通常是低功率节点, 可称为 TeNB。 通信网络的增强层 通常由多个 TeNB进行覆盖。增强层基站通常釆用高频段传递大量业务数据, 例如承载 UE 的大数据量的业务承载, 例如文本传输协议 (File Transfer Protocol, FTP ) , 视频等。增强层基站与移动管理实体( Mobility Management Entity, MME ) 间无 Sl-MME接口, 增强层基站和基本层基站之间通过 SX 接口进行信息交互。
对某个 UE来说, 有一个基本层基站, 可以有一个或多个增强层基站, 也可以不存在增强层基站。 如图 1所示, UE与 TeNB之间的实线表示控制面 的信令连接, UE与 TeNB之间的虚线表示用户面的数据连接。
本发明以下各实施例适用于图 1所示两层网络结构, 也适用于单层网络 中基站重叠覆盖的场景。 无论是图 1所示的两层网络结构, 还是单层网络中 基站重叠覆盖的场景, 都至少存在两个基站, 例如第一基站和第二基站, 其 中第一基站与 UE之间存在用户数据传输, 并且通过第一信令无线承载与 UE 进行控制信令交互。 第二基站主要通过信令无线承载 SRB0、 信令无线承载 SRB1或信令无线承载 SRB2与 UE进行控制信令交互。 本发明以下各实施例 以基于图 1所示两层的网络结构为例进行说明。
在本发明以下各实施例中, 增强层基站不仅仅具有向 UE提供用户数据 传输的功能,还具有与 UE进行控制信令交互, 以完成与 UE之间的空口连接 的无线资源的配置的功能。
图 2A为本发明一实施例提供的通信系统的结构示意图。 如图 2A所示, 本实施例的系统包括: 第一基站 31和第二基站 32。
其中, 第一基站 31与 UE之间存在用户数据传输, 第一基站 31通过第 一信令无线承载与 UE进行控制信令交互。 第二基站 32通过信令无线承载 SRB0、信令无线承载 SRB1或信令无线承载 SRB2与 UE进行控制信令交互。
其中, 第一信令无线承载不同于 SRB0、 SRB1和 SRB2。
在本实施例中,第一基站 31为增强层基站,具有增强层基站的所有功能, 例如包括 DRB, 可以通过 DRB与 UE进行用户数据传输等。 同时, 本实施例 的第一基站 31 还具有与 UE通过第一信令无线承载进行控制信令交互的功 能。 这里的控制信令交互主要用于完成第一基站 31与 UE之间的空口连接的 无线资源的配置。 第一基站 31不包括所述 UE的 SRB0、 SRB1和 SRB2。
在本实施例中,第二基站 32为基本层基站,具有基本层基站的所有功能, 例如与 UE进行控制信令交互, 包括建立、 修改和释放 RRC连接, 进行 UE 的移动性管理等。本实施例第二基站 32包括所述 UE的 SRB0、 SRB1和 SRB2。
可选的,第一信令无线承载是新增的信令无线承载,例如可以记为 SRB3 , 但不限于此。
在本实施例提供的通信系统中, 第一基站 31与 UE之间通过第一信令无 线承载进行控制信令交互, 使得第一基站 31与 UE可以及时有效的根据第一 基站 31与 UE之间无线信道的变化,动态配置第一基站 31与 UE之间的空口 连接的无线资源, 为第一基站 31与 UE之间的空口连接的配置提供了条件。
在本实施例的一个可选实施方式中,第一基站 31通过第一信令无线承载 与 UE进行控制信令交互的一种应用具体为: 第一基站 31通过第一信令无线 承载与 UE进行控制信令交互, 以控制 UE对其与第一基站 31之间的空口连 接的无线资源进行配置。
基于上述, 第一基站 31具体可用于配置第一基站 31和 UE之间的空口 连接的无线资源, 生成配置消息, 所述配置消息包括空口连接的无线资源配 置, 并通过第一信令无线承载将配置消息发送给 UE, 以使 UE根据空口连接 的无线资源配置对所述空口连接的无线资源进行配置, 并通过第一信令无线 承载接收 UE发送的配置完成消息。 相应的, UE具体可用于通过第一信令无 线承载接收第一基站 31发送的配置消息,根据所述配置消息中的空口连接的 无线资源配置对所述空口连接的无线资源进行配置。 进一步, UE在完成所述 空口连接的无线资源的配置后, 生成配置完成消息并发送给第一基站 31 , 以 告知第一基站 31其已经完成所述空口连接的无线资源的配置。
在本实施例的一个可选实施方式中, 第二基站 32通过 SRB1与 UE进行 控制信令交互的一种应用具体为: 第二基站 32通过 SRB1与 UE进行控制信 令交互, 以控制 UE增加上述第一信令无线承载。
基于上述, 第二基站 32具体可用于通过 SRB1向 UE发送 RRC消息, 以使 UE增加第一信令无线承载, 所述 RRC消息包括第一信令无线承载的标 识和配置信息。 相应的, UE接收 RRC消息, 并根据 RRC消息新增第一信令 无线承载, 并对第一信令无线承载进行配置, 为通过第一信令无线承载与第 一基站 31进行控制信令交互提供条件。也就是说, UE根据第二基站 32的控 制新增第一信令无线承载。 其中, 所述 RRC消息可以是 RRC连接重配消息, 但不限于此。 所述 RRC消息包括的配置信息包括 RLC配置、 逻辑信道标识、 逻辑信道配置等。
在此说明, 第一信令无线承载的增加是由第二基站 32通过 SRB1向 UE 发送 RRC消息完成, 但对第一信令无线承载的配置的修改, 可以由第一基站 31通过第一信令无线承载向 UE发送 RRC消息完成。 这里的 RRC消息也可 以是 RRC连接重配消息, 但不限于此。
在本实施例的一个可选实施方式中, 第二基站 32包括 DRB。 基于此, 第二基站 32还可以通过 DRB, 与 UE进行用户数据传输。
在本实施例的一个可选实施方式中, 第一基站 31还通过 DRB, 与 UE进 行数据传输。 具体的, 第一基站 31使用第一基站 31配置的与 UE之间的空 口连接的无线资源, 通过 DRB, 与 UE进行数据传输。
其中, 第一基站 31和第二基站 32分别与 UE连接。 可选的, 第一基站 31还与第二基站 32连接。
在此说明,本实施例的通信系统可以包括多个第一基站 31和一个第二基 站 32。
由上述可见, 在本实施例的通信系统中, 第一基站负责通过 DRB与 UE 进行数据传输, 以及通过第一信令无线承载配置第一基站与 UE之间的空口 连接的无线资源, 解决了第一基站与 UE之间的空口连接的无线资源的配置 问题; 第二基站负责与 UE进行控制信令交互,建立、修改和释放 RRC连接, 进行 UE的移动性管理等,以及控制 UE与第一基站之间建立第一信令无线承 载, 第一基站与 UE之间的空口连接的无线资源的配置不需要经过第二基站, 而直接由第一基站通过第一信令无线承载向 UE发送配置消息,使得 UE根据 配置消息完成与第一基站之间的空口连接的无线资源的配置, 减少了 UE与 第一基站之间的空口连接的无线资源的配置的时延, 同时有利于节约第二基 站的开销。
下面将对本实施例提供的通信系统以及通信系统中的第一基站和第二基 站做进一步说明。
本实施例的通信系统可划分为两层, 分别为基本层与增强层。 其中, 基 本层可由本通信系统中的第二基站 32构成;增强层可由本通信系统中的第一 基站 31构成。 第二基站 32通常是高功率节点, 但不限于此。 例如, 第二基 站 32也可以是覆盖盲区情况下的低功率节点。一旦基本层上的某个第二基站 32缺失, 会导致出现覆盖空洞。
第二基站 32通常釆用低频段传递控制面信令。 其中, UE的 RRC连接建 立在基本层的第二基站 32上。 第二基站 32包括但不限于以下功能: 系统信 息广播、 RRC连接管理、 寻呼、 RRC连接建立 /修^释放、 测量配置和报告 ( Measure configuration and reporting )、 切换 ( Handover )、 增强层上第一基 站 31的激活与关闭、 为 UE的业务承载选择增强层上的第一基站 31 , 与增强 层上第一基站 31间的承载管理交互等。
可选的, 第二基站 32可以承载 UE的部分低数据量的业务承载, 即第二 基站 32还包括 DRB数据传输的功能。 增强层上的第一基站 31通常是低功率节点, 釆用高频段向 UE传递大量 数据, 例如 FTP, 视频。 第一基站 31对 EPS节点透明, 并且第一基站 31与 MME间无 S1-MME接口。 第一基站 31包括但不限于以下功能: 与基本层上 第二基站 32间的承载管理交互、 根据基本层上第二基站 32的配置与 UE进 行 DRB的数据传输、对第一基站 31与 UE之间的空口连接的配置,例如 DRB 修改、 MAC子层配置( mac-MainConfig ),PHY配置( physicalConfigDedicated ), SPS配置 (sps-Config )等。
对某个 UE来说, 基本层的第二基站 32与增强层的第一基站 31是多对 一的关系,即一个 UE只有一个第二基站 32,可以有一个或多个第一基站 31。 其中,基本层的第二基站 32的迁移必然会导致增强层的第一基站 31的迁移。 增强层的第一基站 31对邻居基本层的第二基站 32是透明的, 被认为是其所 在基本层中的节点。
在本实施例中, 无论是第一基站 31还是第二基站 32, 其协议栈从上到 下包括: RRC层 /IP层、 PDCP层、 RLC层、 MAC层和物理层。 PDCP层主 要完成加密和完整性保护功能, 例如可以釆用健壮性头压缩 ( Robust Header Compression, ROHC ) 、 安全性(Security )技术等。 RLC层主要为用户和控 制数据提供分段和重传业务,例如釆用分段( Segm )、自动重传请求( Automatic Repeat-reQues, ARQ )等技术。 MAC层主要完成调度 ( scheduling ) 、 优先 级处理( Priority handing ) 、 UE的复用 (Multiplexing ) 、 混合自动重传请求 ( Hybrid Automatic Repeat Request, HARQ )等功能。
其中, 第二基站 32的下行(downlink ) 映射逻辑如图 2B所示。 在第二 基站 32上,对于下行来说,具有完整的 RRC功能及相关信道,例如包括 SRB0、 SRB1、 SRB2、 广播信道、 寻呼信道, 和现有技术中的 RRC功能相同, 在此 不再详述。 第二基站 32也可以具有 DRB, 该 DRB主要是用于小数据量用户 数据传输。 第二基站 32的下行映射逻辑和当前 LTE系统中的基站的下行映 射逻辑基本一致, 除了 DRB是可选的 (如图 2B中虚线所示部分) 。
第一基站 31的下行映射逻辑如图 2C所示。在第一基站 31上,对下行来 说,和当前 LTE系统中基站的最大不同在于: 第一基站 31没有 UE的控制面 的 SRB0、 SRB1、 SRB2、 广播和寻呼信道; 此外, 第一基站 31具有 UE的 用户面的 DRB, 用于进行用户数据传输, 以及一个仅用于配置第一基站 31 与 UE之间空口连接无线资源的模块, 及相应的一个第一信令无线承载。 从
UE的角度来看, 空口的上行映射逻辑如图 2D所示。 图 2D同时包括了第一 基站 31的上行映射逻辑和第二基站 32的上行映射逻辑。
在此说明, 在图 2C和图 2D中, 第一信令无线承载用 SRB3表示, 但不 限于此。
在 UE上, 对于上行来说, UE所有传统的 RRC连接功能(通过 SRB0、 SRBl或 SRB2 )都在第二基站 32上, 而用于与第一基站 31之间的空口连接 配置的功能(通过第一信令无线承载 )在第一基站 31上; UE的不同 DRB可 以分别连接在第一基站 31和第二基站 32上。
在第一基站 31和第二基站 32上, 都有随机接入信道(Random Access
Channel, RACH ) , 用于供 UE进行随机接入。
综上所述, 在本实施例的通信系统或网络架构中, 第一基站负责与 UE 通过 DRB进行用户数据传输, 以及通过第一信令无线承载配置本基站与 UE 之间的空口连接的无线资源, 第二基站负责与 UE进行信令交互, 建立、 修 改和释放 RRC连接, 进行 UE的移动性管理等, 以及控制 UE与第一基站之 间建立第一信令无线承载, 第一基站与 UE之间的空口连接的无线资源的配 置不需要经过第二基站, 而直接由第一基站通过第一信令无线承载向 UE发 送配置消息, 使得 UE根据配置消息完成与第一基站之间的空口连接的无线 资源的配置, 减少了与第一基站之间的空口连接的无线资源的配置的时延, 节约了第二基站的开销, 降低了第二基站的复杂度。
基于上述通信系统, 本发明一实施例提供一种信令传输方法,如图 2E所 示, 具体包括:
步骤 301、 第一基站通过第一信令无线承载与 UE进行控制信令交互, 所 述第一基站与所述 UE之间存在用户数据传输。
步骤 302、 第二基站通过 SRB0、 SRBl或 SRB2与 UE进行控制信令交 互, 其中第一信令无线承载不同于所述 SRB0、 SRBl和 SRB2。
其中, 第一基站通过第一信令无线承载与 UE进行控制信令交互的目的 主要是为了完成第一基站与 UE之间的空口连接的无线资源的配置。 而第二 基站通过 SRB0、 SRBl或 SRB2与 UE进行控制信令交互主要包括建立、 修 改和释放 RRC连接, 进行 UE的移动性管理等, 不同于第一基站通过第一信 令无线承载与 UE进行的控制信令交互过程。
在此说明, 在上述信令传输方法中并不限定第一基站和第二基站分别与
UE进行控制信令传输的先后顺序。
本实施例提供的信令传输方法的详细流程可参见上述通信系统实施例中 的描述, 在此不再赘述。
在本实施例中, 与 UE之间存在用户数据传输的第一基站, 通过不同于 现有信令无线承载的第一信令无线承载配置第一基站与 UE之间的空口连接 的无线资源,使得第一基站和 UE可以及时有效的根据第一基站与 UE之间的 无线信道的变化, 动态配置第一基站与 UE之间的空口连接的无线资源, 而 第二基站负责与 UE进行控制信令交互, 建立、 修改和释放 RRC连接, 进行 UE的移动性管理等。 进一步, 第一基站与 UE之间的空口连接的无线资源的 配置不需要经过第二基站, 而直接由第一基站通过第一信令无线承载向 UE 发送配置消息, 使得 UE根据配置消息完成与第一基站之间的空口连接的无 线资源的配置,减少了与第一基站之间的空口连接的无线资源的配置的时延, 节约了第二基站的开销, 降低了第二基站的复杂度。
本发明一实施例提供一种基站, 本实施例的基站与 UE之间存在用户数 据传输, 本实施例的基站通过第一信令无线承载与 UE进行控制信令交互。 其中, 第一信令无线承载不同于 SRB0、 SRB1和 SRB2, 所述 SRB0、 SRB1 和 SRB2 中的任一种信令无线承载是不同于本实施例的基站的其他基站与上 述 UE进行控制信令交互时使用的信令无线承载。
由上述可见, 本实施例的基站可以是图 1所示实施例中的增强层基站, 或者是图 2A-图 2D所示实施例中的第一基站。
在本实施例的一个可选实施方式中, 如图 3A所示, 本实施例的基站包 括: 第一无线资源配置模块 12和第一信令传输模块 13。
第一无线资源配置模块 12, 用于配置本实施例的基站和 UE之间的空口 连接的无线资源, 生成配置消息。 所述配置消息包括空口连接的无线资源配 置。
第一信令传输模块 13 , 与第一无线资源配置模块 12和 UE连接, 用于通 过第一信令无线承载, 将第一无线资源配置模块 12 生成的配置消息发送给 UE, 以使 UE根据配置消息中的空口连接的无线资源配置对与本实施例的基 站之间的空口连接的无线资源进行配置。
本实施例基站不包括 SRB0、 SRB1和 SRB2。
基于上述可见, 本实施例基站主要负责与 UE进行 DRB的数据传输, 不 负责建立、 修改和释放 UE的 RRC连接, 也不进行 UE的移动性管理, 属于 增强层基站。 但是, 本实施例基站包括第一信令无线承载, 并可以通过第一 信令无线承载与 UE进行控制信令交互,以控制 UE完成对其与本实施例基站 之间的空口连接的无线资源的配置。
在本实施例的一个可选实施方式中, 如图 3A所示, 本实施例基站还包 括: 第一数据传输模块 11。 第一数据传输模块 11 , 与第一无线资源配置模块 12和 UE连接,用于使用第一无线资源配置模块 12配置的所述空口连接的无 线资源, 通过 DRB与所述 UE进行数据传输。
在本实施例的一个可选实施方式中,第一信令传输模块 13还可用于通过 第一信令无线承载接收 UE发送的配置完成消息, 将配置完成消息发送给第 一无线资源配置模块 12。 具体的, UE接收到配置消息后, 会根据配置消息 中的空口连接的无线资源配置进行空口连接的无线资源的配置, 在完成对空 口连接的无线资源的配置后生成配置完成消息, 并通过第一信令无线承载将 该配置完成消息发送给本实施例基站, 以告知本实施例基站对空口连接的无 线资源的配置已完成。 而本实施例基站通过第一信令无线承载接收 UE发送 的配置完成消息。
相应地, 第一无线资源配置模块 12还用于接收第一信令传输模块 13发 送的配置完成消息。
在本实施例的一个可选实施方式中,第一信令传输模块 13具体用于从与 第一信令无线承载关联的逻辑信道标识(Logical Channel Identifier, LCID ) 所标识的逻辑信道中接收 UE发送的配置完成消息,对配置完成消息进行 RLC 子层和 PDCP子层处理, 将处理后的配置完成消息发送给第一无线资源配置 模块 12。
在 LTE系统中, RB (不管是 SRB还是 DRB )和逻辑信道是——对应的, 而每个逻辑信道都有一个唯一的 LCID。 例如, 在 LTE系统中, SRB0、 SRB1 和 SRB2关联的 LCID固定为 0、 1和 2, 而其它 DRB关联的 LCID, 是基站 通过 RRC信令配给 UE的。 在本实施例中, 本实施例基站的第一信令无线承 载也对应一个逻辑信道, 并与该逻辑信道的 LCID相关联。
其中, LCID的长度为 5比特,对于下行二进制数值 01011至二进制数值 11010为保留数值 ( Reserved value ) , 对于上行二进制数值 01011至 11000 为 Reserved value。 由于第一信令无线承载对应的逻辑信道为上下行都有, 因 此本实施例的一个可选方式中, 第一信令无线承载关联的上下性逻辑信道的 LCID均为同一个值,该值是二进制数值 01011至二进制数值 11000之间的一 个值, 例如 01011 , 也就是十进制的 11。
在本实施例的一个可选实施方式中,第一信令传输模块 13具体用于从第 一无线资源配置模块 12获取第一无线资源配置模块 12所生成的配置消息, 对配置消息进行 PDCP子层和 RLC子层处理,将处理后的配置消息映射到与 第一信令无线承载关联的 LCID所标识的逻辑信道中发送给 UE。
在此说明,第一信令传输模块 13将处理后的配置消息映射到与第一信令 无线承载关联的 LCID所标识的逻辑信道中发送给 UE包括:先将处理后的配 置消息映射到与第一信令无线承载关联的 LCID所标识的逻辑信道中发送给 本实施例基站的 MAC子层,然后由 MAC子层负责将处理后的配置消息发送 给物理层(Physical, PHY )层, 最后通过空口发送给 UE。
可选的, 本实施例基站与 UE之间的空口连接的无线资源配置可以包括 以下信息中的至少一种: UE与本实施例基站之间的 MAC子层参数、 UE与 本实施例基站之间的 PHY层参数、 UE与本实施例基站之间的 DRB参数和 UE与本实施例基站之间的半静态调度(Semi-Persistent Scheduling, SPS )参 数, 但不限于此。
举例说明: 在本实施例基站需要修改上行数据传输的 HARQ最大重传次 数情况下, 本实施例基站与 UE之间的空口连接包括 MAC子层参数; 所述 MAC子层参数与现有技术中基站修改 MAC子层参数时发送给 UE的 RRC连 接重配消息中的信息相同, 在此不再详述。
在本实施例基站需要修改 UE 的物理上行控制信道(Physical Uplink Control CHannel, PUCCH )参数情况下, 本实施例基站与 UE之间的空口连 接包括 PHY层参数; 所述 PHY层参数。
在本实施例基站需要同时修改 UE的 MAC子层参数和 PHY层参数情况 下,本实施例基站与 UE之间的空口连接包括 MAC子层参数和 PHY层参数。 在本实施例基站需要修改通过本实施例基站传输的 DRB参数情况下,本 实施例基站与 UE之间的空口连接包括 UE与本实施例基站之间的 DRB参数。
在通过本实施例基站传输的 DRB为半静态调度情况下,且所述基站需要 修改半静态调度的配置时,本实施例基站与 UE之间的空口连接包括 UE与本 实施例基站之间的 SPS参数。
由上述可见,本发实施例的基站包括 DRB,主要通过 DRB与 UE进行用 户数据传输; 另外还包括第一信令无线承载而不包括 SRB0、 SRB1和 SRB2, 在对本基站和 UE之间的空口连接的无线资源进行配置后, 生成配置消息, 并通过与现有信令无线承载不同的第一信令无线承载将配置消息发送给 UE, 使得 UE根据配置消息中的空口连接的无线资源配置进行空口连接的无线资 源的配置,使得本实施例基站与 UE可以及时有效的根据本实施例基站与 UE 之间的无线信道变化, 动态配置本实施例基站与 UE之间的空口连接的无线 资源, 解决了本实施例基站与 UE之间的空口连接的无线资源的配置问题。
进一步, 本实施例基站通过第一信令无线承载将与 UE之间的空口连接 的无线资源配置发送给 UE, 完成与 UE之间的空口连接的无线资源的配置, 使得本实施例基站与 UE之间的空口连接的无线资源配置不用通过基本层基 站下发给 UE, 减少本实施例基站与 UE之间的空口连接的无线资源的配置的 时延, 同时也有利于节约基本层基站的开销。
基于上述实施例提供的基站,本发明另一实施例提供一种信令传输方法, 具体包括: 基站通过第一信令无线承载与 UE进行控制信令交互。 其中, 所 述基站与所述 UE之间存在用户数据传输, 所述第一信令无线承载不同于所 述 SRB0、 SRB1和 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无线 承载是不同于所述基站的其他基站与所述 UE进行控制信令交互时使用的信 令无线承载。
在本实施例的一个可选实施方式中,如图 3B所示,基站通过第一信令无 线承载与 UE进行控制信令交互的一种实施方式包括:
步骤 101、基站配置本基站和 UE之间的空口连接的无线资源, 生成配置 消息, 所述配置消息包括所述空口连接的无线资源配置。
步骤 102、 基站通过第一信令无线承载将配置消息发送给 UE, 以使 UE 根据配置消息中的空口连接的无线资源配置对本 UE与所述基站之间的空口 连接的无线资源进行配置。
本实施例的基站是图 3A所示实施例提供的基站, 同样不包括 SRB0、 SRB1和 SRB2,但包括第一信令无线承载和 DRB。本实施例的基站属于增强 层基站,主要负责向 UE提供用户数据传输, 同时还具有与 UE进行控制信令 交互的功能, 该控制信令交互主要用于完成与 UE之间的空口连接的无线资 源的配置。
在本实施例的一个可选实施方式中, 本实施例的方法还包括: 基站通过 DRB与 UE进行数据传输。 进一步, 基站具体使用基站所配置的空口连接的 无线资源, 通过 DRB与 UE进行用户数据传输。
步骤 102的一个可选实施方式包括: 基站对配置消息进行 PDCP子层和
RLC子层处理,将处理后的配置消息映射到与第一信令无线承载关联的 LCID 所标识的逻辑信道中发送给 UE。
可选的, 本实施例基站与 UE之间的空口连接的无线资源配置可以包括 以下信息中的至少一种: UE与本实施例基站之间的 MAC子层参数、 UE与 本实施例基站之间的 PHY层参数、 UE与本实施例基站之间的 DRB和 UE与 本实施例基站之间的 SPS参数, 但不限于此。
可选的, 本实施例基站的第一信令无线承载关联的 LCID为二进制数值 01011至二进制数值 11000之间的一个值, 例如 01011 , 也就是十进制的 11。
由上述可见, 在本实施例中, 基站和 UE之间存在用户数据传输, 并通 过 DRB与 UE进行数据传输, 通过第一信令无线承载与 UE进行控制信令交 互,使得基站与 UE可以及时有效的根据基站与 UE之间的无线信道变化,动 态配置基站与 UE之间的空口连接的无线资源, , 解决了本实施例基站与 UE 之间的空口连接的无线资源的配置问题。
进一步, 在本实施例方法中, 增强层基站与 UE之间的空口连接的无线 资源配置不需要经过基本层基站下发, 减少增强层基站与 UE之间的空口连 接的无线资源的配置的时延, 同时有利于节约基本层基站的开销。
在本实施例的一个可选实施方式中,如图 3C所示,本实施例的方法在步 骤 102之后包括:
步骤 103、 基站通过第一信令无线承载接收 UE发送的配置完成消息。 步骤 103的一个可选实施方式包括: 基站从与第一信令无线承载关联的 LCID所标识的逻辑信道中接收 UE发送的配置完成消息。 然后, 基站对配置 完成消息进行 RLC子层和 PDCP子层处理,根据处理后的配置完成消息以获 知 UE完成了对空口连接的无线资源的配置。
在本实施例中, UE在完成空口连接的无线资源的配置后向本实施例的基 站发送配置完成消息, 本实施例的基站通过第一信令无线承载接收配置完成 消息, 并根据配置完成消息获知 UE完成了对空口连接的无线资源的配置, 如果基站没有接收到 UE发送的配置完成消息,可以确定 UE未能成功完成空 口连接的无线资源的配置, 可以及时重新向 UE发送配置消息, 有利于提高 空口连接的无线资源的配置的成功率。
本发明一实施例提供一种 UE,本实施例的 UE与基站之间存在用户数据 传输, 本实施例的 UE通过第一信令无线承载与所述基站进行控制信令交互。 其中, 第一信令无线承载不同于 SRB0、 SRB1和 SRB2, 所述 SRB0、 SRB1 和 SRB2 中的任一种信令无线承载是不同于所述基站的其他基站与本实施例 的 UE进行控制信令交互时使用的信令无线承载。 可选的, 第一信令无线承 载是一个新定义的信令无线承载, 例如可以记为 SRB3 , 但不限于此。
其中, 与本实施例的 UE通过第一信令无线承载进行控制信令交互的所 述基站属于增强层基站, 该增强层基站不仅具有通过 DRB与 UE进行数据传 输的功能, 还具有与本实施例的 UE进行控制信令交互的功能, 这里的控制 信令交互主要用于控制本实施例的 UE完成所述基站与本实施例的 UE之间的 空口连接的无线资源的配置。所述基站可以是图 2A-图 2D所示实施例中的第 一基站。其中,不同于所述基站的其他基站主要是指基本层基站,包括 SRB0、 SRB1和 SRB2。
在本实施例的一个可选实施方式中,如图 4A所示,本实施例的 UE包括: 第二信令传输模块 22和第二无线资源配置模块 23。
其中, 第二信令传输模块 22, 与所述基站连接, 用于通过第一信令无线 承载接收所述基站发送的配置消息, 所述配置消息包括所述基站和 UE之间 的空口连接的无线资源配置。 其中, 所述基站也是通过第一信令无线承载将 所述配置消息发送给本实施例的 UE的。
第二无线资源配置模块 23 , 与第二信令传输模块 22连接, 用于根据第 二信令传输模块 22接收的配置消息中的空口连接的无线资源配置 ,对所述空 口连接的无线资源进行配置。
在本实施例的一个可选实施方式中, 如图 4B所示, 本实施例的 UE还包 括: 第二数据传输模块 21。 第二数据传输模块 21 , 用于通过 DRB与所述基 站进行数据传输。 可选的, 第二数据传输模块 21 与第二无线资源配置模块 23连接, 用于使用第二无线资源配置模块 23配置的空口连接的无线资源, 通过 DRB与所述基站进行数据传输。
在本实施例的一个可选实施方式中,第二无线资源配置模块 23还用于在 完成对空口连接的配置后, 生成配置完成消息。 相应的, 本实施例的第二信 令传输模块 22还用于通过第一信令无线承载将配置完成消息发送给所述基 站。
在本实施例的一个可选实施方式中,第二信令传输模块 22具体可用于从 第二无线资源配置模块 23获取第二无线资源配置模块 23生成的配置完成消 息, 对配置完成消息进行 PDCP子层和 RLC子层处理, 将处理后的配置完成 消息映射到与第一信令无线承载关联的 LCID所标识的逻辑信道中发送给基 站。
在本实施例的一个可选实施方式中,第二信令传输模块 22具体可用于从 与第一信令无线承载关联的 LCID所标识的逻辑信道中接收基站发送的配置 消息, 对配置消息进行 RLC子层和 PDCP子层处理, 将处理后的配置消息发 送给第二无线资源配置模块 23。
可选的, 本实施例的 UE与所述基站之间的空口连接的无线资源配置可 以包括以下信息中的至少一种: 本实施例 UE与基站之间的 MAC子层参数、 本实施例 UE与基站之间的 PHY层参数、 本实施例 UE与基站之间的 DRB 和本实施例 UE与基站之间的 SPS参数, 但不限于此。 关于在哪种情况下所 述空口连接的无线资源配置包括哪种信息的举例说明可参见图 3A所示实施 例的描述。
在本实施例的一个可选实施方式中, 第一信令无线承载关联的 LCID为 二进制数值 01011至二进制数值 11000之间的一个值, 例如可以是 01011 , 也就是十进制的 11。
在本实施例的一个可选实施方式中, 如图 4B所示, 本实施例的 UE还包 括: 第三信令传输模块 24和无线承载配置模块 25。 其中, 第三信令传输模 块 24,用于通过 SRB1接收不同与所述基站的其他基站发送的 RRC消息, 所 述 RRC消息包括所述第一信令无线承载的标识和配置信息。无线承载配置模 块 25 , 与第三信令传输模块 24连接, 用于根据第三信令传输模块 24接收到 的 RRC消息在本地配置所述第一信令无线承载。 可选的, 无线承载配置模块 25还与第二信令传输模块 22连接, 用于向第二信令传输模块 22提供所述第 一信令无线承载。 上述 RRC消息可以是 RRC连接重配消息, 但不限于此。 上述 RRC消息中的配置信息包括 RLC配置、 逻辑信道标识、 逻辑信道配置 等。
也就是说,本实施例的 UE上的第一信令无线承载是 UE根据 UE所接入 的基本层基站(也就是不同于所述基站的其他基站 )发送的 RRC重配消息新 增的。 例如, 假设新增第一信令无线承载的标识为 3 , 则新增的第一信令无 线承载即为 SRB3。
在此说明 , 本实施例 UE具有第一信令无线承载和 DRB , 除此之外还包 括: SRB0、 SRB1和 SRB2。 也就是说, 本实施例 UE除了具有上述各功能模 块实现的功能之外, 还具有现有技术中 UE的 RRC连接功能, 该功能在 UE 所接入的基本层基站上实现。 另外, 本实施例 UE的不同 DRB, 可以分别在 基本层基站和本实施例中所述基站(即增强层基站)上。
由上述可见, 本实施例的 UE通过不同于现有信令无线承载的第一信令 无线承载接收增强层基站通过第一信令无线承载发送的配置消息, 并根据配 置消息中的空口连接的无线资源配置对 UE与增强层基站之间的空口连接的 无线资源进行配置, 使得本实施例 UE与增强层基站可以及时有效的根据两 者之间的无线信道变化, 动态配置两者之间的空口连接的无线资源, 解决了 本实施例 UE与增强层基站之间的空口连接的无线资源的配置问题。
进一步, 本实施例的 UE通过不同于现有信令无线承载的第一信令无线 承载接收增强层基站通过第一信令无线承载下发的空口连接的无线资源配 置, 并完成与增强层基站之间的空口连接的无线资源的配置, 使得增强层基 站与 UE之间的空口连接的无线资源配置不需要经过基本层基站进行下发, 减少了增强层基站与本实施例 UE之间的空口连接的无线资源的配置的时延, 同时有利于节约基本层基站的开销。
基于上述实施例提供的 UE, 本发明又一实施例提供一种信令传输方法, 具体包括: UE通过第一信令无线承载与基站进行控制信令交互。 其中, 所述
UE与所述基站之间存在用户数据传输,所述第一信令无线承载不同于 SRB0、 SRB1和 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无线承载是不同 于所述基站的其他基站与本实施例 UE进行控制信令交互时使用的信令无线 承载。
其中, 与本实施例的 UE通过第一信令无线承载进行控制信令交互的所 述基站属于增强层基站, 该增强层基站不仅具有通过 DRB与 UE进行数据传 输的功能, 还具有与本实施例的 UE进行控制信令交互的功能, 这里的控制 信令交互主要用于控制本实施例的 UE完成所述基站与本实施例的 UE之间的 空口连接的无线资源的配置。所述基站可以是图 2A-图 2D所示实施例中的第 一基站。其中,不同于所述基站的其他基站主要是指基本层基站,包括 SRB0、 SRB1和 SRB2。
在本实施例的一个可选实施方式中, 如图 4C所示, UE通过第一信令无 线承载与基站进行控制信令交互的一种实施方式包括:
步骤 201、 UE通过第一信令无线承载接收所述基站发送的配置消息, 所 述配置消息包括所述基站和所述 UE之间的空口连接的无线资源配置。 其中, 所述基站也是通过第一信令无线承载向所述 UE发送所述配置消息的。
步骤 202、 UE根据配置消息中的空口连接的无线资源配置对所述空口连 接的无线资源进行配置。
在本实施例的一个可选实施方式中, 本实施例的方法还包括: UE通过
DRB与所述基站进行数据传输。 具体的, UE使用 UE所配置的空口连接的 无线资源, 通过 DRB与所述基站进行数据传输。
步骤 201 的一种可选实施方式包括: UE从与第一信令无线承载关联的 LCID所标识的逻辑信道中接收基站发送的配置消息。 然后, UE对配置消息 进行 RLC子层和 PDCP子层处理。
基于上述, 步骤 202具体为: UE从处理后的配置消息中获取空口连接的 无线资源配置, 然后根据获取的空口连接的无线资源配置对空口连接的无线 资源进行配置。
可选的, 本实施例 UE与基站之间的空口连接可以包括以下信息中的至 少一种: 本实施例 UE与基站之间的 MAC子层参数、 本实施例 UE与基站之 间的 PHY层参数、 本实施例 UE与基站之间的 DRB和本实施例 UE与基站 之间的 SPS参数, 但不限于此。
在本实施例的一个可选实施方式中, 第一信令无线承载关联的 LCID为 二进制数值 01011至二进制数值 11000之间的一个值, 例如可以是 01011 , 也就是十进制的 11。
由上述可见, 在本实施例中, UE接收增强层基站通过不同于现有信令无 线承载的第一信令无线承载发送的配置消息, 并根据配置消息中的空口连接 的无线资源配置, 对 UE与增强层基站之间的空口连接的无线资源进行配置, 解决了 UE与增强层基站之间的空口连接的无线资源的配置问题。
进一步,在本实施例方法中, UE通过不同于现有信令无线承载的第一信 令无线承载接收增强层基站通过第一信令无线承载下发的空口连接的无线资 源配置, 并完成空口连接的无线资源的配置, 使得增强层基站与 UE之间的 空口连接的无线资源配置不需要经过基本层基站下发, 减少了增强层基站与 UE之间的空口连接的无线资源的配置的时延,同时有利于节约基本层基站的 开销。
图 4D 为本发明又一实施例提供的信令传输方法的流程图。 本实施例基 于图 4C所示实施例实现。 如图 4D所示, 本实施例的方法在步骤 202之后还 包括:
步骤 203、 UE在完成对空口连接的无线资源的配置后, 生成配置完成消 息。
步骤 204、 UE通过第一信令无线承载将配置完成消息发送给所述基站。 其中,步骤 204的一种可选实施方式包括: UE对配置完成消息进行 PDCP 子层和 RLC子层处理,将处理后的配置完成消息映射到与第一信令无线承载 关联的 LCID所标识的逻辑信道中发送给基站。
在本实施例中, UE在完成空口连接配置后向本实施例中的基站发送配置 完成消息, 本实施例中的基站通过第一信令无线承载接收配置完成消息, 并 根据配置完成消息获知 UE完成了对空口连接的无线资源的配置, 如果本实 施中的基站没有接收到 UE发送的配置完成消息,可以确定 UE未能成功完成 空口连接的无线资源的配置, 可以及时重新向 UE发送配置消息, 有利于提 高空口连接的无线资源的配置的成功率。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要求 书
1、 一种通信系统, 其特征在于, 包括: 第一基站和第二基站;
所述第一基站与用户设备 UE之间存在用户数据传输, 所述第一基站通 过第一信令无线承载与所述 UE进行控制信令交互;
所述第二基站通过信令无线承载 SRB0、信令无线承载 SRB1或信令无线 承载 SRB2与所述 UE进行控制信令交互;
其中所述第一信令无线承载不同于所述 SRB0、 SRB1和 SRB2。
2、 根据权利要求 1所述的通信系统, 其特征在于, 所述第二基站具体用 于通过所述 SRB1向所述 UE发送无线资源控制 RRC消息, 以使所述 UE增 加所述第一信令无线承载,所述 RRC消息包括所述第一信令无线承载的标识 和配置信息。
3、 根据权利要求 1或 2所述的通信系统, 其特征在于, 所述第一基站具 体用于配置所述第一基站和所述 UE之间的空口连接的无线资源, 生成配置 消息, 所述配置消息包括所述空口连接的无线资源配置, 并通过所述第一信 令无线承载将所述配置消息发送给所述 UE, 以使所述 UE根据所述空口连接 的无线资源配置对所述空口连接的无线资源进行配置, 并通过所述第一信令 无线承载接收所述 UE发送的配置完成消息。
4、 根据权利要求 3所述的通信系统, 其特征在于, 所述第一基站还用于 使用所述第一基站配置的所述空口连接的无线资源,通过数据无线承载 DRB, 与所述 UE进行用户数据传输。
5、 根据权利要求 1或 2或 3所述的通信系统, 其特征在于, 所述第二基 站还通过数据无线承载 DRB, 与所述 UE进行用户数据传输。
6、 一种基站, 其特征在于, 所述基站与用户设备 UE之间存在用户数据 传输, 所述基站通过第一信令无线承载与所述 UE进行控制信令交互;
其中所述第一信令无线承载不同于信令无线承载 SRB0、 信令无线承载
SRB1和信令无线承载 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无 线承载是不同于所述基站的其他基站与所述 UE进行控制信令交互时使用的 信令无线承载。
7、 根据权利要求 6所述的基站, 其特征在于, 包括:
第一无线资源配置模块, 用于配置所述基站和所述 UE之间的空口连接 的无线资源, 生成配置消息, 所述配置消息包括: 所述空口连接的无线资源 配置;
第一信令传输模块, 用于通过所述第一信令无线承载将所述配置消息发 送给所述 UE, 以使所述 UE根据所述空口连接的无线资源配置对所述空口连 接的无线资源进行配置。
8、 根据权利要求 7所述的基站, 其特征在于, 还包括:
第一数据传输模块, 用于使用所述第一无线资源配置模块配置的所述空 口连接的无线资源,通过数据无线承载 DRB, 与所述 UE进行用户数据传输。
9、 根据权利要求 7或 8所述的基站, 其特征在于, 所述第一信令传输模 块具体用于从所述第一无线资源配置模块获取所述配置消息, 对所述配置消 息进行分组数据汇聚协议 PDCP子层和无线链路控制 RLC子层处理,将处理 后的配置消息映射到与所述第一信令无线承载关联的逻辑信道标识 LCID所 标识的逻辑信道中发送给所述 UE。
10、 根据权利要求 7-9任一项所述的基站, 其特征在于, 所述第一信令 传输模块还用于通过所述第一信令无线承载接收所述 UE发送的配置完成消 息, 并将所述配置完成消息发送给所述第一无线资源配置模块。
11、 根据权利要求 10所述的基站, 其特征在于, 所述第一信令传输模块 具体用于从所述与第一信令无线承载关联的逻辑信道标识 LCID所标识的逻 辑信道中接收所述 UE发送的所述配置完成消息, 对所述配置完成消息进行 RLC子层和 PDCP子层处理, 将处理后的配置完成消息发送给所述第一无线 资源配置模块。
12、 根据权利要求 7-11任一项所述的基站, 其特征在于, 所述空口连接 的无线资源配置包括以下信息中的至少一种:
所述 UE与所述基站之间的介质访问控制 MAC子层参数、所述 UE与所 述基站之间的物理 PHY层参数、 所述 UE与所述基站之间的 DRB参数和所 述 UE与所述基站之间的半静态调度 SPS参数。
13、 根据权利要求 9-12任一项所述的基站, 其特征在于, 所述第一信令 无线承载关联的 LCID为二进制数值 01011至二进制数值 11000之间的一个 值。
14、 一种用户设备 UE, 其特征在于, 所述 UE与基站之间存在用户数据 传输, 所述 UE通过第一信令无线承载与所述基站进行控制信令交互; 其中所述第一信令无线承载不同于信令无线承载 SRB0、 信令无线承载 SRB1和信令无线承载 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无 线承载是不同于所述基站的其他基站与所述 UE进行控制信令交互时使用的 信令无线承载。
15、 根据权利要求 14所述的 UE, 其特征在于, 包括:
第二信令传输模块, 用于通过所述第一信令无线承载接收所述基站发送 的配置消息, 所述配置消息包括所述基站和所述 UE之间的空口连接的无线 资源配置;
第二无线资源配置模块, 用于根据所述空口连接的无线资源配置对所述 空口连接的无线资源进行配置。
16、 根据权利要求 15所述的 UE, 其特征在于, 还包括:
第二数据传输模块, 用于使用所述第二无线资源配置模块配置的所述空 口连接的无线资源,通过数据无线承载 DRB,与所述基站进行用户数据传输。
17、 根据权利要求 15或 16所述的 UE, 其特征在于, 所述第二信令传输 模块具体用于从与所述第一信令无线承载关联的逻辑信道标识 LCID所标识 的逻辑信道中接收所述基站发送的所述配置消息, 对所述配置消息进行无线 链路控制 RLC子层和分组数据汇聚协议 PDCP子层处理,将处理后的配置消 息发送给所述第二无线资源配置模块。
18、 根据权利要求 15-17任一项所述的 UE, 其特征在于, 所述第二无线 资源配置模块还用于在完成对所述空口连接的无线资源的配置后, 生成配置 完成消息。
19、 根据权利要求 18所述的 UE, 其特征在于, 所述第二信令传输模块 还用于通过所述第一信令无线承载将所述配置完成消息发送给所述基站。
20、 根据权利要求 19所述的 UE, 其特征在于, 所述第二信令传输模块 具体用于从所述第二无线资源配置模块获取所述配置完成消息, 对所述配置 完成消息进行 PDCP子层和 RLC子层处理,将处理后的配置完成消息映射到 与所述第一信令无线承载关联的逻辑信道标识 LCID所标识的逻辑信道中发 送给所述基站。
21、 根据权利要求 15-20任一项所述的 UE, 其特征在于, 所述空口连接 的无线资源配置包括以下信息中的至少一种:
所述 UE与所述基站之间的介质访问控制 MAC子层参数、所述 UE与所 述基站之间的物理 PHY层参数、 所述 UE与所述基站之间的 DRB参数和所 述 UE与所述基站之间的半静态调度 SPS参数。
22、 根据权利要求 17-21任一项所述的 UE, 其特征在于, 所述第一信令 无线承载关联的 LCID为二进制数值 01011至二进制数值 11000之间的一个 值。
23、 根据权利要求 14-22任一项所述的 UE, 其特征在于, 还包括: 第三信令传输模块, 用于通过所述 SRB1接收不同与所述基站的其他基 站发送的无线资源控制 RRC消息, 所述 RRC消息包括所述第一信令无线承 载的标识和配置信息;
无线承载配置模块,用于根据所述 RRC消息在本地配置与所述基站间的 第一信令无线承载。
24、 一种信令传输方法, 其特征在于, 包括:
基站通过第一信令无线承载与用户设备 UE进行控制信令交互; 其中, 所述基站与所述 UE之间存在用户数据传输, 所述第一信令无线 承载不同于信令无线承载 SRB0、信令无线承载 SRB1和信令无线承载 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无线承载是不同于所述基站的其 他基站与所述 UE进行控制信令交互时使用的信令无线承载。
25、 根据权利要求 24所述的信令传输方法, 其特征在于, 所述基站通过 第一信令无线承载与用户设备 UE进行控制信令交互包括:
所述基站配置所述基站和所述 UE之间的空口连接的无线资源, 生成配 置消息, 所述配置消息包括所述空口连接的无线资源配置;
所述基站通过所述第一信令无线承载将所述配置消息发送给所述 UE,以 使所述 UE根据所述空口连接的无线资源配置对所述空口连接的无线资源进 行配置。
26、 根据权利要求 25所述的信令传输方法, 其特征在于, 所述基站通过 所述第一信令无线承载将所述配置消息发送给所述 UE包括:
所述基站对所述配置消息进行分组数据汇聚协议 PDCP子层和无线链路 控制 RLC子层处理,将处理后的配置消息映射到与所述第一信令无线承载关 联的逻辑信道标识 LCID所标识的逻辑信道中发送给所述 UE。
27、 根据权利要求 25或 26所述的信令传输方法, 其特征在于, 还包括: 所述基站通过所述第一信令无线承载接收所述 UE发送的配置完成消息。
28、 根据权利要求 27所述的信令传输方法, 其特征在于, 所述基站通过 所述第一信令无线承载接收所述 UE发送的配置完成消息包括:
所述基站从与所述第一信令无线承载关联的逻辑信道标识 LCID所标识 的逻辑信道中接收所述 UE发送的所述配置完成消息;
所述基站对所述配置完成消息进行 RLC子层和 PDCP子层处理, 以根据 处理后的配置完成消息获知所述 UE完成了对所述空口连接的无线资源的配 置。
29、 根据权利要求 25-28任一项所述的信令传输方法, 其特征在于, 所 述空口连接的无线资源配置包括以下信息中的至少一种:
所述 UE与所述基站之间的介质访问控制 MAC子层参数、所述 UE与所 述基站之间的物理 PHY层参数、 所述 UE与所述基站之间的 DRB参数和所 述 UE与所述基站之间的半静态调度 SPS参数。
30、 根据权利要求 26-29任一项所述的信令传输方法, 其特征在于, 所 述第一信令无线承载关联的 LCID为二进制数值 01011至二进制数值 11000 之间的一个值。
31、 根据权利要求 25-30任一项所述的信令传输方法, 其特征在于, 还 包括:
所述基站使用所述基站配置的所述空口连接的无线资源, 通过数据无线 承载 DRB , 与所述 UE进行用户数据传输。
32、 一种信令传输方法, 其特征在于, 包括:
用户设备 UE通过第一信令无线承载与基站进行控制信令交互; 其中, 所述 UE与所述基站之间存在用户数据传输, 所述第一信令无线 承载不同于信令无线承载 SRB0、信令无线承载 SRB1和信令无线承载 SRB2, 所述 SRB0、 SRB1和 SRB2中的任一种信令无线承载是不同于所述基站的其 他基站与所述 UE进行控制信令交互时使用的信令无线承载。
33、 根据权利要求 32所述的信令传输方法, 其特征在于, 所述用户设备 UE通过第一信令无线承载与基站进行控制信令交互包括: 所述 UE通过所述第一信令无线承载接收所述基站发送的配置消息, 所 述配置消息包括所述基站和所述 UE之间的空口连接的无线资源配置;
所述 UE根据所述空口连接的无线资源配置对所述空口连接的无线资源 进行配置。
34、 根据权利要求 33所述的信令传输方法, 其特征在于, 所述 UE通过 所述第一信令无线承载接收所述基站发送的配置消息包括:
所述 UE从与所述第一信令无线承载关联的逻辑信道标识 LCID所标识的 逻辑信道中接收所述基站发送的所述配置消息;
所述 UE对所述配置消息进行无线链路控制 RLC子层和分组数据汇聚协 议 PDCP子层处理。
35、 根据权利要求 33或 34所述的信令传输方法, 其特征在于, 还包括: 所述 UE在完成对所述空口连接的无线资源的配置后, 生成配置完成消
36、 根据权利要求 35所述的信令传输方法, 其特征在于, 还包括: 所述 UE通过所述第一信令无线承载将所述配置完成消息发送给所述基 站。
37、 根据权利要求 36所述的信令传输方法, 其特征在于, 所述 UE通过 所述第一信令无线承载将所述配置完成消息发送给所述基站包括:
所述 UE对所述配置完成消息进行 PDCP子层和 RLC子层处理, 将处理 后的配置完成消息映射到与所述第一信令无线承载关联的逻辑信道标识 LCID所标识的逻辑信道中发送给所述基站。
38、 根据权利要求 33-37任一项所述的信令传输方法, 其特征在于, 所 述空口连接的无线资源配置包括以下信息中的至少一种:
所述 UE与所述基站之间的介质访问控制 MAC子层参数、所述 UE与所 述基站之间的物理 PHY层参数、 所述 UE与所述基站之间的 DRB参数和所 述 UE与所述基站之间的半静态调度 SPS参数。
39、 根据权利要求 34-38任一项所述的信令传输方法, 其特征在于, 所 述第一信令无线承载关联的 LCID为二进制数值 01011至二进制数值 11000 之间的一个值。
40、 根据权利要求 33-39任一项所述的信令传输方法, 其特征在于, 还 包括:
所述 UE使用所述 UE配置的所述空口连接的无线资源,通过数据无线承 载 DRB, 与所述基站进行数据传输。
41、 根据权利要求 32-40任一项所述的信令传输方法, 其特征在于, 所 述 UE使用所述 SRB1与不同于所述基站的其他基站进行控制信令交互包括: 所述 UE通过所述 SRB1接收不同于所述基站的其他基站发送的无线资 源控制 RRC消息, 所述 RRC连接重配消息包括所述第一信令无线承载的标 识和配置信息;
所述 UE所述 RRC消息在本地配置所述第一信令无线承载。
42、 一种信令传输方法, 其特征在于, 包括:
第一基站通过第一信令无线承载与用户设备 UE进行控制信令交互; 其 中所述第一基站与所述 UE之间存在用户数据传输;
第二基站通过信令无线承载 SRB0、信令无线承载 SRB1或信令无线承载 SRB2与所述 UE进行控制信令交互;
其中所述第一信令无线承载不同于所述 SRB0、 SRB1和 SRB2。
PCT/CN2012/077158 2012-06-19 2012-06-19 通信系统、基站、用户设备及信令传输方法 WO2013189031A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201280000820.XA CN103650625B (zh) 2012-06-19 2012-06-19 通信系统、基站、用户设备及信令传输方法
EP19205517.6A EP3691399B1 (en) 2012-06-19 2012-06-19 Communications system, base station, user equipment, and signaling transmission method
PCT/CN2012/077158 WO2013189031A1 (zh) 2012-06-19 2012-06-19 通信系统、基站、用户设备及信令传输方法
EP12879577.0A EP2863701B1 (en) 2012-06-19 2012-06-19 Communication network, user equipment and signalling transmission method
CN201710718813.8A CN107645793B (zh) 2012-06-19 2012-06-19 通信系统、基站、用户设备及信令传输方法
CN201710719531.XA CN107645794B (zh) 2012-06-19 2012-06-19 通信系统、基站、用户设备及信令传输方法
ES12879577T ES2776156T3 (es) 2012-06-19 2012-06-19 Red de comunicaciones, equipo de usuario y procedimiento de transmisión de señalización
US14/573,805 US9549430B2 (en) 2012-06-19 2014-12-17 Communications system, base station, user equipment, and signaling transmission method
US16/248,353 USRE48316E1 (en) 2012-06-19 2019-01-15 Communications system, base station, user equipment, and signaling transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/077158 WO2013189031A1 (zh) 2012-06-19 2012-06-19 通信系统、基站、用户设备及信令传输方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/573,805 Continuation US9549430B2 (en) 2012-06-19 2014-12-17 Communications system, base station, user equipment, and signaling transmission method

Publications (1)

Publication Number Publication Date
WO2013189031A1 true WO2013189031A1 (zh) 2013-12-27

Family

ID=49768021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077158 WO2013189031A1 (zh) 2012-06-19 2012-06-19 通信系统、基站、用户设备及信令传输方法

Country Status (5)

Country Link
US (2) US9549430B2 (zh)
EP (2) EP2863701B1 (zh)
CN (3) CN107645793B (zh)
ES (1) ES2776156T3 (zh)
WO (1) WO2013189031A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102489521B1 (ko) * 2015-08-31 2023-01-17 삼성전자주식회사 서비스들 및 디바이스들에 따라 구성가능한 무선 프로토콜 구현하기 위한 방법 및 장치
US10057015B1 (en) * 2015-10-02 2018-08-21 Sprint Spectrum L.P. Hybrid ARQ re-transmission over peer-to-peer air interface upon error in transmission over client-server air interface
WO2017061643A1 (ko) 2015-10-06 2017-04-13 엘지전자(주) 무선 통신 시스템에서 기지국과 데이터를 송수신하는 방법 및 장치
WO2017119778A1 (ko) * 2016-01-07 2017-07-13 엘지전자 주식회사 사용자기기 및 데이터 전송 방법과, 네트워크 노드 및 데이터 전송 방법
EP3412096B1 (en) * 2016-02-03 2023-04-05 LG Electronics Inc. Method and wireless device for performing user equipment triggered semi-persistent scheduling activation in wireless communication system
KR102170530B1 (ko) * 2017-03-16 2020-10-28 주식회사 케이티 제어 메시지 중복수신 방법 및 장치
EP3741185A1 (en) * 2018-01-19 2020-11-25 Nokia Technologies Oy Control plane signaling for integrated access and backhaul nodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476266A (zh) * 2003-07-18 2004-02-18 大唐移动通信设备有限公司 一种无线资源配置方法及装置
CN101300857A (zh) * 2005-10-28 2008-11-05 摩托罗拉公司 蜂窝通信系统中的无线电承载管理
WO2011125278A1 (ja) * 2010-04-09 2011-10-13 日本電気株式会社 無線通信システム、通信装置、複数基地局からの同時送信の制御方法、及び非一時的なコンピュータ可読媒体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10107700A1 (de) * 2001-02-19 2002-08-29 Siemens Ag Verfahren und Vorrichtung zum Multiplexen und/oder Demultiplexen sowie entsprechende Computerprogramme und ein entsprechendes Computerprogramm-Erzeugnis
KR100765123B1 (ko) * 2002-02-16 2007-10-11 엘지전자 주식회사 Srns 재할당 방법
DE102004021070B4 (de) * 2004-04-29 2006-07-13 Infineon Technologies Ag Kommunikationssystem mit einem Kommunikationsnetzwerk, Basisstation, Teilnehmergerät und Verfahren zum Verarbeiten von Daten
KR20090038752A (ko) * 2007-10-16 2009-04-21 엘지전자 주식회사 데이터 전송 서비스를 위한 무선연결 설정방법
KR101488015B1 (ko) * 2008-01-25 2015-01-29 엘지전자 주식회사 핸드오버 수행방법 및 데이터 생성방법
SG10201603075UA (en) * 2008-02-01 2016-05-30 Optis Wireless Technology Llc Communication terminal and base station
US20090319903A1 (en) * 2008-06-23 2009-12-24 Alanara Seppo M Method and apparatus for distributing system information windows
CN101827451B (zh) * 2009-03-03 2012-12-12 华为技术有限公司 中继节点的入网方法及装置
EP2466975A1 (en) * 2009-07-17 2012-06-20 HTC Corporation Apparatus for handling long term evolution positioning protocol data
US8498666B2 (en) * 2010-05-05 2013-07-30 Nokia Siemens Networks Oy Carrier aggregation for two radio systems
KR20120029962A (ko) * 2010-09-17 2012-03-27 주식회사 팬택 다중 요소 반송파 시스템에서 요소 반송파의 활성화장치 및 방법
US9887852B2 (en) * 2011-08-11 2018-02-06 Intel Corporation Methods for switching between a MBMS download and an HTTP-based delivery of DASH formatted content over an IMS network
KR101918797B1 (ko) * 2011-09-09 2018-11-14 인터디지탈 패튼 홀딩스, 인크 로컬화된 애플리케이션에 액세스하기 위한 방법 및 장치
EP2853124B1 (en) * 2012-05-22 2017-06-21 Nokia Technologies Oy Method and apparatus for signalling transmissions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476266A (zh) * 2003-07-18 2004-02-18 大唐移动通信设备有限公司 一种无线资源配置方法及装置
CN101300857A (zh) * 2005-10-28 2008-11-05 摩托罗拉公司 蜂窝通信系统中的无线电承载管理
WO2011125278A1 (ja) * 2010-04-09 2011-10-13 日本電気株式会社 無線通信システム、通信装置、複数基地局からの同時送信の制御方法、及び非一時的なコンピュータ可読媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evovled Universal Terrestrial Radio Access (E-UTRA); Relay architectures for E-UTRA (LTE-Advanced) (Release 9)", 3GPP TR36.806 V9.0.0, March 2010 (2010-03-01), XP055152296 *

Also Published As

Publication number Publication date
CN103650625A (zh) 2014-03-19
CN107645794B (zh) 2023-07-07
CN107645793B (zh) 2023-07-07
CN103650625B (zh) 2017-08-29
US9549430B2 (en) 2017-01-17
EP2863701A4 (en) 2015-09-16
EP2863701A1 (en) 2015-04-22
US20150103793A1 (en) 2015-04-16
EP2863701B1 (en) 2019-12-18
CN107645793A (zh) 2018-01-30
CN107645794A (zh) 2018-01-30
EP3691399B1 (en) 2023-12-20
EP3691399A1 (en) 2020-08-05
USRE48316E1 (en) 2020-11-17
ES2776156T3 (es) 2020-07-29

Similar Documents

Publication Publication Date Title
EP3648541B1 (en) Resuming an rrc connection in cu-du division scenario
US20210112463A1 (en) Method for establishing a fronthaul interface, method for performing access for a ue, method and apparatus for performing a handover for a ue, data forwarding method, user equipment and base station
USRE48316E1 (en) Communications system, base station, user equipment, and signaling transmission method
WO2018028694A1 (zh) 设备直通系统的通信方法及装置、通信系统
JP5999269B2 (ja) マルチratシステムにおける無線通信
JP6328132B2 (ja) 移動通信システム及びユーザ端末
CA2858184C (en) Communicating radio resource configuration information
JP2021153323A (ja) 無線通信システムにおける次のメッセージのために使われるベアラのタイプを指示する方法及び装置
JP6282656B2 (ja) ユーザ端末、無線アクセスネットワーク、及び通信制御方法
JP2020504517A (ja) 無線通信システムにおいてサービス品質(QoS)フロー基盤のULパケットを送信する方法及びそのための装置
CN111586864A (zh) 用于辅基站的连接配置激活的方法和网络节点
JP2016507911A (ja) 複数の接続を確立するためのデバイス
US20220141748A1 (en) Method and apparatus for performing dc based handover
WO2014000682A1 (zh) 一种进行切换的方法、系统和设备
WO2016050042A1 (zh) 数据同步处理方法及装置
JP6140180B2 (ja) 移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法
US20180124768A1 (en) Method for implementing radio resource control protocol function, macro base station, and micro cell node
WO2014059663A1 (zh) 切换方法和设备
WO2014032311A1 (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
WO2014101677A1 (zh) 一种发送rrc信令的方法、基站和系统
TW202029786A (zh) 用於增加基於網際網路協定的語音(voip)網路覆蓋的方法
WO2017078062A1 (ja) 基地局、wlan終端ノード、及び無線端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879577

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012879577

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE