WO2013186882A1 - 3d-image generation method, and 3d-image generation system - Google Patents

3d-image generation method, and 3d-image generation system Download PDF

Info

Publication number
WO2013186882A1
WO2013186882A1 PCT/JP2012/065145 JP2012065145W WO2013186882A1 WO 2013186882 A1 WO2013186882 A1 WO 2013186882A1 JP 2012065145 W JP2012065145 W JP 2012065145W WO 2013186882 A1 WO2013186882 A1 WO 2013186882A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
stereoscopic image
information
stereoscopic
depth
Prior art date
Application number
PCT/JP2012/065145
Other languages
French (fr)
Japanese (ja)
Inventor
勝 江畑
優一 宗宮
Original Assignee
株式会社エム・ソフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エム・ソフト filed Critical 株式会社エム・ソフト
Priority to PCT/JP2012/065145 priority Critical patent/WO2013186882A1/en
Publication of WO2013186882A1 publication Critical patent/WO2013186882A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/261Image signal generators with monoscopic-to-stereoscopic image conversion

Definitions

  • the present invention relates to a stereoscopic image generation method and a stereoscopic image generation system for generating a stereoscopic image that causes a viewer to perceive a stereoscopic effect by parallax.
  • binocular parallax-type stereoscopic images that allow viewers to perceive a stereoscopic effect by visually recognizing different images for the right eye and the left eye have come to be widely used in fields such as movies and television broadcasting. Yes.
  • a technique for causing an observer to perceive a stereoscopic effect using a multi-view (multi-viewpoint) stereoscopic image that changes an image viewed by the observer depending on a viewing angle is also used in, for example, an autostereoscopic device.
  • multi-view parallax stereoscopic images combining these binocular parallax and multi-view types are also being used.
  • the image is composed of a right-eye image to be visually recognized by the right eye and a left-eye image to be visually recognized by the left eye.
  • shifting shifting in the direction, the viewer (viewer) viewing the image perceives a stereoscopic effect.
  • a parallax-type stereoscopic image is generally generated by arranging two cameras side by side and simultaneously capturing a right-eye image and a left-eye image.
  • a right-eye image and a left-eye image having substantially the same parallax as human binocular parallax can be directly obtained, a natural stereoscopic image that does not give the viewer a sense of incongruity is generated. be able to.
  • a conventional multi-view stereoscopic image is generally generated by arranging cameras at many viewpoints and simultaneously shooting multi-view images.
  • a plurality of cameras with exactly the same specifications are positioned and arranged accurately, and all the images are photographed in a completely synchronized state. There was a problem that it was necessary.
  • a method of generating a binocular parallax type image for the right eye and an image for the left eye by performing image processing on an image photographed as usual by one camera for example, Patent Document 1.
  • depth information depth value
  • a right-eye image and a left-eye image shifted in accordance with the binocular parallax are generated.
  • a stereoscopic image can be generated from a normal original image taken by a general camera, the photographing cost can be reduced and the photographing time can be shortened. It is also possible to generate a stereoscopic image from existing content such as a movie, or convert a general television broadcast into a stereoscopic image and display it on a television screen.
  • the depth information value changes at the boundary between the person who is the subject and the background, and the discontinuity (discontinuity) occurs in the depth.
  • the hue, saturation, or brightness (saturation in Patent Document 1) of each pixel constituting the original image is generally used as the depth information of each pixel.
  • Depth information changes greatly at the boundary between a person and the background. As a result, there was a problem that the disconnection of depth was easily emphasized.
  • the original image includes elements such as the creator's intention (will) and story.
  • elements such as the creator's intention (will) and story.
  • do not emphasize important subjects that the viewer wants to see firmly emphasize the focused area in the original image, and do not emphasize unimportant or blurred parts. It is important to make adjustments.
  • depth information is mechanically calculated from the entire original image and used as it is, there is a problem that it is difficult to reflect the intention of the creator in the stereoscopic effect.
  • the present invention intends to provide a stereoscopic image generation method and a stereoscopic image generation system capable of generating a stereoscopic image from an original image that allows a viewer to perceive a natural stereoscopic effect. It is.
  • the present invention that achieves the above object includes an area setting step for setting a plurality of areas in the original image, a feature information acquisition step for acquiring feature information of each pixel constituting the original image, and the plurality of areas.
  • a depth information generating step for generating depth information for each pixel based on the feature information; and a stereoscopic image generating step for generating a stereoscopic image in which the position of each pixel is changed based on the depth information.
  • a method for generating a stereoscopic image comprising:
  • the region is set for each subject included in the original image.
  • the stereoscopic image generation step of the invention includes an individual image generation step of generating an individual stereoscopic image in which the position of the pixel is changed for each of the plurality of regions.
  • the stereoscopic image combining step of the invention includes a depth information combining step of combining the depth information generated for each of the plurality of regions, The stereoscopic image is generated from the depth information thus obtained.
  • the region setting step of the invention includes the color of the pixel in the region on the back side with respect to the pixel in which the region on the front side and the region on the back side overlap.
  • a back color value estimation step for estimating the value is included.
  • the depth correlation adjustment is performed in which the depth information generated for each region is adjusted based on a relative front-rear relationship of the plurality of regions. It has a step.
  • the depth information generation step of the invention is based on an edge setting step of setting an edge between a pair of the pixels extracted from the original image, and the feature information.
  • a weight information setting step for setting weight information for the edge a start pixel selection step for selecting a start pixel from the pixels, and a path for the weight information from the start pixel to the pixels.
  • the start pixel is included in an area that indicates the innermost part of the plurality of areas or an area that indicates the frontmost part. The pixel is selected.
  • the start pixel selection step of the invention is characterized in that a plurality of the start pixels are selected.
  • the present invention that achieves the above object is constituted by an electronic computer, an area setting means for setting a plurality of areas in an original image, a feature information acquisition means for acquiring feature information of each pixel constituting the original image, A depth information generating unit that generates depth information for each pixel based on the feature information and a stereoscopic image that generates a stereoscopic image in which the position of each pixel is changed based on the depth information for each of a plurality of regions.
  • a stereoscopic image generation system characterized by comprising an image generation means.
  • FIG. 1 shows an internal configuration of a computer 10 constituting the stereoscopic image generation system 1 according to the first embodiment.
  • the computer 10 includes a CPU 12, a first storage medium 14, a second storage medium 16, a third storage medium 18, an input device 20, a display device 22, an input / output interface 24, and a bus 26.
  • the CPU 12 is a so-called central processing unit, and executes various programs to realize various functions of the stereoscopic image generation system 1.
  • the first storage medium 14 is a so-called RAM (Random Access Memory) and is a memory used as a work area of the CPU 12.
  • the second storage medium 16 is a so-called ROM (Read Only Memory) and is a memory for storing a basic program executed by the CPU 12.
  • the third storage medium 18 is composed of a hard disk device incorporating a magnetic disk, a disk device accommodating a CD, DVD, or BD, a non-volatile semiconductor flash memory device, and the like.
  • OS operating system
  • OS operating system
  • a stereoscopic image generation program executed by the CPU 12 when generating a stereoscopic image, a depth map and a stereoscopic image used in this stereoscopic image generation program
  • the input device 20 is a keyboard or a mouse, and is a device for appropriately inputting information to the stereoscopic image generation system 1 by an operator.
  • the display device 22 is a display and provides a visual interface to the worker.
  • the input / output interface 24 is an interface for inputting original image data necessary for the stereoscopic image generation program, and for outputting a depth map and a stereoscopic image generated by the stereoscopic image generation program to the outside.
  • the bus 26 is a wiring for integrally connecting the CPU 12, the first storage medium 14, the second storage medium 16, the third storage medium 18, the input device 20, the display device 22, the input / output interface 24, and the like for communication. It becomes.
  • FIG. 2 the program configuration of the stereoscopic image generation program stored in the third storage medium 18 and the stereoscopic image generation system 1 realized by executing the stereoscopic image generation program by the CPU 12.
  • the functional configuration realized by is shown. 3 to 5 conceptually show a stereoscopic image generation method executed by the stereoscopic image generation system 1.
  • FIG. 1 since the configuration of the stereoscopic image generation program and the functional configuration thereof are in a correspondence relationship, the functional configuration of the stereoscopic image generation system 1 will be described here to explain the program. Description is omitted.
  • the stereoscopic image generation system 1 includes a region selection unit 110 realized by a region selection program, a feature information acquisition unit 140 realized by a feature information acquisition program, a depth information generation unit 160 realized by a depth information generation program, A stereoscopic image generation unit 180 realized by a visual image generation program is provided.
  • the area selection unit 110 selects a plurality of areas for the original image 200.
  • the area selection unit 110 selects a plurality of areas 202A to 202E with the subject included in the original image 200 as a main unit, and the areas 202A to 202E overlap each other. Yes.
  • the first region 202A occupies the upper side of the original image 202 and is located on the most back side including the mountain.
  • the second region 202B and the third region 202C are located on the front side of the first region 202A, and occupy the left and right sides along both sides of the central road.
  • the fourth area 202D is a central road that occupies the lower side of the original image 202, and is located at a depth similar to that of the second and third areas 202B and 202C.
  • the fifth region 202E is located on the foremost side in a state where it overlaps with the third region 202C and the fourth region 202D, and coincides with the female contour. Therefore, as shown in FIG. 4A, when obtaining the individual original images 201A to 201E separated for each of the areas 202A to 202E from the original image 200, the individual original images of the third area 202C and the fourth area 202D are obtained.
  • the overlapping area X that overlaps the individual original image 201E in the fifth area 202E is in a state in which the color value of the pixel is missing.
  • the area selection unit 110 includes a back color value estimation unit 112 in order to compensate for the lack of color values.
  • the back surface color value estimation unit 112 estimates the color values of the pixels in the back side region with respect to the pixels in the overlapping region X where the front side region and the back side region overlap. As shown in FIG. 5, for example, when the original image 200 is a moving image including original images 201A to 201C of other frames, the color of the pixel T in the overlapping region X in the individual original image 201C in the third region 202C. The value is estimated by referring to the pixels TA to TC at the same position in the other original images 200A to 200C.
  • the pixel TC in the original image 200C can recognize the color value of the row of trees because the woman on the front side has moved to the left side.
  • the color value of the pixel TC of the original image 200C is applied to the color value of the pixel T of the original image 200.
  • the color values of all the pixels 204 included in the overlapping area X that is, the image of the subject in the entire area are completed.
  • corrected original original images 203A to 203E in which the missing color values in the overlapping region X are eliminated from the original image 200 are obtained.
  • the color value of the overlapping region X in the original image 200 can be estimated from the color values of the surrounding pixels 204.
  • the feature information acquisition unit 140 acquires the feature information 240 of each pixel 204 constituting the original image 200 as shown in FIGS.
  • feature information 240 is acquired for each pixel 204 of the corrected individual original images 203A to 203E.
  • This feature information 240 includes, for example, characteristic information that each pixel 204 has independently such as the hue, brightness, saturation, and color space of each pixel 204, and pixels around the target pixel 204. 204. Characteristic information derived from the relationship of 204, or in the case of a moving image having a plurality of frames, characteristic information derived from temporal changes of each pixel 204 (relationship with pixels at the same position in the previous and subsequent frames), etc. It is also possible to use.
  • the depth information generation unit 160 sets the depth information 270 for each pixel 204 based on the feature information 240 acquired for each pixel 204, with the areas 202A to 202E as units. Specifically, the depth information 270 is set for each pixel 204 of the corrected individual original images 203A to 203E. As a result, individual depth maps 265A to 265E are generated as a set of depth information 270 corresponding to the corrected individual original images 203A to 203E.
  • the depth information generation unit 160 further includes an edge setting unit 162, a weight information setting unit 164, a start pixel selection unit 166, a path information setting unit 168, a depth determination unit 170, and a depth correlation adjustment unit. 172.
  • the edge setting unit 162 sets an edge 262 between a pair of pixels 204 extracted from the original image 200.
  • the edge 262 conceptually means a line connecting a pair of pixels 204 or a path connecting both.
  • the pair of pixels 204 are nodes or vertices, and the edges 262 are branches or edges.
  • an edge 262 for a total of four pixels 204 adjacent in the vertical and horizontal directions is set. Note that the present invention is not limited to the case where the edge 262 is set for each pixel 204 that is vertically and horizontally adjacent to each other, but the diagonally upper right, the upper left, the lower right, and the lower left.
  • An edge 262 can be set for adjacent pixels 204, or an edge 262 can be set for a total of eight pixels 204 obtained by combining these with upper, lower, left and right.
  • the edge 262 is not necessarily set between adjacent pixels 204, and the edge 262 with respect to a pair of pixels 204 having a certain distance by skipping pixels in the middle, that is, the pixels 204 that have been thinned out. Can also be set. Needless to say, an edge 262 can be set between a pair of pixels 204 located far away like an enclave.
  • the weight information setting unit 164 sets the weight information 264 for the edge 262 based on a pair of feature information 240 connecting the edges 262.
  • the weight information 264 uses the difference between the feature information 240 of the pair of pixels 204 connecting the edges 262.
  • the weight information 264 increases as the difference increases, and the weight information 264 decreases as the difference decreases.
  • the weight information 264 is not limited to the “difference” between the pair of feature information 240 at both ends of the edge 262, and various functions that calculate weight information using the pair of feature information 240 are used. Thus, the weight information 264 can be set.
  • the start pixel selection unit 166 selects a start pixel 266 from each pixel 204 in the original image 200.
  • the start pixel 266 becomes a start point when setting the shortest path information 268 described later.
  • the start pixel selection unit 166 since the original image 200 is separated into a plurality of corrected individual original images 203A to 203E by the area selection unit 110, the start pixel selection unit 166 has a start pixel 266A for each of the corrected individual original images 203A to 203E. Select ⁇ 266E.
  • the start pixels 266A to 266E can be freely selected from the pixels 204 in the corrected individual original images 203A to 203E.
  • each corrected individual original image 203A is selected. It is preferable to select from a pixel group existing in the innermost area 200A located on the farthest side in 203E or a pixel group present in the foremost area 200B located on the foremost side.
  • the corrected individual original image 203A in FIG. 7 it is also possible to collectively select all the plurality of pixels 204 included in the predetermined area 200C as one start pixel 266.
  • one pixel is selected as the start pixels 266A to 266E from the back side area 200A in the corrected individual original images 203A to 203E.
  • the path information setting unit 168 uses the weight information 264 of the path (edge 262) from the start pixel 266A to 266E to each pixel 204 for each of the plurality of regions 202A to 202E, that is, for each of the corrected individual original images 203A to 203E. Then, the shortest path is calculated, and the shortest path information 268 is set for each pixel 204 in the corrected individual original images 203A to 203E. A specific example of this will be described with reference to FIG.
  • the original image 200 is composed of nine pixels 204A to 204I of 3 rows ⁇ 3 columns, and the upper left pixel 204A is the pixel located on the farthest side. Therefore, a case where the pixel is set as the start pixel 266 will be considered.
  • the twelve edges 262 (1) to 262 (12) connecting the pixels 204A to 204I use 1 to 10 by using the relative difference of characteristic information (not shown) held by the pixels 204A to 204I.
  • the weight information 264 is preset.
  • the first path R1 including only the edge 262 (3) directly connecting the start pixel 204A and the pixel 204D
  • the sum of the weight information 264 of the first route R1 is “1”, and the sum of the weight information 264 of the second route R2 is “10” of 3 + 2 + 5.
  • the sum of the weight information 264 is calculated in the same manner for all possible paths between the start pixel 204A and the pixel 204D, and the shortest path is the smallest value.
  • the first route R1 is the shortest route.
  • “1”, which is the sum of the weight information 264 on the shortest route, is set as the shortest route information 268 in the pixel 204D.
  • the route information setting unit 168 sets the shortest route information 268 for all the pixels 204A to 204I by the above method.
  • the pixel 204A is “0”
  • the pixel 204B is “3”
  • the pixel 204C is “11”
  • the pixel 204D is “1”
  • the pixel 204E is “5”
  • the pixel 204F is “10”
  • the pixel 204G is “5”.
  • the shortest path information 268 of" 12 is set for the pixel 204H and" 12 "is set for the pixel 204I.
  • the depth determination unit 170 sets the depth information 270 for each pixel 204 based on the shortest path information 268.
  • the depth determination unit 170 uses the shortest path information 268 as the depth information 270 as it is.
  • the depth information 270 can be determined independently for each of the areas 202A to 202E set in the original image 200.
  • the depth information 270 can be uniquely set by selecting each subject in the areas 202A to 202E in this way.
  • the optimum start pixels 266A to 266E are selected and the depth information 270 is calculated by the shortest path method, so that the depth information 270 is continuously and extremely delicate.
  • the depth maps 265A to 265E are visual maps of the depth information 270 set for each pixel 204.
  • a value obtained by correcting the shortest path information 268 as needed can be used as the depth information 270.
  • different correction functions are prepared depending on whether the original image 200 is an image of an outdoor landscape or an image of an indoor space.
  • the depth information 270 can also be calculated by applying a correction function selected according to the content. It is also possible to calculate depth information 270 by applying different correction functions according to the type of subject for each of the corrected individual original images 203A to 203E.
  • the depth determining unit 170 determines the depth information 270 after correcting the shortest path information 268 as a whole for each of the individual depth maps 265A to 265E.
  • all the pixels 204 of the fifth individual depth map 265E of the fifth area 202E on the front side are constant with respect to the shortest path information 268. After adding the correction value for the front side shift, this is used as the depth information 270.
  • this is used as the depth information 270.
  • FIG. 10 schematically shows a case where an actual scene obtained by photographing the original image 200 with the camera C is viewed from above.
  • the first area 202A in the original image 200 has the sky S and the mountain M as subjects, and the individual depth map 265A corresponding to the first area 202A.
  • the depth information 270 is set from the farthest 0 to the nearest 1.
  • the second area 202B and the third area 202C have a row of trees T as subjects, and the depth information 270 of the individual depth maps 265B and 265C corresponding thereto is set from the farthest 0 to the nearest 1.
  • the road L is the subject, and the depth information 270 of the individual depth map 265D corresponding to the fourth area 202D is set from the farthest 0 to the nearest 1.
  • the female H is the subject, and the depth information 270 of the individual depth map 265E corresponding to the fifth area 202E is set from the farthest 0 to the nearest 1.
  • the depth determining unit 170 determines the depth information 270 independently for each of the areas 202A to 202E, the relative scales are different. As a result, if the individual depth maps 265A to 265E are used as they are, an error may occur in the relative depth relationship between the regions 202A to 202E.
  • the depth correlation adjusting unit 172 adjusts (corrects) the depth information 270 determined for each of the areas 202A to 202E based on the relative front-rear relationship of these areas 202A to 202E. Specific correction examples in the depth correlation adjustment unit 172 are shown in FIGS. 10B and 11B.
  • the depth information 270 of the individual depth map 265A corresponding to the first region 202A corrects the farthest place as 0 and the nearest place as 0.1. That is, the first area 202A is positioned on the farthest side, but its depth feeling (depth width) is set to 0.1, so that almost no three-dimensional feeling is felt. In fact, even with the human eye, mountains and clouds that are very far away cannot recognize a three-dimensional stereoscopic effect.
  • the depth information 270 of the individual depth maps 265B and 265C corresponding to the second area 202B and the third area 202C corrects the farthest place as 0.3 and the nearest place as 0.7.
  • the depth information 270 of the individual depth map 265D corresponding to the fourth region 202D corrects the farthest place as 0 and the nearest place as 1.
  • the subject road L is a part of the overall depth, it does not occupy the entire depth as 0 to 1.
  • the depth width is emphasized.
  • the farthest place is set to 0.7 and the nearest place is set to 0.9.
  • the correlation adjustment by the depth correlation adjustment unit 172 is performed by displaying the individual depth maps 265A to 265E shown in FIG. 11A on the display device 22 and correcting the innermost value and the nearest value. It is preferable to prompt the input of a numerical value and a scale to be performed. Further, for example, as shown in FIG. 12, by displaying a bar chart indicating the depth information 270 for each of the individual depth maps 265A to 265E on the display device 22 and moving the setting range of the bar chart on the screen, Correlation adjustment may be performed. Thereafter, a stereoscopic image is generated using the adjusted individual depth maps 265A to 265E.
  • the stereoscopic image generation unit 180 changes the position of each pixel 204 based on the plurality of individual depth maps 265A to 265E generated for each of the plurality of regions 202A to 202E, and the image 280B for the right eye and the image 280B for the left eye.
  • the stereoscopic image 280 comprised from these is produced
  • the stereoscopic image generation unit 180 of this embodiment includes an individual image generation unit 182 and a stereoscopic image synthesis unit 184.
  • the individual image generation unit 182 changes the individual stereoscopic images 282A to 282E in which the positions of the pixels 204 of the corrected individual original images 203A to 203E are changed based on the individual depth maps 265A to 265E. (Individual image for right eye and individual image for left eye) are generated.
  • the operator confirms the completion of the individual stereoscopic images 282A to 282E in units of the areas 202A to 202E. To do.
  • the individual stereoscopic images 282A to 282E use the depth information 270 of the individual depth maps 265A to 265E, and the horizontal displacements of the pixels 204 located on the far side in the corrected individual original images 203A to 203E.
  • the amount (shift amount) is decreased, and the displacement amount in the horizontal direction is increased for the pixel 204 located on the near side.
  • the individual stereoscopic images 282A to 282E can include parallax.
  • the stereoscopic image combining unit 184 combines these individual stereoscopic images 282A to 282E to generate a stereoscopic image 280 (right eye image 280A and left eye image 280B). .
  • the right eye individual images in the individual stereoscopic images 282A to 282E are synthesized to generate the right eye image 280A
  • the left eye individual images in the individual stereoscopic images 282A to 282E are synthesized.
  • the left-eye image 280B is generated.
  • the stereoscopic image composition unit 184 also performs individual stereoscopic viewing on the rear side with respect to the individual stereoscopic images 282A to 282E on the front side based on the front-rear relationship of the plurality of individual stereoscopic images 282A to 282E.
  • the images 282A to 282E are transmitted.
  • the third individual stereoscopic image 282C and the fifth individual stereoscopic image 282E are synthesized, by using transmission synthesis (for example, alpha channel synthesis), the rear side
  • transmission synthesis for example, alpha channel synthesis
  • this transparent composition processing is a contour edge that becomes a part of the area 202E of the fifth individual stereoscopic image 282E on the front side. Is transparently transmitted.
  • the stereoscopic effect of the fifth individual stereoscopic image 282E on the front side and the stereoscopic effect of the third individual stereoscopic image 282C on the back side are directly overlapped in the vicinity of the overlapping boundary. Remain.
  • the disconnection of the depth and the gap are automatically suppressed at the boundary between the subjects separated from each other in the front-rear direction.
  • the right eye image 280A is shown on the right eye of the viewer (viewer) of the image viewer, and the left eye image 280B is shown on the left eye.
  • the parallax contained in the image is processed in the brain to perceive a stereoscopic effect.
  • step 300 a moving image composed of a plurality of original images (frames) 200 is registered in the third storage medium 18 via the input / output interface 24 of the stereoscopic image generation system 1.
  • step 301 a plurality of areas 202 are set in the original image 200, and the color values of the overlapping area X are corrected for the individual original image 201 configured in units of the areas 202, and then corrected.
  • the individual original image 203 is acquired (area setting step).
  • step 302 the feature information processing unit 140 extracts the first original image (frame) 200 from the moving image, and obtains the feature information 240 of each pixel 204 of the corrected individual original image 203 constituting this. (Feature information acquisition step).
  • step 310 an individual depth map 265 in which depth information 270 is set for each pixel 204 is generated based on the feature information 240 (depth information generation step).
  • the depth information generation step 310 is divided into steps 312 to 320 in detail.
  • step 312 an edge 262 is set between two approaching pixels 204 (edge setting step). Thereafter, in step 314, weight information 264 is set for the edge 262 based on the feature information 240 already set for each pixel 204 (weight information setting step).
  • step 316 a start pixel 266 is selected from each pixel 204 of the corrected individual original image 203 (start pixel selection step), and further, the process proceeds to step 318, from the start pixel 266 to each pixel 204.
  • the shortest path that minimizes the cumulative value of the weight information 264 on the path is calculated, and the shortest path information 268 that is the minimum cumulative value of the weight information 264 is set for each pixel 204 for which the shortest path is calculated. (Route information setting step).
  • step 320 depth information 270 is set for each pixel 204 using the shortest path information 268, and the depth information 270 is aggregated to generate an individual depth map 265 for the pixel group (depth determination step).
  • step 322 the depth information 270 of the individual depth map 265 generated for each region 202 is adjusted based on the relative anteroposterior relationship of the plurality of regions (depth correlation adjustment step).
  • step 330 the right eye image 280A obtained by shifting the position of each pixel 204 based on the determined depth information 270 (individual depth map 265) and A stereoscopic image including the left-eye image 280B is generated (stereoscopic image generation step).
  • the stereoscopic image generation step 330 is divided into an individual image generation step 332 and a stereoscopic image synthesis step 334 in detail.
  • an individual stereoscopic image 282 in which the position of the pixel 204 is changed is generated using the corrected individual original image 203 and the individual depth map 265 set for each region 202.
  • these individual stereoscopic images 282 are transparently synthesized to generate a stereoscopic image 280.
  • the depth information 270 is aggregated to generate the individual depth map 265, and the individual depth map 265 is used to generate the individual stereoscopic image 282.
  • the present invention is not limited to this. Not. It is possible to generate the individual stereoscopic image 282 by using the depth information 270 as it is without making a depth map. Further, it is not necessary to wait for the stereoscopic image generation step 330 until all the depth information 270 is generated in units of the corrected individual original images 203, and the depth information 270 set in units of the pixels 204 is sequentially displayed in the stereoscopic view. It is also possible to sequentially generate the individual stereoscopic image 282 and the stereoscopic image 280 for each pixel 204 by applying to the image generation step 330.
  • the depth information 270 is imaged or visualized by the individual depth map 265 as necessary, and the operator of the stereoscopic image generation system 1 can visually check the setting status of the depth information 270. This is convenient for checking the situation.
  • step 340 determines whether or not the current original image 200 is the last frame in the moving image, and is not the last frame. In this case, the process returns to step 302, the next original image (frame) 200 is extracted, and the same steps as described above are repeated. On the other hand, when the original image 200 that generated the stereoscopic image 280 is the last frame in the moving image, the stereoscopic image generation procedure is terminated.
  • a plurality of areas 202 are set for the original image 200, and the depth information 270 is determined in units of the areas 202.
  • the depth information 270 can be set finely in the area 202, the stereoscopic effect of the stereoscopic image 280 can be set with high accuracy.
  • the individual stereoscopic image 282 is generated for each region 202 and then combined to complete the stereoscopic image 280.
  • the stereoscopic effect is adjusted and confirmed in detail in units of the areas 202A to 202E, and the completeness of the individual stereoscopic images 282A to 282E is increased, and then the final image is synthesized as it is without losing the stereoscopic effect.
  • a stereoscopic image 280 (right-eye image 280A, left-eye image 280B) can be generated.
  • a stereoscopic image 280 with less discomfort can be obtained.
  • the generation time of the individual stereoscopic image 282 can be significantly shortened compared to the time for generating the entire stereoscopic image 280 together. Therefore, the operator can proceed with the work while efficiently confirming the stereoscopic effect in units of the area 202.
  • the depth information 270 set for each region 202 is adjusted based on the front-rear relationship between the plurality of regions 202.
  • the overall stereoscopic effect can be freely adjusted, and the intention (will) of the creator of the original image 200 can be reflected in the stereoscopic effect.
  • the region 202 including the focused subject can be set to have a large depth difference, so that a stereoscopic effect stronger than actual can be generated.
  • the region 202 including the subject out of focus it is possible to set a small depth difference to weaken the stereoscopic effect.
  • the individual stereoscopic image on the back side is compared to the individual stereoscopic image 282 on the front side for a portion where the plurality of regions 202 overlap each other. 282 is transmitted.
  • the three-dimensional effect is also expressed, it is possible to produce a natural depth feeling as if a part of the subject on the back side wraps around the back side of the subject on the front side.
  • the color value of the back side which is originally hidden can be estimated for the pixel 204 where the front side region 202 and the back side region 202 overlap, the color value of one pixel 204 is set in the depth direction. Can be multiplexed.
  • the above-described wraparound effect can be further emphasized by individually imparting a stereoscopic effect to the multiplexed color values and transmitting them.
  • the depth information 270 that is the basis of the stereoscopic effect when the stereoscopic image 280 is generated is the shortest calculated from the accumulated value of the weight information 264 along the shortest path between the plurality of pixels 204. It is generated using the route information 268.
  • the depth information 270 can be made continuous with respect to the set of pixels 204 connected by the edge 262.
  • a natural depth feeling is given to the stereoscopic image 280 generated using the depth information 270.
  • the stereoscopic image 280 can be imparted with a stereoscopic effect with little discomfort for the user. Further, with the suppression of this disconnection phenomenon, it is possible to suppress the occurrence of a gap in the generated stereoscopic image 280, and image correction (blurring and image deformation) for filling the gap is also reduced. Deterioration of image quality is suppressed.
  • the start pixel 266 is selected from the region 200A indicating the innermost part or the region 200B indicating the foremost part in the original image 200 (the corrected individual original image 203).
  • the start pixel 266 serves as a reference point (zero point) when calculating the shortest path information 268 of the other pixels 204.
  • the selection of the start pixel 266 causes the display device (display) 22 to display the original image 200 and prompts the operator of the stereoscopic image generation system 1 to select the start pixel 266 considered to be the farthest or foremost. You may do it.
  • the stereoscopic image generation system 1 may analyze the original image 200 to estimate the regions 200A and 200B that will be the farthest or the foremost, and automatically select the start pixel 266 from the regions 200A and 200B. .
  • the optimal start pixel 266 for each area 202 can be selected in consideration of the scene of the original image 200 and the subject included in each area 202, so that a more natural stereoscopic effect can be produced.
  • the present invention is not limited to this.
  • a plurality of pixels 204 included in a predetermined region 200 ⁇ / b> C in the original image 200 can be selected as one start pixel 266.
  • the edge weight information and the shortest path information of all the pixels 204 included in these regions 200C are set to zero or a fixed value (reference value) in advance.
  • the start pixel 266 is not limited to being specified in a certain area, and other pixels other than the start pixel can be integrated as a certain area.
  • this region setting is suitable for a simple subject that may share depth information of a certain area range composed of a plurality of adjacent pixels.
  • the operator gives an area instruction so that these pixel groups are virtually regarded as one pixel. As a result, the information processing time for calculating the shortest path can be greatly reduced.
  • the individual stereoscopic image 282 is generated using the individual depth map 265, and the stereoscopic image 280 is generated by transmitting and synthesizing the individual stereoscopic image 282.
  • the present invention is not limited to this.
  • the stereoscopic image generation unit 180 preferably includes a depth information synthesis unit 186 instead of the individual image generation unit 182 and the stereoscopic image synthesis unit 184.
  • the depth information combining unit 186 combines a plurality of individual depth maps 265A to 265E generated for each of the areas 202A to 202E by the depth information generating unit 160 to generate one depth information (joined depth map 267).
  • the stereoscopic image generation unit 180 uses the combined depth map 267 to generate the right eye image 280A and the left eye image 280B.
  • the depth information combining unit 186 may not be used.
  • the stereoscopic image generation unit 180 applies the depth information 270 set for each of the areas 202A to 202E in the depth information generation unit 160 in units of pixels 204, it is possible to generate a stereoscopic video 280 as a result. It becomes.
  • start pixels 266A to 266E are selected from the pixels 204 in the range of the selected regions 202A to 202E is illustrated, but the present invention is not limited to this.
  • the start pixel selection unit 166 selects a plurality of start pixels 266A to 266C from the entire original image 200 without depending on the region 202, and the path information setting unit 168
  • the shortest path can be calculated for each of the plurality of start pixels 266A to 266C for all the pixels 204 of the original image 200, and a plurality of shortest path information 268A to 268C can be set for each pixel.
  • the depth determination unit 170 selects one of the shortest path information 268A to 268C set in each pixel 204 in units of the area 202, and determines the depth information 270. At this time, the depth determination unit 170 can also determine the depth information 270 using a plurality of shortest path information 268A to 268C set for each pixel 204. The determination to select one shortest path information from the plurality of shortest path information 268A to 268C or to use the plurality of shortest path information 268A to 268C is preferably made common to the areas 202.
  • the depth information generation unit 160 generates a plurality of temporary depth maps 263A to 263C corresponding to the start pixels 266A to 266C.
  • the depth determining unit 170 uses one of the plurality of temporary depth maps 263A to 263C generated in units of the start pixel 266, or overlaps any one of the temporary depth maps 263A to 263C. It is determined whether or not. At this time, if the determination is made in units of a plurality of areas 202A to 202E selected from the original image 200, individual depth maps 265A to 265E corresponding to the areas 202A to 202E are generated.
  • the options for determining the depth information 270 can be increased.
  • This option means the start pixels 266A to 266C.
  • the start pixels 266A to 266C can be selected from a wide range including the outside of the areas 202A to 202E.
  • a more desirable start pixel 266 can be selected.
  • the depth information 270 can be determined more flexibly as the number of start pixels 266 is increased.
  • the depth information 270 it is also preferable to select a plurality from the shortest path information 268A to 268C (temporary depth maps 263A to 263C) and determine the depth information 270 using these.
  • the shortest path information 268A to 268C provisional depth maps 263A to 263C
  • the error portion can be automatically compensated by using the information together.
  • the depth information 270 is determined using a plurality of shortest path information 268A to 268C, various calculation methods such as the sum and average value of these can be applied.
  • the case where the shortest path is calculated in the path information setting step 318 so that the cumulative value of the weight information 264 on the path from the start pixel 266 to each pixel 204 is minimized is not limited to this.
  • a route that has a minimum sum of weights of a set of sides may be obtained from routes constituted by a subset of sides including all pixels 204.
  • any algorithm can be used as long as any weight value can be specified using various paths between pixels.
  • the binocular parallax stereoscopic image of the right-eye image and the left-eye image is exemplified.
  • this depth information may be used to generate a multi-view stereoscopic image, and it is also possible to generate a multi-view parallax stereoscopic image. That is, in the present invention, any type of stereoscopic video using depth information may be used.
  • the stereoscopic image generation method and the stereoscopic image generation system of the present invention can be applied to various devices such as a television and a game machine that convert a normal image into a stereoscopic image and display it in addition to the field of production of movies and television programs. Can be used in the field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Or Creating Images (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

A 3D-image generation method having: a region-setting step for setting a plurality of regions in an original image; a characteristic-information acquisition step for acquiring characteristic information for each pixel configuring the original image; a depth-information generation step for generating depth information for each pixel on the basis of the characteristic information, in each of the plurality of regions; and a 3D-image generation step for generating a 3D image in which the position of each pixel has been changed, on the basis of the depth information. As a result, the provided 3D-image generation method and 3D-image generation system are capable of generating, from an original image, a 3D image causing a viewer to perceive a natural three-dimensional sensation.

Description

立体視画像生成方法および立体視画像生成システムStereoscopic image generation method and stereoscopic image generation system
 本発明は、視差によって画像を見る者に立体感を知覚させる立体視画像を生成する立体視画像生成方法および立体視画像生成システムに関する。 The present invention relates to a stereoscopic image generation method and a stereoscopic image generation system for generating a stereoscopic image that causes a viewer to perceive a stereoscopic effect by parallax.
 近年、右眼と左眼にそれぞれ異なる画像を視認させることで観察者に立体感を知覚させる2眼視差式の立体視画像が、映画やテレビ放送等の分野で広く用いられるようになってきている。また、見る角度によって観察者が視認する画像を変化させる多眼(多視点)式の立体視画像によって観察者に立体感を知覚させる技術も、例えば裸眼立体視デバイスで用いられている。更に、これらの2眼視差式と多眼式を組み合わせた多眼視差式の立体視画像も用いられつつある。視差式の立体視画像の場合、右眼に視認させる右眼用画像および左眼に視認させる左眼用画像から構成され、両画像中の被写体の位置を人間の両眼視差に合わせてそれぞれ水平方向にシフトする(ずらす)ことにより、画像を見る者(看者)に立体感を知覚させるようにしている。 In recent years, binocular parallax-type stereoscopic images that allow viewers to perceive a stereoscopic effect by visually recognizing different images for the right eye and the left eye have come to be widely used in fields such as movies and television broadcasting. Yes. In addition, a technique for causing an observer to perceive a stereoscopic effect using a multi-view (multi-viewpoint) stereoscopic image that changes an image viewed by the observer depending on a viewing angle is also used in, for example, an autostereoscopic device. In addition, multi-view parallax stereoscopic images combining these binocular parallax and multi-view types are also being used. In the case of a parallax stereoscopic image, the image is composed of a right-eye image to be visually recognized by the right eye and a left-eye image to be visually recognized by the left eye. By shifting (shifting) in the direction, the viewer (viewer) viewing the image perceives a stereoscopic effect.
 従来、視差式の立体視画像は、2台のカメラを左右に並べて、右眼用画像および左眼用画像を同時に撮影することによって生成されるのが一般的であった。この場合、人間の両眼視差と略同様の視差を有する右眼用画像および左眼用画像を直接得ることができるため、看者に違和感を持たせることのない自然な立体視画像を生成することができる。 Conventionally, a parallax-type stereoscopic image is generally generated by arranging two cameras side by side and simultaneously capturing a right-eye image and a left-eye image. In this case, since a right-eye image and a left-eye image having substantially the same parallax as human binocular parallax can be directly obtained, a natural stereoscopic image that does not give the viewer a sense of incongruity is generated. be able to.
 しかしながら、このように2台のカメラによって右眼用画像および左眼用画像を撮影する手法では、全く同仕様の2台のカメラを正確に位置決めして配置すると共に、両者を完全に同期させた状態で撮影を行う必要がある。このため、撮影の際には専門スタッフと共に特殊な専用機器を多数揃える必要があり、撮影コストが増大するだけではなく、カメラその他の各種機器の設定や調整に多大な時間を要するという問題があった。 However, in the method of taking the right-eye image and the left-eye image with two cameras in this way, the two cameras having exactly the same specifications are positioned and arranged accurately, and the two are completely synchronized. It is necessary to shoot in the state. For this reason, it is necessary to prepare a large number of special dedicated devices together with specialized staff when shooting, which not only increases the shooting cost but also requires a lot of time to set and adjust the camera and other various devices. It was.
 また従来の多眼式の立体視画像は、多くの視点にカメラを並べて、多視点の画像を同時に撮影することによって生成されるのが一般的であった。しかしながら、このように複数台のカメラによって多視点の画像を撮影する手法では、全く同仕様の複数台のカメラを正確に位置決めして配置すると共に、すべてを完全に同期させた状態で撮影を行う必要があるという問題があった。 Also, a conventional multi-view stereoscopic image is generally generated by arranging cameras at many viewpoints and simultaneously shooting multi-view images. However, in this method of taking a multi-viewpoint image with a plurality of cameras, a plurality of cameras with exactly the same specifications are positioned and arranged accurately, and all the images are photographed in a completely synchronized state. There was a problem that it was necessary.
 ましてや、多眼視差式の立体視映像となると、様々な視点に対して、2台ずつカメラを配置して、視差を含んだ映像を撮影する必要がある。従って、極めて特異な目的が無い限り、一般的に普及するにはほど遠い状況となっている。 Furthermore, when it comes to multi-view parallax stereoscopic video, it is necessary to place two cameras at various viewpoints to shoot video that includes parallax. Therefore, unless there is a very specific purpose, the situation is generally far from widespread.
 これに対し、1台のカメラによって通常どおりに撮影された画像に画像処理を施すことで、2眼視差式の右眼用画像および左眼用画像を生成する手法が提案されている(例えば、特許文献1参照)。この手法では、まず原画像を構成する各画素に奥行き情報(奥行き値)を設定し、この奥行き情報に応じて各画素の水平方向の位置を変更することにより、両画像中の被写体の位置を両眼視差に合わせてシフトした右眼用画像および左眼用画像を生成するようになっている。 On the other hand, a method of generating a binocular parallax type image for the right eye and an image for the left eye by performing image processing on an image photographed as usual by one camera (for example, Patent Document 1). In this method, depth information (depth value) is first set for each pixel constituting the original image, and the position of the subject in both images is changed by changing the horizontal position of each pixel according to this depth information. A right-eye image and a left-eye image shifted in accordance with the binocular parallax are generated.
 この手法によれば、一般的なカメラによって撮影した通常の原画像から立体視画像を生成することが可能であるため、撮影コストを低減し、撮影時間を短縮することができる。また、既存の映画等のコンテンツから立体視画像を生成したり、一般的なテレビ放送を立体視画像に変換してテレビ画面に表示させたりすることもできる。 According to this method, since a stereoscopic image can be generated from a normal original image taken by a general camera, the photographing cost can be reduced and the photographing time can be shortened. It is also possible to generate a stereoscopic image from existing content such as a movie, or convert a general television broadcast into a stereoscopic image and display it on a television screen.
特開2002-123842号公報JP 2002-123842 A
 しかしながら、通常の原画像から立体視画像を生成する従来の手法では、例えば被写体である人物等と背景の境界においては奥行き情報の値が変化することとなり、奥行きの断絶(不連続)が生じるという問題があった。 However, in the conventional method of generating a stereoscopic image from a normal original image, for example, the depth information value changes at the boundary between the person who is the subject and the background, and the discontinuity (discontinuity) occurs in the depth. There was a problem.
 このような奥行きの断絶が生じている場合、人物等と背景の間の遠近のみが強調されて人物等が平面的に感じられる、いわゆる描き割り効果等の不自然な立体感として知覚されることとなる。また、右眼用画像および左眼用画像において各画素の位置を変更する際に、人物等に含まれる画素と背景に含まれる画素の移動量が大きく異なることから、原画像において人物等に遮蔽されていた背景に大きなギャップ(欠損)が生じることとなる。 When such a discontinuity in depth occurs, only the perspective between the person and the background is emphasized, and the person can be perceived as a flat surface. It becomes. In addition, when changing the position of each pixel in the right-eye image and the left-eye image, the movement amount of the pixel included in the person and the pixel included in the background is greatly different. A large gap (deficiency) will occur in the background.
 従来の手法においては、このようなギャップを回避するために、境界部分に対するぼかし処理や、人物等または背景の画像を拡大または変形させる処理を施すようにしたものもあるが、このような境界処理を行うと境界部分には視差が付与されないため、境界部分に関してかえって看者に違和感を与える場合があった。また、この種の境界処理は、立体視画像の画質を劣化させるという問題もあった。また、これらのぼかし処理や、拡大変形処理には、ソフトウエア上で立体視画像を加工するオペレータの作業負担を増大させる。従って、多眼式や多眼視差式の立体視画像を、原画像から立体視画像を生成しようとすると、オペレータの加工作業が膨大となってしまうという問題があった。 In the conventional method, in order to avoid such a gap, there is a method in which a blurring process for a boundary part or a process for enlarging or deforming a person or the like or a background image is performed. When parallax is performed, parallax is not given to the boundary portion, so that the viewer may feel uncomfortable about the boundary portion. In addition, this type of boundary processing has a problem of degrading the image quality of the stereoscopic image. In addition, these blurring processing and enlargement / deformation processing increase the workload of an operator who processes a stereoscopic image on software. Therefore, when generating a stereoscopic image from an original image of a multi-view type or a multi-view parallax type stereoscopic image, there is a problem that an operator's processing work becomes enormous.
 また、従来の手法では、一般的に原画像を構成する各画素の色相、彩度または明度(上記特許文献1では、彩度)の値をそのまま各画素の奥行き情報としているため、例えば被写体である人物等と背景の境界で奥行き情報が大きく変化する。結果、奥行きの断絶が強調されやすいという問題があった。 In the conventional method, the hue, saturation, or brightness (saturation in Patent Document 1) of each pixel constituting the original image is generally used as the depth information of each pixel. Depth information changes greatly at the boundary between a person and the background. As a result, there was a problem that the disconnection of depth was easily emphasized.
 更に、原画像には、制作者の意図(意志)やストーリー性などの要素も含まれる。この場合、看者にしっかりと見て欲しい重要な被写体を強調したり、原画像中でフォーカスが当たっている場所を強調したり、反対に、重要でない部分やぼけている部分を強調させないように調整したりすることが重要になる。しかし、従来の手法では、原画像の全体から奥行き情報を機械的に算出して、そのまま利用するため、制作者の意図を立体感に反映させることが困難であるという問題があった。 Furthermore, the original image includes elements such as the creator's intention (will) and story. In this case, do not emphasize important subjects that the viewer wants to see firmly, emphasize the focused area in the original image, and do not emphasize unimportant or blurred parts. It is important to make adjustments. However, in the conventional method, since depth information is mechanically calculated from the entire original image and used as it is, there is a problem that it is difficult to reflect the intention of the creator in the stereoscopic effect.
 本発明は、斯かる実情に鑑み、看者に自然な立体感を知覚させる立体視画像を原画像から生成することが可能な立体視画像生成方法および立体視画像生成システムを提供しようとするものである。 In view of such circumstances, the present invention intends to provide a stereoscopic image generation method and a stereoscopic image generation system capable of generating a stereoscopic image from an original image that allows a viewer to perceive a natural stereoscopic effect. It is.
 上記目的を達成する本発明は、原画像に複数の領域を設定する領域設定ステップと、前記原画像を構成する各画素の特徴情報を取得する特徴情報取得ステップと、前記複数の領域ごとに、前記特徴情報に基づいて前記各画素に奥行き情報を生成する奥行き情報生成ステップと、前記奥行き情報に基づいて、前記各画素の位置を変更した立体視画像を生成する立体視画像生成ステップと、を有することを特徴とする、立体視画像生成方法である。 The present invention that achieves the above object includes an area setting step for setting a plurality of areas in the original image, a feature information acquisition step for acquiring feature information of each pixel constituting the original image, and the plurality of areas. A depth information generating step for generating depth information for each pixel based on the feature information; and a stereoscopic image generating step for generating a stereoscopic image in which the position of each pixel is changed based on the depth information. A method for generating a stereoscopic image, comprising:
 上記目的を達成する立体視画像生成方法において、上記発明の前記領域設定ステップでは、前記原画像に含まれる被写体ごとに前記領域を設定することを特徴とする。 In the stereoscopic image generation method that achieves the above object, in the region setting step of the invention, the region is set for each subject included in the original image.
 上記目的を達成する立体視画像生成方法において、上記発明の前記立体視画像生成ステップは、前記複数の領域ごとに、前記画素の位置を変更した個別立体視画像を生成する個別画像生成ステップと、前記複数の領域ごとに生成された複数の前記個別立体視画像を合成して前記立体視画像を生成する立体視画像合成ステップと、を有することを特徴とする。 In the stereoscopic image generation method that achieves the above object, the stereoscopic image generation step of the invention includes an individual image generation step of generating an individual stereoscopic image in which the position of the pixel is changed for each of the plurality of regions. A stereoscopic image combining step of generating the stereoscopic image by combining the plurality of individual stereoscopic images generated for each of the plurality of regions.
 上記目的を達成する立体視画像生成方法において、上記発明の前記立体視画像合成ステップでは、複数の前記個別立体視画像の前後関係に基づいて、前面側の前記個別立体視画像に対して、背面側の前記個別立体視画像が透過するように合成することを特徴とする。 In the stereoscopic image generation method that achieves the above object, in the stereoscopic image synthesis step of the invention described above, based on the front-rear relationship of the plurality of individual stereoscopic images, It synthesize | combines so that the said separate stereoscopic vision image of the side may permeate | transmit.
 上記目的を達成する立体視画像生成方法において、上記発明の前記立体視画像合成ステップは、前記複数の領域ごとに生成された前記奥行き情報を合成する奥行き情報合成ステップを有しており、前記合成された前記奥行き情報から前記立体視画像を生成することを特徴とする。 In the stereoscopic image generating method that achieves the above object, the stereoscopic image combining step of the invention includes a depth information combining step of combining the depth information generated for each of the plurality of regions, The stereoscopic image is generated from the depth information thus obtained.
 上記目的を達成する立体視画像生成方法において、上記発明の前記領域設定ステップは、前面側の前記領域と背面側の前記領域が重なり合う前記画素に対して、背面側の前記領域の前記画素の色値を推測する背面色値推測ステップを有することを特徴とする。 In the stereoscopic image generation method that achieves the above object, the region setting step of the invention includes the color of the pixel in the region on the back side with respect to the pixel in which the region on the front side and the region on the back side overlap. A back color value estimation step for estimating the value is included.
 上記目的を達成する立体視画像生成方法において、上記発明の前記奥行き情報生成ステップは、前記領域ごとに生成した奥行き情報を、複数の前記領域の相対的な前後関係に基づいて調整する奥行き相関調整ステップを有することを特徴とする。 In the stereoscopic image generation method that achieves the above object, in the depth information generation step of the invention, the depth correlation adjustment is performed in which the depth information generated for each region is adjusted based on a relative front-rear relationship of the plurality of regions. It has a step.
 上記目的を達成する立体視画像生成方法において、上記発明の前記奥行き情報生成ステップは、前記原画像から抽出された一対の前記画素の間にエッジを設定するエッジ設定ステップと、前記特徴情報に基づいて前記エッジに重み情報を設定する重み情報設定ステップと、前記各画素の中からスタート画素を選択するスタート画素選択ステップと、前記スタート画素から前記各画素までの前記重み情報についての経路を算出し、前記各画素に経路情報を設定する経路情報設定ステップと、前記経路情報に基づいて前記各画素に前記奥行き情報を設定する奥行き確定ステップと、を有することを特徴とする。 In the stereoscopic image generation method that achieves the above object, the depth information generation step of the invention is based on an edge setting step of setting an edge between a pair of the pixels extracted from the original image, and the feature information. A weight information setting step for setting weight information for the edge, a start pixel selection step for selecting a start pixel from the pixels, and a path for the weight information from the start pixel to the pixels. And a path information setting step for setting path information for each pixel, and a depth determination step for setting the depth information for each pixel based on the path information.
 上記目的を達成する立体視画像生成方法において、上記発明の前記スタート画素選択ステップでは、前記複数の領域のそれぞれにおける最奥部を示す領域、または最前部を示す領域に含まれる前記画素を前記スタート画素に選択することを特徴とする。 In the stereoscopic image generating method that achieves the above object, in the start pixel selecting step of the invention, the start pixel is included in an area that indicates the innermost part of the plurality of areas or an area that indicates the frontmost part. The pixel is selected.
 上記目的を達成する立体視画像生成方法において、上記発明の前記スタート画素選択ステップでは、前記スタート画素を複数選択することを特徴とする。 In the stereoscopic image generation method that achieves the above object, the start pixel selection step of the invention is characterized in that a plurality of the start pixels are selected.
 上記目的を達成する本発明は、電子計算機によって構成され、原画像に複数の領域を設定する領域設定手段と、前記原画像を構成する各画素の特徴情報を取得する特徴情報取得手段と、前記複数の領域ごとに、前記特徴情報に基づいて前記各画素に奥行き情報を生成する奥行き情報生成手段と、前記奥行き情報に基づいて、前記各画素の位置を変更した立体視画像を生成する立体視画像生成手段と、を有することを特徴とする立体視画像生成システムである。 The present invention that achieves the above object is constituted by an electronic computer, an area setting means for setting a plurality of areas in an original image, a feature information acquisition means for acquiring feature information of each pixel constituting the original image, A depth information generating unit that generates depth information for each pixel based on the feature information and a stereoscopic image that generates a stereoscopic image in which the position of each pixel is changed based on the depth information for each of a plurality of regions. And a stereoscopic image generation system characterized by comprising an image generation means.
 本発明によれば、看者に自然な立体感を知覚させる立体視画像を原画像から生成することができるという優れた効果を奏し得る。 According to the present invention, it is possible to produce an excellent effect that a stereoscopic image that allows a viewer to perceive a natural stereoscopic effect can be generated from an original image.
本発明の第1実施形態に係る立体視画像生成システムのハードウエア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the stereoscopic vision image generation system which concerns on 1st Embodiment of this invention. 同立体視画像生成システムのプログラム構成及び機能構成を示すブロック図である。It is a block diagram which shows the program structure and functional structure of the stereoscopic vision image generation system. 同立体視画像生成システムによる原画像の領域選択を示すブロック図である。It is a block diagram which shows the area | region selection of the original image by the same stereoscopic vision image generation system. 同立体視画像生成システムによる個別原画像の修正手法を示すブロック図である。It is a block diagram which shows the correction method of the individual original image by the same stereoscopic vision image generation system. 同立体視画像生成システムによる個別原画像の修正手法を示すブロック図である。It is a block diagram which shows the correction method of the individual original image by the same stereoscopic vision image generation system. 同立体視画像生成システムにおける個別デプスマップの生成概念を示す図である。It is a figure which shows the production | generation concept of the separate depth map in the same stereoscopic vision image generation system. 同立体視画像生成システムにおけるデプスマップの生成概念を示す図である。It is a figure which shows the production | generation concept of the depth map in the same stereoscopic vision image generation system. 同立体視画像生成システムにおける最短経路情報を算出する手順を示す図である。It is a figure which shows the procedure which calculates the shortest path | route information in the same stereoscopic vision image generation system. 同立体視画像生成システムにおける最短経路情報を算出する例を示す図である。It is a figure which shows the example which calculates the shortest path information in the same stereoscopic vision image generation system. 同立体視画像生成システムにおける(A)調整前の奥行き情報の状態、(B)調整後の奥行き情報の状態を示す図である。It is a figure which shows the state of the depth information before adjustment in the stereoscopic vision image generation system, (B) The state of the depth information after adjustment. 同立体視画像生成システムにおける(A)調整前の奥行き情報の状態、(B)調整後の奥行き情報の状態を示す図である。It is a figure which shows the state of the depth information before adjustment in the stereoscopic vision image generation system, (B) The state of the depth information after adjustment. 同立体視画像生成システムにおける奥行き情報の相関調整を行う為の入力画面の状態を示す図である。It is a figure which shows the state of the input screen for performing correlation adjustment of the depth information in the same stereoscopic vision image generation system. 同立体視画像生成システムによる個別立体視画像生成手順を示す図である。It is a figure which shows the individual stereoscopic image production | generation procedure by the same stereoscopic vision image generation system. 同立体視画像生成システムによる立体視画像生成手順を示す図である。It is a figure which shows the stereoscopic vision image generation procedure by the stereoscopic vision image generation system. 同立体視画像生成システムによる立体視画像の合成手法を示す図である。It is a figure which shows the synthetic | combination method of the stereoscopic vision image by the stereoscopic vision image generation system. 同立体視画像生成システムによる立体視画像生成手順を示すフローチャートである。It is a flowchart which shows the stereoscopic vision image generation procedure by the stereoscopic vision image generation system. 同立体視画像生成システムの他の例による機能構成を示すブロック図である。It is a block diagram which shows the function structure by the other example of the same stereoscopic vision image generation system. 同立体視画像生成システムの他の例による立体視画像生成の流れを示すブロック図である。It is a block diagram which shows the flow of the stereoscopic vision image generation by the other example of the same stereoscopic vision image generation system. 同立体視画像生成システムの他の例による立体視画像生成の流れを示すブロック図である。It is a block diagram which shows the flow of the stereoscopic vision image generation by the other example of the same stereoscopic vision image generation system. 同立体視画像生成システムの他の例による立体視画像生成の流れを示すブロック図である。It is a block diagram which shows the flow of the stereoscopic vision image generation by the other example of the same stereoscopic vision image generation system.
 以下、図面を参照しながら本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1には、第1実施形態に係る立体視画像生成システム1を構成するコンピュータ10の内部構成が示されている。このコンピュータ10は、CPU12、第1記憶媒体14、第2記憶媒体16、第3記憶媒体18、入力装置20、表示装置22、入出力インタフェース24、バス26を備えて構成される。CPU12はいわゆる中央演算処理装置であり、各種プログラムが実行されてこの立体視画像生成システム1の各種機能を実現する。第1記憶媒体14はいわゆるRAM(ランダム・アクセス・メモリ)であり、CPU12の作業領域として使用されるメモリである。第2記憶媒体16はいわゆるROM(リード・オンリー・メモリ)であり、CPU12で実行される基本的なプログラムを記憶するためのメモリである。第3記憶媒体18は、磁気ディスクを内蔵したハードディスク装置、CDやDVDやBDを収容するディスク装置、不揮発性の半導体フラッシュメモリ装置などで構成されており、この立体視画像生成システム1の全体的な基本動作を実現するOS(オペレーティングシステム)プログラムや、立体視画像を生成する際にCPU12で実行される立体視画像生成プログラムや、この立体視画像生成プログラムで利用されるデプスマップや立体視画像などの各種データなどを記憶する。入力装置20はキーボードやマウスであり、作業者によって立体視画像生成システム1に適宜情報を入力する装置である。表示装置22はディスプレイであって、作業者に対して視覚的なインタフェースを提供する。入出力インタフェース24は、立体視画像生成プログラムで必要となる原画像データを入力したり、同立体視画像生成プログラムで生成されたデプスマップや立体視画像を外部に出力したりするためのインタフェースである。バス26は、CPU12、第1記憶媒体14、第2記憶媒体16、第3記憶媒体18、入力装置20、表示装置22、入出力インタフェース24などを一体的に接続して通信を行うための配線となる。 FIG. 1 shows an internal configuration of a computer 10 constituting the stereoscopic image generation system 1 according to the first embodiment. The computer 10 includes a CPU 12, a first storage medium 14, a second storage medium 16, a third storage medium 18, an input device 20, a display device 22, an input / output interface 24, and a bus 26. The CPU 12 is a so-called central processing unit, and executes various programs to realize various functions of the stereoscopic image generation system 1. The first storage medium 14 is a so-called RAM (Random Access Memory) and is a memory used as a work area of the CPU 12. The second storage medium 16 is a so-called ROM (Read Only Memory) and is a memory for storing a basic program executed by the CPU 12. The third storage medium 18 is composed of a hard disk device incorporating a magnetic disk, a disk device accommodating a CD, DVD, or BD, a non-volatile semiconductor flash memory device, and the like. OS (operating system) program that realizes basic operations, a stereoscopic image generation program executed by the CPU 12 when generating a stereoscopic image, a depth map and a stereoscopic image used in this stereoscopic image generation program Various data such as are stored. The input device 20 is a keyboard or a mouse, and is a device for appropriately inputting information to the stereoscopic image generation system 1 by an operator. The display device 22 is a display and provides a visual interface to the worker. The input / output interface 24 is an interface for inputting original image data necessary for the stereoscopic image generation program, and for outputting a depth map and a stereoscopic image generated by the stereoscopic image generation program to the outside. is there. The bus 26 is a wiring for integrally connecting the CPU 12, the first storage medium 14, the second storage medium 16, the third storage medium 18, the input device 20, the display device 22, the input / output interface 24, and the like for communication. It becomes.
 図2には、第3記憶媒体18に記憶されている立体視画像生成プログラムのプログラム構成と、この立体視画像生成プログラムがCPU12で実行されることにより実現されることによって立体視画像生成システム1が実現する機能構成が示されている。また、図3~図5には、この立体視画像生成システム1によって実行される立体視画像生成手法が概念的に示されている。なお、この立体視画像生成システム1では、立体視画像生成プログラムの構成とその機能構成は対応関係にあることから、ここでは立体視画像生成システム1の機能構成の説明を行うことで、プログラムの説明は省略する。 In FIG. 2, the program configuration of the stereoscopic image generation program stored in the third storage medium 18 and the stereoscopic image generation system 1 realized by executing the stereoscopic image generation program by the CPU 12. The functional configuration realized by is shown. 3 to 5 conceptually show a stereoscopic image generation method executed by the stereoscopic image generation system 1. FIG. In this stereoscopic image generation system 1, since the configuration of the stereoscopic image generation program and the functional configuration thereof are in a correspondence relationship, the functional configuration of the stereoscopic image generation system 1 will be described here to explain the program. Description is omitted.
 この立体視画像生成システム1は、領域選択プログラムによって実現される領域選択部110、特徴情報取得プログラムによって実現される特徴情報取得部140、奥行き情報生成プログラムによって実現される奥行き情報生成部160、立体視画像生成プログラムによって実現される立体視画像生成部180を備えて構成される。 The stereoscopic image generation system 1 includes a region selection unit 110 realized by a region selection program, a feature information acquisition unit 140 realized by a feature information acquisition program, a depth information generation unit 160 realized by a depth information generation program, A stereoscopic image generation unit 180 realized by a visual image generation program is provided.
 領域選択部110は、原画像200に複数の領域を選択する。特に本実施形態では、領域選択部110が、原画像200に含まれる被写体を主要単位として複数の領域202A~202Eを選択しており、更に、その領域202A~202E同士は互いに重なり合うようになっている。具体的に図3に示されるように、第1領域202Aは、原画像202の上側を占めており、山を含んだ最も背面側に位置する。第2領域202B及び第3領域202Cは、第1領域202Aよりも前面側に位置しており、中央の道の両脇に沿って左右両脇を占めている。第4領域202Dは、原画像202の下側を占める中央の道路であって、この第2、第3領域202B、202Cと同程度の奥行きに位置している。第5領域202Eは、第3領域202C及び第4領域202Dと重なった状態で最も前面側に位置しており、女性の輪郭と一致している。従って、図4(A)に示されるように、原画像200から、領域202A~202E毎に分離させた個別原画像201A~201Eを得る際、第3領域202C及び第4領域202Dの個別原画像201C、201Dにおいて、第5領域202Eの個別原画像201Eと重なり合う重複領域Xは、その画素の色値が欠落した状態となっている。 The area selection unit 110 selects a plurality of areas for the original image 200. In particular, in the present embodiment, the area selection unit 110 selects a plurality of areas 202A to 202E with the subject included in the original image 200 as a main unit, and the areas 202A to 202E overlap each other. Yes. Specifically, as shown in FIG. 3, the first region 202A occupies the upper side of the original image 202 and is located on the most back side including the mountain. The second region 202B and the third region 202C are located on the front side of the first region 202A, and occupy the left and right sides along both sides of the central road. The fourth area 202D is a central road that occupies the lower side of the original image 202, and is located at a depth similar to that of the second and third areas 202B and 202C. The fifth region 202E is located on the foremost side in a state where it overlaps with the third region 202C and the fourth region 202D, and coincides with the female contour. Therefore, as shown in FIG. 4A, when obtaining the individual original images 201A to 201E separated for each of the areas 202A to 202E from the original image 200, the individual original images of the third area 202C and the fourth area 202D are obtained. In 201C and 201D, the overlapping area X that overlaps the individual original image 201E in the fifth area 202E is in a state in which the color value of the pixel is missing.
 この色値の欠落を補うために、本実施形態では、領域選択部110が背面色値推測部112を備える。この背面色値推測部112は、前面側の領域と背面側の領域が重なり合う重複領域Xの画素に対して、背面側の領域の画素の色値を推測する。図5に示されるように、例えば、この原画像200が、他のフレームの原画像201A~201Cを含む動画である場合、第3領域202Cの個別原画像201Cにおける重複領域Xの画素Tの色値は、他の原画像200A~200Cにおける同じ位置の画素TA~TCを参照して推測する。ここでは、原画像200Cにおける画素TCは、前面側の女性が左側に移動しているので、並木の色値を認識することができる。この原画像200Cの画素TCの色値を、原画像200の画素Tの色値に適用する。このようにして、重複領域Xに含まれる全画素204の色値、即ち領域全体の被写体の映像を完成させていく。以上の結果、図4(B)に示されるように、原画像200に対して、重複領域Xにおける色値の欠落が解消された修正後個別原画像203A~203Eが得られる。 In this embodiment, the area selection unit 110 includes a back color value estimation unit 112 in order to compensate for the lack of color values. The back surface color value estimation unit 112 estimates the color values of the pixels in the back side region with respect to the pixels in the overlapping region X where the front side region and the back side region overlap. As shown in FIG. 5, for example, when the original image 200 is a moving image including original images 201A to 201C of other frames, the color of the pixel T in the overlapping region X in the individual original image 201C in the third region 202C. The value is estimated by referring to the pixels TA to TC at the same position in the other original images 200A to 200C. Here, the pixel TC in the original image 200C can recognize the color value of the row of trees because the woman on the front side has moved to the left side. The color value of the pixel TC of the original image 200C is applied to the color value of the pixel T of the original image 200. In this way, the color values of all the pixels 204 included in the overlapping area X, that is, the image of the subject in the entire area are completed. As a result of the above, as shown in FIG. 4B, corrected original original images 203A to 203E in which the missing color values in the overlapping region X are eliminated from the original image 200 are obtained.
 なお、本実施形態では、動画における他のフレームの原画像200A~200Cから色値を推測する場合を例示したが、本発明はこれに限定されない。例えば原画像200における重複領域Xの色値を、その周囲の画素204の色値から推測することも可能である。また、重複領域Xの全ての画素204の推測を行う必要は無く、特に重複領域Xの輪郭(周縁)近傍の画素204を中心に推測を行うようにしても良い。 In this embodiment, the case where the color value is estimated from the original images 200A to 200C of other frames in the moving image is illustrated, but the present invention is not limited to this. For example, the color value of the overlapping region X in the original image 200 can be estimated from the color values of the surrounding pixels 204. In addition, it is not necessary to estimate all the pixels 204 in the overlapping area X, and the estimation may be performed mainly on the pixels 204 near the contour (periphery) of the overlapping area X.
 特徴情報取得部140は、図6及び図7に示されるように、原画像200を構成する各画素204の特徴情報240を取得する。特に本実施形態では修正後個別原画像203A~203Eの各画素204に対して特徴情報240を取得する。この特徴情報240は、例えば、各画素204の色相、明度、彩度、色空間などのように、各画素204が単独で有している特徴的な情報の他、対象画素204の周囲の画素204の関係から導かれる特徴的な情報や、複数フレームを有する動画の場合は、各画素204の時間的な変化(前後のフレームの同じ位置の画素との関係)から導かれる特徴的な情報などを利用することも可能である。 The feature information acquisition unit 140 acquires the feature information 240 of each pixel 204 constituting the original image 200 as shown in FIGS. In particular, in the present embodiment, feature information 240 is acquired for each pixel 204 of the corrected individual original images 203A to 203E. This feature information 240 includes, for example, characteristic information that each pixel 204 has independently such as the hue, brightness, saturation, and color space of each pixel 204, and pixels around the target pixel 204. 204. Characteristic information derived from the relationship of 204, or in the case of a moving image having a plurality of frames, characteristic information derived from temporal changes of each pixel 204 (relationship with pixels at the same position in the previous and subsequent frames), etc. It is also possible to use.
 奥行き情報生成部160は、各画素204で取得される特徴情報240に基づいて、領域202A~202Eを単位として、各画素204に奥行き情報270を設定する。ここでは具体的に、修正後個別原画像203A~203Eの各画素204に対して奥行き情報270を設定する。結果、修正後個別原画像203A~203Eに対応した奥行き情報270の集合として、個別デプスマップ265A~265Eが生成される。 The depth information generation unit 160 sets the depth information 270 for each pixel 204 based on the feature information 240 acquired for each pixel 204, with the areas 202A to 202E as units. Specifically, the depth information 270 is set for each pixel 204 of the corrected individual original images 203A to 203E. As a result, individual depth maps 265A to 265E are generated as a set of depth information 270 corresponding to the corrected individual original images 203A to 203E.
 図2に戻って、この奥行き情報生成部160は、更に詳細に、エッジ設定部162、重み情報設定部164、スタート画素選択部166、経路情報設定部168、奥行き確定部170、奥行き相関調整部172を備える。 Returning to FIG. 2, the depth information generation unit 160 further includes an edge setting unit 162, a weight information setting unit 164, a start pixel selection unit 166, a path information setting unit 168, a depth determination unit 170, and a depth correlation adjustment unit. 172.
 図8に示されるように、エッジ設定部162は、原画像200から抽出される一対の画素204間にエッジ262を設定する。このエッジ262とは、概念として、一対の画素204間を結ぶ線又は両者を結ぶ経路を意味している。グラフ理論で考えると、一対の画素204が節点又は頂点となり、エッジ262が枝又は辺となる。本実施形態は、各画素204に対して、上下左右に隣接する合計4つの画素204に対するエッジ262を設定する。なお、本発明は、各画素204から上下左右に隣接する画素204に対してエッジ262を設定する場合に限定されるものではなく、右斜め上、左斜め上、右斜め下、左斜め下の隣接する画素204に対してエッジ262を設定したり、これらと上下左右を組み合わせた合計8画素204に対してエッジ262を設定することもできる。また、必ずしも隣り合う画素204間にエッジ262を設定する場合に限られず、途中の画素を飛ばすことで一定の距離を有する一対の画素204、即ち、間引き作業を行った画素204に対してエッジ262を設定することも可能である。勿論、飛び地のように遠く離れた場所にある一対の画素204の間にエッジ262を設定することも可能である。 As shown in FIG. 8, the edge setting unit 162 sets an edge 262 between a pair of pixels 204 extracted from the original image 200. The edge 262 conceptually means a line connecting a pair of pixels 204 or a path connecting both. Considering the graph theory, the pair of pixels 204 are nodes or vertices, and the edges 262 are branches or edges. In the present embodiment, for each pixel 204, an edge 262 for a total of four pixels 204 adjacent in the vertical and horizontal directions is set. Note that the present invention is not limited to the case where the edge 262 is set for each pixel 204 that is vertically and horizontally adjacent to each other, but the diagonally upper right, the upper left, the lower right, and the lower left. An edge 262 can be set for adjacent pixels 204, or an edge 262 can be set for a total of eight pixels 204 obtained by combining these with upper, lower, left and right. In addition, the edge 262 is not necessarily set between adjacent pixels 204, and the edge 262 with respect to a pair of pixels 204 having a certain distance by skipping pixels in the middle, that is, the pixels 204 that have been thinned out. Can also be set. Needless to say, an edge 262 can be set between a pair of pixels 204 located far away like an enclave.
 重み情報設定部164は、エッジ262を結ぶ一対の特徴情報240に基づいて、このエッジ262に重み情報264を設定する。この重み情報264は、本実施形態ではエッジ262間を結ぶ一対の画素204の特徴情報240の差を利用する。差が大きいほど重み情報264が大きくなり、差が小さい程、重み情報264が小さくなる。なお、この重み情報264は、エッジ262両端の一対の特徴情報240の「差」に限定されるものではなく、この一対の特徴情報240を利用して重み情報を算出する各種関数などを利用して、重み情報264を設定することも可能である。 The weight information setting unit 164 sets the weight information 264 for the edge 262 based on a pair of feature information 240 connecting the edges 262. In this embodiment, the weight information 264 uses the difference between the feature information 240 of the pair of pixels 204 connecting the edges 262. The weight information 264 increases as the difference increases, and the weight information 264 decreases as the difference decreases. The weight information 264 is not limited to the “difference” between the pair of feature information 240 at both ends of the edge 262, and various functions that calculate weight information using the pair of feature information 240 are used. Thus, the weight information 264 can be set.
 スタート画素選択部166は、原画像200における各画素204の中から、スタート画素266を選択する。このスタート画素266は、後述する最短経路情報268を設定する際のスタート地点となる。ここでは、領域選択部110によって、原画像200が複数の修正後個別原画像203A~203Eに分離されているので、スタート画素選択部166では、修正後個別原画像203A~203Eごとにスタート画素266A~266Eを選択する。 The start pixel selection unit 166 selects a start pixel 266 from each pixel 204 in the original image 200. The start pixel 266 becomes a start point when setting the shortest path information 268 described later. Here, since the original image 200 is separated into a plurality of corrected individual original images 203A to 203E by the area selection unit 110, the start pixel selection unit 166 has a start pixel 266A for each of the corrected individual original images 203A to 203E. Select ~ 266E.
 なおこのスタート画素266A~266Eは、修正後個別原画像203A~203Eの中の画素204から自由に選択することが可能であるが、例えば図7に示されるように、各修正後個別原画像203A~203Eにおいて最も奥側に位置する最奥エリア200Aの中に存在する画素群、又は、最も前側に位置する最前エリア200Bの中に存在する画素群から選択することが好ましい。また更に、図7の修正後個別原画像203Aに示されるように、所定のエリア200Cに含まれる全ての複数画素204を、まとめて一つのスタート画素266として領域選択することも可能である。 The start pixels 266A to 266E can be freely selected from the pixels 204 in the corrected individual original images 203A to 203E. For example, as shown in FIG. 7, each corrected individual original image 203A is selected. It is preferable to select from a pixel group existing in the innermost area 200A located on the farthest side in 203E or a pixel group present in the foremost area 200B located on the foremost side. Furthermore, as shown in the corrected individual original image 203A in FIG. 7, it is also possible to collectively select all the plurality of pixels 204 included in the predetermined area 200C as one start pixel 266.
 なお本実施形態では、修正後個別原画像203A~203Eにおける奥側エリア200Aの中から一つの画素をスタート画素266A~266Eとして選択する。 In this embodiment, one pixel is selected as the start pixels 266A to 266E from the back side area 200A in the corrected individual original images 203A to 203E.
 経路情報設定部168は、複数の領域202A~202Eごと、即ち、修正後個別原画像203A~203Eごとに、スタート画素266A~266Eから各画素204までの経路(エッジ262)の重み情報264を利用して、その最短経路を算出し、修正後個別原画像203A~203E内の各画素204に最短経路情報268を設定する。この具体的な例を図9を利用して説明する。 The path information setting unit 168 uses the weight information 264 of the path (edge 262) from the start pixel 266A to 266E to each pixel 204 for each of the plurality of regions 202A to 202E, that is, for each of the corrected individual original images 203A to 203E. Then, the shortest path is calculated, and the shortest path information 268 is set for each pixel 204 in the corrected individual original images 203A to 203E. A specific example of this will be described with reference to FIG.
 説明を簡略化するために、ここでは原画像200が3行×3列の9つの画素204A~204Iから構成されると仮定し、左上の画素204Aが、最も奥側に位置する画素であることから、スタート画素266として設定する場合を考える。画素204A~204I間を結合する12個のエッジ262(1)~262(12)には、各画素204A~204Iが保有する特徴情報(図示省略)の相対差を利用して、1~10までの重み情報264が予め設定されている。ここで中央上段の画素204Dの経路を考えると、スタート画素204Aと画素204Dを結ぶ経路として、例えば、スタート画素204Aと画素204Dを直接結ぶエッジ262(3)のみの第1経路R1と、スタート画素204A、画素204B、画素204E、画素204Dを結ぶ3つのエッジ262(1)、262(4)、262(6)からなる第2経路R2を有している。第1経路R1の重み情報264の総和は「1」、第2経路R2の重み情報264の総和は、3+2+5の「10」となる。このように、スタート画素204Aと画素204Dの間において取り得る全経路について同様に重み情報264の総和を算出し、最も小さい値となるのが最短経路である。ここでは、上記第1経路R1が最短経路となり、結果、この画素204Dには、最短経路情報268として、最短経路上の重み情報264の総和である「1」が設定される。 In order to simplify the explanation, it is assumed here that the original image 200 is composed of nine pixels 204A to 204I of 3 rows × 3 columns, and the upper left pixel 204A is the pixel located on the farthest side. Therefore, a case where the pixel is set as the start pixel 266 will be considered. The twelve edges 262 (1) to 262 (12) connecting the pixels 204A to 204I use 1 to 10 by using the relative difference of characteristic information (not shown) held by the pixels 204A to 204I. The weight information 264 is preset. Here, considering the path of the pixel 204D in the upper center stage, as the path connecting the start pixel 204A and the pixel 204D, for example, the first path R1 including only the edge 262 (3) directly connecting the start pixel 204A and the pixel 204D, and the start pixel A second path R2 including three edges 262 (1), 262 (4), and 262 (6) connecting 204A, pixel 204B, pixel 204E, and pixel 204D is provided. The sum of the weight information 264 of the first route R1 is “1”, and the sum of the weight information 264 of the second route R2 is “10” of 3 + 2 + 5. As described above, the sum of the weight information 264 is calculated in the same manner for all possible paths between the start pixel 204A and the pixel 204D, and the shortest path is the smallest value. Here, the first route R1 is the shortest route. As a result, “1”, which is the sum of the weight information 264 on the shortest route, is set as the shortest route information 268 in the pixel 204D.
 経路情報設定部168は、各画素204A~204Iまでの全てに対して、上記手法によって最短経路情報268を設定する。結果として、画素204Aは「0」、画素204Bは「3」、画素204Cは「11」、画素204Dは「1」、画素204Eは「5」、画素204Fは「10」、画素204Gは「5」、画素204Hは「12」、画素204Iは「12」の最短経路情報268が設定される。 The route information setting unit 168 sets the shortest route information 268 for all the pixels 204A to 204I by the above method. As a result, the pixel 204A is “0”, the pixel 204B is “3”, the pixel 204C is “11”, the pixel 204D is “1”, the pixel 204E is “5”, the pixel 204F is “10”, and the pixel 204G is “5”. ", The shortest path information 268 of" 12 "is set for the pixel 204H and" 12 "is set for the pixel 204I.
 奥行き確定部170は、最短経路情報268に基づいて各画素204に奥行き情報270を設定する。なお、本実施形態では、奥行き確定部170は、この最短経路情報268を奥行き情報270としてそのまま用いる。 The depth determination unit 170 sets the depth information 270 for each pixel 204 based on the shortest path information 268. In the present embodiment, the depth determination unit 170 uses the shortest path information 268 as the depth information 270 as it is.
 特にここでは、原画像200に設定された領域202A~202E毎に独立して奥行き情報270を確定できる。例えば、本実施形態のように、原画像200において、中央の女性や、左右の並木、中央の道路、背景側の空が部分的に存在しており、これらの被写体の間で明らかに立体的な連続性を確保すべきでない場合、このように各被写体を領域202A~202Eで選択することで、奥行き情報270を独自に設定することが可能となっている。結果、領域202A~202E内では、最適なスタート画素266A~266Eを選定して最短経路手法によって奥行き情報270が算出されるので、奥行き情報270が連続的且つ極めて繊細化される。なお、各画素204に設定される奥行き情報270を視覚的にマップ化したものが個別デプスマップ265A~265Eとなる。 Particularly, here, the depth information 270 can be determined independently for each of the areas 202A to 202E set in the original image 200. For example, as in the present embodiment, in the original image 200, a central woman, left and right rows of trees, a central road, and a sky on the background side are partially present, and these objects are clearly three-dimensional. When the continuity should not be ensured, the depth information 270 can be uniquely set by selecting each subject in the areas 202A to 202E in this way. As a result, in the regions 202A to 202E, the optimum start pixels 266A to 266E are selected and the depth information 270 is calculated by the shortest path method, so that the depth information 270 is continuously and extremely delicate. The depth maps 265A to 265E are visual maps of the depth information 270 set for each pixel 204.
 なお、必要に応じてこの最短経路情報268を補正した値を、奥行き情報270として用いることも可能である。例えば、原画像200が野外の風景を写した画像であるか、屋内空間を写した画像であるかによって異なる補正用関数を用意しておき、この最短経路情報268に対して、原画像200の内容に応じて選択された補正関数を適用して、奥行き情報270を算出することも可能である。また、修正後個別原画像203A~203Eごとに、被写体の種類に合わせて異なる補正関数を適用して、奥行き情報270を算出することも可能である。 A value obtained by correcting the shortest path information 268 as needed can be used as the depth information 270. For example, different correction functions are prepared depending on whether the original image 200 is an image of an outdoor landscape or an image of an indoor space. The depth information 270 can also be calculated by applying a correction function selected according to the content. It is also possible to calculate depth information 270 by applying different correction functions according to the type of subject for each of the corrected individual original images 203A to 203E.
 特に、本実施形態のように領域202A~202E毎にスタート画素266A~266Eを設定する場合、各スタート画素266A~266Eは、最短経路情報268が「ゼロ」となる。従って、これをそのまま奥行き情報270として採用すると、複数の個別デプスマップ265A~265E間で相対的な奥行き感がずれてしまう可能性がある。従って、奥行き確定部170では、個別デプスマップ265A~265E毎に、最短経路情報268を全体的に補正してから奥行き情報270を確定することが好ましい。例えば、背景側の第1領域202Aの第1個別デプスマップ265Aと比較して、前面側の第5領域202Eの第5個別デプスマップ265Eの全画素204には、最短経路情報268に対して一定の前側シフト用の補正値を付加してから、これを奥行き情報270とする。このように、個別デプスマップ265A~265E単位で奥行き感を補正することで、領域202A~202E内では繊細且つ滑らかな立体感を出しつつ、複数の個別デプスマップ265A~265E同士では、最適な距離差でクッキリとした鮮明な立体感を付与することができる。 In particular, when the start pixels 266A to 266E are set for each of the regions 202A to 202E as in the present embodiment, the shortest path information 268 of each of the start pixels 266A to 266E is “zero”. Therefore, if this is adopted as the depth information 270 as it is, there is a possibility that the relative depth sensation is shifted between the plurality of individual depth maps 265A to 265E. Accordingly, it is preferable that the depth determining unit 170 determines the depth information 270 after correcting the shortest path information 268 as a whole for each of the individual depth maps 265A to 265E. For example, as compared with the first individual depth map 265A of the first area 202A on the background side, all the pixels 204 of the fifth individual depth map 265E of the fifth area 202E on the front side are constant with respect to the shortest path information 268. After adding the correction value for the front side shift, this is used as the depth information 270. In this way, by correcting the sense of depth in units of the individual depth maps 265A to 265E, while providing a delicate and smooth stereoscopic effect in the regions 202A to 202E, an optimum distance is obtained between the plurality of individual depth maps 265A to 265E. A clear and clear three-dimensional effect can be imparted by the difference.
 最も遠い距離を0とし、最も近い距離を1と定義した場合の個別デプスマップ265A~265Eの奥行き情報270の例を説明する。図10は、この原画像200をカメラCで撮影した実際の場面を、上方から眺めた場合を模式的に示している。図10(A)及び図11(A)に示されるように、原画像200における第1領域202Aは空Sと山Mが被写体となっており、この第1領域202Aに対応する個別デプスマップ265Aの奥行き情報270は、最も遠い0から最も近い1まで設定される。また、第2領域202B及び第3領域202Cは並木Tが被写体となっており、これらに対応する個別デプスマップ265B、265Cの奥行き情報270は最も遠い0から最も近い1まで設定される。第4領域202Dは道路Lが被写体となっており、この第4領域202Dに対応する個別デプスマップ265Dの奥行き情報270は最も遠い0から最も近い1まで設定されている。第5領域202Eは女性Hが被写体となっており、この第5領域202Eに対応する個別デプスマップ265Eの奥行き情報270は最も遠い0から最も近い1まで設定されている。 An example of the depth information 270 of the individual depth maps 265A to 265E when the farthest distance is defined as 0 and the closest distance is defined as 1 will be described. FIG. 10 schematically shows a case where an actual scene obtained by photographing the original image 200 with the camera C is viewed from above. As shown in FIGS. 10A and 11A, the first area 202A in the original image 200 has the sky S and the mountain M as subjects, and the individual depth map 265A corresponding to the first area 202A. The depth information 270 is set from the farthest 0 to the nearest 1. The second area 202B and the third area 202C have a row of trees T as subjects, and the depth information 270 of the individual depth maps 265B and 265C corresponding thereto is set from the farthest 0 to the nearest 1. In the fourth area 202D, the road L is the subject, and the depth information 270 of the individual depth map 265D corresponding to the fourth area 202D is set from the farthest 0 to the nearest 1. In the fifth area 202E, the female H is the subject, and the depth information 270 of the individual depth map 265E corresponding to the fifth area 202E is set from the farthest 0 to the nearest 1.
 即ち、奥行き確定部170では、領域202A~202E毎に独立して奥行き情報270を確定していることから、相対的な尺度が異なっている。結果、この個別デプスマップ265A~265Eをそのまま用いると、領域202A~202E同士の相対的な奥行き関係に誤差が生じる可能性がある。 That is, since the depth determining unit 170 determines the depth information 270 independently for each of the areas 202A to 202E, the relative scales are different. As a result, if the individual depth maps 265A to 265E are used as they are, an error may occur in the relative depth relationship between the regions 202A to 202E.
 そこで奥行き相関調整部172は、領域202A~202E毎に確定した奥行き情報270を、これらの領域202A~202Eの相対的な前後関係に基づいて調整(補正)する。奥行き相関調整部172における具体的な補正事例を図10(B)及び図11(B)に示す。第1領域202Aに対応する個別デプスマップ265Aの奥行き情報270は、最も遠い場所を0とし、最も近い場所を0.1と補正する。即ち、第1領域202Aは最も奥側に位置しながらも、その奥行き感(奥行きの幅)は0.1に設定され、殆ど立体感を感じさせないように設定する。実際に人間の目でも、極めて遠くにある山や雲は、3次元的な立体感を認識できない。第2領域202B及び第3領域202Cに対応する個別デプスマップ265B、265Cの奥行き情報270は、最も遠い場所を0.3とし、最も近い場所を0.7と補正する。 Therefore, the depth correlation adjusting unit 172 adjusts (corrects) the depth information 270 determined for each of the areas 202A to 202E based on the relative front-rear relationship of these areas 202A to 202E. Specific correction examples in the depth correlation adjustment unit 172 are shown in FIGS. 10B and 11B. The depth information 270 of the individual depth map 265A corresponding to the first region 202A corrects the farthest place as 0 and the nearest place as 0.1. That is, the first area 202A is positioned on the farthest side, but its depth feeling (depth width) is set to 0.1, so that almost no three-dimensional feeling is felt. In fact, even with the human eye, mountains and clouds that are very far away cannot recognize a three-dimensional stereoscopic effect. The depth information 270 of the individual depth maps 265B and 265C corresponding to the second area 202B and the third area 202C corrects the farthest place as 0.3 and the nearest place as 0.7.
 第4領域202Dに対応する個別デプスマップ265Dの奥行き情報270は、最も遠い場所を0とし、最も近い場所を1と補正する。本来の位置関係であれば、被写体の道路Lは全体的な奥行きの一部であることから、0~1のように全体の奥行きを占めることは無い。しかしここでは、原画像200における制作者の意図から、この道路Lの奥行き感を強調することが重要であると判断して、奥行き幅を強調している。なお、第5領域202Eに対応する個別デプスマップ265Eの奥行き情報270は、最も遠い場所を0.7とし、最も近い場所を0.9としている。 The depth information 270 of the individual depth map 265D corresponding to the fourth region 202D corrects the farthest place as 0 and the nearest place as 1. In the original positional relationship, since the subject road L is a part of the overall depth, it does not occupy the entire depth as 0 to 1. However, here, it is determined that it is important to emphasize the depth feeling of the road L from the intention of the producer in the original image 200, and the depth width is emphasized. In the depth information 270 of the individual depth map 265E corresponding to the fifth area 202E, the farthest place is set to 0.7 and the nearest place is set to 0.9.
 なお、この奥行き相関調整部172による相関調整は、表示装置22に図11(A)で示した個別デプスマップ265A~265Eを表示させ、その最も奥の値と最も手前の値に対して、補正すべき数値や尺度の入力を促すようにすることが好ましい。また例えば、図12で示されるように、個別デプスマップ265A~265E毎の奥行き情報270を意味するバーチャートを表示装置22に表示させ、そのバーチャートの設定範囲を画面上で移動させることで、相関調整を行うようにしても良い。以降は、この調整後の個別デプスマップ265A~265Eを利用して立体視画像を生成する。 The correlation adjustment by the depth correlation adjustment unit 172 is performed by displaying the individual depth maps 265A to 265E shown in FIG. 11A on the display device 22 and correcting the innermost value and the nearest value. It is preferable to prompt the input of a numerical value and a scale to be performed. Further, for example, as shown in FIG. 12, by displaying a bar chart indicating the depth information 270 for each of the individual depth maps 265A to 265E on the display device 22 and moving the setting range of the bar chart on the screen, Correlation adjustment may be performed. Thereafter, a stereoscopic image is generated using the adjusted individual depth maps 265A to 265E.
 立体視画像生成部180は、複数の領域202A~202Eごとに生成された複数の個別デプスマップ265A~265Eに基づいて、各画素204の位置を変更した右眼用画像280Aおよび左眼用画像280Bから構成される立体視画像280を生成する。 The stereoscopic image generation unit 180 changes the position of each pixel 204 based on the plurality of individual depth maps 265A to 265E generated for each of the plurality of regions 202A to 202E, and the image 280B for the right eye and the image 280B for the left eye. The stereoscopic image 280 comprised from these is produced | generated.
 より詳細に、本実施形態の立体視画像生成部180は、個別画像生成部182と立体視画像合成部184を備える。この個別画像生成部182は、図13に示されるように、個別デプスマップ265A~265Eに基づいて、修正後個別原画像203A~203Eの各画素204の位置を変更した個別立体視画像282A~282E(右眼用個別画像および左眼用個別画像)を生成する。個別立体視画像282A~282Eの生成を、全ての原画像200(動画における全フレーム)に適用していくことで、個別立体視画像282A~282Eの完成具合をオペレータが領域202A~202E単位で確認する。 More specifically, the stereoscopic image generation unit 180 of this embodiment includes an individual image generation unit 182 and a stereoscopic image synthesis unit 184. As shown in FIG. 13, the individual image generation unit 182 changes the individual stereoscopic images 282A to 282E in which the positions of the pixels 204 of the corrected individual original images 203A to 203E are changed based on the individual depth maps 265A to 265E. (Individual image for right eye and individual image for left eye) are generated. By applying the generation of the individual stereoscopic images 282A to 282E to all the original images 200 (all frames in the moving image), the operator confirms the completion of the individual stereoscopic images 282A to 282E in units of the areas 202A to 202E. To do.
 更に詳細に、個別立体視画像282A~282Eは、個別デプスマップ265A~265Eの奥行き情報270を利用して、修正後個別原画像203A~203Eにおける奥側に位置する画素204に関しては水平方向の変位量(シフト量)を小さくし、手前側に位置する画素204に関しては水平方向の変位量を大きくする。結果、個別立体視画像282A~282Eに視差を含めることができる。 More specifically, the individual stereoscopic images 282A to 282E use the depth information 270 of the individual depth maps 265A to 265E, and the horizontal displacements of the pixels 204 located on the far side in the corrected individual original images 203A to 203E. The amount (shift amount) is decreased, and the displacement amount in the horizontal direction is increased for the pixel 204 located on the near side. As a result, the individual stereoscopic images 282A to 282E can include parallax.
 その後、立体視画像合成部184は、図14に示されるように、これら個別立体視画像282A~282Eを合成して立体視画像280(右眼用画像280A及び左眼用画像280B)を生成する。この合成は、各個別立体視画像282A~282Eにおける右眼用個別画像を合成して、右眼用画像280Aを生成し、各個別立体視画像282A~282Eにおける左眼用個別画像を合成して、左眼用画像280Bを生成する。 Thereafter, as shown in FIG. 14, the stereoscopic image combining unit 184 combines these individual stereoscopic images 282A to 282E to generate a stereoscopic image 280 (right eye image 280A and left eye image 280B). . In this synthesis, the right eye individual images in the individual stereoscopic images 282A to 282E are synthesized to generate the right eye image 280A, and the left eye individual images in the individual stereoscopic images 282A to 282E are synthesized. The left-eye image 280B is generated.
 また本実施形態では、立体視画像合成部184は、複数の個別立体視画像282A~282Eの前後関係に基づいて、前面側の個別立体視画像282A~282Eに対して、背面側の個別立体視画像282A~282Eを透過させる。例えば図15に誇張して示されるように、第3個別立体視画像282Cと第5個別立体視画像282Eを合成する際に、透過合成(例えばアルファチャンネル合成)を用いることによって、本来、背面側に位置して隠れることになる第3個別立体視画像282Cの並木が、第5個別立体視画像282Eの女性を透過して視認できるようにする。なお、ここでは説明の便宜上、背面側の並木(被写体)の全部を透過させているが、この透過合成処理は、前面側の第5個別立体視画像282Eの領域202Eの一部となる輪郭周縁を強調的に透過させる。 In the present embodiment, the stereoscopic image composition unit 184 also performs individual stereoscopic viewing on the rear side with respect to the individual stereoscopic images 282A to 282E on the front side based on the front-rear relationship of the plurality of individual stereoscopic images 282A to 282E. The images 282A to 282E are transmitted. For example, as shown exaggeratedly in FIG. 15, when the third individual stereoscopic image 282C and the fifth individual stereoscopic image 282E are synthesized, by using transmission synthesis (for example, alpha channel synthesis), the rear side The row tree of the third individual stereoscopic image 282C that is to be hidden at the position can be seen through the woman of the fifth individual stereoscopic image 282E. Here, for convenience of explanation, the entire row of trees (subject) on the back side is transmitted, but this transparent composition processing is a contour edge that becomes a part of the area 202E of the fifth individual stereoscopic image 282E on the front side. Is transparently transmitted.
 このようにすると、合成された立体視画像280において、前面側の第5個別立体視画像282Eの立体感と、背面側の第3個別立体視画像282Cの立体感が、重なり合う境界近辺でそのまま重なり合って残存する。結果、前後に離れた被写体の境界において、奥行きの断絶やギャップが自動的に抑制されることになる。 In this way, in the combined stereoscopic image 280, the stereoscopic effect of the fifth individual stereoscopic image 282E on the front side and the stereoscopic effect of the third individual stereoscopic image 282C on the back side are directly overlapped in the vicinity of the overlapping boundary. Remain. As a result, the disconnection of the depth and the gap are automatically suppressed at the boundary between the subjects separated from each other in the front-rear direction.
 以上の工程を経て生成された立体視画像280に関して、画像を見る者(看者)の右眼に、右眼用画像280Aを見せると共に、左眼に左眼用画像280Bを見せることで、これに含まれる視差が脳内で処理されて立体感を知覚させる。 With regard to the stereoscopic image 280 generated through the above steps, the right eye image 280A is shown on the right eye of the viewer (viewer) of the image viewer, and the left eye image 280B is shown on the left eye. The parallax contained in the image is processed in the brain to perceive a stereoscopic effect.
 次に図16を参照して、立体視画像生成システム1による立体視画像の生成手順を説明する。 Next, a procedure for generating a stereoscopic image by the stereoscopic image generation system 1 will be described with reference to FIG.
 まず、ステップ300において、立体視画像生成システム1の入出力インタフェース24を介して、複数の原画像(フレーム)200によって構成される動画像を第3記憶媒体18に登録する。次にステップ301では、この原画像200に複数の領域202を設定し、更に、この領域202単位で構成される個別原画像201に対して、重複領域Xに色値の修正を加えて修正後個別原画像203を取得する(領域設定ステップ)。その後、ステップ302では、特徴情報処理部140が、この動画像から最初の原画像(フレーム)200を抽出し、これを構成する修正後個別原画像203の各画素204の特徴情報240を取得する(特徴情報取得ステップ)。 First, in step 300, a moving image composed of a plurality of original images (frames) 200 is registered in the third storage medium 18 via the input / output interface 24 of the stereoscopic image generation system 1. Next, in step 301, a plurality of areas 202 are set in the original image 200, and the color values of the overlapping area X are corrected for the individual original image 201 configured in units of the areas 202, and then corrected. The individual original image 203 is acquired (area setting step). Thereafter, in step 302, the feature information processing unit 140 extracts the first original image (frame) 200 from the moving image, and obtains the feature information 240 of each pixel 204 of the corrected individual original image 203 constituting this. (Feature information acquisition step).
 次いで、ステップ310では、この特徴情報240に基づいて各画素204に奥行き情報270を設定した個別デプスマップ265を生成する(奥行き情報生成ステップ)。この奥行き情報生成ステップ310は、詳細にステップ312~ステップ320に分かれる。 Next, in step 310, an individual depth map 265 in which depth information 270 is set for each pixel 204 is generated based on the feature information 240 (depth information generation step). The depth information generation step 310 is divided into steps 312 to 320 in detail.
 まず、ステップ312では、接近する2つの画素204間にエッジ262を設定する(エッジ設定ステップ)。その後、ステップ314では、各画素204に設定済みの特徴情報240に基づいて、エッジ262に重み情報264を設定する(重み情報設定ステップ)。次に、ステップ316では、修正後個別原画像203の各画素204の中からスタート画素266を選択し(スタート画素選択ステップ)、更に、ステップ318に進んで、スタート画素266から各画素204までの経路上の重み情報264の累積値が最小となるような最短経路を算出し、最短経路が算出された各画素204に対して、重み情報264の最小の累積値となる最短経路情報268を設定する(経路情報設定ステップ)。その後、ステップ320では、最短経路情報268を利用して、各画素204に奥行き情報270を設定し、この奥行き情報270を集合化して画素群に対する個別デプスマップ265を生成する(奥行き確定ステップ)。最後に、ステップ322において、領域202毎に生成される個別デプスマップ265の奥行き情報270を、複数の領域の相対的な前後関係に基づいて調整を行う(奥行き相関調整ステップ)。 First, in step 312, an edge 262 is set between two approaching pixels 204 (edge setting step). Thereafter, in step 314, weight information 264 is set for the edge 262 based on the feature information 240 already set for each pixel 204 (weight information setting step). Next, in step 316, a start pixel 266 is selected from each pixel 204 of the corrected individual original image 203 (start pixel selection step), and further, the process proceeds to step 318, from the start pixel 266 to each pixel 204. The shortest path that minimizes the cumulative value of the weight information 264 on the path is calculated, and the shortest path information 268 that is the minimum cumulative value of the weight information 264 is set for each pixel 204 for which the shortest path is calculated. (Route information setting step). Thereafter, in step 320, depth information 270 is set for each pixel 204 using the shortest path information 268, and the depth information 270 is aggregated to generate an individual depth map 265 for the pixel group (depth determination step). Finally, in step 322, the depth information 270 of the individual depth map 265 generated for each region 202 is adjusted based on the relative anteroposterior relationship of the plurality of regions (depth correlation adjustment step).
 以上の奥行き情報生成ステップ310が完了したら、次に、ステップ330に進んで、確定した奥行き情報270(個別デプスマップ265)に基づいて、各画素204の位置をシフトさせた右眼用画像280Aおよび左眼用画像280Bからなる立体視画像を生成する(立体視画像生成ステップ)。この立体視画像生成ステップ330は、詳細に個別画像生成ステップ332と立体視画像合成ステップ334に分かれる。個別画像生成ステップ332では、領域202ごとに設定される修正後個別原画像203及び個別デプスマップ265を利用して、画素204の位置を変更した個別立体視画像282を生成する。次に、立体視画像合成ステップ334では、これらの個別立体視画像282を透過合成して、立体視画像280を生成する。 When the above depth information generation step 310 is completed, the process proceeds to step 330, where the right eye image 280A obtained by shifting the position of each pixel 204 based on the determined depth information 270 (individual depth map 265) and A stereoscopic image including the left-eye image 280B is generated (stereoscopic image generation step). The stereoscopic image generation step 330 is divided into an individual image generation step 332 and a stereoscopic image synthesis step 334 in detail. In the individual image generation step 332, an individual stereoscopic image 282 in which the position of the pixel 204 is changed is generated using the corrected individual original image 203 and the individual depth map 265 set for each region 202. Next, in the stereoscopic image synthesis step 334, these individual stereoscopic images 282 are transparently synthesized to generate a stereoscopic image 280.
 なお、ここでは奥行き情報270を集合化して個別デプスマップ265を生成し、この個別デプスマップ265を利用して個別立体視画像282を生成する場合を例示しているが、本発明はこれに限定されない。デプスマップ化することなく、奥行き情報270をそのまま利用して個別立体視画像282を生成することが可能である。また、修正後個別原画像203単位で全ての奥行き情報270が生成されるまで、立体視画像生成ステップ330を待機させる必要は無く、画素204単位で設定される奥行き情報270を、逐次、立体視画像生成ステップ330に適用していき、画素204単位で個別立体視画像282及び立体視画像280を順次生成していくことも可能である。勿論、本実施形態で示すように、必要に応じて奥行き情報270を個別デプスマップ265によって画像化又は可視化することも好ましく、本立体視画像生成システム1のオペレータが奥行き情報270の設定状況を視覚的に確認する際に便利である。 In this example, the depth information 270 is aggregated to generate the individual depth map 265, and the individual depth map 265 is used to generate the individual stereoscopic image 282. However, the present invention is not limited to this. Not. It is possible to generate the individual stereoscopic image 282 by using the depth information 270 as it is without making a depth map. Further, it is not necessary to wait for the stereoscopic image generation step 330 until all the depth information 270 is generated in units of the corrected individual original images 203, and the depth information 270 set in units of the pixels 204 is sequentially displayed in the stereoscopic view. It is also possible to sequentially generate the individual stereoscopic image 282 and the stereoscopic image 280 for each pixel 204 by applying to the image generation step 330. Of course, as shown in the present embodiment, it is also preferable that the depth information 270 is imaged or visualized by the individual depth map 265 as necessary, and the operator of the stereoscopic image generation system 1 can visually check the setting status of the depth information 270. This is convenient for checking the situation.
 以上の手順で原画像200から立体視画像280の生成が完了したら、ステップ340に進んで、今回の原画像200が動画像の中で最後のフレームか否かを判断し、最後のフレームで無い場合は、ステップ302に戻って、次の原画像(フレーム)200を抽出して、上記と同じステップを繰り返す。一方、立体視画像280を生成した原画像200が動画中の最後のフレームとなる場合は、この立体視画像生成手順を終了させる。 When the generation of the stereoscopic image 280 from the original image 200 is completed by the above procedure, the process proceeds to step 340 to determine whether or not the current original image 200 is the last frame in the moving image, and is not the last frame. In this case, the process returns to step 302, the next original image (frame) 200 is extracted, and the same steps as described above are repeated. On the other hand, when the original image 200 that generated the stereoscopic image 280 is the last frame in the moving image, the stereoscopic image generation procedure is terminated.
 以上、本実施形態の立体視画像生成システム1によれば、原画像200に対して複数の領域202を設定し、この領域202単位で奥行き情報270を確定するようにしている。結果、領域202内で奥行き情報270をきめ細かく設定することが可能となるので、立体視画像280の立体感を高精度に設定できる。特に本実施形態では、領域202ごとに個別立体視画像282を生成してから、これらを合成して立体視画像280を完成させている。このようにすると、領域202A~202E単位で立体感を詳細に調整・確認し、個別立体視画像282A~282Eの完成度を高めてから、その立体感を損なわせることなく、そのまま合成して最終的な立体視画像280(右眼用画像280A、左眼用画像280B)を生成できる。結果、より違和感の少ない立体視画像280を得ることが出来る。また、個別立体視画像282の生成時間は、全体の立体視画像280をまとめて生成する時間と比較して大幅に短縮できる。従って、オペレータは、領域202単位で立体感を効率的に確認しながら作業を進めることができる。 As described above, according to the stereoscopic image generation system 1 of the present embodiment, a plurality of areas 202 are set for the original image 200, and the depth information 270 is determined in units of the areas 202. As a result, since the depth information 270 can be set finely in the area 202, the stereoscopic effect of the stereoscopic image 280 can be set with high accuracy. In particular, in the present embodiment, the individual stereoscopic image 282 is generated for each region 202 and then combined to complete the stereoscopic image 280. In this way, the stereoscopic effect is adjusted and confirmed in detail in units of the areas 202A to 202E, and the completeness of the individual stereoscopic images 282A to 282E is increased, and then the final image is synthesized as it is without losing the stereoscopic effect. A stereoscopic image 280 (right-eye image 280A, left-eye image 280B) can be generated. As a result, a stereoscopic image 280 with less discomfort can be obtained. In addition, the generation time of the individual stereoscopic image 282 can be significantly shortened compared to the time for generating the entire stereoscopic image 280 together. Therefore, the operator can proceed with the work while efficiently confirming the stereoscopic effect in units of the area 202.
 特に本立体視画像生成システム1によれば、領域202毎に設定された奥行き情報270を、これらの複数の領域202間の前後関係に基づいて調整する。結果、全体的な立体感を自在に調整することが可能となり、原画像200の制作者の意図(意志)を、その立体感に反映させることができる。例えば、原画像200において、フォーカスがあたっている被写体を含む領域202については、奥行き差を大きく設定することで、実際よりも強い立体感を生じさせることができる。また、フォーカスがずれている被写体を含む領域202については、奥行き差を小さく設定して立体感を弱めたりすることが可能である。同様に、強調したい領域202は、実際よりも前面側に配置したり、強調したくない領域202は実際よりも奥側に配置したりして、奥行き情報を調整することも可能となる。 Particularly, according to the stereoscopic image generation system 1, the depth information 270 set for each region 202 is adjusted based on the front-rear relationship between the plurality of regions 202. As a result, the overall stereoscopic effect can be freely adjusted, and the intention (will) of the creator of the original image 200 can be reflected in the stereoscopic effect. For example, in the original image 200, the region 202 including the focused subject can be set to have a large depth difference, so that a stereoscopic effect stronger than actual can be generated. In addition, regarding the region 202 including the subject out of focus, it is possible to set a small depth difference to weaken the stereoscopic effect. Similarly, it is possible to adjust the depth information by arranging the region 202 to be emphasized on the front side of the actual image, or arranging the region 202 not to be emphasized on the deeper side than the actual image.
 更に本立体視画像生成システム1では、個別立体視画像282を合成する際に、複数の領域202同士が重なり合う部分については、前面側の個別立体視画像282に対して背面側の個別立体視画像282を透過させている。このようにすると、立体感も重なって表現されるので、あたかも背面側の被写体の一部が、前面側の被写体の背面側に回り込んでいるような自然な奥行き感を演出できる。特にここでは、前面側の領域202と背面側の領域202が重なり合う画素204に対して、本来は隠れている背面側の色値を推測できるので、一つの画素204の色値を、奥行き方向に多重化することができる。結果、多重化した色値に対して、個々に立体感を付与して透過させることで、上述の回り込み効果をより強調することができる。 Further, in the stereoscopic image generation system 1, when the individual stereoscopic image 282 is synthesized, the individual stereoscopic image on the back side is compared to the individual stereoscopic image 282 on the front side for a portion where the plurality of regions 202 overlap each other. 282 is transmitted. In this way, since the three-dimensional effect is also expressed, it is possible to produce a natural depth feeling as if a part of the subject on the back side wraps around the back side of the subject on the front side. In particular, here, since the color value of the back side which is originally hidden can be estimated for the pixel 204 where the front side region 202 and the back side region 202 overlap, the color value of one pixel 204 is set in the depth direction. Can be multiplexed. As a result, the above-described wraparound effect can be further emphasized by individually imparting a stereoscopic effect to the multiplexed color values and transmitting them.
 更に本実施形態によれば、立体視画像280を生成する際の立体感の根拠となる奥行き情報270を、複数の画素204間の最短経路に沿った重み情報264の累積値から算出される最短経路情報268を利用して生成する。この結果、エッジ262によって結ばれている画素204の集合に関して、この奥行き情報270に連続性を持たせることが可能となる。この奥行き情報270を利用して生成される立体視画像280に対して、自然な奥行き感を付与されることになる。とりわけ、従来のように、前面側の人物と奥側の背景の境界において、奥行き情報が極端に変化することで生じる立体視画像内の断絶(不連続)現象を抑制することが可能となり、看者にとって違和感の少ない立体感を立体視画像280に付与出来る。更に、この断絶現象が抑制されることに伴って、生成後の立体視画像280に対してギャップの発生を抑えることが可能となり、ギャップを埋めるための画像補整(ぼかしや画像変形)も低減され、画像品質の劣化が抑制される。 Furthermore, according to the present embodiment, the depth information 270 that is the basis of the stereoscopic effect when the stereoscopic image 280 is generated is the shortest calculated from the accumulated value of the weight information 264 along the shortest path between the plurality of pixels 204. It is generated using the route information 268. As a result, the depth information 270 can be made continuous with respect to the set of pixels 204 connected by the edge 262. A natural depth feeling is given to the stereoscopic image 280 generated using the depth information 270. In particular, it is possible to suppress a discontinuity (discontinuity) phenomenon in a stereoscopic image that occurs due to an extreme change in depth information at the boundary between a person on the front side and a background on the back side. The stereoscopic image 280 can be imparted with a stereoscopic effect with little discomfort for the user. Further, with the suppression of this disconnection phenomenon, it is possible to suppress the occurrence of a gap in the generated stereoscopic image 280, and image correction (blurring and image deformation) for filling the gap is also reduced. Deterioration of image quality is suppressed.
 更にこの立体視画像生成システム1では、原画像200(修正後個別原画像203)における最奥部を示す領域200A、または最前部を示す領域200Bの中からスタート画素266を選択している。このスタート画素266は、他の画素204の最短経路情報268を算出する際の基準点(ゼロ点)となる。このスタート画素266を最奥又は最前の画素204から選択することで、違和感のない奥行き情報270を生成することができる。なお、このスタート画素266の選択は、表示装置(ディスプレイ)22に原画像200を表示させて、立体視画像生成システム1のオペレータに対して最奥又は最前と考えられるスタート画素266の選択を促すようにしても良い。また、立体視画像生成システム1が原画像200を解析することによって、最奥又は最前であろう領域200A、200Bを推測し、その中から自動的にスタート画素266を選択するようにしても良い。 Furthermore, in this stereoscopic image generation system 1, the start pixel 266 is selected from the region 200A indicating the innermost part or the region 200B indicating the foremost part in the original image 200 (the corrected individual original image 203). The start pixel 266 serves as a reference point (zero point) when calculating the shortest path information 268 of the other pixels 204. By selecting the start pixel 266 from the backmost or frontmost pixel 204, it is possible to generate depth information 270 that does not give a sense of incongruity. The selection of the start pixel 266 causes the display device (display) 22 to display the original image 200 and prompts the operator of the stereoscopic image generation system 1 to select the start pixel 266 considered to be the farthest or foremost. You may do it. In addition, the stereoscopic image generation system 1 may analyze the original image 200 to estimate the regions 200A and 200B that will be the farthest or the foremost, and automatically select the start pixel 266 from the regions 200A and 200B. .
 以上の結果、殆ど自動的に全ての奥行き情報270を算出することができるので、立体視画像生成システム1のオペレータの作業負担が大幅に軽減される。なお、従来のシステムでは、立体視画像を確認しながら、奥行き情報270に補正を加えるような複雑な作業が要求されている。 As a result, since all the depth information 270 can be calculated almost automatically, the work burden on the operator of the stereoscopic image generation system 1 is greatly reduced. Note that the conventional system requires a complicated operation to correct the depth information 270 while confirming the stereoscopic image.
 更に本実施形態によれば、奥行き感を算出する基準値となるスタート画素266を、領域202毎に複数選択しているので、これらを自由に組み合わせて用いることにより、領域202単位でより柔軟に奥行き情報270を確定することが可能となる。即ち、原画像200のシーンや、各領域202に含まれる被写体を考慮して、各領域202にとって最適なスタート画素266を選択できるので、より自然な立体感を演出することが可能となる。 Furthermore, according to the present embodiment, since a plurality of start pixels 266 that serve as reference values for calculating a sense of depth are selected for each region 202, using them in any combination allows more flexibility in units of regions 202. The depth information 270 can be determined. In other words, the optimal start pixel 266 for each area 202 can be selected in consideration of the scene of the original image 200 and the subject included in each area 202, so that a more natural stereoscopic effect can be produced.
 なお、本実施形態では、スタート画素選択ステップ316において、スタート画素266として1つの画素を選択する場合を例示したが、本発明はこれに限定されない。例えば、図7で例示したように、原画像200中の所定の領域200Cに含まれる複数の画素204を、一つのスタート画素266として選択することもできる。これを最短経路手法で考えると、これらの領域200Cに含まれる全画素204のエッジの重み情報と最短経路情報を予めゼロ又は固定値(基準値)に設定することを意味している。このようにすることで、この領域内に映像的なノイズが含まれている場合であっても、ノイズの影響をカットすることが可能となる。また、雲一つ無い晴天の空のように、奥行き感に差を付ける必要が無い領域の計算を省略することができるので、最短経路を算出する情報処理時間を大幅に削減することができる。また、ここではスタート画素266を一定の領域で指定する場合に限られず、スタート画素以外の他の画素についても、一定の領域として一体化することが可能である。例えばこの領域設定は、複数の隣接する画素で構成される一定の面積範囲の奥行き情報を共通化しても良いようなシンプルな被写体に好適である。この場合、一体化される領域では、これらの画素群を仮想的に1画素と見なすようにオペレータが領域指示を加える。結果、最短経路を算出する情報処理時間を大幅に削減することができる。 In the present embodiment, the case where one pixel is selected as the start pixel 266 in the start pixel selection step 316 is exemplified, but the present invention is not limited to this. For example, as illustrated in FIG. 7, a plurality of pixels 204 included in a predetermined region 200 </ b> C in the original image 200 can be selected as one start pixel 266. Considering this by the shortest path method, it means that the edge weight information and the shortest path information of all the pixels 204 included in these regions 200C are set to zero or a fixed value (reference value) in advance. By doing in this way, even if it is a case where the image-like noise is contained in this area | region, it becomes possible to cut the influence of noise. Further, since it is possible to omit the calculation of an area where there is no need to make a difference in the sense of depth, such as a clear sky with no clouds, the information processing time for calculating the shortest path can be greatly reduced. In addition, here, the start pixel 266 is not limited to being specified in a certain area, and other pixels other than the start pixel can be integrated as a certain area. For example, this region setting is suitable for a simple subject that may share depth information of a certain area range composed of a plurality of adjacent pixels. In this case, in the area to be integrated, the operator gives an area instruction so that these pixel groups are virtually regarded as one pixel. As a result, the information processing time for calculating the shortest path can be greatly reduced.
 更に本実施形態では、立体視画像生成ステップ330において、個別デプスマップ265を利用して個別立体視画像282を生成し、この個別立体視画像282を透過合成して立体視画像280を生成する場合を例示したが、本発明はこれに限定されない。例えば図17及び図18に示されるように、立体視画像生成部180は、個別画像生成部182及び立体視画像合成部184に代えて、奥行き情報合成部186を備えることも好ましい。この奥行き情報合成部186は、奥行き情報生成部160によって領域202A~202E毎に生成される複数の個別デプスマップ265A~265Eを合成して、一つの奥行き情報(結合デプスマップ267)を生成する。結果、オペレータは、この結合デプスマップ267を利用して全体的な立体感を視覚的に確認することができる。立体視画像生成部180は、この結合デプスマップ267を利用して、右眼用画像280Aおよび左眼用画像280Bを生成する。なお、オペレータが結合デプスマップ267を必要としない場合は、この奥行き情報合成部186を用いなくても良い。即ち、奥行き情報生成部160において領域202A~202E毎に設定される奥行き情報270を、立体視画像生成部180が画素204単位で適用すれば、結果として、立体視映像280を生成することが可能となる。 Furthermore, in the present embodiment, in the stereoscopic image generation step 330, the individual stereoscopic image 282 is generated using the individual depth map 265, and the stereoscopic image 280 is generated by transmitting and synthesizing the individual stereoscopic image 282. However, the present invention is not limited to this. For example, as shown in FIGS. 17 and 18, the stereoscopic image generation unit 180 preferably includes a depth information synthesis unit 186 instead of the individual image generation unit 182 and the stereoscopic image synthesis unit 184. The depth information combining unit 186 combines a plurality of individual depth maps 265A to 265E generated for each of the areas 202A to 202E by the depth information generating unit 160 to generate one depth information (joined depth map 267). As a result, the operator can visually check the overall stereoscopic effect using the combined depth map 267. The stereoscopic image generation unit 180 uses the combined depth map 267 to generate the right eye image 280A and the left eye image 280B. When the operator does not need the combined depth map 267, the depth information combining unit 186 may not be used. In other words, if the stereoscopic image generation unit 180 applies the depth information 270 set for each of the areas 202A to 202E in the depth information generation unit 160 in units of pixels 204, it is possible to generate a stereoscopic video 280 as a result. It becomes.
 なお、本実施形態では、選定された領域202A~202Eの範囲内の画素204から、スタート画素266A~266Eを選択する場合を例示したが、本発明はこれに限定されない。 In the present embodiment, the case where the start pixels 266A to 266E are selected from the pixels 204 in the range of the selected regions 202A to 202E is illustrated, but the present invention is not limited to this.
 例えば図19に示されるように、スタート画素選択部166では、原画像200を領域202に依存することなく、原画像200の全体からスタート画素266A~266Cを複数選択し、経路情報設定部168では、原画像200の全画素204を対象に、この複数のスタート画素266A~266Cごとに最短経路を算出して、各画素に複数の最短経路情報268A~268Cを設定することができる。 For example, as shown in FIG. 19, the start pixel selection unit 166 selects a plurality of start pixels 266A to 266C from the entire original image 200 without depending on the region 202, and the path information setting unit 168 The shortest path can be calculated for each of the plurality of start pixels 266A to 266C for all the pixels 204 of the original image 200, and a plurality of shortest path information 268A to 268C can be set for each pixel.
 奥行き確定部170では、領域202を単位として、各画素204に設定される複数の最短経路情報268A~268Cの中から、いずれか一つの最短経路情報を選択して、奥行き情報270を確定する。この際、奥行き確定部170は、各画素204に設定される複数の最短経路情報268A~268Cを利用して奥行き情報270を確定することもできる。この複数の最短経路情報268A~268Cから一つの最短経路情報を選択したり、複数の最短経路情報268A~268Cを利用したりする判断は、領域202単位で共通化させることが好ましい。 The depth determination unit 170 selects one of the shortest path information 268A to 268C set in each pixel 204 in units of the area 202, and determines the depth information 270. At this time, the depth determination unit 170 can also determine the depth information 270 using a plurality of shortest path information 268A to 268C set for each pixel 204. The determination to select one shortest path information from the plurality of shortest path information 268A to 268C or to use the plurality of shortest path information 268A to 268C is preferably made common to the areas 202.
 この手法を図20を参照して別の観点から説明する。奥行き情報生成部160は、各スタート画素266A~266Cに対応した仮デプスマップ263A~263Cを複数生成する。そして、奥行き確定部170は、スタート画素266単位で複数生成された仮デプスマップ263A~263Cの中からどれか一つを用いるか、又は、仮デプスマップ263A~263Cからいずれか複数を重ねて用いるかを判定する。この際、原画像200から選択される複数の領域202A~202E単位で判断すれば、領域202A~202Eに対応した個別デプスマップ265A~265Eが生成される。 This method will be described from another viewpoint with reference to FIG. The depth information generation unit 160 generates a plurality of temporary depth maps 263A to 263C corresponding to the start pixels 266A to 266C. The depth determining unit 170 uses one of the plurality of temporary depth maps 263A to 263C generated in units of the start pixel 266, or overlaps any one of the temporary depth maps 263A to 263C. It is determined whether or not. At this time, if the determination is made in units of a plurality of areas 202A to 202E selected from the original image 200, individual depth maps 265A to 265E corresponding to the areas 202A to 202E are generated.
 以上のようにすると、奥行き情報270を確定する際の選択肢を増やすことができる。この選択肢とは、スタート画素266A~266Cを意味している。このように領域202A~202Eの範囲の外側を含めた広範囲からスタート画素266A~266Cを選択することで、より望ましいスタート画素266を選定できる。なお、ここでは3つのスタート画素を選択する場合を例示したが、このスタート画素266の数を増やすほど、より柔軟に奥行き情報270を確定できるようになる。 As described above, the options for determining the depth information 270 can be increased. This option means the start pixels 266A to 266C. As described above, by selecting the start pixels 266A to 266C from a wide range including the outside of the areas 202A to 202E, a more desirable start pixel 266 can be selected. Although the case where three start pixels are selected is illustrated here, the depth information 270 can be determined more flexibly as the number of start pixels 266 is increased.
 既に説明したように、これらの最短経路情報268A~268C(仮デプスマップ263A~263C)から複数を選択し、これらを利用して、奥行き情報270を確定することも好ましい。このようにすると、最短経路情報268A~268C(仮デプスマップ263A~263C)中の一つでは、正確な奥行き情報が得られないエラー部分を含有していても、残りの他の最短経路情報268A~268C(仮デプスマップ263A~263C)で正確な奥行き情報が得られていれば、一緒に利用することで、そのエラー部分を自動的に補うことが可能となる。結果、ノイズがキャンセルされた一層滑らかな奥行き情報270を得ることが可能となる。なお、複数の最短経路情報268A~268Cを利用して奥行き情報270を確定する際は、これらの総和や平均値など、各種計算手法を適用することができる。 As already described, it is also preferable to select a plurality from the shortest path information 268A to 268C (temporary depth maps 263A to 263C) and determine the depth information 270 using these. In this way, even if one of the shortest path information 268A to 268C (provisional depth maps 263A to 263C) contains an error part for which accurate depth information cannot be obtained, the remaining other shortest path information 268A If accurate depth information is obtained in ˜268C (provisional depth maps 263A to 263C), the error portion can be automatically compensated by using the information together. As a result, it is possible to obtain smoother depth information 270 in which noise is canceled. When the depth information 270 is determined using a plurality of shortest path information 268A to 268C, various calculation methods such as the sum and average value of these can be applied.
 更に本実施形態では、経路情報設定ステップ318において、スタート画素266から各画素204までの経路上の重み情報264の累積値が最小となるような最短経路を算出する場合を例示したが、本発明はこれに限定されない。例えば、プリム法などを利用して、全画素204を含む辺の部分集合で構成される経路のうち、その辺の集合の重みの総和が最小となるような経路を求めるようにしてもよい。即ち、本発明では、画素間の各種経路を利用して何らかの重み値を特定できれば、そのアルゴリズムの種類は問わない。 Furthermore, in the present embodiment, the case where the shortest path is calculated in the path information setting step 318 so that the cumulative value of the weight information 264 on the path from the start pixel 266 to each pixel 204 is minimized. Is not limited to this. For example, by using a prim method or the like, a route that has a minimum sum of weights of a set of sides may be obtained from routes constituted by a subset of sides including all pixels 204. In other words, in the present invention, any algorithm can be used as long as any weight value can be specified using various paths between pixels.
 なお、上記実施形態では、右眼用画像と左眼用画像の2眼視差式の立体視画像を生成する場合に限って例示したが、本発明はこれに限定されない。例えば、この奥行き情報を利用して多眼式の立体視映像を生成するようにしても良く、更には、多眼視差式の立体視映像を生成することも可能である。即ち、本発明では、奥行き情報を利用した立体視映像であれば、その種類は問わない。 In the above-described embodiment, the binocular parallax stereoscopic image of the right-eye image and the left-eye image is exemplified. However, the present invention is not limited to this. For example, this depth information may be used to generate a multi-view stereoscopic image, and it is also possible to generate a multi-view parallax stereoscopic image. That is, in the present invention, any type of stereoscopic video using depth information may be used.
 本発明の立体視画像生成方法および立体視画像生成システムは、映画やテレビ番組等の製作の分野以外にも、通常画像を立体視画像に変換して表示するテレビやゲーム機等の各種機器の分野において利用することができる。 The stereoscopic image generation method and the stereoscopic image generation system of the present invention can be applied to various devices such as a television and a game machine that convert a normal image into a stereoscopic image and display it in addition to the field of production of movies and television programs. Can be used in the field.

Claims (11)

  1.  原画像に複数の領域を設定する領域設定ステップと、
     前記原画像を構成する各画素の特徴情報を取得する特徴情報取得ステップと、
     前記複数の領域ごとに、前記特徴情報に基づいて前記各画素に奥行き情報を生成する奥行き情報生成ステップと、
     前記奥行き情報に基づいて、前記各画素の位置を変更した立体視画像を生成する立体視画像生成ステップと、を有することを特徴とする、
     立体視画像生成方法。
    An area setting step for setting a plurality of areas in the original image;
    A feature information acquisition step of acquiring feature information of each pixel constituting the original image;
    A depth information generating step for generating depth information for each pixel based on the feature information for each of the plurality of regions;
    A stereoscopic image generation step of generating a stereoscopic image in which the position of each pixel is changed based on the depth information,
    Stereoscopic image generation method.
  2.  前記領域設定ステップでは、前記原画像に含まれる被写体ごとに前記領域を設定することを特徴とする、
     請求の範囲1に記載の立体視画像生成方法。
    In the region setting step, the region is set for each subject included in the original image.
    The stereoscopic image generation method according to claim 1.
  3.  前記立体視画像生成ステップは、
     前記複数の領域ごとに、前記画素の位置を変更した個別立体視画像を生成する個別画像生成ステップと、
     前記複数の領域ごとに生成された複数の前記個別立体視画像を合成して前記立体視画像を生成する立体視画像合成ステップと、を有することを特徴とする、
     請求の範囲1又は2に記載の立体視画像生成方法。
    The stereoscopic image generation step includes:
    An individual image generating step for generating an individual stereoscopic image in which the position of the pixel is changed for each of the plurality of regions;
    A stereoscopic image combining step of combining the plurality of individual stereoscopic images generated for each of the plurality of regions to generate the stereoscopic image,
    The stereoscopic image generation method according to claim 1 or 2.
  4.  前記立体視画像合成ステップでは、複数の前記個別立体視画像の前後関係に基づいて、前面側の前記個別立体視画像に対して、背面側の前記個別立体視画像が透過するように合成することを特徴とする、
     請求の範囲3に記載の立体視画像生成方法。
    In the stereoscopic image synthesizing step, based on the front-rear relationship of the plurality of individual stereoscopic images, the individual stereoscopic images on the rear side are synthesized so as to transmit the individual stereoscopic images on the front side. Characterized by the
    The stereoscopic image generation method according to claim 3.
  5.  前記立体視画像合成ステップは、
     前記複数の領域ごとに生成された前記奥行き情報を合成する奥行き情報合成ステップを有しており、
     前記合成された前記奥行き情報から前記立体視画像を生成することを特徴とする、
     請求の範囲1又は2に記載の立体視画像生成方法。
    The stereoscopic image synthesis step includes:
    A depth information combining step of combining the depth information generated for each of the plurality of regions;
    Generating the stereoscopic image from the synthesized depth information,
    The stereoscopic image generation method according to claim 1 or 2.
  6.  前記領域設定ステップは、
     前面側の前記領域と背面側の前記領域が重なり合う前記画素に対して、背面側の前記領域の前記画素の色値を推測する背面色値推測ステップを有することを特徴とする、
     請求の範囲1乃至5のいずれかに記載の立体視画像生成方法。
    The region setting step includes:
    A back surface color value estimating step of estimating a color value of the pixel of the region on the back surface side for the pixel where the region on the front surface side and the region on the back surface side overlap,
    The stereoscopic image generation method according to any one of claims 1 to 5.
  7. (新設)
     前記奥行き情報生成ステップは、
     前記領域ごとに生成した奥行き情報を、複数の前記領域の相対的な前後関係に基づいて調整する奥行き相関調整ステップを有することを特徴とする、
     請求の範囲1乃至6のいずれかに記載の立体視画像生成方法。
    (Newly established)
    The depth information generation step includes:
    A depth correlation adjustment step of adjusting the depth information generated for each region based on a relative context of the plurality of the regions,
    The stereoscopic image generation method according to any one of claims 1 to 6.
  8.  前記奥行き情報生成ステップは、
     前記原画像から抽出された一対の前記画素の間にエッジを設定するエッジ設定ステップと、
     前記特徴情報に基づいて前記エッジに重み情報を設定する重み情報設定ステップと、
     前記各画素の中からスタート画素を選択するスタート画素選択ステップと、
     前記スタート画素から前記各画素までの前記重み情報についての経路を算出し、前記各画素に経路情報を設定する経路情報設定ステップと、
     前記経路情報に基づいて前記各画素に前記奥行き情報を設定する奥行き確定ステップと、を有することを特徴とする、
     請求の範囲1乃至7のいずれかに記載の立体視画像生成方法。
    The depth information generation step includes:
    An edge setting step for setting an edge between a pair of the pixels extracted from the original image;
    A weight information setting step for setting weight information for the edge based on the feature information;
    A start pixel selection step of selecting a start pixel from the pixels;
    A path information setting step for calculating a path for the weight information from the start pixel to each pixel and setting path information for each pixel;
    A depth determination step for setting the depth information for each pixel based on the path information.
    The stereoscopic image generation method according to any one of claims 1 to 7.
  9.  前記スタート画素選択ステップでは、前記複数の領域のそれぞれにおける最奥部を示す領域、または最前部を示す領域に含まれる前記画素を前記スタート画素に選択することを特徴とする、
     請求の範囲8に記載の立体視画像生成方法。
    In the start pixel selection step, the pixel included in the region indicating the innermost portion or the region indicating the frontmost portion in each of the plurality of regions is selected as the start pixel.
    The stereoscopic image generation method according to claim 8.
  10.  前記スタート画素選択ステップでは、前記スタート画素を複数選択することを特徴とする、
     請求の範囲8または9に記載の立体視画像生成方法。
    In the start pixel selection step, a plurality of the start pixels are selected.
    The stereoscopic image generation method according to claim 8 or 9.
  11.  電子計算機によって構成され、
     原画像に複数の領域を設定する領域設定手段と、
     前記原画像を構成する各画素の特徴情報を取得する特徴情報取得手段と、
     前記複数の領域ごとに、前記特徴情報に基づいて前記各画素に奥行き情報を生成する奥行き情報生成手段と、
     前記奥行き情報に基づいて、前記各画素の位置を変更した立体視画像を生成する立体視画像生成手段と、を有することを特徴とする、
     立体視画像生成システム。
    Composed by an electronic computer,
    Area setting means for setting a plurality of areas in the original image;
    Feature information acquisition means for acquiring feature information of each pixel constituting the original image;
    Depth information generating means for generating depth information for each pixel based on the feature information for each of the plurality of regions;
    A stereoscopic image generation unit that generates a stereoscopic image in which the position of each pixel is changed based on the depth information.
    Stereoscopic image generation system.
PCT/JP2012/065145 2012-06-13 2012-06-13 3d-image generation method, and 3d-image generation system WO2013186882A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065145 WO2013186882A1 (en) 2012-06-13 2012-06-13 3d-image generation method, and 3d-image generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065145 WO2013186882A1 (en) 2012-06-13 2012-06-13 3d-image generation method, and 3d-image generation system

Publications (1)

Publication Number Publication Date
WO2013186882A1 true WO2013186882A1 (en) 2013-12-19

Family

ID=49757744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065145 WO2013186882A1 (en) 2012-06-13 2012-06-13 3d-image generation method, and 3d-image generation system

Country Status (1)

Country Link
WO (1) WO2013186882A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198531A (en) * 1997-09-24 1999-04-09 Sanyo Electric Co Ltd Device for converting two-dimensional image into three-dimensional image and its method
JP2000261828A (en) * 1999-03-04 2000-09-22 Toshiba Corp Stereoscopic video image generating method
JP2001359119A (en) * 2000-06-15 2001-12-26 Toshiba Corp Stereoscopic video image generating method
WO2004071102A1 (en) * 2003-01-20 2004-08-19 Sanyo Electric Co,. Ltd. Three-dimensional video providing method and three-dimensional video display device
JP2004295859A (en) * 2003-02-05 2004-10-21 Sharp Corp Device, method and program for generating stereoscopic image, and computer-readable recording medium with stereoscopic image generating program stored thereon
JP2011223284A (en) * 2010-04-09 2011-11-04 Victor Co Of Japan Ltd Pseudo-stereoscopic image generation device and camera
JP2012015744A (en) * 2010-06-30 2012-01-19 Toshiba Corp Depth signal generation device and method
JP2012060246A (en) * 2010-09-06 2012-03-22 Seiko Epson Corp Image processor and integrated circuit device
JP2012104898A (en) * 2010-11-08 2012-05-31 Mega Chips Corp Image processing system, image processing method, and program

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198531A (en) * 1997-09-24 1999-04-09 Sanyo Electric Co Ltd Device for converting two-dimensional image into three-dimensional image and its method
JP2000261828A (en) * 1999-03-04 2000-09-22 Toshiba Corp Stereoscopic video image generating method
JP2001359119A (en) * 2000-06-15 2001-12-26 Toshiba Corp Stereoscopic video image generating method
WO2004071102A1 (en) * 2003-01-20 2004-08-19 Sanyo Electric Co,. Ltd. Three-dimensional video providing method and three-dimensional video display device
JP2004295859A (en) * 2003-02-05 2004-10-21 Sharp Corp Device, method and program for generating stereoscopic image, and computer-readable recording medium with stereoscopic image generating program stored thereon
JP2011223284A (en) * 2010-04-09 2011-11-04 Victor Co Of Japan Ltd Pseudo-stereoscopic image generation device and camera
JP2012015744A (en) * 2010-06-30 2012-01-19 Toshiba Corp Depth signal generation device and method
JP2012060246A (en) * 2010-09-06 2012-03-22 Seiko Epson Corp Image processor and integrated circuit device
JP2012104898A (en) * 2010-11-08 2012-05-31 Mega Chips Corp Image processing system, image processing method, and program

Similar Documents

Publication Publication Date Title
JP5291755B2 (en) Stereoscopic image generation method and stereoscopic image generation system
US7983477B2 (en) Method and apparatus for generating a stereoscopic image
US8817073B2 (en) System and method of processing 3D stereoscopic image
JP5387905B2 (en) Image processing apparatus and method, and program
WO2012176431A1 (en) Multi-viewpoint image generation device and multi-viewpoint image generation method
KR100770019B1 (en) Apparatus and Method for correction of the image distortion of stereo-camera
US20130069942A1 (en) Method and device for converting three-dimensional image using depth map information
KR20110124473A (en) 3-dimensional image generation apparatus and method for multi-view image
US8731279B2 (en) Method and device for generating multi-viewpoint image
JP2011519209A (en) Apparatus and method for synthesizing high-speed multi-view 3D stereoscopic video for 3D stereoscopic television without glasses
US11785197B2 (en) Viewer-adjusted stereoscopic image display
JP6033625B2 (en) Multi-viewpoint image generation device, image generation method, display device, program, and recording medium
US9258546B2 (en) Three-dimensional imaging system and image reproducing method thereof
TWI589150B (en) Three-dimensional auto-focusing method and the system thereof
JP5355616B2 (en) Stereoscopic image generation method and stereoscopic image generation system
JP5464129B2 (en) Image processing apparatus and parallax information generating apparatus
WO2013186882A1 (en) 3d-image generation method, and 3d-image generation system
WO2013186881A1 (en) 3d-image generation method and 3d-image generation system
CN111684517B (en) Viewer adjusted stereoscopic image display
US8947507B2 (en) Method of processing 3D images, and corresponding system including the formulation of missing pixels using windows of details from first and second views
JP6070061B2 (en) Image processing apparatus, photographing apparatus, image processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP