JPH06203993A - Static elimination control method for charged article by ionizer - Google Patents

Static elimination control method for charged article by ionizer

Info

Publication number
JPH06203993A
JPH06203993A JP2427692A JP2427692A JPH06203993A JP H06203993 A JPH06203993 A JP H06203993A JP 2427692 A JP2427692 A JP 2427692A JP 2427692 A JP2427692 A JP 2427692A JP H06203993 A JPH06203993 A JP H06203993A
Authority
JP
Japan
Prior art keywords
voltage
ionizer
surface potential
charged
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2427692A
Other languages
Japanese (ja)
Other versions
JP2894464B2 (en
Inventor
Soichiro Sakata
総一郎 阪田
Tetsuya Kushima
哲哉 九嶋
Hitoshi Inaba
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2427692A priority Critical patent/JP2894464B2/en
Publication of JPH06203993A publication Critical patent/JPH06203993A/en
Application granted granted Critical
Publication of JP2894464B2 publication Critical patent/JP2894464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To precisely perform static elimination regardless of a change of the environment by providing a vibrating type surface potential sensor in the flow of an ionized air, and applying a DC voltage to a counter electrode so that the detection value of the charge potential is within a determined range. CONSTITUTION:A number of discharge pairs consisting of a discharge electrode 1 and a counter electrode 2 are arranged in the direction crossing the flow of a purified air. An AC high voltage is applied to the discharge electrode by an AC power source device 5, and a DC voltage is applied to the counter electrode 2 by a DC power source device 7. When a vibrating surface potential sensor 8 is further placed in the flow of the ionized air, the sensor 8 is charged to the ion polarity to output an AC voltage corresponding to the field strength. Thus, when the negative ion concentration in the air is increased, the sensor 8 outputs the AC voltage according to this concentration, and when the positive ion concentration is increased, it outputs the AC voltage according to this concentration. Namely, the DC voltage applied to the counter electrode 2 is regulated by a controller 9 so that the AC voltage is within a determined range to control ion balance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,イオナイザによって帯
電物品(例えば製造過程にあるウエハ)の表面電位を制
御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the surface potential of a charged article (for example, a wafer being manufactured) by an ionizer.

【0002】[0002]

【従来の技術】半導体製造工程においてウエハやウエハ
キャリヤに生ずる帯電をイオナイザによって除去するこ
とが提案されている。イオナイザには各種のものが知ら
れているが, Pulsed-DCタイプのものは除電後の表面
電位が数十ボルトの大きさで正と負を交互に繰り返し,
滑らかな減衰が得られないという欠点があり,また,A
C(交流)タイプのものでは正と負のイオン発生量に大
きな偏りがあるので除電後においても数十ボルトから20
0V程度の電位が残留するという問題があった。
2. Description of the Related Art It has been proposed to remove charges generated on a wafer or a wafer carrier in a semiconductor manufacturing process by an ionizer. Various types of ionizers are known, but in the case of the Pulsed-DC type, the surface potential after static elimination is several tens of volts, and positive and negative are alternately repeated.
It has the drawback that smooth damping cannot be obtained.
With C (alternating current) type, there is a large deviation in the amount of positive and negative ions generated, so even after static elimination, it will be from tens of volts to 20
There was a problem that a potential of about 0 V remained.

【0003】一方, ウエハの段階の半導体素子はESD
に対して保護されていなかったり,敏感であったりする
ので,絶縁酸化膜が数十オングストローム以下となる例
えば4MbitDRAM以降のものではウエハの表面電位
は数V以下の大きさに絶えず制御されることが必要とな
る。前述の従来タイプのものではこのような要求を満足
できない。
On the other hand, semiconductor devices at the wafer stage are ESD
However, the surface potential of the wafer is constantly controlled to a value of several volts or less in, for example, a 4 Mbit DRAM or later in which the insulating oxide film has a thickness of several tens of angstroms or less. Will be needed. The above-mentioned conventional type cannot satisfy such requirements.

【0004】本発明者らはこのような要求を満たすべ
く,特開平3-230499号公報, 特開平3-230500号公報, 特
願平2-222542号, 特願平3-174807号, 特願平3-94984号
等で,ACタイプのイオナイザにおいて,放電極側に制
御量のバイアス電圧を印加したり,或いは放電対極側に
数百Vの直流電圧(以下,この電圧をVeと呼ぶ)を印
加して正と負のイオン発生量を均衡させる方法,さらに
はそれらの改善策を種々提案した。
In order to meet such demands, the inventors of the present invention have disclosed Japanese Patent Application Laid-Open No. 3-230499, Japanese Patent Application Laid-Open No. 3-230500, Japanese Patent Application No. 2-222542, Japanese Patent Application No. 3-174807, and Japanese Patent Application No. 3-174807. In the AC type ionizer, such as Hira 3-94984, a controlled amount of bias voltage is applied to the discharge electrode side, or a direct current voltage of several hundred V is applied to the discharge counter electrode side (hereinafter, this voltage is called Ve). We have proposed various methods to balance the amount of positive and negative ions generated by applying them, and various improvements.

【0005】[0005]

【発明が解決しようとする課題】ACタイプのイオナイ
ザにおいて,正と負のイオン発生量を均衡させるために
先に提案したように放電対極側に適正な大きさの直流電
圧Veを印加した場合でも,このイオナイザが設置され
た環境の変化,例えば風速の変動や湿度の変動によっ
て,正と負のイオン発生量を均衡させるに必要なVeの
大きさも変化することがわかった。したがって,環境が
変化した場合に,その変化に応じてVeを適正に制御す
ることが必要となる。本発明はこの課題を簡便に解決す
ることを目的とする。
In the AC type ionizer, even when a DC voltage Ve of an appropriate magnitude is applied to the discharge counter electrode side as previously proposed in order to balance the positive and negative ion generation amounts. It has been found that the magnitude of Ve necessary to balance the positive and negative ion generation amounts also changes due to changes in the environment in which this ionizer is installed, such as fluctuations in wind speed and humidity. Therefore, when the environment changes, it is necessary to properly control Ve according to the change. An object of the present invention is to simply solve this problem.

【0006】[0006]

【課題を解決するための手段】本発明によれば,針状の
放電極に交流の高電圧を印加してコロナ放電を行わせる
交流式イオナイザを,フイルタを通過した清浄空気の流
れの中に設置し,このイオナイザによってイオン化され
た空気の流れを下流側に存在する帯電物品に供給するこ
とにより該帯電物体の静電気を中和するさいに,該放電
極の放電端に対して所定の距離を離して対極を配置する
と共にこの対極に適正な大きさの直流電圧を印加するこ
とによって発生する正と負のイオン量をバランスさせる
ようにした帯電物品の除電法において,該イオナイザに
よってイオン化された空気の流れの中に振動型表面電位
センサを配置し,この表面電位センサ自身の帯電電位の
検出値が所定の範囲に収まるように対極に印加する直流
電圧を制御することを特徴とするイオナイザによる帯電
物品の除電制御法を提供する。使用する振動型表面電位
センサとしては,自励振動する機械振動子の振動振幅を
利用して周囲の電界強度を交流電圧に変換して出力する
ものが好適である。
According to the present invention, an AC ionizer for applying a high AC voltage to a needle-shaped discharge electrode to cause corona discharge is introduced into a flow of clean air passing through a filter. When neutralizing the static electricity of the charged object by installing and supplying the flow of air ionized by this ionizer to the charged article existing on the downstream side, a predetermined distance is set to the discharge end of the discharge electrode. In the static elimination method of a charged article, in which the counter electrode is arranged separately and the amount of positive and negative ions generated by applying a DC voltage of an appropriate magnitude to this counter electrode is balanced, the air ionized by the ionizer is used. An oscillating surface potential sensor is placed in the flow of electric current, and the DC voltage applied to the counter electrode is controlled so that the detected value of the charged potential of the surface potential sensor itself falls within a predetermined range. Providing neutralization control method of charging articles by ionizer according to claim. As a vibrating surface potential sensor to be used, it is preferable to use a vibration amplitude of a mechanical oscillator that vibrates by itself to convert the surrounding electric field strength into an AC voltage and output the AC voltage.

【0007】[0007]

【作用】表面電位センサは本来帯電物品の表面電位を計
測するものである。振動型表面電位センサは,自励振動
する機械振動子の振動振幅を利用して帯電物品によって
形成される静電界の強度を交流信号に変換するものであ
り,この交流信号を検出値として帯電物品の表面電位の
変化を非接触式に検出できる。かような振動型表面電位
センサ自体は公知のものであるが,イオン空気の流れの
中で正と負のイオン濃度の片寄りを計測するような使用
の仕方は通常は行われない。
Function The surface potential sensor originally measures the surface potential of the charged article. A vibrating surface potential sensor converts the intensity of an electrostatic field formed by a charged article into an AC signal by using the vibration amplitude of a mechanical oscillator that vibrates by itself, and the AC signal is used as a detection value for the charged article. The change in the surface potential of can be detected in a noncontact manner. Although such a vibration type surface potential sensor itself is known, it is not usually used for measuring the deviation of the positive and negative ion concentrations in the flow of ion air.

【0008】ところが,本発明のようにイオナイザによ
ってイオン化された空気の流れの中にかような振動型表
面電位センサを置くと,正と負のイオン濃度がどちらか
に片寄っている場合に,その片寄った側の極性にセンサ
自身が帯電し,この帯電した電位の大きさを検出するこ
とができる。
However, when such a vibrating surface potential sensor is placed in the flow of air ionized by the ionizer as in the present invention, when the positive and negative ion concentrations are deviated to either side, The sensor itself is charged to the polarity on one side, and the magnitude of this charged potential can be detected.

【0009】すなわち,対極に適正な大きさの直流電圧
を印加することによって,イオナイザから発生する正と
負のイオン発生量が均衡していても,何らかの外部要因
特に気流の速度の変化や湿度の変化によってその均衡が
崩れることがあるが,この場合にイオン化空気の流れの
中に配置した振動型表面電位センサの検出値が変動する
ので,この検出値が設定範囲(例えば±4V以内)に収
まるように対極に印加している直流電圧を調節するにこ
とによって均衡を保つ制御ができる。このフイードバッ
ク制御は自動化ができる。
That is, by applying a DC voltage of an appropriate magnitude to the counter electrode, even if the positive and negative ion generation amounts generated from the ionizer are balanced, some external factors, especially changes in the velocity of the air flow and humidity The balance may be lost due to the change, but in this case, the detection value of the vibration type surface potential sensor arranged in the flow of ionized air fluctuates, so this detection value falls within the set range (for example, within ± 4 V). By adjusting the DC voltage applied to the counter electrode as described above, control can be performed to maintain balance. This feedback control can be automated.

【0010】[0010]

【実施例】図1は本発明に従う交流式イオナイザの例を
示しており,放電極1と対極2とからなる多数の放電対
を清浄空気の流れ(矢印3で示す)を横切る方向に二次
元的な広がりをもって多数配置したものである。各放電
極1は絶縁被覆されたリード線4に接続され,このリー
ド線4が交流電源装置5に接続されことから,各放電極
1には交流高電圧が印加される。他方,対極2はグリッ
ド状のフレームとして構成され,各フレーム枠で囲われ
る空間のほぼ中心垂直線上に各放電極1の放電端が位置
するようにしてある。これによって,各フレーム枠ごと
に一対の放電対が形成される。なお,この枠の形状は図
示のように方形である必要はなく,多角形や円または楕
円等であってもよい。このように形成された多数の放電
対の各対極はリード線6を通じて直流電源7に接続され
る。
FIG. 1 shows an example of an AC ionizer according to the present invention, in which a large number of discharge pairs consisting of a discharge electrode 1 and a counter electrode 2 are two-dimensionally arranged in a direction crossing a flow of clean air (indicated by an arrow 3). Many are arranged with a wide space. Each discharge electrode 1 is connected to a lead wire 4 which is covered with insulation, and this lead wire 4 is connected to an AC power supply device 5, so that a high AC voltage is applied to each discharge electrode 1. On the other hand, the counter electrode 2 is configured as a grid-shaped frame, and the discharge end of each discharge electrode 1 is located on a substantially vertical line of the center of the space surrounded by each frame. As a result, a pair of discharge pairs is formed for each frame. The shape of this frame does not have to be rectangular as shown, but may be polygonal, circular, oval or the like. Each counter electrode of the multiple discharge pairs thus formed is connected to the DC power supply 7 through the lead wire 6.

【0011】このイオナイザは,特開平3-230500号公報
にも記載されているように,各対極2に印加する直流電
圧を適切に調節することによって,交流式イオナイザの
欠点である正負イオン濃度の偏りを矯正することがで
き,各放電対から発生する正と負のイオン発生量を均衡
させることができる。しかし,気流速度の変動や湿度が
変動するとこのイオンバランスが崩れるので,これを防
止しなければ,処理対象とする帯電物品の除電効果を正
確に果たせなくなる。
As described in Japanese Patent Laid-Open No. 3-230500, this ionizer can adjust the DC voltage applied to each counter electrode 2 appropriately so that the positive and negative ion concentration, which is a drawback of the AC ionizer, can be reduced. The bias can be corrected, and the positive and negative ion generation amounts generated from each discharge pair can be balanced. However, if the airflow velocity or the humidity fluctuates, the ion balance is disturbed. Therefore, unless this is prevented, the static elimination effect of the charged article to be treated cannot be accurately achieved.

【0012】本例では,環境が変化しても正と負のイオ
ンバランスが崩れないように自動制御するものであり,
このために振動式表面電位センサ8をイオナイザによっ
てイオン化された空気の流れの中に配置し,その検出値
を用いて対極2に印加する直流電圧を操作する。9はこ
の操作用のコントローラを示す。
In this example, the positive and negative ion balance is automatically controlled so as not to be disturbed even when the environment changes,
For this purpose, the vibrating surface potential sensor 8 is arranged in the flow of air ionized by the ionizer, and the detected value is used to operate the DC voltage applied to the counter electrode 2. Reference numeral 9 indicates a controller for this operation.

【0013】本例の振動式表面電位センサ8は,市販さ
れているセンサ素子81を使用したものであり,その拡大
図に示すように,このセンサ素子81は接地した金属製ケ
ース82内に収められ, テンロンゴム製の絶縁パッキン83
を介して金属製のフタ84をかぶせて密閉されている。こ
のような表面電位センサ8をイオン化された空気の流れ
の中に置くと正と負のどちらかのイオン濃度が高くなれ
ばそのイオン極性にセンサ自体が帯電し,この帯電によ
って形成された電界内を器内の振動子が振動することに
より,本来の使命である電界強度に対応する交流電圧を
出力する。したがって空気中の負のイオン濃度が高くな
ればその濃度に応じた交流電圧を,また正のイオン濃度
が高くなればその濃度に応じた交流電圧をセンサ8が出
力するので,この検出される交流電圧が或る域値の範囲
内に収まるようにコントローラ9によって対極2に印加
する直流電圧を増減すれば,正と負のイオンバランスを
最適状態に制御できる。
The vibration type surface potential sensor 8 of this example uses a commercially available sensor element 81. As shown in an enlarged view of this sensor element 81, the sensor element 81 is housed in a grounded metal case 82. Insulated Tenron rubber packing 83
A metal lid 84 is put on the cover to be sealed. When such a surface potential sensor 8 is placed in the flow of ionized air, if either the positive or negative ion concentration becomes high, the sensor itself is charged to the ionic polarity, and within the electric field formed by this charging. By vibrating the vibrator inside the vessel, an AC voltage corresponding to the original mission of the electric field strength is output. Therefore, when the negative ion concentration in the air is high, the sensor 8 outputs an AC voltage according to the concentration, and when the positive ion concentration is high, the sensor 8 outputs an AC voltage according to the concentration. If the DC voltage applied to the counter electrode 2 is increased or decreased by the controller 9 so that the voltage falls within a range of a certain threshold value, the positive and negative ion balance can be controlled to the optimum state.

【0014】図2はこのフイードバック制御のフローを
示したものである。図示のように,振動式表面電位セン
サ8を制御対象とし,これによって検出される表面電位
Vが所定の範囲(図示の例では|V|≦3.0V) に収まる
ように対極に印加する直流電圧を制御する。この制御は
次のような手順で行なう。該センサ8で検出される表面
電位Vをコントローラの入力部9aに入力し,ここで増幅
器およびレベル検出器で設定値である3.0Vを越えたか否
かを判定し,イオン極性判別器で正または負に帯電した
か否かを判別したうえ増幅器で増幅し,これを主フイー
ドバック信号として,コントローラの電圧制御回路部9b
に送る。
FIG. 2 shows the flow of this feedback control. As shown in the drawing, the oscillating surface potential sensor 8 is the control target, and the DC voltage applied to the counter electrode so that the surface potential V detected by this is within a predetermined range (| V | ≦ 3.0V in the illustrated example). To control. This control is performed in the following procedure. The surface potential V detected by the sensor 8 is input to the input section 9a of the controller, where it is determined by an amplifier and a level detector whether or not it exceeds a set value of 3.0 V, and an ion polarity discriminator determines whether it is positive or negative. It is determined whether or not it is negatively charged and then amplified by an amplifier, and this is used as the main feedback signal, and the voltage control circuit section 9b of the controller is used.
Send to.

【0015】この電圧制御回路部9bでは,主フイードバ
ック信号が送られてきた場合 (つまり,表面電位センサ
の表面電位が+3.0V以上となったか或いは−3.0V以下と
なった場合) に, その信号の極性が負の場合には対極へ
の直流印加電圧を正側に増やし, 正の場合には負側に増
やす。本例では,この電圧操作量は+10Vまたは−10Vと
している。
In the voltage control circuit section 9b, when the main feedback signal is sent (that is, when the surface potential of the surface potential sensor becomes +3.0 V or higher or −3.0 V or lower), When the signal polarity is negative, the DC voltage applied to the counter electrode is increased to the positive side, and when it is positive, it is increased to the negative side. In this example, this voltage operation amount is set to + 10V or -10V.

【0016】 [実験例]図1のイオナイザにおいて,各放電極1として
針状タングステンを薄い石英ガラスで被覆したものを用
い,クリーンルーム天井のHEPAフイルタ吹出口(1200mm
×600mm,面積0.72m2) の各々に図1のイオナイザを一台
づつ対応して取付けた。
[Experimental Example] In the ionizer of FIG. 1, needle-shaped tungsten covered with thin quartz glass was used as each discharge electrode 1, and the HEPA filter outlet (1200 mm) of the clean room ceiling was used.
Each of the ionizers shown in Fig. 1 was attached to each of × 600 mm, area 0.72 m 2 ).

【0017】先ず,イオナイザの中央部の対極下方100c
mにイオン濃度計を設置し,空気速度0.37m/s, 温度23
℃, 相対湿度42%の一定条件下におけるこのイオナイザ
の対極印加電圧の適正値を求めた。その結果を図3に示
す。図3に見られるように,本設備では,放電極に50Hz
の交流高電圧を11.5kV印加しながら対極に印加する直流
電圧Veを約−255Vとすることで,正と負のイオン濃度
が均衡することがわかる。
First, 100c below the counter electrode at the center of the ionizer.
Ion densitometer installed at m, air velocity 0.37m / s, temperature 23
The optimum value of the counter electrode applied voltage of this ionizer under constant conditions of ℃ and relative humidity of 42% was obtained. The result is shown in FIG. As can be seen in Fig. 3, in this equipment, 50Hz is used for the discharge electrode.
It can be seen that the positive and negative ion concentrations are balanced by setting the DC voltage Ve applied to the counter electrode to approximately −255 V while applying the AC high voltage of 11.5 kV.

【0018】次に,5インチウエハ25枚をテフロンキャ
リヤに4.7mm 間隔でセットし且つ25枚のウエハ全部を一
本の導線で接触させて導通状態とした一体品(ウエハの
総容量17.5pF) を意図的に+3.3Vまたは−3.3Vに帯電さ
せた後, イオナイザの中央部の対極から下流側への距離
L=50cm,100cm,200cmのところに置き, 図3の正と負の
イオンバランスの条件, すなわち対極印加電圧をVe=
−255Vの一定にして,温度22.6〜23.8℃, 相対湿度40.8
〜45.1%, 空気速度0.43m/s のもとでウエハの表面電位
がどのように減衰するかを調べた。ウエハの表面電位は
Monroe Elect-ronics,Inc. 製のModel 244 を使用して
測定した。その結果を図4に示した。図4の結果に見ら
れるように除電後のウエハの表面電位は±数ボルト以内
に抑えられた。
Next, 25 5-inch wafers were set on the Teflon carrier at 4.7 mm intervals, and all 25 wafers were brought into contact with each other by a single conductor to make them conductive (total wafer capacity 17.5 pF). Was charged intentionally to + 3.3V or −3.3V, and then it was placed at the distance L = 50cm, 100cm, 200cm from the counter electrode to the downstream side in the center of the ionizer, and the positive and negative ion balance in Fig. 3 was measured. Condition, that is, the counter applied voltage is Ve =
Temperature of 22.6 to 23.8 ° C, relative humidity of 40.8 with constant −255V
We investigated how the surface potential of a wafer decays at -45.1% and an air velocity of 0.43 m / s. The surface potential of the wafer is
It was measured using a Model 244 manufactured by Monroe Elect-ronics, Inc. The results are shown in Fig. 4. As can be seen from the results of FIG. 4, the surface potential of the wafer after static elimination was suppressed to within ± several volts.

【0019】図5は風速がウエハの表面電位にどのよう
に影響するかを調べた結果を示す。すなわち,温度=2
3.0±0.5℃, 相対湿度=42.2+2%のもとで気流速度U
を変化させ,イオナイザの下流側L=100cmのところに
おいたウエハの表面電位Vsがどのように変化するかを
見たものである。対極に印加した電圧は, 図示の例では
−90Vである。図5の結果に見られるように,気流速度
Uが上昇するとウエハの表面電位Vsがそれに伴って正
側に立上り,Uが低下するとVsも低下し,気流速度U
と表面電位Vsとの間に一定の相関があることがわか
る。
FIG. 5 shows the results of an examination of how the wind speed affects the surface potential of the wafer. That is, temperature = 2
Air velocity U at 3.0 ± 0.5 ℃, relative humidity = 42.2 + 2%
By changing, the surface potential Vs of the wafer placed L = 100 cm on the downstream side of the ionizer changes. The voltage applied to the counter electrode is -90V in the illustrated example. As can be seen from the result of FIG. 5, when the airflow velocity U increases, the surface potential Vs of the wafer rises to the positive side accordingly, and when U decreases, Vs also decreases, and the airflow velocity U increases.
It can be seen that there is a constant correlation between the surface potential Vs and the surface potential Vs.

【0020】図6は,本発明に従ってイオナイザの下流
側50cmのところにおいた表面電位センサの検出値を基
に,この検出値の大きさが4.0V以内に収まるように対極
に印加する電圧Veを自動制御した以外は,図5と同様
の実験結果を示したものである。この結果,ウエハの表
面電位Vsは気流速度が変化しても±3V以内に制御され
たことがわかる。
FIG. 6 shows the voltage Ve applied to the counter electrode based on the detection value of the surface potential sensor placed 50 cm downstream of the ionizer according to the present invention so that the magnitude of the detection value is within 4.0V. The experiment results are the same as those in FIG. 5 except that the automatic control is performed. As a result, it can be seen that the surface potential Vs of the wafer was controlled within ± 3 V even if the air velocity changed.

【0021】図7は湿度がウエハの表面電位にどのよう
に影響するかを調べた結果を示す。すなわち,温度=2
3.0±0.5℃, 気流速度=0.15m/sのもとで相対湿度Hを
変化させ,イオナイザの下流側L=100cmのところにお
いたウエハの表面電位Vsがどのように変化するかを見
たものである。対極に印加した電圧は図示の例では−14
2Vである。図7の結果に見られるように,湿度Hの上昇
につれてウエハの表面電位Vsが上昇する傾向にあるこ
とがわかる。
FIG. 7 shows the results of examining how humidity affects the surface potential of the wafer. That is, temperature = 2
Change of relative humidity H under 3.0 ± 0.5 ℃, air velocity = 0.15m / s, and how the surface potential Vs of the wafer on the downstream side L = 100cm of the ionizer changes. Is. The voltage applied to the counter electrode is -14 in the example shown.
It is 2V. As can be seen from the results of FIG. 7, the surface potential Vs of the wafer tends to rise as the humidity H rises.

【0022】図8は,本発明に従ってイオナイザの下流
側L=50cmのところにおいた表面電位センサの検出値を
基に,この検出値の大きさが4.0V以内に収まるように対
極に印加する電圧Veを自動制御した以外は,図7と同
様の実験結果を示したものである。この結果,ウエハの
表面電位Vsは湿度が変化しても±3V以内に制御された
ことがわかる。
FIG. 8 shows the voltage applied to the counter electrode based on the detected value of the surface potential sensor located at the downstream side L = 50 cm of the ionizer according to the present invention so that the detected value falls within 4.0V. 7 shows the same experimental results as in FIG. 7, except that Ve was automatically controlled. As a result, it can be seen that the surface potential Vs of the wafer was controlled within ± 3 V even if the humidity changed.

【0023】[0023]

【発明の効果】以上詳述したように,本発明によれば,
交流式イオナイザの対極側の直流印加電圧を調節するこ
とによって空気イオン濃度の正と負の均衡を行なう帯電
物品の除電設備において,湿度や気流速度等の環境変化
に伴って該均衡が崩れる場合でも,その均衡が崩れない
ように自動制御ができる。したがって,半導体製造過程
にあるクリーンルーム内のウエハ等の除電設備として,
その表面電位を環境の変化に拘わらず正確に除電でき
る。
As described in detail above, according to the present invention,
In a static elimination equipment for charged articles that balances the positive and negative air ion concentrations by adjusting the DC voltage applied to the opposite side of the AC ionizer, even if the balance is disrupted due to environmental changes such as humidity and air velocity. , It can be controlled automatically so that the balance is not lost. Therefore, as static elimination equipment for wafers in a clean room in the semiconductor manufacturing process,
The surface potential can be accurately eliminated regardless of changes in the environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う交流式イオナイザの例を示す斜視
図である。
FIG. 1 is a perspective view showing an example of an AC ionizer according to the present invention.

【図2】本発明に従う除電制御のフロー図である。FIG. 2 is a flow chart of static elimination control according to the present invention.

【図3】交流式イオナイザの対極に直流電圧を印加した
場合の印加電圧と発生する正イオン濃度および負イオン
濃度との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the applied voltage and the generated positive ion concentration and negative ion concentration when a DC voltage is applied to the counter electrode of the AC ionizer.

【図4】ウエハの表面電位の減衰を示す実験結果図であ
る。
FIG. 4 is an experimental result diagram showing attenuation of the surface potential of a wafer.

【図5】イオナイザでウエハを除電するさいに気流速度
の変化がウエハ表面電位にどのように影響するかを調べ
た実験結果図である。
FIG. 5 is an experimental result diagram for investigating how a change in airflow velocity affects a wafer surface potential when a wafer is destaticized by an ionizer.

【図6】本発明に従う制御を実施したさいのウエハ表面
電位の変化を示す図5と同様の実験結果図である。
FIG. 6 is an experimental result diagram similar to FIG. 5, showing a change in wafer surface potential when the control according to the present invention is performed.

【図7】イオナイザでウエハを除電するさいに湿度の変
化がウエハ表面電位にどのように影響するかを調べた実
験結果図である。
FIG. 7 is an experimental result diagram for investigating how a change in humidity influences a wafer surface potential when a wafer is destaticized by an ionizer.

【図8】本発明に従う制御を実施したさいのウエハ表面
電位の変化を示す図8と同様の実験結果図である。
FIG. 8 is an experiment result diagram similar to FIG. 8 showing changes in the wafer surface potential when the control according to the present invention is performed.

【符号の説明】[Explanation of symbols]

1 放電極 2 対極 3 清浄空気の流れ方向 4 放電極へのリード線 5 交流電源装置 6 対極へのリード線 7 直流電源装置 8 振動式表面電位センサ 9 コントローラ 1 Discharge electrode 2 Counter electrode 3 Flow direction of clean air 4 Lead wire to discharge electrode 5 AC power supply device 6 Lead wire to counter electrode 7 DC power supply device 8 Vibration type surface potential sensor 9 Controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 針状の放電極に交流の高電圧を印加して
コロナ放電を行わせる交流式イオナイザを,フイルタを
通過した清浄空気の流れの中に設置し,このイオナイザ
によってイオン化された空気の流れを下流側に存在する
帯電物品に供給することにより該帯電物体の静電気を中
和するさいに,該放電極の放電端に対して所定の距離を
離して対極を配置すると共にこの対極に適正な大きさの
直流電圧を印加することによって正と負の発生イオン量
をバランスさせるようにした帯電物品の除電法におい
て,該イオナイザによってイオン化された空気の流れの
中に振動型表面電位センサを配置し,この表面電位セン
サ自身の帯電電位の検出値が所定の範囲に収まるように
対極に印加する直流電圧を制御することを特徴とするイ
オナイザによる帯電物品の除電制御法。
1. An AC ionizer for applying a high AC voltage to a needle-shaped discharge electrode to perform corona discharge is installed in a stream of clean air passing through a filter, and air ionized by the ionizer is installed. In order to neutralize the static electricity of the charged object by supplying the flow of the electric current to the charged article existing on the downstream side, the counter electrode is arranged at a predetermined distance from the discharge end of the discharge electrode, and In a method of neutralizing a charged article in which positive and negative generated ion amounts are balanced by applying a DC voltage of an appropriate magnitude, a vibrating surface potential sensor is installed in the flow of air ionized by the ionizer. A charged object by an ionizer, which is arranged and controls the DC voltage applied to the counter electrode so that the detected value of the charged potential of the surface potential sensor itself falls within a predetermined range. Static elimination control method for products.
【請求項2】 振動型表面電位センサは,自励振動する
機械振動子の振動振幅を利用して周囲の電界強度を交流
電圧に変換して出力するものである請求項1に記載の帯
電物品の除電制御法。
2. The charged article according to claim 1, wherein the vibrating surface potential sensor converts the surrounding electric field strength into an AC voltage and outputs it by utilizing the vibration amplitude of a mechanical vibrator that vibrates by itself. Static elimination control method.
【請求項3】 帯電物品は半導体製造過程にあるウエハ
またはウエハとウエハキャリヤである請求項1または2
に記載の帯電物品の除電制御法。
3. The charged article is a wafer or a wafer and a wafer carrier in a semiconductor manufacturing process.
A method for controlling static elimination of a charged article according to item 1.
JP2427692A 1992-01-16 1992-01-16 Static electricity removal control method for charged articles by using ionizer Expired - Lifetime JP2894464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2427692A JP2894464B2 (en) 1992-01-16 1992-01-16 Static electricity removal control method for charged articles by using ionizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2427692A JP2894464B2 (en) 1992-01-16 1992-01-16 Static electricity removal control method for charged articles by using ionizer

Publications (2)

Publication Number Publication Date
JPH06203993A true JPH06203993A (en) 1994-07-22
JP2894464B2 JP2894464B2 (en) 1999-05-24

Family

ID=12133682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2427692A Expired - Lifetime JP2894464B2 (en) 1992-01-16 1992-01-16 Static electricity removal control method for charged articles by using ionizer

Country Status (1)

Country Link
JP (1) JP2894464B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349514B1 (en) * 1998-09-18 2002-08-21 일리노이즈 툴 워크스 인코포레이티드 Low voltage modular room ionization system
JP2008117646A (en) * 2006-11-06 2008-05-22 Kazuo Okano Space charge balance control system
KR100853726B1 (en) * 2005-11-25 2008-08-22 에스엠시 가부시키가이샤 Ion balance adjusting method and method of removing charges from workpiece by using the same
WO2013187383A1 (en) * 2012-06-11 2013-12-19 シャープ株式会社 Charge-neutralizing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60216261T8 (en) * 2001-04-20 2007-09-27 Sharp K.K. ION GENERATOR AND AIR CONDITIONING DEVICE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349514B1 (en) * 1998-09-18 2002-08-21 일리노이즈 툴 워크스 인코포레이티드 Low voltage modular room ionization system
KR100853726B1 (en) * 2005-11-25 2008-08-22 에스엠시 가부시키가이샤 Ion balance adjusting method and method of removing charges from workpiece by using the same
US7586731B2 (en) 2005-11-25 2009-09-08 Smc Corporation Ion balance adjusting method and method of removing charges from workpiece by using the same
JP2008117646A (en) * 2006-11-06 2008-05-22 Kazuo Okano Space charge balance control system
WO2013187383A1 (en) * 2012-06-11 2013-12-19 シャープ株式会社 Charge-neutralizing device

Also Published As

Publication number Publication date
JP2894464B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
EP0386317B1 (en) Equipment for removing static electricity from charged articles existing in clean space
US5057966A (en) Apparatus for removing static electricity from charged articles existing in clean space
JP6374582B2 (en) Gas ionizer, method of generating an ionized gas stream, and method of converting a cloud of free electrons to negative ions in a corona discharge ionizer
WO2003049509A1 (en) Air ionizer and method
US4904902A (en) Ion implanting system
KR20040025856A (en) Method of offset voltage control for bipolar ionization systems
WO2007102191A1 (en) Neutralization apparatus having minute electrode ion generation element
KR20120095306A (en) Static electricity removing apparatus and method thereof
JPH06203993A (en) Static elimination control method for charged article by ionizer
US7855868B2 (en) Aerosol charge neutralizing device
KR20080074733A (en) Ion generator and neutralizer
Kachi et al. Experimental study of charge neutralization at the surface of granular layers of insulating materials
Jaworek et al. Airborne particle charging by unipolar ions in AC electric field
US4864459A (en) Laminar flow hood with static electricity eliminator
WO2013187383A1 (en) Charge-neutralizing device
JPH0594896A (en) Room ionizer
US6403040B1 (en) Ionizer
Messaoudène et al. Experimental modeling and optimization of the active neutralization of a PP film, using design of experiments methodology
JP2627585B2 (en) AC ion generator and static elimination equipment for charged articles in a clean space using the same
GB2330456A (en) Gas ionizer using a pyro-electric member conected to a peltier member as the high voltage source
JPH03230500A (en) Ion generator and electricity removing facility for charged product in clean space by use thereof
JPS60243674A (en) Electrostatically charging device
KR100206667B1 (en) Apparatus for removing static electricity from charged articles existing in clean space
Rouagdia et al. Robust design of neutralization process of the residual electric charge on the surface of PP-films
KR100206666B1 (en) Apparatus for removing static electricity from charged articles existing in clean space

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110305

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

EXPY Cancellation because of completion of term