WO2013185683A2 - 一种小蜂窝基站接入系统及其实现网络接入的方法 - Google Patents

一种小蜂窝基站接入系统及其实现网络接入的方法 Download PDF

Info

Publication number
WO2013185683A2
WO2013185683A2 PCT/CN2013/080035 CN2013080035W WO2013185683A2 WO 2013185683 A2 WO2013185683 A2 WO 2013185683A2 CN 2013080035 W CN2013080035 W CN 2013080035W WO 2013185683 A2 WO2013185683 A2 WO 2013185683A2
Authority
WO
WIPO (PCT)
Prior art keywords
interface
base station
plane gateway
user plane
control plane
Prior art date
Application number
PCT/CN2013/080035
Other languages
English (en)
French (fr)
Other versions
WO2013185683A3 (zh
Inventor
陈中明
黄亚达
施小娟
杜忠达
李大鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13804770.9A priority Critical patent/EP2991397B1/en
Priority to JP2016514240A priority patent/JP6177428B2/ja
Priority to US14/893,767 priority patent/US9844000B2/en
Publication of WO2013185683A2 publication Critical patent/WO2013185683A2/zh
Publication of WO2013185683A3 publication Critical patent/WO2013185683A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to mobile communication technologies, and more particularly to a small cell base station access system and a method for implementing network access.
  • an LTE architecture includes: a Mobility Management Entity (MME), and a Serving GetWay (SGW).
  • MME Mobility Management Entity
  • SGW Serving GetWay
  • a user equipment or a terminal UE, User Equipment
  • eNodeB eNodeB
  • eNB base station
  • UU User Equipment
  • eNodeB base station
  • S 1 -MME SI for the control plane
  • the eNB and the SGW are S1-U interfaces
  • the eNBs are X2-U (X2-User plane) and X2-C (X2-Control plane) interfaces.
  • 2(a) to 2(d) are protocol structures of a control plane and a user plane between a UE, an eNB, and a core network (MME or SGW) of the LTE in the related art, and a control plane and a user plane between the eNB and the eNB.
  • MME or SGW core network
  • the interface between UE and eNB is divided into the following protocol layers from bottom to top: Physical layer (PHY, Physical layer), Media access control layer (MAC, Media Access Control), Radio link control layer (RLC) , Radio Link Control), Packet Data Convergence Protocol (PDCP), Radio Resource Control (RRC).
  • PHY Physical layer
  • MAC Media access control layer
  • RLC Radio link control layer
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the user plane protocol stack of the interface between the UE and the eNB is divided into the following protocol layers from bottom to top: PHY, MAC, RLC, PDCP.
  • the PHY layer is mainly configured to transmit information to the MAC or higher layer through the transport channel; the MAC layer is mainly configured to provide data transmission and responsible for radio resource allocation through the logical channel, complete hybrid automatic repeat request (HARQ, Hybrid ARQ), and schedule ( SCH, Scheduling), priority processing and multiplexing demultiplexing (MUX, Multiplexing); RLC layer is mainly set to provide segmentation and retransmission services for user and control data; PDCP layer is mainly set to RRC or user plane The upper layer completes the transfer of user data; the RRC layer is mainly set to complete broadcast (Paging), paging (Paging), radio resource control connection management, wireless 7- load control, Mobility functions, terminal measurement reports and controls. In the LTE system, the terminal can only transmit and receive data with one base station, which undoubtedly limits the user throughput and the mobile performance of the terminal.
  • HARQ complete hybrid automatic repeat request
  • SCH Scheduling
  • MUX multiplexing demultiplexing
  • RLC layer is mainly set
  • the protocol stack of the S1-MME interface is divided into the following protocol layers from the bottom to the top: L1 protocol, L2 protocol, Internet Protocol (IP, Internet Protocol), Stream Control Transmission Protocol (SCTP) , SI Application Protocol (Sl-AP, SI-Application Protocol).
  • L1 protocol L2 protocol
  • IP Internet Protocol
  • SCTP Stream Control Transmission Protocol
  • SI Application Protocol Sl-AP, SI-Application Protocol
  • the protocol stack of the Sl-U interface is divided into the following protocol layers from the bottom to the top: L1 protocol, L2 protocol, User Data Protocol/Internet Protocol (UDP/IP), GPRS Tunneling Protocol-User plane (GTP- U, GPRS Tunneling Protocol- User plane ).
  • L1 protocol L2 protocol
  • UDP/IP User Data Protocol/Internet Protocol
  • GTP- U GPRS Tunneling Protocol- User plane
  • the protocol stack of the X2-C interface is divided into the following protocol layers from the bottom to the top: L1 protocol, L2 protocol, IP, SCTP, X2 application protocol (X2-AP, X2-Application Protocol).
  • the protocol stack of the X2-U interface is divided into the following protocol layers from the bottom up: L1 protocol, : L2 protocol, UDP/IP, GTP-IL
  • 3(a) to 3(c) are schematic diagrams showing the process of establishing an existing S1 interface, a ⁇ 2 interface, and an enhanced radio access bearer (E-RAB), wherein the S1 interface establishment process generally includes: the eNB sends the MME to the MME.
  • the S1 Setup Request (SI SETUP REQUEST) message the MME returns an S1 Setup Response (SI SETUP RESPONSE) message to the eNB.
  • the process of establishing the X2 interface generally includes: eNB1 sends an X2 SETUP REQUEST message to eNB2, and eNB2 returns an X2 SETUP RESPONSE message to eNB1.
  • the radio access bearer setup process generally includes: the MME sends a radio bearer setup request (E-RAB SETUP REQUEST) message to the eNB, and the eNB returns a radio bearer setup response (E-RAB SETUP REQUEST) message to the MME.
  • E-RAB SETUP REQUEST radio bearer setup request
  • E-RAB SETUP REQUEST radio bearer setup response
  • the embodiments of the present invention provide a small cell base station access system and a method for implementing the network access, which can increase user throughput and enhance terminal mobile performance. Meanwhile, when the terminal moves, the signaling impact on the core network can be avoided. Thereby, the introduction of a large number of small cell base stations on the wireless side is realized.
  • an embodiment of the present invention discloses a small cell base station access system, which is set in a small cell base station access system,
  • control plane gateway connected to the radio access network and the core network, configured to construct a control plane link between the core network and the radio access network;
  • the control plane gateway serves as an aggregation distribution node for control plane signaling, and aggregates from different radio accesses Signaling of the network node and sending to the core network, or distributing signaling from the core network to different radio access network nodes; managing and coordinating one or more radio access network nodes;
  • a user plane gateway connected to the radio access network and the core network, configured to construct a user plane link between the core network and the radio access network;
  • the user plane gateway serves as an aggregation distribution node of the user plane data, and aggregates from different radio access networks.
  • the node's data is sent to the core network, or the data from the core network is distributed to different radio access network nodes.
  • a connection link is established between the control plane gateway and the user plane gateway
  • the control plane gateway is further configured to implement control and management of the user plane gateway through the established connection link.
  • the controlling and managing the user plane gateway includes: controlling establishment, deletion, and modification of a connection between the user plane gateway and the core network, and between the user plane gateway and the radio access network node.
  • the control plane gateway is one or more;
  • the user plane gateway is one or more.
  • the system further includes a mobility management entity MME connected to the control plane gateway, a serving gateway SGW connected to the user plane gateway and the MME, a macro base station respectively connected to the control plane gateway and the user plane gateway, and a control plane gateway and a user plane gateway respectively Connected small cell base stations.
  • MME mobility management entity
  • SGW serving gateway
  • macro base station respectively connected to the control plane gateway and the user plane gateway
  • control plane gateway and a user plane gateway respectively Connected small cell base stations.
  • the user plane gateway and the control plane gateway are independent physical nodes, respectively;
  • the MME is configured to be connected to the control plane gateway through an S1-MME1 interface, and is connected to the SGW through an SI1 interface; and is further configured to support communication with the control plane gateway.
  • the SGW is configured to be connected to the user plane gateway through an S1-U1 interface; and is further configured to support management of an S1-U1 interface connection with the user plane gateway;
  • the control plane gateway is configured to be connected to the MME through an S1-MME1 interface, and is connected to the macro base station or/and the small cell base station through an S1-MM2 interface, and between the user plane gateway. It is also connected through the X-1 interface; it is also configured to support the management control plane link with the MME, and the function of managing the control plane link with the base station, and manage the S1-U1 interface connection established between the user plane gateway and the SGW, And an S1-U2 interface connection established between the user plane gateway and the base station;
  • the user plane gateway is configured to be connected to the SGW through an S1-U1 interface, and connected to the macro base station or the small cell base station through an S1-U2 interface, and connected to the control plane gateway through an X-1 interface.
  • S1-U1 interface connection with the SGW
  • S1-U2 interface connection with the base station under the control of the control plane gateway
  • the macro base station is configured to be connected to the control plane gateway through an S1-MME2 interface, and connected to the user plane gateway through an S1-U2 interface; and is further configured to support management with the control plane gateway. a control plane link, and managing an S1-U2 interface connection with the user plane gateway;
  • the small cell base station is configured to be connected to the user plane gateway through an S1-U2 interface, and is connected to the control plane gateway through an S1-MME2 interface; and is further configured to be supported between the control plane gateway and the control plane gateway.
  • the management control plane link manages the S1-U2 interface connection with the user plane gateway.
  • the control plane gateway is further configured to be connected to other control plane gateways through an X-C interface for inter-node negotiation when moving across the control plane gateway.
  • the user plane gateway is further configured to connect with other user plane base stations through an X-U interface, and is used to transfer data between nodes when moving across the user plane gateway.
  • control plane gateway and the user plane gateway are integrated in the same physical entity.
  • the X-1 interface between the control plane gateway and the user plane gateway is an internal interface.
  • the control plane gateway is combined with the user plane gateway and disposed in the macro base station;
  • the MME is configured to be connected to the macro base station through an S1-MME1 interface, and connected to the SGW through an SI1 interface; and is further configured to be supported between the control plane gateway and the macro base station.
  • the SGW is configured to be connected to the macro base station through an S1-U1 interface; and is further configured to support management of an S1-U1 connection with the user plane gateway disposed in the macro base station;
  • the macro base station is configured to be connected to the MME through an S1-MME1 interface, and has an S1-U2 interface and an S1-MME2 interface between the small cell base station; and is further configured to support the connection with the small cell base station. Managing a control plane link, and supporting management of an S1-U2 connection with the small cell base station;
  • the small cell base station is configured to have an S1-U2 interface and an S1-MME2 interface with the macro base station, and is connected to the UE through a Uu interface; and is further configured to support a management control plane chain with the macro base station.
  • the road is connected to S1-U2.
  • the control plane gateway is integrated with the user plane gateway and disposed in the macro base station, and a gateway is further disposed between the macro base station and the small cell base station, and is responsible for the control plane and user plane management of the small cell base station;
  • the MME is configured to be connected to the macro base station through an S1-MME1 interface, and connected to the SGW through an SI1 interface; and is further configured to be supported between the control plane gateway and the macro base station. Management control plane link;
  • the SGW is configured to be connected to the macro base station through an S1-U1 interface; and is further configured to support management of an S1-U1 connection with the user plane gateway disposed in the macro base station;
  • the macro base station is configured to be connected to the MME through an S1-MME1 interface, and establish an S1-U2 interface and an S1-MME2 interface connection with the small cell base station via the gateway; Manage control plane links between gateways;
  • the gateway is configured to support a management control plane link and a user plane link with the base station; the small cell base station is configured to establish an S1-U2 interface with the macro base station via the gateway, and S1 The MME2 interface is connected; it is further configured to support establishing a data radio bearer of the LTE system with the terminal and having communication on the DRB, and supporting a management control plane link and an S1-U2 interface connection with the gateway.
  • An X-3 interface connection is also established between the macro base station and the small cell base station via the gateway.
  • the control plane gateway is disposed in the macro base station, and the user plane gateway is an independent entity;
  • the MME is configured to be connected to the macro base station through an S1-MME1 interface, and connected to the SGW through an S11 interface;
  • the SGW is configured to be connected to the user plane gateway through an S1-U1 interface; and is further configured to support management of an S1-U1 interface connection with the user plane gateway;
  • the macro base station where the control plane gateway is configured; is configured to be connected to the MME through an S1-MME1 interface, and connected to the small cell base station through an S1-MM2 interface, and the interface between the user plane gateway and the user plane gateway includes X-1 interface, S1-U2 interface; also configured to support management of S1-U2 interface connection with the user plane gateway, support management control plane link with the small cell base station; control the user plane gateway management user plane gateway An S1-U1 interface connection with the SGW, and an S1-U2 interface between the user plane gateway and the base station;
  • the user plane gateway is configured to be connected to the SGW through an S1-U1 interface, and connected to the macro base station through an S1-U2 interface and an X-1 interface, and through the S1-U2 between the small cell base station and the small base station.
  • Interface connection also configured to support management of the S1-U1 interface connection with the SGW, and management of the S1-U2 interface connection with the base station;
  • the small cell base station is configured to be connected to the user plane gateway through an S1-U2 interface, and is connected to the macro base station through an S1-MME2 interface; and the data radio bearer of the LTE system is established between the terminal and the terminal.
  • the communication is performed on the DRB, and the control plane link is supported between the support and the control plane gateway, and the S1-U2 interface is managed with the user plane gateway.
  • the macro base station and the small cell base station are also connected through an X-3 interface.
  • the user plane gateway is set in the SGW; the control plane gateway is set in the MME; the MME is configured with a control plane gateway; and is configured to be connected to the SGW through an S11 interface and an X-1 interface.
  • the S1-MME2 interface is respectively connected to the macro base station and the small cell base station; and is further configured to support managing two S1-MME2 interfaces for the same user and respectively connecting to different base stations;
  • the SGW where the user plane gateway is configured, is configured to be connected to the MME through an S11 interface and an X-1 interface, and is respectively connected to the macro base station and the small cell base station through the S1-U2 interface;
  • the same user manages two S1-U2 interfaces and connects to different base stations.
  • the embodiment of the invention further provides a method for implementing network access by a small cell base station access system, which is set in a small cell base station access system, a control plane gateway, connected to the radio access network and the core network, configured to construct a control plane link between the core network and the radio access network;
  • a user plane gateway connected to the radio access network and the core network, configured to construct a user plane link between the core network and the radio access network;
  • the method includes:
  • control plane data of the access terminal is processed through the established control plane link
  • user plane data of the access terminal is processed through the established user plane link
  • the method further includes: establishing a connection link between the control plane gateway and the user plane gateway; and controlling and managing the user plane gateway by the control plane gateway through the established connection link.
  • the control and management of the control plane gateway to the user plane gateway includes:
  • the user plane gateway is two or more; the method further includes:
  • the method also includes:
  • the control plane gateway completes the inter-node negotiation when the terminal moves across the control plane gateway through the connection link.
  • the processing, by the established control panel link, processing the control plane data of the access terminal includes: by using the established control plane link, the control plane gateway processes the control plane data, and aggregates the data from different radio access network nodes. Signaling is sent to the core network, or signaling from the core network is distributed to different radio access network nodes.
  • the aggregation or distribution includes:
  • the signaling connection is managed according to the signaling of the core network or the radio access network node.
  • the terminal When the terminal supports multiple streams, the terminal saves a signaling connection between the control plane gateway and multiple radio access network nodes.
  • the method also includes: instructing the user plane gateway to manage the corresponding data connection.
  • the mapping relationship is a one-to-one mapping relationship; the signaling is forwarded according to the mapping relationship; or the mapping relationship is a one-to-many mapping relationship, and the signaling is forwarded according to a specified rule.
  • the method further includes: migrating corresponding context configuration information related to the terminal related or air interface connection.
  • the processing of the user plane data of the access terminal by the established user plane link comprises: processing the user plane data by using the established user plane link, and collecting data from different radio access network nodes and sending the data to the The core network, or distribute data from the core network to different radio access network nodes.
  • the aggregation or distribution includes:
  • the maintenance includes mapping between the core network and the user plane gateway, and the data channel between the user plane gateway and the radio access network node; the data is forwarded according to the mapping relationship, and the mapping relationship is managed.
  • the mapping relationship is a one-to-one mapping relationship
  • the mapping relationship is a one-to-many mapping relationship.
  • the user plane gateway maintains a one-to-many relationship in the context information of a terminal: in the uplink direction, the user plane gateway aggregates multiple data channels into one data channel for transmission; in the downlink direction, the user plane gateway is configured according to Pre-set rules for data shunting.
  • the data channel between the management user plane gateways includes establishment, deletion Except and tampering; and,
  • the embodiments of the present invention provide that a control plane link and a user plane link are separately established, and the small cell base station access system processes the control plane data of the access terminal through the established control plane link, and establishes a user plane link pair.
  • the user plane data of the access terminal is processed.
  • the terminal and the two different base stations such as a macro cell (base station) and a small cell, are separated by the control plane and the data plane.
  • Base station There are data transmission and reception at the same time, which increases user throughput and enhances mobile performance, and solves the problem that users switch between cells so that information exchange between nodes is frequent and impacts on the core network, thereby realizing a large number of small sides on the wireless side.
  • FIG. 1 is a schematic diagram of an overall architecture of an LTE in a related art
  • 2(a) to 2(d) are schematic diagrams showing the protocol architecture of the control plane and the user plane in the related art LTE architecture
  • FIG. 4 is a flowchart of a method for implementing network access by a small cell base station access system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram showing the logical function structure of a first embodiment of a small cell base station access system according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of establishing a GTP-U channel according to a first embodiment of a small cell base station access system according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of deleting a GTP-U channel in a first embodiment of a small cell base station access system according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart of a GTP-U channel replacement in a first embodiment of a small cell base station access system according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram showing the logical function structure of a second embodiment of a small cell base station access system according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram showing the logical function structure of a third embodiment of a small cell base station access system according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram showing the logical function structure of a second embodiment of a small cell base station access system according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram showing the logical function structure of a third embodiment of a small cell base station access system according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram showing the logical function structure of a third embodiment of a small cell base station access system according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of establishing a GTP-U channel of a third embodiment of a small cell base station access system according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of deleting a GTP-U channel in a third embodiment of a small cell base station access system according to an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of GTP-U channel replacement in a third embodiment of a small cell base station access system according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram showing the logical function structure of a fourth embodiment of a small cell base station access system according to an embodiment of the present invention.
  • FIG. 15 is a schematic flowchart of establishing a GTP-U channel of a fourth embodiment of a small cell base station access system according to an embodiment of the present invention.
  • 16 is a schematic flowchart of deleting a GTP-U channel according to a fourth embodiment of a small cell base station access system according to an embodiment of the present invention.
  • FIG. 17 is a schematic flowchart of GTP-U channel replacement in a fourth embodiment of a small cell base station access system according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram showing the logical function structure of a fifth embodiment of a small cell base station access system according to an embodiment of the present invention.
  • FIG. 19 is a schematic flowchart of a GTP-U channel establishment according to a fifth embodiment of a small cell base station access system according to an embodiment of the present invention.
  • 20 is a schematic flowchart of deleting a GTP-U channel in a fifth embodiment of a small cell base station access system according to an embodiment of the present invention
  • FIG. 21 is a schematic flowchart of a GTP-U channel replacement in a fifth embodiment of a small cell base station access system according to an embodiment of the present invention.
  • FIG. 22 is a schematic diagram showing the logical function structure of a sixth embodiment of a small cell base station access system according to an embodiment of the present invention. Preferred embodiment of the invention
  • FIG. 4 is a flowchart of a method for implementing network access by a small cell base station access system according to an embodiment of the present invention.
  • Figure, as shown in Figure 4 includes the following steps:
  • Step 400 The small cell base station access system establishes a control plane link and a user plane link respectively.
  • a control plane gateway for connecting the radio access network and the core network is newly added, and the link between the core network and the radio access network constructed by the control plane gateway is Control plane link.
  • the control plane gateway Through the control plane gateway, a large number of radio access network nodes are connected to the core network, and the control plane gateway is used as a convergence distribution node for control plane signaling, and the signaling from different radio access network nodes is aggregated and sent to the core network. , or distribute signaling from the core network to different radio access network nodes.
  • control plane gateway serves as a management network element of the radio access network node, and further includes coordinated management of one or more radio access network nodes.
  • the control plane gateway connects one or more MMEs through the interface S1-MME1, and connects one or more eNBs through the S1-MME2 interface.
  • a user plane gateway for connecting the radio access network and the core network is newly added, and the link between the core network and the radio access network constructed by the user plane gateway is User plane link.
  • the user plane gateway serves as a convergence distribution node of the user plane data, and aggregates data from different radio access network nodes and sends the data to the core network, or Distribute data from the core network to different radio access network nodes.
  • the user plane gateway connects one or more SGWs through the interfaces S1-U1, and connects one or more through the S1-U2 interface.
  • Multiple eNBs may also be applied to the structure of the embodiment of the present invention.
  • the method of the embodiment of the present invention further includes: establishing an S11 interface, connecting between the MME and the SGW, and setting the control and management of the SGW by the MME, which is an interface of the related technology;
  • the S1-MME1 interface is connected between the control plane gateway and the MME, and may be an existing S1-MME interface.
  • the S1-MME2 interface is connected between the control plane gateway and the base station, and may be an existing S1-MME interface, or may add feedback information of the access network on the basis of the information, so as to be better for offloading decision.
  • the S1-U1 interface is connected between the user plane gateway and the SGW, and is configured to transmit data.
  • it can be an existing S1-U interface, using the protocol stack IP/UDP/GTP-U.
  • the S1-U2 interface is connected between the user plane gateway and the base station, and is configured to transmit data.
  • So the existing S 1 -U interface is similar, using the protocol stack IP/UDP/GTP-U.
  • the method of the embodiment of the present invention further includes: the small cell base station accessing the system establishes a connection link between the control plane gateway and the user plane gateway.
  • the control plane gateway implements control and management of the user plane gateway, and specifically includes: controlling a channel between the user plane gateway and the core network, and establishing a connection between the user plane gateway and the radio access network node. , delete and modify.
  • the modifications include modification of attributes and modification of forwarding relationships.
  • the control plane gateway can control one or more user plane gateways, and the user plane gateway can be connected to one or more control plane gateways, facilitating system expansion and load sharing.
  • the method of the embodiment of the present invention further includes: the small cell base station accessing system establishes a connection link between the user plane gateways, and the connection link is used to implement data between the transmission nodes when the terminal moves across the user plane gateway;
  • the control plane gateway can also implement inter-node negotiation when the terminal moves across the control plane gateway through the connection link.
  • Step 401 The small cell base station access system processes the control plane data of the access terminal through the established control panel link, and processes the user plane data of the access terminal by using the established user plane link.
  • the control plane gateway processes the control plane data, aggregates signaling from different radio access network nodes and sends it to the core network, or distributes signaling from the core network to different wireless.
  • Access network node includes: managing a signaling connection between the core network and the control plane gateway, and between the control plane gateway and the radio access network node, including establishing, deleting, and modifying; maintaining context information related to the terminal, including the core network and the control.
  • the terminal when the terminal supports multiple streams, that is, the terminal and two different base stations, such as a macro cell (base station) and a small cell (base station)
  • base station a macro cell
  • base station a small cell
  • different base stations are described by the macro cell and the small cell or the eNB, and one terminal can save the signaling connection between the control plane gateway and the plurality of radio access network nodes;
  • the signaling connection is managed according to the signaling of the core network or the radio access network node. Further, when the connection link between the control plane gateway and the user plane gateway is established, the user equipment gateway is instructed to perform a corresponding data connection through the X-1 interface, that is, through the user plane link of the user plane gateway. management. Further, if the received signaling from the core network or the radio access network node indicates that the control plane gateway or the connection between the user plane gateway and the core network does not need to be modified, the signaling is terminated at the control plane gateway.
  • mapping relationship When the mapping relationship is a one-to-one mapping relationship, the signaling is forwarded according to the mapping relationship; if the mapping relationship is a one-to-many mapping relationship, the proxy forwards the signaling according to a specified rule.
  • the specified rule can be pre-set or configured.
  • the specified rule may be a one-to-many mapping relationship between the core network through the control plane gateway and multiple radio access network nodes.
  • the control plane gateway When there is a cross-control plane gateway, between the control plane gateways, the context configuration information related to the terminal-related or air interface connection is also migrated.
  • the control plane gateway is a radio access network node for the core network and a core network for the radio access network node.
  • the user plane gateway processes the user plane data, aggregates data from different radio access network nodes and sends the data to the core network, or distributes data from the core network to different wireless connections.
  • Network node Specifically, the method includes: managing a data channel between the core network and the user plane gateway, and between the user plane gateway and the radio access network, including establishing, deleting, and modifying; maintaining, including the core network and the user plane gateway, and the user plane gateway.
  • the mapping relationship with the data channel between the nodes of the radio access network; the data is forwarded according to the mapping relationship, and the mapping relationship is managed, including newly created, deleted, and modified.
  • the mapping relationship may be a one-to-one mapping relationship or a one-to-many mapping relationship.
  • a one-to-many mapping relationship multiple data channels belong to the same terminal, for example, the terminal is connected to different base stations.
  • the user plane gateway maintains a one-to-many relationship in the context information of one terminal:
  • the user plane gateway aggregates multiple data channels into one data channel for transmission.
  • the user plane gateway performs data offload according to pre-set rules such as a shunting algorithm, such as shunting according to load.
  • the data channel between the user plane gateways is managed, including establishing, deleting, and modifying, and maintaining the data channel mapping relationship between the access network node and the user plane gateway, and the core network user plane gateway.
  • the data channel mapping relationship between the data channels is forwarded according to the mapping relationship, and the management of the mapping relationship is supported, including new creation, deletion, and modification.
  • the user plane gateway is not available to the core network.
  • the line accesses the network node, and for the radio access network node it is the core network.
  • the user plane gateway and the control plane gateway in the embodiment of the present invention are logical function nodes, which can be respectively deployed as independent physical nodes or set in the original physical nodes according to actual conditions.
  • the method for implementing network access is described in detail below in conjunction with the specific composition mode of the small cell base station access system according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a logical function structure of a first embodiment of a small cell base station access system according to an embodiment of the present invention.
  • the UP-GW and the CP-GW are independent physical nodes respectively.
  • each network node The functions are:
  • the MME is connected to the control plane gateway through the S 1 -MME1 interface, and is connected to the SGW through the S11 interface.
  • management including setup, deletion and modification
  • the SGW is connected to the user plane gateway through the S1-U1 interface.
  • it is also configured to support the management of the S1-U1 interface with the user plane gateway. This function is similar to the function of the GTP-U channel between the SGW and the base station in the Releases l. The function of the S1-U interface.
  • the control plane gateway is connected to the MME through the S1-MME1 interface, and is connected to the macro base station or the small cell base station through the S1-MM2 interface, and is connected to the user plane gateway through the X-1 interface, and between the other control plane gateways.
  • Connected through the XC interface set to inter-node negotiation when moving across the control plane gateway; set to support management (including setup, deletion, and modification) control plane links with the MME, and manage control plane links with the base station
  • the function is also configured to manage the related GTP-U channel, and the related GTP-U channel includes an S1-U1 interface connection established between the user plane gateway and the SGW, and an S1-U2 interface connection established between the user plane gateway and the base station;
  • the control plane gateway When a certain E-RAB of a terminal shifts between small cell base stations, the control plane gateway maintains a control plane link between the control plane gateway and the MME, that is, between the control plane gateway and the MME.
  • the control plane link does not need to be changed, and the E-RAB of the terminal can be moved between the small cells. Therefore, the impact on the MME that the terminal may transfer between the small cell base stations is avoided; the control plane gateway is transparent to the macro cell.
  • the control plane gateway can have access control functions.
  • the user plane gateway is connected to the SGW through the S1-U1 interface, and is connected to the macro base station or the small cell base station through the S1-U2 interface, and is connected to the control plane gateway through the X-1 interface, and the other user plane base station.
  • Connected through the XU interface set to transfer data between nodes when moving across the user plane gateway. It is configured to support management of the S1-U1 interface connection with the SGW and management of the S1-U2 interface connection with the base station under the control of the control plane gateway;
  • the user plane gateway avoids the terminal between the small cell base stations by maintaining the GTP-U channel from the user plane gateway to the SGW. The impact of the transfer on the SGW;
  • the user plane gateway is transparent to the macro cell.
  • the macro cell is connected to the control plane gateway through the S1-MME2 interface, and is connected to the user plane gateway through the S1-U2 interface, and is connected to the UE through the Uu interface, and is connected to the small cell base station through the X-3 interface. .
  • the base station with the LTE system Releasel l it is also configured to support the management control plane link with the control plane gateway, and manage the S1-U1 interface connection with the user plane gateway.
  • the macro cell is managed by mobility.
  • the small cell is connected to the user plane gateway through the S1-U2 interface, and is connected to the control plane gateway through the S1-MME2 interface, and is connected to the UE through the Uu interface, and is connected to the macro base station through the X-3 interface.
  • DRB data radio bearer
  • the protocol stack of the Uu interface of the preferred embodiment of the present invention is the same as the related technology.
  • the protocol stack of the S1-MME1 interface and the S1-MME2 interface of the preferred embodiment of the present invention and the related technology S1-MME The interfaces are the same, and the establishment process is the same.
  • the protocol stacks of the S1-U1 interface and the S1-U2 interface of the preferred embodiment of the present invention are the same as those of the related art S1-U interface, and the establishment process is also the same;
  • X- of the preferred embodiment of the present invention The protocol stack of the interface is the same as that of the related technology S1-C interface, and the establishment process is the same.
  • processing the control plane data according to the control plane link includes: in the uplink direction: the terminal transmits data to one or more base stations through one or more wireless interfaces, one or more The base station sends the data to the control plane gateway through the S1-MME2 interface, and the control plane gateway sends the data to the MME through the S1-MME1 interface, and the control plane gateway completes the convergence from different.
  • the signaling of the radio access network node is sent to the core network; in the downlink direction: the MME sends data to the control plane gateway through the S1-MME1 interface, and the control plane gateway sends the data to one or more base stations through the S1-MME2 interface.
  • the base station transmits data to the terminal through the wireless interface.
  • control plane gateway distributes the signaling from the core network to different radio access network nodes.
  • the control plane link between the terminal and the small cell base station may or may not exist. If not, the control plane data between the terminal and the small cell base station is forwarded by the macro base station (ie, the X-3 interface).
  • Processing user plane data according to the user plane link includes: In the uplink direction: the terminal sends data to one or more base stations through one or more radio interfaces, and one or more base stations send data to the user plane through the S1-U2 interface.
  • the gateway sends the data to the SGW through the S1-U1 interface.
  • the user plane gateway serves as the aggregation distribution node of the user plane data, and aggregates data from different radio access network nodes and sends the data to the core network.
  • the SGW sends data to the user plane gateway through the S1-U1 interface, and the user plane gateway sends data to one or more base stations through the S1-U2 interface, and the base station sends data to the terminal through the wireless interface.
  • the user plane gateway serves as the user.
  • the aggregation distribution node of the polygon data distributes data from the core network to different radio access network nodes.
  • FIG. 6 is a schematic flowchart of establishing a GTP-U channel in a first embodiment of a small cell base station access system according to an embodiment of the present invention.
  • the control plane gateway CP-GW is responsible for GTP-U channel management, as shown in FIG. 6,
  • the terminal and the macro base station have established an air interface link, and the macro base station has configured a measurement task for the terminal, and the terminal has reported the measurement result to the macro base station, including:
  • Step 600 to Step 601 The macro base station (macrocell) receives the measurement report.
  • the MME sends a radio access bearer management message to the control plane gateway through the S1-MME interface.
  • the radio access bearer management message includes at least: a transport layer address (TLL address-CN) of the GTP-U channel corresponding to a radio access bearer (E-RAB) in the core network, and a virtual path of the GTP-U channel
  • TLL address-CN transport layer address
  • E-RAB radio access bearer
  • the connection identifies the GTP-TEID-CN, as well as the E-RAB related information.
  • Step 602 The control plane gateway negotiates with the macro base station, and the macro base station returns related information of the small cell base station (small cell) to the control plane gateway, such as the cell identifier of the small cell base station, the measurement result, and the like.
  • Step 603 The control plane gateway sends a radio bearer configuration request message requesting to establish a GTP-U channel to the cellular base station.
  • the radio bearer configuration request message includes at least: TNL address-CN, GTP-TEID-CN, and E-RAB related information.
  • Step 604 Establish a small cell base station and a user plane gateway, and a user plane gateway and SGW Between the GTP-U channels.
  • Step 605 The small cell base station sends a radio bearer configuration confirmation message to the control plane gateway to confirm that the GTP-U channel of the core network is established.
  • the radio bearer configuration confirmation message includes at least: a transport layer address (TNL address-SGW-SC) of the GTP-U channel corresponding to the current E-RAB on the small cell, and a virtual link identifier GTP-TEID of the GTP-U channel.
  • TNL address-SGW-SC transport layer address
  • GTP-TEID virtual link identifier
  • FIG. 7 is a schematic flowchart of deleting a GTP-U channel in a first embodiment of a small cell base station access system according to an embodiment of the present invention. As shown in FIG. 7, the method includes:
  • Step 700 The control plane gateway sends a request to the small cell to delete the radio bearer configuration request of the GTP-U channel, where the message includes at least information about the E-RAB corresponding to the GTP-U channel to be deleted.
  • Step 701 The small cell and the user plane gateway respectively delete the small cell and the user plane gateway, and the user plane gateway and the SGW respectively delete the GTP-U channel between the user plane gateway and the SGW.
  • Step 702 The small cell sends a radio bearer configuration confirmation indicating that the GTP-U channel has been deleted to the control plane gateway.
  • FIG. 8 is a schematic flowchart of a GTP-U channel replacement in a first embodiment of a small cell base station access system according to an embodiment of the present invention. It is assumed that a terminal moves from a small cell 1 to a small cell 2, as shown in FIG. 8, including: The process shown in FIG. 6 selects and establishes a GTP-U channel from the small cell 2 to the SGW, the GTP-U channel is between the SGW and the user plane gateway, and the two segments of the GTP between the user plane gateway and the small cell 2.
  • U channel composition ;
  • the management of the GTP-U channel does not affect the core network, thereby making it possible to introduce a large number of small cells on the wireless side.
  • FIG. 9 is a schematic diagram showing the logical function structure of a second embodiment of a small cell base station access system according to an embodiment of the present invention.
  • each network node is implemented and
  • the control plane gateway and the user plane gateway are combined in the same physical entity, and the X-1 interface between the two is the gateway internal interface, between the CP-GW and the UP-GW.
  • the communication is done through the internal implementation of GW.
  • the network access method is the same as that in the first embodiment, and details are not described herein again.
  • the specific implementation of the establishment, deletion, and replacement of the GTP-U channel is the same as that in the first embodiment, and details are not described herein again.
  • FIG. 10 is a schematic diagram showing the logical function structure of a third embodiment of a small cell base station access system according to an embodiment of the present invention.
  • a control plane gateway is set up in a macro base station and is set in a macro base station.
  • the MME1 interface is an interface between the MME and the M-eNB
  • the S1-U1 interface is an interface between the SGW and the M-eNB
  • S1-MME2 are interfaces between the M-eNB and the S-eNB.
  • the functions of each network node are:
  • control plane gateway and the user plane gateway are the same as those in the first embodiment shown in Fig. 5, except that the interface between the control plane gateway and the user plane gateway is an internal interface.
  • the macro cell is connected to the MME through the S1-MME1 interface, and has an S1-U2 interface, an S1-MME2 interface, and an X-3 interface with the small cell, and is connected to the UE through the Uu interface.
  • the base station with the LTE system Release l it is also configured to support the management control plane link with the small base station, similar to the function of managing the control plane link between the MME and the base station in the Release, ie, S1-MME
  • the function of the interface supports the management of the S1-U2 interface connection with the small base station, similar to the function of the MME controlling the SGW to manage the related GTP-U channel in the Release les, that is, the function of the S1-U interface.
  • the macro base station When a certain E-RAB of a terminal shifts between small cells, the macro base station maintains the control plane link between the macro base station and the MME, and maintains the GTP-U channel from the macro base station to the SGW. The way to avoid the impact of this transfer on the MME and SGW.
  • the macro cell is also set up for access control and mobility management.
  • the small cell has an S1-U2 interface, an S1-MME2 interface, and an X-3 interface, and is connected to the UE through the Uu interface.
  • DRB data radio bearer
  • the protocol stack of the Uu interface of the preferred embodiment of the present invention is the same as the related technology.
  • the protocol stack of the S1-MME1 interface and the S1-MME2 interface of the preferred embodiment of the present invention and the prior art S1- The MME interface is the same, and the establishment process is the same; the S1-U1 interface of the preferred embodiment of the present invention, the protocol stack of the S1-U2 interface is the same as that of the prior art S1-U, and the establishment process is also the same. Same.
  • processing the control plane data according to the control plane link includes: In the uplink direction: the terminal transmits data to one or more base stations through one or more radio interfaces, and for the small base station, The data is sent to the macro base station through the S1-MME2 interface, and the macro base station sends the data to the MME through the S1-MME1 interface. In the downlink direction: the MME sends the data to the macro base station through the S1-MME1 interface, and the macro base station passes the S1-MME2 interface. The data is sent to the small base station or sent to the terminal through the wireless interface, and the small base station transmits the data to the terminal through the wireless interface.
  • the control plane link from the terminal to the small base station may or may not exist. If not, the control plane between the terminal and the small base station needs to be forwarded through the macro base station (ie, the X-3 interface).
  • Processing the user plane data according to the user plane link includes: In the uplink direction, the terminal sends data to one or more base stations through one or more radio interfaces, and the small base station needs to send data to the macro base station through the S1-U2 interface.
  • the macro base station sends data to the SGW through the S1-U1 interface; in the downlink direction: the SGW sends data to the macro base station through the S1-U1 interface, and the macro base station sends the data to the small base station through the S1-U2 interface or sends the data to the terminal through the wireless interface.
  • the small base station transmits data to the terminal through the wireless interface.
  • FIG. 11 is a schematic flowchart of a GTP-U channel establishment according to a third embodiment of a small cell base station access system according to an embodiment of the present invention. As shown in FIG. 11, the method includes:
  • Step 1100 The MME sends a radio access bearer management message to the macro cell through the S1-MME1 interface.
  • Step 1101 The macro cell sends a request to the small cell to establish a radio bearer configuration request message for the GTP-U channel.
  • Step 1102 Establish a GTP-U channel between the macro cell and the small cell.
  • Step 1103 The small cell sends a radio bearer configuration confirmation message to the macro cell to confirm its establishment of the GTP-U channel to the macro cell.
  • FIG. 12 is a schematic diagram of a GTP-U channel deletion process of the third embodiment of the small cell base station access system of the present invention. As shown in FIG. 12, the method includes:
  • Step 1200 The macro cell sends a request to the small cell to delete the radio bearer configuration request of the GTP-U channel.
  • FIG. 13 is a schematic flowchart of a GTP-U channel replacement in a third embodiment of a small cell base station access system according to an embodiment of the present invention. It is assumed that a terminal moves from a small cell 1 to a small cell 2, as shown in FIG. 13, including: the terminal is in a small cell. 1 When moving to the small cell 2, the macro cell performs the process shown in Fig. 11 to establish the GTP-U channel of the small cell 2 to the macro cell. And delete the GTP-U channel on the small cell 1 according to the process shown in FIG.
  • the management of the GTP-U channel does not affect the core network, thereby making it possible to introduce a large number of small cells on the wireless side.
  • FIG. 14 is a schematic diagram showing the logical function structure of a fourth embodiment of a small cell base station access system according to an embodiment of the present invention.
  • a gateway is set between a macro base station and a small cell base station (GW2), GW2 is responsible for the control plane and user plane management of the small cell at the same time, compared with the structure of the third embodiment shown in FIG. 10, the difference is: X-3 interface, S1-MME2 interface (or X-1 interface) It is called S1-MME2+ interface together with S1-MME2 interface, and S1-U2 interface, which is the interface between GW2 and small cell base station, and also the interface between GW2 and macro base station.
  • the functions of each network node are:
  • the implementation of the MME and the SGW is the same as that in the first embodiment shown in FIG. 5.
  • the macro cell is not described here, and the S1-MME1 interface is connected with the MME, and the S1-U2 interface is established with the small cell base station via the gateway GW2.
  • the S1-MME2 interface (including the X-3 interface) is connected, and is connected to the UE through the Uu interface.
  • the base station with the LTE system Releasel 1 it is also configured to support the function of managing the control plane link with the gateway GW2.
  • the macrocell is set up for access control and mobility management.
  • the gateway GW2 supports the functions of the management control plane link and the user plane link with the base station, and functions like the S1-MME interface function of the management control plane link between the MME and the base station in the Release, and the Releasel l
  • the function of managing the user plane link between the SGW and the base station is the function of the S1-U interface.
  • the gateway GW2 shields the transfer by maintaining a control plane link and a user plane link between the macro base stations. Possible impact on the MME and SGW.
  • the gateway is transparent to the macro cell.
  • a small cell, and an S1-U2 interface and an S1-MME2 interface are established between the macro cell and the macro cell via the gateway GW2. (further including the X-3 interface) connection, and the UE is connected through the Uu interface. It is set to support the establishment of the data radio bearer (DRB) of the LTE system with the terminal, and has all the functions of communication on the DRB, and is also configured to support the management control plane link and the S1-U2 interface connection with the gateway.
  • DRB data radio bearer
  • the protocol stack of the Uu interface of the preferred embodiment of the present invention is the same as the related art.
  • the S1-MME1 interface, the protocol stack of the S1-MME2 interface, and the related technology S1-MME are provided in the preferred embodiment of the present invention.
  • the interface is the same, and the setup process is the same.
  • the protocol stack of the S1-U1 interface and the S1-U2 interface of the preferred embodiment of the present invention is the same as the S1-U interface of the related art, and the establishment process is also the same.
  • processing the control plane data according to the control plane link includes: in the uplink direction, the terminal transmits data to one or more base stations through one or more wireless interfaces, and the small base station passes through S1- The MME2 interface sends data to the GW2, and the GW2 sends the data to the macro base station through the S1-MME2 interface, and the macro base station sends the data to the MME through the S1-MME1 interface.
  • the MME sends the data to the Acer through the S1-MME1 interface.
  • the station transmits the data to the GW2 through the S1-MME2 interface or sends the data to the terminal through the S1-MME2 interface.
  • the GW2 sends the data to the small base station through the S1-MME2 interface, and the small base station sends the data to the terminal through the wireless interface.
  • the control plane link from the terminal to the small base station may or may not exist. If it does not exist, the control plane between the terminal and the small base station needs to be forwarded through the macro base station (ie, the X-3 interface).
  • the processing of the user plane data according to the user plane link includes: in the uplink direction, the terminal sends data to one or more base stations through one or more radio interfaces, and for the small base station, the data needs to be sent to the GW2 through the S1-U2 interface.
  • GW2 sends the data to the macro base station through the S1-U2 interface, and the macro base station sends the data to the SGW through the S1-U1 interface; in the downlink direction: the SGW sends the data to the macro base station through the S1-U1 interface, and the macro base station passes the S1-
  • the U2 interface sends data to the small base station or directly to the terminal through the wireless interface, and the small base station sends data to the terminal through the wireless interface.
  • FIG. 15 is a schematic flowchart of the GTP-U channel establishment in the fourth embodiment of the small cell base station access system according to the embodiment of the present invention.
  • the gateway is the GW2 shown in FIG. 14, as shown in FIG.
  • Step 1500 The MME sends a radio access bearer management message to the macro cell through the S1-MME interface.
  • Step 1502 Establish a GTP-U channel between the macro cell and the small cell, and between the gateway and the macro cell.
  • Step 1503 The small cell sends a radio bearer configuration confirmation message to the macro cell via the gateway.
  • FIG. 16 is a schematic flowchart of deleting a GTP-U channel according to a fourth embodiment of a small cell base station access system according to an embodiment of the present invention. As shown in FIG. 16, the method includes:
  • Step 1600 The macro cell sends a wireless bearer configuration request message requesting to delete the GTP-U channel to the small cell via the gateway.
  • Step 1601 Delete the GTP-U channel between the small cell and the gateway, and between the gateway and the macro cell.
  • Step 1602 The small cell sends a GTP-U channel deletion confirmation message to the macro cell via the gateway.
  • FIG. 17 is a schematic flowchart of a GTP-U channel replacement in a fourth embodiment of a small cell base station access system according to an embodiment of the present invention. It is assumed that a terminal moves from a small cell 1 to a small cell 2, as shown in FIG. 17, including: the terminal is in a small cell. 1 When moving to the small cell 2, the macro cell refers to the process shown in Fig. 15, but at this time, only the GTP-U channel of the small cell 2 to the gateway needs to be established. Referring to the process shown in Figure 16, the GTP-U channel between the small cell 1 and the gateway is deleted.
  • the GTP-U channel consists of a macrocell and a gateway, and two GTP-U channels between the gateway and the small cell 1.
  • the management of the GTP-U channel does not affect the core network, so that it is possible to introduce a large number of small cells on the wireless side.
  • FIG. 18 is a schematic diagram showing the logical function structure of the fifth embodiment of the small cell base station access system according to the embodiment of the present invention.
  • the control plane gateway is set in the macro base station, and the user plane gateway is independent. Entity, the functions of each network node are:
  • the MME is connected to the macro base station through the S1-MME1 interface, and is connected to the SGW through the S11 interface. Supports the existing functions of the MME of the LTE system Release 11.
  • the SGW is connected to the user plane gateway through the S1-U1 interface.
  • SGW In addition to the existing functions of the SGW with the LTE system Release, it is also set to support management of the S1-U1 with the user plane gateway. Interface connection.
  • the interface with the MME is connected through the S1-MME1 interface, and is connected to the small cell base station through an S1-MM2 interface (including an X-3 interface), and the interface between the user plane gateway includes an X-1 interface and an S1-U2 interface.
  • the base station with the LTE system Release l it is also configured to support the management of the S1-U2 interface connection with the user plane gateway, and to support the management of the control plane link with the small cell base station, similar to the Release in the Release
  • the function of managing the control plane link between the MME and the base station is the function of the S1-MME interface.
  • the user plane gateway is also configured to control the user plane gateway to manage the S1-U2 interface connection, similar to the MME controlling the SGW to manage the relevant GTP-U channel in the Release les.
  • the function is the function of the S1-U interface, wherein the related GTP-U channel includes an S1-U1 interface connection between the user plane gateway and the SGW, and an S1-U2 interface connection between the user plane gateway and the base station.
  • the macro cell performs access control and mobility management.
  • the macro cell shields the impact on the MME by maintaining the control plane link from the control plane gateway to the MME. .
  • the user plane gateway is connected to the SGW through the S1-U1 interface, and is connected to the macro base station through the S1-U2 interface and the X-1 interface, and is connected to the small cell base station through the S1-U2 interface. It is configured to support the management of the S1-U1 interface connection with the SGW, and the function of managing the S1-U2 interface connection with the base station, similar to the function of managing the GTP-U channel between the SGW and the base station in the Release 1 and the S1-U interface. Functionality, these management processes are controlled by the control plane gateway.
  • the user plane gateway When a certain E-RAB of a terminal moves between small cells, the user plane gateway shields the SGW from the transfer by maintaining the GTP-U channel from the user plane gateway to the SGW. influences.
  • the user plane gateway is transparent to the macro cell.
  • the small cell is connected to the user plane gateway through the S1-U2 interface, and is connected to the macro base station through the S1-MME2 interface (including the X-3 interface), and is connected to the UE through the Uu interface. It is set to support the establishment of the data radio bearer (DRB) of the LTE system with the terminal, and all functions of communication on the DRB are further set to support the management control plane link with the control plane gateway, and the user plane gateway Manage the S1-U2 interface connection.
  • DRB data radio bearer
  • the protocol stack and phase of the Uu interface of the preferred embodiment of the present invention The protocol is the same; the protocol stack of the S1-MME1 interface and the S1-MME2 interface of the preferred embodiment of the present invention is the same as that of the related technology S1-MME, and the establishment process is also the same; the S1-U1 interface, S1-U2 of the preferred embodiment of the present invention
  • the protocol stack of the interface is the same as that of the related art S1-U, and the establishment process is also the same;
  • the protocol stack of the X-1 interface of the preferred embodiment of the present invention is the same as that of the related art S1-C, and the establishment process is also the same.
  • processing the control plane data according to the control plane link includes: in the uplink direction, the terminal transmits data to one or more base stations through one or more radio interfaces, and for the small base station, The data is also sent to the macro base station through the S1-MME2 interface, and the macro base station sends the data to the MME through the S1-MME1 interface.
  • the MME sends the data to the macro base station through the S1-MME1 interface
  • the macro base station passes the S1-
  • the MME2 interface sends the data to the small base station or directly to the terminal through the wireless interface
  • the small base station sends the data to the terminal through the wireless interface.
  • the control plane link between the small base station and the terminal may or may not exist. If not, the control plane between the terminal and the small base station needs to be forwarded by the macro base station (ie, the X-3 interface). .
  • Processing the user plane data according to the user plane link includes: In the uplink direction, the terminal sends data to one or more base stations through one or more radio interfaces, and one or more base stations send data to the user plane through the S1-U2 interface.
  • the gateway the user plane gateway sends data to the SGW through the S1-U1 interface; in the downlink direction: the SGW sends data to the user plane gateway through the S1-U1 interface, and the user plane gateway sends the data to one or more through the S1-U2 interface.
  • Base stations, the base station then sends data to the terminal through the wireless interface.
  • FIG. 19 is a schematic flowchart of a GTP-U channel establishment according to a fifth embodiment of a small cell base station access system according to an embodiment of the present invention. As shown in FIG. 19, the method includes:
  • Step 1900 The MME sends a radio access bearer management message to the macro cell through the S1-MME interface.
  • Step 1901 The macro cell sends a request to the small cell to establish a radio bearer configuration request message for the GTP-U channel.
  • Step 1902 Establish a GTP-U channel between the small cell and the user plane gateway, and between the user plane gateway and the SGW.
  • Step 1903 The small cell sends a radio bearer configuration confirmation message to the macro cell to confirm the core.
  • the GTP-U channel of the network is established.
  • FIG. 20 is a schematic flowchart of deleting a GTP-U channel according to a fifth embodiment of a small cell base station access system according to an embodiment of the present invention. As shown in FIG. 20, the method includes:
  • Step 2000 The macro cell sends a request to the small cell to delete the radio bearer configuration request message of the GTP-U channel.
  • Step 2001 Delete the GTP-U channel between the small cell and the user plane gateway, and between the user plane gateway and the SGW.
  • Step 2002 The small cell sends a GTP-U channel deletion confirmation message to the macro cell.
  • FIG. 21 is a schematic flowchart of a GTP-U channel replacement in a fifth embodiment of a small cell base station access system according to an embodiment of the present invention. It is assumed that the terminal moves from the small cell 1 to the small cell 2, as shown in FIG. 21, including: the terminal is in a small cell. 1 When moving to the small cell 2, the macro cell performs the process shown in FIG. 19 to establish a GTP-U channel of the small cell 2 to the SGW, the GTP-U channel including the SGW and the user plane gateway, and the user plane gateway and the small Two sections of GTP-U channel between cells 2. And delete the GTP-U channel on the small cell 1 according to the process described in FIG.
  • the management of the GTP-U channel does not affect the core network, so that it is possible to introduce a large number of small cells on the wireless side.
  • FIG. 22 is a schematic diagram of a logical function structure of a sixth embodiment of a small cell base station access system according to an embodiment of the present invention.
  • a user plane gateway is set to be SGW+ in the SGW
  • a control plane gateway is set in the MME to become an MME+, such as
  • the difference from the configuration of the first embodiment shown in FIG. 5 is that the S1-MME1 interface becomes the internal interface of the MME network element, the S1-U1 interface becomes the internal interface of the SGW network element, and the S1-MME2 interface becomes the interface.
  • the S1-U2 interface becomes an interface between the SGW and the macro base station, and between the SGW and the S-eNB, and the X-1 interface becomes an interface between the MME and the SGW.
  • the functions of the macro cell and the small cell are consistent with the related technologies, and the functions of the other network nodes are respectively:
  • the SGW is connected to the SGW interface and the X-1 interface, and is connected to the macro base station and the small cell base station through the S1-MME2 interface.
  • the S 1 -MME2 interfaces are respectively connected to different base stations.
  • SGW where a user plane gateway is set. It is connected to the MME through the S11 interface and the X-1 interface, and is connected to the macro base station and the small cell base station through the S1-U2 interface. In addition to the existing functions of the SGW of the LTE system Releasel, it is also configured to support the management of two S1-U2 interfaces for the same user and to connect to different base stations respectively.
  • the network access method is consistent with the related technologies; the method for establishing, deleting, and replacing the GTP-U channel is consistent with the related technologies.
  • the terminal due to the separation of the control plane from the data plane, the terminal has data transmission and reception simultaneously with two different base stations, such as a macro cell (base station) and a small cell (base station), thereby increasing user throughput.
  • base station a macro cell
  • base station small cell
  • the embodiments of the present invention respectively establish a control plane link and a user plane link, and the small cell base station access system processes the control plane data of the access terminal through the established control plane link, and establishes a user plane link.
  • the user plane data of the access terminal is processed.
  • the separation between the control plane and the data plane enables the terminal to transmit and receive data simultaneously with two different base stations, such as a macro cell (base station) and a small cell (base station), thereby increasing user throughput and enhancing mobile performance, and
  • the problem that the user switches between cells makes the information exchange between nodes frequent and impacts on the core network is solved, thereby realizing the introduction of a large number of small cell base stations on the wireless side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种小蜂窝基站接入系统及其实现网络接入的方法,包括分别建立控制面链路和用户面链路,小蜂窝基站接入系统通过建立的控制面链路对接入终端的控制面数据进行处理,通过建立的用户面链路对接入终端的用户面数据进行处理。本发明实施例通过控制面与数据面的分离,使得终端与两个不同的基站如宏蜂窝(基站)和小蜂窝(基站)同时存在数据收发,增加了用户吞吐量和增强了移动性能,并解决了用户在小区间切换使得节点间信息交互频繁、对核心网造成冲击的问题,进而实现了无线侧的大量小蜂窝基站的引入。

Description

一种小蜂窝基站接入系统及其实现网络接入的方法
技术领域
本发明涉及移动通信技术, 尤指一种小蜂窝基站接入系统及其实现网络 接入的方法。
背景技术
图 1为相关技术中长期演进系统(LTE, Long Term Evolution )的总体架 构示意图, 如图 1 所示, LTE 架构包括: 移动管理实体 ( MME, Mobility Management Entity ) , 服务网关( SGW, Serving GetWay ), 用户设备或称为 终端 (UE, User Equipment )和基站(eNodeB, 简称为 eNB ) , UE和 eNB 之间是 UU接口, eNB和 MME之间是 S 1 -MME ( SI for the control plane )接 口, eNB和 SGW之间是 Sl-U接口, eNB之间是 X2-U ( X2-User plane )和 X2-C ( X2-Control plane )接口。
图 2(a)~图 2(d)为相关技术中 LTE的 UE、 eNB和核心网( MME或 SGW ) 间控制面及用户面的协议架构,以及 eNB和 eNB之间控制面和用户面的协议 架构示意图, 如图 2(a)〜图 2(d)所示,
在 LTE 中, UE和 eNB 间接口从下往上分为以下几个协议层: 物理层 ( PHY, Physical layer ) 、 媒体接入控制层(MAC, Media Access Control ) 、 无线链路控制层( RLC, Radio Link Control )、分组数据汇聚层( PDCP, Packet Data Convergence Protocol )、无线资源控制层( RRC, Radio Resource Control )。 在 LTE中, UE和 eNB间接口的用户面协议栈从下往上分为以下几个协议层: PHY、 MAC, RLC, PDCP。 其中, PHY层主要设置为通过传输信道向 MAC 或更高层传送信息; MAC层主要设置为通过逻辑信道提供数据传输和负责无 线资源分配, 完成混合自动重传请求(HARQ, Hybrid ARQ ) 、 调度( SCH, Scheduling )、 优先级处理和复用解复用 (MUX, Multiplexing )等功能; RLC 层主要设置为提供用户和控制数据的分段和重传服务; PDCP层主要设置为 给 RRC 或用户面上层完成用户数据的传递; RRC层主要设置为完成广播 ( Broadcast ) 、 寻呼 (Paging ) 、 无线资源控制连接管理、 无线 7 载控制、 移动性功能、 终端测量报告和控制等。 在 LTE系统中, 终端只能与一个基站 间存在数据收发, 无疑限制了用户吞吐量和终端的移动性能。
在 LTE 中, S1-MME接口的协议栈从下往上分为以下几个协议层: L1 协议, L2协议, 因特网协议( IP, Internet Protocol ) , 流控制传输协议( SCTP, Stream Control Transmission Protocol ) , SI应用协议 ( Sl-AP, SI -Application Protocol ) 。
在 LTE中, Sl-U接口的协议栈从下往上分为以下几个协议层: L1协议, L2 协议, 用户数据协议 /因特网协议(UDP/IP ) , GPRS 隧道协议-用户面 ( GTP-U, GPRS Tunneling Protocol- User plane ) 。
在 LTE中, X2-C接口的的协议栈从下往上分为以下几个协议层: L1协 议, L2协议, IP, SCTP, X2应用协议(X2-AP, X2-Application Protocol ) 。
在 LTE中, X2-U接口的的协议栈从下往上分为以下几个协议层: L1协 议, : L2协议, UDP/IP, GTP-IL
图 3(a)〜图 3(c)分别为现有 S1 接口, Χ2接口和增强型无线接入承载 ( E-RAB ) 的建立流程示意图, 其中, S1 接口建立过程大致包括: eNB 向 MME发送 S1建立请求( SI SETUP REQUEST )消息, MME向 eNB返回 S1 建立响应(SI SETUP RESPONSE )消息。 X2接口的建立过程大致包括: eNBl 向 eNB2发送 X2建立请求( X2 SETUP REQUEST ) 消息 , eNB2向 eNBl返 回 X2建立响应( X2 SETUP RESPONSE )消息。 无线接入承载建立过程大致 包括: MME向 eNB发送无线承载建立请求( E-RAB SETUP REQUEST ) 消 息 , eNB向 MME返回无线 载建立响应( E-RAB SETUP REQUEST )消息。
目前, 由于频谱资源的匮乏, 以及移动用户的大流量业务的激增, 为了 增加用户吞吐量和增强移动性能,釆用高频点如 3.5GHz进行热点覆盖的需求 日益明显, 釆用低功率的节点成为新的应用场景。 但是, 由于高频点的信号 衰减比较厉害, 新小区的覆盖范围比较小, 并且与现有的小区不共站点, 因 此, 如果用户在这些新小区之间进行移动, 或者在新小区和现有小区间移动, 必定会引起频繁的切换过程, 使得基站间频繁传递用户信息, 从而对核心网 造成了很大的信令冲击, 进而遏制了无线侧的大量小蜂窝基站的引入。 发明内容
本发明实施例提供一种小蜂窝基站接入系统及其实现网络接入的方法, 能够增加用户吞吐量、 增强终端移动性能; 同时, 在终端发生移动时, 能够 避免对核心网的信令冲击, 从而实现无线侧的大量小蜂窝基站的引入。
为了解决上述技术问题,本发明实施例公开了一种小蜂窝基站接入系统, 在小蜂窝基站接入系统中设置有,
控制面网关, 连接无线接入网和核心网, 设置为构建核心网与无线接入 网之间的控制面链路; 控制面网关作为控制面信令的汇聚分发节点, 汇聚来 自不同无线接入网节点的信令并发送到核心网, 或者分发来自核心网的信令 至不同的无线接入网节点; 管理协调一个或者多个无线接入网节点;
用户面网关, 连接无线接入网和核心网, 设置为构建核心网与无线接入 网之间的用户面链路; 用户面网关作为用户面数据的汇聚分发节点, 汇聚来 自不同无线接入网节点的数据并发送到核心网, 或者分发来自核心网的数据 到不同的无线接入网节点。
所述控制面网关与用户面网关之间建立有连接链路;
所述控制面网关, 还设置为通过建立的连接链路, 实现对用户面网关的 控制与管理。
所述对用户面网关的控制与管理包括: 控制所述用户面网关与核心网之 间, 以及所述用户面网关与无线接入网节点之间的连接的建立、删除和修改。
所述控制面网关为一个或一个以上;
所述用户面网关为一个或一个以上。
该系统还包括与控制面网关连接的移动管理实体 MME、与用户面网关以 及 MME连接的服务网关 SGW、 与控制面网关和用户面网关分别连接的宏基 站、 与控制面网关和用户面网关分别连接的小蜂窝基站。
所述用户面网关和控制面网关分别为独立的物理节点;
所述 MME , 是设置为与所述控制面网关之间通过 S 1 -MME1接口连接, 与所述 SGW之间通过 SI 1接口连接; 还设置为支持与所述控制面网关之间 管理控制面链路;
所述 SGW,是设置为与所述用户面网关之间通过 S1-U1接口连接; 还设 置为支持与所述用户面网关之间管理 S 1 -U1接口连接;
所述控制面网关, 是设置为与所述 MME之间通过 S 1 -MME1接口连接, 与所述宏基站或 /和小蜂窝基站间通过 S1-MM2接口连接,与所述用户面网关 之间通过 X-1接口连接; 还设置为支持与 MME之间管理控制面链路, 以及 与基站之间管理控制面链路的功能, 管理用户面网关与 SGW之间建立的 S1-U1接口连接, 以及用户面网关与基站之间建立的 S1-U2接口连接;
所述用户面网关, 是设置为与所述 SGW之间通过 S1-U1接口连接, 与 宏基站或小蜂窝基站之间通过 S1-U2接口连接, 与控制面网关之间通过 X-1 接口连接; 设置为在所述控制面网关的控制下, 支持与所述 SGW之间管理 S1-U1接口连接, 以及与基站之间管理 S1-U2接口连接;
所述宏基站, 设置为与所述控制面网关之间通过 S1-MME2接口连接, 与所述用户面网关之间通过 S1-U2接口连接; 还设置为支持与所述控制面网 关之间管理控制面链路, 与所述用户面网关之间管理 S1-U2接口连接;
所述小蜂窝基站, 设置为与所述用户面网关之间通过 S1-U2接口连接, 与所述控制面网关之间通过 S1-MME2接口连接; 还设置为支持与所述控制 面网关之间管理控制面链路, 与所述用户面网关之间管理 S1-U2接口连接。
所述控制面网关, 还设置为与其它控制面网关之间通过 X-C接口连接, 用于跨控制面网关移动时的节点间协商。
所述用户面网关, 还设置为与其它用户面基站之间通过 X-U接口连接, 用于跨用户面网关移动时传输节点间的数据。
所述控制面网关与用户面网关合设在同一物理实体中, 此时, 所述控制 面网关与用户面网关之间的 X-1接口为内部接口。
所述控制面网关与用户面网关合设并设置在宏基站中;
所述 MME, 设置为与所述宏基站之间通过 S1-MME1接口连接, 与所述 SGW之间通过 SI 1接口连接;还设置为支持与所述设置在宏基站中的控制面 网关之间管理控制面链路; 所述 SGW,设置为与所述宏基站之间通过 Sl-Ul接口连接; 还设置为支 持与所述设置在宏基站中的用户面网关之间管理 S1-U1连接;
所述宏基站,设置为与所述 MME之间通过 S 1 -MME1接口连接,与所述 小蜂窝基站之间有 S1-U2接口、 S1-MME2接口; 还设置为支持与小蜂窝基站 之间管理控制面链路, 支持与所述小蜂窝基站之间管理 S1-U2连接;
所述小蜂窝基站, 设置为与所述宏基站之间有 S1-U2接口、 S1-MME2 接口, 与 UE之间通过 Uu接口连接; 还设置为支持与所述宏基站之间管理控 制面链路和 S1-U2连接。
所述控制面网关与用户面网关合设并设置在宏基站中, 在所述宏基站和 小蜂窝基站之间还设置有一个网关, 同时负责小蜂窝基站的控制面和用户面 管理;
所述 MME, 设置为与所述宏基站之间通过 S1-MME1接口连接, 与所述 SGW之间通过 SI 1接口连接;还设置为支持与所述设置在宏基站中的控制面 网关之间管理控制面链路;
所述 SGW,设置为与所述宏基站之间通过 S1-U1接口连接; 还设置为支 持与所述设置在宏基站中的用户面网关之间管理 S1-U1连接;
所述宏基站,设置为与所述 MME之间通过 S 1 -MME1接口连接,与所述 小蜂窝基站之间经由网关建立 S1-U2接口、 S1-MME2接口连接; 还设置为支 持与所述网关之间管理控制面链路;
所述网关, 设置为支持与基站之间的管理控制面链路和用户面链路; 所述小蜂窝基站, 设置为与所述宏基站之间经由所述网关建立 S1-U2接 口、 S1-MME2接口连接; 还设置为支持与终端之间建立 LTE系统的数据无 线承载并具备在 DRB 上进行通讯, 以及支持与网关之间管理控制面链路和 S1-U2接口连接。
所述宏基站与小蜂窝基站之间, 还经由所述网关建立 X-3接口连接。 所述控制面网关设置在宏基站中, 所述用户面网关为独立实体; 所述 MME,设置为与所述宏基站之间通过 S1-MME1接口连接,与 SGW 之间通过 S11接口连接; 所述 SGW,设置为与所述用户面网关之间通过 Sl-Ul接口连接; 还设置 为支持与所述用户面网关之间管理 S1-U1接口连接;
所述宏基站, 其中设置有控制面网关; 设置为与所述 MME之间通过 S1-MME1接口连接,与小蜂窝基站间通过 S1-MM2接口连接,与所述用户面 网关之间的接口包括 X-1接口、 S1-U2接口; 还设置为支持与用户面网关之 间管理 S1-U2接口连接, 支持与小蜂窝基站之间管理控制面链路; 控制所述 用户面网关管理用户面网关与 SGW之间的 S1-U1接口连接, 以及用户面网 关与基站之间的 S1-U2接口连接;
所述用户面网关, 设置为与所述 SGW之间通过 S1-U1接口连接, 与所 述宏基站之间通过 S1-U2接口、 X-1接口连接,与小蜂窝基站之间通过 S1-U2 接口连接; 还设置为支持与 SGW之间管理 S1-U1接口连接, 以及与基站之 间管理 S1-U2接口连接;
所述小蜂窝基站, 设置为与所述用户面网关之间通过 S1-U2接口连接, 与所述宏基站之间通过 S1-MME2接口连接; 支持与终端之间建立 LTE系统 的数据无线承载并在 DRB上进行通讯,以及支持与控制面网关之间管理控制 面链路, 与用户面网关之间管理 S1-U2接口连接。
所述宏基站与小蜂窝基站之间还通过 X-3接口连接。
所述用户面网关设置在 SGW中; 所述控制面网关设置在 MME中; 所述 MME, 其中设置有控制面网关; 设置为与所述 SGW之间通过 S11 接口、 X-1接口连接,通过 S1-MME2接口分别与宏基站和小蜂窝基站就连接; 还设置为支持针对同一个用户管理两个 S1-MME2接口并分别连连接至不同 的基站;
所述 SGW, 其中设置有用户面网关; 设置为与所述 MME之间通过 S11 接口、 X-1接口连接, 通过 S1-U2接口分别与宏基站和小蜂窝基站就连接; 还设置为支持针对同一个用户管理两个 S1-U2接口并分别连接至不同的基 站。
本发明实施例还提供一种小蜂窝基站接入系统实现网络接入的方法, 在 小蜂窝基站接入系统中设置有, 控制面网关, 连接无线接入网和核心网, 设置为构建核心网与无线接入 网之间的控制面链路;
用户面网关, 连接无线接入网和核心网, 设置为构建核心网与无线接入 网之间的用户面链路;
该方法包括:
分别建立控制面链路和用户面链路;
通过建立的控制面链路对接入终端的控制面数据进行处理, 通过建立的 用户面链路对接入终端的用户面数据进行处理。
该方法还包括: 建立所述控制面网关和用户面网关之间的连接链路; 通过建立的连接链路, 所述控制面网关对用户面网关的控制与管理。 所述控制面网关对用户面网关的控制与管理包括:
建立、 删除和修改所述控制用户面网关与核心网之间的连接, 以及, 建立、 删除和修改所述用户面网关与无线接入网节点之间的连接。
所述用户面网关为两个或两个以上; 该方法还包括:
建立所述用户面网关之间的连接链路; 通过建立的连接链路, 实现终端 跨用户面网关移动时传输节点间的数据。
该方法还包括:
所述控制面网关通过所述连接链路, 完成终端跨控制面网关移动时的节 点间协商。
所述通过建立的控制面板链路对接入终端的控制面数据进行处理包括: 通过所述建立的控制面链路, 所述控制面网关处理控制面数据, 汇聚来 自不同无线接入网节点的信令并发送到核心网, 或者分发来自核心网的信令 至不同的无线接入网节点。
所述汇聚或分发包括:
管理核心网与所述控制面网关之间, 以及所述控制面网关与无线接入网 节点间的信令连接; 维护与终端相关的上下文信息, 包括核心网与控制面网关之间, 以及控 制面网关与无线接入网节点间的信令连接的映射关系;
根据核心网或者无线接入网节点的信令, 对信令连接进行管理。
当终端支持多流时, 所述终端保存所述控制面网关与多个无线接入网节 点间的信令连接。
所述控制面网关与用户面网关之间建立连接链路;
该方法还包括: 指示用户面网关对相应的数据连接进行管理。
所述映射关系是一对一的映射关系; 根据映射关系转发所述信令; 或者, 所述映射关系是一对多的映射关系, 根据指定法则代理转发所述信令。 当存在跨控制面网关时, 在所述控制面网关之间, 该方法还包括: 迁移 对应终端相关或者空口连接相关的上下文配置信息。
所述通过建立的用户面链路对接入终端的用户面数据进行处理包括: 通过建立的用户面链路, 用户面网关处理用户面数据, 汇聚来自不同无 线接入网节点的数据并发送到核心网, 或者分发来自核心网的数据到不同的 无线接入网节点。
所述汇聚或分发包括:
管理核心网与所述用户面网关之间, 以及用户面网关与无线接入网之间 的数据通道;
维护包括核心网与用户面网关之间, 以及用户面网关与无线接入网节点 间的数据通道的映射关系; 按照映射关系进行数据的转发, 并对该映射关系 进行管理。
所述映射关系是一对一的映射关系; 或者,
所述映射关系是一对多的映射关系, 此时,
所述用户面网关维护一个终端的上下文信息中一对多的关系: 在上行方 向, 所述用户面网关将多条数据通道汇聚到一条数据通道中发送; 在下行方 向, 所述用户面网关根据预先设置的规则进行数据分流。
当存在跨用户面网关时, 管理用户面网关之间的数据通道包括建立, 删 除和爹改; 以及,
维护接入网节点或核心网,与所述用户面网关之间的数据通道映射关系, 按照映射关系进行数据的转发, 并支持该映射关系的管理。
本发明实施例提供包括分别建立控制面链路和用户面链路, 小蜂窝基站 接入系统通过建立的控制面链路对接入终端的控制面数据进行处理, 通过建 立的用户面链路对接入终端的用户面数据进行处理。 本发明实施例通过控制 面与数据面的分离, 使得终端与两个不同的基站如宏蜂窝 (基站)和小蜂窝
(基站) 同时存在数据收发, 增加了用户吞吐量和增强了移动性能, 并解决 了用户在小区间切换使得节点间信息交互频繁、 对核心网造成冲击的问题, 进而实现了无线侧的大量小蜂窝基站的引入。
附图概述
图 1为相关技术中 LTE总体架构示意图;
图 2(a)〜图 2(d)为相关技术 LTE架构中控制面及用户面的协议架构示意 图;
图 3(a)〜图 3(c)分别为现有 S1接口, X2接口和 E-RAB的建立流程示意图; 图 4 为本发明实施例小蜂窝基站接入系统实现网络接入的方法的流程 图;
图 5为本发明实施例小蜂窝基站接入系统的第一实施例的逻辑功能结构 示意图;
图 6为本发明实施例小蜂窝基站接入系统第一实施例的 GTP-U通道建立 的流程示意图;
图 7为本发明实施例小蜂窝基站接入系统第一实施例的 GTP-U通道删除 的流程示意图;
图 8为本发明实施例小蜂窝基站接入系统第一实施例的 GTP-U通道更换 的流程示意图;
图 9为本发明实施例小蜂窝基站接入系统的第二实施例的逻辑功能结构 示意图; 图 10 为本发明实施例小蜂窝基站接入系统的第三实施例的逻辑功能结 构示意图;
图 11为本发明实施例小蜂窝基站接入系统第三实施例的 GTP-U通道建 立的流程示意图;
图 12为本发明实施例小蜂窝基站接入系统第三实施例的 GTP-U通道删 除的流程示意图;
图 13为本发明实施例小蜂窝基站接入系统第三实施例的 GTP-U通道更 换的流程示意图;
图 14 为本发明实施例小蜂窝基站接入系统的第四实施例的逻辑功能结 构示意图;
图 15为本发明实施例小蜂窝基站接入系统第四实施例的 GTP-U通道建 立的流程示意图;
图 16为本发明实施例小蜂窝基站接入系统第四实施例的 GTP-U通道删 除的流程示意图;
图 17为本发明实施例小蜂窝基站接入系统第四实施例的 GTP-U通道更 换的流程示意图;
图 18 为本发明实施例小蜂窝基站接入系统的第五实施例的逻辑功能结 构示意图;
图 19为本发明实施例小蜂窝基站接入系统第五实施例的 GTP-U通道建 立的流程示意图;
图 20为本发明实施例小蜂窝基站接入系统第五实施例的 GTP-U通道删 除的流程示意图;
图 21为本发明实施例小蜂窝基站接入系统第五实施例的 GTP-U通道更 换的流程示意图;
图 22 为本发明实施例小蜂窝基站接入系统的第六实施例的逻辑功能结 构示意图。 本发明的较佳实施方式
图 4 为本发明实施例小蜂窝基站接入系统实现网络接入的方法的流程 图, 如图 4所示, 包括以下步骤:
步骤 400: 小蜂窝基站接入系统分别建立控制面链路和用户面链路。 本发明实施例的小蜂窝基站接入系统中, 新增设用于连接无线接入网和 核心网的控制面网关, 通过控制面网关构建的核心网与无线接入网之间的链 路就是控制面链路。 通过控制面网关, 实现了连接大量的无线接入网节点到 核心网, 同时, 控制面网关作为控制面信令的汇聚分发节点, 汇聚来自不同 无线接入网节点的信令并发送到核心网, 或者分发来自核心网的信令至不同 的无线接入网节点。 同时, 控制面网关作为无线接入网节点的管理网元, 还 包括协调管理一个或者多个无线接入网节点。 以 LTE网络架构为例, 控制面 网关通过接口 S1-MME1连接一个或多个 MME, 通过 S1-MME2接口连接一 个或多个 eNB。
本发明实施例的小蜂窝基站接入系统中, 新增设用于连接无线接入网和 核心网的用户面网关, 通过用户面网关构建的核心网与无线接入网之间的链 路就是用户面链路。 通过用户面网关, 实现了连接大量的无线接入网节点到 核心网, 同时, 用户面网关作为用户面数据的汇聚分发节点, 汇聚来自不同 无线接入网节点的数据并发送到核心网, 或者分发来自核心网的数据到不同 的无线接入网节点。 以 LTE网络架构为例(其它系统, 比如 3G、 LTE+、 WIFI 等也可以应用本发明实施例结构) , 用户面网关通过接口 S1-U1连接一个或 多个 SGW, 通过 S1-U2接口连接一个或多个 eNB。
本发明实施例方法还包括: 建立 S11接口, 连接于 MME和 SGW之间, 设置为 MME对 SGW的控制与管理, 是相关技术的接口;
其中, S1-MME1接口, 连接于控制面网关与 MME之间, 可以是现有的 S1-MME接口。
S1-MME2接口, 连接于控制面网关与基站之间, 可以是现有的 S1-MME 接口, 或者在其基础上可以新增接入网反馈信息, 用于更好的分流决策。
S1-U1接口, 连接于用户面网关与 SGW之间, 设置为传输数据。 例如可 以是现有的 S1-U接口, 使用协议栈 IP/UDP/GTP-U。
S1-U2接口, 连接于用户面网关与基站之间, 设置为传输数据。 例如可 以是现有的 S 1 -U接口类似, 使用协议栈 IP/UDP/GTP-U.
进一步地, 本发明实施例方法还包括: 小蜂窝基站接入系统建立控制面 网关和用户面网关之间的连接链路。 通过该连接链路, 控制面网关实现对用 户面网关的控制与管理, 具体包括: 控制用户面网关与核心网之间的通道, 以及用户面网关与无线接入网节点之间的连接的建立、 删除和修改。 其中的 修改包括属性的修改和转发关系的修改。
控制面网关可以控制一个或一个以上用户面网关, 而用户面网关可以连 接到一个或一个以上控制面网关, 有利于进行系统扩展和负荷分担。
进一步地, 本发明实施例方法还包括: 小蜂窝基站接入系统建立用户面 网关之间的连接链路, 通过该连接链路, 实现了终端跨用户面网关移动时传 输节点间的数据; 同时, 控制面网关也可以通过该连接链路, 实现终端跨控 制面网关移动时的节点间协商。
步骤 401 : 小蜂窝基站接入系统通过建立的控制面板链路对接入终端的 控制面数据进行处理, 通过建立的用户面链路对接入终端的用户面数据进行 处理。
一方面, 本步骤通过建立的控制面链路, 控制面网关处理控制面数据, 汇聚来自不同无线接入网节点的信令并发送到核心网, 或者分发来自核心网 的信令至不同的无线接入网节点。 具体包括: 管理核心网与控制面网关之间, 以及控制面网关与无线接入网节点间的信令连接, 包括建立、 删除和修改; 维护与终端相关的上下文信息, 其中包括核心网与控制面网关之间, 以 及控制面网关与无线接入网节点间的信令连接的映射关系, 当终端支持多流 即终端与两个不同的基站, 比如宏蜂窝 (基站)和小蜂窝 (基站) 同时存在 数据收发时, 以下以宏蜂窝和小蜂窝或 eNB为代表来描述不同的基站, 一个 终端可以保存控制面网关与多个无线接入网节点间的信令连接;
根据核心网或者无线接入网节点的信令, 对信令连接进行管理。 进一步 地, 当建立有控制面网关和用户面网关之间的连接链路时, 还包括通过 X-1 接口指示用户面网关对相应的数据连接, 即通过该用户面网关的用户面链路 进行管理。 进一步地, 如果接收到的来自核心网或者无线接入网节点的信令显示, 无需修改控制面网关或用户面网关和核心网之间连接时, 信令终结在控制面 网关。
当所述映射关系是一对一的映射关系时, 根据映射关系转发信令; 如果 是所述映射关系是一对多的映射关系时, 根据指定法则代理转发信令。 其中 , 指定法则可以是预先设置的, 也可以是配置的。 指定法则可以是核心网通过 控制面网关与多个无线接入网节点的一对多映射关系等。
当存在跨控制面网关时, 在控制面网关之间, 还包括迁移对应终端相关 或者空口连接相关的上下文配置信息。特别地,当 S1-MME1接口和 S1-MME2 接口使用相同的协议栈时, 控制面网关对于核心网来说, 是无线接入网节点, 而对于无线接入网节点来说则是核心网。
另一方面, 本步骤通过建立的用户面链路, 用户面网关处理用户面数据, 汇聚来自不同无线接入网节点的数据并发送到核心网, 或者分发来自核心网 的数据到不同的无线接入网节点。 具体包括: 管理核心网与用户面网关之间, 以及用户面网关与无线接入网之间的数据通道, 包括建立、 删除、 修改; 维 护包括核心网与用户面网关之间, 以及用户面网关与无线接入网节点间的数 据通道的映射关系; 按照映射关系进行数据的转发, 并对该映射关系进行管 理, 包括新建, 删除和修改。
所述映射关系可以是一对一的映射关系, 也可以是一对多的映射关系。 当为一对多的映射关系时, 多条数据通道属于同一个终端, 如终端与不同的 基站连接, 此时, 用户面网关维护一个终端的上下文信息中一对多的关系: 在上行方向, 用户面网关将多条数据通道汇聚到一条数据通道中发送; 在下 行方向, 用户面网关根据预先设置的规则如分流算法比如按照负荷来进行分 流等, 进行数据分流。
当存在跨用户面网关时, 管理用户面网关之间的数据通道, 包括建立, 删除和修改, 并维护接入网节点与用户面网关之间的数据通道映射关系, 以 及核心网用户面网关之间的数据通道映射关系, 按照映射关系进行数据的转 发, 并支持该映射关系的管理, 包括新建, 删除和修改。 特别地, 当 S1-U1 接口和 S1-U2接口使用相同的协议栈时, 用户面网关对于核心网来说, 是无 线接入网节点, 而对于无线接入网节点来说则是核心网。
本发明实施例中的用户面网关和控制面网关都是逻辑功能节点, 可以根 据实际情况, 分别部署成独立的物理节点, 或者设置在原有的物理节点中。 下面结合本发明实施例小蜂窝基站接入系统的具体组成方式, 对其实现在网 络接入的方法进行详细描述。
图 5为本发明实施例小蜂窝基站接入系统的第一实施例的逻辑功能结构 示意图, 如图 5所示, UP-GW和 CP-GW分别为独立的物理节点, 此时, 各 个网络节点的功能分别为:
MME , 与控制面网关之间通过 S 1 -MME1接口连接 , 与 SGW之间通过 S11接口连接。 除具有 LTE系统 Releasel l的 MME现有的功能外,还设置为 支持与控制面网关之间管理(包含建立, 删除和修改)控制面链路。
SGW , 与用户面网关之间通过 S1-U1 接口连接。 除具有 LTE 系统 Release 11的 SGW现有的功能外,还设置为支持与用户面网关之间管理 S 1 -U1 接口连接, 该功能类似 Releasel l中 SGW和基站之间 GTP-U通道的功能即 S1-U接口的功能。
控制面网关,与 MME之间通过 S1-MME1接口连接,与宏基站或小蜂窝 基站间通过 S1-MM2接口连接, 与用户面网关之间通过 X-1接口连接, 与其 它控制面网关之间通过 X-C接口连接, 设置为跨控制面网关移动时的节点间 协商; 设置为支持与 MME之间管理(包含建立, 删除和修改)控制面链路, 以及与基站之间管理控制面链路的功能; 还设置为管理相关 GTP-U通道, 相 关 GTP-U通道包括用户面网关和 SGW之间建立的 S1-U1接口连接, 以及用 户面网关和基站之间建立的 S1-U2接口连接;
当某个终端的某个 E-RAB在小蜂窝基站之间发生转移时,控制面网关通 过保持从控制面网关到 MME之间的控制面链路的方式, 即控制面网关和 MME之间的控制面链路不需要改变, 即可完成终端的 E-RAB在小蜂窝之间 移动。 因此, 避免了终端在小蜂窝基站之间转移可能导致的对 MME的影响; 控制面网关对宏蜂窝来说是透明存在的。 控制面网关可以具备接入控制 的功能。 用户面网关, 与 SGW之间通过 S1-U1接口连接, 与宏基站或小蜂窝基 站之间通过 S1-U2接口连接, 与控制面网关之间通过 X-1接口连接, 与其它 用户面基站之间通过 X-U接口连接, 设置为跨用户面网关移动时传输节点间 的数据。 设置为在控制面网关的控制下, 支持与 SGW之间管理 S1-U1接口 连接, 以及与基站之间管理 S1-U2接口连接;
当某个终端的某个 E-RAB在小蜂窝基站之间发生转移时,用户面网关通 过保持从用户面网关到 SGW之间的 GTP-U通道的方式, 避免了终端在小蜂 窝基站之间转移可能导致的对 SGW的影响;
用户面网关对宏蜂窝来说是透明存在的。
宏蜂窝, 与控制面网关之间通过 S1-MME2接口连接, 与用户面网关之 间通过 S1-U2接口连接, 与 UE之间通过 Uu接口连接, 与小蜂窝基站之间通 过 X-3接口连接。 除具有 LTE系统 Releasel l的基站所具备的功能外, 还设 置为支持与控制面网关之间管理控制面链路, 与用户面网关之间管理 S1-U1 接口连接。 宏蜂窝进行移动性管理。
小蜂窝, 与用户面网关之间通过 S1-U2接口连接, 与控制面网关之间通 过 S1-MME2接口连接, 与 UE之间通过 Uu接口连接, 与宏基站之间通过 X-3接口连接。除具有支持和终端之间建立 LTE系统的数据无线承载( DRB ), 并且具备在 DRB上进行通讯的所有功能外,还设置为支持与控制面网关之间 管理控制面链路, 与用户面网关之间管理 S1-U2接口连接。
如图 5所示第一实施例,本发明优选实施例的 Uu接口的协议堆栈与相关 技术相同; 本发明优选实施例的 S1-MME1接口、 S1-MME2接口的协议堆栈 与相关技术 S1-MME接口的相同, 建立过程也相同; 本发明优选实施例的 S1-U1接口、 S1-U2接口的协议堆栈与相关技术 S1-U接口的相同, 建立过程 也相同;本发明优选实施例的 X-1接口的协议堆栈与相关技术 S1-C接口的相 同, 建立过程也相同。
如图 5所示的第一实施例中, 根据控制面链路对控制面数据进行处理包 括: 在上行方向: 终端通过一个或多个无线接口发送数据到一个或多个基站, 一个或多个基站通过 S1-MME2接口将数据发送到控制面网关, 控制面网关 通过 S1-MME1接口将数据发送到 MME,此时控制面网关完成汇聚来自不同 无线接入网节点的信令并发送到核心网; 在下行方向: MME通过 S1-MME1 接口将数据发送到控制面网关, 控制面网关通过 S1-MME2接口将数据发送 到一个或多个基站, 基站通过无线接口将数据发送给终端, 此时, 控制面网 关分发来自核心网的信令至不同的无线接入网节点。 其中, 终端到小蜂窝基 站的控制面链路可以存在, 也可以不存在, 如果不存在, 那么, 终端和小蜂 窝基站之间的控制面数据通过宏基站(即 X-3接口 )进行转发。
根据用户面链路对用户面数据进行处理包括: 在上行方向: 终端通过一 个或多个无线接口发送数据到一个或多个基站, 一个或多个基站通过 S1-U2 接口将数据发送到用户面网关, 用户面网关通过 S1-U1 接口将数据发送到 SGW, 此时用户面网关作为用户面数据的汇聚分发节点, 汇聚来自不同无线 接入网节点的数据并发送到核心网; 在下行方向: SGW通过 S1-U1接口将数 据发送到用户面网关, 用户面网关通过 S1-U2接口将数据发送到一个或多个 基站, 基站通过无线接口将数据发送给终端, 此时, 用户面网关作为用户面 数据的汇聚分发节点, 分发来自核心网的数据到不同的无线接入网节点。
图 6为本发明实施例小蜂窝基站接入系统第一实施例的 GTP-U通道建立 的流程示意图, 此时, 控制面网关 CP-GW负责 GTP-U通道管理, 如图 6所 示, 假设终端和宏基站已建立空口链接, 宏基站已为终端配置了测量任务, 终端已向宏基站上报测量结果, 包括:
步骤 600〜步骤 601 :宏基站(宏蜂窝)收到测量报告。 MME通过 S1-MME 接口向控制面网关发送无线接入承载管理消息。 在无线接入承载管理消息中 至少包括有: 与某个无线接入承载(E-RAB )对应的 GTP-U通道在核心网的 传输层地址( TNL address-CN ) 、 GTP-U通道的虚连接标识 GTP-TEID-CN, 以及 E-RAB相关的信息。 步骤 602: 控制面网关与宏基站协商, 宏基站向控制面网关返回小蜂窝 基站(小蜂窝) 的相关信息, 比如小蜂窝基站的小区标识, 测量结果等。 步骤 603: 控制面网关向蜂窝基站发送请求建立 GTP-U通道的无线承载 配置请求消息。 在无线承载配置请求消息中至少包括有: TNL address-CN, GTP-TEID-CN , 以及 E-RAB相关的信息。 步骤 604: 建立小蜂窝基站和用户面网关之间, 以及用户面网关和 SGW 之间的 GTP-U通道。 步骤 605: 小蜂窝基站向控制面网关发送无线承载配置确认消息, 以确 认到核心网的 GTP-U通道建立。 在无线承载配置确认消息中至少包括有: 与 当前 E-RAB 对应的 GTP-U 通道在小蜂窝上的传输层地址 ( TNL address-SGW-SC ) 、 GTP-U通道的虚连接标识 GTP-TEID-SGW-SC , 以及 E-RAB相关的信息,
图 7为本发明实施例小蜂窝基站接入系统第一实施例的 GTP-U通道删除 的流程示意图, 如图 7所示, 包括:
步骤 700: 控制面网关向小蜂窝发送请求删除 GTP-U通道的无线承载配 置请求, 在该消息中至少包含有需要删除的 GTP-U通道对应的 E-RAB的信 息。
步骤 701 : 小蜂窝和用户面网关分别删除小蜂窝和用户面网关之间, 以 及用户面网关和 SGW分别删除用户面网关和 SGW之间的 GTP-U通道。
步骤 702: 小蜂窝向控制面网关发送表示 GTP-U通道已删除的无线承载 配置确认。
图 8为本发明实施例小蜂窝基站接入系统第一实施例的 GTP-U通道更换 的流程示意图, 假设终端从小蜂窝 1移动到小蜂窝 2, 如图 8所示, 包括: 控制面网关按照图 6所示的过程,选择并建立小蜂窝 2到 SGW的 GTP-U 通道, 该 GTP-U通道由 SGW与用户面网关之间, 以及用户面网关与小蜂窝 2之间的两段 GTP-U通道组成;
按照图 7所示的过程, 删除小蜂窝 1上 GTP-U通道。
在本发明实施例图 8所示的终端在小蜂窝之间发生移动时, GTP-U通道 的管理不会影响到核心网,从而使得在无线侧引入大量的小蜂窝成为了可能。
图 9为本发明实施例小蜂窝基站接入系统的第二实施例的逻辑功能结构 示意图, 如图 9所示, 第二实施例的小蜂窝基站的逻辑功能结构中, 各个网 络节点实现与第一实施例中的相比, 不同的是, 控制面网关与用户面网关合 设在同一物理实体中, 二者之间的 X-1 接口为网关内部接口, CP-GW和 UP-GW之间的通讯通过 GW内部实现完成。对于图 9所示的小蜂窝基站接入 系统的逻辑功能结构, 其网络接入方法与实施例一中的一致, 这里不再赘述。 GTP-U通道的建立、 删除、 更换的具体实现与第一实施例中的一致, 这里不 再赘述。
图 10 为本发明实施例小蜂窝基站接入系统的第三实施例的逻辑功能结 构示意图, 如图 10所示, 控制面网关与用户面网关合设并设置在宏基站中, 此时, S1-MME1接口是 MME和 M-eNB之间的接口, S1-U1接口是 SGW和 M-eNB之间的接口, S1-MME2、 SI -U2是 M-eNB和 S-eNB之间的接口。 各 个网络节点的功能分别为:
MME、 SGW的实现与图 5所示的第一实施中的一致, 这里不再赘述。 控制面网关与用户面网关的功能与图 5所示的第一实施例中的一致, 不 同的只是, 控制面网关与用户面网关之间的接口是内部接口。
宏蜂窝, 与 MME之间通过 S1-MME1接口连接, 与小蜂窝基站之间有 S1-U2接口、 S1-MME2接口、 X-3接口, 与 UE之间通过 Uu接口连接。 除具 有 LTE系统 Releasel l的基站所具备的功能外, 还设置为支持与小基站之间 管理控制面链路,类似 Releasel l中 MME和基站之间管理控制面链路的功能, 即 S1-MME接口的功能; 支持与小基站之间管理 S1-U2接口连接, 类似 Releasel l中 MME控制 SGW管理相关 GTP-U通道的功能, 即 S1-U接口的 功能。
当某个终端的某个 E-RAB在小蜂窝之间发生转移时,宏基站通过保持从 宏基站到 MME之间的控制面链路,以及保持从宏基站到 SGW之间的 GTP-U 通道的方式, 避免了这种转移可能导致的对 MME和 SGW的影响。 宏蜂窝, 还设置为进行接入控制和移动性管理。
小蜂窝, 与宏蜂窝基站之间有 S1-U2接口、 S1-MME2接口、 X-3接口, 与 UE之间通过 Uu接口连接。 除具有支持和终端之间建立 LTE系统的数据 无线承载(DRB ) , 并且具备在 DRB上进行通讯的所有功能外, 还设置为支 持与宏基站之间管理控制面链路和 GTP-U通道。
如图 10所示第三实施例, 本发明优选实施例的 Uu接口的协议堆栈与相 关技术相同; 本发明优选实施例的 S1-MME1接口、 S1-MME2接口的协议堆 栈与现有技术 S1-MME接口的相同, 建立过程也相同; 本发明优选实施例的 S1-U1接口, S1-U2接口的协议堆栈与现有技术 S1-U的相同, 建立过程也相 同。
如图 10 所示第三实施例中, 根据控制面链路对控制面数据进行处理包 括: 在上行方向: 终端通过一个或多个无线接口发送数据到一个或多个基站, 对于小基站, 再通过 S1-MME2 接口将数据发送到宏基站, 宏基站通过 S1-MME1接口将数据发送到 MME; 在下行方向: MME通过 S1-MME1接口 将数据发送到宏基站, 宏基站通过 S1-MME2接口将数据发送到小基站或通 过无线接口发送给终端, 小基站通过无线接口将数据发送给终端。 其中, 终 端到小基站的控制面链路可以存在, 也可以不存在, 如果不存在, 那么, 终 端和小基站之间控制面需要通过宏基站(即 X-3接口)进行转发。
根据用户面链路对用户面数据进行处理包括: 在上行方向, 终端通过一 个或多个无线接口发送数据到一个或多个基站, 小基站需要再通过 S1-U2接 口将数据发送到宏基站,宏基站通过 S1-U1接口将数据发送到 SGW; 在下行 方向: SGW通过 S1-U1接口将数据发送到宏基站,宏基站通过 S1-U2接口将 数据发送到小基站或通过无线接口发送给终端, 小基站通过无线接口将数据 发送给终端。
图 11为本发明实施例小蜂窝基站接入系统第三实施例的 GTP-U通道建 立的流程示意图, 如图 11所示, 包括:
步骤 1100: MME通过 S1-MME1接口向宏蜂窝发送无线接入承载管理消 息。
步骤 1101 :宏蜂窝向小蜂窝发送请求建立 GTP-U通道的无线承载配置请 求消息。
步骤 1102: 在宏蜂窝与小蜂窝之间建立 GTP-U通道。
步骤 1103: 小蜂窝向宏蜂窝发送无线承载配置确认消息, 以确认自身到 宏蜂窝的 GTP-U通道建立。
图 12为本发明小蜂窝基站接入系统第三实施例的 GTP-U通道删除的流 程示意图, 如图 12所示, 包括:
步骤 1200:宏蜂窝向小蜂窝发送请求删除 GTP-U通道的无线承载配置请 求。
步骤 1201 : 删除小蜂窝与宏蜂窝之间的 GTP-U通道。 步骤 1202: 小蜂窝向宏蜂窝发送 GTP-U通道删除确认消息。 图 13为本发明实施例小蜂窝基站接入系统第三实施例的 GTP-U通道更 换的流程示意图,假设终端从小蜂窝 1移动到小蜂窝 2 , 如图 13所示, 包括: 终端在从小蜂窝 1移动到小蜂窝 2时, 宏蜂窝执行图 11所示的过程, 建 立小蜂窝 2到宏蜂窝的 GTP-U通道。 并按照图 12所示的过程删除小蜂窝 1 上 GTP-U通道。
在本发明实施例图 13所示的终端在小蜂窝之间发生移动时, GTP-U通道 的管理不会影响到核心网,从而使得在无线侧引入大量的小蜂窝成为了可能。
图 14 为本发明实施例小蜂窝基站接入系统的第四实施例的逻辑功能结 构示意图, 如图 14所示, 第四实施例中, 在宏基站和小蜂窝基站之间设置有 一个网关 (GW2 ) , GW2 同时负责小蜂窝的控制面和用户面管理, 与图 10 所示的第三实施例的结构相比, 区别在于: X-3接口, S1-MME2接口 (或将 X-1接口和 S1-MME2接口一起称为 S1-MME2+接口 ) , 以及 S1-U2接口 , 既是 GW2与小蜂窝基站之间的接口, 也是 GW2与宏基站之间的接口。 各个 网络节点的功能分别为:
MME, SGW的实现与图 5所示的第一实施中的一致, 这里不再赘述 宏蜂窝,与 MME之间通过 S1-MME1接口连接,与小蜂窝基站之间经由 网关 GW2建立 S1-U2接口、 S1-MME2接口 (进一步包括 X-3接口)连接, 与 UE之间通过 Uu接口连接。 除具有 LTE系统 Releasel 1的基站所具备的功 能外,还设置为支持与网关 GW2之间管理控制面链路的功能。宏蜂窝设置为 进行接入控制和移动性管理。
网关 GW2 , 支持与基站之间的管理控制面链路和用户面链路的功能, 类 似 Releasel l中 MME和基站之间管理控制面链路的功能即 S1-MME接口的 功能, 以及 Releasel l中 SGW和基站之间管理用户面链路的功能即 S1-U接 口的功能。
当某个终端的某个 E-RAB在同一个网关下的小蜂窝之间发生转移时, 网 关 GW2通过保持到宏基站之间的控制面链路和用户面链路的方式,屏蔽这种 转移可能导致的对 MME和 SGW的影响。 网关对宏蜂窝来说是透明存在的。
小蜂窝, 与宏蜂窝之间经由网关 GW2建立 S1-U2接口、 S1-MME2接口 (进一步包括 X-3接口)连接, 与 UE之间通过 Uu接口连接。 设置为支持与 终端之间建立 LTE系统的数据无线承载(DRB ) , 并且具备在 DRB上进行 通讯的所有功能, 还设置为支持与网关之间管理控制面链路和 S1-U2接口连 接。
如图 14所示第四实施例, 本发明优选实施例的 Uu接口的协议堆栈与相 关技术相同; 本发明优选实施例的 S1-MME1接口、 S1-MME2接口的协议堆 栈与相关技术 S1-MME接口的相同, 建立过程也相同; 本发明优选实施例的 S1-U1接口、 S1-U2接口的协议堆栈与相关技术 S1-U接口的相同, 建立过程 也相同。
如图 14 所示第四实施例中, 根据控制面链路对控制面数据进行处理包 括: 在上行方向, 终端通过一个或多个无线接口发送数据到一个或多个基站, 小基站通过 S1-MME2接口将数据发送到 GW2, GW2通过 S1-MME2接口将 数据发送到宏基站, 宏基站再通过 S1-MME1接口将数据发送到 MME; 在下 行方向: MME 通过 S1-MME1 接口将数据发送到宏基站, 宏基站通过 S1-MME2接口将数据发送到 GW2或者通过无线接口发送给终端, GW2通过 S1-MME2接口将数据发送给小基站, 小基站通过无线接口将数据发送给终 端。 终端到小基站的控制面链路可以存在, 也可以不存在, 如果不存在, 那 么, 终端和小基站之间控制面需要通过宏基站(即 X-3接口)进行转发。
根据用户面链路对用户面数据进行处理包括: 在上行方向, 终端通过一 个或多个无线接口发送数据到一个或多个基站, 对于小基站, 还需要通过 S1-U2接口将数据发送到 GW2, GW2再通过 S1-U2接口将数据发送到宏基 站,宏基站通过 S1-U1接口将数据发送给 SGW;在下行方向: SGW通过 S1-U1 接口将数据发送到宏基站, 宏基站通过 S1-U2接口将数据发送到小基站或直 接通过无线接口发送给终端, 小基站通过无线接口将数据发送给终端。
图 15为本发明实施例小蜂窝基站接入系统第四实施例的 GTP-U通道建 立的流程示意图, 本实施例中, 网关即是图 14所示的 GW2, 如图 15所示, 包括:
步骤 1500: MME通过 S 1 -MME接口向宏蜂窝发送无线接入承载管理消 息。 步骤 1501 :宏蜂窝经由网关向小蜂窝发送请求建立 GTP-U通道的无线承 载配置请求消息。
步骤 1502: 在宏蜂窝与小蜂窝之间, 以及网关与宏蜂窝之间建立 GTP-U 通道。
步骤 1503: 小蜂窝经由网关向宏蜂窝发送无线承载配置确认消息。
图 16为本发明实施例小蜂窝基站接入系统第四实施例的 GTP-U通道删 除的流程示意图, 如图 16所示, 包括:
步骤 1600:宏蜂窝经由网关向小蜂窝发送请求删除 GTP-U通道的无线承 载配置请求消息。
步骤 1601 :删除小蜂窝与网关之间, 以及网关与宏蜂窝之间的 GTP-U通 道。
步骤 1602: 小蜂窝经由网关向宏蜂窝发送 GTP-U通道删除确认消息。 图 17为本发明实施例小蜂窝基站接入系统第四实施例的 GTP-U通道更 换的流程示意图,假设终端从小蜂窝 1移动到小蜂窝 2, 如图 17所示, 包括: 终端在从小蜂窝 1移动到小蜂窝 2时, 宏蜂窝参考图 15所示的过程, 但 是, 此时只需要建立小蜂窝 2到网关的 GTP-U通道即可。 并参考图 16所示 的过程, 删除小蜂窝 1与网关之间的 GTP-U通道。
图 14所示的第四实施例中, GTP-U通道包括宏蜂窝与网关之间, 以及网 关与小蜂窝 1之间的两段 GTP-U通道组成。 在本发明实施例图 17所示的终 端在小蜂窝之间发生移动时, GTP-U通道的管理不会影响到核心网, 从而使 得在无线侧引入大量的小蜂窝成为了可能。
图 18 为本发明实施例小蜂窝基站接入系统的第五实施例的逻辑功能结 构示意图, 如图 18所示, 第五实施例中, 控制面网关设置在宏基站中, 用户 面网关为独立实体, 各个网络节点的功能分别为:
MME, 与宏基站之间通过 S1-MME1接口连接, 与 SGW之间通过 S11 接口连接。 支持 LTE系统 Release 11的 MME现有的功能。
SGW , 与用户面网关之间通过 S1-U1 接口连接。 除具有 LTE 系统 Releasel l的 SGW现有功能外, 还设置为支持与用户面网关之间管理 S1-U1 接口连接。
宏蜂窝,其中设置有控制面网关。与 MME之间通过 S1-MME1接口连接, 与小蜂窝基站间通过 S1-MM2接口 (进一步包括 X-3接口)连接, 与用户面 网关之间的接口包括 X-1接口、 S1-U2接口, ,与 UE之间通过 Uu接口连接。 除具有 LTE系统 Releasel l的基站所具备的功能外, 还设置为支持与用户面 网关之间管理 S1-U2接口连接, 支持与小蜂窝基站之间管理控制面链路的功 能, 类似 Releasel l 中 MME和基站之间管理控制面链路的功能即 S1-MME 接口的功能; 另外, 还设置为控制用户面网关管理 S1-U2接口连接, 类似 Releasel l中 MME控制 SGW管理相关 GTP-U通道的功能即 S1-U接口的功 能,其中,相关 GTP-U通道包括用户面网关与 SGW之间的 S1-U1接口连接, 以及用户面网关与基站之间的 S1-U2接口连接。 宏蜂窝进行接入控制和移动 性管理。
当某个终端的某个 E-RAB在小蜂窝之间发生转移时,宏蜂窝通过保持从 控制面网关到 MME之间的控制面链路的方式, 屏蔽这种转移可能导致的对 MME的影响。
用户面网关,与 SGW之间通过 S1-U1接口连接,与宏基站之间通过 S1-U2 接口、 X-1接口连接, 与小蜂窝基站之间通过 S1-U2接口连接。 设置为支持 与 SGW之间管理 S1-U1接口连接, 以及与基站之间管理 S1-U2接口连接的 功能, 类似 Releasel l中 SGW和基站之间管理 GTP-U通道的功能即 S1-U接 口的功能, 这些管理过程受控制面网关控制。
当某个终端的某个 E-RAB在小蜂窝之间发生转移时,用户面网关通过保 持从用户面网关到 SGW之间的 GTP-U通道的方式, 屏蔽这种转移可能导致 的对 SGW的影响。 用户面网关对宏蜂窝来说是透明存在的。
小蜂窝, 与用户面网关之间通过 S1-U2接口连接, 与宏基站之间通过 S1-MME2接口 (进一步包括 X-3接口)连接, 与 UE之间通过 Uu接口连接。 设置为支持与终端之间建立 LTE系统的数据无线承载( DRB ) , 并且在 DRB 上进行通讯的所有功能, 还进一步设置为支持与控制面网关之间管理控制面 链路, 与用户面网关之间管理 S1-U2接口连接。
如图 18所示第五实施例, 本发明优选实施例的 Uu接口的协议堆栈与相 关技术相同; 本发明优选实施例的 S1-MME1接口、 S1-MME2接口的协议堆 栈与相关技术 S1-MME的相同,建立过程也相同;本发明优选实施例的 S1-U1 接口、 S1-U2接口的协议堆栈与相关技术 S1-U的相同, 建立过程也相同; 本 发明优选实施例的 X-1接口的协议堆栈与相关技术 S1-C的相同,建立过程也 相同。
如图 18所示的第五实施例中,根据控制面链路对控制面数据进行处理包 括: 在上行方向, 终端通过一个或多个无线接口发送数据到一个或多个基站, 对于小基站, 还需要通过 S1-MME2接口将数据发送到宏基站, 宏基站通过 S1-MME1接口将数据发送到 MME; 在下行方向: MME通过 S1-MME1接口 将数据发送到宏基站, 宏基站再通过 S1-MME2接口将数据发送到小基站或 直接通过无线接口发送给终端, 小基站通过无线接口将数据发送给终端。 其 中, 小基站与终端之间的控制面链路可以存在, 也可以不存在, 如果不存在, 那么, 终端与小基站之间的控制面需要通过宏基站转 (即 X-3接口 )进行转 发。
根据用户面链路对用户面数据进行处理包括: 在上行方向, 终端通过一 个或多个无线接口发送数据到一个或多个基站, 一个或多个基站通过 S1-U2 接口将数据发送到用户面网关, 用户面网关再通过 S1-U1接口将数据发送到 SGW; 在下行方向: SGW通过 S1-U1接口将数据发送到用户面网关, 用户 面网关通过 S1-U2接口将数据发送到一个或多个基站, 基站再通过无线接口 将数据发送给终端。
图 19为本发明实施例小蜂窝基站接入系统第五实施例的 GTP-U通道建 立的流程示意图, 如图 19所示, 包括:
步骤 1900: MME通过 S 1 -MME接口向宏蜂窝发送无线接入承载管理消 息。
步骤 1901 :宏蜂窝向小蜂窝发送请求建立 GTP-U通道的无线承载配置请 求消息。
步骤 1902: 建立小蜂窝与用户面网关之间, 以及用户面网关和 SGW之 间的 GTP-U通道。
步骤 1903: 小蜂窝向宏蜂窝发送无线承载配置确认消息, 以确认到核心 网的 GTP-U通道建立。
图 20为本发明实施例小蜂窝基站接入系统第五实施例的 GTP-U通道删 除的流程示意图, 如图 20所示, 包括:
步骤 2000:宏蜂窝向小蜂窝发送请求删除 GTP-U通道的无线承载配置请 求消息。
步骤 2001 : 删除小蜂窝与用户面网关之间, 以及用户面网关与 SGW之 间的 GTP-U通道。
步骤 2002: 小蜂窝向宏蜂窝发送 GTP-U通道删除确认消息。
图 21为本发明实施例小蜂窝基站接入系统第五实施例的 GTP-U通道更 换的流程示意图,假设终端从小蜂窝 1移动到小蜂窝 2, 如图 21所示, 包括: 终端在从小蜂窝 1移动到小蜂窝 2时, 宏蜂窝执行图 19所示的过程, 建 立小蜂窝 2到 SGW的 GTP-U通道, 这个 GTP-U通道包括 SGW与用户面网 关之间, 以及用户面网关与小蜂窝 2之间的两段 GTP-U通道。 并按照图 20 所述的过程, 删除小蜂窝 1上 GTP-U通道。
本发明实施例图 21所示的终端在小蜂窝之间发生移动时, GTP-U通道的 管理不会影响到核心网, 从而使得在无线侧引入大量的小蜂窝称为可能。
图 22 为本发明实施例小蜂窝基站接入系统的第六实施例的逻辑功能结 构示意图, 本实施例中, 用户面网关设置在 SGW中成为 SGW+, 控制面网 关设置在 MME中成为 MME+,如图 22所示, 与图 5所示的第一实施例的结 构的区别在于, S1-MME1接口成为 MME网元的内部接口, S1-U1接口成为 SGW网元的内部接口, S1-MME2接口成为 MME与宏基站之间、 MME与小 基站之间的接口, S1-U2接口成为 SGW与宏基站之间、 SGW与 S-eNB之间 的接口, X-1接口成为 MME与 SGW之间的接口之一。 具体地, 如图 22所 示, 宏蜂窝、 小蜂窝的功能与相关技术一致, 其它各个网络节点的功能分别 为:
MME, 其中设置有控制面网关。 与 SGW之间通过 S11接口、 X-1接口 连接, 通过 S1-MME2接口分别与宏基站和小蜂窝基站就连接。 除具有 LTE 系统 Releasel l的 MME现有功能外,还设置为支持针对同一个用户管理两个 S 1 -MME2接口并分别连连接至不同的基站。
SGW, 其中设置有用户面网关。 与 MME之间通过 S11接口、 X-1接口 连接, 通过 S1-U2接口分别与宏基站和小蜂窝基站就连接。 除具有 LTE系统 Releasel l的 SGW现有功能外,还设置为支持针对同一个用户管理两个 S1-U2 接口并分别连连接至不同的基站。
图 22 所示的本发明第六实施例中, 其网络接入方法与相关技术一致; GTP-U通道的建立、 删除、 更换实现方法与相关技术一致。 但是, 可以看出, 在本实施例中, 由于控制面与数据面的分离, 终端与两个不同的基站如宏蜂 窝 (基站)和小蜂窝 (基站) 同时存在数据收发, 从而增加了用户吞吐量和 增强了移动性能, 并解决了用户在小区间切换使得节点间信息交互频繁, 对 核心网造成冲击的问题, 避免了对核心网的信令冲击, 进而实现了无线侧的 大量小蜂窝基站的引入。
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明的保护范 围。 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
工业实用性 本发明实施例分别建立控制面链路和用户面链路, 小蜂窝基站接入系统 通过建立的控制面链路对接入终端的控制面数据进行处理, 通过建立的用户 面链路对接入终端的用户面数据进行处理。 本发明实施例通过控制面与数据 面的分离, 使得终端与两个不同的基站如宏蜂窝 (基站)和小蜂窝 (基站) 同时存在数据收发, 增加了用户吞吐量和增强了移动性能, 并解决了用户在 小区间切换使得节点间信息交互频繁、 对核心网造成冲击的问题, 进而实现 了无线侧的大量小蜂窝基站的引入。

Claims

权 利 要 求 书
1、 一种小蜂窝基站接入系统, 包括:
控制面网关, 连接无线接入网和核心网, 设置为构建核心网与无线接入 网之间的控制面链路; 作为控制面信令的汇聚分发节点, 汇聚来自不同无线 接入网节点的信令并发送到核心网, 或者分发来自核心网的信令至不同的无 线接入网节点; 管理协调一个或者多个无线接入网节点;
用户面网关, 连接无线接入网和核心网, 设置为构建核心网与无线接入 网之间的用户面链路; 作为用户面数据的汇聚分发节点, 汇聚来自不同无线 接入网节点的数据并发送到核心网, 或者分发来自核心网的数据到不同的无 线接入网节点;
所述控制面网关与用户面网关之间建立有连接链路。
2、 根据权利要求 1所述的小蜂窝基站接入系统, 还包括:
所述控制面网关, 还设置为通过建立的连接链路, 实现对用户面网关的 控制与管理。
3、 根据权利要求 2所述的小蜂窝基站接入系统, 其中,
所述对用户面网关的控制与管理包括: 控制所述用户面网关与核心网之 间, 以及所述用户面网关与无线接入网节点之间的连接的建立、删除和修改。
4、 根据权利要求 1或 2所述的小蜂窝基站接入系统, 其中,
所述控制面网关为一个或一个以上;
所述用户面网关为一个或一个以上。
5、 根据权利要求 4所述的小蜂窝基站接入系统, 还包括:
该系统还包括与控制面网关连接的移动管理实体 MME、与用户面网关以 及 MME连接的服务网关 SGW、 与控制面网关和用户面网关分别连接的宏基 站和与控制面网关和用户面网关分别连接的小蜂窝基站。
6、 根据权利要求 5所述的小蜂窝基站接入系统, 其中,
所述用户面网关和控制面网关分别为独立的物理节点;
所述 MME , 是设置为与所述控制面网关之间通过 S 1 -MME1接口连接, 与所述 SGW之间通过 SI 1接口连接; 还设置为支持与所述控制面网关之间 管理控制面链路;
所述 SGW,是设置为与所述用户面网关之间通过 S1-U1接口连接; 还设 置为支持与所述用户面网关之间管理 S 1 -U1接口连接;
所述控制面网关, 是设置为与所述 MME之间通过 S1-MME1接口连接, 与所述宏基站或 /和小蜂窝基站间通过 S1-MM2接口连接,与所述用户面网关 之间通过 X-1接口连接; 还设置为支持与 MME之间管理控制面链路, 以及 与基站之间管理控制面链路的功能, 管理用户面网关与 SGW之间建立的 S1-U1接口连接, 以及用户面网关与基站之间建立的 S1-U2接口连接;
所述用户面网关, 是设置为与所述 SGW之间通过 S1-U1接口连接, 与 宏基站或小蜂窝基站之间通过 S1-U2接口连接, 与控制面网关之间通过 X-1 接口连接; 还设置为在所述控制面网关的控制下, 支持与所述 SGW之间管 理 S1-U1接口连接, 以及与基站之间管理 S1-U2接口连接;
所述宏基站, 设置为与所述控制面网关之间通过 S1-MME2接口连接, 与所述用户面网关之间通过 S1-U2接口连接; 还设置为支持与所述控制面网 关之间管理控制面链路, 与所述用户面网关之间管理 S1-U2接口连接;
所述小蜂窝基站, 设置为与所述用户面网关之间通过 S1-U2接口连接, 与所述控制面网关之间通过 S1-MME2接口连接; 还设置为支持与所述控制 面网关之间管理控制面链路, 与所述用户面网关之间管理 S1-U2接口连接。
7、 根据权利要求 6所述的小蜂窝基站接入系统, 还包括:
所述控制面网关, 还设置为与其它控制面网关之间通过 X-C接口连接, 用于跨控制面网关移动时的节点间协商。
8、 根据权利要求 6所述的小蜂窝基站接入系统, 还包括:
所述用户面网关, 还设置为与其它用户面基站之间通过 X-U接口连接, 用于跨用户面网关移动时传输节点间的数据。
9、 根据权利要求 5所述的小蜂窝基站接入系统, 其中,
所述控制面网关与用户面网关合设在同一物理实体中, 此时, 所述控制 面网关与用户面网关之间的 X-1接口为内部接口。
10、 根据权利要求 5所述的小蜂窝基站接入系统, 其中,
所述控制面网关与用户面网关合设并设置在宏基站中;
所述 MME, 设置为与所述宏基站之间通过 S1-MME1接口连接, 与所述 SGW之间通过 SI 1接口连接;还设置为支持与所述设置在宏基站中的控制面 网关之间管理控制面链路;
所述 SGW,设置为与所述宏基站之间通过 S1-U1接口连接; 还设置为支 持与所述设置在宏基站中的用户面网关之间管理 S1-U1连接;
所述宏基站,设置为与所述 MME之间通过 S 1 -MME1接口连接,与所述 小蜂窝基站之间有 S1-U2接口、 S1-MME2接口; 还设置为支持与小蜂窝基站 之间管理控制面链路, 支持与所述小蜂窝基站之间管理 S1-U2连接;
所述小蜂窝基站, 设置为与所述宏基站之间有 S1-U2接口、 S1-MME2 接口; 还设置为支持与所述宏基站之间管理控制面链路和 S1-U2连接。
11、 根据权利要求 5所述的小蜂窝基站接入系统, 其中,
所述控制面网关与用户面网关合设并设置在宏基站中;
在所述宏基站和小蜂窝基站之间还设置有一个网关, 同时负责小蜂窝基 站的控制面和用户面管理;
所述 MME, 设置为与所述宏基站之间通过 S1-MME1接口连接, 与所述 SGW之间通过 SI 1接口连接;还设置为支持与所述设置在宏基站中的控制面 网关之间管理控制面链路;
所述 SGW,设置为与所述宏基站之间通过 S1-U1接口连接; 还设置为支 持与所述设置在宏基站中的用户面网关之间管理 S1-U1连接;
所述宏基站,设置为与所述 MME之间通过 S 1 -MME1接口连接,与所述 小蜂窝基站之间经由网关建立 S1-U2接口、 S1-MME2接口连接; 还设置为支 持与所述网关之间管理控制面链路;
所述网关, 设置为支持与基站之间的管理控制面链路和用户面链路; 所述小蜂窝基站, 设置为与所述宏基站之间经由所述网关建立 S1-U2接 口、 S1-MME2接口连接; 还设置为支持与终端之间建立 LTE系统的数据无 线承载并具备在 DRB 上进行通讯, 以及支持与网关之间管理控制面链路和 S1-U2接口连接。
12、 根据权利要求 11所述的小蜂窝基站接入系统, 还包括,
所述宏基站与小蜂窝基站之间, 经由所述网关建立 X-3接口连接。
13、 根据权利要求 6所述的小蜂窝基站接入系统, 其中,
所述控制面网关设置在宏基站中, 所述用户面网关为独立实体; 所述 MME,设置为与所述宏基站之间通过 S1-MME1接口连接,与 SGW 之间通过 S11接口连接;
所述 SGW,设置为与所述用户面网关之间通过 S1-U1接口连接; 还设置 为支持与所述用户面网关之间管理 S 1 -U1接口连接;
所述宏基站, 其中设置有控制面网关; 设置为与所述 MME之间通过 S1-MME1接口连接,与小蜂窝基站间通过 S1-MM2接口连接,与所述用户面 网关之间的接口包括 X-1接口、 S1-U2接口; 还设置为支持与用户面网关之 间管理 S1-U2接口连接, 支持与小蜂窝基站之间管理控制面链路; 控制所述 用户面网关管理用户面网关与 SGW之间的 S1-U1接口连接, 以及用户面网 关与基站之间的 S1-U2接口连接;
所述用户面网关, 设置为与所述 SGW之间通过 S1-U1接口连接, 与所 述宏基站之间通过 S1-U2接口、 X-1接口连接,与小蜂窝基站之间通过 S1-U2 接口连接; 还设置为支持与 SGW之间管理 S1-U1接口连接, 以及与基站之 间管理 S1-U2接口连接;
所述小蜂窝基站, 设置为与所述用户面网关之间通过 S1-U2接口连接, 与所述宏基站之间通过 S1-MME2接口连接; 支持与终端之间建立 LTE系统 的数据无线承载并在 DRB上进行通讯,以及支持与控制面网关之间管理控制 面链路, 与用户面网关之间管理 S1-U2接口连接。
14、 根据权利要求 6、 10或 13所述的小蜂窝基站接入系统, 还包括, 所述宏基站与小蜂窝基站之间通过 X-3接口连接。
15、 根据权利要求 6所述的小蜂窝基站接入系统, 其中, 所述用户面网关设置在 SGW中; 所述控制面网关设置在 MME中; 所述 MME, 其中设置有控制面网关; 设置为与所述 SGW之间通过 S11 接口、 X-1接口连接,通过 S1-MME2接口分别与宏基站和小蜂窝基站就连接; 还设置为支持针对同一个用户管理两个 S1-MME2接口并分别连接至不同的 基站;
所述 SGW, 其中设置有用户面网关; 设置为与所述 MME之间通过 S11 接口、 X-1接口连接, 通过 S1-U2接口分别与宏基站和小蜂窝基站就连接; 还设置为支持针对同一个用户管理两个 S1-U2接口并分别连接至不同的基 站。
16、 一种小蜂窝基站接入系统实现网络接入的方法, 其特征在于, 在小 蜂窝基站接入系统中设置有,
控制面网关, 连接无线接入网和核心网, 设置为构建核心网与无线接入 网之间的控制面链路;
用户面网关, 连接无线接入网和核心网, 设置为构建核心网与无线接入 网之间的用户面链路;
所述控制面网关与用户面网关之间建立有连接链路;
该方法包括:
分别建立控制面链路和用户面链路;
通过建立的控制面链路对接入终端的控制面数据进行处理, 通过建立的 用户面链路对接入终端的用户面数据进行处理。
17、 根据权利要求 16所述的方法, 还包括:
通过建立的连接链路, 所述控制面网关对用户面网关的控制与管理。
18、 根据权利要求 17所述的方法, 其中,
所述控制面网关对用户面网关的控制与管理包括:
建立、 删除和修改所述控制用户面网关与核心网之间的连接, 以及, 建立、 删除和修改所述用户面网关与无线接入网节点之间的连接。
19、 根据权利要求 16或 17所述的方法, 其中, 所述用户面网关为两个或两个以上;
该方法还包括:
建立所述用户面网关之间的连接链路; 通过建立的连接链路, 实现终端 跨用户面网关移动时传输节点间的数据。
20、 根据权利要求 16或 17所述的方法, 该方法还包括:
所述控制面网关通过所述连接链路, 完成终端跨控制面网关移动时的节 点间协商。
21、 根据权利要求 16所述的方法, 其中,
所述通过建立的控制面板链路对接入终端的控制面数据进行处理包括: 通过所述建立的控制面链路, 所述控制面网关处理控制面数据, 汇聚来 自不同无线接入网节点的信令并发送到核心网, 或者分发来自核心网的信令 至不同的无线接入网节点。
22、 根据权利要求 21所述的方法, 其中,
所述汇聚或分发包括:
管理核心网与所述控制面网关之间, 以及所述控制面网关与无线接入网 节点间的信令连接;
维护与终端相关的上下文信息, 包括核心网与控制面网关之间, 以及控 制面网关与无线接入网节点间的信令连接的映射关系;
根据核心网或者无线接入网节点的信令, 对信令连接进行管理。
23、 根据权利要求 22所述的方法, 还包括,
当终端支持多流时, 所述终端保存所述控制面网关与多个无线接入网节 点间的信令连接。
24、 根据权利要求 22或 23所述的方法, 还包括,
指示用户面网关对相应的数据连接进行管理。
25、 根据权利要求 22所述的方法, 其中,
所述映射关系是一对一的映射关系; 根据映射关系转发所述信令; 或者, 所述映射关系是一对多的映射关系, 根据指定法则代理转发所述信令。
26、 根据权利要求 22所述的方法, 当存在跨控制面网关时, 在所述控制 面网关之间, 该方法还包括:
迁移对应终端相关或者空口连接相关的上下文配置信息。
27、 根据权利要求 16所述的方法, 其中,
所述通过建立的用户面链路对接入终端的用户面数据进行处理包括: 通过建立的用户面链路, 用户面网关处理用户面数据, 汇聚来自不同无 线接入网节点的数据并发送到核心网, 或者分发来自核心网的数据到不同的 无线接入网节点。
28、 根据权利要求 27所述的方法, 其中,
所述汇聚或分发包括:
管理核心网与所述用户面网关之间, 以及用户面网关与无线接入网之间 的数据通道;
维护包括核心网与用户面网关之间, 以及用户面网关与无线接入网节点 间的数据通道的映射关系; 按照映射关系进行数据的转发, 并对该映射关系 进行管理。
29、 根据权利要求 28所述的方法, 其中,
所述映射关系是一对一的映射关系; 或者,
所述映射关系是一对多的映射关系, 此时,
所述用户面网关维护一个终端的上下文信息中一对多的关系: 在上行方 向, 所述用户面网关将多条数据通道汇聚到一条数据通道中发送; 在下行方 向, 所述用户面网关根据预先设置的规则进行数据分流。
30、 根据权利要求 29所述的方法, 还包括,
当存在跨用户面网关时, 管理用户面网关之间的数据通道包括建立, 删 除和爹改; 以及,
维护接入网节点或核心网,与所述用户面网关之间的数据通道映射关系, 按照映射关系进行数据的转发, 并支持该映射关系的管理。
PCT/CN2013/080035 2013-05-24 2013-07-24 一种小蜂窝基站接入系统及其实现网络接入的方法 WO2013185683A2 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13804770.9A EP2991397B1 (en) 2013-05-24 2013-07-24 Small cell enodeb access system and method for realizing network access therefor
JP2016514240A JP6177428B2 (ja) 2013-05-24 2013-07-24 小セルラー基地局アクセスシステム及びそのネットワークアクセスを実現する方法
US14/893,767 US9844000B2 (en) 2013-05-24 2013-07-24 Small cell eNodeB access system and method for realizing network access therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310198436.1A CN104185209B (zh) 2013-05-24 2013-05-24 一种小蜂窝基站接入系统及其实现网络接入的方法
CN201310198436.1 2013-05-24

Publications (2)

Publication Number Publication Date
WO2013185683A2 true WO2013185683A2 (zh) 2013-12-19
WO2013185683A3 WO2013185683A3 (zh) 2014-04-24

Family

ID=49758785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080035 WO2013185683A2 (zh) 2013-05-24 2013-07-24 一种小蜂窝基站接入系统及其实现网络接入的方法

Country Status (5)

Country Link
US (1) US9844000B2 (zh)
EP (1) EP2991397B1 (zh)
JP (1) JP6177428B2 (zh)
CN (1) CN104185209B (zh)
WO (1) WO2013185683A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2947950A4 (en) * 2013-01-18 2016-02-17 Zte Corp METHOD AND SYSTEM FOR ACCESSING A NETWORK
CN107079382A (zh) * 2014-09-26 2017-08-18 三星电子株式会社 支持多无线电接入技术的方法和装置
JP2018527836A (ja) * 2015-09-16 2018-09-20 ノキア ソリューションズ アンド ネットワークス オサケ ユキチュアNokia Solutions and Networks Oy 無線アクセスネットワークにおける制御プレーンとユーザプレーンの分離
EP3340046A4 (en) * 2015-09-18 2018-10-24 Huawei Technologies Co., Ltd. Method for accessing local network, and related device
EP3361681A4 (en) * 2015-10-30 2018-10-24 Huawei Technologies Co., Ltd. Gateway configuration method and gateway device
US10631287B2 (en) 2014-09-26 2020-04-21 Samsung Electronics Co., Ltd. Method and apparatus for supporting multi-radio access technology

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015018038A1 (zh) * 2013-08-08 2015-02-12 华为技术有限公司 一种隧道建立的方法及装置
CN104378842A (zh) * 2013-08-12 2015-02-25 中兴通讯股份有限公司 一种连接管理方法及接入网网元
US10362632B2 (en) * 2014-06-12 2019-07-23 Nokia Solutions And Networks Oy Architecture for radio access network and evolved packet core
US10104582B2 (en) * 2014-08-11 2018-10-16 Cisco Technology, Inc. Call preservation on handover
US10321491B2 (en) * 2014-11-12 2019-06-11 Lg Electronics Inc. Method and apparatus for supporting local gateway service for dual connectivity in wireless communication system
US10148510B2 (en) 2015-03-02 2018-12-04 Spidercloud Wireless, Inc. Topology discovery and management and SON orchestration
US10349313B2 (en) 2015-03-02 2019-07-09 Corning Optical Communications LLC Enhanced features for a gateway coordinating multiple small cell radio access networks
US11071032B2 (en) * 2015-03-02 2021-07-20 Corning Optical Communications LLC Gateway coordinating multiple small cell radio access networks
US10728806B2 (en) 2015-03-02 2020-07-28 Corning Optical Communications LLC Enhanced features for a gateway coordinating multiple small cell radio access networks
CN107211321B (zh) * 2015-03-04 2021-10-01 苹果公司 基于毫米波无线电接入技术的装置、移动代理及存储介质
US10129805B2 (en) 2015-03-12 2018-11-13 Spidercloud Wireless, Inc. Hitless software upgrade for a virtualized gateway coordinating multiple small cell radio access networks
CN104869666B (zh) * 2015-04-10 2019-05-21 电信科学技术研究院 数据无线承载配置方法、数据传输方法及设备
CN105228169A (zh) * 2015-10-27 2016-01-06 京信通信技术(广州)有限公司 一种基站管理控制方法和装置
CN108353450B (zh) * 2015-11-06 2022-02-08 苹果公司 在sgw分为控制平面节点和用户平面节点时用于空闲模式ue的下行链路数据处理
CN105491630A (zh) * 2015-11-25 2016-04-13 广东欧珀移动通信有限公司 业务处理方法及装置
CN106937342B (zh) * 2015-12-31 2019-07-05 电信科学技术研究院 一种移动性管理方法和设备
WO2017124231A1 (zh) * 2016-01-18 2017-07-27 华为技术有限公司 分配互联网协议地址的方法、控制面网关和用户面网关
BR112018070401A2 (pt) * 2016-04-05 2019-02-05 Huawei Tech Co Ltd método e aparelho de comunicação colaborativa móvel
WO2018035864A1 (zh) * 2016-08-26 2018-03-01 华为技术有限公司 一种网络管理方法和控制器
MX2019012653A (es) * 2017-04-28 2019-12-11 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo para adquirir informacion de configuracion de contexto, dispositivo terminal y dispositivo de red de acceso.
US11412554B2 (en) * 2018-05-10 2022-08-09 Apple Inc. E1 interface setup in NG-RAN
CN111263367B (zh) * 2018-12-03 2023-05-09 中泓慧联技术有限公司 基于云端核心网epc的用户面传输系统和方法
CN111263466B (zh) * 2018-12-03 2022-03-15 中泓慧联技术有限公司 一种支持用户面传输的系统和方法
EP3912430A4 (en) * 2019-01-18 2022-03-02 ZTE Corporation METHOD AND DEVICE FOR REMOVAL OF USER PLANE CONNECTIONS IN MULTICONNECTIVITY SYSTEMS
CN112995936B (zh) * 2021-03-12 2022-10-04 国网江苏省电力有限公司信息通信分公司 230MHz与1800MHz电力无线专网融合组网方法和系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE281048T1 (de) 2002-05-17 2004-11-15 Cit Alcatel Funkzugriffsnetz und netzwerkelement
CN100488284C (zh) * 2006-01-26 2009-05-13 华为技术有限公司 一种3gpp演进网络中漫游用户数据路由优化方法
CN102395202B (zh) 2006-04-28 2014-11-05 华为技术有限公司 一种演进网络中限制信令的实现方法
JP5113684B2 (ja) * 2008-09-05 2013-01-09 株式会社日立製作所 アクセスゲートウェイ装置の制御方法及び通信システム
CN101686578B (zh) * 2008-09-28 2012-05-23 中兴通讯股份有限公司 家庭演进基站系统及无线设备的接入方法
JP5215900B2 (ja) * 2009-02-13 2013-06-19 株式会社日立製作所 移動無線通信システムおよびアクセスゲートウェイ
JP5400222B2 (ja) * 2009-06-19 2014-01-29 ゼットティーイー(ユーエスエー)インコーポレーテッド ソースサービングゲートウェイとターゲットサービングゲートウェイとの間でパケットを転送するインターネットワーキング技術
CN102348244B (zh) * 2010-08-03 2014-11-05 华为技术有限公司 蜂窝通信系统、终端在小区间切换的方法及宏基站
CN102075859A (zh) * 2010-12-24 2011-05-25 大唐移动通信设备有限公司 一种基于lte系统的信息推送方法和系统
CN102026405A (zh) * 2010-12-29 2011-04-20 中兴通讯股份有限公司 连接处理方法及系统
US20140011519A1 (en) * 2011-04-03 2014-01-09 Lg Electronics Inc. Method for transmitting location information and user equipment
CN103583079B (zh) * 2011-04-06 2017-12-19 诺基亚通信公司 双重带内/带外无线电接入方法、设备及系统
US20120327867A1 (en) * 2011-06-27 2012-12-27 Renesas Mobile Corporation Subframe Scheduling
WO2013095216A1 (en) * 2011-12-19 2013-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method in a network node
WO2013123643A1 (en) * 2012-02-21 2013-08-29 Nokia Siemens Networks Oy Signalling interfaces in communications
US9686677B2 (en) * 2013-01-17 2017-06-20 Intel IP Corporation Techniques for deploying small cells as secondary cells for user equipment
GB2512659A (en) * 2013-04-05 2014-10-08 Nec Corp Communication system
CN104113881B (zh) * 2013-04-16 2019-09-17 中兴通讯股份有限公司 一种无线资源管理方法、宏基站及低功率节点
US9370020B2 (en) * 2013-05-16 2016-06-14 Alcatel Lucent Methods and systems for scheduling communications in a co-channel network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2991397A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2947950A4 (en) * 2013-01-18 2016-02-17 Zte Corp METHOD AND SYSTEM FOR ACCESSING A NETWORK
US9894695B2 (en) 2013-01-18 2018-02-13 Zte Corporation Network access system and method
CN107079382A (zh) * 2014-09-26 2017-08-18 三星电子株式会社 支持多无线电接入技术的方法和装置
EP3198988A4 (en) * 2014-09-26 2017-11-01 Samsung Electronics Co., Ltd. Method and apparatus for supporting multi-radio access technology
US10631287B2 (en) 2014-09-26 2020-04-21 Samsung Electronics Co., Ltd. Method and apparatus for supporting multi-radio access technology
US10405243B2 (en) 2015-09-16 2019-09-03 Nokia Solutions And Networks Oy Control and user plane decoupling in radio access network
JP2018527836A (ja) * 2015-09-16 2018-09-20 ノキア ソリューションズ アンド ネットワークス オサケ ユキチュアNokia Solutions and Networks Oy 無線アクセスネットワークにおける制御プレーンとユーザプレーンの分離
US10299309B2 (en) 2015-09-18 2019-05-21 Huawei Technologies Co., Ltd. Method for accessing local network, and related device
EP3340046A4 (en) * 2015-09-18 2018-10-24 Huawei Technologies Co., Ltd. Method for accessing local network, and related device
US10743360B2 (en) 2015-09-18 2020-08-11 Huawei Technologies Co., Ltd. Method for accessing local network, and related device
US11051351B2 (en) 2015-09-18 2021-06-29 Huawei Technologies Co., Ltd. Method for accessing local network, and related device
EP3897013A1 (en) * 2015-09-18 2021-10-20 Huawei Technologies Co., Ltd. Method for accessing local network, and related device
US11838969B2 (en) 2015-09-18 2023-12-05 Huawei Technologies Co., Ltd. Method for accessing local network, and related device
EP3361681A4 (en) * 2015-10-30 2018-10-24 Huawei Technologies Co., Ltd. Gateway configuration method and gateway device
US10601706B2 (en) 2015-10-30 2020-03-24 Huawei Technologies Co., Ltd. Gateway configuration method and gateway device
US11271853B2 (en) 2015-10-30 2022-03-08 Huawei Technologies Co., Ltd. Gateway configuration method and gateway device

Also Published As

Publication number Publication date
US20160112945A1 (en) 2016-04-21
WO2013185683A3 (zh) 2014-04-24
EP2991397A2 (en) 2016-03-02
EP2991397B1 (en) 2018-03-14
CN104185209A (zh) 2014-12-03
EP2991397A4 (en) 2016-05-18
US9844000B2 (en) 2017-12-12
CN104185209B (zh) 2019-11-19
JP6177428B2 (ja) 2017-08-09
JP2016522634A (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
WO2013185683A2 (zh) 一种小蜂窝基站接入系统及其实现网络接入的方法
US8730918B2 (en) Handover method based on mobile relay and mobile wireless relay system
KR102206431B1 (ko) 다수의 E-NodeB들과 사용자 단말 간에 동시 접속을 제공하기 위한 방법 및 시스템
CN102833802B (zh) 一种数据转发方法及设备
JP6239006B2 (ja) ネットワークアクセスシステムおよび方法
JP6521128B2 (ja) 無線通信システム、第1の無線局、コアネットワーク装置、及びこれらの方法
US20150094073A1 (en) Base station, user equipment, and communications method
WO2015090014A1 (zh) 一种小基站环境下交互信息的方法、基站和移动管理实体
JP2017526305A (ja) ユーザー装置の基地局ハンドオーバ方法及び基地局、ユーザー装置
EP3567898B1 (en) Method and device for managing a radio link
WO2011000193A1 (zh) 一种无线中继系统中终端的移动性管理方法及系统
WO2013184770A1 (en) Method and system for multi-rat transmission
WO2011103738A1 (zh) 一种实现演进型基站间切换的方法、系统及演进型基站装置
TWI503016B (zh) A method for performing handover, the system and apparatus
US20150304916A1 (en) Method and apparatus for transferring bearing in layered network
WO2010124641A1 (zh) 一种长期演进系统及其数据传输方法
WO2012019467A1 (zh) 获取邻接基站/中继节点接口信息的方法及无线中继系统
CN104853344B (zh) 一种选择分流网关的方法和控制器
WO2015085730A1 (zh) 一种实现本地网关业务的方法、系统及连接设备
WO2014169718A1 (zh) 一种无线资源管理方法、宏基站及低功率节点
JP2015530840A (ja) ヘテロジニアス・ネットワークのためのユーザ・プレーン・ハンドオーバ
WO2011020413A1 (zh) 一种应用于无线中继的传输系统及传输方法
CN107148061B (zh) 一种基于sdn的lte与wlan异构网络切换系统及方法
WO2014177083A1 (zh) 一种连接管理方法及接入网网元
WO2015085709A1 (zh) 一种处理选定的ip流量卸载连接的方法及基站

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013804770

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016514240

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14893767

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804770

Country of ref document: EP

Kind code of ref document: A2