WO2013187316A1 - Voltage equalization device and method - Google Patents

Voltage equalization device and method Download PDF

Info

Publication number
WO2013187316A1
WO2013187316A1 PCT/JP2013/065779 JP2013065779W WO2013187316A1 WO 2013187316 A1 WO2013187316 A1 WO 2013187316A1 JP 2013065779 W JP2013065779 W JP 2013065779W WO 2013187316 A1 WO2013187316 A1 WO 2013187316A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
block
blocks
equalization
control
Prior art date
Application number
PCT/JP2013/065779
Other languages
French (fr)
Japanese (ja)
Inventor
正彰 鈴木
慎司 広瀬
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013187316A1 publication Critical patent/WO2013187316A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a voltage equalization apparatus and method for controlling voltage equalization of a battery pack configured by connecting a plurality of battery cells.
  • a so-called hybrid car, plug-in hybrid car, hybrid vehicle, hybrid electric vehicle, or other vehicle or transport machine (hereinafter referred to as “vehicle”) equipped with a motor (electric motor) as a power source in addition to the engine is put into practical use.
  • a motor electric motor
  • an electric vehicle that does not include an engine and drives the vehicle only by a motor is being put into practical use.
  • lithium ion batteries having small and large capacity features have been used.
  • a plurality of battery cells are connected in series to form a battery block (hereinafter simply referred to as “block”), and further configured as an assembled battery connected by combining these blocks.
  • block battery block
  • the high voltage required to drive the motor of the vehicle is obtained by the series connection of the battery cells, and the necessary current capacity and the further high voltage can be obtained by connecting the blocks in combination in series and parallel.
  • the characteristics of the lithium ion battery change greatly depending on the temperature, and the remaining capacity and charging efficiency of the battery change greatly depending on the temperature of the environment in which the battery is used. This is especially true in environments where automobiles are used.
  • the so-called active voltage equalization is performed by charging the battery cells that need to be charged with a balance circuit that is configured by combining an inductor and a transformer.
  • a control technology is known (for example, the technology described in Patent Document 1).
  • This prior art reduces the power loss by using the discharge power from one battery cell as the charge power to the other battery cell, and the voltage balance of all battery cells in a multi-series storage cell with many series connections. The purpose is to make corrections quickly and smoothly.
  • An object of the present invention is to perform cell balance efficiently and accurately for each block.
  • An example of an aspect is a voltage equalization apparatus that equalizes voltages of a plurality of battery cells in an assembled battery including a configuration in which a plurality of blocks configured by connecting a plurality of battery cells in series are connected in series.
  • a balance circuit that has a transformer including a winding connected to each block and equalizes the voltage of each block individually or collectively by transferring energy between each block via each winding;
  • a control unit that controls the operation of the balance circuit so that the voltages of all the blocks are equalized at once after the voltages of the blocks that are separated from the target voltage by a predetermined threshold or more are individually equalized.
  • equalization for each block from each secondary winding of the transformer is performed individually by individual switching of each block, and equalization driving (final adjustment of equalization) is collectively performed for all blocks. Since switching can be performed, cell balancing can be executed efficiently and with high accuracy while reducing the time for each block.
  • FIG. 1 is a diagram showing a voltage equalizing apparatus according to an embodiment of the present invention.
  • the voltage equalization apparatus of this embodiment is mounted in vehicles, such as a hybrid car, a plug-in hybrid car, or an electric vehicle, for example, Comprising:
  • the assembled battery (battery) mounted in the vehicle is comprised. It is assumed that the voltages of the plurality of battery cells are equalized.
  • a plurality of battery cells are connected in series to form a block 102, and a plurality of the blocks 102 are connected in series to form an assembled battery 101.
  • an assembled battery 101 is configured by connecting N blocks 102 of # 1 to #N (N is a natural number of 1 or more) in series.
  • the cell balance between the battery cells in each block 102 is performed by a balance circuit (not shown).
  • the balance circuit is a circuit that charges the electric power discharged from each battery cell in the block 102 to the adjacent battery cell in the block 102 via a circuit including a switch element and an inductor.
  • the transformer balance circuit 103 (balance circuit) includes a switch element 109, a transformer 108, diodes # 1 to #N, and switch elements 114 # 1 to #N. These switch elements 114 together with the switch element 109 constitute a switching unit.
  • the transformer 108 includes # 1 to #N secondary windings 111, a primary winding 110, an iron core 112, an auxiliary winding 118, and a voltage sensor 115.
  • the primary winding 110 is connected to both output terminals 106 and 107 of the assembled battery 101.
  • Each of the secondary windings 111 of # 1 to #N is reversely wound with respect to the primary winding 110 and has a predetermined turn ratio, and each of the switching elements of # 1 to #N diodes 113 and # 1 to #N It is connected to both poles of the respective blocks 102 of # 1 to #N via 114.
  • the switch element 109 is, for example, an FET (field effect transistor), and performs a switching operation that repeatedly turns on and off by a pulse signal from the control unit 105.
  • the switch element 114 is also an FET (field effect transistor), for example, but performs an on or off switch operation according to an instruction from the control unit 105 via the control line 116.
  • the auxiliary winding 118 of the transformer 108 has the same turn ratio as each secondary winding 111, and detects a voltage equivalent to the voltage generated in each secondary winding 111 via the voltage sensor 115.
  • the voltage sensors 104 of # 1 to #N monitor the output voltages of the blocks 102 of # 1 to #N and notify the control unit 105 via the control line 117.
  • the control unit 105 is constituted by, for example, a digital signal processor (DSP: Digital Signal Processor).
  • DSP Digital Signal Processor
  • the control unit 105 detects the block voltage of the blocks 102 of # 1 to #N via the voltage sensors 104 of # 1 to #N, and sets the block voltage to the target. A block that is separated from the voltage by a predetermined threshold or more is detected as a control target block. Then, the control unit 105 turns on the switch element 114 corresponding to the block 102 to be controlled and a pulse signal that operates the switch element 109 according to the difference between the block voltage of the block 102 to be controlled and the target voltage. The frequency and the duty ratio are determined, and the pulse signal is supplied to the switch element 109.
  • the switching element 109 based on the pulse signal is connected to the secondary winding 111 based on the voltage generated on the secondary winding 111 side connected to the control target block 102 by the switching operation.
  • the diode 113 and the switch element 114 individual balance control charging is performed on the block 102 to be controlled.
  • the individual balance control is equalizing only the voltage of the block to be controlled among the voltages of all the blocks 102.
  • the control unit 105 turns on all the switch elements 114 of # 1 to #N corresponding to all the blocks 102 of # 1 to #N at the time of collective balance control after individual balance control for each block 102. Then, the control unit 105 detects the voltage equivalent to the voltage on the secondary winding 111 side via the auxiliary winding 118 and the voltage sensor 115 of the transformer 108, and compares the voltage with the target voltage, Perform balance control. At this time, the control unit 105 determines the frequency and duty ratio of the pulse signal for operating the switch element 109 according to the difference between the voltage of the voltage sensor 115 and the target voltage, and sends the pulse signal to the switch element 109. Supply.
  • the diode 113 connected to each secondary winding 111 based on the voltage generated on the side of all the secondary windings 111 of # 1 to #N by the switching operation of the switch element 109 based on the pulse signal.
  • all the blocks 102 of # 1 to #N are charged in a collective balance control via the switch element 114.
  • the collective balance control is equalizing the voltages of all the blocks 102.
  • the voltage equalization control as shown in FIG. 2 is performed in the elapse of time after the start of the cell balance executed when the ignition of the vehicle is turned off.
  • the control target When only the switch element 114 connected to the block 102 is turned on, individual balance control is performed only for the block 102.
  • the voltage of each block 102 can be equalized in a shorter time than before.
  • the voltage equalization control is performed with the average voltage of each block 102 detected through the auxiliary winding 118 and the voltage sensor 115 in the addition to the target voltage.
  • the voltage accuracy between the windings of the secondary winding 111 of the transformer 108 it is possible to perform control such that all the blocks 102 reach the target voltage at once. As a result, it is possible to efficiently and accurately perform cell balance control while reducing the time for each block 102.
  • FIG. 3 to 5 are flowcharts showing the operation of the control unit shown in FIG. This operation example is realized as an operation in which a processor (not shown) in the control unit 105 in FIG. 1 executes a control program stored in a memory (not shown).
  • a processor not shown
  • FIG. 3 to 5 are flowcharts showing the operation of the control unit shown in FIG. This operation example is realized as an operation in which a processor (not shown) in the control unit 105 in FIG. 1 executes a control program stored in a memory (not shown).
  • control unit 105 calculates an average value of the voltages (block voltages) # 1 to #N of the blocks 102 detected by the voltage sensors 104 of # 1 to #N, and uses the average value for individual balance control.
  • a target value (target voltage) is set (step S301 in FIG. 3).
  • the control unit 105 determines whether or not the block voltage #i of the # i-th block 102 is higher than a voltage value obtained by subtracting the threshold value 1 from the target value calculated in step S301 (step S303).
  • step S303 If the block voltage #i is higher than (target value ⁇ threshold value 1) and the determination in step S303 is YES, the control unit 105 does not need to perform individual cell balance control for the block 102 of #i, so step S305 Advances to step S306, and #i is incremented by one.
  • control unit 105 determines that individual cell balance control needs to be performed for block 102 of #i. .
  • control unit 105 sets the block voltage of the block #i to be controlled as the control target and turns on only the #i switch element 114 (step S304 in FIG. 3). Thereafter, the control unit 105 proceeds to step S401 in FIG. 4 and performs individual balance control for the block 102 of #i.
  • the block voltage to be controlled is fed back to the control unit 105 via the control line 117.
  • control unit 105 calculates an average value of the voltages (block voltages) # 1 to #N of the respective blocks 102 detected by the # 1 to #N voltage sensors 104, and calculates the average value as the #i block 102. Is set as a target value for the individual balance control (step S401 in FIG. 4).
  • control unit 105 calculates and sets the frequency and duty ratio of the pulse signal for switching control of the switch element 109 from the value (or temperature) of the internal resistance of the block #i (step S402 in FIG. 4). .
  • the control unit 105 separately calculates a block voltage #i detected from the # 1 voltage sensor 104 when it is determined that a current is flowing through the assembled battery 101, for example, when the vehicle is idling.
  • the internal resistance of the block 102 of #i is calculated by dividing by the value of the current flowing through the assembled battery 101.
  • the control unit 105 acquires the temperature value of the assembled battery 101 from a temperature sensor (not shown). Then, the control unit 105 estimates the internal resistance by referring to the voltage / temperature vs. internal resistance map for each temperature held inside the block voltage #i and the temperature value.
  • control unit 105 calculates the frequency and duty ratio of the pulse signal from the value of the internal resistance calculated as described above, for example, based on the following calculation.
  • the number of turns of the primary winding 110 of the transformer 108 is N1
  • the number of turns of the secondary winding 111 is N2. If the frequency of the pulse signal is freq, the period is T, the pulse on time is t on , the duty ratio is D, the voltage on the primary winding 110 side is Vin, and the voltage on the secondary winding 111 side is Vo, then Holds.
  • the charge / discharge output voltage Vo for the battery cell can be changed.
  • the output power is output based on the following equation, the output power can be changed by controlling the duty ratio.
  • Lp is the inductance of the primary winding 110 and P is the output power.
  • the duty ratio D of the pulse signal applied to the switch element 109 based on the current allowable value set in accordance with the calculated value of the internal resistance, the power to be output, and the pulse frequency freq based on the equation 1 and the equation 2 Can be calculated.
  • the duty ratio D may be determined arbitrarily, and the pulse frequency freq may be determined.
  • the frequency freq and the duty ratio D of the pulse signal may be simply set to arbitrary values.
  • the control unit 105 executes switching control by supplying a pulse signal having the pulse frequency freq and the duty ratio D determined as described above to the switch element 109 (performing PWM output) (step S403 in FIG. 4). ).
  • control unit 105 sets the target value calculated in step S401 and the block voltage #i notified from the #i block 102 to be controlled through the control line 117 (FIG. 3 is calculated as an error (see step S404 in FIG. 4).
  • the control target is a target that feeds back a voltage to the control unit 105.
  • the control part 105 determines whether the said error became smaller than the predetermined threshold value 2 smaller than the threshold value 1 (step S405).
  • the threshold value 2 may be equal to or less than the threshold value 1, and is preferably smaller than the threshold value 1.
  • step S405 the control unit 105 returns to the process of step S401, recalculates the target value, and performs individual balance control for the block 102 of #i. Run repeatedly.
  • step S405 When the error is smaller than the threshold value 2 and the determination in step S405 is YES by the series of iterative processes from step S401 to step S405 in FIG. 4 described above, the control unit 105 performs switching control (PWM output) for the switch element 109. Is stopped (step S406 in FIG. 4). As a result, the individual balance control for the block 102 of #i ends.
  • PWM output switching control
  • control unit 105 returns to the process in step S301 in FIG. 3 and performs a series of processes in steps S301 to S306 in FIG. 3 to determine again whether or not there is a block 102 to be subjected to individual balance control. Return.
  • step S305 in FIG. 105 the process proceeds to step S501 in FIG. Thereafter, collective balance control is performed.
  • control unit 105 determines that any one of the block voltages # 1 to #N detected from the # 1 to #N voltage sensors 104 is based on the current target value (the value set in step S301 in FIG. 3). It is determined whether or not the threshold is 2 or more (step S501 in FIG. 5).
  • step S501 determines whether the block voltages # 1 to #N is more than the threshold value 2 from the target value and the determination in step S501 is YES. If any one of the block voltages # 1 to #N is more than the threshold value 2 from the target value and the determination in step S501 is YES, the control unit 105 is output via the auxiliary winding 118 of the transformer 108 and the voltage sensor 115. The target voltage is controlled. Further, the control unit 105 turns on all the switch elements 114 of # 1 to #N (step S502 in FIG. 5). As a result, thereafter, the control unit 105 executes batch balance control.
  • control unit 105 calculates an average value of the voltages (block voltages) # 1 to #N of the respective blocks 102 detected by the voltage sensors 104 of # 1 to #N, and uses the average value for batch balance control.
  • the target value is set (step S503 in FIG. 5).
  • control unit 105 calculates and sets the frequency and duty ratio of the pulse signal for switching control of the switch element 109 from the value (or temperature) of the internal resistance of the assembled battery 101 as a whole (step S504 in FIG. 5).
  • control unit 105 is based on the calculation of Equation 1 and Equation 2 described above in the description of Step S404 in FIG. Calculate the frequency and duty ratio of the pulse signal.
  • the control unit 105 performs switching control by supplying a pulse signal having the pulse frequency freq and the duty ratio D determined as described above to the switch element 109 (performing PWM output) (step S505 in FIG. 5). ).
  • control unit 105 calculates a difference between the target value calculated in step S403 and the lowest block voltage (see step S502 in FIG. 5) as an error after switching control for a certain time (step in FIG. 5). S506).
  • control part 105 determines whether the said error became smaller than the predetermined threshold value 2 smaller than the threshold value 1 (step S507 of FIG. 5).
  • control unit 105 returns to the process in step S503 to recalculate the target value, and for all the blocks 102 of # 1 to #N. Repeat batch balance control.
  • step S507 When the error is smaller than the threshold value 2 and the determination in step S507 is YES by the series of iterative processes from step S503 to step S507 in FIG. 5 described above, the control unit 105 performs switching control (PWM output) for the switch element 109. Is stopped (step S508 in FIG. 5). Thus, the collective balance control for all the blocks 102 of # 1 to #N is completed.
  • PWM output switching control
  • step S501 of FIG. 5 the control unit 105 does not need to perform batch balance control and ends the cell balance control operation.
  • FIG. 6 is a diagram showing a flowchart of another example of the control operation in place of the example of the control operation in FIG.
  • step S302 to S306 in FIG. 3 is replaced with the processing of steps S501 and S502 in FIG.
  • the processing in step S301 is the same as that in FIG.
  • control unit 105 detects that any one of the block voltages # 1 to #N detected from the voltage sensors 104 of # 1 to #N is separated from the target value calculated in step S301 by a threshold value 1 or more. It is determined whether or not (step S601).
  • step S601 determines whether the block voltages # 1 to #N is more than the threshold value 1 from the target value and the determination in step S601 is YES. If any of the block voltages # 1 to #N is more than the threshold value 1 from the target value and the determination in step S601 is YES, the control unit 105 performs individual cell balance control for the block 102 having the lowest block voltage. Judge that it is necessary.
  • control unit 105 uses the lowest block voltage as the control voltage and turns on the switch element 114 connected to the block 102 (step S602 in FIG. 6). Thereafter, the control unit 105 proceeds to step S401 in FIG. 4 and performs individual balance control on the block 102.
  • the processing in FIG. 4 is the same as that described above.
  • step S601 determines whether the block voltages # 1 to #N is more than the threshold value 1 or more from the target value and the determination in step S601 is NO. If any of the block voltages # 1 to #N is not more than the threshold value 1 or more from the target value and the determination in step S601 is NO, the control unit 105 proceeds to the process of step S501 in FIG. Thereafter, the above-described collective balance control is performed.
  • transformer balance circuit for example, as shown in FIG. 7A, two transformers T1 and T2, two switch elements SW1 and SW2 for driving them, and a rectifying diode D connected to each block 102 are provided. It can be realized by a flyback circuit provided.
  • the part of the block 102 is the same as in FIG. In this case, either switch element SW1 or SW2 operates individually during individual balance control, and both operate synchronously during collective balance control.
  • a transformer balance circuit for example, as shown in FIG. 7B, a transformer T similar to the transformer 108 in FIG. 1, switch elements SW1 and SW2 similar to the switch element 114 in FIG. 1, and a switch in FIG.
  • This can also be realized by a forward circuit including two diodes D and one inductor L for each block 102 in the configuration including the switch element SW3 similar to the element 109.
  • the switch element SW3 is switched on after either of the switch elements SW1 or SW2 is individually turned on. Further, at the time of collective balance control, both the switch elements SW1 and SW2 are turned on, and the switch element SW3 is switched.

Abstract

In the present invention, a controller (105), while detecting a voltage for each block (102(#1-#N)) from voltage sensors (104(#1-#N)), for a block (102) for which such voltage is separated from a target voltage by a first threshold or more, turns on a switch element (114) connected to said block and operates a switch element (109). Due to this, individual equalization control is implemented only for said block (102). After that, by turning on all of the switch elements (114 (#1-#N)) and operating the switch element (109), the controller (105) implements equalization control en masse on all blocks (102(#1-#N)). Effective and high precision equalization control is implemented, while shortening the time therefor, in respect to each block (102).

Description

電圧均等化装置および方法Voltage equalization apparatus and method
 本発明は、複数の電池セルを接続して構成される組電池の電圧の均等化を制御する電圧均等化装置および方法に関する。 The present invention relates to a voltage equalization apparatus and method for controlling voltage equalization of a battery pack configured by connecting a plurality of battery cells.
 いわゆるハイブリッドカー、プラグインハイブリッドカー、あるいはハイブリッドビークル、ハイブリッドエレクトリックビークルなどと呼ばれる、エンジンに加えてモータ(電動機)を動力源として備えた車両または輸送機械(以下、「車両」と称する)が実用化されている。さらには、エンジンを備えずモータのみで車両を駆動する電気自動車も実用化されつつある。それらのモータを駆動する電源として、小型、大容量の特徴を有するリチウムイオン電池が使用されるようになってきている。そして、このような用途においては、複数の電池セルが例えば直列に接続されて電池ブロック(以下、単に「ブロック」と呼ぶ)が構成され、さらにこのブロックを組み合わせて接続される組電池として構成される場合がある。電池セルの直列接続により車両のモータを駆動するのに必要な高電圧が得られ、ブロックをさらに直列や並列に組み合わして接続することにより必要な電流容量やさらなる高電圧が得られる。 A so-called hybrid car, plug-in hybrid car, hybrid vehicle, hybrid electric vehicle, or other vehicle or transport machine (hereinafter referred to as “vehicle”) equipped with a motor (electric motor) as a power source in addition to the engine is put into practical use. Has been. Furthermore, an electric vehicle that does not include an engine and drives the vehicle only by a motor is being put into practical use. As a power source for driving these motors, lithium ion batteries having small and large capacity features have been used. In such an application, for example, a plurality of battery cells are connected in series to form a battery block (hereinafter simply referred to as “block”), and further configured as an assembled battery connected by combining these blocks. There is a case. The high voltage required to drive the motor of the vehicle is obtained by the series connection of the battery cells, and the necessary current capacity and the further high voltage can be obtained by connecting the blocks in combination in series and parallel.
 この場合、リチウムイオン電池は温度による特性の変化が大きく、電池が使用される環境の温度によって電池の残存容量や充電効率も大きく変化する。自動車のような使用環境ではなおさらである。 In this case, the characteristics of the lithium ion battery change greatly depending on the temperature, and the remaining capacity and charging efficiency of the battery change greatly depending on the temperature of the environment in which the battery is used. This is especially true in environments where automobiles are used.
 この結果、ブロックを構成する電池セルにおいて、各電池セルの残存容量および出力電圧にばらつきが生じる。各電池セルが発生する電圧にばらつきが発生すると、1つのセルの電圧が駆動可能な閾値を下回ったような場合に、全体の電源供給を止めたり抑制したりする必要が生じ、電力効率が低下してしまう。このため、各電池セルの電圧の均等化を行う電圧均等化制御が必要となる。さらには、ブロック間でも電圧の均等化を行う必要も生じる。 As a result, in the battery cells constituting the block, the remaining capacity and output voltage of each battery cell vary. When variations occur in the voltage generated by each battery cell, it becomes necessary to stop or suppress the entire power supply when the voltage of one cell falls below the driveable threshold, resulting in reduced power efficiency. Resulting in. For this reason, the voltage equalization control which equalizes the voltage of each battery cell is required. Furthermore, it is necessary to equalize the voltage between the blocks.
 電圧均等化制御の従来技術として、放電が必要な電池セルからの放電電力を、インダクタとトランスを組み合わせて構成されるバランス回路によって、充電が必要な電池セルに充電させる、いわゆるアクティブ方式の電圧均等化制御技術が知られている(例えば、特許文献1に記載の技術)。 As a conventional technique for voltage equalization control, the so-called active voltage equalization is performed by charging the battery cells that need to be charged with a balance circuit that is configured by combining an inductor and a transformer. A control technology is known (for example, the technology described in Patent Document 1).
 この従来技術では、ブロック内の電池セル間では、放電が必要な電池セルから充電が必要な電池セルにオン、オフを繰り返すスイッチ素子とインダクタを使って電力を移動させることで、電池セル間のセルバランスを実行する。また、ブロック間では、オン、オフを繰り返すスイッチ素子とトランスを用いることにより、組電池全体から放電される電力をトランスの一次巻線から二次巻線を介して各ブロックに移動させることにより、ブロック間のセルバランスを実行する。 In this prior art, between battery cells in a block, power is transferred between battery cells using a switching element and an inductor that are repeatedly turned on and off from a battery cell that needs to be discharged to a battery cell that needs to be charged. Perform cell balance. In addition, by using switch elements and transformers that repeatedly turn on and off between the blocks, the power discharged from the entire assembled battery is moved from the primary winding of the transformer to each block via the secondary winding, Perform cell balance between blocks.
 この従来技術は、ある電池セルからの放電電力を他の電池セルへの充電電力として使用することで電力損失を少なくし、また、直列接続数の多い多直列蓄電セルにおいて全電池セルの電圧バランス補正を迅速かつ円滑に行わせることを目的にしている。 This prior art reduces the power loss by using the discharge power from one battery cell as the charge power to the other battery cell, and the voltage balance of all battery cells in a multi-series storage cell with many series connections. The purpose is to make corrections quickly and smoothly.
 しかし、この従来技術では、トランスの二次巻線を介して各ブロックに均等に電力が供給されてしまうため、例えば特に電圧が低いブロックに対して効率的にセルバランスを実行することが難しいという問題点を有している。 However, in this conventional technique, power is evenly supplied to each block via the secondary winding of the transformer, so that it is difficult to efficiently perform cell balance, for example, for a block having a particularly low voltage. Has a problem.
特開2008-35680号公報JP 2008-35680 A
 本発明は、各ブロックに対して効率的かつ高精度にセルバランスを実行することを目的とする。 An object of the present invention is to perform cell balance efficiently and accurately for each block.
 態様の一例は、複数の電池セルが直列に接続されて構成されるブロックがさらに複数直列に接続された構成を含む組電池における複数の電池セルの電圧を均等化させる電圧均等化装置であって、各ブロックに接続される巻線を含むトランスを有し、各巻線を介して各ブロック間でエネルギーの授受を行うことにより、前記各ブロックの電圧を個別または一括に均等化するバランス回路と、目標電圧から所定の閾値以上離れているブロックの電圧が個別に均等化された後に、全てのブロックの電圧が一括して均等化されるように、バランス回路の動作を制御する制御部と、を備える。 An example of an aspect is a voltage equalization apparatus that equalizes voltages of a plurality of battery cells in an assembled battery including a configuration in which a plurality of blocks configured by connecting a plurality of battery cells in series are connected in series. A balance circuit that has a transformer including a winding connected to each block and equalizes the voltage of each block individually or collectively by transferring energy between each block via each winding; A control unit that controls the operation of the balance circuit so that the voltages of all the blocks are equalized at once after the voltages of the blocks that are separated from the target voltage by a predetermined threshold or more are individually equalized. Prepare.
 本発明によれば、トランスの各二次巻線から各ブロックに対する均等化を各ブロックの個別のスイッチングにより個別に行うとともに、均等化の追い込み(均等化の最後の調整)は全ブロックに対する一括したスイッチングにより行うことが可能となるため、各ブロックに対して時間を短縮しながら効率的かつ高精度にセルバランスを実行することが可能となる。 According to the present invention, equalization for each block from each secondary winding of the transformer is performed individually by individual switching of each block, and equalization driving (final adjustment of equalization) is collectively performed for all blocks. Since switching can be performed, cell balancing can be executed efficiently and with high accuracy while reducing the time for each block.
電圧均等化装置を示す図である。It is a figure which shows a voltage equalization apparatus. 電圧均等化制御を説明するための図である。It is a figure for demonstrating voltage equalization control. 制御部の動作を説明するためのフローチャート(その1)である。It is a flowchart (the 1) for demonstrating operation | movement of a control part. 制御部の動作を説明するためのフローチャート(その2)である。It is a flowchart (the 2) for demonstrating operation | movement of a control part. 制御部の動作を説明するためのフローチャート(その3)である。It is a flowchart (the 3) for demonstrating operation | movement of a control part. 制御部の動作を説明するためのフローチャート(その4)である。It is a flowchart (the 4) for demonstrating operation | movement of a control part. 他の実施形態の電圧均等化装置を示す図である。It is a figure which shows the voltage equalization apparatus of other embodiment.
 以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
 図1は、本発明の実施形態の電圧均等化装置を示す図である。なお、本実施形態の電圧均等化装置は、例えば、ハイブリッドカー、プラグインハイブリッドカー、又は電気自動車などの車両に搭載されるものであって、その車両に搭載される組電池(バッテリ)を構成する複数の電池セルの各電圧を均等化させるものとする。 FIG. 1 is a diagram showing a voltage equalizing apparatus according to an embodiment of the present invention. In addition, the voltage equalization apparatus of this embodiment is mounted in vehicles, such as a hybrid car, a plug-in hybrid car, or an electric vehicle, for example, Comprising: The assembled battery (battery) mounted in the vehicle is comprised. It is assumed that the voltages of the plurality of battery cells are equalized.
 複数の電池セルが直列に接続されてブロック102が構成され、さらにそのブロック102が複数直列に接続されて組電池101が構成される。図1では、#1~#NのN個(Nは1以上の自然数)のブロック102が直列に接続されて組電池101が構成される。 A plurality of battery cells are connected in series to form a block 102, and a plurality of the blocks 102 are connected in series to form an assembled battery 101. In FIG. 1, an assembled battery 101 is configured by connecting N blocks 102 of # 1 to #N (N is a natural number of 1 or more) in series.
 各ブロック102内の各電池セル間のセルバランスは、特には図示しないバランス回路によって行われる。このバランス回路は例えば、ブロック102内の各電池セルから放電される電力を、スイッチ素子およびインダクタを含む回路を介して、そのブロック102内の隣接する電池セルに充電させる回路である。 The cell balance between the battery cells in each block 102 is performed by a balance circuit (not shown). For example, the balance circuit is a circuit that charges the electric power discharged from each battery cell in the block 102 to the adjacent battery cell in the block 102 via a circuit including a switch element and an inductor.
 トランスバランス回路103(バランス回路)は、スイッチ素子109、トランス108、#1~#Nのダイオード113、#1~#Nのスイッチ素子114を備える。これらのスイッチ素子114は、スイッチ素子109とともに、スイッチング部を構成する。トランス108は、#1~#Nの二次巻線111、一次巻線110、鉄心112、補助巻線118、電圧センサ115を備える。一次巻線110は、組電池101の両出力端子106、107に接続される。#1~#Nの各二次巻線111は、一次巻線110に対して逆巻で所定の巻数比を有し、#1~#N各ダイオード113および#1~#Nの各スイッチ素子114を介して#1~#Nの各ブロック102の両極に接続される。 The transformer balance circuit 103 (balance circuit) includes a switch element 109, a transformer 108, diodes # 1 to #N, and switch elements 114 # 1 to #N. These switch elements 114 together with the switch element 109 constitute a switching unit. The transformer 108 includes # 1 to #N secondary windings 111, a primary winding 110, an iron core 112, an auxiliary winding 118, and a voltage sensor 115. The primary winding 110 is connected to both output terminals 106 and 107 of the assembled battery 101. Each of the secondary windings 111 of # 1 to #N is reversely wound with respect to the primary winding 110 and has a predetermined turn ratio, and each of the switching elements of # 1 to #N diodes 113 and # 1 to #N It is connected to both poles of the respective blocks 102 of # 1 to #N via 114.
 スイッチ素子109は、例えばFET(電界効果トランジスタ)であり、制御部105からのパルス信号によりオン、オフを繰り返すスイッチング動作を行う。スイッチ素子114も例えばFET(電界効果トランジスタ)であるが、制御部105から制御線116を介した指示により、オンまたはオフのスイッチ動作を行う。 The switch element 109 is, for example, an FET (field effect transistor), and performs a switching operation that repeatedly turns on and off by a pulse signal from the control unit 105. The switch element 114 is also an FET (field effect transistor), for example, but performs an on or off switch operation according to an instruction from the control unit 105 via the control line 116.
 トランス108の補助巻線118は、各二次巻線111と同じ巻数比を備え、各二次巻線111に発生している電圧と同等の電圧を電圧センサ115を介して検出する。 The auxiliary winding 118 of the transformer 108 has the same turn ratio as each secondary winding 111, and detects a voltage equivalent to the voltage generated in each secondary winding 111 via the voltage sensor 115.
 #1~#Nの各電圧センサ104は、#1~#Nの各ブロック102の出力電圧を監視し、制御線117を介して制御部105に通知する。 The voltage sensors 104 of # 1 to #N monitor the output voltages of the blocks 102 of # 1 to #N and notify the control unit 105 via the control line 117.
 制御部105は、例えばデジタルシグナルプロセッサ(DSP:Digital Signal Processor)によって構成される。 The control unit 105 is constituted by, for example, a digital signal processor (DSP: Digital Signal Processor).
 制御部105は、個別のバランス制御(均等化制御)時には、#1~#Nの各電圧センサ104を介して#1~#Nの各ブロック102のブロック電圧を検出しながら、ブロック電圧が目標電圧から所定の閾値以上離れているブロックを、制御対象のブロックとして検出する。そして、制御部105は、その制御対象のブロック102に対応するスイッチ素子114をオンするとともに、制御対象のブロック102のブロック電圧と目標電圧との差に応じて、スイッチ素子109を動作させるパルス信号の周波数とデューティー比を決定し、そのパルス信号をスイッチ素子109に供給する。この結果、そのパルス信号に基づくスイッチ素子109のスイッチング動作により制御対象のブロック102に接続されている二次巻線111の側に発生した電圧に基づいて、その二次巻線111に接続されるダイオード113およびスイッチ素子114を介して、制御対象のブロック102に個別のバランス制御の充電が行われる。なお、個別のバランス制御とは、全てのブロック102の電圧のうち、制御対象となったブロックの電圧のみを均等化させることである。 At the time of individual balance control (equalization control), the control unit 105 detects the block voltage of the blocks 102 of # 1 to #N via the voltage sensors 104 of # 1 to #N, and sets the block voltage to the target. A block that is separated from the voltage by a predetermined threshold or more is detected as a control target block. Then, the control unit 105 turns on the switch element 114 corresponding to the block 102 to be controlled and a pulse signal that operates the switch element 109 according to the difference between the block voltage of the block 102 to be controlled and the target voltage. The frequency and the duty ratio are determined, and the pulse signal is supplied to the switch element 109. As a result, the switching element 109 based on the pulse signal is connected to the secondary winding 111 based on the voltage generated on the secondary winding 111 side connected to the control target block 102 by the switching operation. Through the diode 113 and the switch element 114, individual balance control charging is performed on the block 102 to be controlled. The individual balance control is equalizing only the voltage of the block to be controlled among the voltages of all the blocks 102.
 制御部105は、各ブロック102に対する個別のバランス制御後の一括のバランス制御時には、#1~#Nの全てのブロック102に対応する#1~#Nの全てのスイッチ素子114をオンする。そして、制御部105は、トランス108の補助巻線118および電圧センサ115を介して各二次巻線111側の電圧と同等の電圧を検出しながらその電圧を目標電圧と比較しながら、一括のバランス制御を行う。このとき、制御部105は、上述の電圧センサ115の電圧と目標電圧との差に応じて、スイッチ素子109を動作させるパルス信号の周波数とデューティー比を決定し、そのパルス信号をスイッチ素子109に供給する。この結果、そのパルス信号に基づくスイッチ素子109のスイッチング動作により#1~#Nの全ての二次巻線111の側に発生した電圧に基づいて、各二次巻線111に接続されるダイオード113およびスイッチ素子114を介して、#1~#Nの全てのブロック102に一括のバランス制御の充電が行われる。なお、一括のバランス制御とは、全てのブロック102の電圧を均等化させることである。 The control unit 105 turns on all the switch elements 114 of # 1 to #N corresponding to all the blocks 102 of # 1 to #N at the time of collective balance control after individual balance control for each block 102. Then, the control unit 105 detects the voltage equivalent to the voltage on the secondary winding 111 side via the auxiliary winding 118 and the voltage sensor 115 of the transformer 108, and compares the voltage with the target voltage, Perform balance control. At this time, the control unit 105 determines the frequency and duty ratio of the pulse signal for operating the switch element 109 according to the difference between the voltage of the voltage sensor 115 and the target voltage, and sends the pulse signal to the switch element 109. Supply. As a result, the diode 113 connected to each secondary winding 111 based on the voltage generated on the side of all the secondary windings 111 of # 1 to #N by the switching operation of the switch element 109 based on the pulse signal. In addition, all the blocks 102 of # 1 to #N are charged in a collective balance control via the switch element 114. The collective balance control is equalizing the voltages of all the blocks 102.
 例えば、車両のイグニッションオフ時に実行されるセルバランス開始後の時間経過において、図2に示すような電圧均等化制御が行われる。まず、複数のブロック102のうち電圧が低くセルバランス制御の対象となるブロック102の電圧202と、全てのブロック102の電圧の平均値(目標電圧)との電圧差が大きい範囲204では、制御対象のブロック102に接続されるスイッチ素子114のみがオンされることにより、そのブロック102に対してのみ個別のバランス制御が実施される。これにより、各ブロック102の電圧を、従来より短い時間で均等化させることが可能となる。これとともに、各ブロック102の電圧と全てのブロック102の電圧の平均値(目標電圧)との差が、ある一定の閾値1内の範囲203に入る期間205になったら、#1~#Nの全てのブロック102に接続される#1~#Nの全てのスイッチ素子114がオンされることにより、全てのブロック102に対して一括のバランス制御が実施される。 For example, the voltage equalization control as shown in FIG. 2 is performed in the elapse of time after the start of the cell balance executed when the ignition of the vehicle is turned off. First, in a range 204 in which the voltage difference between the voltage 202 of the block 102 that is the target of cell balance control and the average value (target voltage) of all the blocks 102 is large among the plurality of blocks 102, the control target When only the switch element 114 connected to the block 102 is turned on, individual balance control is performed only for the block 102. As a result, the voltage of each block 102 can be equalized in a shorter time than before. At the same time, when the difference between the voltage of each block 102 and the average value (target voltage) of all the blocks 102 is within a period 205 that falls within a certain threshold value 1, # 1 to #N When all the switch elements 114 of # 1 to #N connected to all the blocks 102 are turned on, collective balance control is performed on all the blocks 102.
 以上の個別制御と一括制御を組み合わせたバランス制御により、目標電圧への追込みでは、補助巻線118と電圧センサ115を介して検出される各ブロック102の平均電圧で電圧均等化制御を行うので、トランス108の二次巻線111の巻線間の電圧精度で、全てのブロック102に対して一括で目標電圧に到達するような制御を行うことが可能となる。この結果、各ブロック102に対して時間を短縮しながら効率的かつ高精度にセルバランス制御を実施することが可能となる。 With the balance control that combines the individual control and the collective control described above, the voltage equalization control is performed with the average voltage of each block 102 detected through the auxiliary winding 118 and the voltage sensor 115 in the addition to the target voltage. With the voltage accuracy between the windings of the secondary winding 111 of the transformer 108, it is possible to perform control such that all the blocks 102 reach the target voltage at once. As a result, it is possible to efficiently and accurately perform cell balance control while reducing the time for each block 102.
 図3~図5は、図1に示される制御部の動作を示すフローチャートである。この動作例は、図1の制御部105内の特には図示しないプロセッサが特には図示しないメモリに記憶された制御プログラムを実行する動作として実現される。以下の説明では、随時図1の各部分を参照するものとする。 3 to 5 are flowcharts showing the operation of the control unit shown in FIG. This operation example is realized as an operation in which a processor (not shown) in the control unit 105 in FIG. 1 executes a control program stored in a memory (not shown). In the following description, reference is made to each part of FIG.
 まず、制御部105は、#1~#Nの電圧センサ104が検出する各ブロック102の電圧(ブロック電圧)#1~#Nの平均値を算出して、その平均値を個別のバランス制御の目標値(目標電圧)として設定する(図3のステップS301)。 First, the control unit 105 calculates an average value of the voltages (block voltages) # 1 to #N of the blocks 102 detected by the voltage sensors 104 of # 1 to #N, and uses the average value for individual balance control. A target value (target voltage) is set (step S301 in FIG. 3).
 次に、制御部105は、個別のバランス制御を実施すべきか否かを判定すべきブロック102の番号#iとして#i=1を設定した後(図3のステップS302)、#iを+1ずつしながら(図3のステップS306)、#i番目のブロック102のブロック電圧#iが、ステップS301で算出した目標値から閾値1を減算した電圧値よりも高くないと判定されるまで(図3のステップS303:No)、又は、#i=Nであると判定されるまで(図3のステップS305:YES)、ステップS303、S305、及びS306の処理を繰り返し実行する。 Next, the control unit 105 sets # i = 1 as the number #i of the block 102 to determine whether or not to perform individual balance control (step S302 in FIG. 3), and then increments #i by +1. While (step S306 in FIG. 3), until it is determined that the block voltage #i of the # i-th block 102 is not higher than the voltage value obtained by subtracting the threshold value 1 from the target value calculated in step S301 (FIG. 3). Step S303: No), or until it is determined that # i = N (Step S305: YES in FIG. 3), the processes of Steps S303, S305, and S306 are repeated.
 制御部105は、#i番目のブロック102のブロック電圧#iが、ステップS301で算出した目標値から閾値1を減算した電圧値よりも高くなったか否かを判定する(ステップS303)。 The control unit 105 determines whether or not the block voltage #i of the # i-th block 102 is higher than a voltage value obtained by subtracting the threshold value 1 from the target value calculated in step S301 (step S303).
 制御部105は、ブロック電圧#iが(目標値-閾値1)よりも高くステップS303の判定がYESならば、#iのブロック102については個別のセルバランス制御を行う必要はないため、ステップS305からステップS306に進んで、#iを+1する。 If the block voltage #i is higher than (target value−threshold value 1) and the determination in step S303 is YES, the control unit 105 does not need to perform individual cell balance control for the block 102 of #i, so step S305 Advances to step S306, and #i is incremented by one.
 制御部105は、ブロック電圧#iが(目標値-閾値1)よりも高くなくステップS303の判定がNOならば、#iのブロック102については個別のセルバランス制御を行う必要があると判定する。 If block voltage #i is not higher than (target value−threshold 1) and the determination in step S303 is NO, control unit 105 determines that individual cell balance control needs to be performed for block 102 of #i. .
 この場合、制御部105は、制御対象となるブロック#iのブロック電圧を制御対象とし、#iのスイッチ素子114のみをオンする(図3のステップS304)。その後、制御部105は、図4のステップS401に移行し、#iのブロック102に対して、個別のバランス制御を実施する。制御対象となるブロック電圧は制御線117を介して制御部105へフィードバックされる。 In this case, the control unit 105 sets the block voltage of the block #i to be controlled as the control target and turns on only the #i switch element 114 (step S304 in FIG. 3). Thereafter, the control unit 105 proceeds to step S401 in FIG. 4 and performs individual balance control for the block 102 of #i. The block voltage to be controlled is fed back to the control unit 105 via the control line 117.
 まず、制御部105は、#1~#Nの電圧センサ104が検出する各ブロック102の電圧(ブロック電圧)#1~#Nの平均値を算出して、その平均値を#iのブロック102に対する個別のバランス制御の目標値として設定する(図4のステップS401)。 First, the control unit 105 calculates an average value of the voltages (block voltages) # 1 to #N of the respective blocks 102 detected by the # 1 to #N voltage sensors 104, and calculates the average value as the #i block 102. Is set as a target value for the individual balance control (step S401 in FIG. 4).
 次に、制御部105は、#iのブロック102の内部抵抗の値(もしくは温度)からスイッチ素子109をスイッチング制御するパルス信号の周波数とデューティー比を計算し、設定する(図4のステップS402)。 Next, the control unit 105 calculates and sets the frequency and duty ratio of the pulse signal for switching control of the switch element 109 from the value (or temperature) of the internal resistance of the block #i (step S402 in FIG. 4). .
 具体的には、制御部105は例えば、車両のアイドリング時等で、組電池101に電流が流れていると判定したときには、#1の電圧センサ104から検出されるブロック電圧#iを、別途算出した組電池101を流れる電流値で除算することにより、#iのブロック102の内部抵抗を算出する。また、制御部105は例えば、車両のイグニッションオフ時等で、組電池101に電流が流れていないと判定したときには、特には図示しない温度センサから組電池101の温度値を取得する。そして、制御部105は、ブロック電圧#iと上記温度値とで、内部に保持している温度毎の電圧・温度対内部抵抗マップを参照して、内部抵抗を推定する。 Specifically, the control unit 105 separately calculates a block voltage #i detected from the # 1 voltage sensor 104 when it is determined that a current is flowing through the assembled battery 101, for example, when the vehicle is idling. The internal resistance of the block 102 of #i is calculated by dividing by the value of the current flowing through the assembled battery 101. In addition, for example, when it is determined that no current is flowing through the assembled battery 101, for example, when the vehicle is turned off, the control unit 105 acquires the temperature value of the assembled battery 101 from a temperature sensor (not shown). Then, the control unit 105 estimates the internal resistance by referring to the voltage / temperature vs. internal resistance map for each temperature held inside the block voltage #i and the temperature value.
 次に、制御部105は、上述のようにして算出した内部抵抗の値から、例えば以下の計算に基づいて、パルス信号の周波数とデューティー比を計算する。 Next, the control unit 105 calculates the frequency and duty ratio of the pulse signal from the value of the internal resistance calculated as described above, for example, based on the following calculation.
 まず、トランス108の一次巻線110の巻数をN1、二次巻線111の巻数をN2とする。また、パルス信号の周波数をfreq、周期をT、パルスオン時間をton、デューティー比をD、一次巻線110側の電圧をVin、二次巻線111側の電圧をVo とすれば、次式が成り立つ。 First, the number of turns of the primary winding 110 of the transformer 108 is N1, and the number of turns of the secondary winding 111 is N2. If the frequency of the pulse signal is freq, the period is T, the pulse on time is t on , the duty ratio is D, the voltage on the primary winding 110 side is Vin, and the voltage on the secondary winding 111 side is Vo, then Holds.
Figure JPOXMLDOC01-appb-M000001
この式に基づいてパルス信号の周波数freqとデューティー比Dを制御することにより、電池セルに対する充放電の出力電圧Vo を変化させることができる。
Figure JPOXMLDOC01-appb-M000001
By controlling the frequency freq and the duty ratio D of the pulse signal based on this equation, the charge / discharge output voltage Vo for the battery cell can be changed.
 また、出力電力は次式に基づいて出力されることから、デューティー比の制御によって出力電力を変化させることができる。ただし、Lp は一次巻線110のインダクタンス、Pは出力電力である。 Also, since the output power is output based on the following equation, the output power can be changed by controlling the duty ratio. Where Lp is the inductance of the primary winding 110 and P is the output power.
Figure JPOXMLDOC01-appb-M000002
 上記数1式および数2式に基づいて、算出された内部抵抗の値に対応して設定した電流許容値、出力したい電力、パルス周波数freqから、スイッチ素子109に与えられるパルス信号のデューティー比Dを計算することができる。または、逆にデューティー比Dを任意で決定しておき、パルス周波数freqを決定してもよい。
Figure JPOXMLDOC01-appb-M000002
The duty ratio D of the pulse signal applied to the switch element 109 based on the current allowable value set in accordance with the calculated value of the internal resistance, the power to be output, and the pulse frequency freq based on the equation 1 and the equation 2 Can be calculated. Alternatively, on the contrary, the duty ratio D may be determined arbitrarily, and the pulse frequency freq may be determined.
 なお、パルス信号の周波数freqとデューティー比Dは簡易的に任意の値に設定されてもよい。 Note that the frequency freq and the duty ratio D of the pulse signal may be simply set to arbitrary values.
 制御部105は、以上のようして決定したパルス周波数freqおよびデューティー比Dを有するパルス信号をスイッチ素子109に供給する(PWM出力を行う)ことにより、スイッチング制御を実行する(図4のステップS403)。 The control unit 105 executes switching control by supplying a pulse signal having the pulse frequency freq and the duty ratio D determined as described above to the switch element 109 (performing PWM output) (step S403 in FIG. 4). ).
 次に、制御部105は、一定時間のスイッチング制御の後に、ステップS401で算出した目標値と、制御対象である#iのブロック102から制御線117を介して通知されるブロック電圧#i(図3のステップS304参照)との差を誤差として算出する(図4のステップS404)。制御対象とは、制御部105に電圧をフィードバックする対象である。 Next, after the switching control for a predetermined time, the control unit 105 sets the target value calculated in step S401 and the block voltage #i notified from the #i block 102 to be controlled through the control line 117 (FIG. 3 is calculated as an error (see step S404 in FIG. 4). The control target is a target that feeds back a voltage to the control unit 105.
 そして、制御部105は、上記誤差が、閾値1よりも小さな所定の閾値2よりも小さくなったか否かを判定する(ステップS405)。個別のバランス制御では、閾値2は閾値1以下であればよく、閾値1より小さい値が好ましい。 And the control part 105 determines whether the said error became smaller than the predetermined threshold value 2 smaller than the threshold value 1 (step S405). In the individual balance control, the threshold value 2 may be equal to or less than the threshold value 1, and is preferably smaller than the threshold value 1.
 誤差が閾値2よりも小さくなっておらずステップS405の判定がNOならば、制御部105は、ステップS401の処理に戻って目標値を算出し直し、#iのブロック102に対する個別のバランス制御を繰り返し実行する。 If the error is not smaller than the threshold value 2 and the determination in step S405 is NO, the control unit 105 returns to the process of step S401, recalculates the target value, and performs individual balance control for the block 102 of #i. Run repeatedly.
 以上の図4のステップS401からステップS405までの一連の繰返し処理により誤差が閾値2よりも小さくなってステップS405の判定がYESになると、制御部105は、スイッチ素子109に対するスイッチング制御(PWM出力)を停止する(図4のステップS406)。これにより、#iのブロック102に対する個別のバランス制御が終了する。 When the error is smaller than the threshold value 2 and the determination in step S405 is YES by the series of iterative processes from step S401 to step S405 in FIG. 4 described above, the control unit 105 performs switching control (PWM output) for the switch element 109. Is stopped (step S406 in FIG. 4). As a result, the individual balance control for the block 102 of #i ends.
 次に、制御部105は、図3のステップS301の処理に戻り、図3のステップS301からS306の、個別のバランス制御を行うべきブロック102が存在するか否かを再び判定する一連の処理に戻る。 Next, the control unit 105 returns to the process in step S301 in FIG. 3 and performs a series of processes in steps S301 to S306 in FIG. 3 to determine again whether or not there is a block 102 to be subjected to individual balance control. Return.
 #1~#Nのどのブロック電圧も(目標値-閾値1)よりも高くなって個別のバランス制御を行うべきブロック102が存在しなくなり、図3のステップS305の判定がYESになると、制御部105は、図5のステップS501の処理に移行する。これ以降、一括のバランス制御が実施される。 When any block voltage of # 1 to #N becomes higher than (target value−threshold 1) and there is no block 102 to be subjected to individual balance control, and the determination in step S305 in FIG. In step 105, the process proceeds to step S501 in FIG. Thereafter, collective balance control is performed.
 まず、制御部105は、#1~#Nの電圧センサ104から検出されるブロック電圧#1~#Nのいずれかが、現在の目標値(図3のステップS301で設定された値)から、閾値2以上離れているか否かを判定する(図5のステップS501)。 First, the control unit 105 determines that any one of the block voltages # 1 to #N detected from the # 1 to #N voltage sensors 104 is based on the current target value (the value set in step S301 in FIG. 3). It is determined whether or not the threshold is 2 or more (step S501 in FIG. 5).
 ブロック電圧#1~#Nのいずれかが目標値から閾値2以上離れておりステップS501の判定がYESならば、制御部105は、トランス108の補助巻線118および電圧センサ115を介して出力される電圧を制御対象とする。また、制御部105は、#1~#Nの全てのスイッチ素子114をオンする(図5ステップS502)。この結果これ以降、制御部105は、一括のバランス制御を実行することになる。 If any one of the block voltages # 1 to #N is more than the threshold value 2 from the target value and the determination in step S501 is YES, the control unit 105 is output via the auxiliary winding 118 of the transformer 108 and the voltage sensor 115. The target voltage is controlled. Further, the control unit 105 turns on all the switch elements 114 of # 1 to #N (step S502 in FIG. 5). As a result, thereafter, the control unit 105 executes batch balance control.
 まず、制御部105は、#1~#Nの電圧センサ104が検出する各ブロック102の電圧(ブロック電圧)#1~#Nの平均値を算出して、その平均値を一括のバランス制御の目標値として設定する(図5のステップS503)。 First, the control unit 105 calculates an average value of the voltages (block voltages) # 1 to #N of the respective blocks 102 detected by the voltage sensors 104 of # 1 to #N, and uses the average value for batch balance control. The target value is set (step S503 in FIG. 5).
 次に、制御部105は、組電池101全体の内部抵抗の値(もしくは温度)からスイッチ素子109をスイッチング制御するパルス信号の周波数とデューティー比を計算し、設定する(図5のステップS504)。 Next, the control unit 105 calculates and sets the frequency and duty ratio of the pulse signal for switching control of the switch element 109 from the value (or temperature) of the internal resistance of the assembled battery 101 as a whole (step S504 in FIG. 5).
 次に、制御部105は、上述のようにして算出した内部抵抗の値から、個別のバランス制御時の図4のステップS404の説明で前述した数1式、数2式の計算等に基づいて、パルス信号の周波数とデューティー比を計算する。 Next, based on the internal resistance value calculated as described above, the control unit 105 is based on the calculation of Equation 1 and Equation 2 described above in the description of Step S404 in FIG. Calculate the frequency and duty ratio of the pulse signal.
 制御部105は、以上のようして決定したパルス周波数freqおよびデューティー比Dを有するパルス信号をスイッチ素子109に供給する(PWM出力を行う)ことにより、スイッチング制御を実行する(図5のステップS505)。 The control unit 105 performs switching control by supplying a pulse signal having the pulse frequency freq and the duty ratio D determined as described above to the switch element 109 (performing PWM output) (step S505 in FIG. 5). ).
 次に、制御部105は、一定時間のスイッチング制御の後に、ステップS403で算出した目標値と、最も低いブロック電圧(図5のステップS502参照)との差を誤差として算出する(図5のステップS506)。 Next, the control unit 105 calculates a difference between the target value calculated in step S403 and the lowest block voltage (see step S502 in FIG. 5) as an error after switching control for a certain time (step in FIG. 5). S506).
 そして、制御部105は、上記誤差が、閾値1よりも小さな所定の閾値2よりも小さくなったか否かを判定する(図5のステップS507)。 And the control part 105 determines whether the said error became smaller than the predetermined threshold value 2 smaller than the threshold value 1 (step S507 of FIG. 5).
 誤差が閾値2よりも小さくなっておらずステップS507の判定がNOならば、制御部105は、ステップS503の処理に戻って目標値を算出し直し、#1~#Nの全てのブロック102に対する一括のバランス制御を繰り返し実行する。 If the error is not smaller than the threshold value 2 and the determination in step S507 is NO, the control unit 105 returns to the process in step S503 to recalculate the target value, and for all the blocks 102 of # 1 to #N. Repeat batch balance control.
 以上の図5のステップS503からステップS507までの一連の繰返し処理により誤差が閾値2よりも小さくなってステップS507の判定がYESになると、制御部105は、スイッチ素子109に対するスイッチング制御(PWM出力)を停止する(図5のステップS508)。これにより、#1~#Nの全てのブロック102に対する一括のバランス制御が終了する。 When the error is smaller than the threshold value 2 and the determination in step S507 is YES by the series of iterative processes from step S503 to step S507 in FIG. 5 described above, the control unit 105 performs switching control (PWM output) for the switch element 109. Is stopped (step S508 in FIG. 5). Thus, the collective balance control for all the blocks 102 of # 1 to #N is completed.
 なお、上述の一括のバランス制御を行う前に、#1~#Nの電圧センサ104から検出されるブロック電圧#1~#Nのいずれもが目標値から閾値2よりも小さい範囲に収まっており、図5のステップS501の判定がNOならば、制御部105は、一括のバランス制御は行う必要はなく、セルバランス制御の動作を終了する。 Before performing the above-described collective balance control, all of the block voltages # 1 to #N detected from the voltage sensors 104 of # 1 to #N are within a range smaller than the threshold value 2 from the target value. If the determination in step S501 of FIG. 5 is NO, the control unit 105 does not need to perform batch balance control and ends the cell balance control operation.
 図6は、図3の制御動作例に変わる他の制御動作例のフローチャートを示す図である。 FIG. 6 is a diagram showing a flowchart of another example of the control operation in place of the example of the control operation in FIG.
 図6の制御動作例では、図3のステップS302からS306の処理が、図5のステップS501とS502の処理に置き換えられている。ステップS301の処理は、図3の場合と同様である。 In the control operation example of FIG. 6, the processing from step S302 to S306 in FIG. 3 is replaced with the processing of steps S501 and S502 in FIG. The processing in step S301 is the same as that in FIG.
 制御部105は、ステップS301の処理の後、#1~#Nの電圧センサ104から検出されるブロック電圧#1~#Nのいずれかが、ステップS301で算出した目標値から閾値1以上離れているか否かを判定する(ステップS601)。 After the process of step S301, the control unit 105 detects that any one of the block voltages # 1 to #N detected from the voltage sensors 104 of # 1 to #N is separated from the target value calculated in step S301 by a threshold value 1 or more. It is determined whether or not (step S601).
 ブロック電圧#1~#Nのいずれかが目標値から閾値1以上離れておりステップS601の判定がYESならば、制御部105は、ブロック電圧が一番低いブロック102について個別のセルバランス制御を行う必要があると判定する。 If any of the block voltages # 1 to #N is more than the threshold value 1 from the target value and the determination in step S601 is YES, the control unit 105 performs individual cell balance control for the block 102 having the lowest block voltage. Judge that it is necessary.
 この場合、制御部105は、制御電圧として一番低いブロック電圧を使用すると共に、そのブロック102に接続されているスイッチ素子114をオンする(図6のステップS602)。その後、制御部105は、図4のステップS401に移行し、そのブロック102に対して、個別のバランス制御を実施する。図4での処理は、前述したものと同様である。 In this case, the control unit 105 uses the lowest block voltage as the control voltage and turns on the switch element 114 connected to the block 102 (step S602 in FIG. 6). Thereafter, the control unit 105 proceeds to step S401 in FIG. 4 and performs individual balance control on the block 102. The processing in FIG. 4 is the same as that described above.
 ブロック電圧#1~#Nのいずれもが目標値から閾値1以上離れておらずステップS601の判定がNOならば、制御部105は、図5のステップS501の処理に移行する。これ以降、前述した一括のバランス制御が実施される。 If any of the block voltages # 1 to #N is not more than the threshold value 1 or more from the target value and the determination in step S601 is NO, the control unit 105 proceeds to the process of step S501 in FIG. Thereafter, the above-described collective balance control is performed.
 以上の第1の実施形態の制御動作例により、個別制御と一括制御を組み合わせたバランス制御が可能となる。 With the above control operation example of the first embodiment, balance control combining individual control and collective control becomes possible.
 以上説明した図1の実施形態では、トランスバランス回路103として、トランス108を用いた回路構成例について説明したが、この回路部分は上記回路構成例に限られるものではない。 In the embodiment described above with reference to FIG. 1, the circuit configuration example using the transformer 108 as the transformer balance circuit 103 has been described. However, this circuit portion is not limited to the above circuit configuration example.
 トランスバランス回路としては例えば、図7(a)のような、2つのトランスT1、T2とそれらを駆動する2つのスイッチ素子SW1、SW2と、各ブロック102に接続される整流用のダイオードDとを備えるフライバック型の回路によって実現できる。ブロック102の部分は、図1の場合と同じである。この場合、個別のバランス制御時には、スイッチ素子SW1またはSW2のいずれかが個別に動作し、一括のバランス制御時には、両方が同期動作する。 As the transformer balance circuit, for example, as shown in FIG. 7A, two transformers T1 and T2, two switch elements SW1 and SW2 for driving them, and a rectifying diode D connected to each block 102 are provided. It can be realized by a flyback circuit provided. The part of the block 102 is the same as in FIG. In this case, either switch element SW1 or SW2 operates individually during individual balance control, and both operate synchronously during collective balance control.
 あるいは、トランスバランス回路としては例えば、図7(b)のような、図1のトランス108と同様のトランスTと、図1のスイッチ素子114と同様のスイッチ素子SW1、SW2と、図1のスイッチ素子109と同様のスイッチ素子SW3を備える構成に、ブロック102ごとに2つずつのダイオードDと1つずつのインダクタLを備えるフォワード型の回路によっても実現できる。この場合、個別のバランス制御時には、図1の実施形態の場合と同様に、スイッチ素子SW1またはSW2のいずれかが個別にオンされた上で、スイッチ素子SW3がスイッチング動作させられる。また、一括のバランス制御時には、スイッチ素子SW1とSW2の両方がオンされた上で、スイッチ素子SW3がスイッチング動作させられる。 Alternatively, as a transformer balance circuit, for example, as shown in FIG. 7B, a transformer T similar to the transformer 108 in FIG. 1, switch elements SW1 and SW2 similar to the switch element 114 in FIG. 1, and a switch in FIG. This can also be realized by a forward circuit including two diodes D and one inductor L for each block 102 in the configuration including the switch element SW3 similar to the element 109. In this case, at the time of individual balance control, as in the embodiment of FIG. 1, the switch element SW3 is switched on after either of the switch elements SW1 or SW2 is individually turned on. Further, at the time of collective balance control, both the switch elements SW1 and SW2 are turned on, and the switch element SW3 is switched.

Claims (4)

  1.  複数の電池セルが直列に接続されて構成されるブロックがさらに複数直列に接続された構成を含む組電池における前記複数の電池セルの電圧を均等化させる電圧均等化装置であって、
     前記各ブロックに接続される巻線を含むトランスを有し、前記各巻線を介して前記各ブロック間でエネルギーの授受を行うことにより、前記各ブロックの電圧を個別または一括に均等化するバランス回路と、
     目標電圧から第1の閾値以上離れているブロックの電圧が個別に均等化された後に、全ての前記ブロックの電圧が一括して均等化されるように、前記バランス回路の動作を制御する制御部と、
     を備えることを特徴とする電圧均等化装置。
    A voltage equalizing device for equalizing the voltages of the plurality of battery cells in an assembled battery including a configuration in which a plurality of blocks configured by connecting a plurality of battery cells in series are connected in series,
    A balance circuit having a transformer including windings connected to each block, and equalizing the voltages of the blocks individually or collectively by transferring energy between the blocks via the windings When,
    A control unit that controls the operation of the balance circuit so that the voltages of all the blocks are equalized at once after the voltages of the blocks that are separated from the target voltage by a first threshold or more are individually equalized. When,
    A voltage equalizing apparatus comprising:
  2.  前記制御部は、前記個別の均等化を行うときには、前記各ブロックごとに備えられる電圧センサを介して前記各ブロックごとの電圧を検出しながら該電圧と前記目標電圧とを比較しながら前記個別の均等化を行い、前記一括の均等化を行うときには、前記トランスに備えられる補助巻線を介して前記巻線側の電圧を検出しながら該電圧と前記目標電圧を比較しながら前記一括の均等化を行う、
     ことを特徴とする請求項1に記載の電圧均等化装置。
    When performing the individual equalization, the control unit compares the voltage with the target voltage while detecting the voltage for each block via a voltage sensor provided for each block. When performing equalization and performing the collective equalization, the collective equalization while comparing the voltage with the target voltage while detecting the voltage on the winding side via the auxiliary winding provided in the transformer I do,
    The voltage equalizing apparatus according to claim 1.
  3.  複数の電池セルが直列に接続されて構成されるブロックがさらに複数直列に接続された構成を含む組電池における前記複数の電池セルの電圧を均等化させる電圧均等化方法であって、
     トランスを構成する各巻線を介して前記各ブロックでエネルギーの授受を行うことにより、前記各ブロックの電圧を個別または一括に均等化し、
     目標電圧から所定の閾値以上離れているブロックの電圧を個別に均等化させた後に、全ての前記ブロックの電圧を一括して均等化させる、
     ことを備えることを特徴とする電圧均等化方法。
    A voltage equalization method for equalizing voltages of the plurality of battery cells in a battery pack including a configuration in which a plurality of blocks configured by connecting a plurality of battery cells in series is connected in series,
    By transferring energy in each block through each winding constituting the transformer, the voltage of each block is equalized individually or collectively,
    After individually equalizing the voltages of the blocks that are separated from the target voltage by a predetermined threshold or more, the voltages of all the blocks are equalized at once.
    A voltage equalization method comprising:
  4.  前記個別の均等化を行うときには、前記各ブロックごとに備えられる電圧センサを介して前記各ブロックの電圧を検出しながら該電圧と前記目標電圧とを比較しながら前記個別の均等化を行い、
     前記一括の均等化を行うときには、前記トランスに備えられる補助巻線を介して前記巻線側の電圧を検出しながら該電圧と前記目標電圧を比較しながら前記一括の均等化を行う、
     ことを特徴とする請求項3に記載の電圧均等化方法。
    When performing the individual equalization, performing the individual equalization while comparing the voltage and the target voltage while detecting the voltage of each block through a voltage sensor provided for each block,
    When performing the batch equalization, the batch equalization is performed while comparing the voltage and the target voltage while detecting the voltage on the winding side via the auxiliary winding provided in the transformer.
    The voltage equalization method according to claim 3, wherein:
PCT/JP2013/065779 2012-06-13 2013-06-07 Voltage equalization device and method WO2013187316A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012133368 2012-06-13
JP2012-133368 2012-06-13

Publications (1)

Publication Number Publication Date
WO2013187316A1 true WO2013187316A1 (en) 2013-12-19

Family

ID=49758139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065779 WO2013187316A1 (en) 2012-06-13 2013-06-07 Voltage equalization device and method

Country Status (1)

Country Link
WO (1) WO2013187316A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333091A (en) * 2014-11-19 2015-02-04 惠州Tcl移动通信有限公司 Charging quantity display control method and system based on mobile terminal and mobile terminal
CN104539017A (en) * 2014-12-31 2015-04-22 深圳先进技术研究院 Power battery pack balancing system and method
CN111152686A (en) * 2019-12-31 2020-05-15 江西科然科技有限公司 Battery management system for active equalization of battery pack of electric vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286072A (en) * 2000-04-04 2001-10-12 Nagano Japan Radio Co Device making voltage uniform
JP2008035680A (en) * 2006-07-31 2008-02-14 Fdk Corp Multiple series storage cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286072A (en) * 2000-04-04 2001-10-12 Nagano Japan Radio Co Device making voltage uniform
JP2008035680A (en) * 2006-07-31 2008-02-14 Fdk Corp Multiple series storage cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333091A (en) * 2014-11-19 2015-02-04 惠州Tcl移动通信有限公司 Charging quantity display control method and system based on mobile terminal and mobile terminal
CN104539017A (en) * 2014-12-31 2015-04-22 深圳先进技术研究院 Power battery pack balancing system and method
CN111152686A (en) * 2019-12-31 2020-05-15 江西科然科技有限公司 Battery management system for active equalization of battery pack of electric vehicle

Similar Documents

Publication Publication Date Title
JP5035978B2 (en) DCDC converter device for vehicle
WO2013154156A1 (en) Cell equalization device and method
EP2036185B1 (en) Charge equalization apparatus with parallel connection of primary windings of multiple transformers
US9130391B2 (en) Charge balancing system for batteries
JP5394919B2 (en) Charge equalization device in which secondary windings of multiple transformers are connected in parallel
JP5171846B2 (en) Charge equalization device
WO2013146905A1 (en) Battery equalization apparatus and method
US20110248677A1 (en) Battery voltage monitoring device
US20140009116A1 (en) Balance correction apparatus and electric storage system
JP2009055690A (en) Dc-dc converter for vehicle
JP6346887B2 (en) Battery charge balance
TWI804503B (en) Power storage system and electric equipment
EP2506389A2 (en) Auxiliary battery charging apparatus
WO2013157576A1 (en) Battery balancing system and method
JP2013116006A (en) Battery equalization device and method
JP5744598B2 (en) Balance correction device and power storage system
WO2013114757A1 (en) Battery equalization device and method
WO2013187316A1 (en) Voltage equalization device and method
JP2013017323A (en) Cell equalization control system
JP5670261B2 (en) Battery pack capacity adjustment device
KR20120112072A (en) Auxiliary battery charging apparatus
JP2013162661A (en) Battery equalization device and method capable of charging auxiliary battery
JP6397872B2 (en) Power system
JP2019161839A (en) Power supply system with high voltage system and low voltage system
JP2009261134A (en) Voltage equalizer and charger device, battery pack device, and charging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13803628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13803628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP