WO2013187383A1 - Charge-neutralizing device - Google Patents

Charge-neutralizing device Download PDF

Info

Publication number
WO2013187383A1
WO2013187383A1 PCT/JP2013/066011 JP2013066011W WO2013187383A1 WO 2013187383 A1 WO2013187383 A1 WO 2013187383A1 JP 2013066011 W JP2013066011 W JP 2013066011W WO 2013187383 A1 WO2013187383 A1 WO 2013187383A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
positive
voltage
negative
metal plate
Prior art date
Application number
PCT/JP2013/066011
Other languages
French (fr)
Japanese (ja)
Inventor
田中 幸一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013187383A1 publication Critical patent/WO2013187383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the present invention relates to a static eliminator that generates positive ions and negative ions and removes the charge of an object charged by the ions.
  • the static eliminator plays an important role as an effective anti-static device against static electricity failure in the clean room.
  • the recent high integration and high speed response of semiconductors it is necessary to miniaturize circuits and reduce the capacity, and electronic devices are becoming more sensitive to static electricity.
  • the static eliminator generates air ions by forcibly ionizing surrounding air molecules to the positive electrode or the negative electrode.
  • the generated air ions are struck against charged objects to neutralize static electricity.
  • One method of ionizing air molecules is to generate a discharge phenomenon called corona discharge and ionize the air molecules by the generated discharge energy, and is widely used in ionization apparatuses.
  • FIG. 10 is a schematic diagram of the static eliminator 90 disclosed in Patent Document 1.
  • the static eliminator 90 reduces the unevenness of static elimination by applying positive and negative ions generated between the discharge electrode 91 and the discharge ground electrode 92 to the static elimination object 94 through the mesh electrode 93 that is grounded or biased. ing.
  • Patent Document 1 since the method of Patent Document 1 only applies grounding or bias to the mesh electrode, it does not finely adjust the ion balance, but changes in the surrounding environment over time, particularly temperature or humidity. The amount of positive and negative ions could not be controlled correctly with respect to the change of.
  • This invention is made
  • the objective is to provide the static elimination apparatus which can adjust positive and negative ion amount appropriately.
  • a static eliminator is a static eliminator that applies positive and negative ions generated by a discharge electrode to a static eliminator through a mesh metal plate, the static eliminator comprising an ion monitor that detects the positive and negative ion generation state, and And a control means for adjusting the voltage of the mesh metal plate based on detection information detected by the ion monitor.
  • control means performs control so that a voltage having a polarity opposite to the ion polarity indicated by the detection information is applied to the mesh metal plate.
  • the static eliminator may include switching means for selectively switching between positive and negative voltages applied to the mesh metal plate.
  • the voltage applied to the mesh metal plate may be a positive or negative DC voltage.
  • the static eliminator may include a fan that blows air from behind the discharge electrode and blows positive and negative ions together with air toward the mesh metal plate.
  • FIG. 1 is a schematic diagram of a static eliminator 100 according to an embodiment of the present invention.
  • 1 includes an ion generation control circuit 10, a high voltage pulse generation circuit 11, a minus ( ⁇ ) discharge electrode 12, a plus (+) discharge electrode 13, a mesh metal plate 14, a changeover switch 15, a positive / negative DC voltage.
  • the generating circuit 16, the ion balance control circuit 17, and the ion monitor 18 are comprised.
  • negative ions from the negative ( ⁇ ) discharge electrode 12 and positive ions from the positive (+) discharge electrode 13 are generated. Generated.
  • the generated positive and negative ions are sent to the object to be neutralized by a blower such as a fan.
  • a mesh metal plate 14 is installed in the vicinity of the discharge electrode between the minus ( ⁇ ) discharge electrode 12 and the plus (+) discharge electrode 13 and the object to be discharged.
  • the mesh metal plate 14 is connected to a positive / negative DC voltage generation circuit 16 via a changeover switch 15, and the positive / negative DC voltage generation circuit 16 is connected to an ion balance control circuit 17.
  • the ground line of the positive / negative DC voltage generation circuit 16 is connected to the earth line.
  • the ion monitor 18 is arranged in the vicinity of the mesh metal plate 14, detects ion information indicating an ion generation state such as ion concentration and ion polarity that has passed through the mesh metal plate 14, and transmits the detection information to the ion balance control circuit 17. To do.
  • optimal ion balance conditions are set in advance, and based on the detection information of the ion monitor 18, positive DC voltage value setting, negative DC voltage value setting, and which one is meshed It has a control function of determining whether to apply to the metal plate 14 and controlling the changeover switch.
  • the optimum ion balance can be maintained by the control of the ion balance control circuit.
  • FIG. 2 shows details of the positive / negative DC voltage generation circuit 16 and the ion balance control circuit 17 shown in FIG.
  • the positive / negative DC voltage generation circuit 16 is a voltage DC generation circuit using a Cockcroft-Walton circuit.
  • the ion balance control circuit 17 is a boost chopper circuit configured using, for example, an LMC555 timer IC manufactured by National Semiconductor as the timer IC 26 and using, for example, a field effect transistor 2SK2232 manufactured by Toshiba as the MOSFET 28.
  • a DC voltage can be generated from the pulse waveform by the Cockcroft-Walton circuit from a pulse waveform having a constant period (amplitude of 60 V when 2SK2232 is used) obtained by the step-up chopper circuit.
  • the Cockcroft-Walton circuit is an ideal booster circuit consisting of only capacitors and diodes and operating without switching.
  • the capacitor 21 ′ connected to the right side of the capacitor 21 connected to the drain terminal 20 of the MOSFET 28 of the ion balance control circuit 17 is supplied to the capacitor 21 ′ every time the direction of the power supply voltage is reversed.
  • a DC voltage twice the power supply amplitude is sequentially accumulated, and as a result, a boosted DC output is obtained in a direction in which these capacitors are connected in a daisy chain.
  • the output obtained can be made higher as the ladder made up of a plurality of capacitors is piled up horizontally.
  • a capacitor 21 'connected to the source terminal 22 of the MOSFET 28 is arranged in the direction opposite to the negative (-) voltage generator in the upper stage so that a positive (+) DC voltage can be generated.
  • the pulse waveform cycle output to the drain terminal 20 of the MOSTFET 28 can be changed, and accordingly, The voltage value generated by the positive / negative DC voltage generation circuit 16 can be arbitrarily changed.
  • the effect of the positive / negative DC voltage generation circuit 16 and the ion balance control circuit 17 will be described using a conceptual diagram showing an ion generation state and ion balance.
  • FIG. 3 shows an example in which the ion balance is good when no potential is applied to the mesh metal plate 14.
  • the balance is maintained near zero. Yes.
  • FIG. 4 shows a state in which the ion balance amount is shifted to the positive side because ions generated from the ion generator 30 are biased positively without applying a potential to the mesh metal plate 14. is there. In this state, the charge removal object cannot be correctly discharged.
  • FIG. 5 shows a state in which a minus ( ⁇ ) DC voltage is applied to the mesh metal plate 14 when the ions shown in FIG. 4 are biased to the plus (+) side and the ion balance is poor.
  • the ion bias is reduced and the ion balance potential can be made close to zero.
  • the ion balance potential can be adjusted by applying a DC voltage having a polarity opposite to the biased polarity to the mesh metal plate 14.
  • FIG. 8 is a configuration diagram when the ion balance of positive and negative ions generated from the static eliminator 100 is evaluated in order to confirm the effect of the present invention.
  • negative ions are generated from the minus ( ⁇ ) discharge electrode 12 and positive ions are generated from the plus (+) discharge electrode 13.
  • the generated positive and negative ions are sent to the object to be discharged by a blower such as a fan (not shown).
  • a mesh metal plate 14 is installed in the vicinity of the discharge electrode between the minus ( ⁇ ) discharge electrode 12 and the plus (+) discharge electrode 13 and the object to be discharged. Based on the detection information of the ion monitor 18, a control signal generated from the ion balance control circuit 17 is sent to the positive / negative DC voltage generation circuit 16.
  • the DC voltage generating circuit 16 generates a positive DC voltage and a negative DC voltage based on the setting of the positive DC voltage value and the setting of the negative DC voltage value, which are control contents of the control signal.
  • the generated positive / negative DC voltage is sent to the changeover switch 15.
  • the switch In the changeover switch 15, the switch is switched based on which of positive and negative DC voltages, which is the control content of the control signal generated from the ion balance control circuit 17, is applied to the mesh metal plate 14. Apply a positive or negative DC voltage.
  • a method of directly controlling each of the positive DC voltage and the negative DC voltage without providing the changeover switch 15 may be used.
  • a charge plate is generally used.
  • a charge plate 80 manufactured by TRECK having a capacitance of 25 p and a capacitance of 2 pF is used, the charge plate 80 is once connected to the ground, the voltage of the charge plate 80 is once set to 0 V, and then the ion of the static elimination device 100 is used. Wind is applied to the charge plate 80.
  • the potential amount is measured by measuring the potential of the charge plate 80 at that time with a surface potentiometer 81 connected to the charge plate 80. At this time, the distance between the positive and negative discharge electrodes of the charge removal apparatus 100 and the charge plate 80 was set to 300 mm.
  • the static eliminator 100a uses a conductive wire diameter of 0.5 mm ⁇ in the mesh metal plate 14, and the static eliminator 100b uses a conductive wire diameter of 1.5 mm ⁇ in the mesh metal plate 14. .
  • FIG. 9 is a graph showing the evaluation results of the static eliminators 100a and 100b.
  • the horizontal axis represents the DC voltage value applied to the mesh metal plate 14 by the positive / negative DC voltage generation circuit 16, and the voltage was applied in the range of -300V to + 200V.
  • the charge plate potential amount shown on the vertical axis indicates the average value of the potential amount when a predetermined voltage is applied to the mesh metal plate 14, and this is the ion balance potential amount.
  • the points indicated by circles in the graph are measurement point data of the static eliminator 100a and the points indicated by square marks are the measurement point data of the static eliminator 100b, and a linear straight line passing through them is drawn.
  • the voltage applied to the metal mesh plate is around 0V, and the ion balance potential amount can be -8V to + 9V.
  • the voltage applied to the metal mesh plate was around -200V, and the ion balance potential amount could be 0V to 18V.
  • the linear straight line shown in this graph it can be seen that the ion balance potential amount is linearly proportional to the applied voltage value.
  • the ion balance potential can be set to any value other than zero balance It becomes possible to easily control numerical values.
  • the ion monitor 18 is disposed in the vicinity of the mesh metal plate 14, detects ion information indicating an ion generation state such as the concentration and ion polarity of ions that have passed through the mesh metal plate 14, and transmits the detection information to the ion balance control circuit 17. To do.
  • optimum ion balance conditions are set in advance, and based on detection information from the ion monitor 18, positive DC voltage values and negative DC voltage values generated by the positive / negative DC voltage generation circuit 16. , And which one is applied to the mesh metal plate 14.
  • the optimum ion balance can be maintained by fine control of the ion balance control circuit based on the detection information from the ion monitor 18.
  • the wire diameters constituting the mesh metal plate 14 are 0.5 mm ⁇ and 1.5 mm ⁇ conductive materials this time, but in the case of the 0.5 mm ⁇ neutralization device 100 a having a small wire diameter, for example, ion balance is used.
  • the DC voltage applied to the mesh metal plate 14 can be 200V at the maximum.
  • a higher voltage of 300V must be applied to the metal plate in order to obtain the same ion balance.
  • the conductivity of the wire is k
  • the resistance is R ( ⁇ )
  • the length is L (cm)
  • the cross-sectional area of the wire is S (cm 2 )
  • the conductivity k of the wire constituting the mesh metal plate 14 is inversely proportional to the cross-sectional area S of the wire. That is, when the wire diameter increases, the circuit scale of the DC voltage generation circuit 16 increases, so that the apparatus becomes large and the cost of the apparatus itself increases. That is, the smaller the wire diameter, the higher the conductivity, so that the same effect can be obtained with a small voltage.
  • the static eliminator and the balance adjustment circuit according to the present invention are widely applicable to static eliminators that generate positive ions and negative ions and remove the charge of an object charged by the ions.

Abstract

A charge-neutralizing device imparts positive/negative ions generated by a discharge electrode to an object to be neutralized via a metal mesh plate, and is equipped with an ion monitor for detecting a positive/negative-ion-generation state, and a control means for adjusting the voltage of the metal mesh plate on the basis of the detection information detected by the ion monitor.

Description

除電装置Static eliminator
 本発明は、正イオンと負イオンとを発生させ、そのイオンによって帯電している対象物の帯電を除去する除電装置に関する。 The present invention relates to a static eliminator that generates positive ions and negative ions and removes the charge of an object charged by the ions.
 液晶製造工程、半導体製造工程において、除電装置はクリーンルーム内における静電気障害に対し、有効な静電気対策装置として重要な役割を担っている。しかし、昨今の半導体の高集積化、高速応答化に応じ、回路の微細化、低容量化が必要となり、電子デバイスは、静電気に対する敏感性が高くなってきている。 In the liquid crystal manufacturing process and semiconductor manufacturing process, the static eliminator plays an important role as an effective anti-static device against static electricity failure in the clean room. However, in accordance with the recent high integration and high speed response of semiconductors, it is necessary to miniaturize circuits and reduce the capacity, and electronic devices are becoming more sensitive to static electricity.
 それに伴い、除電装置に対する要求も年々高まり、除電装置のイオンバランスに関して安定性や低電位の要求がますます増している。最近では、半導体業界においては、±25V~±10V以内でのイオンバランス制御が求められている。さらに、除電装置が除電を行うエリアの中で、イオンバランス制御を行うことが要求されてきている。 Along with this, the demand for static eliminators has been increasing year by year, and the demand for stability and low potential for ion balance of static eliminators has been increasing. Recently, in the semiconductor industry, ion balance control within ± 25V to ± 10V is required. Furthermore, it has been required to perform ion balance control in an area where the static eliminator performs static elimination.
 一般的に除電装置は、周囲の空気分子を強制的にプラス極、あるいは、マイナス極に電離させて空気イオンを生成している。その生成した空気イオンを帯電物にぶつけて、静電気を中和させている。空気分子の電離方法のひとつには、コロナ放電という放電現象を発生させて、その発生した放電エネルギーによって空気分子を電離する方法が一般的であり、イオン化装置に多く使用されている。 Generally, the static eliminator generates air ions by forcibly ionizing surrounding air molecules to the positive electrode or the negative electrode. The generated air ions are struck against charged objects to neutralize static electricity. One method of ionizing air molecules is to generate a discharge phenomenon called corona discharge and ionize the air molecules by the generated discharge energy, and is widely used in ionization apparatuses.
 除電による効果を最大限に得る為には、除電装置に含まれる放電電極の放電による正負のイオン生成量が等しくなるようにバランスを調整することが必要である。しかしながら、放電電極から生成される正負のイオン量は、放電電極周囲の温度や被除電対象物までの距離等の条件により、放電電極に同一の電圧を印加した場合であっても、差が生じる場合があり、被除電対象物が正負どちらかに帯電するという課題があった。 In order to obtain the maximum effect of static elimination, it is necessary to adjust the balance so that the positive and negative ion generation amounts by the discharge of the discharge electrode included in the static elimination device are equal. However, the amount of positive and negative ions generated from the discharge electrode varies even when the same voltage is applied to the discharge electrode depending on conditions such as the temperature around the discharge electrode and the distance to the object to be discharged. In some cases, there is a problem that the object to be discharged is charged either positively or negatively.
 図10は、特許文献1に示された除電装置90の概略図である。除電装置90は、放電電極91と放電用接地電極92との間で生成された正負のイオンを接地又はバイアスをかけたメッシュ状電極93を通して除電対象物94に当てることで、除電ムラを少なくしている。 FIG. 10 is a schematic diagram of the static eliminator 90 disclosed in Patent Document 1. The static eliminator 90 reduces the unevenness of static elimination by applying positive and negative ions generated between the discharge electrode 91 and the discharge ground electrode 92 to the static elimination object 94 through the mesh electrode 93 that is grounded or biased. ing.
特開2000-100596号公報(平成12年4月7日公開)Japanese Patent Laid-Open No. 2000-10056 (published April 7, 2000)
 しかしながら、また、特許文献1の方法は、メッシュ状電極に対して接地またはバイアスをかけるだけであるため、イオンバランスを細かく調整するものではなく、時間経過による周囲の環境の変化、特に温度または湿度の変化に対して、正負のイオン量を正しく制御することができなかった。 However, since the method of Patent Document 1 only applies grounding or bias to the mesh electrode, it does not finely adjust the ion balance, but changes in the surrounding environment over time, particularly temperature or humidity. The amount of positive and negative ions could not be controlled correctly with respect to the change of.
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、正負のイオン量を適切に調整できる除電装置を提供することである。 This invention is made | formed in view of said subject, The objective is to provide the static elimination apparatus which can adjust positive and negative ion amount appropriately.
 本発明に係る除電装置は、放電電極により生成された正負のイオンをメッシュ金属板を通して除電対象物に当てる除電装置であって、前記除電装置は、前記正負のイオン発生状態を検知するイオンモニタと、前記イオンモニタが検知する検知情報に基づいて、前記メッシュ金属板の電圧を調整する制御手段を備えている。 A static eliminator according to the present invention is a static eliminator that applies positive and negative ions generated by a discharge electrode to a static eliminator through a mesh metal plate, the static eliminator comprising an ion monitor that detects the positive and negative ion generation state, and And a control means for adjusting the voltage of the mesh metal plate based on detection information detected by the ion monitor.
 また、前記制御手段は、前記検知情報が示すイオン極性とは逆の極性の電圧を前記メッシュ金属板に印加するように制御する。 Further, the control means performs control so that a voltage having a polarity opposite to the ion polarity indicated by the detection information is applied to the mesh metal plate.
 また、前記除電装置は、前記メッシュ金属板に印加する正と負の電圧を選択的に切り替える切替手段を備えてもよい。 Further, the static eliminator may include switching means for selectively switching between positive and negative voltages applied to the mesh metal plate.
 また、前記メッシュ金属板に印加される電圧は、正または負の直流電圧であってもよい。 The voltage applied to the mesh metal plate may be a positive or negative DC voltage.
 また、前記除電装置は、前記放電電極の後方から送風して正負のイオンをエアーとともに前記メッシュ金属板側に吹き出すファンを備えてもよい。 The static eliminator may include a fan that blows air from behind the discharge electrode and blows positive and negative ions together with air toward the mesh metal plate.
 本発明によれば、正負のイオン量を適切に調整できる除電装置を実現することが可能となる。 According to the present invention, it is possible to realize a static eliminator that can appropriately adjust the amount of positive and negative ions.
本発明に係る除電装置の模式図である。It is a schematic diagram of the static elimination apparatus which concerns on this invention. 本発明に係る除電装置の正負直流電圧発生回路とイオンバランス制御回路の回路図である。It is a circuit diagram of the positive / negative DC voltage generation circuit and ion balance control circuit of the static elimination apparatus which concerns on this invention. イオン発生状態とイオンバランスを示す概念図である。It is a conceptual diagram which shows an ion generation state and ion balance. イオン発生状態とイオンバランスを示す概念図である。It is a conceptual diagram which shows an ion generation state and ion balance. イオンバランスを調整したときのイオン発生状態とイオンバランス示す概念図である。It is a conceptual diagram which shows the ion generation state and ion balance when adjusting ion balance. イオン発生状態とイオンバランスを示す概念図である。It is a conceptual diagram which shows an ion generation state and ion balance. イオンバランスを調整したときのイオン発生状態とイオンバランス示す概念図である。It is a conceptual diagram which shows the ion generation state and ion balance when adjusting ion balance. 除電装置から発生する正負イオンのイオンバランスを評価した時の構成図である。It is a block diagram when the ion balance of the positive / negative ion generated from a static elimination apparatus is evaluated. 除電装置の評価結果を示すグラフである。It is a graph which shows the evaluation result of a static elimination apparatus. 従来技術を示す概略図である。It is the schematic which shows a prior art.
 以下、本発明の実施形態の一例について詳細に説明する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。 Hereinafter, an example of an embodiment of the present invention will be described in detail. The following embodiments are examples embodying the present invention, and do not limit the technical scope of the present invention.
 図1は、本発明の実施の形態に係る除電装置100の模式図である。図1に示す除電装置100は、イオン発生制御回路10、高電圧パルス発生回路11、マイナス(-)放電電極12、プラス(+)放電電極13、メッシュ金属板14、切替スイッチ15、正負直流電圧発生回路16、イオンバランス制御回路17、イオンモニタ18より構成される。 FIG. 1 is a schematic diagram of a static eliminator 100 according to an embodiment of the present invention. 1 includes an ion generation control circuit 10, a high voltage pulse generation circuit 11, a minus (−) discharge electrode 12, a plus (+) discharge electrode 13, a mesh metal plate 14, a changeover switch 15, a positive / negative DC voltage. The generating circuit 16, the ion balance control circuit 17, and the ion monitor 18 are comprised.
 イオン発生制御回路10による制御によって高電圧パルス発生回路11から生成された駆動パルスを使って、マイナス(-)放電電極12からは負イオンが、プラス(+)放電電極13からは、正イオンが発生される。発生した正負のイオンは、ファンなどの送風装置によって被除電物へ送られる。 Using the drive pulse generated from the high voltage pulse generation circuit 11 under the control of the ion generation control circuit 10, negative ions from the negative (−) discharge electrode 12 and positive ions from the positive (+) discharge electrode 13 are generated. Generated. The generated positive and negative ions are sent to the object to be neutralized by a blower such as a fan.
 一方、マイナス(-)放電電極12及びプラス(+)放電電極13と被除電物との間の放電電極近傍には、メッシュ金属板14が設置されている。このメッシュ金属板14は、切替スイッチ15を介して、正負直流電圧発生回路16に接続され、該正負直流電圧発生回路16は、イオンバランス制御回路17に接続されている。また正負直流電圧発生回路16のグランドラインはアースラインに接続されている。 On the other hand, a mesh metal plate 14 is installed in the vicinity of the discharge electrode between the minus (−) discharge electrode 12 and the plus (+) discharge electrode 13 and the object to be discharged. The mesh metal plate 14 is connected to a positive / negative DC voltage generation circuit 16 via a changeover switch 15, and the positive / negative DC voltage generation circuit 16 is connected to an ion balance control circuit 17. The ground line of the positive / negative DC voltage generation circuit 16 is connected to the earth line.
 イオンモニタ18は、メッシュ金属板14近傍に配置され、メッシュ金属板14を通過したイオン濃度、イオン極性などのイオン発生状態を示すイオン情報を検知し、その検知情報をイオンバランス制御回路17に送信する。イオンバランス制御回路17には、あらかじめ最適なイオンバランス条件が設定されており、イオンモニタ18の検知情報に基づき、正の直流電圧値の設定、負の直流電圧値の設定、及びそのどちらをメッシュ金属板14に印加するかを決定し、切替スイッチをコントロールする制御機能を有する。 The ion monitor 18 is arranged in the vicinity of the mesh metal plate 14, detects ion information indicating an ion generation state such as ion concentration and ion polarity that has passed through the mesh metal plate 14, and transmits the detection information to the ion balance control circuit 17. To do. In the ion balance control circuit 17, optimal ion balance conditions are set in advance, and based on the detection information of the ion monitor 18, positive DC voltage value setting, negative DC voltage value setting, and which one is meshed It has a control function of determining whether to apply to the metal plate 14 and controlling the changeover switch.
 このように、イオンモニタ18の検知情報に基づき、イオンバランス制御回路の制御によって、最適なイオンバランスを保つことが出来る。なお、放電電極の後方から送風して正負のイオンをエアーとともにメッシュ金属板14側に吹き出すファン19を備えてもよい。 Thus, based on the detection information of the ion monitor 18, the optimum ion balance can be maintained by the control of the ion balance control circuit. In addition, you may provide the fan 19 which ventilates from the back of a discharge electrode and blows out positive / negative ion to the mesh metal plate 14 side with air.
 図2は、図1に示す正負直流電圧発生回路16とイオンバランス制御回路17の一例として、その詳細を示すものある。正負直流電圧発生回路16はコッククロフト・ウォルトン回路を使った電圧直流発生回路である。イオンバランス制御回路17は、タイマーIC26として、例えばナショナルセミコンダクタ製のLMC555タイマーICを用い、MOSFET28として、例えば東芝製電界効果トランジスタ2SK2232を用いて構成される昇圧チョッパー回路である。昇圧チョッパー回路で得られた一定周期のパルス波形(2SK2232を使った場合は振幅60V)からコッククロフト・ウォルトン回路によりパルス波形から直流の電圧を発生できる。コッククロフト・ウォルトン回路は、コンデンサとダイオードだけから成る、スイッチングなしで動作する理想的な昇圧回路である。 FIG. 2 shows details of the positive / negative DC voltage generation circuit 16 and the ion balance control circuit 17 shown in FIG. The positive / negative DC voltage generation circuit 16 is a voltage DC generation circuit using a Cockcroft-Walton circuit. The ion balance control circuit 17 is a boost chopper circuit configured using, for example, an LMC555 timer IC manufactured by National Semiconductor as the timer IC 26 and using, for example, a field effect transistor 2SK2232 manufactured by Toshiba as the MOSFET 28. A DC voltage can be generated from the pulse waveform by the Cockcroft-Walton circuit from a pulse waveform having a constant period (amplitude of 60 V when 2SK2232 is used) obtained by the step-up chopper circuit. The Cockcroft-Walton circuit is an ideal booster circuit consisting of only capacitors and diodes and operating without switching.
 図2に示す正負直流電圧発生回路16において、イオンバランス制御回路17のMOSFET28のドレイン端子20に接続するコンデンサ21よりも右側に接続されたコンデンサ21´には、電源電圧の向きが反転する毎に、逐次的に電源振幅の二倍の直流電圧が蓄積され、結果、これらのコンデンサを数珠つなぎにした方向に、昇圧されたDC出力が得られるものである。 In the positive / negative DC voltage generation circuit 16 shown in FIG. 2, the capacitor 21 ′ connected to the right side of the capacitor 21 connected to the drain terminal 20 of the MOSFET 28 of the ion balance control circuit 17 is supplied to the capacitor 21 ′ every time the direction of the power supply voltage is reversed. A DC voltage twice the power supply amplitude is sequentially accumulated, and as a result, a boosted DC output is obtained in a direction in which these capacitors are connected in a daisy chain.
 得られる出力は、複数のコンデンサからなる梯子を横に長く重ねるほど高電圧にすることができる。正負直流電圧発生回路16は、その上段部24に5段の増幅が可能なマイナス(-)電圧発生回路を配置し、60Vパルスを使った場合60V×5=300Vまでの電位を発生することが出来る。また、下段部25には、MOSFET28のソース端子22に接続されるコンデンサ21´を上段のマイナス(-)電圧発生部とは逆向きに配置することで、プラス(+)直流電圧を発生できるようにしたものであり、それらの出力は、切替スイッチ15で切り替えることが出来る。 The output obtained can be made higher as the ladder made up of a plurality of capacitors is piled up horizontally. The positive / negative DC voltage generation circuit 16 has a negative (−) voltage generation circuit that can be amplified in five stages in the upper stage portion 24, and can generate a potential of 60V × 5 = 300V when a 60V pulse is used. I can do it. In the lower stage 25, a capacitor 21 'connected to the source terminal 22 of the MOSFET 28 is arranged in the direction opposite to the negative (-) voltage generator in the upper stage so that a positive (+) DC voltage can be generated. These outputs can be switched by the changeover switch 15.
 また、イオンバランス制御回路17におけるタイマーIC26の6番端子27に接続された印加電圧調整ボリューム23を制御することでMOSTFET28のドレイン端子20に出力するパルス波形周期を変えることができ、それに応じて、正負直流電圧発生回路16で発生する電圧値を任意に変化させることが出来るものである。ここで、イオン発生状態とイオンバランスを示す概念図を使って、正負直流電圧発生回路16とイオンバランス制御回路17の効果を説明する。 Further, by controlling the applied voltage adjustment volume 23 connected to the sixth terminal 27 of the timer IC 26 in the ion balance control circuit 17, the pulse waveform cycle output to the drain terminal 20 of the MOSTFET 28 can be changed, and accordingly, The voltage value generated by the positive / negative DC voltage generation circuit 16 can be arbitrarily changed. Here, the effect of the positive / negative DC voltage generation circuit 16 and the ion balance control circuit 17 will be described using a conceptual diagram showing an ion generation state and ion balance.
 図3は、メッシュ金属板14に電位を与えない場合のイオンバランスが良い例を示したものであり、本実施形態に係る除電装置100におけるイオン発生制御回路10、高電圧パルス発生回路11、マイナス(-)放電電極12、プラス(+)放電電極13よりなる一般的なイオン発生器30から発生した正、あるいは負のイオンが均等に発生している状態では、ゼロ付近にバランスが保たれている。 FIG. 3 shows an example in which the ion balance is good when no potential is applied to the mesh metal plate 14. The ion generation control circuit 10, the high voltage pulse generation circuit 11, and the minus in the static eliminator 100 according to the present embodiment. In a state where positive or negative ions generated from a general ion generator 30 including the (−) discharge electrode 12 and the plus (+) discharge electrode 13 are uniformly generated, the balance is maintained near zero. Yes.
 また、図4に示す図は、メッシュ金属板14に電位を与えない状態でイオン発生器30から発生したイオンが正に偏っているために、イオンバランス量がプラス側に推移している状態である。この状態では、正しく被除電物を除電することができない。 FIG. 4 shows a state in which the ion balance amount is shifted to the positive side because ions generated from the ion generator 30 are biased positively without applying a potential to the mesh metal plate 14. is there. In this state, the charge removal object cannot be correctly discharged.
 図5は、図4に示したイオンがプラス(+)側に偏り、イオンバランスが悪い場合において、メッシュ金属板14にマイナス(-)の直流電圧をかけた状態を示している。プラス(+)に偏っていたイオンが印加する直流電圧の強さに応じて引き寄せられて減少することにより、イオンの偏りが少なくなり、イオンバランス電位をゼロ近くにすることができる。このように、偏っている極性と逆の極性の直流電圧をメッシュ金属板14にかけることにより、イオンバランス電位を調整することができる。 FIG. 5 shows a state in which a minus (−) DC voltage is applied to the mesh metal plate 14 when the ions shown in FIG. 4 are biased to the plus (+) side and the ion balance is poor. When ions that are biased to plus (+) are attracted and reduced according to the strength of the DC voltage applied, the ion bias is reduced and the ion balance potential can be made close to zero. Thus, the ion balance potential can be adjusted by applying a DC voltage having a polarity opposite to the biased polarity to the mesh metal plate 14.
 一方、図6に示すように、イオンがマイナス(-)側に偏り、イオンバランスが悪い場合において、図7に示すように、メッシュ金属板14にプラス(+)の直流電圧をかけると、マイナス(-)に偏っていたイオンが印加する直流電圧の強さに応じて引き寄せられて減少することにより、イオンの偏りが少なくなり、イオンバランス電位をゼロ近くにすることができる。 On the other hand, as shown in FIG. 6, when ions are biased to the minus (−) side and the ion balance is poor, as shown in FIG. 7, if a positive (+) DC voltage is applied to the mesh metal plate 14, the minus When ions that are biased toward (−) are attracted and reduced according to the strength of the DC voltage applied, the ion bias is reduced and the ion balance potential can be made close to zero.
 図8は、本発明の効果を確認するために除電装置100から発生する正負イオンのイオンバランスを評価した時の構成図である。イオン発生制御回路10によって高電圧パルス発生回路11から生成された駆動パルスを使って、マイナス(-)放電電極12からは負イオンが、プラス(+)放電電極13からは、正イオンが発生される。発生した正負のイオンは、図示しないファンなどの送風装置によって被除電物へ送られる。 FIG. 8 is a configuration diagram when the ion balance of positive and negative ions generated from the static eliminator 100 is evaluated in order to confirm the effect of the present invention. Using the drive pulse generated from the high voltage pulse generation circuit 11 by the ion generation control circuit 10, negative ions are generated from the minus (−) discharge electrode 12 and positive ions are generated from the plus (+) discharge electrode 13. The The generated positive and negative ions are sent to the object to be discharged by a blower such as a fan (not shown).
 一方、マイナス(-)放電電極12及びプラス(+)放電電極13と被除電物との間の放電電極近傍には、メッシュ金属板14が設置されている。イオンモニタ18の検知情報に基づき、イオンバランス制御回路17から発せられたコントロール信号が正負直流電圧発生回路16に送られる。 On the other hand, a mesh metal plate 14 is installed in the vicinity of the discharge electrode between the minus (−) discharge electrode 12 and the plus (+) discharge electrode 13 and the object to be discharged. Based on the detection information of the ion monitor 18, a control signal generated from the ion balance control circuit 17 is sent to the positive / negative DC voltage generation circuit 16.
 直流電圧発生回路16はコントロール信号の制御内容である正の直流電圧値の設定、負の直流電圧値の設定に基づき、正の直流電圧、負の直流電圧を発生する。発生した正負の直流電圧は、切替スイッチ15に送られる。切替スイッチ15では、イオンバランス制御回路17から発せられたコントロール信号の制御内容である正負の直流電圧のどちらをメッシュ金属板14に印加するかに基づき、スイッチの切り替えを行い、メッシュ金属板14に正、あるいは負の直流電圧を印加する。あるいは、切替スイッチ15を設けず、正の直流電圧、負の直流電圧のそれぞれを直接制御する方法でもかまわない。 The DC voltage generating circuit 16 generates a positive DC voltage and a negative DC voltage based on the setting of the positive DC voltage value and the setting of the negative DC voltage value, which are control contents of the control signal. The generated positive / negative DC voltage is sent to the changeover switch 15. In the changeover switch 15, the switch is switched based on which of positive and negative DC voltages, which is the control content of the control signal generated from the ion balance control circuit 17, is applied to the mesh metal plate 14. Apply a positive or negative DC voltage. Alternatively, a method of directly controlling each of the positive DC voltage and the negative DC voltage without providing the changeover switch 15 may be used.
 除電装置100の除電性能を評価する手法としては、チャージプレートを用いるのが一般的である。本実施形態では、□25mmで静電容量が2pFのTRECK社製チャージプレート80を用い、チャージプレート80を一度アースに接続し、チャージプレート80の電圧を一旦0Vにしたあと、除電装置100のイオン風をチャージプレート80に当てる。その時のチャージプレート80の電位をチャージプレート80に接続された表面電位計81で測定することで電位量を測定する。その際の除電装置100の正負の放電電極とチャージプレート80との距離は300mmとした。 As a method for evaluating the charge removal performance of the charge removal apparatus 100, a charge plate is generally used. In the present embodiment, a charge plate 80 manufactured by TRECK having a capacitance of 25 p and a capacitance of 2 pF is used, the charge plate 80 is once connected to the ground, the voltage of the charge plate 80 is once set to 0 V, and then the ion of the static elimination device 100 is used. Wind is applied to the charge plate 80. The potential amount is measured by measuring the potential of the charge plate 80 at that time with a surface potentiometer 81 connected to the charge plate 80. At this time, the distance between the positive and negative discharge electrodes of the charge removal apparatus 100 and the charge plate 80 was set to 300 mm.
 測定に当たっては、2種類の除電装置100a、100bを用いてそれぞれで効果があることを確認した。2種類の除電装置については、除電装置100aは、メッシュ金属板14における導電性の針金径が0.5mmφ、除電装置100bは、メッシュ金属板14における導電性の針金径が1.5mmφを使用した。 In the measurement, it was confirmed that each of the two types of static elimination devices 100a and 100b was effective. Regarding the two types of static eliminators, the static eliminator 100a uses a conductive wire diameter of 0.5 mmφ in the mesh metal plate 14, and the static eliminator 100b uses a conductive wire diameter of 1.5 mmφ in the mesh metal plate 14. .
 図9は、除電装置100a、100bの評価結果を示すグラフである。横軸は、正負直流電圧発生回路16によってメッシュ金属板14に印加した直流電圧値を示し、-300V~+200Vの範囲で印加を行った。縦軸に示すチャージプレート電位量はメッシュ金属板14に所定の電圧を印加した時の電位量の平均値を示しており、これをイオンバランス電位量とする。また、グラフにおける丸印で示した点が除電装置100aの、また、四角印で示した点が除電装置100bの測定点データで、それらを通る線形直線を描いている。 FIG. 9 is a graph showing the evaluation results of the static eliminators 100a and 100b. The horizontal axis represents the DC voltage value applied to the mesh metal plate 14 by the positive / negative DC voltage generation circuit 16, and the voltage was applied in the range of -300V to + 200V. The charge plate potential amount shown on the vertical axis indicates the average value of the potential amount when a predetermined voltage is applied to the mesh metal plate 14, and this is the ion balance potential amount. Further, the points indicated by circles in the graph are measurement point data of the static eliminator 100a and the points indicated by square marks are the measurement point data of the static eliminator 100b, and a linear straight line passing through them is drawn.
 図9の除電装置100aの測定データによれば、金属メッシュ板に印加した電圧が0V付近で、イオンバランス電位量が-8V~+9Vとすることが出来ている。また除電装置100bの場合は、金属メッシュ板に印加した電圧が-200V付近で、イオンバランス電位量が0V~18Vとすることが出来た。また、このグラフに示す線形直線に示すようにイオンバランス電位量は、印加電圧値に対して直線的にほぼ比例関係にあることが分かる。 According to the measurement data of the static eliminator 100a in FIG. 9, the voltage applied to the metal mesh plate is around 0V, and the ion balance potential amount can be -8V to + 9V. In the case of the static eliminator 100b, the voltage applied to the metal mesh plate was around -200V, and the ion balance potential amount could be 0V to 18V. Further, as shown by the linear straight line shown in this graph, it can be seen that the ion balance potential amount is linearly proportional to the applied voltage value.
 例えば、除電装置100aに-200Vを印加した場合は、イオンバランスは-25V付近に安定する。一方、+200Vを印加した場合は、+45V付近に安定する。そのほかの測定点についても例えば、上記の2点を直線的に結んだライン上にイオンバランス電位が存在する。除電装置100bについても同様で、-300Vを印加した場合は、-26V付近に安定する。また+150Vを印加した場合は、+145V付近に安定する。そのほかの測定点についても例えば、上記の2点を直線的に結んだライン上にイオンバランス電位が存在し、このことから印加電圧を制御することで、ゼロバランス以外でもイオンバランス電位量を任意の数値に容易に制御することが可能となる。 For example, when -200V is applied to the static eliminator 100a, the ion balance is stabilized around -25V. On the other hand, when + 200V is applied, it stabilizes near + 45V. For other measurement points, for example, an ion balance potential exists on a line that linearly connects the two points. The same applies to the static eliminator 100b, and when -300V is applied, it stabilizes in the vicinity of -26V. Moreover, when + 150V is applied, it stabilizes around + 145V. For other measurement points, for example, there is an ion balance potential on a line that linearly connects the above two points. From this, by controlling the applied voltage, the ion balance potential can be set to any value other than zero balance It becomes possible to easily control numerical values.
 ここで、イオンモニタ18について説明する。イオンモニタ18はメッシュ金属板14近傍に配置され、メッシュ金属板14を通過したイオンの濃度、イオン極性などのイオン発生状態を示すイオン情報を検知し、その検知情報をイオンバランス制御回路17に送信する。イオンバランス制御回路17には、あらかじめ最適なイオンバランス条件が設定されており、イオンモニタ18からの検知情報に基づき、正負直流電圧発生回路16で発生させる正の直流電圧値、負の直流電圧値、及びそのどちらをメッシュ金属板14に印加するかを決定する。 Here, the ion monitor 18 will be described. The ion monitor 18 is disposed in the vicinity of the mesh metal plate 14, detects ion information indicating an ion generation state such as the concentration and ion polarity of ions that have passed through the mesh metal plate 14, and transmits the detection information to the ion balance control circuit 17. To do. In the ion balance control circuit 17, optimum ion balance conditions are set in advance, and based on detection information from the ion monitor 18, positive DC voltage values and negative DC voltage values generated by the positive / negative DC voltage generation circuit 16. , And which one is applied to the mesh metal plate 14.
 このように、イオンモニタ18からの検知情報に基づき、イオンバランスが崩れた場合でも、イオンモニタ18からの検知情報に基づき、イオンバランス制御回路のきめ細かい制御によって、最適なイオンバランスを保つことが出来る。 As described above, even when the ion balance is lost based on the detection information from the ion monitor 18, the optimum ion balance can be maintained by fine control of the ion balance control circuit based on the detection information from the ion monitor 18. .
 また、メッシュ金属板14を構成する針金径は今回、0.5mmφ、1.5mmφの導電性のものを使用したが、針金径が小さい0.5mmφの除電装置100aの場合は、例えばイオンバランスを±20V以下に制御する場合、メッシュ金属板14に印加する直流電圧は、最大200Vで可能である。しかし、針金径が約3倍の1.5mmφの除電装置100bの場合、同じイオンバランスを得る為には、300Vとより高い電圧を金属板に印加しなければならない。これは、針金の導電率をk、抵抗をR(Ω)、長さをL(cm)、針金の断面積をS(cm)とすると、
 k=(1/R)×(L/S)で示されるように、メッシュ金属板14を構成する針金の導電率kは、針金の断面積Sに反比例するためである。すなわち、針金径が大きくなると、直流電圧発生回路16の回路規模が大きくなるため装置が大掛かりとなり、装置自体のコストも上がってしまう。すなわち、より針金径が小さい方が、導電率が高いため、少ない電圧で同じ効果を得ることができる。
In addition, the wire diameters constituting the mesh metal plate 14 are 0.5 mmφ and 1.5 mmφ conductive materials this time, but in the case of the 0.5 mmφ neutralization device 100 a having a small wire diameter, for example, ion balance is used. When controlling to ± 20V or less, the DC voltage applied to the mesh metal plate 14 can be 200V at the maximum. However, in the case of the static eliminator 100b having a wire diameter of about 3 times 1.5 mmφ, a higher voltage of 300V must be applied to the metal plate in order to obtain the same ion balance. If the conductivity of the wire is k, the resistance is R (Ω), the length is L (cm), and the cross-sectional area of the wire is S (cm 2 ),
This is because, as indicated by k = (1 / R) × (L / S), the conductivity k of the wire constituting the mesh metal plate 14 is inversely proportional to the cross-sectional area S of the wire. That is, when the wire diameter increases, the circuit scale of the DC voltage generation circuit 16 increases, so that the apparatus becomes large and the cost of the apparatus itself increases. That is, the smaller the wire diameter, the higher the conductivity, so that the same effect can be obtained with a small voltage.
 以上説明したとおり、イオンモニタの検知情報に基づき、放電電極の近傍に設置したメッシュ金属板に正または負の直流の直流電圧を適切に印加することによって細かくイオンバランス調整を行うことができた。なお、本実施形態では、正負イオン発生回路が共通の構成である除電装置において、正負のイオン量を良好なイオンバランスにする例を説明したが、正負イオン発生回路が別々の構成である除電装置についても適用することが可能である。 As described above, it was possible to finely adjust the ion balance by appropriately applying positive or negative DC voltage to the mesh metal plate installed in the vicinity of the discharge electrode based on the detection information of the ion monitor. In this embodiment, an example in which the positive / negative ion generation circuit has a common configuration in the static elimination device having a common configuration has been described, but the positive / negative ion generation circuit has a separate configuration. It is possible to apply also to.
 本発明に係る除電装置及びバランス調整回路は、正イオンと負イオンとを発生させ、そのイオンによって帯電している対象物の帯電を除去する除電装置に広く適用可能である。 The static eliminator and the balance adjustment circuit according to the present invention are widely applicable to static eliminators that generate positive ions and negative ions and remove the charge of an object charged by the ions.
 10 イオン発生制御回路
 11 高電圧パルス発生回路
 12 マイナス(-)放電電極
 13 プラス(+)放電電極
 14 メッシュ金属板
 15 切替スイッチ
 16 正負直流電圧発生回路
 17 イオンバランス制御回路
 18 イオンモニタ
 19 ファン
 20 ドレイン端子
 21、21´ コンデンサ
 22 ドレイン端子
 23 印加電圧調整ボリューム
 26 タイマーIC
 28 MOSFET
 30 イオン発生器
 80 チャージプレート
 81 表面電位計
 100、100a、100b 除電装置
DESCRIPTION OF SYMBOLS 10 Ion generation control circuit 11 High voltage pulse generation circuit 12 Minus (-) discharge electrode 13 Plus (+) discharge electrode 14 Mesh metal plate 15 Changeover switch 16 Positive / negative DC voltage generation circuit 17 Ion balance control circuit 18 Ion monitor 19 Fan 20 Drain Terminal 21, 21 'Capacitor 22 Drain terminal 23 Applied voltage adjustment volume 26 Timer IC
28 MOSFET
30 Ion generator 80 Charge plate 81 Surface potential meter 100, 100a, 100b Static neutralizer

Claims (5)

  1.  放電電極により生成された正負のイオンをメッシュ金属板を通して除電対象物に当てる除電装置であって、
     前記除電装置は、前記正負のイオン発生状態を検知するイオンモニタと、
     前記イオンモニタが検知する検知情報に基づいて、
    前記メッシュ金属板の電圧を調整する制御手段を備えている除電装置。
    A static elimination device that applies positive and negative ions generated by a discharge electrode to a static elimination object through a mesh metal plate,
    The static eliminator includes an ion monitor that detects the positive / negative ion generation state,
    Based on the detection information detected by the ion monitor,
    A static eliminator comprising control means for adjusting the voltage of the mesh metal plate.
  2.  前記制御手段は、
     前記検知情報が示すイオン極性とは逆の極性の電圧を前記メッシュ金属板に印加するように制御する請求項1記載の除電装置。
    The control means includes
    The static eliminator of Claim 1 which controls so that the voltage of the polarity opposite to the ion polarity which the said detection information shows may be applied to the said mesh metal plate.
  3.  前記除電装置は、前記メッシュ金属板に印加する正と負の電圧を選択的に切り替える切替手段を備える請求項1または請求項2記載の除電装置。 3. The static eliminator according to claim 1 or 2, further comprising switching means for selectively switching between positive and negative voltages applied to the mesh metal plate.
  4.  前記メッシュ金属板に印加される電圧は、正または負の直流電圧である請求項1または請求項2に記載の除電装置。 3. The static eliminator according to claim 1 or 2, wherein the voltage applied to the mesh metal plate is a positive or negative DC voltage.
  5.  前記除電装置は、前記放電電極の後方から送風して正負のイオンをエアーとともに前記メッシュ金属板側に吹き出すファンを備える請求項1または請求項2に記載の除電装置。 The static eliminator according to claim 1 or 2, further comprising a fan that blows air from behind the discharge electrode and blows positive and negative ions together with air toward the mesh metal plate.
PCT/JP2013/066011 2012-06-11 2013-06-11 Charge-neutralizing device WO2013187383A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-131550 2012-06-11
JP2012131550A JP2013257952A (en) 2012-06-11 2012-06-11 Static eliminator

Publications (1)

Publication Number Publication Date
WO2013187383A1 true WO2013187383A1 (en) 2013-12-19

Family

ID=49758205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066011 WO2013187383A1 (en) 2012-06-11 2013-06-11 Charge-neutralizing device

Country Status (2)

Country Link
JP (1) JP2013257952A (en)
WO (1) WO2013187383A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332431A (en) * 2015-06-30 2017-01-11 倚晶科技有限公司 Static electricity eliminating device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343777B2 (en) * 2014-02-14 2018-06-20 国立大学法人山形大学 Charging device
JP2017107759A (en) * 2015-12-10 2017-06-15 シャープ株式会社 Ion generator
JP7433719B2 (en) 2020-04-10 2024-02-20 株式会社ディスコ processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149995A (en) * 1990-10-11 1992-05-22 Arao Kakinaka Destaticizer and destakizing method
JPH04206378A (en) * 1990-11-30 1992-07-28 Shishido Seidenki Kk Ion generator
JPH06203993A (en) * 1992-01-16 1994-07-22 Takasago Thermal Eng Co Ltd Static elimination control method for charged article by ionizer
JP2005100870A (en) * 2003-09-25 2005-04-14 Shuji Takaishi Method of controlling amount of ion generation, and ionizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149995A (en) * 1990-10-11 1992-05-22 Arao Kakinaka Destaticizer and destakizing method
JPH04206378A (en) * 1990-11-30 1992-07-28 Shishido Seidenki Kk Ion generator
JPH06203993A (en) * 1992-01-16 1994-07-22 Takasago Thermal Eng Co Ltd Static elimination control method for charged article by ionizer
JP2005100870A (en) * 2003-09-25 2005-04-14 Shuji Takaishi Method of controlling amount of ion generation, and ionizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332431A (en) * 2015-06-30 2017-01-11 倚晶科技有限公司 Static electricity eliminating device

Also Published As

Publication number Publication date
JP2013257952A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
KR101118641B1 (en) Method of offset voltage control for bipolar ionization systems
JP5201958B2 (en) Ionizer using piezoelectric transformer electrode and ion generation method for static elimination using the same
JP4818093B2 (en) Static eliminator
JP4328858B2 (en) Bipolar ion generation method and apparatus
JP5914015B2 (en) Static eliminator and method
JP5046390B2 (en) Static eliminator
WO2013187383A1 (en) Charge-neutralizing device
US8681470B2 (en) Active ionization control with interleaved sampling and neutralization
JP2008288072A (en) Static eliminator
JP2006329859A (en) Ion control sensor
KR101511726B1 (en) Method and apparatus for self calibrating meter movement for ionization power supplies
JP2011054579A (en) Static eliminator
KR20090118803A (en) Neutralization apparatus for liquid crystal panel substrate
DE102009033827B3 (en) Unloading device for contactless dismantling of electrostatic loads on isolating materials, comprises electrode, which is attached on positive and negative high voltage source
JPH0594896A (en) Room ionizer
WO2012043231A1 (en) Static spraying appratus
US9356434B2 (en) Active ionization control with closed loop feedback and interleaved sampling
JP2005077348A (en) Discharge performance evaluation device and discharge performance evaluation method
Sato et al. Basic characteristics of self‐control corona discharge air ionizer
JP2894464B2 (en) Static electricity removal control method for charged articles by using ionizer
WO2018061234A1 (en) Ion generator and electronic apparatus
US20160196949A1 (en) Atmospheric ionizer including a source that supplies electrical energy to an ion-generating structure without wires
EP2775577B1 (en) Ionization apparatus
JP2008027724A (en) Ion generator and static eliminator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804399

Country of ref document: EP

Kind code of ref document: A1