WO2013187285A1 - Exhaust device for internal combustion engine - Google Patents

Exhaust device for internal combustion engine Download PDF

Info

Publication number
WO2013187285A1
WO2013187285A1 PCT/JP2013/065499 JP2013065499W WO2013187285A1 WO 2013187285 A1 WO2013187285 A1 WO 2013187285A1 JP 2013065499 W JP2013065499 W JP 2013065499W WO 2013187285 A1 WO2013187285 A1 WO 2013187285A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
internal combustion
combustion engine
exhaust
engine
Prior art date
Application number
PCT/JP2013/065499
Other languages
French (fr)
Japanese (ja)
Inventor
徹 深見
智 荻原
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013187285A1 publication Critical patent/WO2013187285A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust device for an internal combustion engine.
  • the above-described conventional exhaust system for an internal combustion engine has a problem that the catalyst temperature may be excessively increased and the catalyst may be deteriorated at a high engine load when the exhaust gas is at a high temperature.
  • the present invention has been made paying attention to such a problem, and an object thereof is to suppress the deterioration of the catalyst at the time of high engine load while improving the exhaust performance at the time of starting the engine.
  • the first catalyst that purifies the exhaust discharged from the internal combustion engine, the cooler that cools the first catalyst, and the first catalyst are provided in the vicinity of the first catalyst and discharged from the first catalyst.
  • an exhaust device for an internal combustion engine having a heat capacity of the first catalyst smaller than that of the second catalyst.
  • FIG. 1 is a schematic configuration diagram of an engine according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the first manifold catalyst and the cooler. 3 is a III-III cross-sectional view of the first manifold catalyst and the cooler of FIG.
  • FIG. 4 is a view showing one end face of the first manifold catalyst in the axial direction.
  • FIG. 5A is a cross-sectional view of a main part of the first manifold catalyst.
  • FIG. 5B is a cross-sectional view of a main part of the second manifold catalyst.
  • FIG. 6 is a diagram for explaining the operation and effect of the exhaust device according to the embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram of an engine according to another embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of an engine 1 according to an embodiment of the present invention.
  • the engine 1 includes a cylinder block 11 and a cylinder head 12, and is mounted in the engine room of the vehicle.
  • the cylinder block 11 includes a cylinder part 11a and a crankcase part 11b.
  • a plurality of cylinders 110 are formed in the cylinder part 11a.
  • a piston 111 that receives combustion pressure and reciprocates inside the cylinder 110 is housed inside the cylinder 110.
  • the crankcase part 11b is formed below the cylinder part 11a.
  • the crankcase part 11b supports the crankshaft 112 rotatably.
  • the crankshaft 112 converts the reciprocating motion of the piston 111 into rotational motion via the connecting rod 113.
  • the cylinder head 12 is attached to the upper surface of the cylinder block 11 and forms a part of the combustion chamber 13 together with the cylinder 110 and the piston 111.
  • the cylinder head 12 is formed with an intake port 120 connected to the intake manifold 24 and opening to the top wall of the combustion chamber 13, and an exhaust port 121 connected to the exhaust manifold 31 and opening to the top wall of the combustion chamber 13.
  • An ignition plug 122 is provided so as to face the center of the top wall of the combustion chamber 13.
  • the cylinder head 12 is provided with an intake valve 123 that opens and closes the opening between the combustion chamber 13 and the intake port 120, and an exhaust valve 124 that opens and closes the opening between the combustion chamber 13 and the exhaust port 121.
  • the cylinder head 12 is provided with an intake camshaft 125 that drives the intake valve 123 to open and close, and an exhaust camshaft 126 that drives the exhaust valve 124 to open and close.
  • the cylinder portion 11a and the cylinder head 12 of the cylinder block 11 are provided with water jackets 114 and 127 through which cooling water for cooling around the cylinder 110 and the combustion chamber 13 circulates.
  • the intake device 2 of the engine 1 is a device that introduces a necessary amount of intake air into the engine 1, and includes an air cleaner 21, an air flow meter 22, an electronically controlled throttle valve 23, an intake manifold 24, and a fuel injection valve 25. And comprising.
  • the air cleaner 21 removes foreign matters such as sand contained in the intake air.
  • the air flow meter 22 detects the intake air amount.
  • the throttle valve 23 adjusts the intake air amount sucked into each cylinder 110 by changing the passage step area of the intake passage 20 continuously or stepwise.
  • the throttle valve 23 is driven to open and close by a throttle actuator 26, and its opening (hereinafter referred to as “throttle opening”) is detected by a throttle sensor 27.
  • the intake manifold 24 is connected to the intake port 120 of the engine 1, and distributes and introduces the intake air flowing in through the throttle valve 23 to each cylinder 110 evenly.
  • the fuel injection valve 25 injects fuel toward the intake port 120 in accordance with the operating state of the engine 1.
  • the exhaust device 3 of the engine 1 is a device that converts harmful substances in the exhaust discharged from the engine 1 into innocuous substances and then discharges them to the outside air.
  • the exhaust manifold 31 is connected to the exhaust port 121 of the engine 1, collects the exhaust discharged from each cylinder 110, and introduces it into the first manifold catalyst 32 disposed in the engine room of the vehicle.
  • the first manifold catalyst 32 and the cooler 33 will be further described with reference to FIGS.
  • FIG. 2 is a perspective view of the first manifold catalyst 32 and the cooler 33.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is a view showing one end face of the first manifold catalyst 32 in the axial direction.
  • the first manifold catalyst 32 is integrated with a cooler 33 that cools the first manifold catalyst 32.
  • the first manifold catalyst 32 is partitioned by SiC (silicon carbide) partition walls 32a and penetrates in the axial direction from one end face to the other end face, and a plurality of cells through which exhaust flows.
  • a three-way catalyst is supported on the surface of a carrier having 32b.
  • the first manifold catalyst 32 converts harmful substances such as hydrocarbons, nitrogen oxides, and carbon monoxide in the exhaust into harmless substances by the three-way catalyst and discharges them.
  • the cells 32b may have a lattice shape, or may have a honeycomb shape, and the shape is not particularly limited.
  • the first manifold catalyst 32 In order for the first manifold catalyst 32 to obtain a high heat exchange rate with the cooler 33, it is preferable to use a material containing SiC having a high thermal conductivity as the material of the carrier.
  • the cooler 33 includes an accommodating portion 33a for accommodating the first manifold catalyst 32 therein, a water jacket 331 formed over the outer periphery of the accommodating portion 33a, and an inlet 33b for introducing cooling water into the water jacket 331. And a discharge port 33c for discharging cooling water from the water jacket 331.
  • the cooler 33 cools the first manifold catalyst 32 with cooling water flowing through the water jacket 331.
  • the inlet 33b and the outlet 33c of the cooler 33 are formed so as to face the side surfaces of the cooler 33, respectively.
  • the inlet 33b of the cooler 33 communicates with the water jacket 114 of the cylinder block 11 on the cooling water inlet side by a cooling water introduction pipe 332.
  • a part of the cooling water that is pumped by the water pump (not shown) and introduced into the water jacket 114 of the cylinder block 11 is introduced into the water jacket 331 through the introduction port 33b.
  • the discharge port 33c of the cooler 33 communicates with the water jacket 127 of the cylinder head 12 on the cooling water outlet side through the cooling water discharge pipe 333. Thereby, the cooling water introduced into the water jacket 331 from the introduction port 33 b is discharged from the discharge port 33 c to the cooling water discharge pipe 333 and returned to the water jacket 127 of the cylinder head 12.
  • the second manifold catalyst 34 is provided close to the first manifold catalyst 32 and is disposed in the engine room of the vehicle.
  • the second manifold catalyst 34 has a three-way catalyst supported on the surface of a lattice-shaped carrier, and removes harmful substances such as hydrocarbons, nitrogen oxides, and carbon monoxide in the exhaust gas from the three-way catalyst. To be discharged.
  • the structure of the carrier of the second manifold catalyst 34 may be a honeycomb shape in addition to the lattice shape, and the shape is not particularly limited. Differences between the first manifold catalyst 32 and the second manifold catalyst 34 will be described later with reference to FIGS. 5A and 5B.
  • the underfloor catalyst 35 is provided under the floor of the vehicle.
  • the underfloor catalyst 35 has a three-way catalyst supported on the surface of a lattice-like carrier, and converts harmful substances such as hydrocarbons, nitrogen oxides, and carbon monoxide in the exhaust into harmless substances by the three-way catalyst. Then discharge.
  • the exhaust discharged from the underfloor catalyst 35 is discharged to the outside air through a muffler (not shown) that reduces exhaust noise.
  • the controller 4 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the controller 4 includes a water temperature sensor 41 for detecting the temperature of cooling water flowing through the water jacket 114 (hereinafter referred to as “engine water temperature”), and a crank angle. Detection from various sensors that detect the operating state of the engine 1, such as an engine speed sensor 42 that detects the engine speed and an accelerator stroke sensor 43 that detects the amount of depression of the accelerator pedal (hereinafter referred to as “accelerator operation amount"). A signal is input.
  • the controller 4 optimally controls the throttle opening, fuel injection amount, ignition timing and the like based on the detected operating state of the engine 1. For example, when a predetermined operating state such as when the vehicle is decelerated, fuel cut control for stopping fuel injection to each cylinder 110 is performed to improve fuel efficiency.
  • controller 4 automatically stops the engine 1 if a predetermined engine stop condition is satisfied, for example, when the vehicle stops due to a signal wait, and the engine 1 if a predetermined engine restart condition is satisfied thereafter.
  • the engine stop condition includes an accelerator operation amount being smaller than a predetermined amount, a brake pedal being depressed, and a vehicle speed being smaller than a predetermined value.
  • the engine restart condition includes that the accelerator operation amount is larger than a predetermined amount and that the brake pedal is not depressed.
  • FIG. 5A and FIG. 5B are diagrams for explaining the difference between the first manifold catalyst 32 and the second manifold catalyst 34.
  • FIG. 5A is a cross-sectional view of the main part of the first manifold catalyst 32.
  • FIG. 5B is a cross-sectional view of a main part of the second manifold catalyst 34.
  • the first manifold catalyst 32 is formed such that the actual opening area of the carrier carrying the three-way catalyst is larger than the actual opening area of the second manifold catalyst 34. . That is, a coarse carrier is used for the first manifold catalyst 32, and a fine carrier is used for the second manifold catalyst 34.
  • the actual opening area in the present embodiment is as follows when the number of lattices of the carrier supporting the three-way catalyst is n, the longitudinal length of the lattice is H, and the lateral length of the lattice is W: This is a value defined by equation (1).
  • the first manifold catalyst 32 is formed so that the surface area of the carrier carrying the three-way catalyst is smaller than the surface area of the second manifold catalyst 34. That is, the heat capacity of the first manifold catalyst 32 is made smaller than the heat capacity of the second manifold catalyst 34.
  • the surface area refers to the number of lattices of the carrier carrying the three-way catalyst is n, the longitudinal length of the lattice is H, the lateral length of the lattice is W, and the depth of the lattice (the length of the carrier).
  • (S) is a value defined by the following equation (2), where D is D.
  • the exhaust resistance in the first manifold catalyst 32 is improved by suppressing the exhaust resistance of the first manifold catalyst 32. Can do. Since the exhaust resistance of the second manifold catalyst 34 is larger than the exhaust resistance of the first manifold catalyst 32, the exhaust discharged from the first manifold catalyst 32 is reflected at the inlet of the second manifold catalyst 34, and the exhaust is reflected. A wave is generated. For this reason, exhaust gas stays in the downstream area of the first manifold catalyst 32.
  • exhaust gas stays in the downstream area of the first manifold catalyst 32 while improving exhaust passage of the first manifold catalyst 32, so that the engine speed is relatively low at the time of engine start and the like. Even in the operation region where the flow rate is low, the first manifold catalyst 32 can be activated early.
  • the early activation of the first manifold catalyst 32 can be further promoted by making the heat capacity of the first manifold catalyst 32 smaller than the heat capacity of the second manifold catalyst 34.
  • the heat capacity of the first manifold catalyst 32 is reduced by reducing the surface area of the carrier of the first manifold catalyst 32, the initial catalyst activation time is short (about several seconds), and the surface area is small. The decrease in the total amount of heat received due to the small size is not a big problem, and the catalyst surface is sufficiently activated.
  • FIG. 6 is a diagram for explaining the operation and effect of the exhaust device 3 of the engine 1 according to the present embodiment.
  • the temperature of the first manifold catalyst 32 is quickly raised as compared with the second manifold catalyst 34. Can be made. Further, in this embodiment, since the actual opening area of the first manifold catalyst 32 is larger than the actual opening area of the second manifold catalyst 34, the first manifold catalyst 32 is improved while the exhaust passage of the first manifold catalyst 32 is improved. The stagnation of the exhaust gas can be caused in the downstream area of 32. Therefore, the temperature of the first manifold catalyst 32 can be quickly raised even in an operation region where the engine rotational speed is relatively low and the exhaust flow rate is small, such as when the engine is started.
  • the temperature of the first manifold catalyst 32 can be raised to the activation temperature (about 300 ° C. to 400 ° C.) very quickly after the engine is started, the exhaust performance at the time of starting the engine can be improved.
  • the second manifold catalyst 34 is also provided in the vicinity of the first manifold catalyst 32 located upstream of the exhaust device 3 and is disposed in the engine room under a high temperature environment. Subsequently, the temperature can be raised rapidly.
  • the first manifold catalyst 32 located upstream of the exhaust device 3 is exposed to particularly high-temperature exhaust when the engine is heavily loaded. Therefore, if the heat capacity of the first manifold catalyst 32 is reduced in order to improve the exhaust performance at the time of starting the engine as described above, the temperature of the first manifold catalyst 32 may rise excessively and deteriorate when the engine is heavily loaded. .
  • the cooler 33 is provided on the outer peripheral portion of the first manifold catalyst 32, it is possible to suppress the temperature of the first manifold catalyst 32 from rising excessively at a high engine load. Therefore, as shown after time t2, the temperature of the first manifold catalyst 32 can be maintained at a steady temperature (about 700 ° C.) even during vehicle travel, and deterioration of the first manifold catalyst 32 can be suppressed. .
  • the cooler 33 is provided on the outer peripheral portion of the first manifold catalyst 32, the exhaust flow is not hindered and the exhaust efficiency of the first manifold catalyst 32 is not lowered.
  • the first manifold catalyst 32 has a smaller heat capacity than the second manifold catalyst 34 and is cooled by the cooler 33, so that the activation temperature falls below the activation temperature in a relatively short time.
  • the second manifold catalyst 34 has a larger heat capacity than the first manifold catalyst 32 and is provided in the engine room in a high temperature environment. Is slow. Therefore, even when idle stop control or fuel cut control is performed, the temperature of the second manifold catalyst 34 can be maintained at the activation temperature or higher for a relatively long time.
  • the idle stop control and the fuel cut control can be continuously performed, so that the fuel consumption can be improved. Further, in the case of a vehicle that can run with the driving force of the motor with the engine stopped, such as a hybrid vehicle, the temperature of the second manifold catalyst 34 can be maintained above the activation temperature for a long time even after the engine is stopped. In addition, it is possible to suppress the deterioration of the exhaust performance at the time of restart.
  • the crankshaft 112 of the engine 1 is driven by the drive wheels of the vehicle, so that the cooling water can be circulated by a water pump driven by the crankshaft 112 via a belt or the like. .
  • the heat of the first manifold catalyst 32 is transferred to the cooling water in the water jacket 331 of the cooler 33. Then, during the idle stop where the cooling water is not circulated, the temperature of the cooling water in the water jacket 331 of the cooler 33 continues to rise due to the heat received from the first manifold catalyst 32 and may exceed the boiling point temperature. is there.
  • the amount of heat Q1 required to raise the cooling water in the water jacket 331 of the cooler 33 to the boiling point temperature is C1 as the heat capacity of the cooling water in the water jacket 331 of the cooler 33, and the boiling point temperature of the cooling water. Assuming T1, it is expressed by the following equation (3).
  • the heat quantity Q2 estimated to be possessed by the first manifold catalyst 32 at the time of idling stop is C2 as the heat capacity of the first manifold catalyst 32, and the expected temperature of the first manifold catalyst 32 at the time of idling stop (assuming a steady temperature of 700 ° C.).
  • T2 a margin temperature (700 ° C. + ⁇ ) obtained by adding a predetermined margin to T2
  • the amount of heat Q1 required to raise the cooling water in the water jacket 331 of the cooler 33 to the boiling point temperature is greater than the amount of heat Q2 estimated to be possessed by the first manifold catalyst 32 at the time of idling stop.
  • the capacity of the water jacket 331 of the cooler 33 heat capacity C1 of cooling water in the water jacket of the cooler 33
  • the type of cooling water (boiling point boiling temperature T1) are set so as to increase.
  • a flow rate adjustment valve 334 may be provided in the cooling water discharge pipe 333 so that the flow rate of the cooling water circulating through the cooler 33 can be adjusted.
  • the cooling effect of the cooler 33 at the time of starting the engine can be reduced by closing the flow rate adjustment valve 334 until the temperature of the cooling water reaches a predetermined temperature or higher. Therefore, the temperature increase rate of the first manifold catalyst 32 when starting the engine can be further improved.
  • the cooling water introduction pipe 332 is configured such that a part of the cooling water introduced into the water jacket 114 of the cylinder block 11 is introduced into the water jacket 331 of the cooler 33, and the cooler 33
  • the cooling water discharge pipe 333 is configured such that the cooling water introduced into the water jacket 331 is returned to the water jacket 127 of the cylinder head 12, the invention is not limited to this.
  • the both pipes 332 and 333 are such that relatively low-temperature cooling water out of the cooling water circulating through the engine 1 is introduced into the water jacket 331 of the cooler 33 so that the respective pipe lengths are as short as possible.
  • the cooling water may be configured to return to the water jacket of the engine 1 in which the relatively high-temperature cooling water circulates.
  • a part of the cooling water of the engine 1 is introduced into the water jacket 331 of the cooler 33, but the refrigerant (cooling water and cooling gas) is circulated through the water jacket 331 of the cooler 33.
  • a cooling device may be provided separately. At that time, a radiator, a water pump, or the like that cools the cooling water of the engine may be shared.
  • a gasoline engine has been described as an example, but a diesel engine may be used.

Abstract

An exhaust device for an internal combustion engine is equipped with: a first catalyst (32) for purifying exhaust discharged from an internal combustion engine (1); a cooler (33) for cooling the first catalyst (32); and a second catalyst (34) for purifying the exhaust discharged from the first catalyst (32), and positioned near the first catalyst (32). Therein, the thermal capacity of the first catalyst (32) is smaller than that of the second catalyst (34).

Description

内燃機関の排気装置Exhaust device for internal combustion engine
 本発明は内燃機関の排気装置に関する。 The present invention relates to an exhaust device for an internal combustion engine.
 JP5-179942Aに記載された従来の内燃機関の排気装置は、排気ポートから排出された排気を、排気マニホールド内に設けられた触媒を通過させた後に、冷却装置によって冷却していた。これにより、エンジン始動時の排気性能を向上させていた。 In the conventional exhaust system of an internal combustion engine described in JP5-179942A, the exhaust gas discharged from the exhaust port is cooled by the cooling device after passing the catalyst provided in the exhaust manifold. Thereby, the exhaust performance at the time of engine start was improved.
 しかしながら、前述した従来の内燃機関の排気装置では、排気が高温となるエンジン高負荷時に、触媒温度が過度に上昇して触媒が劣化するおそれがあるという問題点があった。 However, the above-described conventional exhaust system for an internal combustion engine has a problem that the catalyst temperature may be excessively increased and the catalyst may be deteriorated at a high engine load when the exhaust gas is at a high temperature.
 本発明はこのような問題点に着目してなされたものであり、エンジン始動時の排気性能を向上させつつ、エンジン高負荷時における触媒の劣化を抑制することを目的とする。 The present invention has been made paying attention to such a problem, and an object thereof is to suppress the deterioration of the catalyst at the time of high engine load while improving the exhaust performance at the time of starting the engine.
 本発明のある態様によれば、内燃機関から排出された排気を浄化する第1触媒と、第1触媒を冷却する冷却器と、第1触媒に近接して設けられ、第1触媒から排出された排気を浄化する第2触媒と、を備え、第1触媒の熱容量が、第2触媒の熱容量よりも小さい内燃機関の排気装置が提供される。 According to an aspect of the present invention, the first catalyst that purifies the exhaust discharged from the internal combustion engine, the cooler that cools the first catalyst, and the first catalyst are provided in the vicinity of the first catalyst and discharged from the first catalyst. And an exhaust device for an internal combustion engine having a heat capacity of the first catalyst smaller than that of the second catalyst.
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。 Embodiments of the present invention and advantages of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、本発明の一実施形態によるエンジンの概略構成図である。FIG. 1 is a schematic configuration diagram of an engine according to an embodiment of the present invention. 図2は、第1マニホールド触媒及び冷却器の斜視図である。FIG. 2 is a perspective view of the first manifold catalyst and the cooler. 図3は、図2の第1マニホールド触媒及び冷却器のIII-III断面図である。3 is a III-III cross-sectional view of the first manifold catalyst and the cooler of FIG. 図4は、第1マニホールド触媒の軸方向の一方の端面を示す図である。FIG. 4 is a view showing one end face of the first manifold catalyst in the axial direction. 図5Aは、第1マニホールド触媒の要部断面図である。FIG. 5A is a cross-sectional view of a main part of the first manifold catalyst. 図5Bは、第2マニホールド触媒の要部断面図である。FIG. 5B is a cross-sectional view of a main part of the second manifold catalyst. 図6は、本発明の一実施形態による排気装置の作用及び効果について説明する図である。FIG. 6 is a diagram for explaining the operation and effect of the exhaust device according to the embodiment of the present invention. 図7は、本発明の他の実施形態によるエンジンの概略構成図である。FIG. 7 is a schematic configuration diagram of an engine according to another embodiment of the present invention.
 図1は、本発明の一実施形態によるエンジン1の概略構成図である。 FIG. 1 is a schematic configuration diagram of an engine 1 according to an embodiment of the present invention.
 エンジン1は、シリンダブロック11と、シリンダヘッド12と、を備え、車両のエンジンルーム内に搭載される。 The engine 1 includes a cylinder block 11 and a cylinder head 12, and is mounted in the engine room of the vehicle.
 シリンダブロック11は、シリンダ部11aとクランクケース部11bとを備える。 The cylinder block 11 includes a cylinder part 11a and a crankcase part 11b.
 シリンダ部11aには、複数のシリンダ110が形成される。シリンダ110の内部には、燃焼圧力を受けてシリンダ110の内部を往復運動するピストン111が収められる。 A plurality of cylinders 110 are formed in the cylinder part 11a. A piston 111 that receives combustion pressure and reciprocates inside the cylinder 110 is housed inside the cylinder 110.
 クランクケース部11bは、シリンダ部11aの下方に形成される。クランクケース部11bは、クランクシャフト112を回転自在に支持する。クランクシャフト112は、ピストン111の往復運動をコンロッド113を介して回転運動に変換する。 The crankcase part 11b is formed below the cylinder part 11a. The crankcase part 11b supports the crankshaft 112 rotatably. The crankshaft 112 converts the reciprocating motion of the piston 111 into rotational motion via the connecting rod 113.
 シリンダヘッド12は、シリンダブロック11の上面に取り付けられ、シリンダ110及びピストン111とともに燃焼室13の一部を形成する。 The cylinder head 12 is attached to the upper surface of the cylinder block 11 and forms a part of the combustion chamber 13 together with the cylinder 110 and the piston 111.
 シリンダヘッド12には、吸気マニホールド24に接続されて燃焼室13の頂壁に開口する吸気ポート120と、排気マニホールド31に接続されて燃焼室13の頂壁に開口する排気ポート121と、が形成され、燃焼室13の頂壁中央に臨むように点火栓122が設けられる。また、シリンダヘッド12には、燃焼室13と吸気ポート120との開口を開閉する吸気弁123と、燃焼室13と排気ポート121との開口を開閉する排気弁124と、が設けられる。さらに、シリンダヘッド12には、吸気弁123を開閉駆動する吸気カムシャフト125と、排気弁124を開閉駆動する排気カムシャフト126と、が設けられる。 The cylinder head 12 is formed with an intake port 120 connected to the intake manifold 24 and opening to the top wall of the combustion chamber 13, and an exhaust port 121 connected to the exhaust manifold 31 and opening to the top wall of the combustion chamber 13. An ignition plug 122 is provided so as to face the center of the top wall of the combustion chamber 13. Further, the cylinder head 12 is provided with an intake valve 123 that opens and closes the opening between the combustion chamber 13 and the intake port 120, and an exhaust valve 124 that opens and closes the opening between the combustion chamber 13 and the exhaust port 121. Further, the cylinder head 12 is provided with an intake camshaft 125 that drives the intake valve 123 to open and close, and an exhaust camshaft 126 that drives the exhaust valve 124 to open and close.
 シリンダブロック11のシリンダ部11a及びシリンダヘッド12には、シリンダ110及び燃焼室13の周りを冷却するための冷却水が循環するウォータジャケット114,127が設けられる。 The cylinder portion 11a and the cylinder head 12 of the cylinder block 11 are provided with water jackets 114 and 127 through which cooling water for cooling around the cylinder 110 and the combustion chamber 13 circulates.
 エンジン1の吸気装置2は、必要量の吸気をエンジン1に導入する装置であって、エアクリーナ21と、エアフローメータ22と、電子制御式のスロットル弁23と、吸気マニホールド24と、燃料噴射弁25と、を備える。 The intake device 2 of the engine 1 is a device that introduces a necessary amount of intake air into the engine 1, and includes an air cleaner 21, an air flow meter 22, an electronically controlled throttle valve 23, an intake manifold 24, and a fuel injection valve 25. And comprising.
 エアクリーナ21は、吸気中に含まれる砂などの異物を除去する。 The air cleaner 21 removes foreign matters such as sand contained in the intake air.
 エアフローメータ22は、吸気量を検出する。 The air flow meter 22 detects the intake air amount.
 スロットル弁23は、吸気通路20の通路段面積を連続的又は段階的に変化させることで、各シリンダ110に吸入される吸気量を調整する。スロットル弁23は、スロットルアクチュエータ26によって開閉駆動され、スロットルセンサ27によってその開度(以下「スロットル開度」という。)が検出される。 The throttle valve 23 adjusts the intake air amount sucked into each cylinder 110 by changing the passage step area of the intake passage 20 continuously or stepwise. The throttle valve 23 is driven to open and close by a throttle actuator 26, and its opening (hereinafter referred to as “throttle opening”) is detected by a throttle sensor 27.
 吸気マニホールド24は、エンジン1の吸気ポート120に接続され、スロットル弁23を介して流入してきた吸気を各シリンダ110へ均等に分配して導入する。 The intake manifold 24 is connected to the intake port 120 of the engine 1, and distributes and introduces the intake air flowing in through the throttle valve 23 to each cylinder 110 evenly.
 燃料噴射弁25は、エンジン1の運転状態に応じて吸気ポート120に向けて燃料を噴射する。 The fuel injection valve 25 injects fuel toward the intake port 120 in accordance with the operating state of the engine 1.
 エンジン1の排気装置3は、エンジン1から排出される排気中の有害物質を無害な物質に転換した上で外気に排出する装置であって、排気マニホールド31と、第1マニホールド触媒32と、冷却器33と、第2マニホールド触媒34と、床下触媒35と、を備える。 The exhaust device 3 of the engine 1 is a device that converts harmful substances in the exhaust discharged from the engine 1 into innocuous substances and then discharges them to the outside air. The exhaust manifold 31, the first manifold catalyst 32, the cooling A vessel 33, a second manifold catalyst 34, and an underfloor catalyst 35.
 排気マニホールド31は、エンジン1の排気ポート121に接続され、各シリンダ110から排出された排気をまとめた上で、車両のエンジンルーム内に配置された第1マニホールド触媒32に導入する。 The exhaust manifold 31 is connected to the exhaust port 121 of the engine 1, collects the exhaust discharged from each cylinder 110, and introduces it into the first manifold catalyst 32 disposed in the engine room of the vehicle.
 第1マニホールド触媒32及び冷却器33については、さらに図2から図4を参照して説明する。 The first manifold catalyst 32 and the cooler 33 will be further described with reference to FIGS.
 図2は、第1マニホールド触媒32及び冷却器33の斜視図である。図3は、図2のIII-III断面図である。図4は、第1マニホールド触媒32の軸方向の一方の端面を示す図である。 FIG. 2 is a perspective view of the first manifold catalyst 32 and the cooler 33. 3 is a cross-sectional view taken along the line III-III in FIG. FIG. 4 is a view showing one end face of the first manifold catalyst 32 in the axial direction.
 図2及び図3に示すように、第1マニホールド触媒32は、その第1マニホールド触媒32を冷却する冷却器33と一体化されている。また、図4に示すように、第1マニホールド触媒32は、SiC(炭化ケイ素)の隔壁32aによって仕切られて、一方の端面から他方の端面まで軸方向に貫通し、排気が流通する複数のセル32bを有する担体の表面に三元触媒を担持させたものである。第1マニホールド触媒32は、排気中の炭化水素や窒素酸化物、一酸化炭素などの有害物質を、三元触媒によって無害な物質に転換して排出する。なお、担体の構造としては、図4に示すようにセル32bを格子形状としたものでも良いし、その他、ハニカム形状としたものでも良く、特にその形状が限られるものではない。 2 and 3, the first manifold catalyst 32 is integrated with a cooler 33 that cools the first manifold catalyst 32. As shown in FIG. As shown in FIG. 4, the first manifold catalyst 32 is partitioned by SiC (silicon carbide) partition walls 32a and penetrates in the axial direction from one end face to the other end face, and a plurality of cells through which exhaust flows. A three-way catalyst is supported on the surface of a carrier having 32b. The first manifold catalyst 32 converts harmful substances such as hydrocarbons, nitrogen oxides, and carbon monoxide in the exhaust into harmless substances by the three-way catalyst and discharges them. In addition, as a structure of the carrier, as shown in FIG. 4, the cells 32b may have a lattice shape, or may have a honeycomb shape, and the shape is not particularly limited.
 第1マニホールド触媒32が、冷却器33との間で高い熱交換率を得るためには、担体の材質に熱伝導が高いSiCを含むものを用いたほうが好ましい。 In order for the first manifold catalyst 32 to obtain a high heat exchange rate with the cooler 33, it is preferable to use a material containing SiC having a high thermal conductivity as the material of the carrier.
 冷却器33は、内部に第1マニホールド触媒32を収容するための収容部33aと、収容部33aの外周にわたって形成されるウォータジャケット331と、ウォータジャケット331に冷却水を導入するための導入口33bと、ウォータジャケット331から冷却水を排出するための排出口33cと、を備える。冷却器33は、ウォータジャケット331を流れる冷却水によって第1マニホールド触媒32を冷却する。 The cooler 33 includes an accommodating portion 33a for accommodating the first manifold catalyst 32 therein, a water jacket 331 formed over the outer periphery of the accommodating portion 33a, and an inlet 33b for introducing cooling water into the water jacket 331. And a discharge port 33c for discharging cooling water from the water jacket 331. The cooler 33 cools the first manifold catalyst 32 with cooling water flowing through the water jacket 331.
 冷却器33の導入口33bと排出口33cは、それぞれ冷却器33の側面に対向するように形成される。 The inlet 33b and the outlet 33c of the cooler 33 are formed so as to face the side surfaces of the cooler 33, respectively.
 冷却器33の導入口33bは、冷却水導入配管332によって、冷却水の入口側となるシリンダブロック11のウォータジャケット114と連通している。これにより、ウォータジャケット331には、導入口33bを介して、ウォータポンプ(図示せず)によって圧送されてシリンダブロック11のウォータジャケット114に導入された冷却水の一部が導入される。 The inlet 33b of the cooler 33 communicates with the water jacket 114 of the cylinder block 11 on the cooling water inlet side by a cooling water introduction pipe 332. As a result, a part of the cooling water that is pumped by the water pump (not shown) and introduced into the water jacket 114 of the cylinder block 11 is introduced into the water jacket 331 through the introduction port 33b.
 また、冷却器33の排出口33cは、冷却水排出配管333によって、冷却水の出口側となるシリンダヘッド12のウォータジャケット127と連通している。これにより、導入口33bからウォータジャケット331に導入された冷却水は、排出口33cから冷却水排出配管333に排出されて、シリンダヘッド12のウォータジャケット127に戻される。 Further, the discharge port 33c of the cooler 33 communicates with the water jacket 127 of the cylinder head 12 on the cooling water outlet side through the cooling water discharge pipe 333. Thereby, the cooling water introduced into the water jacket 331 from the introduction port 33 b is discharged from the discharge port 33 c to the cooling water discharge pipe 333 and returned to the water jacket 127 of the cylinder head 12.
 第2マニホールド触媒34は、第1マニホールド触媒32に近接させて設けられ、車両のエンジンルーム内に配置される。第2マニホールド触媒34は、格子状の担体の表面に三元触媒を担持させたもので、排気中の炭化水素や窒素酸化物、一酸化炭素などの有害物質を、三元触媒によって無害な物質に転換して排出する。なお、第2マニホールド触媒34の担体の構造も、格子形状の他、ハニカム形状にしたものでも良く、特にその形状が限られるものではない。第1マニホールド触媒32及び第2マニホールド触媒34の相違点については、図5A及び図5Bを参照して後述する。 The second manifold catalyst 34 is provided close to the first manifold catalyst 32 and is disposed in the engine room of the vehicle. The second manifold catalyst 34 has a three-way catalyst supported on the surface of a lattice-shaped carrier, and removes harmful substances such as hydrocarbons, nitrogen oxides, and carbon monoxide in the exhaust gas from the three-way catalyst. To be discharged. The structure of the carrier of the second manifold catalyst 34 may be a honeycomb shape in addition to the lattice shape, and the shape is not particularly limited. Differences between the first manifold catalyst 32 and the second manifold catalyst 34 will be described later with reference to FIGS. 5A and 5B.
 床下触媒35は、車両の床下に設けられる。床下触媒35は、格子状の担体の表面に三元触媒を担持させたもので、排気中の炭化水素や窒素酸化物、一酸化炭素などの有害物質を、三元触媒によって無害な物質に転換して排出する。床下触媒35から排出された排気は、排気騒音を低減させるマフラ(図示せず)を介して外気に排出される。 The underfloor catalyst 35 is provided under the floor of the vehicle. The underfloor catalyst 35 has a three-way catalyst supported on the surface of a lattice-like carrier, and converts harmful substances such as hydrocarbons, nitrogen oxides, and carbon monoxide in the exhaust into harmless substances by the three-way catalyst. Then discharge. The exhaust discharged from the underfloor catalyst 35 is discharged to the outside air through a muffler (not shown) that reduces exhaust noise.
 コントローラ4は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。 The controller 4 includes a microcomputer having a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
 コントローラ4には、前述したエアフローメータ22やスロットルセンサ27からの検出信号のほか、ウォータジャケット114を流れる冷却水の温度(以下「エンジン水温」という。)を検出する水温センサ41、クランク角に基づいてエンジン回転速度を検出するエンジン回転速度センサ42、アクセルペダルの踏み込み量(以下「アクセル操作量」という。)を検出するアクセルストロークセンサ43などのエンジン1の運転状態を検出する各種センサからの検出信号が入力される。 In addition to the detection signals from the air flow meter 22 and the throttle sensor 27, the controller 4 includes a water temperature sensor 41 for detecting the temperature of cooling water flowing through the water jacket 114 (hereinafter referred to as “engine water temperature”), and a crank angle. Detection from various sensors that detect the operating state of the engine 1, such as an engine speed sensor 42 that detects the engine speed and an accelerator stroke sensor 43 that detects the amount of depression of the accelerator pedal (hereinafter referred to as "accelerator operation amount"). A signal is input.
 コントローラ4は、検出したエンジン1の運転状態に基づいて、スロットル開度や燃料噴射量、点火時期などを最適に制御する。例えば車両減速時などの所定の運転状態になると、各シリンダ110への燃料噴射を停止する燃料カット制御を実施して燃費の向上を図っている。 The controller 4 optimally controls the throttle opening, fuel injection amount, ignition timing and the like based on the detected operating state of the engine 1. For example, when a predetermined operating state such as when the vehicle is decelerated, fuel cut control for stopping fuel injection to each cylinder 110 is performed to improve fuel efficiency.
 また、コントローラ4は、例えば信号待ちによって車両が停止したときなどに、所定のエンジン停止条件が成立していればエンジン1を自動停止させ、その後、所定のエンジン再始動条件が成立すればエンジン1を再始動させるアイドルストップ制御を実施する。 Further, the controller 4 automatically stops the engine 1 if a predetermined engine stop condition is satisfied, for example, when the vehicle stops due to a signal wait, and the engine 1 if a predetermined engine restart condition is satisfied thereafter. Implement idle stop control to restart
 エンジン停止条件としては、アクセル操作量が所定量より小さいこと、ブレーキペダルが踏み込まれていること、車速が所定値よりも小さいことなどがある。エンジン再始動条件としては、アクセル操作量が所定量より大きいこと、ブレーキペダルが踏み込まれていないことなどがある。 The engine stop condition includes an accelerator operation amount being smaller than a predetermined amount, a brake pedal being depressed, and a vehicle speed being smaller than a predetermined value. The engine restart condition includes that the accelerator operation amount is larger than a predetermined amount and that the brake pedal is not depressed.
 図5A及び図5Bは、第1マニホールド触媒32と第2マニホールド触媒34の相違点について説明する図である。図5Aは、第1マニホールド触媒32の要部断面図である。図5Bは、第2マニホールド触媒34の要部断面図である。 FIG. 5A and FIG. 5B are diagrams for explaining the difference between the first manifold catalyst 32 and the second manifold catalyst 34. FIG. 5A is a cross-sectional view of the main part of the first manifold catalyst 32. FIG. 5B is a cross-sectional view of a main part of the second manifold catalyst 34.
 図5A及び図5Bに示すように、第1マニホールド触媒32は、三元触媒を担持している担体の実開口面積が、第2マニホールド触媒34の実開口面積よりも大きくなるように形成される。つまり、目の粗い担体を第1マニホールド触媒32に使用し、目の細かい担体を第2マニホールド触媒34に使用する。なお、本実施形態における実開口面積とは、三元触媒を担持している担体の格子数をn、格子の縦方向長さをH、格子の横方向長さをWとしたときに、以下の(1)式によって定義される値である。 As shown in FIGS. 5A and 5B, the first manifold catalyst 32 is formed such that the actual opening area of the carrier carrying the three-way catalyst is larger than the actual opening area of the second manifold catalyst 34. . That is, a coarse carrier is used for the first manifold catalyst 32, and a fine carrier is used for the second manifold catalyst 34. The actual opening area in the present embodiment is as follows when the number of lattices of the carrier supporting the three-way catalyst is n, the longitudinal length of the lattice is H, and the lateral length of the lattice is W: This is a value defined by equation (1).
 実開口面積=H×W×n …(1) Actual opening area = H x W x n (1)
 また、第1マニホールド触媒32は、三元触媒を担持している担体の表面積が、第2マニホールド触媒34の表面積よりも小さくように形成される。つまり、第1マニホールド触媒32の熱容量を、第2マニホールド触媒34の熱容量よりも小さくする。なお、本実施形態における表面積とは、三元触媒を担持している担体の格子数をn、格子の縦方向長さをH、格子の横方向長さをW、格子の奥行き(担体の長さ)をDとしたときに、以下の(2)式によって定義される値である。 The first manifold catalyst 32 is formed so that the surface area of the carrier carrying the three-way catalyst is smaller than the surface area of the second manifold catalyst 34. That is, the heat capacity of the first manifold catalyst 32 is made smaller than the heat capacity of the second manifold catalyst 34. In this embodiment, the surface area refers to the number of lattices of the carrier carrying the three-way catalyst is n, the longitudinal length of the lattice is H, the lateral length of the lattice is W, and the depth of the lattice (the length of the carrier). (S) is a value defined by the following equation (2), where D is D.
 表面積=2(H+W)×D×n …(2) Surface area = 2 (H + W) × D × n (2)
 第1マニホールド触媒32の実開口面積を第2マニホールド触媒34の実開口面積よりも大きくすることで、第1マニホールド触媒32の排気抵抗を抑えて第1マニホールド触媒32内の排気抜けを良くすることができる。そして、第2マニホールド触媒34の排気抵抗が第1マニホールド触媒32の排気抵抗よりも大きくなるので、第1マニホールド触媒32から排出された排気が第2マニホールド触媒34の入口で反射して、排気反射波が生じる。そのため、第1マニホールド触媒32の下流域で排気の滞留が生じる。 By making the actual opening area of the first manifold catalyst 32 larger than the actual opening area of the second manifold catalyst 34, the exhaust resistance in the first manifold catalyst 32 is improved by suppressing the exhaust resistance of the first manifold catalyst 32. Can do. Since the exhaust resistance of the second manifold catalyst 34 is larger than the exhaust resistance of the first manifold catalyst 32, the exhaust discharged from the first manifold catalyst 32 is reflected at the inlet of the second manifold catalyst 34, and the exhaust is reflected. A wave is generated. For this reason, exhaust gas stays in the downstream area of the first manifold catalyst 32.
 このように、第1マニホールド触媒32の排気抜けを良くしつつ、第1マニホールド触媒32の下流域で排気の滞留を生じさせることで、エンジン始動時時などの比較的エンジン回転速度が低く、排気流量が少ない運転領域においても、早期に第1マニホールド触媒32の活性化を図ることができる。 As described above, exhaust gas stays in the downstream area of the first manifold catalyst 32 while improving exhaust passage of the first manifold catalyst 32, so that the engine speed is relatively low at the time of engine start and the like. Even in the operation region where the flow rate is low, the first manifold catalyst 32 can be activated early.
 また、第1マニホールド触媒32の熱容量を、第2マニホールド触媒34の熱容量よりも小さくすることで、第1マニホールド触媒32の早期活性化をさらに促進させることができる。なお、第1マニホールド触媒32の担体の表面積を小さくすることで第1マニホールド触媒32の熱容量を小さくしているが、初期の触媒活性化に要する時間は短時間(数秒程度)であり、表面積が小さいことによる総受熱量の低下は大きな問題ではなく、触媒表面の活性化は十分になされる。 Also, the early activation of the first manifold catalyst 32 can be further promoted by making the heat capacity of the first manifold catalyst 32 smaller than the heat capacity of the second manifold catalyst 34. Although the heat capacity of the first manifold catalyst 32 is reduced by reducing the surface area of the carrier of the first manifold catalyst 32, the initial catalyst activation time is short (about several seconds), and the surface area is small. The decrease in the total amount of heat received due to the small size is not a big problem, and the catalyst surface is sufficiently activated.
 図6は、本実施形態によるエンジン1の排気装置3の作用及び効果について説明する図である。 FIG. 6 is a diagram for explaining the operation and effect of the exhaust device 3 of the engine 1 according to the present embodiment.
 時刻t1でエンジン1が始動されると、時間の経過と共に第1マニホールド触媒32、第2マニホールド触媒34及び床下触媒35の温度が上昇していく。 When the engine 1 is started at time t1, the temperatures of the first manifold catalyst 32, the second manifold catalyst 34, and the underfloor catalyst 35 increase with the passage of time.
 このとき、本実施形態では、第1マニホールド触媒32の熱容量を第2マニホールド触媒34の熱容量よりも小さくしたので、第2マニホールド触媒34と比較して第1マニホールド触媒32の温度を速やかに昇温させることができる。そしてさらに、本実施形態では、第1マニホールド触媒32の実開口面積を第2マニホールド触媒34の実開口面積よりも大きくしたので、第1マニホールド触媒32の排気抜けを良くしつつ、第1マニホールド触媒32の下流域で排気の滞留を生じさせることができる。そのため、エンジン始動時などの比較的エンジン回転速度が低く、排気流量が少ない運転領域においても、第1マニホールド触媒32の温度を速やかに昇温させることができる。 At this time, in this embodiment, since the heat capacity of the first manifold catalyst 32 is made smaller than the heat capacity of the second manifold catalyst 34, the temperature of the first manifold catalyst 32 is quickly raised as compared with the second manifold catalyst 34. Can be made. Further, in this embodiment, since the actual opening area of the first manifold catalyst 32 is larger than the actual opening area of the second manifold catalyst 34, the first manifold catalyst 32 is improved while the exhaust passage of the first manifold catalyst 32 is improved. The stagnation of the exhaust gas can be caused in the downstream area of 32. Therefore, the temperature of the first manifold catalyst 32 can be quickly raised even in an operation region where the engine rotational speed is relatively low and the exhaust flow rate is small, such as when the engine is started.
 その結果、エンジン始動後、非常に速やかに第1マニホールド触媒32の温度を活性化温度(300℃~400℃程度)まで上昇させることができるので、エンジン始動時における排気性能を向上させることができる。また、第2マニホールド触媒34も、排気装置3の上流に位置する第1マニホールド触媒32に近接して設けられ、高温環境下にあるエンジンルーム内に配置されているので、第1マニホールド触媒32に続いて速やかに昇温させることができる。 As a result, since the temperature of the first manifold catalyst 32 can be raised to the activation temperature (about 300 ° C. to 400 ° C.) very quickly after the engine is started, the exhaust performance at the time of starting the engine can be improved. . Further, the second manifold catalyst 34 is also provided in the vicinity of the first manifold catalyst 32 located upstream of the exhaust device 3 and is disposed in the engine room under a high temperature environment. Subsequently, the temperature can be raised rapidly.
 一方、エンジン始動後、車両の走行が開始されると、排気装置3の上流に位置する第1マニホールド触媒32は、エンジン高負荷時に特に高温の排気に晒されることになる。そのため、前述のようにエンジン始動時における排気性能を向上させるために第1マニホールド触媒32の熱容量を小さくすると、エンジン高負荷時に第1マニホールド触媒32の温度が過度に上昇して劣化するおそれがある。 On the other hand, when the vehicle starts running after the engine is started, the first manifold catalyst 32 located upstream of the exhaust device 3 is exposed to particularly high-temperature exhaust when the engine is heavily loaded. Therefore, if the heat capacity of the first manifold catalyst 32 is reduced in order to improve the exhaust performance at the time of starting the engine as described above, the temperature of the first manifold catalyst 32 may rise excessively and deteriorate when the engine is heavily loaded. .
 これに対して、本実施形態では、第1マニホールド触媒32の外周部に冷却器33を設けたので、エンジン高負荷時に第1マニホールド触媒32の温度が過度に上昇するのを抑制できる。したがって、時刻t2以降に示すように、車両走行時においても第1マニホールド触媒32の温度を定常温度(700℃程度)に維持することができ、第1マニホールド触媒32の劣化を抑制することができる。 On the other hand, in the present embodiment, since the cooler 33 is provided on the outer peripheral portion of the first manifold catalyst 32, it is possible to suppress the temperature of the first manifold catalyst 32 from rising excessively at a high engine load. Therefore, as shown after time t2, the temperature of the first manifold catalyst 32 can be maintained at a steady temperature (about 700 ° C.) even during vehicle travel, and deterioration of the first manifold catalyst 32 can be suppressed. .
 また、冷却器33は第1マニホールド触媒32の外周部に設けられているので、排気の流れを阻害せず、第1マニホールド触媒32の排気効率を低下させることもない。 Further, since the cooler 33 is provided on the outer peripheral portion of the first manifold catalyst 32, the exhaust flow is not hindered and the exhaust efficiency of the first manifold catalyst 32 is not lowered.
 時刻t3で、アイドルストップ制御や燃料カット制御などの、車両の停車中や走行中に一時的に混合気の燃焼を停止させる制御が実施されると、エンジンから燃焼ガスが排出されなくなるので、時間の経過と共に第1マニホールド触媒32、第2マニホールド触媒34及び床下触媒35の温度が低下していく。 At time t3, if control for temporarily stopping combustion of the air-fuel mixture, such as idle stop control or fuel cut control, is performed while the vehicle is stopped or running, the combustion gas is not discharged from the engine. As the time elapses, the temperatures of the first manifold catalyst 32, the second manifold catalyst 34, and the underfloor catalyst 35 decrease.
 このとき、第1マニホールド触媒32は、第2マニホールド触媒34よりも熱容量が小さく、また、冷却器33によって冷却されるので、比較的短時間で活性化温度を下回ってしまう。 At this time, the first manifold catalyst 32 has a smaller heat capacity than the second manifold catalyst 34 and is cooled by the cooler 33, so that the activation temperature falls below the activation temperature in a relatively short time.
 これに対して、第2マニホールド触媒34は、第1マニホールド触媒32よりも熱容量が大きく、また高温環境下にあるエンジンルーム内に設けられているので、第1マニホールド触媒32と比較して降温速度が遅い。そのため、アイドルストップ制御や燃料カット制御が実施された場合でも、比較的長時間、第2マニホールド触媒34の温度を活性化温度以上に維持することができる。 On the other hand, the second manifold catalyst 34 has a larger heat capacity than the first manifold catalyst 32 and is provided in the engine room in a high temperature environment. Is slow. Therefore, even when idle stop control or fuel cut control is performed, the temperature of the second manifold catalyst 34 can be maintained at the activation temperature or higher for a relatively long time.
 そのため、第2マニホールド触媒34の温度が活性化温度を下回るまでは、アイドルストップ制御や燃料カット制御を継続して実施することができるので、燃費を向上させることができる。また、ハイブリッド車両のようにエンジンを停止してモータの駆動力によって走行可能な車両の場合は、エンジン停止後も第2マニホールド触媒34の温度を長時間活性化温度以上に維持することができるので、再始動時における排気性能の悪化を抑制することができる。 Therefore, until the temperature of the second manifold catalyst 34 falls below the activation temperature, the idle stop control and the fuel cut control can be continuously performed, so that the fuel consumption can be improved. Further, in the case of a vehicle that can run with the driving force of the motor with the engine stopped, such as a hybrid vehicle, the temperature of the second manifold catalyst 34 can be maintained above the activation temperature for a long time even after the engine is stopped. In addition, it is possible to suppress the deterioration of the exhaust performance at the time of restart.
 ここで、燃料カット中は、エンジン1のクランクシャフト112が車両の駆動輪によって連れ回されているので、ベルト等を介してクランクシャフト112によって駆動されるウォータポンプによって冷却水を循環させることができる。 Here, during the fuel cut, the crankshaft 112 of the engine 1 is driven by the drive wheels of the vehicle, so that the cooling water can be circulated by a water pump driven by the crankshaft 112 via a belt or the like. .
 しかしながら、アイドルストップ中(ハイブリッド車両においてはエンジン停止中)は、エンジン1のクランクシャフト112の回転が停止するのでウォータポンプを駆動することができず、冷却水を循環させることができない。そのため、冷却器33のウォータジャケット331内の冷却水も循環させることができなくなる。 However, during idling stop (when the engine is stopped in the hybrid vehicle), the rotation of the crankshaft 112 of the engine 1 stops, so that the water pump cannot be driven and the cooling water cannot be circulated. Therefore, the cooling water in the water jacket 331 of the cooler 33 cannot be circulated.
 アイドルストップ中や燃料カット中は、第1マニホールド触媒32の熱が冷却器33のウォータジャケット331内の冷却水へと伝達されることになる。そうすると、冷却水の循環が行われないアイドルストップ中は、第1マニホールド触媒32からの受熱によって冷却器33のウォータジャケット331内の冷却水の温度が上昇し続け、沸点温度を超えてしまうおそれがある。 During idle stop or fuel cut, the heat of the first manifold catalyst 32 is transferred to the cooling water in the water jacket 331 of the cooler 33. Then, during the idle stop where the cooling water is not circulated, the temperature of the cooling water in the water jacket 331 of the cooler 33 continues to rise due to the heat received from the first manifold catalyst 32 and may exceed the boiling point temperature. is there.
 ここで、冷却器33のウォータジャケット331内の冷却水を沸点温度まで上昇させるために必要な熱量Q1は、冷却器33のウォータジャケット331内の冷却水の熱容量をC1、冷却水の沸点温度をT1とすると、以下の(3)式で表される。 Here, the amount of heat Q1 required to raise the cooling water in the water jacket 331 of the cooler 33 to the boiling point temperature is C1 as the heat capacity of the cooling water in the water jacket 331 of the cooler 33, and the boiling point temperature of the cooling water. Assuming T1, it is expressed by the following equation (3).
 Q1=C1×(T1-定常時の冷却水温度(80℃近傍)) …(3) Q1 = C1 × (T1-cooling water temperature at steady state (around 80 ° C.)) (3)
 一方、アイドルストップ時に第1マニホールド触媒32が持つと推定される熱量Q2は、第1マニホールド触媒32の熱容量をC2、アイドルストップ時における第1マニホールド触媒32の予想温度(定常温度700℃を想定)に所定のマージンを加えた余裕温度(700℃+α)をT2とすると、以下の(4)式で表される。 On the other hand, the heat quantity Q2 estimated to be possessed by the first manifold catalyst 32 at the time of idling stop is C2 as the heat capacity of the first manifold catalyst 32, and the expected temperature of the first manifold catalyst 32 at the time of idling stop (assuming a steady temperature of 700 ° C.). When a margin temperature (700 ° C. + α) obtained by adding a predetermined margin to T2 is T2, it is expressed by the following equation (4).
 Q2=C2×(T2-定常時の冷却水温度(80℃近傍)) …(4) Q2 = C2 × (T2-cooling water temperature at steady state (around 80 ° C.)) (4)
 そこで、本実施形態では、冷却器33のウォータジャケット331内の冷却水を沸点温度まで上昇させるために必要な熱量Q1が、アイドルストップ時に第1マニホールド触媒32が持つと推定される熱量Q2よりも大きくなるように、冷却器33のウォータジャケット331の容量(冷却器33のウォータジャケット内の冷却水の熱容量C1)及び冷却水の種類(冷却水の沸点温度T1)を設定する。 Therefore, in the present embodiment, the amount of heat Q1 required to raise the cooling water in the water jacket 331 of the cooler 33 to the boiling point temperature is greater than the amount of heat Q2 estimated to be possessed by the first manifold catalyst 32 at the time of idling stop. The capacity of the water jacket 331 of the cooler 33 (heat capacity C1 of cooling water in the water jacket of the cooler 33) and the type of cooling water (boiling point boiling temperature T1) are set so as to increase.
 これにより、第1マニホールド触媒32の熱量が全て冷却器33のウォータジャケット331内の冷却水に移ったとしても、冷却水の温度が沸点温度を超えることがない。よって、アイドルストップ中に冷却器33のウォータジャケット331内の冷却水が沸騰するのを防止できる。 Thereby, even if all the heat quantity of the first manifold catalyst 32 is transferred to the cooling water in the water jacket 331 of the cooler 33, the temperature of the cooling water does not exceed the boiling point temperature. Therefore, it is possible to prevent the cooling water in the water jacket 331 of the cooler 33 from boiling during idle stop.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 例えば、図7に示すように、冷却水排出配管333に流量調整弁334を設け、冷却器33を循環する冷却水の流量を調整できるようにしても良い。エンジン始動時において、冷却水の温度が所定温度以上になるまで流量調整弁334を閉じておくことで、エンジン始動時における冷却器33の冷却効果を低減させることができる。よって、エンジン始動時における第1マニホールド触媒32の昇温速度をより一層向上させることができる。 For example, as shown in FIG. 7, a flow rate adjustment valve 334 may be provided in the cooling water discharge pipe 333 so that the flow rate of the cooling water circulating through the cooler 33 can be adjusted. When the engine is started, the cooling effect of the cooler 33 at the time of starting the engine can be reduced by closing the flow rate adjustment valve 334 until the temperature of the cooling water reaches a predetermined temperature or higher. Therefore, the temperature increase rate of the first manifold catalyst 32 when starting the engine can be further improved.
 また、上記の実施形態では、シリンダブロック11のウォータジャケット114に導入された冷却水の一部が冷却器33のウォータジャケット331に導入されるように冷却水導入配管332を構成し、冷却器33のウォータジャケット331に導入された冷却水がシリンダヘッド12のウォータジャケット127に戻されるように冷却水排出配管333を構成したが、これに限られるものではない。両配管332,333は、それぞれの配管長が可能な限り短くなるように、エンジン1を循環する冷却水のうち相対的に低温な冷却水が冷却器33のウォータジャケット331に導入されるように、また、相対的に高温な冷却水が循環しているエンジン1のウォータジャケットに冷却水が戻るように構成されれば良いものである。 In the above embodiment, the cooling water introduction pipe 332 is configured such that a part of the cooling water introduced into the water jacket 114 of the cylinder block 11 is introduced into the water jacket 331 of the cooler 33, and the cooler 33 Although the cooling water discharge pipe 333 is configured such that the cooling water introduced into the water jacket 331 is returned to the water jacket 127 of the cylinder head 12, the invention is not limited to this. The both pipes 332 and 333 are such that relatively low-temperature cooling water out of the cooling water circulating through the engine 1 is introduced into the water jacket 331 of the cooler 33 so that the respective pipe lengths are as short as possible. In addition, the cooling water may be configured to return to the water jacket of the engine 1 in which the relatively high-temperature cooling water circulates.
 また、上記の実施形態では、エンジン1の冷却水の一部を冷却器33のウォータジャケット331に導入していたが、冷却器33のウォータジャケット331に冷媒(冷却水や冷却ガス)を循環させる冷却装置を別途に設けても良い。その際、エンジンの冷却水を冷却するラジエータやウォータポンプ等を共用しても良い。 In the above embodiment, a part of the cooling water of the engine 1 is introduced into the water jacket 331 of the cooler 33, but the refrigerant (cooling water and cooling gas) is circulated through the water jacket 331 of the cooler 33. A cooling device may be provided separately. At that time, a radiator, a water pump, or the like that cools the cooling water of the engine may be shared.
 また、上記の実施形態では、ガソリンエンジンを例に説明したが、ディーゼルエンジンであっても良い。 In the above embodiment, a gasoline engine has been described as an example, but a diesel engine may be used.
 本願は、2012年6月12日に日本国特許庁に出願された特願2012-132716号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-132716 filed with the Japan Patent Office on June 12, 2012, the entire contents of which are incorporated herein by reference.

Claims (7)

  1.  内燃機関の排気装置であって、
     前記内燃機関から排出された排気を浄化する第1触媒と、
     前記第1触媒を冷却する冷却器と、
     前記第1触媒に近接して設けられ、前記第1触媒から排出された排気を浄化する第2触媒と、
    を備え、
     前記第1触媒の熱容量が、前記第2触媒の熱容量よりも小さい、
    内燃機関の排気装置。
    An exhaust system for an internal combustion engine,
    A first catalyst for purifying exhaust gas discharged from the internal combustion engine;
    A cooler for cooling the first catalyst;
    A second catalyst provided in the vicinity of the first catalyst and purifying exhaust gas discharged from the first catalyst;
    With
    The heat capacity of the first catalyst is smaller than the heat capacity of the second catalyst;
    An exhaust system for an internal combustion engine.
  2.  前記第1触媒の担体の実開口面積は、前記第2触媒の担体の実開口面積よりも大きい、
    請求項1に記載の内燃機関の排気装置。
    An actual opening area of the carrier of the first catalyst is larger than an actual opening area of the carrier of the second catalyst;
    The exhaust system for an internal combustion engine according to claim 1.
  3.  前記冷却器は、前記第1触媒の外周部に設けられる、
    請求項1又は請求項2に記載の内燃機関の排気装置。
    The cooler is provided on an outer periphery of the first catalyst;
    An exhaust system for an internal combustion engine according to claim 1 or 2.
  4.  前記内燃機関は、車両の運転状態に応じて気筒内での燃焼を一時的に停止する、
    請求項1から請求項3までのいずれか1つに記載の内燃機関の排気装置。
    The internal combustion engine temporarily stops combustion in the cylinder according to the operating state of the vehicle.
    The exhaust device for an internal combustion engine according to any one of claims 1 to 3.
  5.  前記冷却器は、冷媒が循環する冷媒通路を内部に備え、
     前記冷媒通路に存在する冷媒を沸点温度まで上昇させるために必要な熱量が、前記内燃機関の気筒内での燃焼を一時的に停止させたときに前記第1触媒が持つ熱量よりも大きくなるように、前記冷媒通路の容量及び冷媒の種類を設定する、
    請求項4に記載の内燃機関の排気装置。
    The cooler includes therein a refrigerant passage through which a refrigerant circulates,
    The amount of heat necessary to raise the refrigerant present in the refrigerant passage to the boiling point temperature is larger than the amount of heat of the first catalyst when combustion in the cylinder of the internal combustion engine is temporarily stopped. To set the capacity of the refrigerant passage and the type of refrigerant,
    The exhaust device for an internal combustion engine according to claim 4.
  6.  前記冷却器は、冷媒が循環する冷媒通路を内部に備える、
    請求項1から請求項4までのいずれか1つに記載の内燃機関の排気装置。
    The cooler includes therein a refrigerant passage through which the refrigerant circulates.
    The exhaust device for an internal combustion engine according to any one of claims 1 to 4.
  7.  前記冷媒通路を循環する冷媒の流量を調整する流量調整器を備える、
    請求項5又は請求項6に記載の内燃機関の排気装置。
    A flow regulator for adjusting the flow rate of the refrigerant circulating in the refrigerant passage;
    The exhaust system for an internal combustion engine according to claim 5 or 6.
PCT/JP2013/065499 2012-06-12 2013-06-04 Exhaust device for internal combustion engine WO2013187285A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012132716A JP2015165095A (en) 2012-06-12 2012-06-12 Exhaust device for internal combustion engine
JP2012-132716 2012-06-12

Publications (1)

Publication Number Publication Date
WO2013187285A1 true WO2013187285A1 (en) 2013-12-19

Family

ID=49758111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065499 WO2013187285A1 (en) 2012-06-12 2013-06-04 Exhaust device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2015165095A (en)
WO (1) WO2013187285A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151736A1 (en) * 2014-04-04 2015-10-08 日産自動車株式会社 Engine exhaust apparatus
EP3150949A4 (en) * 2014-05-26 2017-05-17 Calsonic Kansei Corporation Exhaust heat recovery device and manufacturing method for same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969457B2 (en) * 2017-07-11 2021-11-24 トヨタ自動車株式会社 Exhaust gas purification device
US10280822B2 (en) 2017-07-11 2019-05-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318123A (en) * 1986-07-10 1988-01-26 Fuji Heavy Ind Ltd Catalytic converter
JPH08296430A (en) * 1995-04-21 1996-11-12 Nippondenso Co Ltd Exhaust emission control device for internal combustion engine
JP2008190437A (en) * 2007-02-06 2008-08-21 Toyota Motor Corp Exhaust heat recovery device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318123A (en) * 1986-07-10 1988-01-26 Fuji Heavy Ind Ltd Catalytic converter
JPH08296430A (en) * 1995-04-21 1996-11-12 Nippondenso Co Ltd Exhaust emission control device for internal combustion engine
JP2008190437A (en) * 2007-02-06 2008-08-21 Toyota Motor Corp Exhaust heat recovery device of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151736A1 (en) * 2014-04-04 2015-10-08 日産自動車株式会社 Engine exhaust apparatus
EP3139012A4 (en) * 2014-04-04 2017-03-22 Nissan Motor Co., Ltd Exhaust system of engine
JPWO2015151736A1 (en) * 2014-04-04 2017-04-13 日産自動車株式会社 Engine exhaust system
US10087800B2 (en) 2014-04-04 2018-10-02 Nissan Motor Co., Ltd. Engine exhaust apparatus
EP3150949A4 (en) * 2014-05-26 2017-05-17 Calsonic Kansei Corporation Exhaust heat recovery device and manufacturing method for same

Also Published As

Publication number Publication date
JP2015165095A (en) 2015-09-17

Similar Documents

Publication Publication Date Title
US10302048B2 (en) Methods and systems for controlling air flow paths in an engine
US9957876B2 (en) Methods and systems for controlling air flow paths in an engine
US8746187B2 (en) Engine cooling device
JP3699035B2 (en) Non-cylinder control device for multi-cylinder engine
JP4341689B2 (en) Secondary air supply device for internal combustion engine
US8955473B2 (en) Strategy for engine cold start emission reduction
US8707923B2 (en) Method for heating the combustion air of an internal combustion engine, and internal combustion engine for carrying out a method of said type
WO2016178303A1 (en) Low-water heating/cooling device for internal-combustion engine
WO2013187285A1 (en) Exhaust device for internal combustion engine
JP4052242B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2004316544A (en) Fuel cut control device for compression ignition type internal combustion engine
JP6927084B2 (en) Internal combustion engine
JP5565283B2 (en) Cooling device for internal combustion engine
US9551270B2 (en) Control device for coolant flow in an internal combustion engine
JP5195668B2 (en) Engine cooling system
WO2013183643A1 (en) Exhaust device for internal combustion engine
CN111550319A (en) Exhaust gas purification device for internal combustion engine
JP2010174818A (en) Control device of internal combustion engine
JP6911634B2 (en) Internal combustion engine cooling control device
JP6365179B2 (en) Control device for internal combustion engine
JP2015121156A (en) Control device of internal combustion engine
JP7243613B2 (en) engine device
JP2012167558A (en) Exhaust gas recirculation device
JP2007154818A (en) Cooling device for internal combustion engine
JP2010101239A (en) Egr cooler for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP