WO2013186951A1 - Spark gap arrester - Google Patents

Spark gap arrester Download PDF

Info

Publication number
WO2013186951A1
WO2013186951A1 PCT/JP2012/080349 JP2012080349W WO2013186951A1 WO 2013186951 A1 WO2013186951 A1 WO 2013186951A1 JP 2012080349 W JP2012080349 W JP 2012080349W WO 2013186951 A1 WO2013186951 A1 WO 2013186951A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
arc
insulating
spark gap
discharge
Prior art date
Application number
PCT/JP2012/080349
Other languages
French (fr)
Japanese (ja)
Inventor
幸二郎 加藤
滋 西澤
野澤 俊博
内野 雅俊
Original Assignee
合資会社シーエスディ
株式会社白山製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合資会社シーエスディ, 株式会社白山製作所 filed Critical 合資会社シーエスディ
Priority to JP2014521194A priority Critical patent/JP6002766B2/en
Publication of WO2013186951A1 publication Critical patent/WO2013186951A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed

Definitions

  • the present invention relates to a spark gap arrester that is installed in a low-voltage power supply circuit and that bypasses lightning current to the ground and discharges it in order to protect electronic devices that are sensitive to overvoltage during lightning strikes.
  • Patent Document 1 As a spark gap arrester that can safely discharge lightning current by bypassing it to the ground, the one shown in Patent Document 1 is known.
  • FIG. 9 shows the configuration of the spark gap arrester disclosed in Patent Document 1.
  • 10 is a spark gap arrester, and all parts are arranged in a rotationally symmetric structure with respect to the central axis.
  • the pair of discharge electrodes 11 a and 11 b of the arrester 10 are opposed to each other while maintaining a certain discharge gap G by the cylindrical insulator 12.
  • the size of the discharge gap G determines the discharge voltage.
  • Lead conductors 17a and 17b are drawn out from the discharge electrodes 11a and 11b, and the arrester 10 is connected to an electric circuit to be protected through these lead conductors.
  • the arrester 10 When a high-voltage lightning impulse voltage induced in the electric circuit is applied to the arrester 10, the arrester 10 generates a discharge that starts from a spark discharge at the discharge gap G between the discharge electrodes 11a and 11b and shifts to an arc discharge. Absorbs lightning impulse voltage.
  • the large-current arc discharge causes rapid ionization and expansion in the air in the internal space S of the arrester 10, but the cylindrical insulator 13, the insulating plates 14a and 14b, and the insulating caps 15a and 15b surrounding the discharge electrodes 11a and 11b.
  • the outer side of the insulating case is covered with a metal pipe 16 and its upper and lower ends are firmly closed by curling, so that it does not explode or break even if the internal pressure exceeds several tens of atmospheres.
  • the lightning impulse current has a short duration of 1 ms or less, and the heat capacity of the metal parts is sufficiently large. Therefore, the discharge of this current does not cause an excessive temperature rise.
  • FIG. 10 is a longitudinal sectional view showing the configuration of the spark gap arrester 20 disclosed in Patent Document 2. As shown in FIG. All the components are constructed and arranged in rotational symmetry.
  • the conventional spark gap arrester 20 in FIG. 10 has a pair of discharge electrodes 21a and 21b arranged in a cylindrical metal case 28 so as to face each other while maintaining a predetermined discharge gap G.
  • Each discharge electrode is configured by joining tip portions 23a and 23b made of a copper tungsten alloy having excellent heat resistance and arc resistance to the tips of base portions 22a and 22b made of a copper material.
  • the pair of discharge electrodes is fixedly supported in the metal case 28 via the insulator 24, the insulating plates 26a and 26b, and the insulating caps 27a and 27b.
  • the size of the discharge gap G can be easily set by adjusting the thickness of the insulator 24 sandwiched between the discharge electrodes 21a and 21b.
  • a plurality of arc-extinguishing plates 29 (ai) made of magnetic metal rings are arranged so as to be insulated from each other at a predetermined interval.
  • the discharge generated between the discharge electrodes 21a and 21b is initially generated in the arc discharge path A extending between the tip portions 23a and 23b of both electrodes.
  • arc-extinguishing gas is released from the insulating ring 25 made of an organic arc-extinguishing insulating material disposed between both electrodes due to the heat of the arc. Due to the pressure of this gas and the electromagnetic force between the magnetic arc extinguishing plate 29 and the arc current, the arc of the arc discharge path A is moved in the direction of the arc extinguishing plate 29 and the arc discharge path B spreads over the entire arc extinguishing plate 29. Move. Arc discharge and anode voltage drop occur on both sides of each arc extinguishing plate 29 in the arc discharge path B.
  • this conventional spark gap arrester 20 also has the following two drawbacks. (1) Since the insulating ring 25 that generates the arc-extinguishing gas when the arc is generated is disposed inside the discharge electrode, the amount of arc-extinguishing gas generated is small. Accordingly, the force for moving the arc to the arc extinguishing plate becomes insufficient, and the arc extinguishing performance is deteriorated due to insufficient arc moving distance.
  • the lightning impulse current is an extremely large current of 20 kA or more and a rising speed of 2 kA / ⁇ s or more.
  • an object of the present invention is to improve arc extinguishing performance in a spark gap arrester having an encapsulated structure by sufficiently generating an arc extinguishing gas at the time of occurrence of a discharge and reliably moving an arc caused by a lightning impulse current into the arc extinguishing plate.
  • Another object of the present invention is to provide a spark gap arrester that can prevent the continuity and reliably extend the life of the arc extinguishing plate due to lightning impulse current.
  • the invention of claim 1 is characterized in that a resin insulator formed of an insulating resin that generates an arc-extinguishing gas by heating between the pair of discharge electrodes is similarly extinguished by heating.
  • a resin interval body composed of a composite with a resin conductor formed of a conductive resin that generates arc gas, between one of the discharge electrodes and the resin conductor portion of the resin interval body, A layer of the resin insulator part of the resin interval forming the insulating discharge gap is interposed, and one or more high melting point metals and one or more low melting point metals are disposed outside the resin interval.
  • a plurality of metal arc-extinguishing plates formed of a conductive sintered alloy formed by sintering are arranged separated by a predetermined distance.
  • the invention of claim 2 is characterized in that, in the invention of claim 1, the sintered alloy forming the metal arc extinguishing plate is characterized in that the low melting point metal is copper and the high melting point metal is tungsten.
  • one end of the resin interval body made of a resin insulator and the other end made of a resin conductor are respectively connected to the pair of discharge electrodes.
  • the depth of the recessed portion of the discharge electrode on the fitted side of one end, which is configured by the resin insulator of the resin interval body, and the resin of the resin interval body inserted into the recess The size of the discharge gap is defined by the difference with the thickness of the insulator on one end side made of an insulator.
  • a plurality of spaces are formed by partitioning a space around the pair of discharge electrodes with a partition wall made of an insulating material. And the other one as an expansion chamber, and these chambers communicate with each other by a gas passage.
  • the resin conductive material constituting the resin spacing member is provided in the arc chamber provided in the space between the pair of discharge electrodes. A body part is accommodated, and the metal arc extinguishing plate is arranged opposite to the conductor part.
  • an insulating cylinder configured by connecting and joining a plurality of divided insulating rings is inserted inside the cylindrical metal case,
  • the plurality of metal arc extinguishing plates are fixed by being electrically insulated from the metal case while being spaced apart from each other by an insulating ring constituting the insulating cylinder.
  • the invention of claim 7 is the invention of any one of claims 1 to 6, wherein the tip is bent into a hook shape on the inner periphery of a part of the insulating ring inserted inside the metal case.
  • An annular projection having an annular groove is provided.
  • the invention of claim 8 is characterized in that, in the invention of claim 6 or 7, at least one of the insulating rings constituting the insulating cylinder is provided with at least one air passage leading to the inner and outer periphery of the ring.
  • the invention according to claim 9 is the invention according to claim 8, wherein the air passage is provided at a joint portion of an insulating ring constituting the insulating cylinder.
  • the invention of claim 10 is characterized in that, in any one of the inventions of claims 1 to 9, the insulating resin that generates arc-extinguishing gas by heating is a composite resin containing an inorganic reinforcing material.
  • the invention of claim 11 is the invention according to any one of claims 1 to 10, wherein the insulating resin that generates an arc extinguishing gas by heating is a polyoxymethylene (POM) resin, and the arc extinguishing by the heating.
  • the conductive resin that generates the reactive gas is a resin in which carbon powder is mixed with the polyoxymethylene (POM) resin.
  • Resin insulator formed with an insulating resin that generates arc-extinguishing gas by heating a resin spacer disposed between truncated cones or cylindrical discharge electrodes and conductive resin that generates arc-extinguishing gas by heating Since the discharge gap is formed on the surface of the insulator portion, the arc generated in the discharge gap can be propagated along the entire surface of the resin interval body. A large amount of arc extinguishing gas can be generated from the surface of the resin spacer by arc discharge.
  • a metal arc extinguishing plate arranged in a space between a pair of conical frustums or a columnar discharge electrode is used as a low melting metal powder and a high melting metal. Composed of a sintered alloy formed by mixing and sintering powder, the arc extinguishing plate is reduced in wear even if the metal arc extinguishing plate is exposed to arc discharge by lightning impal current, and the life of the arrester is extended. be able to.
  • FIG. Sectional drawing which shows typically the structure of the sintered alloy board which comprises the metal arc-extinguishing board used for this invention.
  • the diagram which shows the voltage-current characteristic of the arc discharge used for operation
  • the cross-sectional view which follows the VV line of Fig.4 (a). It is a block diagram which shows the 2nd Example of this invention, (a) is a longitudinal cross-sectional view, (b) is the elements on larger scale which expand and show the A section in (a).
  • reference numeral 30 denotes a spark gap arrester, which includes a pair of discharge electrodes 31a and 31b accommodated in a cylindrical insulating case 33 at a predetermined interval.
  • the spacing between the electrodes 31a and 31b is maintained by a circular resin spacing member 32 inserted therebetween.
  • the resin spacer 32 includes, for example, an arc extinguishing resin insulator 32a formed of a resin that generates an arc extinguishing gas at a high temperature, such as a polyoxymethylene resin called POM, and the polyoxymethylene. It is composed of a composite resin formed by integrally joining an arc extinguishing resin conductor 32b formed of a resin imparted with conductivity by adding conductive carbon powder to the resin. For this reason, as for the resin space
  • the arc-extinguishing resin conductor 32b is an arc-extinguishing resin. It has an arc extinguishing gas generation function exactly the same as that of the insulator 32a.
  • the resin spacing member 32 is formed in a columnar shape by joining the arc extinguishing resin insulator 32a and the arc extinguishing resin conductor 32b formed in a substantially semi-cylindrical shape to each other in a plane portion (FIG. 1). (See (a)).
  • a thin semi-disc-shaped protrusion 32c protruding in the radial direction of the resin spacer 32 is formed in the middle of the arc-extinguishing resin insulator 32a, and the outer peripheral surface of the protrusion 32c is the arc-extinguishing resin conductor. It extends to the outer peripheral surface of 32b and is exposed in the arc chamber 36a (see FIG. 1B).
  • the upper and lower surfaces of the projecting portion 32c are electrically coupled to the discharge electrodes 31a and 31b via the divided bodies 32b-1 and 32b-2 divided above and below the arc-extinguishing resin conductor 32b disposed on each surface, respectively. Is done.
  • the thickness of the protrusion 32c forms a discharge gap G between the discharge electrodes 31a and 31b. For example, if the size of the discharge gap G is selected to be 0.3 mm, a lightning impulse of about 2 kV between the discharge electrodes 31a and 31b. When a voltage is applied, the insulation of the discharge gap G is broken and a flash (spark discharge) is generated.
  • the internal space of the cylindrical insulating case 33 enclosing the discharge electrodes 31a and 31b and the resin spacer 32 is a boundary portion between the insulator 32a and the conductor 32b of the resin spacer 32 and is similar to the resin spacer 32.
  • Two spaces are formed which are partitioned by insulating partition walls 35a and 35b in the radial direction made of arc-extinguishing insulating resin.
  • One of the two spaces is an arc chamber 36a and the other is an expansion chamber 36b.
  • the insulating partition walls 35a and 35b are provided with air passages 35h and 35h, respectively, so that both chambers communicate with each other. Therefore, the expansion chamber 36b absorbs an excessive increase in internal pressure due to the arc in the arc chamber 36b, and the arc chamber 36a It works to suppress the pressure rise.
  • the arc-extinguishing resin conductor 32b of the resin interval body 32 is accommodated, and the arc-extinguishing resin insulator 32a is accommodated in the expansion chamber 36b.
  • arc extinguishing plates 37 are arranged at predetermined intervals so as to face the outer peripheral surfaces of the arc extinguishing resin conductor 32b and the projecting portion 32c of the arc extinguishing resin insulator 32a.
  • the arc-extinguishing plate 37 is formed by laminating a plurality of conductive metal arc-extinguishing plates 37a to 37e having a shape obtained by partially cutting an annular flat plate at predetermined intervals in the axial direction.
  • the metal arc extinguishing plates 37a to 37e are composed of conductive sintered alloy plates formed by sintering one or more types of low melting point metal powders and one or more types of high melting point metal powders, and are spaced apart from each other by a certain distance. And is held by the insulating case 33.
  • the sintered alloy forming the arc extinguishing plate 37 for example, a sintered alloy containing 20% by weight of copper as a low melting point metal and 80% by weight of tungsten as a high melting point metal can be used.
  • the normal working voltage of the electrical circuit of the protected facility to which the arrester is connected is a low voltage of about 100 to 400V.
  • the withstand voltage between the pair of discharge electrodes 31a and 31b is several kV due to the discharge gap G between the edge portions of the arc extinguishing resin conductor 32b facing each other across the protruding portion 32c of the insulator 32a of the resin spacer 32. Therefore, even if a normal operating voltage is applied between the pair of discharge electrodes 31a and 31b, the insulation of the discharge gap G is maintained and no discharge occurs.
  • a high-voltage lightning impulse voltage is induced in the electric circuit of the electric circuit by a lightning strike or the like, and the divided conductors 32b-1 facing each other with the protrusion 32c of the insulator 32a of the resin interval body 32 between the discharge electrodes 31a and 31b interposed therebetween.
  • a lightning impulse voltage higher than the withstand voltage of the discharge gap G is applied between the upper and lower edges of 32b-2, the insulation of the discharge gap G is broken and a flash (spark discharge) is generated.
  • spark discharge spark discharge
  • the arc discharge is developed. Furthermore, the arc inside the arc chamber 36b is ionized by this arc discharge, so that the arc expands to a discharge path B indicated by a dotted line extending between points c and d of the pair of discharge electrodes 31a and 31b.
  • the arc extinguishing resin conductor 32b is heated to a high temperature by the arc of the discharge path B, a large amount of arc extinguishing gas is generated from the surface, and a gas flow from the arc chamber toward the expansion chamber is formed.
  • the arc of the discharge path B between the pair of discharge electrodes moves to the center of the metal arc extinguishing plates 37a to 37e by the gas pressure at that time, and the discharge path C indicated by the dotted line is formed.
  • the arc is divided by the plurality of metal arc extinguishing plates 37a to 37e, and the arc voltage rises due to a negative and anode voltage drop of about 30V generated between the arc extinguishing plates.
  • the metal arc extinguishing plate 37 is formed by sintering a low melting point metal that melts at a relatively low temperature, such as copper powder, and a high melting point metal that does not melt up to a high temperature, such as tungsten powder. Since it is made of a sintered alloy, the amount of melting and evaporation due to lightning impulse current is extremely small, and wear of the arc extinguishing plate can be reduced.
  • FIG. 2 is a metal structure diagram schematically showing a longitudinal section of an arc extinguishing plate made of a sintered alloy of a low melting point metal and a high melting point metal.
  • the metal structure of the arc extinguishing plate has a structure in which a large number of tungsten particles W of high melting point metal are bonded to each other by high-temperature firing, and the void portion is filled with copper particles Cu of low melting point metal. It has become.
  • the arc extinguishing plate of the present invention composed of a sintered alloy composed of a metal having a relatively high melting point and a metal having a relatively low melting point has a very small wear even when it comes into contact with the arc, thus extending the life of the arrester. Can keep.
  • FIG. 4 and FIG. 5 show a first embodiment of the present invention.
  • 4 is a longitudinal sectional view showing the configuration of the spark gap arrester 40 of the first embodiment
  • FIG. 5 is a transverse sectional view taken along the line VV of FIG.
  • the constituent elements are configured and arranged in rotational symmetry with respect to the axis.
  • the arc extinguishing plate 47 has a shape obtained by cutting a part of an annular flat plate at a predetermined arc angle as shown in a plan view in FIG. 5, and does not have a rotationally symmetric configuration.
  • the pair of discharge electrodes 41a and 41b includes base portions 41a-2 and 41b-2 made of a copper material which is a normal conductor, and heat resistance bonded to the tips of the base portions.
  • the tip portions 41a-1 and 41b-1 are made of a chip made of a copper tungsten alloy having excellent arc resistance.
  • the base portions 41a-2 and 41b-2 and the tip portions 41a-1 and 41b-1 are integrated without performing troublesome processing such as brazing by inserting the base portion into a recess provided in the tip portion. ing.
  • the tip portions 41a-1 and 41b-1 of the discharge electrodes 41a and 41b are formed in a truncated cone shape in the first embodiment, but may be formed in a columnar shape instead.
  • the pair of discharge electrodes 41a and 41b have a constant facing distance by a resin interval body 42 formed by integrally joining an arc extinguishing resin insulator 42a and an arc extinguishing resin conductor 42b sandwiched therebetween. Retained.
  • the discharge electrodes 41a and 41b are formed of insulating caps 43a and 43b and an insulating plate having elasticity in an insulating case formed by connecting and connecting insulating rings 44a to 44f divided into a plurality of parts. 44j and 44k.
  • the insulating case constituted by the insulating cylinder 44 and the like is fitted by a metal case 45 made of a metal pipe from the outside.
  • the metal case 45 is strong by bending the upper and lower ends inward by curling and applying clamping pressure in the axial direction to the flange portions 41a-3 and 41b-3 of the discharge electrode base portions 41a-2 and 41b-2.
  • a pressure-resistant structure is configured.
  • a plurality of, here, three arc extinguishing plates 47a to 47c are stacked and arranged with a space between each other.
  • These arc-extinguishing plates 47a to 47c are fixedly supported by being fitted into annular grooves 44g to 44i formed at portions where the insulating rings 44b to 44d constituting the insulating cylinder 44 are connected to each other.
  • These arc extinguishing plates 47 (a to c) are formed of a sintered alloy containing at least one kind of low melting point metal such as copper and one or more high melting point metals such as tungsten, as described above.
  • the resin interval body 42 is formed by an arc extinguishing resin insulator 42a and exposed at the upper end portion and almost half of the outer periphery. And the lower end part and the remaining half part of the outer periphery are formed of the arc extinguishing resin conductor 42b and exposed.
  • the upper end portion of the resin spacer 42 is fitted and coupled to the tip portion 41a-1 of the upper discharge electrode 41a, and the lower end portion is fitted and coupled to the tip portion 41b-1 of the lower discharge electrode 41b.
  • the upper end portion of the resin insulator 42a of the resin interval member 42 joined to the tip end portion 41a-1 of the upper discharge electrode 41a is exposed at the entire periphery, and is exposed to the outer peripheral surface side where the resin conductor 42b of the resin interval member 42 is exposed.
  • the thickness g of the portion to be determined determines the insulating discharge gap G between the tip portion 41a-1 of the upper discharge electrode 41a and the resin conductor 42b of the resin spacer 42.
  • FIG. 4B shows an enlarged view of the portion A in FIG. 4A including the discharge gap G.
  • the thickness g of the portion exposed to the resin conductor is determined by the difference between the thickness t and the depth d of the recess 41a-6. Since the thickness g automatically determines the dimension of the insulating discharge gap G between the electrodes, it is only necessary to determine the dimensions of the resin spacer 42 and the discharge electrode tip 41a-1 for assembly. No position adjustment is required.
  • the space around the resin interval body 42 in the insulating cylinder 44 is a pair of radii that protrudes inwardly facing the inner periphery of the divided insulating rings 44a to 44f constituting the insulating cylinder 44. Divided into two spaces by direction partition walls 44p, 44q.
  • the space that accommodates the arc extinguishing resin conductor 42b and the arc extinguishing plates 47 (47a to 47c) of the resin interval member 42 is an arc chamber 46a, and the space that accommodates the other resin insulator 42a is the expansion chamber 46b.
  • the arc chamber 46a and the expansion chamber 46b are formed by voids 46c and 46d formed between the discharge electrode tip portions 41a-1 and 41b-1 and the base portions 41a-2 and 41b-2. It is communicated.
  • the pressure in the arc chamber 46a suddenly increases due to the arc generated in the arc chamber 46a, the pressure in the arc chamber 46a is increased by letting the pressure escape to the expansion chamber 46b through these cavities 46c and 46d.
  • the arc moves to the central part of the arc extinguishing plates 47a, 47b, 47c by the arc extinguishing gas flow generated at this time.
  • a pair of discharge electrodes 41a and 41b of the arrester 40 are electrically connected between the electric circuit of the electric circuit to be protected from lightning voltage and the ground.
  • the withstand voltage of the insulation discharge gap G (see FIG. 4B) is set to a voltage sufficiently higher than a normal use voltage of, for example, about 100 to 400 V, for example, 1.5 kV. When used with voltage, the insulation of the discharge gap G is maintained and no discharge occurs.
  • the internal air of the arc chamber 46a is ionized by this arc discharge, so that the arc extends between points a and c of the pair of discharge electrodes 41a and 41b, and the arc extinguishing resin conductor of the resin interval 42 is obtained. Run on the exposed surface of 42b.
  • the surface of the arc extinguishing resin conductor 42b of the resin interval 42 is heated to a high temperature, and a large amount of arc extinguishing gas is generated from the surface of the resin conductor 42b.
  • the arc that is pushed by the pressure of the arc extinguishing gas and runs on the surface of the resin conductor 42b moves to the center of the arc extinguishing plates 47a to 47c.
  • the arc voltage of the arc path without the arc extinguishing plate changes depending on the arc current as shown by the characteristic line B in FIG. 3 due to the large arc resistance of the long discharge path.
  • the arc voltage becomes substantially constant 120 V, as shown by the characteristic line A, due to the shadow generated in the arc extinguishing plate, the anode voltage drop, and the small arc resistance of the short arc discharge path.
  • the arc voltage is kept substantially constant, so the lightning impulse current becomes substantially zero, and the instantaneous value of the power supply voltage becomes smaller than the arc voltage. When this occurs, the continuity from the power circuit is interrupted, the arc disappears, and the arrester insulation is restored.
  • the metal of the discharge electrode and the arc extinguishing plate is evaporated and scattered by the heat of the arc, and the metal oxide adheres to the inner surface of the insulating cylinder 44, whereby a pair of discharge electrodes An electrical bypass circuit is formed between them, and the insulation resistance between the discharge electrodes decreases.
  • annular shape in which tip portions are bent inwardly on the inner periphery of the insulating rings 44a and 44f at both ends forming the insulating cylinder 44.
  • the annular grooves 44m and 44n are formed in which the metal oxide evaporated and scattered from the electrode or the like does not enter.
  • the metal oxide melted and evaporated from the discharge electrode and the metal arc extinguishing plate by the arc is reduced, so that the metal oxide layer adhering to the inner surface of the insulating cylinder 44 is here.
  • the decrease in insulation resistance between the pair of discharge electrodes can be prevented for a long period of time.
  • the insulating rings 44a to 44f constituting the outer walls of the arc chamber 46a and the expansion chamber 46b are formed of an insulating resin, there is a possibility that they are damaged by a large internal pressure applied when the arc is generated. In order to prevent this, it is preferable to increase the mechanical strength by adding an inorganic reinforcing material such as glass fiber to the insulating resin.
  • the metal arc extinguishing plate 47 of Example 1 is also obtained by sintering a low melting point metal that melts at a relatively low temperature, for example, copper powder and a high melting point metal that does not melt to a high temperature, for example, tungsten powder. Since it is composed of the formed sintered alloy, the synergistic function of the low melting point metal and the high melting point metal, as in the embodiment of FIG. Since the wear of the plate can be reduced, the life of the arrester can be extended.
  • the structure of the upper end portion of the resin insulator 42a and the upper electrode tip portion 41a-1 of the resin spacing member 42 that maintains the distance between the pair of discharge electrodes 41a and 41b in the first embodiment is improved. Is.
  • the thickness g of the exposed portion of the resin insulator in the gap forming the discharge gap G is set to the depth d of the fitting recess 41a-6 provided in the upper electrode tip 41a-1.
  • the resin insulator 42a to be fitted in is determined based on the difference from the thickness t of the fitting portion at the upper end portion.
  • the size of the insulating discharge gap G is uniquely determined by g.
  • the protrusion 42a-1 of the resin insulator 42a of the resin spacer 42 is formed in the fitting hole 41a-7 of the upper electrode tip portion 41a-1.
  • the resin spacer 42 is coupled to the upper electrode tip 41a-1 by fitting, but in the first embodiment, the recess 41a-6 of the upper electrode tip 41a-1 for determining the size of the insulation gap G is used. In addition, no fitting convex portion of the resin insulator 42a is provided in the concave portion.
  • the thickness of the exposed portion of the outer peripheral surface between the upper electrode tip portion 41a-1 of the resin insulator 42a of the resin spacer 42 and the upper end of the resin conductor 42b of the resin spacer 42 can be easily defined.
  • the mechanical strength of the insulating rings 44a to 44f formed of an insulating resin constituting the outer walls of the arc chamber 46a and the expansion chamber 46b is increased, and a large internal pressure rise when an arc is generated.
  • the vent ring is provided in the outer wall of the insulating ring to balance the pressure inside and outside the insulating ring. Is preventing.
  • the spark gap arrester according to the third embodiment includes two insulating rings 44a to 44f made of insulating resin divided into a plurality of parts constituting an insulating cylinder 44 housed in a cylindrical metal case 45.
  • the only difference is the configuration of the first embodiment except that one air passage 44b-1 and 44e-1 are provided in the rings 44b and 44e, respectively. To do.
  • a pair of partition walls 44p and 44q are formed to protrude so as to face each other.
  • a resin interval body 42 virtually indicated by a one-dot chain line is accommodated in the insulating cylinder 44 and is fitted and coupled to the partition walls 44p and 44q so that the internal space of the insulating cylinder 44 is partitioned into an arc chamber 46a and an expansion chamber 46b.
  • an arc extinguishing plate 47 that is virtually indicated by a one-dot chain line is installed.
  • the ventilation path 44b-1 is provided in the outer insulating ring 44b of the expansion chamber.
  • One or two or more ventilation paths may be provided as communication holes that communicate with the inside and outside of the peripheral wall of the insulating ring.
  • the air passage 44e-1 provided in the insulating ring 44e is also provided on the surface to be joined to the other insulating ring 44d of the insulating ring 44e.
  • FIG. 7 shows an example in which two insulating rings provided with an air passage are provided, but only one insulating ring provided with an air passage may be provided, or two or more may be provided.
  • the mechanical strength of the insulating ring constituting the insulating cylinder is increased to prevent the insulating ring from being damaged due to an increase in internal pressure accompanying the occurrence of arc discharge.
  • the insulation ring is made of resin, there is a limit to increasing the mechanical strength of the insulation ring. This method completely prevents damage to the insulation ring due to internal pressure rise due to arc discharge. Difficult to do.
  • a part of the insulating cylinder 44 accommodated in the metal case 45 is provided with a ventilation path leading to the inner and outer periphery of the insulating cylinder 44.
  • the spark gap arrester of Example 3 since the insulating ring can be formed of an insulating resin having low mechanical strength, the spark gap arrester can be manufactured at low cost and can be used safely for a long time. it can.
  • 40 Spark gap arrester, 41a, 41b: Discharge electrode, 42: Resin spacer, 42a: Resin insulator, 42b: Resin conductor, 43a, 43b: Insulation cap, 44 (44a to 44f): Insulating cylinder (split insulation) Ring), 44b-1, 44e-1, 45: metal case, 46a: arc chamber, 46b: expansion chamber, 47 (47a to 47c): metal arc extinguishing plate.

Landscapes

  • Thermistors And Varistors (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

[Problem] To provide a spark gap arrester having an enclosed structure in which: arc extinguishing performance is enhanced by generating sufficient arc extinguishing gas during the generation of electrical discharge and causing an arc resulting from lightning surge current to move in a reliable manner within an arc extinguishing plate; and in which melting and evaporation of the arc extinguishing plate that are caused by lightning surge current are reduced so as to increase the use life of the spark gap arrester. [Solution] An insulating discharge cap comprising a composite body of an insulating resin that generates arc extinguishing gas when heated and a conductive resin that generates arc extinguishing gas in a similar manner when heated are arranged between a pair of discharge electrodes. The discharge electrodes are arranged so as to face one another with an interval therebetween inside a cylindrical metal case, and form a circular truncated cone or round pillar shape. A plurality of arc-extinguishing metal plates are arranged with a predetermined interval therebetween on the outer surface of the insulating discharge cap, said arc-extinguishing metal plates being formed from a conductive sintered alloy configured by mixing and sintering one or more metals having a high melting point with one or more metals having a low melting point.

Description

火花ギャップアレスタSpark gap arrestor
 本発明は、落雷の際に過電圧に対して敏感な電子機器を保護するために、低圧電源回路に設置され、雷電流を大地にバイパスして放流するための火花ギャップアレスタに関する。 The present invention relates to a spark gap arrester that is installed in a low-voltage power supply circuit and that bypasses lightning current to the ground and discharges it in order to protect electronic devices that are sensitive to overvoltage during lightning strikes.
 落雷電流を安全に大地にバイパスして放流することのできる火花ギャップアレスタとしては特許文献1に示すものが知られている。 As a spark gap arrester that can safely discharge lightning current by bypassing it to the ground, the one shown in Patent Document 1 is known.
 この特許文献1に開示された火花ギャップアレスタの構成を図9に示す。 FIG. 9 shows the configuration of the spark gap arrester disclosed in Patent Document 1.
  図9において、10は、火花ギャップアレスタであり、すべての部品が中心軸に対して回転対称構造で配置されている。 In FIG. 9, 10 is a spark gap arrester, and all parts are arranged in a rotationally symmetric structure with respect to the central axis.
 アレスタ10の1対の放電電極11a、11bは、円柱状絶縁物12により、一定の放電ギャップGを保持して対向している。この放電ギャップGの大きさが、放電電圧を決定する。放電電極11a、11bから引出導体17a、17bが引き出され、これらの引出導体を介してアレスタ10が保護対象の電気回路に接続される。電気回路に誘導された高電圧の雷インパルス電圧がアレスタ10に加わると、アレスタ10では、放電電極11a、11b間の放電ギャップGで火花放電から始まり、アーク放電へ移行する放電が生起して、雷インパルス電圧を吸収する。大電流のアーク放電はアレスタ10の内部空間Sの空気に急激なイオン化と膨張を惹き起すが、放電電極11a、11bを取り囲む、円筒状絶縁物13、絶縁板14a、14bおよび絶縁キャップ15a、15bからなる絶縁ケースの外側を金属パイプ16によって覆い、その上下両端をカーリング加工によって堅固に閉じているため、内部圧力が数10気圧を超えても爆発、破損することがない。 The pair of discharge electrodes 11 a and 11 b of the arrester 10 are opposed to each other while maintaining a certain discharge gap G by the cylindrical insulator 12. The size of the discharge gap G determines the discharge voltage. Lead conductors 17a and 17b are drawn out from the discharge electrodes 11a and 11b, and the arrester 10 is connected to an electric circuit to be protected through these lead conductors. When a high-voltage lightning impulse voltage induced in the electric circuit is applied to the arrester 10, the arrester 10 generates a discharge that starts from a spark discharge at the discharge gap G between the discharge electrodes 11a and 11b and shifts to an arc discharge. Absorbs lightning impulse voltage. The large-current arc discharge causes rapid ionization and expansion in the air in the internal space S of the arrester 10, but the cylindrical insulator 13, the insulating plates 14a and 14b, and the insulating caps 15a and 15b surrounding the discharge electrodes 11a and 11b. The outer side of the insulating case is covered with a metal pipe 16 and its upper and lower ends are firmly closed by curling, so that it does not explode or break even if the internal pressure exceeds several tens of atmospheres.
 雷インパルス電流は、持続時間が1ms以下の短時間であり、金属部品の熱容量が充分に大きいために、この電流の放電によっては過度の温度上昇も生じない。 The lightning impulse current has a short duration of 1 ms or less, and the heat capacity of the metal parts is sufficiently large. Therefore, the discharge of this current does not cause an excessive temperature rise.
 しかし、このような従来の火花ギャップアレスタ10は、雷インパルス電流が消滅した後、内部空間Sの空気通路がイオン化されているため、この空気通路を通って電源回路から電流の続流が生じる。この続流を外部の回路遮断器によって遮断すれば、負荷回路に対する電源供給が遮断されたり、また、火花ギャップアレスタ10が電源線から遮断されることにより過電圧保護機能が失われたりする不都合が生ずる。 However, in such a conventional spark gap arrester 10, since the air passage in the internal space S is ionized after the extinction of the lightning impulse current, a current continuity is generated from the power supply circuit through the air passage. If this continuity is interrupted by an external circuit breaker, the power supply to the load circuit is interrupted, or the spark gap arrester 10 is interrupted from the power supply line, resulting in a disadvantage that the overvoltage protection function is lost. .
 この問題を解決するための火花ギャップアレスタとして、特許文献2に示す構成の火花ギャップアレスタがすでに知られている。 As a spark gap arrester for solving this problem, a spark gap arrester having a configuration shown in Patent Document 2 is already known.
 図10は、この特許文献2に開示された火花ギャップアレスタ20の構成を示す縦断面図である。構成要素はすべて回転対称に構成、配置されている。 FIG. 10 is a longitudinal sectional view showing the configuration of the spark gap arrester 20 disclosed in Patent Document 2. As shown in FIG. All the components are constructed and arranged in rotational symmetry.
 この図10における従来の火花ギャップアレスタ20は、円筒状の金属ケース28内に、所定の放電ギャップGを保って対向配置された1対の放電電極21a、21bを有する。各放電電極は、銅材で構成された基部22a、22bの先端に、耐熱性、耐アーク性に優れた銅タングステン合金で構成された先端部23a、23bを結合して構成されている。また、1対の放電電極は、絶縁碍子24、絶縁板26a、26b、絶縁キャップ27a、27bを介して金属ケース28の中に固定支持される。放電ギャップGの大きさは、放電電極21a,21b間に挟み込まれた絶縁碍子24の厚さを調整することによって、簡単に設定することができる。絶縁碍子24の外周には、加熱により消弧性ガスを発生する有機絶縁材で構成された絶縁リング25が被嵌されている。放電電極21a,21bの周囲には、磁性金属リングで構成された複数の消弧板29(a~i)が相互に所定間隔おいて絶縁して配置されている。 The conventional spark gap arrester 20 in FIG. 10 has a pair of discharge electrodes 21a and 21b arranged in a cylindrical metal case 28 so as to face each other while maintaining a predetermined discharge gap G. Each discharge electrode is configured by joining tip portions 23a and 23b made of a copper tungsten alloy having excellent heat resistance and arc resistance to the tips of base portions 22a and 22b made of a copper material. The pair of discharge electrodes is fixedly supported in the metal case 28 via the insulator 24, the insulating plates 26a and 26b, and the insulating caps 27a and 27b. The size of the discharge gap G can be easily set by adjusting the thickness of the insulator 24 sandwiched between the discharge electrodes 21a and 21b. An insulating ring 25 made of an organic insulating material that generates an arc extinguishing gas by heating is fitted on the outer periphery of the insulator 24. Around the discharge electrodes 21a and 21b, a plurality of arc-extinguishing plates 29 (ai) made of magnetic metal rings are arranged so as to be insulated from each other at a predetermined interval.
 この火花ギャップアレスタ20の内部空所Sにおいて、放電電極21a、21b間に生じる放電は、初期においては両電極の先端部23a、23b間にまたがるアーク放電路Aに発生する。アーク放電路Aにアーク放電が発生すると、このアークの熱によって、両電極間に配置された有機系消弧絶縁材で構成された絶縁リング25から消弧性ガスが放出される。このガスの圧力および、磁性消弧板29とアーク電流間の電磁力により、アーク放電路Aのアークが消弧板29の方向に移動され、消弧板29の全体に拡がるアーク放電路Bに移る。このアーク放電路Bの中の個々の消弧板29の両面にアーク放電の陰、陽極電圧降下が発生する。 In the internal space S of the spark gap arrester 20, the discharge generated between the discharge electrodes 21a and 21b is initially generated in the arc discharge path A extending between the tip portions 23a and 23b of both electrodes. When an arc discharge occurs in the arc discharge path A, arc-extinguishing gas is released from the insulating ring 25 made of an organic arc-extinguishing insulating material disposed between both electrodes due to the heat of the arc. Due to the pressure of this gas and the electromagnetic force between the magnetic arc extinguishing plate 29 and the arc current, the arc of the arc discharge path A is moved in the direction of the arc extinguishing plate 29 and the arc discharge path B spreads over the entire arc extinguishing plate 29. Move. Arc discharge and anode voltage drop occur on both sides of each arc extinguishing plate 29 in the arc discharge path B.
 アーク放電の両端の放電電極にも陰、陽極電圧降下が発生するのでn枚の消弧板を使用するとアーク放電路B内の陽極および陰極電圧降下は、(n+1)×(U+U)となり、放電電極21a、21b間の印加電圧に対して逆起電力として作用する。雷インパルス電流が消滅する直前に交流電源回路から流れる電流の続流は、雷インパルス電流の放電経路と同じ経路を通ってアークを形成するが、交流電源回路の電圧の瞬時値が続流アークの逆起電圧よりも低くなったところで続流が遮断され、アーク放電は消滅する。 Since an anode voltage drop also occurs in the discharge electrodes at both ends of the arc discharge, when n arc extinguishing plates are used, the anode and cathode voltage drop in the arc discharge path B is (n + 1) × (U A + U K ) Thus, it acts as a counter electromotive force on the voltage applied between the discharge electrodes 21a and 21b. The continuity of the current flowing from the AC power supply circuit immediately before the lightning impulse current disappears forms an arc through the same path as the discharge path of the lightning impulse current, but the instantaneous value of the voltage of the AC power supply circuit is When the voltage is lower than the counter electromotive voltage, the continuity is interrupted and the arc discharge disappears.
 従って、この従来の火花ギャップアレスタ20によれば、雷インパルス電流の消滅後の電源回路からの続流を遮断することができる。 Therefore, according to the conventional spark gap arrester 20, it is possible to cut off the continuity from the power supply circuit after the extinction of the lightning impulse current.
 しかし、この従来の火花ギャップアレスタ20にも次の2つの欠点がある。
(1)アーク発生時に消弧性ガスを発生する絶縁リング25が放電電極の内側に配置されているため、消弧性ガスの発生量が少ない。従ってアークを消弧板に移動させるための力が不十分となり、アークの移動距離が不足することによって消弧性能が低下する。
(2)消弧板29a~29iに純鉄等の磁性材料を使用した場合、雷インパルス電流は、電流が20kA以上の極めて大電流で、かつ、立ち上り速度が2kA/μs以上と極めて速いため、消弧板がアーク電流によって溶融蒸発することにより、消弧板の機能が低下するとともに、アレスタの寿命が短くなる。
However, this conventional spark gap arrester 20 also has the following two drawbacks.
(1) Since the insulating ring 25 that generates the arc-extinguishing gas when the arc is generated is disposed inside the discharge electrode, the amount of arc-extinguishing gas generated is small. Accordingly, the force for moving the arc to the arc extinguishing plate becomes insufficient, and the arc extinguishing performance is deteriorated due to insufficient arc moving distance.
(2) When a magnetic material such as pure iron is used for the arc extinguishing plates 29a to 29i, the lightning impulse current is an extremely large current of 20 kA or more and a rising speed of 2 kA / μs or more, When the arc extinguishing plate is melted and evaporated by the arc current, the function of the arc extinguishing plate is lowered and the life of the arrester is shortened.
欧州特許出願公開第0789434号明細書European Patent Application No. 0789434 国際公開第2005-074084号International Publication No. 2005-074084
 従って本発明の課題は、封入構造の火花ギャップアレスタにおいて、放電発生時に消弧性ガスを十分に発生させて雷インパルス電流によるアークを確実に消弧板内に移動させることにより消弧性能を高めて続流を確実に防止し、かつ雷インパルス電流による消弧板の溶融蒸発を少なくすることにより寿命を長くすることのできる火花ギャップアレスタを提供することにある。 Accordingly, an object of the present invention is to improve arc extinguishing performance in a spark gap arrester having an encapsulated structure by sufficiently generating an arc extinguishing gas at the time of occurrence of a discharge and reliably moving an arc caused by a lightning impulse current into the arc extinguishing plate. Another object of the present invention is to provide a spark gap arrester that can prevent the continuity and reliably extend the life of the arc extinguishing plate due to lightning impulse current.
 前記の課題を解決するため、請求項1の発明は、 前記1対の放電電極の間に、加熱により消弧性ガスを発生する絶縁性樹脂により形成した樹脂絶縁体と、同様に加熱により消弧性ガスを発生する導電性樹脂により形成した樹脂導電体との複合体からなる樹脂間隔体を配置し、前記放電電極の一方と前記前記樹脂間隔体の前記樹脂導電体部との間に、絶縁放電ギャップを形成する前記樹脂間隔体の前記樹脂絶縁体部の層を介在させるとともに、前記樹脂間隔体の外側に、単数又は複数の高溶融点金属と単数又は複数の低溶融点金属とを焼結して構成した導電性の焼結合金により形成した複数の金属消弧板を所定間隔離して配置したことを特徴とする。 In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that a resin insulator formed of an insulating resin that generates an arc-extinguishing gas by heating between the pair of discharge electrodes is similarly extinguished by heating. Arranging a resin interval body composed of a composite with a resin conductor formed of a conductive resin that generates arc gas, between one of the discharge electrodes and the resin conductor portion of the resin interval body, A layer of the resin insulator part of the resin interval forming the insulating discharge gap is interposed, and one or more high melting point metals and one or more low melting point metals are disposed outside the resin interval. A plurality of metal arc-extinguishing plates formed of a conductive sintered alloy formed by sintering are arranged separated by a predetermined distance.
 請求項2の発明は、請求項1の発明において、前記金属消弧板を形成する焼結合金は、低融点金属が銅であり、高融点金属がタングステンであることを特徴とする。 The invention of claim 2 is characterized in that, in the invention of claim 1, the sintered alloy forming the metal arc extinguishing plate is characterized in that the low melting point metal is copper and the high melting point metal is tungsten.
 請求項3の発明は、前記請求項1または2の発明おいて前記樹脂間隔体の樹脂絶縁体で構成された一端と樹脂導電体で構成された他端をそれぞれ前記1対の放電電極の互いに対向する端面の凹部に嵌合し、前記樹脂間隔体の樹脂絶縁体で構成された一端の嵌合された側の放電電極の凹部の深さと、この凹部に挿入される前記樹脂間隔体の樹脂絶縁体で構成された一端側の絶縁体の厚みとの差により、前記放電ギャップの寸法を規定したことを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, one end of the resin interval body made of a resin insulator and the other end made of a resin conductor are respectively connected to the pair of discharge electrodes. The depth of the recessed portion of the discharge electrode on the fitted side of one end, which is configured by the resin insulator of the resin interval body, and the resin of the resin interval body inserted into the recess The size of the discharge gap is defined by the difference with the thickness of the insulator on one end side made of an insulator.
 請求項4の発明は、請求項1から3の何れか1つの発明において、前記1対の放電電極の周囲の空間を絶縁材により構成した隔壁により仕切って複数の空間を形成し、その1つをアーク室とし他の1つを膨張室として、これらの各室を気体通路によって相互に連通したことを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, a plurality of spaces are formed by partitioning a space around the pair of discharge electrodes with a partition wall made of an insulating material. And the other one as an expansion chamber, and these chambers communicate with each other by a gas passage.
 請求項5の発明は、前記の請求項1から4の何れか1つの発明おいて、前記1対の放電電極間の空間に設けられた前記アーク室内に、前記樹脂間隔体を構成する樹脂導電体部を収容し、この導電体部と対向して前記金属消弧板を配置したことを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the resin conductive material constituting the resin spacing member is provided in the arc chamber provided in the space between the pair of discharge electrodes. A body part is accommodated, and the metal arc extinguishing plate is arranged opposite to the conductor part.
 請求項6の発明は、請求項1から5の何れか1つの発明において、前記円筒状金属ケースの内側に複数の分割構成された絶縁リングを連接接合して構成した絶縁筒が挿入され、前記複数の金属消弧板が、前記絶縁筒を構成する絶縁リングにより、相互の間隔が保たれ、かつ前記金属ケースから電気的に絶縁して固定されたことを特徴とする。 According to a sixth aspect of the present invention, in any one of the first to fifth aspects of the present invention, an insulating cylinder configured by connecting and joining a plurality of divided insulating rings is inserted inside the cylindrical metal case, The plurality of metal arc extinguishing plates are fixed by being electrically insulated from the metal case while being spaced apart from each other by an insulating ring constituting the insulating cylinder.
 請求項7の発明は、請求項1から6の何れか1項の発明において、前記金属ケースの内側に挿入した前記絶縁リングの一部の内周に先端を鈎形に折曲して形成された環状溝を有する環状突起を設けたことを特徴とする。 The invention of claim 7 is the invention of any one of claims 1 to 6, wherein the tip is bent into a hook shape on the inner periphery of a part of the insulating ring inserted inside the metal case. An annular projection having an annular groove is provided.
 請求項8の発明は請求項6または7の発明において、前記絶縁筒を構成する絶縁リングの少なくとも1つにこのリングの内外周に通じる通気路を少なくとも1個設けたことを特徴とする。 The invention of claim 8 is characterized in that, in the invention of claim 6 or 7, at least one of the insulating rings constituting the insulating cylinder is provided with at least one air passage leading to the inner and outer periphery of the ring.
 請求項9に記載の発明は、請求項8の発明において、前記通気路は、前記絶縁筒を構成する絶縁リングの接合部に設けたことを特徴とする。 The invention according to claim 9 is the invention according to claim 8, wherein the air passage is provided at a joint portion of an insulating ring constituting the insulating cylinder.
 請求項10の発明は、請求項1から9の何れか1つの発明において、前記加熱により消弧性ガスを発生する絶縁性樹脂が無機強化材を含む複合樹脂であることを特徴とする。 The invention of claim 10 is characterized in that, in any one of the inventions of claims 1 to 9, the insulating resin that generates arc-extinguishing gas by heating is a composite resin containing an inorganic reinforcing material.
 請求項11の発明は、請求項1から10の何れか1つの発明おいて、前記加熱により消弧性ガスを発生する絶縁性樹脂はポリオキシメチレン(POM)樹脂であり、前記加熱により消弧性ガスを発生する導電性樹脂は前記ポリオキシメチレン(POM)樹脂にカーボン粉末を混合した樹脂であることを特徴とする。 The invention of claim 11 is the invention according to any one of claims 1 to 10, wherein the insulating resin that generates an arc extinguishing gas by heating is a polyoxymethylene (POM) resin, and the arc extinguishing by the heating. The conductive resin that generates the reactive gas is a resin in which carbon powder is mixed with the polyoxymethylene (POM) resin.
 本発明によれば、次に述べるような優れた効果が得られる。
(1)円錐台又は円柱状放電電極間に配置した樹脂間隔体を、加熱により消弧性ガスを発生する絶縁性樹脂で形成した樹脂絶縁体と加熱により消弧性ガスを発生する導電性樹脂で形成した樹脂導電体の複合体により構成し、絶縁体部の表面に放電ギャップを形成しているため、この放電ギャップに発生したアークを樹脂間隔体全体の沿面に進展させることができるので、アーク放電によって樹脂間隔体表面から大量の消弧性ガスを発生させることができる。これにより、樹脂間隔体表面を走行するアークを確実に消弧板側へ移動させてアークを分断し、アーク電圧を高めることができることにより、雷インパルス電流が減衰後の電源からの続流を確実に防止することができる。
(2)円筒状金属ケースに封入された火花ギャップアレスタにおいて、対向配置した円錐台又は円柱状の1対の放電電極間の空間に配置した金属消弧板を、低融点金属粉末と高融点金属粉末を混合、焼結して形成した焼結合金により構成したことにより、金属消弧板が雷インパル電流によるアーク放電に曝されても消弧板の損耗を小さくし、アレスタの寿命を長くすることができる。
According to the present invention, the following excellent effects can be obtained.
(1) Resin insulator formed with an insulating resin that generates arc-extinguishing gas by heating a resin spacer disposed between truncated cones or cylindrical discharge electrodes and conductive resin that generates arc-extinguishing gas by heating Since the discharge gap is formed on the surface of the insulator portion, the arc generated in the discharge gap can be propagated along the entire surface of the resin interval body. A large amount of arc extinguishing gas can be generated from the surface of the resin spacer by arc discharge. As a result, the arc traveling on the surface of the resin interval body can be reliably moved to the arc extinguishing plate side, and the arc can be divided to increase the arc voltage. Can be prevented.
(2) In a spark gap arrester enclosed in a cylindrical metal case, a metal arc extinguishing plate arranged in a space between a pair of conical frustums or a columnar discharge electrode is used as a low melting metal powder and a high melting metal. Composed of a sintered alloy formed by mixing and sintering powder, the arc extinguishing plate is reduced in wear even if the metal arc extinguishing plate is exposed to arc discharge by lightning impal current, and the life of the arrester is extended. be able to.
本発明の火花ギャップアレスタの原理的な構成を示す図であり、(a)は、(b)におけるa-a線に沿う横断面図、(b)は(a)におけるb-b線に沿う縦断面図。It is a figure which shows the fundamental structure of the spark gap arrester of this invention, (a) is a cross-sectional view which follows the aa line in (b), (b) is along the bb line in (a). FIG. 本発明に使用する金属消弧板を構成する焼結合金板の構造を模式的に示す断面図。Sectional drawing which shows typically the structure of the sintered alloy board which comprises the metal arc-extinguishing board used for this invention. 本発明の動作説明に用いるアーク放電の電圧-電流特性を示す線図。The diagram which shows the voltage-current characteristic of the arc discharge used for operation | movement description of this invention. 本発明の第1の実施例を示す構成図であり、(a)は縦断面図、(b)は(a)におけるA部分を拡大して示す部分拡大縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the 1st Example of this invention, (a) is a longitudinal cross-sectional view, (b) is the elements on larger scale which expand and show the A section in (a). 図4(a)のV-V線に沿う横断面図。The cross-sectional view which follows the VV line of Fig.4 (a). 本発明の第2の実施例を示す構成図であり、(a)は縦断面図、(b)は(a)におけるA部分を拡大して示す部分拡大縦断面図。It is a block diagram which shows the 2nd Example of this invention, (a) is a longitudinal cross-sectional view, (b) is the elements on larger scale which expand and show the A section in (a). 本発明の第3の実施例の火花ギャップアレスタの構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the spark gap arrester of the 3rd Example of this invention. 本発明の第3の実施例の火花ギャップアレスタに使用する1つの絶縁リングの構成図であり、(a)は平面図、(b)左側面図、(c)は(a)におけるc-c線に沿う縦断面図。It is a block diagram of one insulating ring used for the spark gap arrester of 3rd Example of this invention, (a) is a top view, (b) Left side view, (c) is cc in (a). The longitudinal cross-sectional view which follows a line. 火花ギャップアレスタの従来例の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the prior art example of a spark gap arrester. 火花ギャップアレスタの他の従来例の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the other conventional example of a spark gap arrester.
 まず、図1に示す本発明による火花ギャップアレスタの原理的な構成について説明する。 First, the basic configuration of the spark gap arrester according to the present invention shown in FIG. 1 will be described.
 図1において、30は火花ギャップアレスタであり、円筒状の絶縁ケース33内に所定間隔をおいて納められた1対の放電電極31a、31bを備える。電極31a、31bの間隔は、この間に挿入された円形の樹脂間隔体32によって保たれている。この樹脂間隔体32は、例えば、POMと呼ばれているポリオキシメチレン樹脂のような、高温で消弧性ガスを発生する樹脂で形成された消弧性樹脂絶縁体32aと、このポリオキシメチレン樹脂に導電性のカーボン粉末を添加して導電性を持たせた樹脂で形成した消弧性樹脂導電体32bとを一体に結合して形成した複合樹脂で構成される。このため、樹脂間隔体32は、軸方向に2分された半部32aが絶縁性を示し、残り半部32bが導電性を示す。 In FIG. 1, reference numeral 30 denotes a spark gap arrester, which includes a pair of discharge electrodes 31a and 31b accommodated in a cylindrical insulating case 33 at a predetermined interval. The spacing between the electrodes 31a and 31b is maintained by a circular resin spacing member 32 inserted therebetween. The resin spacer 32 includes, for example, an arc extinguishing resin insulator 32a formed of a resin that generates an arc extinguishing gas at a high temperature, such as a polyoxymethylene resin called POM, and the polyoxymethylene. It is composed of a composite resin formed by integrally joining an arc extinguishing resin conductor 32b formed of a resin imparted with conductivity by adding conductive carbon powder to the resin. For this reason, as for the resin space | interval body 32, the half part 32a divided into 2 by the axial direction shows insulation, and the remaining half part 32b shows electroconductivity.
 ポリオキシメチレン樹脂は、カーボンのような導電剤を添加、混合しても高温で多量の消弧性ガスを発生する特性は失われないので、消弧性樹脂導電体32bは、消弧性樹脂絶縁体32aと全く同等の消弧性ガス発生機能を有する。 Since the polyoxymethylene resin does not lose the characteristic of generating a large amount of arc-extinguishing gas at a high temperature even when a conductive agent such as carbon is added and mixed, the arc-extinguishing resin conductor 32b is an arc-extinguishing resin. It has an arc extinguishing gas generation function exactly the same as that of the insulator 32a.
 樹脂間隔体32は、それぞれほぼ半円柱状に形成された消弧性樹脂絶縁体32aと消弧性樹脂導電体32bとを互いの平面部分を接合して円柱状に形成されている(図1(a)参照)。そして、消弧性樹脂絶縁体32aの中間部に樹脂間隔体32の半径方向に突出した薄い半円板状の突出部32cが形成され、この突出部32cの外周面は消弧性樹脂導電体32bの外周面まで延びアーク室36a内に露出する(図1(b)参照)。突出部32cの上下面は、各面上に配置された消弧性の樹脂導電体32bの上下に分割した分割体32b-1,32b-2を介して、それぞれ放電電極31a、31bと導電結合される。突出部32cの厚さが放電電極31a、31b間の放電ギャップGを形成し、例えば、この放電ギャップGの大きさを0.3mmに選定すると、放電電極31a、31b間に2kV程度の雷インパルス電圧が加わったとき、この放電ギャップGの絶縁が破壊され、閃絡(火花放電)が発生する。 The resin spacing member 32 is formed in a columnar shape by joining the arc extinguishing resin insulator 32a and the arc extinguishing resin conductor 32b formed in a substantially semi-cylindrical shape to each other in a plane portion (FIG. 1). (See (a)). A thin semi-disc-shaped protrusion 32c protruding in the radial direction of the resin spacer 32 is formed in the middle of the arc-extinguishing resin insulator 32a, and the outer peripheral surface of the protrusion 32c is the arc-extinguishing resin conductor. It extends to the outer peripheral surface of 32b and is exposed in the arc chamber 36a (see FIG. 1B). The upper and lower surfaces of the projecting portion 32c are electrically coupled to the discharge electrodes 31a and 31b via the divided bodies 32b-1 and 32b-2 divided above and below the arc-extinguishing resin conductor 32b disposed on each surface, respectively. Is done. The thickness of the protrusion 32c forms a discharge gap G between the discharge electrodes 31a and 31b. For example, if the size of the discharge gap G is selected to be 0.3 mm, a lightning impulse of about 2 kV between the discharge electrodes 31a and 31b. When a voltage is applied, the insulation of the discharge gap G is broken and a flash (spark discharge) is generated.
 放電電極31a、31bおよび樹脂間隔体32を封入した円筒状の絶縁ケース33の内部空間は、樹脂間隔体32の絶縁体32aと導電体32bとの境界部分で、前記樹脂間隔体32と同様に消弧性絶縁樹脂で形成された半径方向の絶縁隔壁35a、35bによって仕切られた2つの空間を形成する。この2つの空間の一方をアーク室36aとし、他方を膨張室36bとする。絶縁隔壁35a、35bには、それぞれ通気路35h、35hが設けられ、これによって両室が連通されるので、アーク室36bのアークによる過大な内圧上昇を膨張室36bが吸収し、アーク室36aの圧力上昇を抑える働きをする。 The internal space of the cylindrical insulating case 33 enclosing the discharge electrodes 31a and 31b and the resin spacer 32 is a boundary portion between the insulator 32a and the conductor 32b of the resin spacer 32 and is similar to the resin spacer 32. Two spaces are formed which are partitioned by insulating partition walls 35a and 35b in the radial direction made of arc-extinguishing insulating resin. One of the two spaces is an arc chamber 36a and the other is an expansion chamber 36b. The insulating partition walls 35a and 35b are provided with air passages 35h and 35h, respectively, so that both chambers communicate with each other. Therefore, the expansion chamber 36b absorbs an excessive increase in internal pressure due to the arc in the arc chamber 36b, and the arc chamber 36a It works to suppress the pressure rise.
 アーク室36a内には樹脂間隔体32の消弧性の樹脂導電体32bが収まり、膨張室36b内に消弧性の樹脂絶縁体32aが収まる。アーク室36aには、消弧性の樹脂導電体32bおよび消弧性の樹脂絶縁体32aの突出部32cの外周面と対向して、消弧板37が所定の間隔をおいて配置されている。この消弧板37は、環状平板を部分的に切り取った形状の複数の導電性金属消弧板37a~37eを軸方向に所定間隔おいて積層して構成される。この金属消弧板37a~37eは、1種類以上の低融点金属粉末と1種類以上の高融点金属粉末を焼結して形成した導電性の焼結合金板によって構成され、相互に一定の間隔を保って、絶縁ケース33によって保持されている。 In the arc chamber 36a, the arc-extinguishing resin conductor 32b of the resin interval body 32 is accommodated, and the arc-extinguishing resin insulator 32a is accommodated in the expansion chamber 36b. In the arc chamber 36a, arc extinguishing plates 37 are arranged at predetermined intervals so as to face the outer peripheral surfaces of the arc extinguishing resin conductor 32b and the projecting portion 32c of the arc extinguishing resin insulator 32a. . The arc-extinguishing plate 37 is formed by laminating a plurality of conductive metal arc-extinguishing plates 37a to 37e having a shape obtained by partially cutting an annular flat plate at predetermined intervals in the axial direction. The metal arc extinguishing plates 37a to 37e are composed of conductive sintered alloy plates formed by sintering one or more types of low melting point metal powders and one or more types of high melting point metal powders, and are spaced apart from each other by a certain distance. And is held by the insulating case 33.
 消弧板37を形成する焼結合金としては、例えば、低融点金属として銅を20重量%、高融点金属としてタングステンを80重量%含有する焼結合金を使用することができる。 As the sintered alloy forming the arc extinguishing plate 37, for example, a sintered alloy containing 20% by weight of copper as a low melting point metal and 80% by weight of tungsten as a high melting point metal can be used.
 次にこのように構成された本発明の火花ギャップアレスタの動作を説明する。 Next, the operation of the spark gap arrester of the present invention configured as described above will be described.
 アレスタの接続される保護対象の施設の電気回路の通常の使用電圧は、100~400V程度の低電圧である。樹脂間隔体32の絶縁体32aの突出部32cを挟んで対向する消弧性樹脂導電体32bの端縁部間の放電ギャップGによって1対の放電電極31a、31b間の耐電圧は、数kVに設定されているので、1対の放電電極31aと31bとの間に通常の使用電圧が加わっても、放電ギャップGの絶縁が維持され、放電は起きない。 The normal working voltage of the electrical circuit of the protected facility to which the arrester is connected is a low voltage of about 100 to 400V. The withstand voltage between the pair of discharge electrodes 31a and 31b is several kV due to the discharge gap G between the edge portions of the arc extinguishing resin conductor 32b facing each other across the protruding portion 32c of the insulator 32a of the resin spacer 32. Therefore, even if a normal operating voltage is applied between the pair of discharge electrodes 31a and 31b, the insulation of the discharge gap G is maintained and no discharge occurs.
 電気回路の電路に、落雷等により高電圧の雷インパルス電圧が誘導され、放電電極31aと31bの間の樹脂間隔体32の絶縁体32aの突出部32cを挟んで対向する分割導電体32b-1と32b-2の上下の端縁間に放電ギャップGの耐電圧以上の雷インパルス電圧が加わると、この放電ギャップGの絶縁が破壊されて閃絡(火花放電)が生じる。この閃絡により、樹脂間隔体32の絶縁体32aの突出部32cの外周表面を経由して上下の分割導電体32b-1、32b-2の対向する端縁の閃絡点a、b間の点線で示す放電路Aに大きな電流が供給されるためアーク放電に発展する。さらに、このアーク放電によってアーク室36b内部空気がイオン化されることにより、放電路が1対の放電電極31a、31bのc、d点間に亘る点線で示す放電路Bにアークが拡大する。この放電路Bのアークによって消弧性の樹脂導電体32bが高温に加熱されることによりその表面から大量の消弧性ガスが発生し、アーク室から膨張室に向かうガス流が形成される。その時のガス圧力によって1対の放電電極間の放電路Bのアークが、金属消弧板37a~37eの中央部に移動し、点線で示す放電路Cが形成される。 A high-voltage lightning impulse voltage is induced in the electric circuit of the electric circuit by a lightning strike or the like, and the divided conductors 32b-1 facing each other with the protrusion 32c of the insulator 32a of the resin interval body 32 between the discharge electrodes 31a and 31b interposed therebetween. When a lightning impulse voltage higher than the withstand voltage of the discharge gap G is applied between the upper and lower edges of 32b-2, the insulation of the discharge gap G is broken and a flash (spark discharge) is generated. By this flashing, the gap between flashing points a and b at the opposing edges of the upper and lower divided conductors 32b-1 and 32b-2 via the outer peripheral surface of the protrusion 32c of the insulator 32a of the resin interval 32 is achieved. Since a large current is supplied to the discharge path A indicated by the dotted line, the arc discharge is developed. Furthermore, the arc inside the arc chamber 36b is ionized by this arc discharge, so that the arc expands to a discharge path B indicated by a dotted line extending between points c and d of the pair of discharge electrodes 31a and 31b. When the arc extinguishing resin conductor 32b is heated to a high temperature by the arc of the discharge path B, a large amount of arc extinguishing gas is generated from the surface, and a gas flow from the arc chamber toward the expansion chamber is formed. The arc of the discharge path B between the pair of discharge electrodes moves to the center of the metal arc extinguishing plates 37a to 37e by the gas pressure at that time, and the discharge path C indicated by the dotted line is formed.
 これにより、アークが、複数の金属消弧板37a~37eにより分断され、各消弧板間に生じる約30Vの陰、陽極電圧降下によってアーク電圧が上昇する。 Thus, the arc is divided by the plurality of metal arc extinguishing plates 37a to 37e, and the arc voltage rises due to a negative and anode voltage drop of about 30V generated between the arc extinguishing plates.
 このアーク電圧Uは、図1(b)に示すように、消弧板37が5枚設けられていると、これに放電電極31a,31bの陰極および陽極電圧降下が加わるので、
  U = 30(V)×(5+1) = 180(V)     (1)
となる。このように、1対の放電電極31a、31b間のアーク電圧が上昇することにより、雷インパルス電流が消滅した後に、アーク室36bの内部空気がイオン化されていることにより電源回路から続流が流れても、消弧板37によって生じる陰、陽極電圧降下は維持されるので、1対の放電電極31a、31b間に加わる電源回路電圧の瞬時値が180V以下に低下したところで、この陰、陽極電圧降下を維持することができないので、これを確実に遮断することができる。
The arc voltage U A, as shown in FIG. 1 (b), when the arc extinguishing plate 37 is provided five, to which the discharge electrodes 31a, since the cathode and anode voltage drop 31b is applied,
U A = 30 (V) × (5 + 1) = 180 (V) (1)
It becomes. In this way, the arc voltage between the pair of discharge electrodes 31a and 31b rises, and after the lightning impulse current disappears, the internal air in the arc chamber 36b is ionized, so that the continuity flows from the power supply circuit. However, since the negative and anode voltage drop generated by the arc extinguishing plate 37 is maintained, when the instantaneous value of the power supply circuit voltage applied between the pair of discharge electrodes 31a and 31b is reduced to 180 V or less, the negative and anode voltage is reduced. Since the descent cannot be maintained, this can be reliably blocked.
 金属消弧板37においては、雷インパルス電流のアークと接触することにより、接触部分のミクロンオーダの薄い領域に、約30Vの陰、陽極電圧降下が発生し、この電圧と20kAに達するインパルス電流との積で決まる損失熱が発生する。この損失熱によって消弧板37の表面が溶融する。純鉄などで構成した従来の磁性金属消弧板の場合は、この溶融した金属が高いアーク圧力によって瞬時に飛散し、消弧板の消耗量が大きくなることにより、溶融部分が更に深部にまで達するため、消弧板に貫通孔が生じて続流遮断機能を失うことがある。 In the metal arc-extinguishing plate 37, contact with the arc of the lightning impulse current causes an anode voltage drop of about 30 V in a thin region of micron order at the contact portion, and this voltage and an impulse current reaching 20 kA Loss heat is determined by the product of The surface of the arc extinguishing plate 37 is melted by this heat loss. In the case of a conventional magnetic metal arc extinguishing plate made of pure iron or the like, the molten metal is instantaneously scattered by a high arc pressure, and the consumed amount of the arc extinguishing plate increases, so that the molten part further reaches the deep part. Therefore, a through-hole may be formed in the arc extinguishing plate and the continuity blocking function may be lost.
 本発明においては、金属消弧板37を、比較的低温度で溶融する低融点金属、例えば銅の粉末と、高温度まで溶融しない高融点金属、例えばタングステンの粉末とを焼結して形成した焼結合金で構成しているため、雷インパルス電流による溶融,蒸発量が極めて少なくなり、消弧板の損耗を小さくすることができる。 In the present invention, the metal arc extinguishing plate 37 is formed by sintering a low melting point metal that melts at a relatively low temperature, such as copper powder, and a high melting point metal that does not melt up to a high temperature, such as tungsten powder. Since it is made of a sintered alloy, the amount of melting and evaporation due to lightning impulse current is extremely small, and wear of the arc extinguishing plate can be reduced.
 この理由を、図2を参照して説明する。 This reason will be described with reference to FIG.
 図2は、低融点金属と高融点金属の焼結合金で構成した消弧板の縦断面を模式的に拡大して示す金属組織図である。この図に示すように、消弧板の金属組織は、高融点金属の多数のタングステン粒子Wが高温焼成されるによって相互に結合し、その空隙部分を低融点金属の銅粒子Cuが埋める構造となっている。 FIG. 2 is a metal structure diagram schematically showing a longitudinal section of an arc extinguishing plate made of a sintered alloy of a low melting point metal and a high melting point metal. As shown in this figure, the metal structure of the arc extinguishing plate has a structure in which a large number of tungsten particles W of high melting point metal are bonded to each other by high-temperature firing, and the void portion is filled with copper particles Cu of low melting point metal. It has become.
 このような消弧板に雷インパルス電流のアークが接触すると、表面に露出した僅かな低融点金属の銅粒子Cuは、直ちに溶融飛散するが、高融点金属のタングステン粒子Wで構成された枠組み構造の内部の銅は溶融しても飛散することなく消弧板内部に留まり、その溶融熱によってアークによる損失熱を吸収して、周囲に伝達するように作用するため、消弧板が冷却され、消弧板の温度上昇が抑えられる。このため、低融点金属の銅粒子Cuの溶融、蒸発による消失が減少し、また、タングステン粒子Wの融点は銅粉末の融点よりも遥かに高いため、枠組み構造は溶融することなく強固に維持される。 When an arc of lightning impulse current comes into contact with such an arc extinguishing plate, a few low melting point metal copper particles Cu exposed on the surface immediately melt and scatter, but a framework structure composed of high melting point metal tungsten particles W. The copper inside the metal stays inside the arc extinguishing plate without scattering even if it melts, absorbs the heat lost by the arc by the heat of fusion and acts to transmit it to the surroundings, so the arc extinguishing plate is cooled, The temperature rise of the arc extinguishing plate can be suppressed. For this reason, the disappearance due to melting and evaporation of the copper particles Cu of the low melting point metal is reduced, and the melting point of the tungsten particles W is much higher than the melting point of the copper powder, so that the framework structure is firmly maintained without melting. The
 従って、比較的高い溶融点の金属と比較的低い溶融点の金属からなる焼結合金で構成した本発明の消弧板は、アークと接触しても損耗が極めて小さいため、アレスタの寿命を長く保つことができる。 Therefore, the arc extinguishing plate of the present invention composed of a sintered alloy composed of a metal having a relatively high melting point and a metal having a relatively low melting point has a very small wear even when it comes into contact with the arc, thus extending the life of the arrester. Can keep.
 本発明による火花ギャップアレスタの具体的な実施例を図4から図6に示す。以下これについて説明する。 Specific examples of the spark gap arrester according to the present invention are shown in FIGS. This will be described below.
 次に、本発明の具体的な実施の態様を図に示す実施例について説明する。 Next, specific embodiments of the present invention will be described with reference to examples shown in the drawings.
 本発明の第1の実施例を図4および図5に示す。図4は、この実施例1の火花ギャップアレスタ40の構成を示す縦断面図、図5は、図4のV-V線に沿う横断面図である。 FIG. 4 and FIG. 5 show a first embodiment of the present invention. 4 is a longitudinal sectional view showing the configuration of the spark gap arrester 40 of the first embodiment, and FIG. 5 is a transverse sectional view taken along the line VV of FIG.
 この実施例1においても、ほとんどの構成要素が、軸線に対して回転対称に構成、配置されている。ただ消弧板47だけは、図5に平面図形を示すように、環状の平板の一部を所定の円弧角で切り取った形状とされ、回転対称な構成とはなっていない。 Also in the first embodiment, most of the constituent elements are configured and arranged in rotational symmetry with respect to the axis. However, only the arc extinguishing plate 47 has a shape obtained by cutting a part of an annular flat plate at a predetermined arc angle as shown in a plan view in FIG. 5, and does not have a rotationally symmetric configuration.
 図4に示すように、1対の放電電極41a、41bは、通常の導電体である銅材で構成された基部41a-2、41b-2と、そしてこの基部の先端に結合された耐熱性、耐アーク性に優れる銅タングステン合金製のチップで構成された先端部41a-1、41b-1とからなる。基部41a-2、41b-2と先端部41a-1、41b-1とは、先端部に設けた凹部内に基部を挿入することで、ろう付け等の面倒な処理を行うことなく一体化されている。 As shown in FIG. 4, the pair of discharge electrodes 41a and 41b includes base portions 41a-2 and 41b-2 made of a copper material which is a normal conductor, and heat resistance bonded to the tips of the base portions. The tip portions 41a-1 and 41b-1 are made of a chip made of a copper tungsten alloy having excellent arc resistance. The base portions 41a-2 and 41b-2 and the tip portions 41a-1 and 41b-1 are integrated without performing troublesome processing such as brazing by inserting the base portion into a recess provided in the tip portion. ing.
 放電電極41a、41bの先端部41a-1、41b-1はこの実施例1では円錐台状に形成されているが、これに代えて、円柱状としてもよい。1対の放電電極41a、41bは、間に挟んだ、消弧性の樹脂絶縁体42aと消弧性の樹脂導電体42bとを一体に結合して構成した樹脂間隔体42により対向間隔が一定に保持される。この放電電極41a、41bは、絶縁キャップ43a、43bと複数に分割構成された絶縁リング44a~44fを連接結合して構成された絶縁筒44とで形成された絶縁ケース内に弾性を有する絶縁板44j、44kを介して収容される。絶縁筒44等で構成された絶縁ケースは、外側から金属パイプからなる金属ケース45により被嵌されている。金属ケース45は、上下両端をカーリング加工により内側に折り曲げて、放電電極基部41a-2、41b-2のフランジ部41a-3、41b-3に対して軸方向に締め付け圧力を加えることにより強固な耐圧構造体を構成する。 The tip portions 41a-1 and 41b-1 of the discharge electrodes 41a and 41b are formed in a truncated cone shape in the first embodiment, but may be formed in a columnar shape instead. The pair of discharge electrodes 41a and 41b have a constant facing distance by a resin interval body 42 formed by integrally joining an arc extinguishing resin insulator 42a and an arc extinguishing resin conductor 42b sandwiched therebetween. Retained. The discharge electrodes 41a and 41b are formed of insulating caps 43a and 43b and an insulating plate having elasticity in an insulating case formed by connecting and connecting insulating rings 44a to 44f divided into a plurality of parts. 44j and 44k. The insulating case constituted by the insulating cylinder 44 and the like is fitted by a metal case 45 made of a metal pipe from the outside. The metal case 45 is strong by bending the upper and lower ends inward by curling and applying clamping pressure in the axial direction to the flange portions 41a-3 and 41b-3 of the discharge electrode base portions 41a-2 and 41b-2. A pressure-resistant structure is configured.
 1対の放電電極の先端部41a-1、41b-1の間には、複数、ここでは3枚の消弧板47a~47cが相互に間隔をおいて積層配置されている。これらの消弧板47a~47cは、絶縁筒44を構成する絶縁リング44b~44dが互いに連接結合される部分に形成される環状溝44g~44i内に嵌め込むことにより固定支持されている。これらの消弧板47(a~c)は、前記したように銅等の低融点金属とタングステン等の高融点金属とをそれぞれ1種類以上含む焼結合金により形成されている。 Between the tip portions 41a-1 and 41b-1 of the pair of discharge electrodes, a plurality of, here, three arc extinguishing plates 47a to 47c are stacked and arranged with a space between each other. These arc-extinguishing plates 47a to 47c are fixedly supported by being fitted into annular grooves 44g to 44i formed at portions where the insulating rings 44b to 44d constituting the insulating cylinder 44 are connected to each other. These arc extinguishing plates 47 (a to c) are formed of a sintered alloy containing at least one kind of low melting point metal such as copper and one or more high melting point metals such as tungsten, as described above.
 樹脂間隔体42は、その上端部と外周のほぼ半部が、消弧性の樹脂絶縁体42aにより形成され、露出する。そして、その下端部と外周の残り半部が、消弧性の樹脂導電体42bで形成され、露出する。樹脂間隔体42の上端部が上部の放電電極41aの先端部41a-1に嵌合結合され、下端部が下部の放電電極41bの先端部41b-1に嵌合結合される。上部放電電極41aの先端部41a-1と接合された樹脂間隔体42の樹脂絶縁体42aの上端部は全周が露出し、樹脂間隔体42の樹脂導電体42bの露出する外周面側に露出する部分の厚さgが、上部放電電極41aの先端部41a-1と樹脂間隔体42の樹脂導電体42bとの間の絶縁放電ギャップGを決定する。 The resin interval body 42 is formed by an arc extinguishing resin insulator 42a and exposed at the upper end portion and almost half of the outer periphery. And the lower end part and the remaining half part of the outer periphery are formed of the arc extinguishing resin conductor 42b and exposed. The upper end portion of the resin spacer 42 is fitted and coupled to the tip portion 41a-1 of the upper discharge electrode 41a, and the lower end portion is fitted and coupled to the tip portion 41b-1 of the lower discharge electrode 41b. The upper end portion of the resin insulator 42a of the resin interval member 42 joined to the tip end portion 41a-1 of the upper discharge electrode 41a is exposed at the entire periphery, and is exposed to the outer peripheral surface side where the resin conductor 42b of the resin interval member 42 is exposed. The thickness g of the portion to be determined determines the insulating discharge gap G between the tip portion 41a-1 of the upper discharge electrode 41a and the resin conductor 42b of the resin spacer 42.
 図4(b)に、この放電ギャップGを含む図4(a)におけるA部を拡大して示す。 FIG. 4B shows an enlarged view of the portion A in FIG. 4A including the discharge gap G.
 この図4(b)に示されるように、放電電極41aの先端部41a-1の端面に設けた凹部41a-6に嵌合された部分の樹脂間隔体42の消弧性樹脂絶縁体42aの厚さtと、前記凹部41a-6の深さdとの差で樹脂導電体の側に露出する部分の厚さgが決められる。そしてこの厚さgにより電極間の絶縁放電ギャップGの寸法が自動的に定まるので、樹脂間隔体42や、放電電極先端部41a-1の寸法を決めて組み立てるだけですみ、組み立て時における面倒な位置の調整等は一切不要となる。放電電極基部41a-2および41b-2から外部へ引出導体を引き出す場合は、外部引出部に設けた引出導体結合用のねじ穴41a-4、41b-4に図示しない引出導体をねじ結合することによって引き出すことができる。 As shown in FIG. 4B, the arc-extinguishing resin insulator 42a of the resin interval body 42 in the portion fitted in the recess 41a-6 provided on the end face of the tip end portion 41a-1 of the discharge electrode 41a. The thickness g of the portion exposed to the resin conductor is determined by the difference between the thickness t and the depth d of the recess 41a-6. Since the thickness g automatically determines the dimension of the insulating discharge gap G between the electrodes, it is only necessary to determine the dimensions of the resin spacer 42 and the discharge electrode tip 41a-1 for assembly. No position adjustment is required. When drawing out the lead conductor from the discharge electrode bases 41a-2 and 41b-2 to the outside, screw the lead conductor (not shown) into the screw holes 41a-4 and 41b-4 for connecting the lead conductor provided in the external lead portion. Can be pulled out by.
 絶縁筒44内の樹脂間隔体42の周辺空間は、図5に示すように、絶縁筒44を構成する分割絶縁リング44a~44fの内周に対向して内側へ突出形成された1対の半径方向の隔壁44p、44qによって2つの空間に分割される。樹脂間隔体42の消弧性樹脂導電体42bおよび消弧板47(47a~47c)を収容する方の空間をアーク室46aとし、他方の樹脂絶縁体42aを収容する方の空間を膨張室46bとする。隔壁44p、44qには上下の軸方向に延びた条溝44r、44sが形成され、この条溝に樹脂間隔体42の樹脂絶縁体42aの外周に対向して外側に突出形成した凸条42c、42dを嵌め込むことにより絶縁筒44内の内部空間が完全に2つの空間に仕切られる。 As shown in FIG. 5, the space around the resin interval body 42 in the insulating cylinder 44 is a pair of radii that protrudes inwardly facing the inner periphery of the divided insulating rings 44a to 44f constituting the insulating cylinder 44. Divided into two spaces by direction partition walls 44p, 44q. The space that accommodates the arc extinguishing resin conductor 42b and the arc extinguishing plates 47 (47a to 47c) of the resin interval member 42 is an arc chamber 46a, and the space that accommodates the other resin insulator 42a is the expansion chamber 46b. And Grooves 44r and 44s extending in the upper and lower axial directions are formed in the partition walls 44p and 44q, and the projecting ridges 42c projecting outwardly facing the outer periphery of the resin insulator 42a of the resin spacer 42 in the grooves. By fitting 42d, the internal space in the insulating cylinder 44 is completely partitioned into two spaces.
 図4に示されるようにアーク室46aと膨張室46bとは、放電電極先端部41a-1、41b-1と基部41a-2、41b-2との間に形成された空所46c,46dによって連通されている。アーク室46a内に発生したアークにより、このアーク室46aの内部圧力が急激に上昇したとき、この圧力をこれらの空所46c,46dを通して膨張室46bに逃がすことにより、アーク室46a内の圧力上昇を緩和し、アレスタの圧力上昇による破壊を防止する。この時に発生する消弧ガス流によってアークは消弧板47a,47b,47cの中央部に移動する。 As shown in FIG. 4, the arc chamber 46a and the expansion chamber 46b are formed by voids 46c and 46d formed between the discharge electrode tip portions 41a-1 and 41b-1 and the base portions 41a-2 and 41b-2. It is communicated. When the internal pressure of the arc chamber 46a suddenly increases due to the arc generated in the arc chamber 46a, the pressure in the arc chamber 46a is increased by letting the pressure escape to the expansion chamber 46b through these cavities 46c and 46d. To prevent destruction due to increased pressure in the arrester. The arc moves to the central part of the arc extinguishing plates 47a, 47b, 47c by the arc extinguishing gas flow generated at this time.
 次に、このように構成された火花ギャップアレスタ40の動作を説明する。 Next, the operation of the spark gap arrester 40 thus configured will be described.
 雷電圧から保護すべき電気回路の電路と大地の間にアレスタ40の1対の放電電極41a、41bを電気的に接続する。 A pair of discharge electrodes 41a and 41b of the arrester 40 are electrically connected between the electric circuit of the electric circuit to be protected from lightning voltage and the ground.
 このアレスタ40の一方の放電電極先端部41a-1の端縁と、樹脂間隔体42の絶縁体42aを挟んでこれと対向する樹脂間隔体42の導電体42bの端縁との間に形成された絶縁放電ギャップG(図4(b)参照)の耐電圧は、例えば100~400V程度の低電圧の通常の使用電圧より十分高い電圧、例えば1.5kVに設定されているので、通常の使用電圧で使用しているときは、放電ギャップGの絶縁が維持され、放電は起きない。 It is formed between the end edge of one discharge electrode tip 41a-1 of this arrester 40 and the end edge of the conductor 42b of the resin spacing member 42 opposite to the insulator 42a of the resin spacing member 42. Further, the withstand voltage of the insulation discharge gap G (see FIG. 4B) is set to a voltage sufficiently higher than a normal use voltage of, for example, about 100 to 400 V, for example, 1.5 kV. When used with voltage, the insulation of the discharge gap G is maintained and no discharge occurs.
 しかし、電気回路の電路に雷インパルス電圧が誘導され、放電電極41aと41bとを通して、放電ギャップGの耐電圧以上の数kV以上の雷インパルス電圧が加わると、この放電ギャップGの絶縁が破壊されて閃絡(火花放電)が生じ、樹脂間隔体42の絶縁体42aの上端部42cの表面を経由して上方の放電電極先端部41a-1の端縁と樹脂間隔体42の樹脂導電体42bの上端縁の閃絡点a、b間に大きな電流が供給されるため閃絡(火花放電)はアーク放電に発展する。さらに、このアーク放電によってアーク室46aの内部空気がイオン化されることにより、アークが、1対の放電電極41a、41bのa、c点間に伸び、樹脂間隔体42の消弧性樹脂導電体42bの露出した表面を走る。これにより樹脂間隔体42の消弧性樹脂導電体42bの表面が高温に加熱されるため、樹脂導電体42bの表面から大量の消弧性ガスが発生する。この消弧性ガスの圧力により押されて樹脂導電体42bの表面を走るアークが消弧板47a~47cの中央部に移動する。 However, when a lightning impulse voltage is induced in the electric circuit of the electric circuit and a lightning impulse voltage of several kV or more, which is higher than the withstand voltage of the discharge gap G, is applied through the discharge electrodes 41a and 41b, the insulation of the discharge gap G is broken. As a result, a flashover (spark discharge) occurs, and the edge of the upper discharge electrode tip 41a-1 and the resin conductor 42b of the resin spacer 42 pass through the surface of the upper end 42c of the insulator 42a of the resin spacer 42. Since a large current is supplied between the flash points a and b at the upper edge of the flash, the flash (spark discharge) develops into an arc discharge. Further, the internal air of the arc chamber 46a is ionized by this arc discharge, so that the arc extends between points a and c of the pair of discharge electrodes 41a and 41b, and the arc extinguishing resin conductor of the resin interval 42 is obtained. Run on the exposed surface of 42b. As a result, the surface of the arc extinguishing resin conductor 42b of the resin interval 42 is heated to a high temperature, and a large amount of arc extinguishing gas is generated from the surface of the resin conductor 42b. The arc that is pushed by the pressure of the arc extinguishing gas and runs on the surface of the resin conductor 42b moves to the center of the arc extinguishing plates 47a to 47c.
 このようにアレスタ40内に雷インパルス電圧によりアーク放電が発生することにより、この雷電圧はアレスタ40を介して、大地へ逃がされ、電気回路を雷電圧から保護することができる。 Thus, when arc discharge is generated in the arrester 40 by the lightning impulse voltage, the lightning voltage is released to the ground via the arrester 40, and the electric circuit can be protected from the lightning voltage.
 アレスタ40内のアークが、3枚の導電性の金属消弧板47a~47eに移動すると、これが消弧板によって分断されるため、各消弧板に陰、陽極が形成され約30Vの陰、陽極電圧降下が発生する。 When the arc in the arrester 40 moves to the three conductive metal arc-extinguishing plates 47a to 47e, this is divided by the arc-extinguishing plates. An anode voltage drop occurs.
 1対の放電電極41a、41b間に生じる総合の陰、陽極電圧降下Uは、3枚の消弧板の陰、陽極電圧降下に1対の放電電極の陰、陽極電圧降下が加わるので、
    U = 30(V)×(3+1) = 120(V)      (2)
となる。
A pair of discharge electrodes 41a, overall shade occurring between 41b, the anode voltage drop U A is three shade of extinguishing plate, the shadow of the discharge electrode of one pair of the anode voltage drop, since the anode voltage drop is applied,
U A = 30 (V) × (3 + 1) = 120 (V) (2)
It becomes.
 通常の消弧板のないアーク路のアーク電圧は、長い放電路の大きなアーク抵抗によって図3に特性線Bで示すようにアーク電流に依存して変化するが、消弧板を含むアーク路のアーク電圧は、消弧板に生じる陰、陽極電圧降下と短いアーク放電路の小さなアーク抵抗によって、図3に特性線Aで示すように、アーク電流に依存せず略一定の120Vとなる。このため、雷インパルス電流がピーク値を超えて減衰過程に入ってもアーク電圧は、略一定に保たれるので、雷インパルス電流が略0となり、電源電圧の瞬時値がアーク電圧よりも小さくなったとき、電源回路からの続流が遮断され、アークが消滅し、アレスタの絶縁が回復される。 The arc voltage of the arc path without the arc extinguishing plate changes depending on the arc current as shown by the characteristic line B in FIG. 3 due to the large arc resistance of the long discharge path. As shown by the characteristic line A in FIG. 3, the arc voltage becomes substantially constant 120 V, as shown by the characteristic line A, due to the shadow generated in the arc extinguishing plate, the anode voltage drop, and the small arc resistance of the short arc discharge path. For this reason, even if the lightning impulse current exceeds the peak value and enters the decay process, the arc voltage is kept substantially constant, so the lightning impulse current becomes substantially zero, and the instantaneous value of the power supply voltage becomes smaller than the arc voltage. When this occurs, the continuity from the power circuit is interrupted, the arc disappears, and the arrester insulation is restored.
  アレスタ40内にアーク放電が発生すると、アークの熱によって放電電極および消弧板の金属が蒸発、飛散し、その金属酸化物が絶縁筒44の内表面に付着することにより、1対の放電電極間に電気的なバイパス回路が形成され、放電電極間の絶縁抵抗が低下する。 When an arc discharge is generated in the arrester 40, the metal of the discharge electrode and the arc extinguishing plate is evaporated and scattered by the heat of the arc, and the metal oxide adheres to the inner surface of the insulating cylinder 44, whereby a pair of discharge electrodes An electrical bypass circuit is formed between them, and the insulation resistance between the discharge electrodes decreases.
  この実施例1では、このような絶縁抵抗の低下を防止するために、絶縁筒44を形成する両端の絶縁リング44aおよび44fの内周に先端部が内側に鉤形に折曲形成された環状突起を設けることにより、電極等から蒸発、飛散した金属酸化物が回り込まない環状溝44m、44nを形成している。この環状溝44m、44nの中には、アークによって放電電極や金属消弧板から溶融蒸発した金属酸化物の回り込みが少なくなるので、ここで、絶縁筒44の内表面に付着する金属酸化物層の連続が切断されることになり、1対の放電電極間の絶縁抵抗の低下を長期間防止することができる。 In the first embodiment, in order to prevent such a decrease in the insulation resistance, an annular shape in which tip portions are bent inwardly on the inner periphery of the insulating rings 44a and 44f at both ends forming the insulating cylinder 44. By providing the protrusions, the annular grooves 44m and 44n are formed in which the metal oxide evaporated and scattered from the electrode or the like does not enter. In the annular grooves 44m and 44n, the metal oxide melted and evaporated from the discharge electrode and the metal arc extinguishing plate by the arc is reduced, so that the metal oxide layer adhering to the inner surface of the insulating cylinder 44 is here. As a result, the decrease in insulation resistance between the pair of discharge electrodes can be prevented for a long period of time.
 また、アーク室46a、膨張室46bの外壁を構成する絶縁リング44a~44fは、絶縁性の樹脂で形成されているため、アーク発生時に加わる大きな内部圧力によって破損する可能性がある。これを防止すために、絶縁性の樹脂にグラスファイバ等の無機強化材料を添加することにより、機械的強度を高めるようにするのがよい。 Further, since the insulating rings 44a to 44f constituting the outer walls of the arc chamber 46a and the expansion chamber 46b are formed of an insulating resin, there is a possibility that they are damaged by a large internal pressure applied when the arc is generated. In order to prevent this, it is preferable to increase the mechanical strength by adding an inorganic reinforcing material such as glass fiber to the insulating resin.
 さらに、この実施例1の金属消弧板47も、比較的低温度で溶融する低融点金属、例えば銅の粉末と、高温度まで溶融しない高融点金属、例えばタングステンの粉末とを焼結して形成した焼結合金で構成しているため、前記図1の実施例と同様に、低融点金属と高融点金属との相乗機能により、雷インパルス電流による溶融,蒸発量が極めて少なくなり、消弧板の損耗を小さくすることができるので、アレスタの寿命を長くすることができる。 Further, the metal arc extinguishing plate 47 of Example 1 is also obtained by sintering a low melting point metal that melts at a relatively low temperature, for example, copper powder and a high melting point metal that does not melt to a high temperature, for example, tungsten powder. Since it is composed of the formed sintered alloy, the synergistic function of the low melting point metal and the high melting point metal, as in the embodiment of FIG. Since the wear of the plate can be reduced, the life of the arrester can be extended.
 さらに、本発明の具体的な第2の実施例を図6に示すので、これについて説明する。 Furthermore, since a second specific embodiment of the present invention is shown in FIG. 6, this will be described.
 この実施例2は、実施例1における1対の放電電極41aと41bの間の間隔を保持する樹脂間隔体42の樹脂絶縁体42aの上端部および上部電極先端部41a-1の構造を改良したものである。 In the second embodiment, the structure of the upper end portion of the resin insulator 42a and the upper electrode tip portion 41a-1 of the resin spacing member 42 that maintains the distance between the pair of discharge electrodes 41a and 41b in the first embodiment is improved. Is.
 実施例1では、放電ギャップGを形成する間隔体の樹脂絶縁体の露出部分の厚さgを、上部電極先端部41a-1に設けた嵌合用の凹部41a-6の深さdと、これに嵌めこむ樹脂絶縁体42aの上端部のはめ込み部分の厚さtとの差によって決める構成としている。これに対して、この実施例2では、上部電極先端部41a-1と、樹脂間隔体42の樹脂導電体42bの露出する部分の上端との間で樹脂絶縁体42aの露出する部分の厚さgによって絶縁放電ギャップGの大きさを一義的に決定する構成としている。 In the first embodiment, the thickness g of the exposed portion of the resin insulator in the gap forming the discharge gap G is set to the depth d of the fitting recess 41a-6 provided in the upper electrode tip 41a-1. The resin insulator 42a to be fitted in is determined based on the difference from the thickness t of the fitting portion at the upper end portion. On the other hand, in the second embodiment, the thickness of the exposed portion of the resin insulator 42a between the upper electrode tip portion 41a-1 and the upper end of the exposed portion of the resin conductor 42b of the resin interval body 42. The size of the insulating discharge gap G is uniquely determined by g.
 このため、実施例2においては、図6(a)に示すように、上部電極先端部41a-1の嵌合孔41a‐7に、樹脂間隔体42の樹脂絶縁体42aの突起42a-1を嵌め込むことにより上部電極先端部41a-1に樹脂間隔体42を結合しているが、実施例1では、絶縁ギャップGの大きさを決めるための上部電極先端部41a-1の凹部41a-6や、この凹部への樹脂絶縁体42aの嵌合凸部を設けることはしていない。 Therefore, in the second embodiment, as shown in FIG. 6A, the protrusion 42a-1 of the resin insulator 42a of the resin spacer 42 is formed in the fitting hole 41a-7 of the upper electrode tip portion 41a-1. The resin spacer 42 is coupled to the upper electrode tip 41a-1 by fitting, but in the first embodiment, the recess 41a-6 of the upper electrode tip 41a-1 for determining the size of the insulation gap G is used. In addition, no fitting convex portion of the resin insulator 42a is provided in the concave portion.
 その他の構成は、実施例1と同じであるので、説明を省略する。 Other configurations are the same as those in the first embodiment, and thus description thereof is omitted.
 この実施例2によれば、樹脂間隔体42の樹脂絶縁体42aの上部電極先端部41a-1と樹脂間隔体42の樹脂導電体42bの上端との間で外周面の露出する部分の厚さgを所望する耐電圧に対応した寸法に形成するだけで、絶縁放電ギャップGを規定できるので、この絶縁ギャップGの規定が容易となる。 According to the second embodiment, the thickness of the exposed portion of the outer peripheral surface between the upper electrode tip portion 41a-1 of the resin insulator 42a of the resin spacer 42 and the upper end of the resin conductor 42b of the resin spacer 42. Since the insulated discharge gap G can be defined simply by forming g in a dimension corresponding to the desired withstand voltage, the insulation gap G can be easily defined.
 図7および図8に本発明の第3の実施例を示す。 7 and 8 show a third embodiment of the present invention.
 実施例1の火花ギャップアレスタにおいては、アーク室46a、膨張室46bの外壁を構成する絶縁性樹脂で形成された絶縁リング44a~44fの機械的強度を高めて、アーク発生時の大きな内部圧力上昇による破損を防止しているのに対し、この第3の実施例では、絶縁リング外壁に通気口を設けて絶縁リングの内外の圧力を均衡させることにより、機械的強度の小さい樹脂絶リングの破損を防止している。 In the spark gap arrester of the first embodiment, the mechanical strength of the insulating rings 44a to 44f formed of an insulating resin constituting the outer walls of the arc chamber 46a and the expansion chamber 46b is increased, and a large internal pressure rise when an arc is generated. In contrast to this, in this third embodiment, the vent ring is provided in the outer wall of the insulating ring to balance the pressure inside and outside the insulating ring. Is preventing.
 実施例3の火花ギャップアレスタは、図7に示すように円筒状の金属ケース45内に収納した絶縁筒44を構成する複数に分割した絶縁樹脂製の絶縁リング44a~44fのうちの2つの絶縁リング44bおよび44eにそれぞれ1つの通気路44b-1、および44e-1、を設けている点が、実施例1の構成と異なるだけで、その他の構成は同じであるので、詳細な説明は省略する。 As shown in FIG. 7, the spark gap arrester according to the third embodiment includes two insulating rings 44a to 44f made of insulating resin divided into a plurality of parts constituting an insulating cylinder 44 housed in a cylindrical metal case 45. The only difference is the configuration of the first embodiment except that one air passage 44b-1 and 44e-1 are provided in the rings 44b and 44e, respectively. To do.
 通気路の設けられた絶縁筒44の1つの絶縁リング44bだけを取り出して図8に示す。 Only one insulating ring 44b of the insulating cylinder 44 provided with the air passage is taken out and shown in FIG.
 絶縁リング44bの内側には、1対の隔壁44p、44qが対向して突出して形成されている。一点鎖線によって仮想的に示す樹脂間隔体42を絶縁筒44内に収め、隔壁44p、44qと嵌合結合することによって、絶縁筒44の内部空所がアーク室46aと膨張室46bに区画される。アーク室46aには、一点鎖線で仮想的に示す消弧板47が設置される。通気路44b-1は膨張室の外側絶縁リング44bに設けられている。また、通気路は、絶縁リングの周壁の内外に通じる連通孔として、1個、または2個以上設けてもよい。 Inside the insulating ring 44b, a pair of partition walls 44p and 44q are formed to protrude so as to face each other. A resin interval body 42 virtually indicated by a one-dot chain line is accommodated in the insulating cylinder 44 and is fitted and coupled to the partition walls 44p and 44q so that the internal space of the insulating cylinder 44 is partitioned into an arc chamber 46a and an expansion chamber 46b. . In the arc chamber 46a, an arc extinguishing plate 47 that is virtually indicated by a one-dot chain line is installed. The ventilation path 44b-1 is provided in the outer insulating ring 44b of the expansion chamber. One or two or more ventilation paths may be provided as communication holes that communicate with the inside and outside of the peripheral wall of the insulating ring.
 同様に絶縁リング44eに設けられている通気路44e-1も絶縁リング44eの他の絶縁リング44dとの接合面となる面に設けられている。 Similarly, the air passage 44e-1 provided in the insulating ring 44e is also provided on the surface to be joined to the other insulating ring 44d of the insulating ring 44e.
 図7には、通気路を設けた絶縁リングを2個設けた例を示しているが、通気路を設けた絶縁リングは1個だけでもよく、また、2個以上設けることもできる。 FIG. 7 shows an example in which two insulating rings provided with an air passage are provided, but only one insulating ring provided with an air passage may be provided, or two or more may be provided.
 火花ギャップアレスタの内部の放電電極41a、41b間において、雷インパルス電圧を吸収するためにアーク放電が生じると、まず絶縁筒44内のアーク室46aの内部圧力が上昇し、この圧力上昇に伴ってこれと連通した膨張室46bの内部圧力も上昇するため、絶縁筒44内を構成する絶縁リング44a~44fには内部から大きな応力が加わり、この応力によって絶縁リングが破損することがある。 When an arc discharge is generated between the discharge electrodes 41a and 41b in the spark gap arrester to absorb the lightning impulse voltage, first, the internal pressure of the arc chamber 46a in the insulating cylinder 44 rises. Since the internal pressure of the expansion chamber 46b communicating therewith also increases, a large stress is applied from the inside to the insulating rings 44a to 44f constituting the inside of the insulating cylinder 44, and the insulating ring may be damaged by this stress.
 前記の実施例1においては、絶縁筒を構成する絶縁リングの機械的強度を高めることによって、アーク放電の発生に伴う内部圧力の上昇による絶縁リングの破損を防止するようにしている。しかし、絶縁リングは樹脂で構成されているため、これの機械的強度を高めるにも限度があるため、この方法によっては、アーク放電の発生に伴う内部圧力上昇による絶縁リングの破損を完全に防止することが困難である。 In the first embodiment, the mechanical strength of the insulating ring constituting the insulating cylinder is increased to prevent the insulating ring from being damaged due to an increase in internal pressure accompanying the occurrence of arc discharge. However, since the insulation ring is made of resin, there is a limit to increasing the mechanical strength of the insulation ring. This method completely prevents damage to the insulation ring due to internal pressure rise due to arc discharge. Difficult to do.
 これに対して、実施例3の火花ギャップアレスタにおいては、前記のように、金属ケース45内に収容した絶縁筒44の一部に絶縁筒44の内外周に通じる通気路を設けているので、火花ギャップアレスタ内部にアーク放電が発生して、絶縁筒44内のアーク室46aおよび膨張室46bの内部圧力が上昇すると、高圧ガスの一部が、通気路44b-1、44b-2、44e-1および44e-2を通して絶縁筒44の外側の絶縁筒44と金属ケース45との間の隙間に導かれ、ここに逃がされる。 On the other hand, in the spark gap arrester of Example 3, as described above, a part of the insulating cylinder 44 accommodated in the metal case 45 is provided with a ventilation path leading to the inner and outer periphery of the insulating cylinder 44. When an arc discharge occurs in the spark gap arrester and the internal pressure of the arc chamber 46a and the expansion chamber 46b in the insulating cylinder 44 rises, a part of the high-pressure gas is passed through the ventilation paths 44b-1, 44b-2, 44e-. 1 and 44e-2 are led to a gap between the insulating cylinder 44 outside the insulating cylinder 44 and the metal case 45, and escaped here.
 これによって、絶縁筒44の内外の圧力が等しくなるため、火花ギャップアレスタ内部に発生するアーク放電によって絶縁筒内44の内部圧力が上昇しても、絶縁筒44を構成する各絶縁リングに加わる引張り力の上昇はなく、圧縮力のみが加わる。したがって、絶縁リングの機械的強度高めなくとも、アーク放電の発生に伴う内部圧力上昇による絶縁リングの破損を完全に防止することができる。 As a result, the pressure inside and outside the insulating cylinder 44 becomes equal. Therefore, even if the internal pressure inside the insulating cylinder 44 rises due to arc discharge generated inside the spark gap arrester, the tensile force applied to each insulating ring constituting the insulating cylinder 44 There is no increase in force, only compression force is applied. Therefore, even if the mechanical strength of the insulating ring is not increased, it is possible to completely prevent the insulating ring from being damaged due to an increase in internal pressure accompanying the occurrence of arc discharge.
 なお、絶縁筒44と金属ケース45との間の隙間に絶縁筒の内部圧力の一部が逃がされることより、金属ケース45の内部圧力が大きく上昇するので、この金属ケース45には大きな機械的応力が加わる。しかし、金属材料の引張り強度は樹脂材料のそれに比較して極めて大きいため、アーク放電の発生に伴う内部圧力上昇によって破損することがない。 In addition, since a part of the internal pressure of the insulating cylinder is released in the gap between the insulating cylinder 44 and the metal case 45, the internal pressure of the metal case 45 is greatly increased. Stress is applied. However, since the tensile strength of the metal material is extremely higher than that of the resin material, the metal material is not damaged by the internal pressure increase accompanying the occurrence of arc discharge.
 したがって、実施例3の火花ギャップアレスタによれば、絶縁リングを機械的強度の低い絶縁樹脂で形成することができるので、火花ギャップアレスタを安価に製造でき、かつ、長時間安全に使用することができる。 Therefore, according to the spark gap arrester of Example 3, since the insulating ring can be formed of an insulating resin having low mechanical strength, the spark gap arrester can be manufactured at low cost and can be used safely for a long time. it can.
40:火花ギャップアレスタ、41a,41b:放電電極、42:樹脂間隔体、42a:樹脂絶縁体、42b:樹脂導電体、43a,43b:絶縁キャップ、44(44a~44f):絶縁筒(分割絶縁リング)、44b-1,44e-1,:通気路、45:金属ケース、46a:アーク室、46b:膨張室、47(47a~47c):金属消弧板。 40: Spark gap arrester, 41a, 41b: Discharge electrode, 42: Resin spacer, 42a: Resin insulator, 42b: Resin conductor, 43a, 43b: Insulation cap, 44 (44a to 44f): Insulating cylinder (split insulation) Ring), 44b-1, 44e-1, 45: metal case, 46a: arc chamber, 46b: expansion chamber, 47 (47a to 47c): metal arc extinguishing plate.

Claims (11)

  1.  円筒状金属ケースの内部に間隔をおいて対向配置した円錐台又は円柱状をなす1対の放電電極を備えた火花ギャップアレスタにおいて、
     前記1対の放電電極の間に、加熱により消弧性ガスを発生する絶縁性樹脂により形成した樹脂絶縁体と、同様に加熱により消弧性ガスを発生する導電性樹脂により形成した樹脂導電体との複合体からなる樹脂間隔体を配置し、前記放電電極の一方と前記樹脂間隔体の前記樹脂導電体部との間に、絶縁放電ギャップを形成する前記樹脂間隔体の前記樹脂絶縁体部の層を介在させるとともに、前記樹脂間隔体の外側に、単数又は複数の高溶融点金属と単数又は複数の低溶融点金属とを焼結して構成した導電性の焼結合金により形成した複数の金属消弧板を所定間隔離して配置したことを特徴とする火花ギャップアレスタ。
    In a spark gap arrester provided with a pair of discharge electrodes in the shape of a truncated cone or a column arranged opposite to each other inside a cylindrical metal case,
    Between the pair of discharge electrodes, a resin insulator formed of an insulating resin that generates an arc-extinguishing gas when heated, and a resin conductor formed of a conductive resin that similarly generates an arc-extinguishing gas when heated The resin insulator portion of the resin interval body is arranged such that an insulating discharge gap is formed between one of the discharge electrodes and the resin conductor portion of the resin interval body. And a plurality of conductive sintered alloys formed by sintering one or more high melting point metals and one or more low melting point metals on the outside of the resin interval. A spark gap arrester characterized in that the metal arc extinguishing plates are separated from each other by a predetermined distance.
  2.  前記金属消弧板を形成する焼結合金は、低融点金属が銅であり、高融点金属がタングステンであることを特徴とする請求項1に記載の火花ギャップアレスタ。 The spark gap arrester according to claim 1, wherein the sintered alloy forming the metal arc extinguishing plate has a low melting point metal of copper and a high melting point metal of tungsten.
  3.  前記樹脂間隔体の樹脂絶縁体で構成された一端と樹脂導電体で構成された他端をそれぞれ前記1対の放電電極の互いに対向する端面の凹部に嵌合し、前記樹脂間隔体の樹脂絶縁体で構成された一端の嵌合された側の放電電極の凹部の深さと、この凹部に挿入される前記樹脂間隔体の樹脂絶縁体で構成された一端側の絶縁体の厚みとの差により、前記放電ギャップの寸法を規定したことを特徴とする請求項1または2に記載の火花ギャップアレスタ One end made of a resin insulator of the resin interval body and the other end made of a resin conductor are fitted into the recesses of the opposite end surfaces of the pair of discharge electrodes, respectively, and the resin insulation of the resin interval body Due to the difference between the depth of the recessed portion of the discharge electrode on the fitting side of the one end constituted by the body and the thickness of the insulating member on the one end side constituted by the resin insulator of the resin spacer inserted in the recessed portion The spark gap arrester according to claim 1 or 2, characterized in that a dimension of the discharge gap is defined.
  4.  前記1対の放電電極の周囲の空間を絶縁材により構成した隔壁により仕切って複数の空間を形成し、その1つをアーク室とし他の1つを膨張室として、これらの各室を気体通路によって相互に連通したことを特徴とする請求項1から3の1つに記載の火花ギャップアレスタ。 A space around the pair of discharge electrodes is partitioned by a partition wall made of an insulating material to form a plurality of spaces, one of which is an arc chamber and the other is an expansion chamber. The spark gap arrester according to claim 1, wherein the spark gap arrester is in communication with each other.
  5.  前記1対の放電電極間の空間に設けられた前記アーク室内に、前記樹脂間隔体を構成する樹脂導電体部を収容し、この導電体部と対向して前記金属消弧板を配置したことを特徴とする請求項4に記載の火花ギャップアレスタ。 A resin conductor portion constituting the resin interval member is accommodated in the arc chamber provided in a space between the pair of discharge electrodes, and the metal arc extinguishing plate is disposed to face the conductor portion. The spark gap arrester according to claim 4.
  6.  前記円筒状金属ケースの内側に複数の分割構成された絶縁リングを連接接合して構成した絶縁筒が挿入され、前記複数の金属消弧板が、前記絶縁筒を構成する絶縁リングにより、相互の間隔が保たれ、かつ前記金属ケースから電気的に絶縁して固定されたことを特徴とする請求項1から5の1つに記載の火花ギャップアレスタ。 An insulating cylinder constituted by connecting and joining a plurality of divided insulating rings is inserted inside the cylindrical metal case, and the plurality of metal arc-extinguishing plates are mutually connected by an insulating ring constituting the insulating cylinder. 6. The spark gap arrester according to claim 1, wherein the spark gap arrester is fixed and electrically insulated from the metal case.
  7.  前記金属ケースの内側に挿入した前記絶縁リングの一部の内周に先端を鈎形に折曲して形成された環状溝を有する環状突起を設けたことを特徴とする請求項1から6の1つに記載の火花ギャップアレスタ。 7. An annular protrusion having an annular groove formed by bending the tip into a hook shape on the inner periphery of a part of the insulating ring inserted inside the metal case. The spark gap arrester according to one.
  8.  前記絶縁筒を構成する絶縁リングの少なくとも1つにこのリングの内外周に通じる通気路を少なくとも1個設けたことを特徴とする請求項6または7に記載の火花ギャップアレスタ。 The spark gap arrester according to claim 6 or 7, wherein at least one air passage leading to the inner and outer peripheries of the ring is provided in at least one of the insulating rings constituting the insulating cylinder.
  9.  前記通気路は、前記絶縁筒を構成する絶縁リングの接合部に設けたことを特徴とする請求項8に記載の火花ギャップアレスタ。 The spark gap arrester according to claim 8, wherein the air passage is provided at a joint portion of an insulating ring constituting the insulating cylinder.
  10.  前記加熱により消弧性ガスを発生する絶縁性樹脂が無機強化材を含む複合樹脂であることを特徴とする請求項1から9の1つに記載の火花ギャップアレスタ。 10. The spark gap arrester according to claim 1, wherein the insulating resin that generates an arc extinguishing gas by heating is a composite resin containing an inorganic reinforcing material.
  11.  前記加熱により消弧性ガスを発生する絶縁性樹脂はポリオキシメチレン(POM)樹脂であり、前記加熱により消弧性ガスを発生する導電性樹脂は前記ポリオキシメチレン(POM)樹脂にカーボン粉末を混合した樹脂であることを特徴とする請求項1から9の1つに記載の火花ギャップアレスタ。 The insulating resin that generates arc-extinguishing gas by heating is polyoxymethylene (POM) resin, and the conductive resin that generates arc-extinguishing gas by heating is carbon powder in the polyoxymethylene (POM) resin. 10. The spark gap arrester according to claim 1, wherein the spark gap arrester is a mixed resin.
PCT/JP2012/080349 2012-06-15 2012-11-22 Spark gap arrester WO2013186951A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521194A JP6002766B2 (en) 2012-06-15 2012-11-22 Spark gap arrestor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/065314 2012-06-15
PCT/JP2012/065314 WO2013186909A1 (en) 2012-06-15 2012-06-15 Spark gap arrester

Publications (1)

Publication Number Publication Date
WO2013186951A1 true WO2013186951A1 (en) 2013-12-19

Family

ID=49757771

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/065314 WO2013186909A1 (en) 2012-06-15 2012-06-15 Spark gap arrester
PCT/JP2012/080349 WO2013186951A1 (en) 2012-06-15 2012-11-22 Spark gap arrester

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065314 WO2013186909A1 (en) 2012-06-15 2012-06-15 Spark gap arrester

Country Status (1)

Country Link
WO (2) WO2013186909A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110223810A (en) * 2019-06-12 2019-09-10 西南交通大学 A kind of self arc device
CN110336131A (en) * 2019-06-18 2019-10-15 中国舰船研究设计中心 Boat-carrying Shortwave Communication System direct lighting stroke protective device and its protection appraisal procedure
CN110416877A (en) * 2019-06-20 2019-11-05 王嬿蕾 A kind of method that backpulsing inhibits lightning stroke intensity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562617A (en) * 1978-11-06 1980-05-12 Tokyo Shibaura Electric Co Arc extinguishing device
JPS6070702A (en) * 1983-09-26 1985-04-22 株式会社日立製作所 Explosion preventive zinc oxide arrester
JPS63241893A (en) * 1987-03-30 1988-10-07 株式会社東芝 Spark gap switch
JP2003272465A (en) * 2002-03-18 2003-09-26 Sumitomo Electric Ind Ltd Direct current relay
WO2005074084A1 (en) * 2004-02-02 2005-08-11 Csd Co., Ltd. Spark gap arrestor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562617A (en) * 1978-11-06 1980-05-12 Tokyo Shibaura Electric Co Arc extinguishing device
JPS6070702A (en) * 1983-09-26 1985-04-22 株式会社日立製作所 Explosion preventive zinc oxide arrester
JPS63241893A (en) * 1987-03-30 1988-10-07 株式会社東芝 Spark gap switch
JP2003272465A (en) * 2002-03-18 2003-09-26 Sumitomo Electric Ind Ltd Direct current relay
WO2005074084A1 (en) * 2004-02-02 2005-08-11 Csd Co., Ltd. Spark gap arrestor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110223810A (en) * 2019-06-12 2019-09-10 西南交通大学 A kind of self arc device
CN110336131A (en) * 2019-06-18 2019-10-15 中国舰船研究设计中心 Boat-carrying Shortwave Communication System direct lighting stroke protective device and its protection appraisal procedure
CN110416877A (en) * 2019-06-20 2019-11-05 王嬿蕾 A kind of method that backpulsing inhibits lightning stroke intensity

Also Published As

Publication number Publication date
WO2013186909A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
US9837236B2 (en) High-voltage direct-current thermal fuse
US9449778B2 (en) Combined surge protection device with integrated spark gap
EP2987212B1 (en) Overvoltage protection for power systems
US4638283A (en) Exothermically assisted electric fuse
WO2013186951A1 (en) Spark gap arrester
ZA200501751B (en) Protective device for electric power distribution network
US4692733A (en) Fuse for an alternating current power circuit
US3354345A (en) Lightning arrester spark gap having arc-confining chamber walls of graded porosity
US3766509A (en) High voltage current limiting fuse
KR20180135888A (en) Surge protection device
JPWO2005074084A1 (en) Spark gap arrestor
JP6002766B2 (en) Spark gap arrestor
US20210280382A1 (en) High-voltage direct-current thermal fuse
JP2009032567A (en) Fuse
US3733572A (en) Current limiting fuse
JP5612879B2 (en) fuse
JPH0448529A (en) Current limiting fuse
CN218677023U (en) Fuse with small overload current
US2147440A (en) Discharge gap protective device
CN107706074B (en) Gas discharge tube
CN210325678U (en) High-voltage current-limiting fuse for transformer protection
JP6610893B2 (en) Surge protective element
WO2012139445A1 (en) Overvoltage protection device
SU1201916A1 (en) Fuse
US3363135A (en) Magnetic drive lightning arrester having a variably spaced arcing gap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521194

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879036

Country of ref document: EP

Kind code of ref document: A1