WO2013186678A1 - Alimentation photovoltaique transcutanee d'un dispositif electronique ou electrique implante - Google Patents

Alimentation photovoltaique transcutanee d'un dispositif electronique ou electrique implante Download PDF

Info

Publication number
WO2013186678A1
WO2013186678A1 PCT/IB2013/054685 IB2013054685W WO2013186678A1 WO 2013186678 A1 WO2013186678 A1 WO 2013186678A1 IB 2013054685 W IB2013054685 W IB 2013054685W WO 2013186678 A1 WO2013186678 A1 WO 2013186678A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic converter
light
light sources
electrical
lighting device
Prior art date
Application number
PCT/IB2013/054685
Other languages
English (en)
Inventor
Nicolas Karst
Simon Perraud
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP13744810.6A priority Critical patent/EP2858717B1/fr
Publication of WO2013186678A1 publication Critical patent/WO2013186678A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/076Permanent implantations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • A61B2560/0219Operational features of power management of power generation or supply of externally powered implanted units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37217Means for communicating with stimulators characterised by the communication link, e.g. acoustic or tactile

Definitions

  • the invention relates to a system consisting of an implanted electronic or electrical device - in particular of the electromedical type - comprising a photovoltaic converter, and by a device making it possible to supply it or recharge it in a non-intrusive manner, by transcutaneous illumination of said converter.
  • implantable wireless medical devices such as pacemakers, neural stimulators, and sensors for in vivo biomedical detection and control.
  • These systems may allow for example an early diagnosis of certain diseases or to precisely control in real time the blood sugar or oxygen present in the blood.
  • an internal power supply generally provided by a battery or a super-capacitor.
  • the batteries whose power densities are relatively high (up to 300Wh / liter), can supply small systems over a period of a few days to a few years depending on the power required.
  • US 6,400,991 discloses a system using a plurality of external primary coils to inductively transfer electromagnetic energy to an implanted secondary coil.
  • a control device makes it possible to identify the primary coil or coils which are the most close to the secondary coil by analyzing the offset of their resonant frequency, and then selectively direct the electric current through these primary coils.
  • the power of the primary coils requires significant energy, hardly compatible with a portable system.
  • energy transfer by electromagnetic induction can cause Joule heating problems of the implanted device, as well as electromagnetic interference problems.
  • US 8,082,041 discloses a power transmission system based on an external piezoelectric transducer, generating ultrasound, and an implanted piezoelectric receiver, converting these ultrasound into electrical energy.
  • Such a system can only function effectively if the transducer and the receiver are precisely aligned. For this reason, four ultrasonic sensors are arranged on the perimeter of the implanted receiver, arranged in a square. These sensors pick up the acoustic wave transmitted by the external transducer; when the signal received by the sensors is balanced, the alignment of the transducer and receiver is optimal.
  • This system has the disadvantage of being relatively complex; in addition, the alignment procedure can be long and tedious.
  • the article by K. Murakawa et al. "A wireless near-infrared energy System for medical implants", IEEE Engineering Medicine Biology 18, 70 (1999) proposes to use a laser emitting in the near infrared, coupled to a photovoltaic converter or generator to supply a battery.
  • the photovoltaic converter is implanted under the skin of a patient and illuminated by the laser, located outside the body of the patient, when the battery must be recharged.
  • the laser is perfectly aligned with the converter. This is all the more important that, to reach sufficiently high voltages to power an electromedical device (of the order of 3 V), the converter must most often include several photovoltaic cells elementary connected in series (typically from 5 to 10).
  • it is sufficient that a single cell is poorly lit due to an imperfect alignment with the laser so that the electrical power generated by the photovoltaic converter falls sharply.
  • US 6,091,015 proposes to bring the light to the photovoltaic converter via an implanted biocompatible optical fiber.
  • a solution can not be described as “non-intrusive”; in practice, bringing light to the interior of the body via an optical fiber does not bring any advantages compared to bringing electricity directly via wires. biocompatible.
  • the invention aims to overcome the aforementioned drawbacks of the prior art. More specifically, the invention aims to allow the direct or indirect supply (that is to say via a battery, which is recharged) of an electronic or electrical device implanted by a non-intrusive method, simple to implement, not requiring tedious alignment procedures and, preferably, using a portable external power supply apparatus.
  • An object of the invention to achieve this goal is a system comprising:
  • an electronic or electrical device implantable in a human or animal body, comprising a photovoltaic converter for providing its power supply;
  • a lighting device intended to be disposed outside said human or animal body, for performing transcutaneous illumination of said photovoltaic converter
  • a transmitter for transmitting a signal representative of said electrical power; and in that said lighting device comprises:
  • a receiver for receiving said signal representative of the electrical power generated by said photovoltaic converter
  • a controller for calculating, from said signal, an energy transfer efficiency between said lighting device and said photovoltaic converter, and for modifying the spatial distribution of the illumination from said light sources so as to maximize said efficiency or to ensure it is greater than a predetermined threshold.
  • the controller may also be configured or programmed to adjust the light output from each lit light source to maximize said energy transfer efficiency or to ensure that it is greater than a predetermined threshold.
  • Said emitter may be constituted by said photovoltaic converter.
  • the transmitter may include means for modulating incident light radiation on said implantable electronic or electrical device and redirecting it to said illumination device.
  • the surface on which these light sources are actually arranged may have an area greater than that of the photosensitive surface of said photovoltaic converter.
  • - Said light sources may have a multidirectional light emission.
  • Said lighting device may comprise a transparent film covering said light sources, the optical index of said film being chosen so as to perform index matching with the skin of said human or animal body.
  • said transparent film may be covered with a transparent gel layer, the optical index of said gel being chosen from in order to perform an adaptation of index with the skin of said human or animal body.
  • Said lighting device may comprise a flexible and conformable support ("a patch").
  • a patch the face of said flexible and conformable support carrying said light sources may be covered with a layer of transparent adhesive allowing its attachment to the skin of said human or animal body, the optical index of said layer of glue being chosen so as to performing index matching with said skin.
  • Said support may be transparent or semi-transparent on at least part of its surface.
  • Said or each said light source may be semi-transparent.
  • Said or each said light source may be a light emitting diode.
  • Said lighting device may be adapted to emit light radiation in the spectral range from 300 to 1900 nm and preferably in the spectral range from 750 to 1200 nm.
  • Said implantable electronic or electrical device may comprise an element for storing the electrical energy generated by said photovoltaic converter.
  • Said photovoltaic converter may consist of a plurality of photovoltaic cells interconnected electrically in series.
  • the illumination device may comprise a light intensity modulator emitted by said light sources, for transmitting information to said implantable electronic or electrical device, and said implantable electronic or electrical device may comprise a receiver to detect variations in the current or voltage generated by said photovoltaic converter and extract said information.
  • FIG. 1 a lighting device according to one embodiment of the invention
  • FIG. 2 an overview of a system according to one embodiment of the invention.
  • Figure 3 a graph illustrating the dependence of the optical transmission of porcine skin as a function of the wavelength
  • FIG. 4 a block diagram of the operation of a system according to one embodiment of the invention.
  • FIG. 5 the use of marks tattooed on the patient's skin to perform an approximate alignment between the lighting device and the photovoltaic converter implanted in a system according to one embodiment of the invention.
  • FIG. 6 a lighting device according to another embodiment of the invention.
  • FIG. 1 shows a lighting device 1 constituted by a flexible support 11, one of whose faces (or main surfaces) carries a plurality of light-emitting diodes (LEDs).
  • the LEDs are powered by a battery located on the face opposite of the element, or by an external power supply via electrical son passing through the element and out of the same opposite face.
  • the support 11 constitutes a flexible patch, made of a flexible material such as a polymer (for example: polyethylene, polypropylene, polyethylene terephthalate, polytetrafluoroethylene), or even a metal (for example: aluminum, titanium, steel) provided that its thickness be sufficiently weak.
  • a polymer for example: polyethylene, polypropylene, polyethylene terephthalate, polytetrafluoroethylene
  • a metal for example: aluminum, titanium, steel
  • the face of the element 11 carrying the LEDs 12 - or more precisely the portion of this face on which the LEDs are actually arranged preferably has an upper area (preferably at least 10% and up to a factor of 10) greater than that of the implanted photovoltaic converter; this makes it possible to obtain satisfactory illumination of the photovoltaic converter even if the emitting and photosensitive surfaces are not perfectly aligned.
  • a converter implanted in the forearm of a patient may have a photosensitive surface area of between 1 mm 2 and 50 cm 2 , and the light emitting surface of the element 11 may then have an area between 1 cm 2 and 100 cm 2 .
  • the light emitting surfaces of the various LEDs 12 may be separated by a distance s.
  • s be less than or of the order of 2c tana, where d is the distance between the light emitting surface and the photosensitive surface of the photovoltaic converter (which depends in particular on the depth of implantation of this last), and where a is the angle at which the luminous intensity emitted by an LED is divided by 2 relative to the normal to the support 11.
  • the light sources have a multidirectional light emission, preferably with 10 ° ⁇ a ⁇ 30 °. This condition is generally satisfied by LEDs.
  • the LEDs 12 emit in the near infrared (750-1200 nm) because of the high transparency of the biological tissues at these wavelengths (see FIG. 3: transmission of light through a pig's skin 1.5 mm thick). It may be for example LEDs based on gallium arsenide (GaAs). More generally, the emission can be in a spectral range from near infrared to near ultraviolet (300 - 1900 nm).
  • FIG. 2 shows an overview of a system according to one embodiment of the invention.
  • the reference 2 indicates the electronic or electrical device implanted in its entirety.
  • Element 21 (which is not part of the system) is a biological tissue - typically the skin - which is crossed by the light radiation generated by the LEDs 12 carried by the patch 11. The thickness of this biological tissue depends on the implementation of the photovoltaic converter, between a few micrometers and a few centimeters.
  • the element 23 corresponds to the photovoltaic converter implanted under the biological tissue 21, forming part of the device 2.
  • the photovoltaic converter 23 may for example be based on absorbing materials in thin layers, such as Cu (lni x, Gax) ( Si ( Sy) 2 (CIGS), Cu 2 ZnSn (Se 1 -y , Sy) 4 (CZTS), amorphous silicon, or microcrystalline silicon; these thin layers are deposited on a substrate such as a glass plate, a sheet of steel or titanium, or a polyimide sheet.
  • the photovoltaic converter 23 may also be based on massive absorber materials, such as silicon, gallium arsenide (GaAs) or indium phosphide (InP). The choice of the absorber material depends in part on the emission spectral range of the LEDs 12.
  • the external quantum efficiency of the photovoltaic converter 23 must be high (preferably greater than 50%) in the emission spectral range of the LEDs. 12.
  • the LEDs 12 are gallium arsenide-based LEDs emitting at about 850-950 nm, then a particularly efficient absorber material is CulnSe 2 or Cu (lnoj, Gao.3) Se 2 .
  • the photovoltaic converter 23 (and the rest of the device 2 which it provides power) is encapsulated by a biocompatible layer and transparent wavelengths used for lighting, for example parylene.
  • a photovoltaic converter composed of 6 photovoltaic cells connected in series, having a photosensitive surface of approximately 1 cm 2 and producing a voltage 3 V and a current of 5 ⁇ under lighting received by the photovoltaic converter of about 1 mW / cm 2 .
  • a micro-battery 25 of a voltage of 3 V also part of the device 2, can act as a buffer between the biomedical sensor and the photovoltaic converter, thus making it possible not to use the LEDs permanently, but only to charge the micro-battery ("power supply indirect ").
  • a sensor consuming 10 pW can have a battery life of 500 hours.
  • the patient is obliged to recharge his implant every 3 weeks or so.
  • the LEDs 12 can be turned on or off individually, and their light emission power can be set independently. Thus, it is possible to select a subset of LEDs to turn on and adjust their brightness to maximize energy transfer efficiency, i.e. the ratio ⁇ between the electrical power generated by the photovoltaic converter and the power electrical supplying the LEDs.
  • the optimization of the energy transfer efficiency is obtained by modifying the spatial distribution of the lighting coming from the light sources.
  • this optimization can be carried out automatically using a control loop illustrated schematically in FIG. 4.
  • the block 42 corresponds to an assembly consisting of an instrument for measuring the electrical power generated by said photovoltaic converter (for example, an electronic circuit for measuring the voltage and current), integrated in the implanted device and by a transmitter (for example radiofrequency or infrared) transmitting a signal - analog or, preferably, digital - representative of the measured electrical power.
  • the block 41 comprises a receiver for said signal and a controller (for example, a microprocessor programmed in a timely manner) receiving the signal input and controlling the ignition and the power supply of the LEDs in order to maximize the report ⁇ - or to ensure that this ratio takes a value greater than or equal to a predefined threshold.
  • the transmitter 42 is an infrared transmitter
  • several embodiments can be envisaged.
  • the emitter 42 may consist of a light-emitting diode, for example based on gallium arsenide.
  • the transmitter 42 may be constituted by the photovoltaic converter itself; in fact, a photovoltaic cell and a light emitting diode have the same basic architecture, namely a junction between a p-type semiconductor material and an n-type semiconductor material.
  • CIGS based photovoltaic cells are capable of emitting light in the near infrared when electrically excited.
  • the transmitter 42 may be constituted by a system performing the following operations:
  • Such a system may consist of an electro-optical waveguide modulator (for example based on silicon, gallium arsenide, or LiNb0 3 ) and two diffraction gratings defined on the same surface as the waveguide guide. wave.
  • the first diffraction grating makes it possible to inject part of the incident light flux into the waveguide; the electro-optical waveguide modulator then makes it possible to modulate the luminous flux flowing in the waveguide; the second diffraction grating finally makes it possible to extract the luminous flux from the waveguide to reemit it towards the receiver 41.
  • An example of a communication procedure between the implanted transmitter 42 and the reception and control block 41 of the lighting device is as follows.
  • the patch must be approximately aligned with the photovoltaic converter (pre-alignment) so that a minimum of light power can reach the photovoltaic converter.
  • pre-alignment the photovoltaic converter
  • the controller determines the initial value of the ratio ⁇ , which value must be greater than a pre-recorded value testifying to an acceptable pre-alignment. If the value of ⁇ determined by the controller is less than a prerecorded value, a sound signal may be emitted by the reception and control block 41 to inform the patient that the pre-alignment step must be renewed. If the value of ⁇ determined by the controller is greater than a prerecorded value, the latter controls the extinction of a first LED located for example at one end.
  • the controller After the extinction of the first LED it again determines the ratio ⁇ to verify if it is different from the initial value. If it is strictly less than the initial value or a prerecorded value, then the controller commands to turn this LED back on. If on the contrary it is greater than or equal to the initial value or to a prerecorded value, then the controller leaves the first LED off and controls the extinction of a second LED, for example close to the first. The same control as before is carried out leading to the extinction or re-ignition of the second LED according to the value of the ratio measured in this configuration. This procedure is applied until all LEDs have been tested. Another possibility would be to test the set of possible combinations, that is to say the set of combinations of k DEL taken from n (n being the number of LEDs and k an integer varying from 1 to n;
  • this ratio ⁇ depends on the thickness of biological tissue passed through and the conversion efficiency of the photovoltaic converter. Thus, for a fabric thickness traversed by 1.5 mm and for a conversion efficiency of the photovoltaic converter of 20%, it can be estimated that this ratio ⁇ must be greater than or equal to 12%. Thanks to this system, it is not necessary to precisely align the patch with the photovoltaic converter to maximize the ratio ⁇ .
  • the transcutaneous illumination of the Photovoltaic converter can start. Subsequently, a periodic verification of the value of the ratio ⁇ can be performed to ensure that the value of the ratio ⁇ always remains equal to the maximum value. If this is not the case (for example due to an accidental slip of the patch), then
  • an audible signal can be emitted by the reception and control block 41 in order to inform the patient that the pre-alignment step must be carried out again,
  • the patch 51 may be transparent or semi-transparent, in whole or in part, outside the light sources. This allows an approximate alignment of the light sources with the photovoltaic converter, whose contours can be materialized on the skin via a tattoo 53.
  • the light sources can also be semi-transparent ; for example, it is known to produce semitransparent LEDs in which the backside electrode is made of a transparent conductive oxide such as SnO 2 or ITO (indium oxide and tin) or consists of one or more layers metallic (Ag, Al, etc.) very fine (5 - 20nm).
  • a film 61 can cover or encapsulate the LEDs 12 and thus make it possible to planarize the front face of the lighting device to ensure better contact with the skin and to better match the shape of the body.
  • the film 61 with a thickness typically between 1 ⁇ m and 5 mm, is preferably transparent (optical transmission> 80%) in the emission spectral range of the LEDs 12.
  • the film 61 is preferably made of a flexible polymeric material and transparent, for example: polyethylene, polypropylene, polymethylmethacrylate, cellulose, polycarbonate, polyethylene terephthalate, parylene.
  • the film 61 besides ensuring a good contact with the skin, makes it possible to have a favorable optical index chain in order to limit the reflection on the surface of the skin of the light emitted by the LEDs 12.
  • the light emitted by the LEDs 12 will have to pass through a layer of air before reaching the skin.
  • the difference in optical index between the air (index of about 1) and the skin (index typically in the range 1.3 - 1.5) is important, which leads to a significant reflection of the light and therefore a drop in light. energy transfer efficiency.
  • the light emitted by the LEDs 12 passes through a polymer layer before reaching the skin.
  • LEDs 12 generally include an encapsulation 62 consisting of an epoxy resin.
  • the film 61 may cover this encapsulation 62, or substitute for this encapsulation 62.
  • a gel (and especially a hydrogel) or an adhesive 63 can be placed between the film 61 and the skin.
  • the hydrogel consists of water and a crosslinked polymer (for example based on pectin, calcium alginate or sodium carboxymethylcellulose).
  • the adhesive may preferably be a transparent and hypoallergenic adhesive, for example based on polyacrylates. Its use has the additional advantage of facilitating the holding in place of the patch-shaped support 11.
  • the lighting device may also be used to transmit signals to the implanted device conveying information, for example to configure, program or control said implanted device.
  • said lighting device may comprise a modulator of the light intensity emitted by said light sources, the information to transmitting being encoded by variations in said light intensity. These variations in turn cause variations in the voltage or the current generated by the photovoltaic converter, which can easily be detected by a receiver in order to extract the information thus transmitted.
  • LEDs organic or inorganic
  • light sources are particularly preferred because of their low cost, low power consumption and spatially incoherent, and hence multidirectional, emission which contributes uniform illumination of the photovoltaic generator even when the latter is not perfectly aligned with the patch 1 1.
  • other light sources such as laser diodes can be envisaged.
  • these sources emit in the near infrared.
  • visible light sources for example white, even if the transcutaneous transmission would be reduced.
  • the implanted electronic or electrical device must not be
  • a sensor 20 necessarily include a sensor. It could for example be a neuron stimulator, or even a radio transmitter to track the movements of a non-human animal.
  • the presence of a battery or super-capacitor is also not essential: alternatively, it is possible to envisage a direct supply of the device by the photovoltaic converter. In this case, the device operates only during lighting, which may be sufficient for some applications.
  • Light source support need not be in the form of a flexible patch, even if such a
  • the embodiment is particularly advantageous.
  • the controller controlling the switching on and off of the light sources can be carried by the support or be deported in wired or wireless communication with the receiver.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Radiation-Therapy Devices (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Système comprenant : un dispositif électronique ou électrique (2), implantable dans un corps humain ou animal, comprenant un convertisseur photovoltaïque (23) pour assurer son alimentation en énergie électrique; et - un dispositif d'éclairage (1), destiné à être disposé à l'extérieur dudit corps humain ou animal, comprenant une pluralité de sources de lumière pouvant être allumées ou éteintes individuellement pour effectuer un éclairage transcutané dudit convertisseur photovoltaïque; caractérisé en ce que ledit dispositif d'éclairage comprend un contrôleur pour calculer une efficacité de transfert énergétique entre ledit dispositif d'éclairage et ledit convertisseur photovoltaïque, et pour allumer ou éteindre individuellement lesdites sources de lumière de manière à maximiser ladite efficacité ou assurer qu'elle soit supérieure à un seuil prédéterminé.

Description

ALIMENTATION PHOTOVOLTAIQUE TRANSCUTANEE D'UN DISPOSITIF ELECTRONIQUE OU ELECTRIQUE IMPLANTE
L'invention porte sur un système constitué par un dispositif électronique ou électrique implanté - notamment de type électromédical - comprenant un convertisseur photovoltaïque, et par un dispositif permettant de l'alimenter ou le recharger de manière non-intrusive, par éclairage transcutané dudit convertisseur.
On constate ces dernières années un intérêt croissant pour les dispositifs médicaux sans fil implantables, tels que les stimulateurs cardiaques, les stimulateurs neuronaux, et les capteurs permettant une détection et un contrôle biomédical in vivo. Ces systèmes pourront permettre par exemple un diagnostic précoce de certaines maladies ou encore de contrôler précisément et en temps réel le taux de sucre ou d'oxygène présent dans le sang. Cependant, afin de fonctionner de façon autonome, ces objets nécessitent une alimentation interne, généralement assurée par une batterie ou un super-condensateur. Les batteries, dont les densités de puissance sont relativement élevées (jusqu'à 300Wh/litre), permettent d'alimenter des petits systèmes sur une durée allant de quelques jours à quelques années en fonction de la puissance nécessaire. Ainsi, pour les systèmes devant rester implantés pendant une longue période (plusieurs années, voire toute la vie du patient) un renouvellement ou une recharge régulière des batteries s'impose. Or, pour les applications in vivo, le remplacement des batteries n'est pas anodin et nécessite une intervention chirurgicale plus ou moins lourde en fonction du lieu d'implantation de l'objet. Pour cette raison, de nombreuses équipes à travers le monde ont cherché à développer des méthodes non intrusives pour transférer de l'énergie de l'extérieur vers l'intérieur d'un corps humain ou animal de manière à alimenter directement ou indirectement (en rechargeant une batterie) ces systèmes implantés.
Le document US 6,400,991 décrit un système utilisant plusieurs bobines primaires externes afin de transférer, par induction, de l'énergie électromagnétique à une bobine secondaire implantée. Un dispositif de contrôle permet d'identifier la ou les bobines primaires qui sont les plus proches de la bobine secondaire en analysant le décalage de leur fréquence de résonance, puis de diriger de manière sélective le courant électrique à travers ces bobines primaires. Cependant, l'alimentation des bobines primaires nécessite une énergie importante, difficilement compatible avec un système portable. De plus, le transfert d'énergie par induction électromagnétique peut poser des problèmes d'échauffement par effet Joule du dispositif implanté, ainsi que des problèmes d'interférences électromagnétiques.
Le document US 8,082,041 décrit un système de transmission d'énergie basé sur un transducteur piézoélectrique externe, générant des ultrasons, et un récepteur piézoélectrique implanté, convertissant ces ultrasons en énergie électrique. Un tel système ne peut fonctionner de manière efficace que si le transducteur et le récepteur sont alignés précisément. Pour cette raison, quatre capteurs d'ultrasons sont disposés sur le périmètre du récepteur implanté, agencés en carré. Ces capteurs captent l'onde acoustique transmise par le transducteur externe ; lorsque le signal reçu par les capteurs est équilibré, l'alignement du transducteur et du récepteur est optimal. Ce système présente l'inconvénient d'être relativement complexe ; en outre, la procédure d'alignement peut être longue et fastidieuse.
L'article de K. Murakawa et al. « A wireless near-infrared energy System for médical implants », IEEE Engineering Médecine Biology 18, 70 (1999) propose d'utiliser un laser émettant dans le proche infrarouge, couplé à un convertisseur ou générateur photovoltaïque pour alimenter une batterie. Le convertisseur photovoltaïque est implanté sous la peau d'un patient et éclairé par le laser, situé à l'extérieur du corps du patient, lorsque la batterie doit être rechargée. Cependant, afin que la conversion du rayonnement soit réellement efficace il est nécessaire que le laser soit parfaitement aligné avec le convertisseur. Cela est d'autant plus important que, pour atteindre des tensions suffisamment élevées pour alimenter un appareil électromédical (de l'ordre de 3 V), le convertisseur doit le plus souvent comprendre plusieurs cellules photovoltaïques élémentaires connectées en série (typiquement, de 5 à 10). Or, dans ces conditions il suffit qu'une seule cellule soit mal éclairée du fait d'un alignement imparfait avec le laser pour que la puissance électrique générée par le convertisseur photovoltaïque chute fortement.
Pour résoudre ce problème, le document US 6,091 ,015 propose d'amener la lumière au convertisseur photovoltaïque par l'intermédiaire d'une fibre optique biocompatible implantée. Cependant, une telle solution ne peut pas être qualifiée de « non intrusive » ; en pratique, le fait d'amener de la lumière à l'intérieur du corps par l'intermédiaire d'une fibre optique n'apporte pas d'avantages comparé au fait d'amener directement de l'électricité par l'intermédiaire de fils biocompatibles.
L'invention vise à surmonter les inconvénients précités de l'art antérieur. Plus précisément, l'invention vise à permettre l'alimentation directe ou indirecte (c'est-à-dire par l'intermédiaire d'une batterie, qui est rechargée) d'un dispositif électronique ou électrique implanté par une méthode non intrusive, simple à mettre en oeuvre, ne nécessitant pas de procédures d'alignement fastidieuses et, de préférence, utilisant un appareil d'alimentation externe portable.
Un objet de l'invention permettant d'atteindre ce but est un système comprenant :
un dispositif électronique ou électrique, implantable dans un corps humain ou animal, comprenant un convertisseur photovoltaïque pour assurer son alimentation en énergie électrique ; et
un dispositif d'éclairage, destiné à être disposé à l'extérieur dudit corps humain ou animal, pour effectuer un éclairage transcutané dudit convertisseur photovoltaïque ;
caractérisé en ce que ledit dispositif électronique ou électrique implantable comprend :
- un instrument de mesure de la puissance électrique générée par ledit convertisseur photovoltaïque ; et
- un émetteur, pour transmettre un signal représentatif de ladite puissance électrique ; et en ce que ledit dispositif d'éclairage comprend :
- une pluralité de sources de lumière pouvant être allumées ou éteintes individuellement ;
- un récepteur, pour recevoir ledit signal représentatif de la puissance électrique générée par ledit convertisseur photovoltaïque ; et
- un contrôleur pour calculer, à partir dudit signal, une efficacité de transfert énergétique entre ledit dispositif d'éclairage et ledit convertisseur photovoltaïque, et pour modifier la répartition spatiale de l'éclairage provenant desdites sources de lumière de manière à maximiser ladite efficacité ou assurer qu'elle soit supérieure à un seuil prédéterminé.
Selon différents modes de réalisation particuliers de l'invention :
Ledit contrôleur peut être également configuré ou programmé pour ajuster la puissance lumineuse émise par chaque source de lumière allumée de manière à maximiser ladite efficacité de transfert énergétique ou assurer qu'elle soit supérieure à un seuil prédéterminé.
Ledit émetteur peut être constitué par ledit convertisseur photovoltaïque.
Ledit émetteur peut comprendre des moyens pour moduler un rayonnement lumineux incident sur ledit dispositif électronique ou électrique implantable et le rediriger vers ledit dispositif d'éclairage.
La surface sur laquelle sont effectivement agencées lesdites sources de lumière peut présenter une aire supérieure à celle de la surface photosensible dudit convertisseur photovoltaïque.
- Lesdites sources de lumière peuvent présenter une émission lumineuse multidirectionnelle.
Ledit dispositif d'éclairage peut comprendre un film transparent recouvrant lesdites sources de lumière, l'indice optique dudit film étant choisi de manière à réaliser une adaptation d'indice avec la peau dudit corps humain ou animal. En outre, ledit film transparent peut être recouvert d'une couche de gel transparent, l'indice optique dudit gel étant choisi de manière à réaliser une adaptation d'indice avec la peau dudit corps humain ou animal.
Ledit dispositif d'éclairage peut comprendre un support souple et conformable (« un patch »). Avantageusement, la face dudit support souple et conformable portant lesdites sources de lumière peut être recouverte d'une couche de colle transparente permettant sa fixation à la peau dudit corps humain ou animal, l'indice optique de ladite couche de colle étant choisi de manière à réaliser une adaptation d'indice avec ladite peau.
Ledit support peut être transparent ou semi-transparent sur une partie au moins de sa surface.
Ladite ou chaque dite source de lumière peut être semi- transparente.
Ladite ou chaque dite source de lumière peut être une diode électroluminescente.
- Ledit dispositif d'éclairage peut être adapté pour émettre un rayonnement lumineux dans la plage spectrale allant de 300 à 1900 nm et de préférence dans la plage spectrale allant de 750 à 1200 nm.
Ledit dispositif électronique ou électrique implantable peut comprendre un élément de stockage de l'énergie électrique générée par ledit convertisseur photovoltaïque.
Ledit convertisseur photovoltaïque peut être constitué d'une pluralité de cellules photovoltaïque interconnectées électriquement en série.
Le dispositif d'éclairage peut comprendre un modulateur de l'intensité lumineuse émise par lesdites sources de lumière, pour transmettre de l'information audit dispositif électronique ou électrique implantable, et ledit dispositif électronique ou électrique implantable peut comprendre un récepteur pour relever des variations du courant ou de la tension générée par ledit convertisseur photovoltaïque et en extraire ladite information. D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement :
La figure 1 , un dispositif d'éclairage selon un mode de réalisation de l'invention ;
La figure 2, une vue d'ensemble d'un système selon un mode de réalisation de l'invention ;
La figure 3, un graphique illustrant la dépendance de la transmission optique de la peau porcine en fonction de la longueur d'onde ;
- La figure 4, un schéma fonctionnel du fonctionnement d'un système selon un mode de réalisation de l'invention ;
La figure 5, l'utilisation de repères tatoués sur la peau du patient pour réaliser un alignement approximatif entre le dispositif d'éclairage et le convertisseur photovoltaïque implanté dans un système selon un mode de réalisation de l'invention ; et
La figure 6, un dispositif d'éclairage selon un autre mode de réalisation de l'invention.
La figure 1 montre un dispositif d'éclairage 1 constitué par un support 11 souple dont l'une des faces (ou surfaces principales) porte une pluralité de diodes électroluminescentes (DEL) 12. Les DEL sont alimentées par une batterie, située sur la face opposée de l'élément, ou par une alimentation externe par l'intermédiaire de fils électriques traversant l'élément et sortant de cette même face opposée.
Le support 11 constitue un patch souple, réalisé en un matériau flexible tel qu'un polymère (par exemple : polyéthylène, polypropylène, polyéthylène téréphtalate, polytétrafluoroéthylène), voire un métal (par exemple : aluminium, titane, acier) à condition que son épaisseur soit suffisamment faible. Ce patch est conformable et peut être adapté à la forme de la région du corps humain ou animal à l'intérieur duquel est implanté le dispositif à alimenter.
La face de l'élément 11 portant (es DEL 12 - ou plus précisément la portion de cette face sur laquelle les DEL sont effectivement agencées (définie comme la plus petite région convexe contenant toutes les sources) - présente de préférence une aire supérieure (de préférence, supérieur d'au moins 10% et jusqu'à un facteur 10) à celle du convertisseur photovoltaïque implanté ; cela permet d'obtenir un éclairage satisfaisant du convertisseur photovoltaïque même si les surfaces émettrice et photosensible ne sont pas parfaitement alignées. Par exemple, un convertisseur implanté dans l'avant-bras d'un patient peut présenter une surface photosensible d'aire comprise entre 1 mm2 et 50 cm2, et la surface émettrice de lumière de l'élément 11 peut alors présenter une aire comprise entre 1 cm2 et 100 cm2. Les surfaces photoémettrices des différentes DEL 12 peuvent être séparées par une distance s. Dans ce cas, il est préférable que s soit inférieur ou de l'ordre de 2c tana, où d est la distance entre la surface émettrice de lumière et la surface photosensible du convertisseur photovoltaïque (qui dépend notamment de la profondeur d'implantation de ce dernier), et où a est l'angle pour lequel l'intensité lumineuse émise par une DEL est divisée par 2 par rapport à la normale au support 11.
Toujours dans le but d'obtenir un éclairage satisfaisant du convertisseur photovoltaïque même lorsque l'alignement est approximatif, il est avantageux que les sources de lumière présentent une émission lumineuse multidirectionnelle, de préférence avec 10° < a < 30°. Cette condition est généralement satisfaite par des DEL.
De préférence, les DEL 12 émettent dans le proche infrarouge (750 - 1200 nm) du fait de la grande transparence des tissus biologiques à ces longueurs d'onde (voir la figure 3: transmission de la lumière à travers d'une peau de porc de 1 ,5 mm d'épaisseur). Il peut s'agir par exemple de DEL à base d'arséniure de gallium (GaAs). Plus généralement, l'émission peut se situer dans une plage spectrale allant du proche infrarouge au proche ultraviolet (300 - 1900 nm).
La figure 2 montre une vue d'ensemble d'un système selon un mode de réalisation de l'invention. Sur cette figure, la référence 2 indique le dispositif électronique ou électrique implanté dans sa globalité. L'élément 21 (qui ne fait pas partie du système) correspond à un tissu biologique - typiquement la peau - qui est traversé par le rayonnement lumineux généré par les DEL 12 portées par le patch 11. L'épaisseur de ce tissu biologique dépend de l'implantation du convertisseur photovoltaïque, entre quelques micromètres et quelques centimètres. L'élément 23 correspond au convertisseur photovoltaïque implanté sous le tissu biologique 21 , faisant partie du dispositif 2. Le convertisseur photovoltaïque 23 peut par exemple être basé sur des matériaux absorbeurs en couches minces, tels que le Cu(lni-x,Gax)(Sei-yjSy)2 (CIGS), le Cu2ZnSn(Sei-y,Sy)4 (CZTS), le silicium amorphe, ou le silicium microcristallin ; ces couches minces sont déposées sur un substrat tel qu'une plaque de verre, une feuille d'acier ou de titane, ou encore une feuille de polyimide. Le convertisseur photovoltaïque 23 peut être également basé sur des matériaux absorbeurs massifs, tels que le silicium, l'arséniure de gallium (GaAs) ou le phosphure d'indium (InP). Le choix du matériau absorbeur dépend en partie de la gamme spectrale d'émission des DEL 12. Plus précisément, le rendement quantique externe du convertisseur photovoltaïque 23 doit être élevé (de préférence supérieur à 50%) dans la gamme spectrale d'émission des DEL 12. Par exemple, si les DEL 12 sont des DEL à base d'arséniure de gallium émettant vers 850 - 950 nm, alors un matériau absorbeur particulièrement performant est le CulnSe2 ou le Cu(lnoj,Gao.3)Se2. Le convertisseur photovoltaïque 23 (ainsi que le reste du dispositif 2 dont il assure l'alimentation) est encapsulé par une couche biocompatible et transparente aux longueurs d'ondes utilisées pour l'éclairage, par exemple en parylène. Pour une application biomédicale (capteur de glucose, par exemple) consommant une puissance d'environ 10 pW, on peut utiliser un convertisseur photovoltaïque composé de 6 cellules photovoltaïques connectées en série, présentant une surface photosensible d'environ 1 cm2 et produisant une tension de 3 V et un courant de 5 μΑ sous un éclairage reçu par le convertisseur photovoltaïque d'environ 1 mW/cm2. Une micro-batterie 25 d'une tension de 3 V, faisant également partie du dispositif 2, peut jouer le rôle de tampon entre le capteur biomédical et le convertisseur photovoltaïque, permettant ainsi de ne pas utiliser les DEL en permanence, mais seulement pour charger la micro-batterie (« alimentation indirecte »). Pour une micro-batterie d'une capacité de 5 mW h chargée pendant 30 minutes à l'aide du convertisseur photovoltaïque fournissant 10 mW, un capteur consommant 10 pW peut avoir une autonomie de 500 heures. Ainsi le patient est dans l'obligation de recharger son implant toutes les 3 semaines environ.
Les DEL 12 peuvent être allumées ou éteintes individuellement, et leur puissance d'émission lumineuse être réglée de façon indépendante. Ainsi, il est possible de sélectionner un sous-ensemble de DEL à allumer et ajuster leur luminosité pour maximiser l'efficacité de transfert énergétique, c'est-à-dire le rapport η entre la puissance électrique générée par le convertisseur photovoltaïque et la puissance électrique alimentant les DEL. Ainsi, l'optimisation de l'efficacité de transfert énergétique est obtenue en modifiant la répartition spatiale de l'éclairage provenant des sources de lumière. Avantageusement, cette optimisation peut être conduite de manière automatique à l'aide d'une boucle de contrôle illustrée schématiquement sur la figure 4. Sur cette figure, le bloc 42 correspond à un ensemble constitué par un instrument de mesure de la puissance électrique générée par ledit convertisseur photovoltaïque (par exemple, un circuit électronique de mesure de la tension et du courant), intégré au dispositif implanté et par un émetteur (par exemple radiofréquence ou infrarouge) transmettant un signal - analogique ou, de préférence, numérique - représentatif de la puissance électrique mesurée. Côté dispositif d'éclairage, le bloc 41 comprend un récepteur pour ledit signal et un contrôleur (par exemple, un microprocesseur programmé de manière opportune) recevant en entrée le signal et pilotant l'allumage et l'alimentation des DEL de manière à maximiser le rapport η - ou à assurer que ce rapport prenne une valeur supérieure ou égale à un seuil prédéfini.
Dans le cas où l'émetteur 42 est un émetteur infrarouge, plusieurs modes de réalisation peuvent être envisagés.
Dans un premier mode de réalisation, l'émetteur 42 peut être constitué d'une diode électroluminescente, par exemple à base d'arséniure de gallium. Dans un deuxième mode de réalisation, l'émetteur 42 peut être constitué par le convertisseur photovoltaïque lui-même ; en effet, une cellule photovoltaïque et une diode électroluminescente présentent la même architecture de base, à savoir une jonction entre un matériau semi-conducteur de type p et un matériau semi-conducteur de type n. Par exemple, il est connu que les cellules photovoltaïques à base de CIGS sont capables d'émettre de la lumière dans le proche infrarouge lorsqu'elles sont excitées électriquement.
Dans un troisième mode de réalisation, présentant l'avantage de réduire la consommation d'énergie du dispositif implanté 2, l'émetteur 42 peut être constitué par un système effectuant les opérations suivantes :
1) récupérer une partie du flux lumineux infrarouge émis par les DEL 12, et incident sur le dispositif 2 ;
2) moduler l'amplitude de ce flux lumineux de manière à y coder le signal à transmettre ;
3) réémettre ce flux lumineux en direction du récepteur 41.
Un tel système peut être constitué d'un modulateur électro-optique à guide d'onde (par exemple à base de silicium, arséniure de gallium, ou LiNb03) et de deux réseaux de diffraction définis sur la même surface que le guide d'onde. Le premier réseau de diffraction permet d'injecter une partie du flux lumineux incident dans le guide d'onde ; le modulateur électro-optique à guide d'onde permet ensuite de moduler le flux lumineux circulant dans le guide d'onde ; le deuxième réseau de diffraction permet enfin d'extraire le flux lumineux du guide d'onde pour le réémettre en direction du récepteur 41.
Un exemple de procédure de communication entre l'émetteur implanté 42 et le bloc de réception et de commande 41 du dispositif d'éclairage est le suivant.
Tout d'abord, le patch doit être aligné de manière approximative avec le convertisseur photovoltaïque (pré alignement) de façon à ce qu'un minimum de puissance lumineuse puisse parvenir jusqu'au convertisseur photovoltaïque. Une fois cette étape réalisée, la procédure débute avec toutes les DEL allumées. Le contrôleur détermine la valeur initiale du rapport η, valeur devant être supérieure à une valeur préenregistrée témoignant d'un pré alignement acceptable. Si la valeur de η déterminée par le contrôleur est inférieure à une valeur préenregistrée un signal sonore pourra être émis par le bloc de réception et de commande 41 afin d'informer le patient que l'étape de pré alignement doit être renouvelée. Si la valeur de η déterminée par le contrôleur est supérieure à une valeur préenregistrée ce dernier commande l'extinction d'une première DEL située par exemple à une extrémité. Après l'extinction de la première DEL il détermine à nouveau le rapport η afin de vérifier si celui-ci est différent de la valeur initiale. Si celui-ci est strictement inférieur à la valeur initiale ou à une valeur préenregistrée, alors le contrôleur commande de rallumer cette DEL. Si au contraire celui-ci est supérieur ou égal à la valeur initiale ou à une valeur préenregistrée, alors le contrôleur laisse la première DEL éteinte et commande l'extinction d'une deuxième DEL, par exemple voisine de la première. Le même contrôle que précédemment est effectué conduisant à l'extinction ou au rallumage de la seconde DEL en fonction de la valeur du rapport mesurée dans cette configuration. Cette procédure est appliquée jusqu'à ce que toutes les DEL aient été testées. Une autre possibilité consisterait à tester l'ensemble des combinaisons possibles, c'est-à-dire l'ensemble des combinaisons de k DEL pris parmi n (n étant le nombre de DEL et k un nombre entier variant de 1 à n ;
k=n n le nombre de combinaisons possible est égal à V * avec C* =— j-1— c- ), et t k\{n-kf. de garder la combinaison qui maximise le rapport η. Il est à noter que ce rapport η dépend de l'épaisseur de tissus biologiques traversée et du rendement de conversion du convertisseur photovoltaïque. Ainsi pour une épaisseur de tissu traversée de 1 ,5 mm et pour un rendement de conversion du convertisseur photovoltaïque de 20 % on peut estimer que ce rapport η devra être supérieur ou égal à 12%. Grâce à ce système, il n'est pas nécessaire d'aligner précisément le patch avec le convertisseur photovoltaïque pour maximiser le rapport η.
Après avoir pré aligné le patch et après avoir effectué la procédure de maximisation du rapport η par une répartition spatiale appropriée de l'éclairage provenant des DEL, l'éclairage transcutané du convertisseur photovoltaïque peut débuter. Par la suite, une vérification périodique de la valeur du rapport η peut être réalisée afin de s'assurer que la valeur du rapport η reste toujours égale à la valeur maximale. Si tel n'est pas le cas (par exemple du fait d'un glissement accidentel du patch), alors
- un signal sonore peut être émis par le bloc de réception et de commande 41 afin d'informer le patient que l'étape de pré alignement doit être de nouveau effectuée,
- ou bien la procédure de maximisation du rapport η peut être à nouveau effectuée.
Dans le cas de l'exemple présenté sur la figure 2, deux DEL sont nécessaires pour maximiser le rapport η, tandis que la troisième DEL peut être éteinte pour réaliser une économie d'énergie tout en assurant une charge optimale de la micro-batterie.
Selon un mode de réalisation avantageux, illustré par la figure 5, le patch 51 peut être transparent ou semi-transparent, en tout ou en partie, en dehors des sources de lumière. Cela permet de réaliser un alignement approximatif des sources de lumière avec le convertisseur photovoltaïque, dont les contours peuvent être matérialisés sur la peau par l'intermédiaire d'un tatouage 53. Pour faciliter l'alignement, les sources lumineuses peuvent aussi être semi-transparentes ; par exemple, il est connu de réaliser des DEL semi- transparentes dans lesquelles l'électrode en face arrière est réalisée en un oxyde transparent conducteur tel que SnÛ2 ou ITO (oxyde d'indium et étain) ou est constitué par une ou plusieurs couches métalliques (Ag, Al, etc.) très fines (5 - 20nm).
Comme illustré à la figure 6, un film 61 peut recouvrir ou encapsuler les DEL 12 et permettre ainsi de planariser la face avant du dispositif d'éclairage pour assurer un meilleur contact avec la peau et mieux épouser la forme du corps. Le film 61 , d'épaisseur typiquement comprise entre 1 pm et 5 mm, est préférentiellement transparent (transmission optique>80%) dans la gamme spectrale d'émission des DEL 12. Le film 61 est préférentiellement constitué d'un matériau polymère souple et transparent, par exemple : polyéthylène, polypropylène, polyméthacrylate de méthyle, cellulose, polycarbonate, polyéthylène téréphtalate, parylène. Le film 61 , outre d'assurer un bon contact avec la peau, permet de disposer d'une chaîne d'indices optiques favorable afin de limiter la réflexion à la surface de la peau de la lumière émise par les DEL 12. En effet, en l'absence du film 61 , la lumière émise par les DEL 12 devra traverser une couche d'air avant d'atteindre la peau. Or la différence d'indice optique entre l'air (indice d'environ 1) et la peau (indice typiquement compris dans la gamme 1.3 - 1.5) est importante, ce qui entraîne une réflexion importante de la lumière et donc une baisse de l'efficacité de transfert énergétique. Au contraire, en présence du film 61 , la lumière émise par les DEL 12 traverse une couche de polymère avant d'atteindre la peau. Or la différence d'indice optique entre un polymère (indice typiquement compris dans la gamme 1 ,4 - 1 ,6) et la peau (indice typiquement compris dans la gamme 1 ,3 - 1,5) est faible, ce qui limite les phénomènes de réflexion optique et limite donc la baisse de l'efficacité de transfert énergétique (adaptation d'indice). Il faut noter que les DEL 12 comprennent généralement une encapsulation 62 constituée d'une résine époxy. Le film 61 peut recouvrir cette encapsulation 62, ou bien se substituer à cette encapsulation 62.
Afin d'améliorer le contact du film 61 avec la peau, et d'éliminer le risque d'une formation d'une couche d'air entre le film 61 et la peau, un gel (et notamment un hydrogel) ou un adhésif 63 peut être placé entre le film 61 et la peau. L'hydrogel est constitué d'eau et d'un polymère réticulé (par exemple à base de pectine, alginate de calcium ou carboxymethylcellulose de sodium). L'adhésif peut être préférentiellement un adhésif transparent et hypoallergénique, par exemple à base de polyacrylates. Son utilisation présente l'avantage additionnel de faciliter le maintien en place du support en forme de patch 11.
Le dispositif d'éclairage peut également être utilisé pour transmettre au dispositif implanté des signaux véhiculant une information, par exemple pour configurer, programmer ou piloter ledit dispositif implanté. Pour ce faire, ledit dispositif d'éclairage peut comprendre un modulateur de l'intensité lumineuse émise par lesdites sources de lumière, l'information à transmettre étant codée par des variations de ladite intensité lumineuse. Ces variations provoquent à leur tour des variations dans la tension ou le courant généré par le convertisseur photovoltaïque, qui peuvent aisément être détectées par un récepteur afin d'extraire l'information ainsi transmise.
5 L'invention a été décrite en référence à un certain nombre de modes de réalisation particuliers, mais plusieurs variantes sont envisageables.
Ainsi, par exemple, l'utilisation de DEL (organiques ou inorganiques) en tant que sources de lumière est particulièrement préférée en î o raison de leur faible coût, de leur consommation réduite et de leur émission spatialement incohérente, et donc multidirectionnelle, qui contribue à un éclairage uniforme du générateur photovoltaïque même lorsque ce dernier n'est pas parfaitement aligné avec le patch 1 1 . Cependant, d'autres sources de lumière telles que des diodes laser peuvent être envisagées.
15 De même, il n'est pas essentiel que ces sources émettent dans le proche infrarouge. En variante, il serait possible d'utiliser des sources de lumière visible, par exemple blanche, même si la transmission transcutanée serait réduite.
Le dispositif électronique ou électrique implanté ne doit pas
20 nécessairement comprendre un capteur. Il pourrait par exemple s'agir d'un stimulateur neuronal, voire même d'un émetteur radio permettant de suivre les déplacements d'un animal non-humain.
La présence d'une batterie ou super-condensateur n'est pas non plus essentielle : en variante, on peut envisager une alimentation directe 25 du dispositif par le convertisseur photovoltaïque. Dans ce cas, le dispositif fonctionne uniquement pendant l'éclairage, ce qui peut être suffisant pour certaines applications.
Le support des sources de lumière ne doit pas nécessairement se présenter sous la forme d'un patch souple, même si un tel
30 mode de réalisation est particulièrement avantageux. Le contrôleur pilotant l'allumage et l'extinction des sources de lumière peut être porté par le support ou bien être déporté, en communication filaire ou sans fils avec le récepteur.

Claims

REVENDICATIONS
1. Système comprenant :
- un dispositif électronique ou électrique (2), implantable dans un corps humain ou animal, comprenant un convertisseur photovoltaïque (23) pour assurer son alimentation en énergie électrique ; et un dispositif d'éclairage (1), destiné à être disposé à l'extérieur dudit corps humain ou animal, pour effectuer un éclairage transcutané dudit convertisseur photovoltaïque ;
caractérisé en ce que ledit dispositif électronique ou électrique implantable comprend :
- un instrument de mesure (42) de la puissance électrique générée par ledit convertisseur photovoltaïque ; et
- un émetteur (42), pour transmettre un signal représentatif de ladite puissance électrique ;
et en ce que ledit dispositif d'éclairage comprend :
- une pluralité de sources de lumière pouvant être allumées ou éteintes individuellement ;
- un récepteur (41), pour recevoir ledit signal représentatif de la puissance électrique générée par ledit convertisseur photovoltaïque ; et
- un contrôleur (41) pour calculer, à partir dudit signal, une efficacité de transfert énergétique entre ledit dispositif d'éclairage et ledit convertisseur photovoltaïque, et pour allumer ou éteindre individuellement lesdites sources de lumière de manière à maximiser ladite efficacité ou assurer qu'elle soit supérieure à un seuil prédéterminé.
2. Système selon la revendication 1 , dans lequel ledit contrôleur est également configuré ou programmé pour ajuster la puissance lumineuse émise par chaque source de lumière allumée de manière à maximiser ladite efficacité de transfert énergétique ou assurer qu'elle soit supérieure à un seuil prédéterminé.
3. Système selon l'une des revendications précédentes, dans lequel ledit émetteur (42) est constitué par ledit convertisseur photovoltaïque.
4. Système selon l'une des revendications 1 ou 2 dans lequel ledit émetteur (42) comprend des moyens pour moduler un rayonnement lumineux incident sur ledit dispositif électronique ou électrique implantable et le rediriger vers ledit dispositif d'éclairage.
5. Système selon l'une des revendications précédentes, dans lequel la surface sur laquelle sont effectivement agencées lesdites sources de lumière présente une aire supérieure à celle de la surface photosensible dudit convertisseur photovoltaïque.
6. Système selon l'une des revendications précédentes, dans lequel lesdites sources de lumière présentent une émission lumineuse multidirectionnelle.
7. Système selon l'une des revendications précédentes dans lequel ledit dispositif d'éclairage comprend un film transparent (61) recouvrant lesdites sources de lumière, l'indice optique dudit film étant choisi de manière à réaliser une adaptation d'indice avec la peau dudit corps humain ou animal.
8. Système selon la revendication 7 dans lequel ledit film transparent est recouvert d'une couche de gel transparent, l'indice optique dudit gel étant choisi de manière à réaliser une adaptation d'indice avec la peau dudit corps humain ou animal.
9. Système selon l'une des revendications précédentes, dans lequel ledit dispositif d'éclairage comprend un support (11) souple et conformable.
10. Système selon la revendication 9, dans lequel la face dudit support (11 ) souple et conformable portant lesdites sources de lumière est recouverte d'une couche de colle transparente permettant sa fixation à la peau dudit corps humain ou animal, l'indice optique de ladite couche de colle étant choisi de manière à réaliser une adaptation d'indice avec ladite peau.
11. Système selon l'une des revendications précédentes, dans lequel ledit support est transparent ou semi-transparent sur une partie au moins de sa surface.
12. Système selon la revendication 11 , dans lequel ladite ou chaque dite source de lumière est semi-transparente.
13. Système selon l'une des revendications précédentes, dans lequel ladite ou chaque dite source de lumière est une diode électroluminescente.
14. Système selon l'une des revendications précédentes, dans lequel ledit dispositif d'éclairage est adapté pour émettre un rayonnement lumineux dans la plage spectrale allant de 300 à 1900 nm et de préférence dans la plage spectrale allant de 750 à 1200 nm.
15. Système selon l'une des revendications précédentes, dans lequel ledit dispositif électronique ou électrique implantable comprend un élément de stockage (25) de l'énergie électrique générée par ledit convertisseur photovoltaïque.
16. Système selon l'une des revendications précédentes, dans lequel ledit convertisseur photovoltaïque est constitué d'une pluralité de cellules photovoltaïque interconnectées électriquement en série.
17. Système selon l'une des revendications précédentes, dans lequel le dispositif d'éclairage comprend un modulateur de l'intensité lumineuse émise par lesdites sources de lumière, pour transmettre de l'information audit dispositif électronique ou électrique implantabie, et ledit dispositif électronique ou électrique implantabie comprend un récepteur pour relever des variations du courant ou de la tension générée par ledit convertisseur photovoltaïque et en extraire ladite information.
PCT/IB2013/054685 2012-06-11 2013-06-07 Alimentation photovoltaique transcutanee d'un dispositif electronique ou electrique implante WO2013186678A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13744810.6A EP2858717B1 (fr) 2012-06-11 2013-06-07 Alimentation photovoltaique transcutanee d'un dispositif electronique ou electrique implante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255456 2012-06-11
FR1255456A FR2991589B1 (fr) 2012-06-11 2012-06-11 Alimentation photovoltaique transcutanee d'un dispositif electronique ou electrique implante.

Publications (1)

Publication Number Publication Date
WO2013186678A1 true WO2013186678A1 (fr) 2013-12-19

Family

ID=48914373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/054685 WO2013186678A1 (fr) 2012-06-11 2013-06-07 Alimentation photovoltaique transcutanee d'un dispositif electronique ou electrique implante

Country Status (3)

Country Link
EP (1) EP2858717B1 (fr)
FR (1) FR2991589B1 (fr)
WO (1) WO2013186678A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020955B1 (fr) * 2014-05-19 2016-06-24 Commissariat Energie Atomique Connecteur electrique notamment pour dispositif cutane.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091015A (en) 1997-05-28 2000-07-18 Universidad Politecnica De Cataluna Photovoltaic energy supply system with optical fiber for implantable medical devices
WO2002030264A2 (fr) * 2000-10-10 2002-04-18 Microchips, Inc. Systemes-reservoirs a micropuce utilisant la transmission sans fil d'energie et de donnees
US6400991B1 (en) 1999-05-03 2002-06-04 Abiomed, Inc. Electromagnetic field source method with detection of position of secondary coil in relation to multiple primary coils
US20060085051A1 (en) * 2004-10-19 2006-04-20 Fritsch Michael H Electrical implants
US8082041B1 (en) 2007-06-15 2011-12-20 Piezo Energy Technologies, LLC Bio-implantable ultrasound energy capture and storage assembly including transmitter and receiver cooling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091015A (en) 1997-05-28 2000-07-18 Universidad Politecnica De Cataluna Photovoltaic energy supply system with optical fiber for implantable medical devices
US6400991B1 (en) 1999-05-03 2002-06-04 Abiomed, Inc. Electromagnetic field source method with detection of position of secondary coil in relation to multiple primary coils
WO2002030264A2 (fr) * 2000-10-10 2002-04-18 Microchips, Inc. Systemes-reservoirs a micropuce utilisant la transmission sans fil d'energie et de donnees
US20060085051A1 (en) * 2004-10-19 2006-04-20 Fritsch Michael H Electrical implants
US8082041B1 (en) 2007-06-15 2011-12-20 Piezo Energy Technologies, LLC Bio-implantable ultrasound energy capture and storage assembly including transmitter and receiver cooling

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. MURAKAWA ET AL.: "A wireless near-infrared energy system for médical implants", IEEE ENGINEERING MÉDECINE BIOLOGY, vol. 18, 1999, pages 70
MURAKAWA K ET AL: "A WIRELESS NEAR-INFRARED ENERGY SYSTEM FOR MEDICAL IMPLANTS A LESS INVASIVE METHOD FOR SUPPLYING LIGHT POWER TO IMPLANT DEVICES", IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, IEEE SERVICE CENTER, PISACATAWAY, NJ, US, vol. 18, no. 6, 1 November 1999 (1999-11-01), pages 70 - 72, XP000870869, ISSN: 0739-5175, DOI: 10.1109/51.805148 *

Also Published As

Publication number Publication date
FR2991589A1 (fr) 2013-12-13
EP2858717A1 (fr) 2015-04-15
FR2991589B1 (fr) 2014-07-04
EP2858717B1 (fr) 2016-11-30

Similar Documents

Publication Publication Date Title
AU2018203550B2 (en) Optically coupled cochlear implant systems and methods
EP2959511B1 (fr) Dispositif et systeme de generation photovoltaique et son application a un dispositif medical implantable.
CN107073282A (zh) 具有紫外元件的粘合装置
EP2736468B1 (fr) Dispositif de traitement de la capacite sensorielle d&#39;une personne
US20110125222A1 (en) Transdermal Photonic Energy Transmission Devices and Methods
CN102727218A (zh) 柔性眼插入物和葡萄糖测量系统
EP1031326A1 (fr) Dispositif permettant la photo-activation de matériaux composites photosensibles utilisés notamment dans le domaine dentaire
WO2015035357A1 (fr) Dispositif de lentille pouvant être commandé à distance
FR2909276A1 (fr) Dispositif de photopolymerisation automatique
WO2010151636A2 (fr) Dispositifs et procédés de stimulation cochléaire optique
CN103479427A (zh) 皮肤病治疗设备
EP3020450A1 (fr) Dispositif implantable pour la stimulation optique du cerveau humain ou animal
EP2858717B1 (fr) Alimentation photovoltaique transcutanee d&#39;un dispositif electronique ou electrique implante
TWI358183B (en) Power supply system
EP2964323A1 (fr) Source d&#39;energie implantable ultrafine.
WO2020212394A1 (fr) Lentille de contact pour le pointage automatique de la direction d&#39;un œil d&#39;un individu, système de détection associé
FR3010321A1 (fr) Dispositif implantable de stimulation optique du cerveau comportant un ensemble formant boitier reliant des premiere et deuxieme parties
KR100573622B1 (ko) 적외선 통신 방식의 인공 와우 장치
EP3834884B1 (fr) Dispositif d&#39;illumination implantable dans un être vivant
Parmentier et al. Laser diode used in 16 Mb/s, 10 mW optical transcutaneous telemetry system
CN114731199B (zh) 可植入系统的光传输
Tamura et al. Transcutaneous optical power converter for implantable devices
WO2018029258A1 (fr) Alimentation de dispositifs implantables sous-cutanés au moyen d&#39;un rayonnement électromagnétique
US20130317582A1 (en) Device for stimulating neural regeneration and fabrication method thereof
FR3077738A1 (fr) Structure d&#39;amplification de charge sans fil à longue portée pour dispositifs médicaux implantables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013744810

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013744810

Country of ref document: EP