WO2013186881A1 - 3d-image generation method and 3d-image generation system - Google Patents
3d-image generation method and 3d-image generation system Download PDFInfo
- Publication number
- WO2013186881A1 WO2013186881A1 PCT/JP2012/065143 JP2012065143W WO2013186881A1 WO 2013186881 A1 WO2013186881 A1 WO 2013186881A1 JP 2012065143 W JP2012065143 W JP 2012065143W WO 2013186881 A1 WO2013186881 A1 WO 2013186881A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- pixel
- depth
- stereoscopic image
- image generation
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/261—Image signal generators with monoscopic-to-stereoscopic image conversion
Definitions
- the present invention relates to a stereoscopic image generation method and a stereoscopic image generation system for generating a stereoscopic image that causes a viewer to perceive a stereoscopic effect by parallax.
- binocular parallax-type stereoscopic images that allow viewers to perceive a stereoscopic effect by visually recognizing different images for the right eye and the left eye have come to be widely used in fields such as movies and television broadcasting. Yes.
- a technique for causing an observer to perceive a stereoscopic effect using a multi-view (multi-viewpoint) stereoscopic image that changes an image viewed by the observer depending on a viewing angle is also used in, for example, an autostereoscopic device.
- multi-view parallax stereoscopic images combining these binocular parallax and multi-view types are also being used.
- the image is composed of a right-eye image to be visually recognized by the right eye and a left-eye image to be visually recognized by the left eye.
- shifting shifting in the direction, the viewer (viewer) viewing the image perceives a stereoscopic effect.
- a parallax-type stereoscopic image is generally generated by arranging two cameras side by side and simultaneously capturing a right-eye image and a left-eye image.
- a right-eye image and a left-eye image having substantially the same parallax as human binocular parallax can be directly obtained, a natural stereoscopic image that does not give the viewer a sense of incongruity is generated. be able to.
- a conventional multi-view stereoscopic image is generally generated by arranging cameras at many viewpoints and simultaneously shooting multi-view images.
- a plurality of cameras with exactly the same specifications are positioned and arranged accurately, and all the images are photographed in a completely synchronized state. There was a problem that it was necessary.
- a method of generating a binocular parallax type image for the right eye and an image for the left eye by performing image processing on an image photographed as usual by one camera for example, Patent Document 1.
- depth information depth value
- a right-eye image and a left-eye image shifted in accordance with the binocular parallax are generated.
- a stereoscopic image can be generated from a normal original image taken by a general camera, the photographing cost can be reduced and the photographing time can be shortened. It is also possible to generate a stereoscopic image from existing content such as a movie, or convert a general television broadcast into a stereoscopic image and display it on a television screen.
- the hue, saturation, or brightness (saturation in Patent Document 1) of each pixel constituting the original image is generally used as it is. Since the pixel depth information is used, for example, the value of the depth information changes greatly at the boundary between the person who is the subject and the background, and there is a problem that the depth is discontinuous (discontinuous).
- the present invention intends to provide a stereoscopic image generation method and a stereoscopic image generation system capable of generating a stereoscopic image from an original image that allows a viewer to perceive a natural stereoscopic effect. It is.
- the present invention that achieves the above object includes a feature information acquisition step of acquiring feature information of each pixel constituting an original image, a depth information generation step of generating depth information for each pixel based on the feature information, A stereoscopic image generation step of generating a stereoscopic image in which the position of each pixel is changed based on depth information, and the depth information generation step is performed between the pair of pixels extracted from the original image.
- An edge setting step for setting an edge on the edge, a weight information setting step for setting weight information on the edge based on the feature information, a start pixel selection step for selecting a start pixel from the pixels, and the start pixel A route information setting step for calculating a route for the weight information from each pixel to each pixel, and setting route information for each pixel; It characterized by having a a depth determination step of setting the depth information on each pixel on the basis of the road information, a stereoscopic image generation method.
- the pixel that is included in the region indicating the innermost part or the region indicating the frontmost part in the original image is selected as the start pixel. It is characterized by doing.
- the start pixel selection step of the invention is characterized in that a plurality of the start pixels are selected.
- the route information setting step of the invention the route is calculated for each of the plurality of start pixels, a plurality of the route information is set for each pixel, and the depth is set.
- the depth information is selected based on the plurality of route information depending on whether one of the plurality of route information set for each pixel is selected or the plurality of route information is combined. Is set.
- a plurality of the pixels included in a predetermined region in the original image are collectively selected as one start pixel.
- the invention further includes a region dividing step of dividing the original image into a plurality of regions, and in the start pixel selecting step, the start pixel is set for each of the plurality of regions.
- the path information setting step the path is calculated for each of the plurality of areas, and the path information is set for each pixel.
- the original image is segmented into the plurality of regions for each subject included in the original image.
- the present invention that achieves the above object comprises a feature information acquisition means configured by an electronic computer for acquiring feature information of each pixel constituting an original image, and a depth for generating depth information for each pixel based on the feature information.
- Information generating means, and stereoscopic image generating means for generating a stereoscopic image in which the position of each pixel is changed based on the depth information, wherein the depth information generating means is extracted from the original image
- Edge setting means for setting an edge between a pair of the pixels, weight information setting means for setting weight information for the edge based on the feature information, and start pixel selection for selecting a start pixel from the pixels Means, route information setting means for calculating a route for the weight information from the start pixel to each pixel, and setting route information for each pixel, and the route It characterized by having a a depth determination means for setting the depth information on each pixel based on broadcast, a stereoscopic image generation system.
- FIG. 1 shows an internal configuration of a computer 10 constituting the stereoscopic image generation system 1 according to the first embodiment.
- the computer 10 includes a CPU 12, a first storage medium 14, a second storage medium 16, a third storage medium 18, an input device 20, a display device 22, an input / output interface 24, and a bus 26.
- the CPU 12 is a so-called central processing unit, and executes various programs to realize various functions of the stereoscopic image generation system 1.
- the first storage medium 14 is a so-called RAM (Random Access Memory) and is a memory used as a work area of the CPU 12.
- the second storage medium 16 is a so-called ROM (Read Only Memory) and is a memory for storing a basic program executed by the CPU 12.
- the third storage medium 18 is composed of a hard disk device incorporating a magnetic disk, a disk device accommodating a CD, DVD, or BD, a non-volatile semiconductor flash memory device, and the like.
- OS operating system
- OS operating system
- a stereoscopic image generation program executed by the CPU 12 when generating a stereoscopic image, a depth map and a stereoscopic image used in this stereoscopic image generation program
- the input device 20 is a keyboard or a mouse, and is a device for appropriately inputting information to the stereoscopic image generation system 1 by an operator.
- the display device 22 is a display and provides a visual interface to the worker.
- the input / output interface 24 is an interface for inputting original image data necessary for the stereoscopic image generation program, and for outputting a depth map and a stereoscopic image generated by the stereoscopic image generation program to the outside.
- the bus 26 is a wiring for integrally connecting the CPU 12, the first storage medium 14, the second storage medium 16, the third storage medium 18, the input device 20, the display device 22, the input / output interface 24, and the like for communication. It becomes.
- FIG. 2 the program configuration of the stereoscopic image generation program stored in the third storage medium 18 and the stereoscopic image generation system 1 realized by executing the stereoscopic image generation program by the CPU 12.
- the functional configuration realized by is shown. 3 to 5 conceptually show a stereoscopic image generation method executed by the stereoscopic image generation system 1.
- FIG. 1 since the configuration of the stereoscopic image generation program and the functional configuration thereof are in a correspondence relationship, the functional configuration of the stereoscopic image generation system 1 will be described here to explain the program. Description is omitted.
- the stereoscopic image generation system 1 includes a feature information acquisition unit 140 realized by a feature information acquisition program, a depth information generation unit 160 realized by a depth information generation program, and a stereoscopic image generation realized by a stereoscopic image generation program. A portion 180 is provided.
- the feature information acquisition unit 140 acquires feature information 240 of each pixel 204 constituting the original image 200.
- This feature information 240 includes, for example, characteristic information that each pixel 204 has independently such as the hue, brightness, saturation, and color space of each pixel 204, and pixels around the target pixel 204. 204. Characteristic information derived from the relationship of 204, or in the case of a moving image having a plurality of frames, characteristic information derived from temporal changes of each pixel 204 (relationship with pixels at the same position in the previous and subsequent frames), etc. It is also possible to use.
- the depth information generation unit 160 generates a depth map 260 in which the depth information 270 is set in each pixel 204 based on the feature information 240 acquired in each pixel 204.
- the depth information generation unit 160 includes an edge setting unit 162, a weight information setting unit 164, a start pixel selection unit 166, a path information setting unit 168, and a depth determination unit 170 in more detail.
- the edge setting unit 162 sets an edge 262 between a pair of pixels 204 extracted from the original image 200.
- the edge 262 conceptually means a line connecting a pair of pixels 204 or a path connecting both.
- the pair of pixels 204 are nodes or vertices, and the edges 262 are branches or edges.
- an edge 262 for a total of four pixels 204 adjacent in the vertical and horizontal directions is set. Note that the present invention is not limited to the case where the edge 262 is set for each pixel 204 that is vertically and horizontally adjacent to each other, but the diagonally upper right, the upper left, the lower right, and the lower left.
- An edge 262 can be set for adjacent pixels 204, or an edge 262 can be set for a total of eight pixels 204 obtained by combining these with upper, lower, left and right.
- the edge 262 is not necessarily set between adjacent pixels 204, and the edge 262 with respect to a pair of pixels 204 having a certain distance by skipping pixels in the middle, that is, the pixels 204 that have been thinned out. Can also be set. Needless to say, an edge 262 can be set between a pair of pixels 204 located far away like an enclave.
- the weight information setting unit 164 sets the weight information 264 for the edge 262 based on a pair of feature information 240 connecting the edges 262.
- the weight information 264 uses the difference between the feature information 240 of the pair of pixels 204 connecting the edges 262.
- the weight information 264 increases as the difference increases, and the weight information 264 decreases as the difference decreases.
- the weight information 264 is not limited to the “difference” between the pair of feature information 240 at both ends of the edge 262, and various functions that calculate weight information using the pair of feature information 240 are used. Thus, the weight information 264 can be set.
- the start pixel selection unit 166 selects a start pixel 266 from each pixel 204 in the original image 200.
- the start pixel 266 becomes a start point when setting the shortest path information 268 described later.
- the start pixel 266 can be freely selected from the image 200. For example, as shown in FIG. 3, a group of pixels existing in a region 200A located on the innermost side in the original image 200. Alternatively, it is preferable to select from the pixel group existing in the region 200B located at the foremost side. Although details will be described in detail in the second embodiment, it is also possible to select a plurality of start pixels 266 from the original image 200. Furthermore, as shown in FIG. 3, all the pixels 204 included in the predetermined region 200 ⁇ / b> C in the original image 200 can be collectively selected as one start pixel 266.
- one pixel is selected as the start pixel 266 from the innermost region 200A in the original image 200.
- the path information setting unit 168 calculates the shortest path using the weight information 264 of the path (edge 262) from the start pixel 266 to each pixel 204 in the original image 200, and sends the shortest path to each of these pixels 204.
- Information 268 is set. A specific example of this will be described with reference to FIG.
- the original image 200 is composed of nine pixels 204A to 204I of 3 rows ⁇ 3 columns, and the upper left pixel 204A is the pixel located on the farthest side. Therefore, a case where the pixel is set as the start pixel 266 will be considered.
- the twelve edges 262 (1) to 262 (12) connecting the pixels 204A to 204I use 1 to 10 by using the relative difference of characteristic information (not shown) held by the pixels 204A to 204I.
- the weight information 264 is preset.
- the first path R1 including only the edge 262 (3) directly connecting the start pixel 204A and the pixel 204D
- the sum of the weight information 264 of the first route R1 is “1”, and the sum of the weight information 264 of the second route R2 is “10” of 3 + 2 + 5.
- the sum of the weight information 264 is calculated in the same manner for all possible paths between the start pixel 204A and the pixel 204D, and the shortest path is the smallest value.
- the first route R1 is the shortest route.
- “1”, which is the sum of the weight information 264 on the shortest route, is set as the shortest route information 268 in the pixel 204D.
- the route information setting unit 168 sets the shortest route information 268 for all the pixels 204A to 204I by the above method.
- the pixel 204A is “0”
- the pixel 204B is “3”
- the pixel 204C is “11”
- the pixel 204D is “1”
- the pixel 204E is “5”
- the pixel 204F is “10”
- the pixel 204G is “5”.
- the shortest path information 268 of" 12 is set for the pixel 204H and" 12 "is set for the pixel 204I.
- the depth determination unit 170 sets the depth information 270 for each pixel 204 based on the shortest path information 268.
- the depth determination unit 170 uses the shortest path information 268 as the depth information 270 as it is.
- a depth map 260 is a visual map of the depth information 270 set for each pixel 204.
- a value obtained by correcting the shortest path information 268 as needed can be used as the depth information 270.
- different correction functions are prepared depending on whether the original image 200 is an image of an outdoor landscape or an image of an indoor space.
- the depth information 270 can also be calculated by applying a correction function selected according to the content.
- the stereoscopic image generation unit 180 generates a stereoscopic image 280 composed of the right-eye image 280A and the left-eye image 280B in which the position of each pixel 204 is changed based on the depth map 260. Specifically, the depth information 270 of the depth map 260 is used to reduce the horizontal displacement (shift amount) for the pixels 204 located on the far side and the horizontal direction for the pixels 204 located on the near side.
- the right eye image 280A and the left eye image 280B including the parallax are generated.
- the image 280A for the right eye is shown on the right eye of the viewer (viewer) of the image and the image 280B for the left eye is shown on the left eye, so that the parallax included in the image is processed in the brain. Perceive a feeling.
- step 300 a moving image composed of a plurality of original images (frames) 200 is registered in the third storage medium 18 via the input / output interface 24 of the stereoscopic image generation system 1.
- the feature information processing unit 140 extracts the first original image (frame) 200 from the moving image, and acquires the feature information 240 of each pixel 204 constituting this (feature information acquisition step). .
- step 310 a depth map 260 in which depth information 270 is set for each pixel 204 is generated based on the feature information 240 (depth information generation step).
- the depth information generation step 310 is divided into steps 312 to 320 in detail.
- step 312 an edge 262 is set between two approaching pixels 204 (edge setting step). Thereafter, in step 314, weight information 264 is set for the edge 262 based on the feature information 240 already set for each pixel 204 (weight information setting step).
- step 316 the start pixel 266 is selected from each pixel 204 (start pixel selection step), and the process proceeds to step 318, where the weight information 264 on the path from the start pixel 266 to each pixel 204 is changed.
- the shortest path that minimizes the cumulative value is calculated, and the shortest path information 268 that is the minimum cumulative value of the weight information 264 is set for each pixel 204 for which the shortest path is calculated (path information setting step).
- step 320 depth information 270 is set for each pixel 204 using the shortest path information 268, and the depth information 270 is aggregated to generate a depth map 260 for the pixel group (depth determination step).
- step 310 the process proceeds to step 330 and the right eye image 280A and the left eye in which the position of each pixel 204 is shifted based on the determined depth information 270 (depth map 260).
- a stereoscopic image composed of the work image 280B is generated (stereoscopic image generation step).
- the present invention is not limited to this. It is possible to generate the stereoscopic image 280 by using the depth information 270 as it is without making a depth map. Further, it is not necessary to wait for the stereoscopic image generation step 330 until all the depth information 270 is generated in units of the original image 200, and the depth information 270 set in units of the pixels 204 is sequentially added to the stereoscopic image generation step 330. It is also possible to sequentially generate a stereoscopic image 280 for each pixel 204 unit.
- the depth information 270 is imaged or visualized by the depth map 260 as necessary, and the operator of the stereoscopic image generation system 1 visually determines the setting state of the depth information 270. It is convenient when checking.
- step 340 it is determined whether or not the current original image 200 is the last frame in the moving image.
- step 340 it is determined whether or not the current original image 200 is the last frame in the moving image.
- the next original image (frame) 200 is extracted, and the same steps as described above are repeated.
- the stereoscopic image generation procedure is terminated.
- the depth information 270 that is the basis of the stereoscopic effect when generating the stereoscopic image 280 is used as the weight information 264 along the shortest path between the plurality of pixels 204. It is generated using the shortest path information 268 calculated from the accumulated value of. As a result, the depth information 270 can be made continuous with respect to the set of pixels 204 connected by the edge 262. A natural depth feeling is given to the stereoscopic image 280 generated using the depth information 270.
- a discontinuity (discontinuity) phenomenon in a stereoscopic image that occurs due to an extreme change in depth information at the boundary between a person on the front side and a background on the back side.
- the stereoscopic image 280 can be imparted with a stereoscopic effect with little discomfort for the user. Further, with the suppression of this disconnection phenomenon, it is possible to suppress the occurrence of a gap in the generated stereoscopic image 280, and image correction (blurring and image deformation) for filling the gap is also reduced. Deterioration of image quality is suppressed.
- the start pixel 266 is selected from the area 200A indicating the innermost part or the area 200B indicating the foremost part in the original image 200.
- the start pixel 266 serves as a reference point (zero point) when calculating the shortest path information 268 of the other pixels 204.
- the selection of the start pixel 266 causes the display device (display) 22 to display the original image 200 and prompts the operator of the stereoscopic image generation system 1 to select the start pixel 266 considered to be the farthest or foremost. You may do it.
- the stereoscopic image generation system 1 may analyze the original image 200 to estimate the regions 200A and 200B that will be the farthest or the foremost, and automatically select the start pixel 266 from the regions 200A and 200B. .
- the depth map is selected by selecting an optimal template from a plurality of templates corresponding to assumed typical scenes (mountainous area, sea, room, street, etc.) while checking the stereoscopic image. Complicated work such as adding correction to 260 is required.
- the present invention is not limited to this.
- a plurality of pixels 204 included in a predetermined region 200 ⁇ / b> C in the original image 200 can be selected as one start pixel 266.
- the edge weight information and the shortest path information of all the pixels 204 included in these areas are set to zero or a fixed value (reference value) in advance.
- the information processing time for calculating the shortest path can be greatly reduced.
- the start pixel 266 is designated in a certain region is shown, but other pixels other than the start pixel can be integrated as a certain region.
- this region setting is suitable for a simple subject that may share depth information of a certain area range composed of a plurality of adjacent pixels.
- the operator gives an area instruction so that these pixel groups are virtually regarded as one pixel.
- the information processing time for calculating the shortest path can be greatly reduced.
- the original image 200 in FIG. 7A is a scene in which a woman stands in a square with a blue sky and trees on both sides.
- the start pixel 266 was selected from one pixel in the blue sky region which is the innermost side.
- the minimum value of the depth information 270 (“0” of the start pixel 266 is the minimum value) is shown in black, and the maximum value of the depth information 270 is shown in white. It was expressed visually with a scale image.
- the depth map 260 generated by the stereoscopic image generating system 1 is expressed in black around the distant blue sky, and the trees lined on both sides are expressed in gray on the back side and white on the near side. Yes. Also, it can be seen that the woman in the center is expressed such that the contour portion is gray and the center portion is close to white, and a delicate sense of depth including the three-dimensional effect of the woman is expressed. In addition, it can be seen that an extremely large difference in gray scale does not occur even at the boundary between the blue sky and the female head, which originally has a large distance difference. As a result, it can be seen that the discontinuity (discontinuity) phenomenon in the stereoscopic image caused by the extreme change in the depth information is suppressed as in the conventional case. Further, as can be seen by comparing the original image 200 and the depth map 260, it can also be seen that the gray scale shading and the actual perspective are expressed very accurately.
- a stereoscopic image generation system 401 according to the second embodiment of the present invention will be described with reference to FIG.
- description here is abbreviate
- the stereoscopic image generation system 401 is configured to include a region classification unit 110 realized by a region classification program in addition to the feature information acquisition unit 140, the depth information generation unit 160, and the stereoscopic image generation unit 180.
- the area dividing unit 110 divides the original image 200 into a plurality of areas 202 as shown in FIG.
- the depth information generation unit 160 generates depth information 270 for each pixel 204 based on the feature information 240 individually for each of the plurality of areas 202A to 202E, and generates an individual depth map 265 corresponding to the areas 202A to 202E. Generate.
- the stereoscopic image generation unit 180 also changes the position of each pixel 204 based on the plurality of individual depth maps 265A to 265E generated for each of the plurality of regions 202A to 202E (right-eye image). 280A and left-eye image 280B) are generated.
- the stereoscopic image generation unit 180 includes the depth information synthesis unit 186.
- the depth information combining unit 186 combines a plurality of individual depth maps 265A to 265E generated for each of the areas 202A to 202E by the depth information generating unit 160, thereby generating one combined depth map 267.
- the stereoscopic image generation unit 180 generates the right-eye image 280A and the left-eye image 280B using the combined depth map 267.
- the depth information combining unit 186 may not be used.
- the stereoscopic image generation unit 180 may generate the stereoscopic video 280 by applying the depth information 270 set for each of the regions 202A to 202E in the depth information generation unit 160 to the pixel 204 unit.
- the start pixel selection unit 166 selects start pixels 266A to 266E for each of the plurality of areas 202A to 202E.
- the route information setting unit 168 calculates the shortest route for each of the plurality of regions 266A to 266E, and sets the shortest route information 268 for each pixel 204 in the regions 202A to 202E.
- the area classification unit 110 divides the subject included in the original image 200 into a plurality of areas 202A to 202E with the main unit as a main unit.
- the depth information 270 can be calculated independently for each of the areas 202A to 202E set in the original image 200.
- the depth information 270 is uniquely set by dividing the building or the like by the areas 202A to 202E.
- the depth information 270 is calculated by the shortest path method from the start pixels 266A to 266E, so that continuous and delicate depth information 270 is obtained in the areas 202A to 202E.
- the depth determining unit 170 determines the depth information 270 after correcting the shortest path information 268 as a whole for each of the individual depth maps 265A to 265E.
- all the pixels 204 of the second individual depth map 265B of the second area 202B on the front side are constant with respect to the shortest path information 268. After adding the correction value for the front side shift, this is used as the depth information 270.
- the depth information 270 As described above, by correcting the sense of depth in units of the individual depth maps 265A to 265E, a delicate and smooth three-dimensional feeling is produced in the regions 202A to 202E, and a plurality of individual depth maps 265A to 265E are clearly defined. A clear stereoscopic effect can be imparted.
- the original image 200 is divided into a plurality of regions 202A to 202E, and the start pixels 266A to 266E are selected within the range of the regions 202A to 202E.
- the present invention is not limited to this. Not.
- the start pixel selection unit 166 selects a plurality of start pixels 266A to 266D from the entire original image 200 without depending on whether or not the original image 200 is divided into regions, and the path
- the information setting unit 168 calculates the shortest path for each of the plurality of start pixels 266A to 266D for all the pixels 204 of the original image 200, and sets a plurality of shortest path information 268A to 268D for each pixel. it can.
- the depth determination unit 170 selects any one of the shortest path information 268A to 268D from the plurality of shortest path information 268 set for each pixel 204, and determines the depth information 270. In addition, the depth determining unit 170 can determine the depth information 270 using a plurality of shortest path information 268A to 268D set for each pixel 204. The determination of selecting one shortest path information from the plurality of shortest path information 268A to 268D or using the plurality of shortest path information 268A to 268D may be performed on the entire original image 200, or the pixel 204 It may be done in units. In the case where the pixel 204 is divided into a plurality of regions, it is also preferable to perform the processing in units of the regions.
- the depth information generation unit 160 generates a plurality of temporary depth maps 263A to 263D corresponding to the start pixels 266A to 266D.
- the depth determination unit 170 uses one of the plurality of temporary depth maps 263A to 263D generated in units of the start pixel 266, or overlaps any one of the temporary depth maps 263A to 263D. It is determined whether or not. At this time, if the original image 200 is divided into a plurality of areas 202A to 202D, individual depth maps 265A to 265D corresponding to the areas 202A to 202D are generated if the determination is made in units of the areas 202A to 202D. The individual depth maps 265A to 265D are combined to obtain a combined depth map 267.
- the options for determining the depth information 270 can be increased.
- This option means the start pixels 266A to 266D in this embodiment.
- the start pixels 266A to 266D are selected from a wide range including outside the range of the regions 202A to 202D.
- the shortest path information 268A provisional depth map 263A
- the shortest path information 268B (provisional depth map 263B) calculated based on the start pixel 266B at the left end of the original image 200 can be applied.
- the shortest path information 268C (temporary depth map 263C) calculated based on the start pixel 266C on the back side of the original image 200 can be applied.
- the shortest path information 268D (temporary depth map 263D) calculated based on the start pixel 266D on the near side of the original image 200 can be applied.
- each of the shortest path information 268A to 268D includes other shortest path information 268A to 268D (provisional) even if it contains an error portion for which accurate depth information cannot be obtained. If accurate depth information is obtained in the depth maps 263A to 263D), the error information can be automatically compensated for by using together, and smoother depth information 270 (joint depth map 267) can be obtained. ) Can be obtained.
- various calculation methods such as a sum total and an average value thereof can be applied.
- the stereoscopic image generation unit 180 includes an individual image generation unit 182 and a stereoscopic image synthesis unit 184.
- the individual image generation unit 182 generates individual stereoscopic images 282A to 282D (right-eye individual images and left-eye individual images) in which the pixel positions are changed based on the individual depth maps 265A to 265D for each of the regions 202A to 202D. To generate. By applying the generation of the individual stereoscopic images 282A to 282D to all the original images 200 (all frames in the moving image), the operator confirms the completion of the individual stereoscopic images 282A to 282D in units of the areas 202A to 202D. To do. Thereafter, the stereoscopic image combining unit 184 combines the individual stereoscopic images 282A to 282D to generate a stereoscopic image 280 (right eye image 280A and left eye image 280B).
- the generation time of the individual stereoscopic images 282A to 282D by the stereoscopic image generation system 501 can be significantly shortened compared to the time for generating the entire stereoscopic image 280. Therefore, the operator can proceed with the work while efficiently checking the stereoscopic effect in units of the areas 202A to 202D. That is, after adjusting and confirming the stereoscopic effect in units of the areas 202A to 202D in detail to enhance the completeness of the individual stereoscopic images 282A to 282D, the individual stereoscopic images 282A to 282D are synthesized to obtain the final stereoscopic image. Since the visual image 280 (the right-eye image 280A and the left-eye image 280B) is generated, the stereoscopic image 280 with less discomfort can be obtained.
- start pixels 266 that are reference values for calculating a sense of depth are selected, these can be used in any combination so that they can be used in accordance with the scene of the original image 200.
- the depth information 270 can be determined flexibly.
- the original image 200 is divided into a plurality of areas 202A to 202D and the optimum start pixels 266A to 266D are selected for the areas 202A to 202D, it is possible to produce a more natural stereoscopic effect. Become.
- the path information setting step 318 the case where the shortest path in which the cumulative value of the weight information 264 on the path from the start pixel 266 to each pixel 204 is minimized is illustrated in the path information setting step 318.
- the invention is not limited to this.
- a route that has a minimum sum of weights of a set of sides may be obtained from routes constituted by a subset of sides including all pixels 204.
- any algorithm can be used as long as any weight value can be specified using various paths between pixels.
- the binocular parallax stereoscopic image of the right eye image and the left eye image is exemplified, but the present invention is not limited to this.
- this depth information may be used to generate a multi-view stereoscopic image, and it is also possible to generate a multi-view parallax stereoscopic image. That is, in the present invention, any type of stereoscopic video using depth information may be used.
- the stereoscopic image generation method and the stereoscopic image generation system of the present invention can be applied to various devices such as a television and a game machine that convert a normal image into a stereoscopic image and display it in addition to the field of production of movies and television programs. Can be used in the field.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Processing Or Creating Images (AREA)
Abstract
A 3D-image generation method having a characteristic-information-acquisition step for acquiring characteristic information for each pixel, a depth-information generation step for generating depth information for each pixel on the basis of the characteristic information, and a 3D-image generation step for generating a 3D image on the basis of the depth information. This depth-information generation step establishes an edge between a pair of pixels, sets the overlap information for the edge on the basis of the characteristic information, selects a start pixel from among the pixels, obtains route information by using the overlap information from the start pixel to each pixel, and sets the depth information for each pixel on the basis of the route information. As a result, the provided 3D-image generation method and 3D-image generation system are capable of generating, from an original image, a 3D image causing a viewer to perceive a natural three-dimensional sensation.
Description
本発明は、視差によって画像を見る者に立体感を知覚させる立体視画像を生成する立体視画像生成方法および立体視画像生成システムに関する。
The present invention relates to a stereoscopic image generation method and a stereoscopic image generation system for generating a stereoscopic image that causes a viewer to perceive a stereoscopic effect by parallax.
近年、右眼と左眼にそれぞれ異なる画像を視認させることで観察者に立体感を知覚させる2眼視差式の立体視画像が、映画やテレビ放送等の分野で広く用いられるようになってきている。また、見る角度によって観察者が視認する画像を変化させる多眼(多視点)式の立体視画像によって観察者に立体感を知覚させる技術も、例えば裸眼立体視デバイスで用いられている。更に、これらの2眼視差式と多眼式を組み合わせた多眼視差式の立体視画像も用いられつつある。視差式の立体視画像の場合、右眼に視認させる右眼用画像および左眼に視認させる左眼用画像から構成され、両画像中の被写体の位置を人間の両眼視差に合わせてそれぞれ水平方向にシフトする(ずらす)ことにより、画像を見る者(看者)に立体感を知覚させるようにしている。
In recent years, binocular parallax-type stereoscopic images that allow viewers to perceive a stereoscopic effect by visually recognizing different images for the right eye and the left eye have come to be widely used in fields such as movies and television broadcasting. Yes. In addition, a technique for causing an observer to perceive a stereoscopic effect using a multi-view (multi-viewpoint) stereoscopic image that changes an image viewed by the observer depending on a viewing angle is also used in, for example, an autostereoscopic device. In addition, multi-view parallax stereoscopic images combining these binocular parallax and multi-view types are also being used. In the case of a parallax stereoscopic image, the image is composed of a right-eye image to be visually recognized by the right eye and a left-eye image to be visually recognized by the left eye. By shifting (shifting) in the direction, the viewer (viewer) viewing the image perceives a stereoscopic effect.
従来、視差式の立体視画像は、2台のカメラを左右に並べて、右眼用画像および左眼用画像を同時に撮影することによって生成されるのが一般的であった。この場合、人間の両眼視差と略同様の視差を有する右眼用画像および左眼用画像を直接得ることができるため、看者に違和感を持たせることのない自然な立体視画像を生成することができる。
Conventionally, a parallax-type stereoscopic image is generally generated by arranging two cameras side by side and simultaneously capturing a right-eye image and a left-eye image. In this case, since a right-eye image and a left-eye image having substantially the same parallax as human binocular parallax can be directly obtained, a natural stereoscopic image that does not give the viewer a sense of incongruity is generated. be able to.
しかしながら、このように2台のカメラによって右眼用画像および左眼用画像を撮影する手法では、全く同仕様の2台のカメラを正確に位置決めして配置すると共に、両者を完全に同期させた状態で撮影を行う必要がある。このため、撮影の際には専門スタッフと共に特殊な専用機器を多数揃える必要があり、撮影コストが増大するだけではなく、カメラその他の各種機器の設定や調整に多大な時間を要するという問題があった。
However, in the method of taking the right-eye image and the left-eye image with two cameras in this way, the two cameras having exactly the same specifications are positioned and arranged accurately, and the two are completely synchronized. It is necessary to shoot in the state. For this reason, it is necessary to prepare a large number of special dedicated devices together with specialized staff when shooting, which not only increases the shooting cost but also requires a lot of time to set and adjust the camera and other various devices. It was.
また従来の多眼式の立体視画像は、多くの視点にカメラを並べて、多視点の画像を同時に撮影することによって生成されるのが一般的であった。しかしながら、このように複数台のカメラによって多視点の画像を撮影する手法では、全く同仕様の複数台のカメラを正確に位置決めして配置すると共に、すべてを完全に同期させた状態で撮影を行う必要があという問題があった。
Also, a conventional multi-view stereoscopic image is generally generated by arranging cameras at many viewpoints and simultaneously shooting multi-view images. However, in this method of taking a multi-viewpoint image with a plurality of cameras, a plurality of cameras with exactly the same specifications are positioned and arranged accurately, and all the images are photographed in a completely synchronized state. There was a problem that it was necessary.
ましてや、多眼視差式の立体視映像となると、様々な視点に対して、2台ずつカメラを配置して、視差を含んだ映像を撮影する必要がある。従って、極めて特異な目的が無い限り、一般的に普及するにはほど遠い状況となっている。
Furthermore, when it comes to multi-view parallax stereoscopic video, it is necessary to place two cameras at various viewpoints to shoot video that includes parallax. Therefore, unless there is a very specific purpose, the situation is generally far from widespread.
これに対し、1台のカメラによって通常どおりに撮影された画像に画像処理を施すことで、2眼視差式の右眼用画像および左眼用画像を生成する手法が提案されている(例えば、特許文献1参照)。この手法では、まず原画像を構成する各画素に奥行き情報(奥行き値)を設定し、この奥行き情報に応じて各画素の水平方向の位置を変更することにより、両画像中の被写体の位置を両眼視差に合わせてシフトした右眼用画像および左眼用画像を生成するようになっている。
On the other hand, a method of generating a binocular parallax type image for the right eye and an image for the left eye by performing image processing on an image photographed as usual by one camera (for example, Patent Document 1). In this method, depth information (depth value) is first set for each pixel constituting the original image, and the position of the subject in both images is changed by changing the horizontal position of each pixel according to this depth information. A right-eye image and a left-eye image shifted in accordance with the binocular parallax are generated.
この手法によれば、一般的なカメラによって撮影した通常の原画像から立体視画像を生成することが可能であるため、撮影コストを低減し、撮影時間を短縮することができる。また、既存の映画等のコンテンツから立体視画像を生成したり、一般的なテレビ放送を立体視画像に変換してテレビ画面に表示させたりすることもできる。
According to this method, since a stereoscopic image can be generated from a normal original image taken by a general camera, the photographing cost can be reduced and the photographing time can be shortened. It is also possible to generate a stereoscopic image from existing content such as a movie, or convert a general television broadcast into a stereoscopic image and display it on a television screen.
しかしながら、通常の原画像から立体視画像を生成する従来の手法では、一般的に原画像を構成する各画素の色相、彩度または明度(上記特許文献1では、彩度)の値をそのまま各画素の奥行き情報としているため、例えば被写体である人物等と背景の境界においては奥行き情報の値が大きく変化することとなり、奥行きの断絶(不連続)が生じるという問題があった。
However, in the conventional method of generating a stereoscopic image from a normal original image, the hue, saturation, or brightness (saturation in Patent Document 1) of each pixel constituting the original image is generally used as it is. Since the pixel depth information is used, for example, the value of the depth information changes greatly at the boundary between the person who is the subject and the background, and there is a problem that the depth is discontinuous (discontinuous).
このような奥行きの断絶が生じている場合、人物等と背景の間の遠近のみが強調されて人物等が平面的に感じられる、いわゆる描き割り効果等の不自然な立体感として知覚されることとなる。また、右眼用画像および左眼用画像において各画素の位置を変更する際に、人物等に含まれる画素と背景に含まれる画素の移動量が大きく異なることから、原画像において人物等に遮蔽されていた背景に大きなギャップ(欠損)が生じることとなる。
When such a discontinuity in depth occurs, only the perspective between the person and the background is emphasized, and the person can be perceived as a flat surface. It becomes. In addition, when changing the position of each pixel in the right-eye image and the left-eye image, the movement amount of the pixel included in the person and the pixel included in the background is greatly different. A large gap (deficiency) will occur in the background.
従来の手法においては、このようなギャップを回避するために、境界部分に対するぼかし処理や、人物等または背景の画像を拡大または変形させる処理を施すようにしたものもあるが、このような処理は、立体視画像の画質を劣化させるだけでなく、却って看者に違和感を与える場合があった。また、これらのぼかし処理や、拡大変形処理には、ソフトウエア上で立体視画像を加工するオペレータの作業負担を増大させるという問題があった。従って、多眼式や多眼視差式の立体視画像を、原画像から立体視画像を生成しようとすると、オペレータの加工作業が膨大となってしまうという問題があった。
In the conventional method, in order to avoid such a gap, there is a method in which a blurring process for a boundary portion or a process for enlarging or deforming a person or the like or a background image is performed. In addition to degrading the image quality of the stereoscopic image, the viewer may feel uncomfortable. In addition, these blur processing and enlargement / deformation processing have a problem of increasing the workload of an operator who processes a stereoscopic image on software. Therefore, when generating a stereoscopic image from an original image of a multi-view type or a multi-view parallax type stereoscopic image, there is a problem that an operator's processing work becomes enormous.
本発明は、斯かる実情に鑑み、看者に自然な立体感を知覚させる立体視画像を原画像から生成することが可能な立体視画像生成方法および立体視画像生成システムを提供しようとするものである。
In view of such circumstances, the present invention intends to provide a stereoscopic image generation method and a stereoscopic image generation system capable of generating a stereoscopic image from an original image that allows a viewer to perceive a natural stereoscopic effect. It is.
上記目的を達成する本発明は、原画像を構成する各画素の特徴情報を取得する特徴情報取得ステップと、前記特徴情報に基づいて前記各画素に奥行き情報を生成する奥行き情報生成ステップと、前記奥行き情報に基づいて前記各画素の位置を変更した立体視画像を生成する立体視画像生成ステップと、を有し、前記奥行き情報生成ステップは、前記原画像から抽出された一対の前記画素の間にエッジを設定するエッジ設定ステップと、前記特徴情報に基づいて前記エッジに重み情報を設定する重み情報設定ステップと、前記各画素の中からスタート画素を選択するスタート画素選択ステップと、前記スタート画素から前記各画素までの前記重み情報についての経路を算出し、前記各画素に経路情報を設定する経路情報設定ステップと、前記経路情報に基づいて前記各画素に前記奥行き情報を設定する奥行き確定ステップと、を有することを特徴とする、立体視画像生成方法である。
The present invention that achieves the above object includes a feature information acquisition step of acquiring feature information of each pixel constituting an original image, a depth information generation step of generating depth information for each pixel based on the feature information, A stereoscopic image generation step of generating a stereoscopic image in which the position of each pixel is changed based on depth information, and the depth information generation step is performed between the pair of pixels extracted from the original image. An edge setting step for setting an edge on the edge, a weight information setting step for setting weight information on the edge based on the feature information, a start pixel selection step for selecting a start pixel from the pixels, and the start pixel A route information setting step for calculating a route for the weight information from each pixel to each pixel, and setting route information for each pixel; It characterized by having a a depth determination step of setting the depth information on each pixel on the basis of the road information, a stereoscopic image generation method.
上記目的を達成する立体視画像生成方法において、上記発明の前記スタート画素選択ステップでは、前記原画像における最奥部を示す領域、または最前部を示す領域に含まれる前記画素を前記スタート画素に選択することを特徴とする。
In the stereoscopic image generation method that achieves the above object, in the start pixel selection step of the invention, the pixel that is included in the region indicating the innermost part or the region indicating the frontmost part in the original image is selected as the start pixel. It is characterized by doing.
上記目的を達成する立体視画像生成方法において、上記発明の前記スタート画素選択ステップでは、前記スタート画素を複数選択することを特徴とする。
In the stereoscopic image generation method that achieves the above object, the start pixel selection step of the invention is characterized in that a plurality of the start pixels are selected.
上記目的を達成する立体視画像生成方法において、上記発明の前記経路情報設定ステップでは、前記複数のスタート画素ごとに前記経路を算出して前記各画素に複数の前記経路情報を設定し、前記奥行き確定ステップでは、前記各画素に設定された前記複数の経路情報の中から1つを選択するか、又は、前記複数の経路情報を合成するかによって、前記複数の経路情報に基づいて前記奥行き情報を設定することを特徴とする。
In the stereoscopic image generation method that achieves the above object, in the route information setting step of the invention, the route is calculated for each of the plurality of start pixels, a plurality of the route information is set for each pixel, and the depth is set. In the determination step, the depth information is selected based on the plurality of route information depending on whether one of the plurality of route information set for each pixel is selected or the plurality of route information is combined. Is set.
上記目的を達成する立体視画像生成方法において、上記発明の前記スタート画素選択ステップでは、前記原画像中の所定の領域に含まれる複数の前記画素をまとめて一つの前記スタート画素に選択することを特徴とする。
In the stereoscopic image generation method that achieves the above object, in the start pixel selection step of the invention, a plurality of the pixels included in a predetermined region in the original image are collectively selected as one start pixel. Features.
上記目的を達成する立体視画像生成方法において、上記発明は、前記原画像を複数の領域に区分する領域区分ステップをさらに備え、前記スタート画素選択ステップでは、前記複数の領域ごとに前記スタート画素を選択し、前記経路情報設定ステップでは、前記複数の領域ごとに前記経路を算出し、前記各画素に前記経路情報を設定することを特徴とする。
In the stereoscopic image generating method that achieves the above object, the invention further includes a region dividing step of dividing the original image into a plurality of regions, and in the start pixel selecting step, the start pixel is set for each of the plurality of regions. In the path information setting step, the path is calculated for each of the plurality of areas, and the path information is set for each pixel.
上記目的を達成する立体視画像生成方法において、上記発明の前記領域区分ステップでは、前記原画像に含まれる被写体ごとに前記原画像を前記複数の領域に区分することを特徴とする。
In the stereoscopic image generation method that achieves the above object, in the region segmentation step of the invention, the original image is segmented into the plurality of regions for each subject included in the original image.
上記目的を達成する本発明は、電子計算機によって構成され、原画像を構成する各画素の特徴情報を取得する特徴情報取得手段と、前記特徴情報に基づいて前記各画素に奥行き情報を生成する奥行き情報生成手段と、前記奥行き情報に基づいて前記各画素の位置を変更した立体視画像を生成する立体視画像生成手段と、を有し、前記奥行き情報生成手段は、前記原画像から抽出された一対の前記画素の間にエッジを設定するエッジ設定手段と、前記特徴情報に基づいて前記エッジに重み情報を設定する重み情報設定手段と、前記各画素の中からスタート画素を選択するスタート画素選択手段と、前記スタート画素から前記各画素までの前記重み情報についての経路を算出し、前記各画素に経路情報を設定する経路情報設定手段と、前記経路情報に基づいて前記各画素に前記奥行き情報を設定する奥行き確定手段と、を有することを特徴とする、立体視画像生成システムである。
The present invention that achieves the above object comprises a feature information acquisition means configured by an electronic computer for acquiring feature information of each pixel constituting an original image, and a depth for generating depth information for each pixel based on the feature information. Information generating means, and stereoscopic image generating means for generating a stereoscopic image in which the position of each pixel is changed based on the depth information, wherein the depth information generating means is extracted from the original image Edge setting means for setting an edge between a pair of the pixels, weight information setting means for setting weight information for the edge based on the feature information, and start pixel selection for selecting a start pixel from the pixels Means, route information setting means for calculating a route for the weight information from the start pixel to each pixel, and setting route information for each pixel, and the route It characterized by having a a depth determination means for setting the depth information on each pixel based on broadcast, a stereoscopic image generation system.
本発明によれば、看者に自然な立体感を知覚させる立体視画像を原画像から略自動的に生成することができるという優れた効果を奏し得る。
According to the present invention, it is possible to achieve an excellent effect that a stereoscopic image that allows a viewer to perceive a natural stereoscopic effect can be generated substantially automatically from an original image.
以下、図面を参照しながら本発明の実施の形態について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1には、第1実施形態に係る立体視画像生成システム1を構成するコンピュータ10の内部構成が示されている。このコンピュータ10は、CPU12、第1記憶媒体14、第2記憶媒体16、第3記憶媒体18、入力装置20、表示装置22、入出力インタフェース24、バス26を備えて構成される。CPU12はいわゆる中央演算処理装置であり、各種プログラムが実行されてこの立体視画像生成システム1の各種機能を実現する。第1記憶媒体14はいわゆるRAM(ランダム・アクセス・メモリ)であり、CPU12の作業領域として使用されるメモリである。第2記憶媒体16はいわゆるROM(リード・オンリー・メモリ)であり、CPU12で実行される基本的なプログラムを記憶するためのメモリである。第3記憶媒体18は、磁気ディスクを内蔵したハードディスク装置、CDやDVDやBDを収容するディスク装置、不揮発性の半導体フラッシュメモリ装置などで構成されており、この立体視画像生成システム1の全体的な基本動作を実現するOS(オペレーティングシステム)プログラムや、立体視画像を生成する際にCPU12で実行される立体視画像生成プログラムや、この立体視画像生成プログラムで利用されるデプスマップや立体視画像などの各種データなどを記憶する。入力装置20はキーボードやマウスであり、作業者によって立体視画像生成システム1に適宜情報を入力する装置である。表示装置22はディスプレイであって、作業者に対して視覚的なインタフェースを提供する。入出力インタフェース24は、立体視画像生成プログラムで必要となる原画像データを入力したり、同立体視画像生成プログラムで生成されたデプスマップや立体視画像を外部に出力したりするためのインタフェースである。バス26は、CPU12、第1記憶媒体14、第2記憶媒体16、第3記憶媒体18、入力装置20、表示装置22、入出力インタフェース24などを一体的に接続して通信を行うための配線となる。
FIG. 1 shows an internal configuration of a computer 10 constituting the stereoscopic image generation system 1 according to the first embodiment. The computer 10 includes a CPU 12, a first storage medium 14, a second storage medium 16, a third storage medium 18, an input device 20, a display device 22, an input / output interface 24, and a bus 26. The CPU 12 is a so-called central processing unit, and executes various programs to realize various functions of the stereoscopic image generation system 1. The first storage medium 14 is a so-called RAM (Random Access Memory) and is a memory used as a work area of the CPU 12. The second storage medium 16 is a so-called ROM (Read Only Memory) and is a memory for storing a basic program executed by the CPU 12. The third storage medium 18 is composed of a hard disk device incorporating a magnetic disk, a disk device accommodating a CD, DVD, or BD, a non-volatile semiconductor flash memory device, and the like. OS (operating system) program that realizes basic operations, a stereoscopic image generation program executed by the CPU 12 when generating a stereoscopic image, a depth map and a stereoscopic image used in this stereoscopic image generation program Various data such as are stored. The input device 20 is a keyboard or a mouse, and is a device for appropriately inputting information to the stereoscopic image generation system 1 by an operator. The display device 22 is a display and provides a visual interface to the worker. The input / output interface 24 is an interface for inputting original image data necessary for the stereoscopic image generation program, and for outputting a depth map and a stereoscopic image generated by the stereoscopic image generation program to the outside. is there. The bus 26 is a wiring for integrally connecting the CPU 12, the first storage medium 14, the second storage medium 16, the third storage medium 18, the input device 20, the display device 22, the input / output interface 24, and the like for communication. It becomes.
図2には、第3記憶媒体18に記憶されている立体視画像生成プログラムのプログラム構成と、この立体視画像生成プログラムがCPU12で実行されることにより実現されることによって立体視画像生成システム1が実現する機能構成が示されている。また、図3~図5には、この立体視画像生成システム1によって実行される立体視画像生成手法が概念的に示されている。なお、この立体視画像生成システム1では、立体視画像生成プログラムの構成とその機能構成は対応関係にあることから、ここでは立体視画像生成システム1の機能構成の説明を行うことで、プログラムの説明は省略する。
In FIG. 2, the program configuration of the stereoscopic image generation program stored in the third storage medium 18 and the stereoscopic image generation system 1 realized by executing the stereoscopic image generation program by the CPU 12. The functional configuration realized by is shown. 3 to 5 conceptually show a stereoscopic image generation method executed by the stereoscopic image generation system 1. FIG. In this stereoscopic image generation system 1, since the configuration of the stereoscopic image generation program and the functional configuration thereof are in a correspondence relationship, the functional configuration of the stereoscopic image generation system 1 will be described here to explain the program. Description is omitted.
この立体視画像生成システム1は、特徴情報取得プログラムによって実現される特徴情報取得部140、奥行き情報生成プログラムによって実現される奥行き情報生成部160、立体視画像生成プログラムによって実現される立体視画像生成部180を備えて構成される。
The stereoscopic image generation system 1 includes a feature information acquisition unit 140 realized by a feature information acquisition program, a depth information generation unit 160 realized by a depth information generation program, and a stereoscopic image generation realized by a stereoscopic image generation program. A portion 180 is provided.
特徴情報取得部140は、原画像200を構成する各画素204の特徴情報240を取得する。この特徴情報240は、例えば、各画素204の色相、明度、彩度、色空間などのように、各画素204が単独で有している特徴的な情報の他、対象画素204の周囲の画素204の関係から導かれる特徴的な情報や、複数フレームを有する動画の場合は、各画素204の時間的な変化(前後のフレームの同じ位置の画素との関係)から導かれる特徴的な情報などを利用することも可能である。
The feature information acquisition unit 140 acquires feature information 240 of each pixel 204 constituting the original image 200. This feature information 240 includes, for example, characteristic information that each pixel 204 has independently such as the hue, brightness, saturation, and color space of each pixel 204, and pixels around the target pixel 204. 204. Characteristic information derived from the relationship of 204, or in the case of a moving image having a plurality of frames, characteristic information derived from temporal changes of each pixel 204 (relationship with pixels at the same position in the previous and subsequent frames), etc. It is also possible to use.
奥行き情報生成部160は、各画素204で取得される特徴情報240に基づいて、各画素204に奥行き情報270が設定されたデプスマップ260を生成する。
The depth information generation unit 160 generates a depth map 260 in which the depth information 270 is set in each pixel 204 based on the feature information 240 acquired in each pixel 204.
具体的に、この奥行き情報生成部160は、更に詳細に、エッジ設定部162、重み情報設定部164、スタート画素選択部166、経路情報設定部168、奥行き確定部170を備える。
Specifically, the depth information generation unit 160 includes an edge setting unit 162, a weight information setting unit 164, a start pixel selection unit 166, a path information setting unit 168, and a depth determination unit 170 in more detail.
図4に示されるように、エッジ設定部162は、原画像200から抽出される一対の画素204間にエッジ262を設定する。このエッジ262とは、概念として、一対の画素204間を結ぶ線又は両者を結ぶ経路を意味している。グラフ理論で考えると、一対の画素204が節点又は頂点となり、エッジ262が枝又は辺となる。本実施形態は、各画素204に対して、上下左右に隣接する合計4つの画素204に対するエッジ262を設定する。なお、本発明は、各画素204から上下左右に隣接する画素204に対してエッジ262を設定する場合に限定されるものではなく、右斜め上、左斜め上、右斜め下、左斜め下の隣接する画素204に対してエッジ262を設定したり、これらと上下左右を組み合わせた合計8画素204に対してエッジ262を設定することもできる。また、必ずしも隣り合う画素204間にエッジ262を設定する場合に限られず、途中の画素を飛ばすことで一定の距離を有する一対の画素204、即ち、間引き作業を行った画素204に対してエッジ262を設定することも可能である。勿論、飛び地のように遠く離れた場所にある一対の画素204の間にエッジ262を設定することも可能である。
4, the edge setting unit 162 sets an edge 262 between a pair of pixels 204 extracted from the original image 200. The edge 262 conceptually means a line connecting a pair of pixels 204 or a path connecting both. Considering the graph theory, the pair of pixels 204 are nodes or vertices, and the edges 262 are branches or edges. In the present embodiment, for each pixel 204, an edge 262 for a total of four pixels 204 adjacent in the vertical and horizontal directions is set. Note that the present invention is not limited to the case where the edge 262 is set for each pixel 204 that is vertically and horizontally adjacent to each other, but the diagonally upper right, the upper left, the lower right, and the lower left. An edge 262 can be set for adjacent pixels 204, or an edge 262 can be set for a total of eight pixels 204 obtained by combining these with upper, lower, left and right. In addition, the edge 262 is not necessarily set between adjacent pixels 204, and the edge 262 with respect to a pair of pixels 204 having a certain distance by skipping pixels in the middle, that is, the pixels 204 that have been thinned out. Can also be set. Needless to say, an edge 262 can be set between a pair of pixels 204 located far away like an enclave.
重み情報設定部164は、エッジ262を結ぶ一対の特徴情報240に基づいて、このエッジ262に重み情報264を設定する。この重み情報264は、本実施形態ではエッジ262間を結ぶ一対の画素204の特徴情報240の差を利用する。差が大きいほど重み情報264が大きくなり、差が小さい程、重み情報264が小さくなる。なお、この重み情報264は、エッジ262両端の一対の特徴情報240の「差」に限定されるものではなく、この一対の特徴情報240を利用して重み情報を算出する各種関数などを利用して、重み情報264を設定することも可能である。
The weight information setting unit 164 sets the weight information 264 for the edge 262 based on a pair of feature information 240 connecting the edges 262. In this embodiment, the weight information 264 uses the difference between the feature information 240 of the pair of pixels 204 connecting the edges 262. The weight information 264 increases as the difference increases, and the weight information 264 decreases as the difference decreases. The weight information 264 is not limited to the “difference” between the pair of feature information 240 at both ends of the edge 262, and various functions that calculate weight information using the pair of feature information 240 are used. Thus, the weight information 264 can be set.
スタート画素選択部166は、原画像200における各画素204の中から、スタート画素266を選択する。このスタート画素266は、後述する最短経路情報268を設定する際のスタート地点となる。このスタート画素266は、画像200の中から自由に選択することが可能であるが、例えば図3に示されるように、原画像200において最も奥側に位置する領域200Aの中に存在する画素群、又は、最も前側に位置する領域200Bの中に存在する画素群から選択することが好ましい。なお、詳細は第2実施形態で詳述するが、原画像200から複数のスタート画素266を選択することも可能である。また更に、図3に示されるように、原画像200における所定の領域200Cに含まれる全ての画素204を、まとめて一つのスタート画素266として領域選択することも可能である。
The start pixel selection unit 166 selects a start pixel 266 from each pixel 204 in the original image 200. The start pixel 266 becomes a start point when setting the shortest path information 268 described later. The start pixel 266 can be freely selected from the image 200. For example, as shown in FIG. 3, a group of pixels existing in a region 200A located on the innermost side in the original image 200. Alternatively, it is preferable to select from the pixel group existing in the region 200B located at the foremost side. Although details will be described in detail in the second embodiment, it is also possible to select a plurality of start pixels 266 from the original image 200. Furthermore, as shown in FIG. 3, all the pixels 204 included in the predetermined region 200 </ b> C in the original image 200 can be collectively selected as one start pixel 266.
なお本実施形態では、原画像200における最も奥側の領域200Aの中から一つの画素をスタート画素266として選択する。
In this embodiment, one pixel is selected as the start pixel 266 from the innermost region 200A in the original image 200.
経路情報設定部168は、原画像200において、スタート画素266から各画素204までの経路(エッジ262)の重み情報264を利用して、その最短経路を算出し、これらの各画素204に最短経路情報268を設定する。この具体的な例を図5を利用して説明する。
The path information setting unit 168 calculates the shortest path using the weight information 264 of the path (edge 262) from the start pixel 266 to each pixel 204 in the original image 200, and sends the shortest path to each of these pixels 204. Information 268 is set. A specific example of this will be described with reference to FIG.
説明を簡略化するために、ここでは原画像200が3行×3列の9つの画素204A~204Iから構成されると仮定し、左上の画素204Aが、最も奥側に位置する画素であることから、スタート画素266として設定する場合を考える。画素204A~204I間を結合する12個のエッジ262(1)~262(12)には、各画素204A~204Iが保有する特徴情報(図示省略)の相対差を利用して、1~10までの重み情報264が予め設定されている。ここで中央上段の画素204Dの経路を考えると、スタート画素204Aと画素204Dを結ぶ経路として、例えば、スタート画素204Aと画素204Dを直接結ぶエッジ262(3)のみの第1経路R1と、スタート画素204A、画素204B、画素204E、画素204Dを結ぶ3つのエッジ262(1)、262(4)、262(6)からなる第2経路R2を有している。第1経路R1の重み情報264の総和は「1」、第2経路R2の重み情報264の総和は、3+2+5の「10」となる。このように、スタート画素204Aと画素204Dの間において取り得る全経路について同様に重み情報264の総和を算出し、最も小さい値となるのが最短経路である。ここでは、上記第1経路R1が最短経路となり、結果、この画素204Dには、最短経路情報268として、最短経路上の重み情報264の総和である「1」が設定される。
In order to simplify the explanation, it is assumed here that the original image 200 is composed of nine pixels 204A to 204I of 3 rows × 3 columns, and the upper left pixel 204A is the pixel located on the farthest side. Therefore, a case where the pixel is set as the start pixel 266 will be considered. The twelve edges 262 (1) to 262 (12) connecting the pixels 204A to 204I use 1 to 10 by using the relative difference of characteristic information (not shown) held by the pixels 204A to 204I. The weight information 264 is preset. Here, considering the path of the pixel 204D in the upper center stage, as the path connecting the start pixel 204A and the pixel 204D, for example, the first path R1 including only the edge 262 (3) directly connecting the start pixel 204A and the pixel 204D, and the start pixel A second path R2 including three edges 262 (1), 262 (4), and 262 (6) connecting 204A, pixel 204B, pixel 204E, and pixel 204D is provided. The sum of the weight information 264 of the first route R1 is “1”, and the sum of the weight information 264 of the second route R2 is “10” of 3 + 2 + 5. As described above, the sum of the weight information 264 is calculated in the same manner for all possible paths between the start pixel 204A and the pixel 204D, and the shortest path is the smallest value. Here, the first route R1 is the shortest route. As a result, “1”, which is the sum of the weight information 264 on the shortest route, is set as the shortest route information 268 in the pixel 204D.
経路情報設定部168は、各画素204A~204Iまでの全てに対して、上記手法によって最短経路情報268を設定する。結果として、画素204Aは「0」、画素204Bは「3」、画素204Cは「11」、画素204Dは「1」、画素204Eは「5」、画素204Fは「10」、画素204Gは「5」、画素204Hは「12」、画素204Iは「12」の最短経路情報268が設定される。
The route information setting unit 168 sets the shortest route information 268 for all the pixels 204A to 204I by the above method. As a result, the pixel 204A is “0”, the pixel 204B is “3”, the pixel 204C is “11”, the pixel 204D is “1”, the pixel 204E is “5”, the pixel 204F is “10”, and the pixel 204G is “5”. ", The shortest path information 268 of" 12 "is set for the pixel 204H and" 12 "is set for the pixel 204I.
奥行き確定部170は、最短経路情報268に基づいて各画素204に奥行き情報270を設定する。なお、本実施形態では、奥行き確定部170は、この最短経路情報268を奥行き情報270としてそのまま用いる。この各画素204に設定される奥行き情報270を視覚的にマップ化したものがデプスマップ260となる。
The depth determination unit 170 sets the depth information 270 for each pixel 204 based on the shortest path information 268. In the present embodiment, the depth determination unit 170 uses the shortest path information 268 as the depth information 270 as it is. A depth map 260 is a visual map of the depth information 270 set for each pixel 204.
なお、必要に応じてこの最短経路情報268を補正した値を、奥行き情報270として用いることも可能である。例えば、原画像200が野外の風景を写した画像であるか、屋内空間を写した画像であるかによって異なる補正用関数を用意しておき、この最短経路情報268に対して、原画像200の内容に応じて選択された補正関数を適用して、奥行き情報270を算出することも可能である。
A value obtained by correcting the shortest path information 268 as needed can be used as the depth information 270. For example, different correction functions are prepared depending on whether the original image 200 is an image of an outdoor landscape or an image of an indoor space. The depth information 270 can also be calculated by applying a correction function selected according to the content.
立体視画像生成部180は、デプスマップ260に基づいて、各画素204の位置を変更した右眼用画像280Aおよび左眼用画像280Bから構成される立体視画像280を生成する。具体的には、デプスマップ260の奥行き情報270を利用して、奥側に位置する画素204に関しては水平方向の変位量(シフト量)を小さくし、手前側に位置する画素204に関しては水平方向の変位量を大きくして、視差を含んだ右眼用画像280Aおよび左眼用画像280Bを生成する。結果、画像を見る者(看者)の右眼に、右眼用画像280Aを見せると共に、左眼に左眼用画像280Bを見せることで、これに含まれる視差が脳内で処理されて立体感を知覚する。
The stereoscopic image generation unit 180 generates a stereoscopic image 280 composed of the right-eye image 280A and the left-eye image 280B in which the position of each pixel 204 is changed based on the depth map 260. Specifically, the depth information 270 of the depth map 260 is used to reduce the horizontal displacement (shift amount) for the pixels 204 located on the far side and the horizontal direction for the pixels 204 located on the near side. The right eye image 280A and the left eye image 280B including the parallax are generated. As a result, the image 280A for the right eye is shown on the right eye of the viewer (viewer) of the image and the image 280B for the left eye is shown on the left eye, so that the parallax included in the image is processed in the brain. Perceive a feeling.
次に図6を参照して、立体視画像生成システム1による立体視画像の生成手順を説明する。
Next, a procedure for generating a stereoscopic image by the stereoscopic image generating system 1 will be described with reference to FIG.
まず、ステップ300において、立体視画像生成システム1の入出力インタフェース24を介して、複数の原画像(フレーム)200によって構成される動画像を第3記憶媒体18に登録する。その後、ステップ302では、特徴情報処理部140が、この動画像から最初の原画像(フレーム)200を抽出して、これを構成する各画素204の特徴情報240を取得する(特徴情報取得ステップ)。
First, in step 300, a moving image composed of a plurality of original images (frames) 200 is registered in the third storage medium 18 via the input / output interface 24 of the stereoscopic image generation system 1. After that, in step 302, the feature information processing unit 140 extracts the first original image (frame) 200 from the moving image, and acquires the feature information 240 of each pixel 204 constituting this (feature information acquisition step). .
次いで、ステップ310では、この特徴情報240に基づいて各画素204に奥行き情報270を設定したデプスマップ260を生成する(奥行き情報生成ステップ)。この奥行き情報生成ステップ310は、詳細にステップ312~ステップ320に分かれる。
Next, in step 310, a depth map 260 in which depth information 270 is set for each pixel 204 is generated based on the feature information 240 (depth information generation step). The depth information generation step 310 is divided into steps 312 to 320 in detail.
まず、ステップ312では、接近する2つの画素204間にエッジ262を設定する(エッジ設定ステップ)。その後、ステップ314では、各画素204に設定済みの特徴情報240に基づいて、エッジ262に重み情報264を設定する(重み情報設定ステップ)。次に、ステップ316では、各画素204の中からスタート画素266を選択し(スタート画素選択ステップ)、更に、ステップ318に進んで、スタート画素266から各画素204までの経路上の重み情報264の累積値が最小となるような最短経路を算出し、最短経路が算出された各画素204に対して、重み情報264の最小の累積値となる最短経路情報268を設定する(経路情報設定ステップ)。その後、ステップ320では、最短経路情報268を利用して、各画素204に奥行き情報270を設定し、この奥行き情報270を集合化して画素群に対するデプスマップ260を生成する(奥行き確定ステップ)。
First, in step 312, an edge 262 is set between two approaching pixels 204 (edge setting step). Thereafter, in step 314, weight information 264 is set for the edge 262 based on the feature information 240 already set for each pixel 204 (weight information setting step). Next, in step 316, the start pixel 266 is selected from each pixel 204 (start pixel selection step), and the process proceeds to step 318, where the weight information 264 on the path from the start pixel 266 to each pixel 204 is changed. The shortest path that minimizes the cumulative value is calculated, and the shortest path information 268 that is the minimum cumulative value of the weight information 264 is set for each pixel 204 for which the shortest path is calculated (path information setting step). . Thereafter, in step 320, depth information 270 is set for each pixel 204 using the shortest path information 268, and the depth information 270 is aggregated to generate a depth map 260 for the pixel group (depth determination step).
以上の奥行き情報生成ステップ310が完了したら、次に、ステップ330に進んで、確定した奥行き情報270(デプスマップ260)に基づいて各画素204の位置をシフトさせた右眼用画像280Aおよび左眼用画像280Bからなる立体視画像を生成する(立体視画像生成ステップ)。
When the above depth information generation step 310 is completed, the process proceeds to step 330 and the right eye image 280A and the left eye in which the position of each pixel 204 is shifted based on the determined depth information 270 (depth map 260). A stereoscopic image composed of the work image 280B is generated (stereoscopic image generation step).
なお、ここでは奥行き情報270を集合化してデプスマップ260を生成し、このデプスマップ260を利用して立体視画像280を生成する場合を例示しているが、本発明はこれに限定されない。デプスマップ化することなく、奥行き情報270をそのまま利用して立体視画像280を生成することが可能である。また、原画像200単位で全ての奥行き情報270が生成されるまで立体視画像生成ステップ330を待機させる必要は無く、画素204単位で設定される奥行き情報270を、逐次、立体視画像生成ステップ330に適用していき、画素204単位で立体視画像280を順次生成していくことも可能である。勿論、本実施形態で示すように、必要に応じて奥行き情報270をデプスマップ260によって画像化又は可視化することも好ましく、本立体視画像生成システム1のオペレータが奥行き情報270の設定状況を視覚的に確認する際に便利である。
In addition, although the case where the depth information 270 is aggregated to generate the depth map 260 and the stereoscopic image 280 is generated using the depth map 260 is illustrated here, the present invention is not limited to this. It is possible to generate the stereoscopic image 280 by using the depth information 270 as it is without making a depth map. Further, it is not necessary to wait for the stereoscopic image generation step 330 until all the depth information 270 is generated in units of the original image 200, and the depth information 270 set in units of the pixels 204 is sequentially added to the stereoscopic image generation step 330. It is also possible to sequentially generate a stereoscopic image 280 for each pixel 204 unit. Of course, as shown in this embodiment, it is also preferable that the depth information 270 is imaged or visualized by the depth map 260 as necessary, and the operator of the stereoscopic image generation system 1 visually determines the setting state of the depth information 270. It is convenient when checking.
原画像200から立体視画像280の生成が完了したら、ステップ340に進んで、今回の原画像200が動画像の中で最後のフレームか否かを判断し、最後のフレームで無い場合は、ステップ302に戻って、次の原画像(フレーム)200を抽出して、上記と同じステップを繰り返す。一方、立体視画像280を生成した原画像200が動画中の最後のフレームとなる場合は、この立体視画像生成手順を終了させる。
When the generation of the stereoscopic image 280 from the original image 200 is completed, the process proceeds to step 340, where it is determined whether or not the current original image 200 is the last frame in the moving image. Returning to 302, the next original image (frame) 200 is extracted, and the same steps as described above are repeated. On the other hand, when the original image 200 that generated the stereoscopic image 280 is the last frame in the moving image, the stereoscopic image generation procedure is terminated.
以上、本実施形態の立体視画像生成システム1によれば、立体視画像280を生成する際の立体感の根拠となる奥行き情報270を、複数の画素204間の最短経路に沿った重み情報264の累積値から算出される最短経路情報268を利用して生成する。この結果、エッジ262によって結ばれている画素204の集合に関して、この奥行き情報270に連続性を持たせることが可能となる。この奥行き情報270を利用して生成される立体視画像280に対して、自然な奥行き感を付与されることになる。とりわけ、従来のように、前面側の人物と奥側の背景の境界において、奥行き情報が極端に変化することで生じる立体視画像内の断絶(不連続)現象を抑制することが可能となり、看者にとって違和感の少ない立体感を立体視画像280に付与出来る。更に、この断絶現象が抑制されることに伴って、生成後の立体視画像280に対してギャップの発生を抑えることが可能となり、ギャップを埋めるための画像補整(ぼかしや画像変形)も低減され、画像品質の劣化が抑制される。
As described above, according to the stereoscopic image generation system 1 of the present embodiment, the depth information 270 that is the basis of the stereoscopic effect when generating the stereoscopic image 280 is used as the weight information 264 along the shortest path between the plurality of pixels 204. It is generated using the shortest path information 268 calculated from the accumulated value of. As a result, the depth information 270 can be made continuous with respect to the set of pixels 204 connected by the edge 262. A natural depth feeling is given to the stereoscopic image 280 generated using the depth information 270. In particular, it is possible to suppress a discontinuity (discontinuity) phenomenon in a stereoscopic image that occurs due to an extreme change in depth information at the boundary between a person on the front side and a background on the back side. The stereoscopic image 280 can be imparted with a stereoscopic effect with little discomfort for the user. Further, with the suppression of this disconnection phenomenon, it is possible to suppress the occurrence of a gap in the generated stereoscopic image 280, and image correction (blurring and image deformation) for filling the gap is also reduced. Deterioration of image quality is suppressed.
更にこの立体視画像生成システム1では、原画像200における最奥部を示す領域200A、または最前部を示す領域200Bの中からスタート画素266を選択している。このスタート画素266は、他の画素204の最短経路情報268を算出する際の基準点(ゼロ点)となる。このスタート画素266を最奥又は最前の画素204から選択することで、違和感のないデプスマップ260を生成することができる。なお、このスタート画素266の選択は、表示装置(ディスプレイ)22に原画像200を表示させて、立体視画像生成システム1のオペレータに対して最奥又は最前と考えられるスタート画素266の選択を促すようにしても良い。また、立体視画像生成システム1が原画像200を解析することによって、最奥又は最前であろう領域200A、200Bを推測し、その中から自動的にスタート画素266を選択するようにしても良い。
Further, in the stereoscopic image generation system 1, the start pixel 266 is selected from the area 200A indicating the innermost part or the area 200B indicating the foremost part in the original image 200. The start pixel 266 serves as a reference point (zero point) when calculating the shortest path information 268 of the other pixels 204. By selecting the start pixel 266 from the backmost or frontmost pixel 204, it is possible to generate the depth map 260 without any sense of incongruity. The selection of the start pixel 266 causes the display device (display) 22 to display the original image 200 and prompts the operator of the stereoscopic image generation system 1 to select the start pixel 266 considered to be the farthest or foremost. You may do it. In addition, the stereoscopic image generation system 1 may analyze the original image 200 to estimate the regions 200A and 200B that will be the farthest or the foremost, and automatically select the start pixel 266 from the regions 200A and 200B. .
以上の結果、殆ど自動的に全ての奥行き情報270を算出することができるので、立体視画像生成システム1のオペレータの作業負担が大幅に軽減される。なお、従来のシステムでは、立体視画像を確認しながら、想定される代表的なシーン(山岳地帯、海、部屋、街頭など)に対応した複数のテンプレートから最適なテンプレートを選択して、デプスマップ260に補正を加えるような複雑な作業が要求されている。
As a result, since all the depth information 270 can be calculated almost automatically, the work burden on the operator of the stereoscopic image generation system 1 is greatly reduced. In the conventional system, the depth map is selected by selecting an optimal template from a plurality of templates corresponding to assumed typical scenes (mountainous area, sea, room, street, etc.) while checking the stereoscopic image. Complicated work such as adding correction to 260 is required.
なお、本第1実施形態では、スタート画素選択ステップ316において、スタート画素266として1つの画素を選択する場合を例示したが、本発明はこれに限定されない。例えば、図3で例示したように、原画像200中の所定の領域200Cに含まれる複数の画素204を、一つのスタート画素266として選択することもできる。即ち、最短経路手法で考えると、これらの領域に含まれる全画素204のエッジの重み情報と最短経路情報を予めゼロ又は固定値(基準値)に設定することを意味している。このようにすることで、この領域内に映像的なノイズが含まれている場合であっても、ノイズの影響をカットすることが可能となる。また、雲一つ無い晴天の空のように、奥行き感に差を付ける必要が無い領域の計算を省略することができるので、最短経路を算出する情報処理時間を大幅に削減することができる。また、ここではスタート画素266を一定の領域で指定する場合に限って示したが、スタート画素以外の他の画素についても、一定の領域として一体化することが可能である。例えばこの領域設定は、複数の隣接する画素で構成される一定の面積範囲の奥行き情報を共通化しても良いようなシンプルな被写体に好適である。この場合、一体化される領域では、これらの画素群を仮想的に1画素と見なすようにオペレータが領域指示を加える。結果、最短経路を算出する情報処理時間を大幅に削減することができる。
In the first embodiment, the case where one pixel is selected as the start pixel 266 in the start pixel selection step 316 is illustrated, but the present invention is not limited to this. For example, as illustrated in FIG. 3, a plurality of pixels 204 included in a predetermined region 200 </ b> C in the original image 200 can be selected as one start pixel 266. In other words, considering the shortest path method, it means that the edge weight information and the shortest path information of all the pixels 204 included in these areas are set to zero or a fixed value (reference value) in advance. By doing in this way, even if it is a case where the image-like noise is contained in this area | region, it becomes possible to cut the influence of noise. Further, since it is possible to omit the calculation of an area where there is no need to make a difference in the sense of depth, such as a clear sky with no clouds, the information processing time for calculating the shortest path can be greatly reduced. In addition, here, only the case where the start pixel 266 is designated in a certain region is shown, but other pixels other than the start pixel can be integrated as a certain region. For example, this region setting is suitable for a simple subject that may share depth information of a certain area range composed of a plurality of adjacent pixels. In this case, in the area to be integrated, the operator gives an area instruction so that these pixel groups are virtually regarded as one pixel. As a result, the information processing time for calculating the shortest path can be greatly reduced.
本実施形態の立体視画像生成システム1を利用して、静止画となる原画像200を利用して奥行き情報270を算出し、これを実験的に視覚化する目的でデプスマップ260を生成した結果を図7に示す。図7(A)の原画像200は、青空であって両側に木々が並んでいる広場に、女性が立っているシーンとなっている。なお、スタート画素266は、最も奥側となる青空の領域の1つの画素から選択した。図7(B)のデプスマップ260は、奥行き情報270の最小値(スタート画素266の「0」が最小値)が黒色で示されると共に、奥行き情報270の最大値が白で示されるようなグレースケール画像で視覚的に表現した。この立体視画像生成システム1で生成されたデプスマップ260は、遠い青空の周囲は黒色で表現され、両脇に並んでいる木々も、奥側が灰色で、手前側が白色となるように表現されている。また、中央にいる女性も、輪郭部分がグレーで、中心部分が白色に近づくように表現され、女性の立体感を含めて、繊細な奥行き感が表現されていることが分かる。また、本来、大きな距離差を有している青空と女性の頭部の境界であっても、グレースケールに関して極端に大きな差が生じていないことが分かる。結果、従来のように、奥行き情報が極端に変化することで生じる立体視画像内の断絶(不連続)現象も抑制されることが分かる。また、原画像200とデプスマップ260を比較すれば分かるように、グレースケールの濃淡と、実際の遠近感が極めて正確に表現されていることも分かる。
Result of generating depth map 260 for the purpose of calculating depth information 270 using the original image 200 that is a still image using the stereoscopic image generating system 1 of the present embodiment and visualizing this depth information 270 Is shown in FIG. The original image 200 in FIG. 7A is a scene in which a woman stands in a square with a blue sky and trees on both sides. The start pixel 266 was selected from one pixel in the blue sky region which is the innermost side. In the depth map 260 of FIG. 7B, the minimum value of the depth information 270 (“0” of the start pixel 266 is the minimum value) is shown in black, and the maximum value of the depth information 270 is shown in white. It was expressed visually with a scale image. The depth map 260 generated by the stereoscopic image generating system 1 is expressed in black around the distant blue sky, and the trees lined on both sides are expressed in gray on the back side and white on the near side. Yes. Also, it can be seen that the woman in the center is expressed such that the contour portion is gray and the center portion is close to white, and a delicate sense of depth including the three-dimensional effect of the woman is expressed. In addition, it can be seen that an extremely large difference in gray scale does not occur even at the boundary between the blue sky and the female head, which originally has a large distance difference. As a result, it can be seen that the discontinuity (discontinuity) phenomenon in the stereoscopic image caused by the extreme change in the depth information is suppressed as in the conventional case. Further, as can be seen by comparing the original image 200 and the depth map 260, it can also be seen that the gray scale shading and the actual perspective are expressed very accurately.
次に、図8を参照して本発明の第2実施形態に係る立体視画像生成システム401を説明する。なお、第1実施形態の立体視画像生成システムと同一又は類似する部分については、名称及び符号を一致させることでここでの説明を省略し、異なる部分を中心に説明する。
Next, a stereoscopic image generation system 401 according to the second embodiment of the present invention will be described with reference to FIG. In addition, about the part which is the same as or similar to the stereoscopic image generation system of 1st Embodiment, description here is abbreviate | omitted by making a name and code | symbol correspond, and it demonstrates centering on a different part.
この立体視画像生成システム401は、特徴情報取得部140、奥行き情報生成部160、立体視画像生成部180に加えて、領域区分プログラムによって実現される領域区分部110を備えて構成される。
The stereoscopic image generation system 401 is configured to include a region classification unit 110 realized by a region classification program in addition to the feature information acquisition unit 140, the depth information generation unit 160, and the stereoscopic image generation unit 180.
この領域区分部110は、図9に示されるように、原画像200を複数の領域202に区分する。また、奥行き情報生成部160は、特徴情報240に基づいて各画素204に奥行き情報270を、複数の領域202A~202Eごとに個別に生成して、領域202A~202Eに対応した個別デプスマップ265を生成する。また、立体視画像生成部180は、複数の領域202A~202Eごとに生成された複数の個別デプスマップ265A~265Eに基づいて、各画素204の位置を変更した立体視画像280(右眼用画像280Aおよび左眼用画像280B)を生成する。
The area dividing unit 110 divides the original image 200 into a plurality of areas 202 as shown in FIG. In addition, the depth information generation unit 160 generates depth information 270 for each pixel 204 based on the feature information 240 individually for each of the plurality of areas 202A to 202E, and generates an individual depth map 265 corresponding to the areas 202A to 202E. Generate. The stereoscopic image generation unit 180 also changes the position of each pixel 204 based on the plurality of individual depth maps 265A to 265E generated for each of the plurality of regions 202A to 202E (right-eye image). 280A and left-eye image 280B) are generated.
特に本実施形態では、立体視画像生成部180が奥行き情報合成部186を備えるようにする。この奥行き情報合成部186は、奥行き情報生成部160によって領域202A~202E毎に生成される複数の個別デプスマップ265A~265Eを合成して、一つの結合デプスマップ267を生成する。結果、オペレータは、この結合デプスマップ267を利用して全体的な立体感を視覚的に確認することができる。立体視画像生成部180は、この結合デプスマップ267を利用して、右眼用画像280Aおよび左眼用画像280Bを生成することになる。なお、既に説明したように、オペレータが結合デプスマップ267を必要としない場合は、この奥行き情報合成部186を用いなくても良い。即ち、奥行き情報生成部160において領域202A~202E毎に設定される奥行き情報270を、立体視画像生成部180が画素204単位で適用して立体視映像280を生成しても良い。
In particular, in the present embodiment, the stereoscopic image generation unit 180 includes the depth information synthesis unit 186. The depth information combining unit 186 combines a plurality of individual depth maps 265A to 265E generated for each of the areas 202A to 202E by the depth information generating unit 160, thereby generating one combined depth map 267. As a result, the operator can visually check the overall stereoscopic effect using the combined depth map 267. The stereoscopic image generation unit 180 generates the right-eye image 280A and the left-eye image 280B using the combined depth map 267. As already described, when the operator does not need the combined depth map 267, the depth information combining unit 186 may not be used. In other words, the stereoscopic image generation unit 180 may generate the stereoscopic video 280 by applying the depth information 270 set for each of the regions 202A to 202E in the depth information generation unit 160 to the pixel 204 unit.
より具体的に、領域区分部110が複数の領域202A~202Eに原画像200を区分する際、スタート画素選択部166では、複数の領域202A~202Eごとにスタート画素266A~266Eを選択する。結果、経路情報設定部168では、複数の領域266A~266Eごとに最短経路を算出し、この領域202A~202E内の各画素204に対して最短経路情報268を設定する。特にこの第2実施形態では、領域区分部110が、原画像200に含まれる被写体を主要単位として複数の領域202A~202Eに区分している。
More specifically, when the area segmentation unit 110 segments the original image 200 into a plurality of areas 202A to 202E, the start pixel selection unit 166 selects start pixels 266A to 266E for each of the plurality of areas 202A to 202E. As a result, the route information setting unit 168 calculates the shortest route for each of the plurality of regions 266A to 266E, and sets the shortest route information 268 for each pixel 204 in the regions 202A to 202E. In particular, in the second embodiment, the area classification unit 110 divides the subject included in the original image 200 into a plurality of areas 202A to 202E with the main unit as a main unit.
この結果、原画像200に設定された領域202A~202E毎に独立して奥行き情報270を算出できる。例えば、原画像200の中に、立体的な観点で完全に独立した建築物や人物が部分的に存在しており、この建築物や人物とその他の領域の間で明らかに立体的な連続性を確保すべきでない場合、この建築物等を領域202A~202Eで区分することで、奥行き情報270を独自に設定する。結果、領域202A~202E単位で考えると、スタート画素266A~266Eからの最短経路手法によって奥行き情報270が算出されるので、領域202A~202E内では連続的で繊細な奥行き情報270が得られる。
As a result, the depth information 270 can be calculated independently for each of the areas 202A to 202E set in the original image 200. For example, in the original image 200, a partially independent building or person is partially present from a three-dimensional viewpoint, and apparent three-dimensional continuity between the building or person and other regions is present. Is not set, the depth information 270 is uniquely set by dividing the building or the like by the areas 202A to 202E. As a result, when considering the areas 202A to 202E as a unit, the depth information 270 is calculated by the shortest path method from the start pixels 266A to 266E, so that continuous and delicate depth information 270 is obtained in the areas 202A to 202E.
なお、このように領域202A~202E毎にスタート画素266A~266Eを設定する場合、各スタート画素266A~266Eは、最短経路情報268が「ゼロ」となる。従って、これをそのまま奥行き情報270として採用すると、複数の個別デプスマップ265間で相対的な奥行き感がずれてしまう可能性がある。従って、奥行き確定部170では、個別デプスマップ265A~265E毎に、最短経路情報268を全体的に補正してから奥行き情報270を確定することが好ましい。例えば、背景側の第1領域202Aの第1個別デプスマップ265Aと比較して、前面側の第2領域202Bの第2個別デプスマップ265Bの全画素204には、最短経路情報268に対して一定の前側シフト用の補正値を付加してから、これを奥行き情報270とする。このように、個別デプスマップ265A~265E単位で奥行き感を補正することで、領域202A~202E内では繊細且つ滑らかな立体感を出しつつ、複数の個別デプスマップ265A~265E同士では、クッキリとした鮮明な立体感を付与することができる。
When the start pixels 266A to 266E are set for each of the areas 202A to 202E as described above, the shortest path information 268 of each of the start pixels 266A to 266E is “zero”. Therefore, if this is adopted as the depth information 270 as it is, there is a possibility that the relative depth feeling is shifted between the plurality of individual depth maps 265. Accordingly, it is preferable that the depth determining unit 170 determines the depth information 270 after correcting the shortest path information 268 as a whole for each of the individual depth maps 265A to 265E. For example, as compared with the first individual depth map 265A of the first area 202A on the background side, all the pixels 204 of the second individual depth map 265B of the second area 202B on the front side are constant with respect to the shortest path information 268. After adding the correction value for the front side shift, this is used as the depth information 270. As described above, by correcting the sense of depth in units of the individual depth maps 265A to 265E, a delicate and smooth three-dimensional feeling is produced in the regions 202A to 202E, and a plurality of individual depth maps 265A to 265E are clearly defined. A clear stereoscopic effect can be imparted.
なお、本実施形態では、原画像200を複数の領域202A~202Eに区分けし、この領域202A~202Eの範囲内でスタート画素266A~266Eを選択する場合を例示したが、本発明はこれに限定されない。
In this embodiment, the original image 200 is divided into a plurality of regions 202A to 202E, and the start pixels 266A to 266E are selected within the range of the regions 202A to 202E. However, the present invention is not limited to this. Not.
例えば図10に示されるように、スタート画素選択部166では、原画像200を領域に区分するか否かに依存することなく、原画像200の全体からスタート画素266A~266Dを複数選択し、経路情報設定部168では、原画像200の全画素204を対象に、この複数のスタート画素266A~266Dごとに最短経路を算出して、各画素に複数の最短経路情報268A~268Dを設定することができる。
For example, as shown in FIG. 10, the start pixel selection unit 166 selects a plurality of start pixels 266A to 266D from the entire original image 200 without depending on whether or not the original image 200 is divided into regions, and the path The information setting unit 168 calculates the shortest path for each of the plurality of start pixels 266A to 266D for all the pixels 204 of the original image 200, and sets a plurality of shortest path information 268A to 268D for each pixel. it can.
奥行き確定部170では、各画素204に設定される複数の最短経路情報268の中から、いずれか一つの最短経路情報268A~268Dを選択して、奥行き情報270を確定する。また、奥行き確定部170は、各画素204に設定される複数の最短経路情報268A~268Dを利用して奥行き情報270を確定することもできる。この複数の最短経路情報268A~268Dから一つの最短経路情報を選択したり、複数の最短経路情報268A~268Dを利用したりする判断は、原画像200の全体で行っても良く、また画素204単位で行っても良い。画素204を複数の領域に区分する場合は、その領域単位で行うことも望ましい。
The depth determination unit 170 selects any one of the shortest path information 268A to 268D from the plurality of shortest path information 268 set for each pixel 204, and determines the depth information 270. In addition, the depth determining unit 170 can determine the depth information 270 using a plurality of shortest path information 268A to 268D set for each pixel 204. The determination of selecting one shortest path information from the plurality of shortest path information 268A to 268D or using the plurality of shortest path information 268A to 268D may be performed on the entire original image 200, or the pixel 204 It may be done in units. In the case where the pixel 204 is divided into a plurality of regions, it is also preferable to perform the processing in units of the regions.
この手法を図11を参照して別の観点から説明する。奥行き情報生成部160は、各スタート画素266A~266Dに対応した仮デプスマップ263A~263Dを複数生成する。そして、奥行き確定部170は、スタート画素266単位で複数生成された仮デプスマップ263A~263Dの中からどれか一つを用いるか、又は、仮デプスマップ263A~263Dからいずれか複数を重ねて用いるかを判定する。この際、原画像200を複数の領域202A~202Dに区分している場合は、この領域202A~202D単位で判断すれば、領域202A~202Dに対応した個別デプスマップ265A~265Dが生成される。この個別デプスマップ265A~265Dを合成して結合デプスマップ267を得る。
This method will be described from another viewpoint with reference to FIG. The depth information generation unit 160 generates a plurality of temporary depth maps 263A to 263D corresponding to the start pixels 266A to 266D. The depth determination unit 170 uses one of the plurality of temporary depth maps 263A to 263D generated in units of the start pixel 266, or overlaps any one of the temporary depth maps 263A to 263D. It is determined whether or not. At this time, if the original image 200 is divided into a plurality of areas 202A to 202D, individual depth maps 265A to 265D corresponding to the areas 202A to 202D are generated if the determination is made in units of the areas 202A to 202D. The individual depth maps 265A to 265D are combined to obtain a combined depth map 267.
以上のようにすると、奥行き情報270を確定する際の選択肢を増やすことができる。この選択肢とは、本実施形態ではスタート画素266A~266Dを意味している。特にここでは、領域202A~202Dの範囲の外側を含めた広範囲からスタート画素266A~266Dを選択している。例えば、原画像200の左側に位置する第1領域202Aでは、原画像200の右側端のスタート画素266Aを基準に算出した最短経路情報268A(仮デプスマップ263A)を適用できる。原画像200の右側に位置する第2領域202Bでは、原画像200の左側端のスタート画素266Bを基準に算出した最短経路情報268B(仮デプスマップ263B)を適用できる。また例えば、原画像200の手前側に位置する第3領域202Cでは、原画像200の奥側のスタート画素266Cを基準に算出した最短経路情報268C(仮デプスマップ263C)を適用できる。更に、原画像200の奥側に位置する第4領域202Dでは、原画像200の手前側のスタート画素266Dを基準に算出した最短経路情報268D(仮デプスマップ263D)を適用できる。
As described above, the options for determining the depth information 270 can be increased. This option means the start pixels 266A to 266D in this embodiment. In particular, here, the start pixels 266A to 266D are selected from a wide range including outside the range of the regions 202A to 202D. For example, in the first region 202A located on the left side of the original image 200, the shortest path information 268A (provisional depth map 263A) calculated based on the start pixel 266A at the right end of the original image 200 can be applied. In the second region 202B located on the right side of the original image 200, the shortest path information 268B (provisional depth map 263B) calculated based on the start pixel 266B at the left end of the original image 200 can be applied. Further, for example, in the third region 202C located on the near side of the original image 200, the shortest path information 268C (temporary depth map 263C) calculated based on the start pixel 266C on the back side of the original image 200 can be applied. Further, in the fourth region 202D located on the back side of the original image 200, the shortest path information 268D (temporary depth map 263D) calculated based on the start pixel 266D on the near side of the original image 200 can be applied.
既に説明したように、例えば、これらの最短経路情報268A~268D(仮デプスマップ263A~263D)から複数を選択し、これらを利用して、奥行き情報270(結合デプスマップ267)を確定することも好ましい。このようにすると、最短経路情報268A~268D(仮デプスマップ263A~263D)の各々では、正確な奥行き情報が得られないエラー部分を含有していても、他の最短経路情報268A~268D(仮デプスマップ263A~263D)で正確な奥行き情報が得られていれば、一緒に利用することで、そのエラー部分を自動的に補うことが可能となり、より一層滑らかな奥行き情報270(結合デプスマップ267)を得ることが可能となる。なお、複数の最短経路情報268A~268Dを利用して奥行き情報270を確定する際は、これらの総和や平均値など、各種計算手法を適用することができる。
As already described, for example, a plurality of the shortest path information 268A to 268D (temporary depth maps 263A to 263D) are selected, and the depth information 270 (joint depth map 267) can be determined using these. preferable. In this way, each of the shortest path information 268A to 268D (provisional depth maps 263A to 263D) includes other shortest path information 268A to 268D (provisional) even if it contains an error portion for which accurate depth information cannot be obtained. If accurate depth information is obtained in the depth maps 263A to 263D), the error information can be automatically compensated for by using together, and smoother depth information 270 (joint depth map 267) can be obtained. ) Can be obtained. When the depth information 270 is determined using a plurality of shortest path information 268A to 268D, various calculation methods such as a sum total and an average value thereof can be applied.
以上の第2実施形態では、個別デプスマップ265を合成して結合デプスマップ267を生成してから、立体視画像280(右眼用画像280Aおよび左眼用画像280B)を生成する場合を例示したが、本発明はこれに限定されない。例えば図12及び図13に示される立体視画像生成システム501のように、立体視画像生成部180は、個別画像生成部182と立体視画像合成部184を備えるようにする。この個別画像生成部182は、個別デプスマップ265A~265Dに基づいて、画素の位置を変更した個別立体視画像282A~282D(右眼用個別画像および左眼用個別画像)を領域202A~202D毎に生成する。個別立体視画像282A~282Dの生成を、全ての原画像200(動画における全フレーム)に適用していくことで、個別立体視画像282A~282Dの完成具合をオペレータが領域202A~202D単位で確認する。その後、立体視画像合成部184は、これら個別立体視画像282A~282Dを合成して立体視画像280(右眼用画像280A及び左眼用画像280B)を生成する。
In the second embodiment described above, a case where the combined depth map 267 is generated by combining the individual depth maps 265 and then the stereoscopic image 280 (the right-eye image 280A and the left-eye image 280B) is generated is illustrated. However, the present invention is not limited to this. For example, like the stereoscopic image generation system 501 shown in FIGS. 12 and 13, the stereoscopic image generation unit 180 includes an individual image generation unit 182 and a stereoscopic image synthesis unit 184. The individual image generation unit 182 generates individual stereoscopic images 282A to 282D (right-eye individual images and left-eye individual images) in which the pixel positions are changed based on the individual depth maps 265A to 265D for each of the regions 202A to 202D. To generate. By applying the generation of the individual stereoscopic images 282A to 282D to all the original images 200 (all frames in the moving image), the operator confirms the completion of the individual stereoscopic images 282A to 282D in units of the areas 202A to 202D. To do. Thereafter, the stereoscopic image combining unit 184 combines the individual stereoscopic images 282A to 282D to generate a stereoscopic image 280 (right eye image 280A and left eye image 280B).
立体視画像生成システム501による個別立体視画像282A~282Dの生成時間は、全体の立体視画像280を生成する時間と比較して大幅に短縮できる。従って、オペレータは、領域202A~202D単位で立体感を効率的に確認しながら作業を進めることができる。即ち、領域202A~202D単位で立体感を詳細に調整・確認して個別立体視画像282A~282Dの完成度を高めてから、この個別立体視画像282A~282Dを合成して、最終的な立体視画像280(右眼用画像280A、左眼用画像280B)を生成するので、より違和感の少ない立体視画像280を得ることが出来る。
The generation time of the individual stereoscopic images 282A to 282D by the stereoscopic image generation system 501 can be significantly shortened compared to the time for generating the entire stereoscopic image 280. Therefore, the operator can proceed with the work while efficiently checking the stereoscopic effect in units of the areas 202A to 202D. That is, after adjusting and confirming the stereoscopic effect in units of the areas 202A to 202D in detail to enhance the completeness of the individual stereoscopic images 282A to 282D, the individual stereoscopic images 282A to 282D are synthesized to obtain the final stereoscopic image. Since the visual image 280 (the right-eye image 280A and the left-eye image 280B) is generated, the stereoscopic image 280 with less discomfort can be obtained.
以上、この第2実施形態によれば、奥行き感を算出する基準値となるスタート画素266を複数選択しているので、これらを自由に組み合わせて用いることにより、原画像200のシーンに合わせてより柔軟に奥行き情報270を確定することが可能となる。特に、原画像200を複数の領域202A~202Dに区分した上で、各領域202A~202Dにとって最適なスタート画素266A~266Dを選択しているので、より自然な立体感を演出することが可能となる。
As described above, according to the second embodiment, since a plurality of start pixels 266 that are reference values for calculating a sense of depth are selected, these can be used in any combination so that they can be used in accordance with the scene of the original image 200. The depth information 270 can be determined flexibly. In particular, since the original image 200 is divided into a plurality of areas 202A to 202D and the optimum start pixels 266A to 266D are selected for the areas 202A to 202D, it is possible to produce a more natural stereoscopic effect. Become.
なお、上記実施形態では、経路情報設定ステップ318において、スタート画素266から各画素204までの経路上の重み情報264の累積値が最小となるような最短経路を算出する場合を例示したが、本発明はこれに限定されない。例えば、プリム法などを利用して、全画素204を含む辺の部分集合で構成される経路のうち、その辺の集合の重みの総和が最小となるような経路を求めるようにしてもよい。即ち、本発明では、画素間の各種経路を利用して何らかの重み値を特定できれば、そのアルゴリズムの種類は問わない。
In the above-described embodiment, the case where the shortest path in which the cumulative value of the weight information 264 on the path from the start pixel 266 to each pixel 204 is minimized is illustrated in the path information setting step 318. The invention is not limited to this. For example, by using a prim method or the like, a route that has a minimum sum of weights of a set of sides may be obtained from routes constituted by a subset of sides including all pixels 204. In other words, in the present invention, any algorithm can be used as long as any weight value can be specified using various paths between pixels.
また上記実施形態では、右眼用画像と左眼用画像の2眼視差式の立体視画像を生成する場合に限って例示したが、本発明はこれに限定されない。例えば、この奥行き情報を利用して多眼式の立体視映像を生成するようにしても良く、更には、多眼視差式の立体視映像を生成することも可能である。即ち、本発明では、奥行き情報を利用した立体視映像であれば、その種類は問わない。
In the above embodiment, the binocular parallax stereoscopic image of the right eye image and the left eye image is exemplified, but the present invention is not limited to this. For example, this depth information may be used to generate a multi-view stereoscopic image, and it is also possible to generate a multi-view parallax stereoscopic image. That is, in the present invention, any type of stereoscopic video using depth information may be used.
本発明の立体視画像生成方法および立体視画像生成システムは、映画やテレビ番組等の製作の分野以外にも、通常画像を立体視画像に変換して表示するテレビやゲーム機等の各種機器の分野において利用することができる。
The stereoscopic image generation method and the stereoscopic image generation system of the present invention can be applied to various devices such as a television and a game machine that convert a normal image into a stereoscopic image and display it in addition to the field of production of movies and television programs. Can be used in the field.
Claims (8)
- 原画像を構成する各画素の特徴情報を取得する特徴情報取得ステップと、
前記特徴情報に基づいて前記各画素に奥行き情報を生成する奥行き情報生成ステップと、
前記奥行き情報に基づいて前記各画素の位置を変更した立体視画像を生成する立体視画像生成ステップと、を有し、
前記奥行き情報生成ステップは、
前記原画像から抽出された一対の前記画素の間にエッジを設定するエッジ設定ステップと、
前記特徴情報に基づいて前記エッジに重み情報を設定する重み情報設定ステップと、
前記各画素の中からスタート画素を選択するスタート画素選択ステップと、
前記スタート画素から前記各画素までの前記重み情報についての経路を算出し、前記各画素に経路情報を設定する経路情報設定ステップと、
前記経路情報に基づいて前記各画素に前記奥行き情報を設定する奥行き確定ステップと、を有することを特徴とする、
立体視画像生成方法。 A feature information acquisition step of acquiring feature information of each pixel constituting the original image;
A depth information generating step for generating depth information for each pixel based on the feature information;
A stereoscopic image generation step of generating a stereoscopic image in which the position of each pixel is changed based on the depth information,
The depth information generation step includes:
An edge setting step for setting an edge between a pair of the pixels extracted from the original image;
A weight information setting step for setting weight information for the edge based on the feature information;
A start pixel selection step of selecting a start pixel from the pixels;
A path information setting step for calculating a path for the weight information from the start pixel to each pixel and setting path information for each pixel;
A depth determination step for setting the depth information for each pixel based on the path information.
Stereoscopic image generation method. - 前記スタート画素選択ステップでは、前記原画像における最奥部を示す領域、または最前部を示す領域に含まれる前記画素を前記スタート画素に選択することを特徴とする、
請求の範囲1に記載の立体視画像生成方法。 In the start pixel selecting step, the pixel included in the region indicating the innermost part or the region indicating the frontmost part in the original image is selected as the start pixel.
The stereoscopic image generation method according to claim 1. - 前記スタート画素選択ステップでは、前記スタート画素を複数選択することを特徴とする、
請求の範囲1または2に記載の立体視画像生成方法。 In the start pixel selection step, a plurality of the start pixels are selected.
The stereoscopic image generation method according to claim 1 or 2. - 前記経路情報設定ステップでは、前記複数のスタート画素ごとに前記経路を算出して前記各画素に複数の前記経路情報を設定し、
前記奥行き確定ステップでは、前記各画素に設定された前記複数の経路情報の中から1つを選択するか、又は、前記複数の経路情報を合成するかによって、前記複数の経路情報に基づいて前記奥行き情報を設定することを特徴とする、
請求の範囲3に記載の立体視画像生成方法。 In the path information setting step, the path is calculated for each of the plurality of start pixels, and a plurality of path information is set for each pixel.
In the depth determination step, based on the plurality of route information, depending on whether one of the plurality of route information set for each pixel is selected or the plurality of route information is combined. It is characterized by setting depth information.
The stereoscopic image generation method according to claim 3. - 前記スタート画素選択ステップでは、前記原画像中の所定の領域に含まれる複数の前記画素をまとめて一つの前記スタート画素に選択することを特徴とする、
請求の範囲1乃至4のいずれかに記載の立体視画像生成方法。 In the start pixel selection step, the plurality of pixels included in a predetermined region in the original image are collectively selected as one start pixel,
The stereoscopic image generation method according to any one of claims 1 to 4. - 前記原画像を複数の領域に区分する領域区分ステップをさらに備え、
前記スタート画素選択ステップでは、前記複数の領域ごとに前記スタート画素を選択し、
前記経路情報設定ステップでは、前記複数の領域ごとに前記経路を算出し、前記各画素に前記経路情報を設定することを特徴とする、
請求の範囲1乃至5のいずれかに記載の立体視画像生成方法。 A region dividing step of dividing the original image into a plurality of regions;
In the start pixel selection step, the start pixel is selected for each of the plurality of regions,
In the route information setting step, the route is calculated for each of the plurality of regions, and the route information is set in each pixel,
The stereoscopic image generation method according to any one of claims 1 to 5. - 前記領域区分ステップでは、前記原画像に含まれる被写体ごとに前記原画像を前記複数の領域に区分することを特徴とする、
請求の範囲6に記載の立体視画像生成方法。 In the area dividing step, the original image is divided into the plurality of areas for each subject included in the original image,
The stereoscopic image generation method according to claim 6. - 電子計算機によって構成され、
原画像を構成する各画素の特徴情報を取得する特徴情報取得手段と、
前記特徴情報に基づいて前記各画素に奥行き情報を生成する奥行き情報生成手段と、
前記奥行き情報に基づいて前記各画素の位置を変更した立体視画像を生成する立体視画像生成手段と、を有し、
前記奥行き情報生成手段は、
前記原画像から抽出された一対の前記画素の間にエッジを設定するエッジ設定手段と、
前記特徴情報に基づいて前記エッジに重み情報を設定する重み情報設定手段と、
前記各画素の中からスタート画素を選択するスタート画素選択手段と、
前記スタート画素から前記各画素までの前記重み情報についての経路を算出し、前記各画素に経路情報を設定する経路情報設定手段と、
前記経路情報に基づいて前記各画素に前記奥行き情報を設定する奥行き確定手段と、を有することを特徴とする、
立体視画像生成システム。 Composed by an electronic computer,
Feature information acquisition means for acquiring feature information of each pixel constituting the original image;
Depth information generating means for generating depth information for each pixel based on the feature information;
Stereoscopic image generation means for generating a stereoscopic image in which the position of each pixel is changed based on the depth information;
The depth information generating means includes
Edge setting means for setting an edge between a pair of the pixels extracted from the original image;
Weight information setting means for setting weight information for the edge based on the feature information;
Start pixel selection means for selecting a start pixel from the pixels;
Path information setting means for calculating a path for the weight information from the start pixel to each pixel, and setting path information for each pixel;
Depth determining means for setting the depth information for each pixel based on the path information,
Stereoscopic image generation system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/065143 WO2013186881A1 (en) | 2012-06-13 | 2012-06-13 | 3d-image generation method and 3d-image generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/065143 WO2013186881A1 (en) | 2012-06-13 | 2012-06-13 | 3d-image generation method and 3d-image generation system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013186881A1 true WO2013186881A1 (en) | 2013-12-19 |
Family
ID=49757743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/065143 WO2013186881A1 (en) | 2012-06-13 | 2012-06-13 | 3d-image generation method and 3d-image generation system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013186881A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1198531A (en) * | 1997-09-24 | 1999-04-09 | Sanyo Electric Co Ltd | Device for converting two-dimensional image into three-dimensional image and its method |
JP2000253422A (en) * | 1999-03-03 | 2000-09-14 | Toshiba Corp | Method for generating three-dimensionall image from two-dimensional image |
JP2000261828A (en) * | 1999-03-04 | 2000-09-22 | Toshiba Corp | Stereoscopic video image generating method |
JP2001359119A (en) * | 2000-06-15 | 2001-12-26 | Toshiba Corp | Stereoscopic video image generating method |
JP2010093816A (en) * | 2008-10-09 | 2010-04-22 | Samsung Electronics Co Ltd | Apparatus and method for converting 2d image to 3d image based on visual attention |
JP2011223284A (en) * | 2010-04-09 | 2011-11-04 | Victor Co Of Japan Ltd | Pseudo-stereoscopic image generation device and camera |
JP2012015744A (en) * | 2010-06-30 | 2012-01-19 | Toshiba Corp | Depth signal generation device and method |
JP2012060246A (en) * | 2010-09-06 | 2012-03-22 | Seiko Epson Corp | Image processor and integrated circuit device |
-
2012
- 2012-06-13 WO PCT/JP2012/065143 patent/WO2013186881A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1198531A (en) * | 1997-09-24 | 1999-04-09 | Sanyo Electric Co Ltd | Device for converting two-dimensional image into three-dimensional image and its method |
JP2000253422A (en) * | 1999-03-03 | 2000-09-14 | Toshiba Corp | Method for generating three-dimensionall image from two-dimensional image |
JP2000261828A (en) * | 1999-03-04 | 2000-09-22 | Toshiba Corp | Stereoscopic video image generating method |
JP2001359119A (en) * | 2000-06-15 | 2001-12-26 | Toshiba Corp | Stereoscopic video image generating method |
JP2010093816A (en) * | 2008-10-09 | 2010-04-22 | Samsung Electronics Co Ltd | Apparatus and method for converting 2d image to 3d image based on visual attention |
JP2011223284A (en) * | 2010-04-09 | 2011-11-04 | Victor Co Of Japan Ltd | Pseudo-stereoscopic image generation device and camera |
JP2012015744A (en) * | 2010-06-30 | 2012-01-19 | Toshiba Corp | Depth signal generation device and method |
JP2012060246A (en) * | 2010-09-06 | 2012-03-22 | Seiko Epson Corp | Image processor and integrated circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5291755B2 (en) | Stereoscopic image generation method and stereoscopic image generation system | |
US10148930B2 (en) | Multi view synthesis method and display devices with spatial and inter-view consistency | |
ES2676055T3 (en) | Effective image receiver for multiple views | |
JP6021541B2 (en) | Image processing apparatus and method | |
JP5414947B2 (en) | Stereo camera | |
JP5320524B1 (en) | Stereo camera | |
US20140111627A1 (en) | Multi-viewpoint image generation device and multi-viewpoint image generation method | |
US20130069942A1 (en) | Method and device for converting three-dimensional image using depth map information | |
KR20110124473A (en) | 3-dimensional image generation apparatus and method for multi-view image | |
US11785197B2 (en) | Viewer-adjusted stereoscopic image display | |
US9596445B2 (en) | Different-view image generating apparatus and different-view image generating method | |
WO2011078065A1 (en) | Device, method and program for image processing | |
WO2012147329A1 (en) | Stereoscopic intensity adjustment device, stereoscopic intensity adjustment method, program, integrated circuit, and recording medium | |
JP6033625B2 (en) | Multi-viewpoint image generation device, image generation method, display device, program, and recording medium | |
US9258546B2 (en) | Three-dimensional imaging system and image reproducing method thereof | |
JP5355616B2 (en) | Stereoscopic image generation method and stereoscopic image generation system | |
CN105282534B (en) | For being embedded in the system and method for stereo-picture | |
WO2013186881A1 (en) | 3d-image generation method and 3d-image generation system | |
WO2013186882A1 (en) | 3d-image generation method, and 3d-image generation system | |
CN111684517B (en) | Viewer adjusted stereoscopic image display | |
JP2012060346A (en) | Stereoscopic image photographing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12878920 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12878920 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |