WO2013185261A1 - 基于发光二极管的照明设备的分段驱动方法和装置 - Google Patents

基于发光二极管的照明设备的分段驱动方法和装置 Download PDF

Info

Publication number
WO2013185261A1
WO2013185261A1 PCT/CN2012/000830 CN2012000830W WO2013185261A1 WO 2013185261 A1 WO2013185261 A1 WO 2013185261A1 CN 2012000830 W CN2012000830 W CN 2012000830W WO 2013185261 A1 WO2013185261 A1 WO 2013185261A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
led
segments
series
based illumination
Prior art date
Application number
PCT/CN2012/000830
Other languages
English (en)
French (fr)
Inventor
朱弘琦
沈毓仁
Original Assignee
钰瀚科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钰瀚科技股份有限公司 filed Critical 钰瀚科技股份有限公司
Priority to PCT/CN2012/000830 priority Critical patent/WO2013185261A1/zh
Priority to DE112012005774.0T priority patent/DE112012005774T5/de
Publication of WO2013185261A1 publication Critical patent/WO2013185261A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices

Definitions

  • the present invention relates to a light emitting diode based illumination device, and more particularly to an apparatus and method for segmentally driving a plurality of light emitting diode based illumination units to enhance the efficiency of the illumination device.
  • LEDs Light-emitting diodes
  • LEDs are semiconductor-based light sources that are often used in low-energy meters and appliances, and the use of light-emitting diodes in various lighting devices has become more common. For example, high-brightness LEDs have been widely used in traffic lights, vehicle lights, and brake lights.
  • the current-to-voltage (IV) characteristic curve of the LED is similar to that of a conventional diode.
  • the voltage applied to the LED is less than the forward voltage of the diode, only a very small current flows through the LED.
  • the voltage exceeds the forward voltage the current through the LED is greatly increased.
  • the illumination intensity of an LED-based illumination device is proportional to the current passed, but not at high currents.
  • Drives typically designed for light-emitting diode-based lighting devices are designed to provide a constant current to provide stable light and extend the life of the LED.
  • a plurality of LEDs are usually connected in series to form an LED-based illumination unit, and most of the LED-based illumination units can be further connected in series to form an illumination.
  • U.S. Patent No. 6,777,891 discloses a plurality of LED-based illumination units forming a computer-controlled string of lights, each of which forms a separately controllable node in the string.
  • the operating voltage required for each illuminator is usually determined by the forward voltage of the LEDs in the lighting unit, how many LEDs are in each lighting unit, how each lighting unit is connected to each other, and each The lighting unit is in the lighting device, how it receives the voltage from the power supply. Therefore, in most applications, some type of supply voltage conversion device is required to convert a generally more common high voltage power supply to a lower voltage to provide one or more LED-based lighting units. . Because of the need for such a voltage transfer By changing the device, the efficiency of the LED-based lighting device is reduced, the cost is increased, and it is difficult to reduce the volume.
  • U.S. Patent No. 778,1979 provides a device for controlling a series of light emitting diodes. Two or more of the light emitting diodes are connected in series. When a voltage is applied, a series current flows through the light emitting diode. At least one of the light emitting diodes is connected in parallel with one or more controllable current paths to cause a series current to flow through the controllable current paths so that a generally more common high voltage power supply can be used without the need for a voltage conversion device. Therefore, the device can use an AC voltage such as 120V or 240V.
  • US Patent Publication No. 2010/0308739 discloses a device for interconnecting a plurality of light emitting diodes in series to form a plurality of light emitting diode segments, and a plurality of switches are connected to the plurality of light emitting diode segments to select and control a certain LED segment. It is connected in series or separated from one LED series current path.
  • Figure 1 shows a simplified schematic of the illumination device, which includes three LED segments each having one, two and four serially connected LEDs. The illumination device can be connected in series to one to seven LEDs.
  • the present invention has been created to meet the application needs of the above-described LED-based lighting device, and the main object is to provide a segmented manner for flexibly connecting a plurality of LED-based lighting units, and individually controlling each of the light-emitting units.
  • the illumination section of the diode is either connected in series to the illumination device or bypassed in a short circuit.
  • the illumination device of the present invention includes a plurality of LED-based illumination segments that are controlled by a controller.
  • Each of the LED-based illumination segments has more than one LED-based illumination unit connected in series, and has at least one series-connected switch in series, and a plurality of LED-based illuminations The unit is connected in parallel with a wrap-around switch.
  • the controller individually controls each of the illumination segments to be connected in series with other illumination segments or bypassed in a short circuit.
  • the voltage of the input power source is coupled to the first LED-based illumination segment to provide power to the illumination device of the present invention, and the last LED-based illumination segment is coupled to the ground via a current controller.
  • Lighting device may be a current sense resistor or a variable current source.
  • the present invention also concatenates the plurality of LED-based illumination segments in series with a single LED-based illumination unit.
  • Yet another object of the present invention is to provide various segmentation and driving methods for LED-based illumination devices by providing some LED-based illumination segments in series or by short-circuiting some LED-based illumination segments to provide A variety of lighting modes.
  • the plurality of LED-based illumination segments can be combined into one, two, ..., or all LED-based illumination units in series to provide all possible illumination modes.
  • the plurality of LED-based illumination segment combinations can still be utilized to provide most of the illumination modes.
  • the illumination device of the present invention is segmented into a plurality of LED-based illumination segments, each having a different number of LED-based illumination units connected in series.
  • the illumination segments of the illumination device can be combined to cascade one, two, ..., or all of the LED-based illumination
  • the unit operates in a way that provides all possible lighting patterns.
  • the illumination device is also segmented into a plurality of LED-based illumination segments, each of which has more than one series-connected LED-based illumination unit.
  • the number of segments of the selected illumination segment, and the number of illumination units in each illumination segment, make the illumination mode that the illumination device may operate more limited, but the illumination segments of the illumination device can still be combined to cascade multiple quantities. Or all of the LED-based lighting units operate in a manner.
  • FIG. 1 is a circuit diagram of a conventional illumination device for a light-emitting diode in which a plurality of light-emitting diodes are connected in series.
  • Figure 1 shows a light-emitting diode-based lighting device that operates on an input supply voltage VrN in M different illumination modes and a voltage VL ED on the LED.
  • FIG. 3 shows a circuit schematic of a lighting device for controlling a plurality of light-emitting diode-based lighting segments in accordance with a preferred embodiment of the present invention.
  • Figure 4 shows a schematic diagram of the controller of the embodiment of Figure 3.
  • Figure 5 is a circuit diagram of an illumination device for controlling a plurality of illumination diode-based illumination segments in accordance with another preferred embodiment of the present invention.
  • Figure 6 shows a schematic diagram of the controller of the embodiment of Figure 5.
  • Figure ⁇ shows a schematic diagram of the controller in another embodiment of Figure 5.
  • Figure 8 is a circuit diagram showing a preferred embodiment of a slightly modified LED-based illumination segment in accordance with Figures 5 and 7 of the present invention.
  • Figure 9 shows a schematic diagram of the controller of another embodiment of Figure 5.
  • Figure 10 illustrates that in an LED-based illumination unit of the present invention, there may be at least one or more of the LEDs connected in series, in parallel or in a combination of parallel and series.
  • a plurality of illumination units including more than one light-emitting diode are usually connected in series to increase the illumination intensity. Therefore, it is highly desirable to provide a variety of possible illumination modes to enable illumination devices to operate at different illumination intensities.
  • One of the most straightforward ways to achieve this is to use a separate switch to control the unit of illumination for each LED-based lighting unit, either in series with the lighting unit or shorted. Bypass, but this approach requires very expensive hardware costs.
  • the present invention proposes an innovative method for controlling an LED-based illumination device with maximum efficiency.
  • This new method divides all LED-based illumination units in the illumination device into a plurality of LED-based illumination segments, each An illumination segment includes more than one illumination unit of series connected LEDs.
  • Each of the LED-based illumination segments in the illumination device can be individually controlled. To simplify the description, the following example assumes that each LED-based illumination unit has only one LED.
  • an appropriate illumination device including a plurality of light-emitting diodes can be divided into appropriate LED illumination segments by appropriately selecting the number of segments of the illumination segment and the number of light-emitting diodes in each illumination segment. These illumination segments can be combined to utilize all of the LEDs to operate in the most diverse possible illumination modes. In each illumination mode operation, the LED illumination segments in the illumination device are combined by bypassing or short-circuiting around certain illumination segments to achieve at least one LED in series.
  • Figure 2 shows an LED-based illumination device operating in an input power supply voltage V 1N in M different illumination modes and a voltage V LED on the LED .
  • V LED on the light emitting diode When the voltage V LED on the light emitting diode is equal to the forward voltage V F of the light emitting diode, the light emitting diode operates in the highest efficiency state.
  • a lighting device containing N light emitting diodes in each lighting mode, Some LEDs are connected in series, and some LEDs are bypassed in a short circuit. If the illumination device is driven with a maximum fixed current source, all N LEDs can be connected in series. According to Figure 2, if the highest efficiency of the LED lighting device is to be achieved, the following integrals must be minimized:
  • T M is the time of the illumination mode -M operated by the voltage V M being applied to the LED lighting device.
  • the illumination device includes a plurality of LED-based illumination segments 101 ⁇ 10k coupled between node N A and node N c , the input supply voltage V IN providing a voltage from node N A to the plurality of LED-based illumination segments 101 ⁇ 10k, the current detecting resistor 113 connects the node N c to the ground.
  • each LED-based illumination unit has only one light-emitting diode
  • each of the LED-based illumination segments 101 10 10k includes at least one or more light-emitting diodes connected in series.
  • each of the LED-based illumination segments 101 ⁇ 10k has a positive terminal and a negative terminal, and the positive terminal of one of the light-emitting diodes at the forefront of the illumination segment is connected to the positive terminal of the illumination segment.
  • Each of the LED-based illumination segments 101 ⁇ 10k has a switch B that connects the positive end of the illumination segment to the negative terminal.
  • the switch S shown in Figure 3 is connected to the negative terminal of the illumination segment from the negative terminal of a light-emitting diode at the last end of the illumination segment. In fact, the switch S can be connected in series to any position of the string of LEDs in the illumination segment.
  • each illumination segment there are k segments of LED-based illumination segments, and the number of LEDs in each illumination segment is Si, S 2 , ..., and S k , respectively, and the total number of LEDs is 1 ⁇ . .
  • the present invention provides a method of dividing all of the light emitting diodes into k segments that can be driven to operate in N different illumination modes. Depending on the needs of the actual lighting application, each lighting mode can be connected in series with 1, 2, 3, ..., or N light-emitting diodes.
  • the number of segments of the illumination segment based on the light-emitting diode must meet the following conditions:
  • the illumination segments based on the LEDs can be connected in series or short-circuited to obtain 11 different illumination modes, Mp M 2 , ⁇ , and Mu, wherein
  • the combination of LED-based illumination segments is as follows:
  • the total number of the light emitting diode LED-based illumination device, by the input power source maximum voltage Vj ⁇ MAX) and the light emitting diode forward voltage V F at a maximum current ⁇ ⁇ ⁇ determined, to achieve the maximum efficiency that is:
  • the current is not greater than the highest current ⁇ ⁇ ⁇ . If the total number of light-emitting diodes of the light-emitting diode-based lighting device is greater than
  • the LED-based illumination segment is controlled by the controller 111.
  • the k-segment-based illumination segments of the light-emitting diodes can be connected in series or short-circuited by a combination of 1, 2, 3, ..., or
  • the flexibility of the illumination mode of N LEDs, the number of segments k must meet the following conditions:
  • Llog 2 N is the integer part of the number log 2 N.
  • a light-emitting diode-based illumination segment, with a combination of series connection or short-circuit bypass, allows 1 to 42 LEDs to be connected in series, while providing 42 different illumination modes with flexibility.
  • the numbers in the above examples are only used to illustrate how to divide the LED-based illumination segments and determine the number of segments in the illumination device. In fact, there are other possible configurations, with different number of illumination segments, and the number of different LEDs in each illumination segment, still providing the same flexibility.
  • the illumination device in FIG. 3 can be arbitrarily rearranged between the node N A and the node N c based on the order of the number of illumination segments S 2 , . . . , and S K of the LED, without affecting the illumination device. Performance or brightness.
  • the present invention there is another method of dividing the illumination device into a plurality of LED-based illumination segments, and can also be used to connect a portion of the N LEDs.
  • This method is slightly less flexible because some lighting modes cannot be implemented. However, most lighting modes are still available, so the number of lighting modes is sufficient for practical use.
  • the number of illumination segments based on the photodiode must satisfy the following conditions:
  • Llog 2 N is the integer part of the number l 0g2 N .
  • the number of light-emitting diodes that can be connected in series is 1-3, 5-8, 11-14, 16-19, 23-26, 28-31, 34-37 and 39-42.
  • the number of LEDs that can be connected in series is 1-3, 5-8, 12-15, 17-20, 25-28, 30-33, 37-40, 42-45, 49-52, 54-57, 61-64. 66-69, 74-77, 79-82, 86-89 and 91-94.
  • a combination of series connection or short-circuit bypass can be used to convert some of the 102 LEDs.
  • the LEDs are connected in series, and flexible to provide several different lighting modes.
  • the number of LEDs that can be connected in series is 1-3, 5-8, 12-15, 17-20, 25-28, 30-33, 37-40, 42-45, 57-60, 62-65, 69-72 , 74-77, 82-85, 87-90, 94-97 and 99-102.
  • each of the LED-based illumination segments 101 ⁇ 10k has two different modes of operation.
  • switch S is turned “on” and switch B is not turned “on”. Therefore, the light-emitting diodes in the illumination section are connected to the outside in series, that is to say, in the first mode of operation, the illumination segments are connected in series with the other illumination segments.
  • the switch B In the second mode of operation, the switch B is turned on. As can be seen from FIG. 3, the illumination segment is short-circuited by the switch B, so that no current flows through the LED in the illumination segment, that is, in the first In the second mode of operation, the illumination segment is short-circuited, and the LEDs therein are not illuminated.
  • each of the LED-based illumination segments 101 to 10k can be individually controlled.
  • the device further includes a controller 111 for transmitting a respective set of control signals.
  • the switch B and the switch s. These two control signals can control the associated LED-based illumination segment to operate in one of two different modes of operation. Since each of the LED-based illumination segments 101 ⁇ 10k can be connected in series or bypassed, the illumination device can be controlled by the controller 111 to control each of the LED-based illumination segments 101 ⁇ 10k. A variety of lighting modes.
  • N c is connected to one end of the current detecting resistor 113, and the other end of the current detecting resistor 113 is connected to the ground.
  • the node N c is also connected to the controller 111, so the controller 111 can detect the voltage of the node N c . Therefore, the controller 111 can control the plurality of LED-based illumination segments 101 according to the voltage value of the current detecting resistor 113 at the node N c , or the voltage value of the input power source V IN , or the two voltage values. 10k.
  • FIG. 4 shows a schematic diagram of the controller 111 in the embodiment of FIG.
  • Controller 111 includes an A/D converter 1101 for converting input voltage VJN into a digital signal that is sent to a state machine 1102.
  • the controller 111 also includes another A / D converter 1103 for detecting the voltage value at the node N c of the A / D converter 1103 also outputs a digital signal to the state machine 1102. Used in the controller 111 to control each of the LED-based illumination segments 101 ⁇ 10k Control logic is placed in state machine 1102 and storage storage element 1104 to send control signals to each of the illumination segments.
  • the light-emitting diodes in the LED-based illumination segments 101 to 10k are generally referred to as all types of light-emitting diodes, such as general semiconductor light-emitting diodes and organic light-emitting diodes, which may emit light in various spectrums.
  • the illumination device of the present invention may include a suitable number of LED-based illumination segments, each of which may include an appropriate number of LED-based illumination units. These quantities may be based on the conditions in the above examples and the requirements of the actual application on the equipment or device.
  • Switch S and switch B are also generally referred to as having a switch assembly that can properly turn a circuit on or off.
  • the switch can be mechanical or electrical, or can be a semiconductor switch fabricated from an integrated circuit.
  • 5 is a circuit schematic of a lighting device for controlling a plurality of LED-based illumination segments in accordance with another preferred embodiment of the present invention.
  • the lighting device comprises a plurality of the same LED-based lighting segments 101 ⁇ 10k connected between the node and the node N A N c.
  • the current detecting resistor 113 is replaced by a variable current source 115.
  • the illumination device also includes a controller 121 for controlling this variable current source 115 and each of the LED-based illumination segments 101 ⁇ 10k.
  • variable current source 115 voltage at node N c of the controller 121 may also be to detect. Accordingly, the controller 121 may be a variable current source 115 in accordance with the voltage value at node N c, the power supply voltage or the input value, or the two voltage values, to control the plurality of light emitting diode lighting segments of 101 ⁇ 10k.
  • Fig. 6 shows a schematic diagram of the controller 121 in the embodiment of Fig. 5.
  • Control logic for controlling a plurality of LED-based illumination segments 101 ⁇ 10k in controller 121 is provided in state machine 1102 and storage storage element 1104 to transmit respective control signals to each of the LED-based The switch B and the switch S of the illumination segments 101 to 10k.
  • the controller 121 includes an A/D converter 1101 for converting the input voltage VJN into a digital signal which is sent to the state machine 1102.
  • Controller 121 in turn includes another A/D converter 1103 for detecting the voltage value at the node, which also outputs a digital signal to state machine 1102.
  • Controller 121 also includes a current control circuit 1205 for controlling variable current source 115.
  • FIG. 7 shows a schematic diagram of the controller 121 in another embodiment of FIG. Control logic for controlling a plurality of LED-based illumination segments 101 ⁇ 10k in the controller 121, In the state machine 1102, the switch B and the switch So are sent to transmit the respective control signals to each of the LED-based illumination segments 101 to 10k.
  • the controller 121 in this embodiment does not have a storage storage element, and the controller 121 An A/D converter 1101 is included for converting the input voltage to a digital signal that is sent to the state machine 1102.
  • Controller 121 also includes a current control circuit 1205 to control variable current source 115.
  • Figure 8 is a circuit diagram showing a preferred embodiment of a slightly modified LED-based illumination segment in accordance with Figures 5 and 7 of the present invention.
  • the illumination device is similarly connected to a plurality of LED-based illumination segments 101 ⁇ 10k.
  • a single LED 1001 connects node N A to the positive end of the first LED-based illumination segment 101.
  • the other lines are similar to Figure 7.
  • the illuminator can be connected to 1 to 8 LEDs to provide 8 different illumination modes.
  • Fig. 9 shows a schematic diagram of the controller 121 in another embodiment of Fig. 5.
  • Control logic for controlling a plurality of LED-based illumination segments 101 ⁇ 10k in controller 121 is implemented in a brightness adjuster 1301 to transmit respective control signals to each of the LED-based illumination segments 101.
  • a brightness adjuster 1301 to transmit respective control signals to each of the LED-based illumination segments 101.
  • the brightness adjuster 1301 of this embodiment can be loaded to individually control each of the LED-based illumination segments 101 to 10k to provide different illumination levels depending on the brightness requirements.
  • Controller 121 also includes a current control circuit 1205 for controlling variable current source 115.
  • the present invention provides an illumination device and method for segmenting, controlling and connecting a plurality of LED-based illumination segments, wherein some illumination segments based on LEDs can be connected in series, and some illumination segments based on LEDs can be shorted Bypass.
  • Each of the LED-based illumination segments may include one or more LED-based illumination units connected in series, as shown in FIG. 10, each illumination unit may include one or more LEDs connected in series, in parallel, or a combination of both Way to connect.
  • FIG. 10 only shows three examples of how to connect the light emitting diodes, it should be easily understood by those skilled in the art that each lighting unit of the present invention can be connected in other ways.
  • Light-emitting diodes By applying the segmentation and driving method of the present invention, a plurality of illumination modes can be provided by flexibly connecting the number of light-emitting diodes according to different brightness requirements.

Abstract

多个基于发光二极管的照明单位被分割成串接的几个基于发光二极管的照明段(101~10k),以提供多种照明模式。每个照明段(101~10k)包含多个照明单位以串联方式连接,又有至少一个串联开关器S串联,而且整串照明单位又与一个绕接开关器B以并联方式连接。照明单位的总数量可由输入电源VIN的最高电压和照明单位的正向电压来决定,而达到最高效率,根据照明单位的总数量再适当选取分割成的照明段(101~10k)的段数,以及每一照明段(101~10k)里的照明单位的数量。以此设计的基于发光二极管的照明设备,可以根据应用上的实际需要,利用每一照明段(101~10k)里的串接开关器S和绕接开关器B的适当连接,将一个,两个,……,或所有的照明单位串接。

Description

基于发光二极管的照明设备的分段驱动方法和装置 技术领域
本发明涉及基于发光二极管的照明装置, 尤其是分段驱动多个基于发光 二极管的照明单位, 来提升照明设备的效率的装置和方法。 背景技术
发光二极管 (LED) 是一种基于半导体的光源, 经常被应用在低耗电仪 表和家电的指示器,应用发光二极管在各种照明装置也已越来越普遍。例如, 高明亮度的发光二极管已被广泛用于交通信号灯,车辆指示灯,以及剎车灯。
发光二极管的电流对电压 (IV)特性曲线类似于一般的普通二极管, 当 加于发光二极管的电压小于二极管的正向电压时, 只有非常小的电流通过发 光二极管。 当电压超过正向电压时, 通过发光二极管的电流则大幅增加。一 般来说, 在大多数操作范围, 基于发光二极管的照明装置的发光强度是和通 过的电流成正比, 但操作在高电流时则不如此。 通常为基于发光二极管的照 明装置设计的驱动装置, 都是以提供一个恒定的电流为主, 以便能发出稳定 的光和延长发光二极管的寿命。
为了提高基于发光二极管的照明装置的亮度, 通常是将多数个发光 二极管串联在一起, 形成一个基于发光二极管的照明单位, 而且多数个 基于发光二极管的照明单位可以更进一步串联在一起, 形成一个照明装 置。 例如, 美国专利 6777891号揭露将多个基于发光二极管的照明单位, 形成一个可由计算机控制的灯串, 其中每个照明单位在灯串里形成一个 可单独控制的节点。
每个照明装置所需要的工作电压, 通常是取决于照明单位里的发光 二极管的正向电压, 每个照明单位里有多少个发光二极管, 每个照明单 位是如何相互接联的, 以及每个照明单位在照明装置里, 是如何接收来 自电源的电压。 因此, 在大多数的应用中, 都需要某种类型的电源电压 转换装置, 来将一般较普遍的高电压电源, 转换成较低的电压, 以提供 给一个或多个基于发光二极管的照明单位。 因为需要这样的一个电压转 换装置, 造成基于发光二极管的照明设备效率减低, 成本增高, 也难以 减小其体积。
美国专利 7781979号提供了一个控制串联的发光二极管的装置。 其 中有两个或两个以上的发光二极管串联连接。 当施加电压时, 一串联的 电流即流经发光二极管。 其中至少有一个发光二极管被并联一个或多个 可控制的电流路径, 来使串联的电流部分流经这些可控制的电流路径, 以便不需要电压转换装置即可使用一般较普遍的高电压电源。 因此该装 置可使用如 120V或 240V的交流电压。
美国专利公告 2010/0308739 号揭露了将多个发光二极管互接串联 成多个发光二极管段的装置, 以及多个开关器与此多个发光二极管段互 接, 来选取控制某一发光二极管段, 将其从一个发光二极管串联电流通 路中串联接入或切隔分出。 图 1 显示了该照明装置的简化示意图, 其中 包含三个发光二极管段各别有一个、 二个和四个串接的发光二极管, 该 照明装置可以串联方式连接一到七个发光二极管。
因为已有越来越多的基于发光二极管的照明单位被应用在高亮度的 照明设备上, 如何使用墙上现有的交流电源, 灵活和有效地提高发光二 极管的利用率, 并提供稳定性和高亮度, 来驱动和连接多数个基于发光 二极管的照明单位的设计方法和装置, 已经形成一种不可或缺的需求。 此外, 如何控制连接在一起的基于发光二极管的照明单位, 使照明亮度 可以根据不同的照明要求, 或交流电源电压的变化, 来提供不同的照明 模式, 也是非常重要的。 发明内容
本发明为满足上述基于发光二极管的照明装置的应用需要而创作 的, 主要目的是提供一种用分段的方式, 灵活地连接多个基于发光二极管的 照明单位, 而且各别控制每一个基于发光二极管的照明段, 使其被串接在照 明装置里, 或被以短路方式绕过。
因此, 本发明的照明装置包括由控制器控制的多个基于发光二极管的照 明段。每个基于发光二极管的照明段有一个以上的基于发光二极管的照明单 位串联, 并有至少一个串接开关器串联, 而且整串多个基于发光二极管的照 明单位又与一个绕接开关器以并联方式连接。 该控制器各别控制每一个照 明段, 使其与其它的照明段串接, 或被以短路方式绕过。 输入电源的电 压连接于第一个基于发光二极管的照明段, 以提供电力给本发明的照明 装置, 最后一个基于发光二极管的照明段, 则经由一个电流控制器连接 到地面。
本发明的另一个目的是提供一个根据输入电源电压变化, 或照明装 置中的电流控制器上的电压变化, 或是这两者的电压变化, 来控制多个 基于发光二极管的照明段的连接的照明装置。在本发明的优选实施例中, 电 流控制器可能是一个电流检测电阻器或可变电流源。 在某些优选实施范例 中, 本发明也将该多个基于发光二极管的照明段再串接一个单独的基于发光 二极管的照明单位。
本发明的又一个目的是为基于发光二极管的照明装置提供各种分段和 驱动方法, 藉由串联一些基于发光二极管的照明段, 或者以短路方式绕过一 些基于发光二极管的照明段, 以提供多种照明模式。 在本发明分段方法中的 一个例子, 可以将该多个基于发光二极管的照明段组合成一个, 两个, …, 或所有的基于发光二极管的照明单位串接, 从而提供所有可能的照明模式。 在本发明分段方法中的另一个例子, 虽然无法提供所有可能的照明模式, 但 仍可以藉由该多个基于发光二极管的照明段组合, 从而提供大部分的照明模 式。
因此, 本发明的照明装置被分割成多个基于发光二极管的照明段, 每个 照明段里有不同数量的基于发光二极管的照明单位串联。适当的选取分割成 的照明段的段数, 以及每一照明段里的照明单位的数量, 可以将照明装置的 照明段组合成以串接一个, 两个, …, 或所有的基于发光二极管的照明单 位的方式操作, 从而提供所有可能的照明模式。
. 根据本发明的另一实施范例, 照明装置也分割成多个基于发光二极管的 照明段, 每个照明段里有一个以上的串联的基于发光二极管的照明单位。 所 选取的照明段的段数, 以及每一照明段里的照明单位的数量, 使得该照明装 置可能操作的照明模式较为受限, 但仍可以将照明装置的照明段组合成以串 接多种数量或所有的基于发光二极管的照明单位的方式操作。
以下是根据本发明几个优选实施范例, 参照附图的详细说明, 对于熟悉 本技术领域的技术人员, 阅读以下根据本发明的几个优选实施范例的详细说 明, 再参照附图, 应可很清楚的了解本发明。 附图是为了让本发明能更进一 步的被了解, 同时也构成本发明的说明规范的一部分, 藉由附图来说明本发 明的实施范例, 并解释本发明的原则。 附图说明
图 1为现有的由多数个发光二极管串接成分段的发光二极管的照明装置 的电路示意图。
图 1显示一个基于发光二极管的照明装置,操作于 M种不同的照明模式 下的输入电源电压 VrN以及发光二极管上的电压 VLED
图 3显示了根据本发明的一优选实施范例, 用于控制多数个基于发光二 极管的照明段的照明装置的电路示意图。
图 4显示了图 3的实施范例中控制器的示意图。
图 5为根据本发明的另一优选实施范例, 用于控制多数个基于发光二极 管的照明段的照明装置的电路示意图。
图 6显示了图 5的实施范例中控制器的示意图。
图 Ί显示了图 5的另一实施范例中控制器的示意图。
图 8为根据本发明的图 5和图 7而稍微变更的优选实施范例, 用于控制 多数个基于发光二极管的照明段的电路示意图。
图 9显示了图 5的另一实施范例中控制器的示意图。
图 10说明本发明的基于发光二极管的照明单位中, 可能有至少一个或 多个发光二极管串联, 并联或以并联和串联组合方式连接。
其中, 附图标记说明如下:
101〜10k 基于发光二极管的照明段
111 控制器
113 电流检测电阻器
115 可变的电流源
121 控制器
1001 发光二极管
1101 A D转换器 1102 状态机
1103 A/D转换器
1104 储存存储元件
1205 电流控制电路
1301 亮度调节器
201 203 基于发光二极管的照明单位 具体实施方式
如上所述, 为了提高基于发光二极管的照明装置的亮度, 多数个包含有 一个以上的发光二极管的照明单位通常被串联, 以增加发光强度。 因此, 提 供多种可能的照明模式, 以使照明装置能以不同的发光强度操作, 是非常需 要的。 为达成此目的, 最直接的一个方法, 是对每一基于发光二极管的照明 单位, 使用一各别的开关器来控制该照明单位, 使其被串接在照明装置里, 或被以短路方式绕过, 可是这种方法需要非常昂贵的硬件成本。
本发明提出一种创新的方法, 以最高效率来控制基于发光二极管的照明 装置, 此一新方法将照明装置里所有的基于发光二极管的照明单位, 分割成 多数个基于发光二极管的照明段, 每一照明段包含有一个以上的串联的发光 二极管的照明单位。 照明装置里的每一基于发光二极管的照明段, 都可以各 别控制。 为了简化说明, 以下的范例假设每一基于发光二极管的照明单位, 只有一个发光二极管。
根据本发明, 经由适当的选取照明段的段数, 以及每一照明段里的发光 二极管的数量, 可以将一包含多个发光二极管的照明装置, 分割成适当的几 个发光二极管照明段, 使其可以组合这些照明段来利用所有的发光二极管, 以最多种可能的照明模式操作。 每一照明模式的操作, 藉由串接或短路绕过 某些照明段, 来组合照明装置里的发光二极管照明段, 而达成串联至少一个 的发光二极管。
图 2显示一个基于发光二极管的照明装置,操作于 M种不同的照明模式 下的输入电源电压 V1N以及发光二极管上的电压 VLED。 当发光二极管上的电 压 VLED等于发光二极管的正向电压 VF时, 该发光二极管是以最高效率的状 态操作。 对于一含有 N个发光二极管的照明装置而言, 在每一照明模式下, 有些发光二极管以串联方式连接, 有些发光二极管则以短路方式绕过。 如果 以一最大的固定电流源来驱动该照明装置, 则可以将所有的 N个发光二极 管, 以串联方式连接。 根据图 2, 如果要达到发光二极管照明装置的最高效 率, 必须将以下的积分式最小化:
(Vm -VLED)dt ,
其中 TM是以电压 VM施于发光二极管照明装置而操作的照明模式 -M的 时间。
图 3显示了根据本发明的一优选实施范例, 用于控制多数个基于发光二 极管的照明段的照明装置的电路示意图。 该照明装置包括连接在节点 NA与 节点 Nc之间的多数个基于发光二极管的照明段 101〜10k,输入电源电压 VIN 从节点 NA提供电压给此多数个基于发光二极管的照明段 101〜10k, 电流检 测电阻器 113连接节点 Nc至地面。 如先前所说, 假设每一基于发光二极管 的照明单位, 只有一个发光二极管, 所以每个基于发光二极管的照明段 101 〜10k包括至少有一个或更多的发光二极管以串联方式连接。 此外, 至少有 一个开关器 S串联照明段里的一串发光二极管。
从图 3可以看出, 每个基于发光二极管的照明段 101〜 10k有一正端和 负端, 照明段里最前端的一个发光二极管的正极, 连接在照明段的正端。 每 个基于发光二极管的照明段 101〜10k又有将该照明段的正端连接到负端的 一个开关器 B。 图 3中显示的开关器 S, 从照明段里最后端的一个发光二极 管的负极, 连接到照明段的负端。 事实上, 开关器 S可以串联在照明段里的 发光二极管串的任何位置。
参照图 3可以看出, 对每一发光二极管的照明段来说, 当开关器 S接通 而开关器 B不接通时,该照明段与其它照明段串联连接。当开关器 B接通时, 该照明段则被开关器 B短路绕过。
在图 3的范例中, 包含有 k段基于发光二极管的照明段, 在每个照明段 里的发光二极管的数量分别是 Si, S2, …,和 Sk,发光二极管的总数则为1^。 本发明提供了将所有的发光二极管分割成 k段的方法, 可以驱动该基于发光 二极管的照明装置在 N个不同的照明模式下运作。根据实际的照明应用的需 求, 每一照明模式分别可以串联连接 1, 2, 3, …, 或 N个发光二极管。 按照本发明, 为了从包含 N个发光二极管的照明装置中, 实现分别可以 串联连接 1, 2, 3, …, 或 N个发光二极管的照明模式的灵活性, 基于发光 二极管的照明段的段数和每个照明段的发光二极管的数量, 必须满足下列条 件:
n-l k-l
Si = l , Sn Si+ 1 当 2 n k, 而且 Sk = N - ∑Si。 举例来说, 11个发光二极管可以分割为 4个基于发光二极 的照明段, 其中 Sl = l, s2 = 2, S3 = 3, 和 S4 = 5。如此分割的基于发光二极管的照明装 置中, 可以将基于发光二极管的照明段, 以串联连接或短路绕过的组合, 得 到 11种不同的照明模式, Mp M2, ···, 和 Mu, 其中基于发光二极管的照 明段的组合如下:
Figure imgf000009_0001
在实际上, 基于发光二极管的照明装置的发光二极管的总数, 可由输入 电源的最高电压 Vj^MAX)和发光二极管在一最高电流 ΙΜΑχ下的正向电压 VF 来决定, 而达到最高效率, 也就是:
Figure imgf000009_0002
V, tN(max)
其中 为数字 (VIN(MAX VF) 的整数部分。 如图 3所显示, 由- 控制器 111来监视电流检测电阻器 113上的电压, 以确保流经发光
电流不大于最高电流 ΙΜΑχ。 如果基于发光二极管的照明装置的发光二极管的总数大于
Figure imgf000010_0001
就是
v
N ; + 1,
VF
则可由控制器 111来控制经发光二极管的电流, 而不需使用电流检测电 阻器, 即可以确保流经发光二极管的电流不大于最高电流 ΙΜΑχ。 基于发光二 极管的照明段在控制器 111的控制下,当 0 VJN VF时,只将一个发光 二极管串联; 当 VF V]N 2VF时, 至少有两个发光二极管串联; 当 2VF ^ VTN ^ 3 !:时,至少有三个发光二极管串联;以此类推,当 (N-2)VF VJN (N-1)VF时,至少有 (N-l)个发光二极管串联;而当 (N-1)VF < VIN v max) ^ NVF时, 则有 N个发光二极管串联。 因此, 流经发光二极管的电流永远 不会大于最高电流 ΙΜΑχ。
根据本发明, 要实现从包含 Ν个发光二极管的照明装置中, 可以将 k段 基于发光二极管的照明段,以串联连接或短路绕过的组合,而串联连接 1, 2, 3, …, 或 N个发光二极管的照明模式的灵活性, 段数 k必须满足下列条件:
Llog2N」 + 1 k N,
其中 Llog2N」为数字 log2N的整数部分。
例如, 如果照明装置中使用 100伏的整流交流电压, 而发光二极管的正 向电压为 3.3伏, 发光二极管的总数可以是 N = 42。 如果基于发光二极管的 照明段数 k是 6, 那么条件 |jog2N」 + 1 k N是可以符合的。 在这种 情况下,每个照明段的发光二极管数量可以是31 = 1, S2 = 2, S3 = 3, S4 = 7, S5 = 14, 和 S6 = 15, 利用这 6个基于发光二极管的照明段, 以串联连接或短 路绕过的组合, 可以将 1到 42个发光二极管串联连接, 而灵活的提供 42种 不同的照明模式。
另一个例子是, 如果照明装置中使用 110伏的整流交流电压, 而发光二 极管的正向电压为 3.3伏, 发光二极管的总数可以是 N = 47。 如果基于发光 二极管的照明段数 k是 6, 那么条件 Llog2N」 + 1 k N仍是可以符合 的。 在这种情况下, 每个照明段的发光二极管数量可以是5, = 1, S2 = 2, S3 = 3, S4 = 7, S5 = 14, 和 S6 = 20, 利用这 6个基于发光二极管的照明段, 以 串联连接或短路绕过的组合, 可以将 1到 47个发光二极管串联连接, 而灵 活的提供 47种不同的照明模式。
又另外的一个例子是, 如果照明装置中使用 220伏的整流交流电压, 而 发光二极管的正向电压为 3.3伏, 发光二极管的总数可以是 N = 94。 如果基 于发光二极管的照明段数 k是 7, 那么条件 Llog2N」 + 1 k N仍是可 以符合的。在这种情况下, 每个照明段的发光二极管数量可以是31 = 1, S2 =
2, S3 = 3, S4 = 7, S5 = 14, S6 = 28, 和 S7 = 39利用这 7个基于发光二极管 的照明段, 以串联连接或短路绕过的组合, 可以将 1到 94个发光二极管串 联连接, 而灵活的提供 94种不同的照明模式。
更另外的一个例子是, 如果照明装置中使用 240伏的整流交流电压, 而 发光二极管的正向电压为 3.3伏,发光二极管的总数可以是 N = 102。如果基 于发光二极管的照明段数 k是 7, 那么条件 Llog2N」 + 1 k N仍是可 以符合的。在这种情况下,每个照明段的发光二极管数量可以是5, = 1, S2 =
2, S3 = 3, S4 = 7, S5 = 14, S6 = 28, 和 S7 = 51利用这 7个基于发光二极管 的照明段, 以串联连接或短路绕过的组合, 可以将 1到 102个发光二极管串 联连接, 而灵活的提供 102种不同的照明模式。
应当注意的是, 上面例子中的数字, 只是用来说明在照明装置里, 如何 分割基于发光二极管的照明段, 以及决定其段数的方法和原则。 事实上还有 其它可能的配置, 以不同的照明段数, 和每个照明段里以不同的发光二极管 的个数, 仍可以提供同样的灵活性。 此外, 图 3中的照明装置, 基于发光二 极管的照明段数 S2, ···, 和 SK的顺序, 可以任意地重新安排在节点 NA 和节点 Nc之间, 并不影响照明装置的性能或亮度。
根据本发明, 还有另一将照明装置分割为数个基于发光二极管的照明段 的方法, 也可以用来连接 N个发光二极管中的一部分的发光二极管。该方法 因为无法实现一些照明模式, 比较起来灵活性略差。.然而, 仍然可以提供大 多数的照明模式, 因此照明模式的数量足够实际应用。 在此方法中, 基于发 光二极管的照明段数 k必须满足以下条件:
Figure imgf000011_0001
其中 Llog2N」为数字 l0g2N的整数部分。 例如, 如果照明装置中使用 100伏的整流交流电压, 而发光二极管的正 向电压为 3.3伏, 发光二极管的总数可以是 N = 42。 如果基于发光二极管的 照明段数 k是 5, 那么条件 2 ^ k ^ Llog2N」是可以符合的。 在这种情况 下, 每个照明段的发光二极管数量可以是 = 1, S2 = 2, S3 = 5, S4 = l l, 和 = 23, 利用这 5个基于发光二极管的照明段, 以串联连接或短路绕过的 组合, 可以将 42个发光二极管中一部分的发光二极管串联连接, 而灵活的 提供几种不同的照明模式。 可以串联的发光二极管数量有 1-3, 5-8, 11-14, 16-19, 23-26, 28-31 , 34-37和 39-42。
另一个例子是, 如果照明装置中使用 110伏的整流交流电压, 而发光二 极管的正向电压为 3.3伏, 发光二极管的总数可以是 N = 47。 如果基于发光 二极管的照明段数 k是 5, 那么条件 2 ^ k ^ Llog2N」仍是可以符合的。 在这种情况下, 每个照明段的发光二极管数量可以是 Si = 1 , S2 = 2, S3 = 5 , S4 = 12, 和 = 27, 利用这 5个基于发光二极管的照明段, 以串联连接或短 路绕过的组合, 可以将 47个发光二极管中一部分的发光二极管串联连接, 而灵活的提供几种不同的照明模式。可以串联的发光二极管数量有 1-3, 5-8, 12-15 , 17-20, 27-30, 32-35, 39-42和 44-47。
又另外的一个例子是, 如果照明装置中使用 220伏的整流交流电压, 而 发光二极管的正向电压为 3.3伏, 发光二极管的总数可以是 N = 94。 如果基 于发光二极管的照明段数 k是 6, 那么条件 2 k Llog2N」仍是可以符 合的。 在这种情况下, 每个照明段的发光二极管数量可以是 Si = 1, S2 = 2, S3 = 5, S4 = 12, S5 = 25, 和 S6 = 49, 利用这 6个基于发光二极管的照明段, 以串联连接或短路绕过的组合, 可以将 94个发光二极管中一部分的发光二 极管串联连接, 而灵活的提供几种不同的照明模式。 可以串联的发光二极管 数量有 1-3 , 5-8 , 12-15, 17-20, 25-28, 30-33 , 37-40, 42-45, 49-52, 54-57, 61-64, 66-69, 74-77, 79-82, 86-89和 91-94。
更另外的一个例子是, 如果照明装置中使用 240伏的整流交流电压, 而 发光二极管的正向电压为 3.3伏, 发光二极管的总数可以是 N = 102。如果基 于发光二极管的照明段数 k是 6, 那么条件 2 k [jog2N」仍是可以符 合的。 在这种情况下, 每个照明段的发光二极管数量可以是51 = 1 , S2 = 2, S3 = 5, S4 = 12, S5 = 25, 和36 = 57, 利用这 6个基于发光二极管的照明段, 以串联连接或短路绕过的组合, 可以将 102个发光二极管中一部分的发光二 极管串联连接, 而灵活的提供几种不同的照明模式。 可以串联的发光二极管 数量有 1-3, 5-8, 12-15, 17-20, 25-28, 30-33, 37-40, 42-45, 57-60, 62-65, 69-72, 74-77, 82-85, 87-90, 94-97和 99-102。
根据本发明,每个基于发光二极管的照明段 101〜10k,有两个不同的操 作模式。在第一操作模式下, 开关器 S接通而开关器 B不接通。 因此, 照明 段里的发光二极管以串联连接外界, 也就是说在第一操作模式下, 该照明段 系与其它照明段串联连接。
在第二操作模式下, 开关器 B接通, 从图 3可以看出, 该照明段被开关 器 B短路绕过, 因此没有电流会流经该照明段里的发光二极管, 也就是说在 第二操作模式下, 该照明段被短路绕过, 其中的发光二极管是不会发光的。
根据本发明的照明装置, 每个基于发光二极管的照明段 101〜10k都可 以被单独控制, 如图 3所示, 该装置还包括一个控制器 111, 用来发送一组 各别的控制信号, 到每个基于发光二极管的照明段 101〜10k的开关器 B和 开关器 s。 这两个控制信号可以控制所属的基于发光二极管的照明段, 使其 运作于两个不同的操作模式之一。 因为每个基于发光二极管的照明段 101〜 10k, 都可被串联, 或者以短路方式绕过, 该照明装置可藉由控制器 111, 控 制每个基于发光二极管的照明段 101〜10k, 来提供多种照明模式。
在这个优选实施范例中, 最后一个基于发光二极管的照明段, 在节点
Nc与电流检测电阻器 113的一端连接,电流检测电阻器 113的另一端则连接 到地面。 节点 Nc也被连接到控制器 111, 所以控制器 111可以侦测到节点 Nc的电压。 因此, 控制器 111可以根据电流检测电阻器 113在节点 Nc上的 电压值, 或输入电源 VIN的电压值, 或是这两个电压值, 来控制多个基于发 光二极管的照明段 101〜10k。
图 4显示了图 3的实施范例中控制器 111的示意图。控制器 111包括一 个 A/D转换器 1101 用来将输入电压 VJN转换成数字信号, 该数字信号被发 送到一个状态机 1102。 控制器 111又包括另一个 A/D转换器 1103, 用来检 测在节点 Nc上的电压值,该 A/D转换器 1103也输出一个数字信号到状态机 1102。 在控制器 111里用来控制每个基于发光二极管的照明段 101〜 10k的 控制逻辑, 就装置在状态机 1102和储存存储元件 1104中, 以发送控制信号 到每个照明段。
根据本发明, 在基于发光二极管的照明段 101〜10k中的发光二极管, 是泛指所有类型的发光二极管, 如一般半导体发光二极管和有机发光二极 管, 这些发光二极管可能在各种频谱发光。 本发明的照明装置, 可包括适当 段数的基于发光二极管的照明段, 每个基于发光二极管的照明段, 可包括适 当数量的基于发光二极管的照明单位。 这些数量都可根据上述范例中的条 件,和设备或装置上实际应用的要求而定。开关器 S和开关器 B也是泛指一 般包含有可以适当接通或关闭一个电路的开关组件, 开关器可以是机械式的 或电力式的, 也可以是用集成电路制造的半导体开关器。
图 5为根据本发明的另一优选实施范例, 用于控制多数个基于发光二极 管的照明段的照明装置的电路示意图。 如图 5所示, 该照明装置同样的包括 了多数个基于发光二极管的照明段 101〜10k在节点 NA与节点 Nc之间连接。 与图 3不同的是, 电流检测电阻器 113被一个可变的电流源 115所取代。 该 照明装置也包括一个控制器 121来控制这个可变的电流源 115以及每个基于 发光二极管的照明段 101〜10k。
在此优选实施范例中, 可变电流源 115在节点 Nc的电压也可由控制器 121来侦测。因此,控制器 121可以根据可变电流源 115在节点 Nc上的电压 值, 或输入电源 的电压值, 或是这两个电压值, 来控制多个基于发光二 极管的照明段 101〜10k。
图 6显示了图 5的实施范例中控制器 121的示意图。在控制器 121里用 来控制多个基于发光二极管的照明段 101〜10k的控制逻辑, 就装置在状态 机 1102和储存存储元件 1104中, 以发送各别的控制信号到每个基于发光二 极管的照明段 101〜10k的开关器 B和开关器 S。 控制器 121包括一个 A/D 转换器 1101 用来将输入电压 VJN转换成数字信号, 该数字信号被发送到状 态机 1102。控制器 121又包括另一个 A/D转换器 1103, 用来检测在节点 上的电压值, 该 转换器 1103也输出一个数字信号到状态机 1102。 控制 器 121还包括一个电流控制电路 1205, 以控制可变电流源 115。
图 7显示了图 5的另一实施范例中控制器 121的示意图。 在控制器 121 里用来控制多个基于发光二极管的照明段 101〜10k的控制逻辑, 就装置在 状态机 1102中,以发送各别的控制信号到每个基于发光二极管的照明段 101 〜10k的开关器 B和开关器 So 此一实施范例中的控制器 121没有应用储存 存储元件, 控制器 121包括一个 A/D转换器 1101 用来将输入电压 转换 成数字信号,该数字信号被发送到状态机 1102。控制器 121还包括一个电流 控制电路 1205, 以控制可变电流源 115。
图 8为根据本发明的图 5与图 7而稍微变更的优选实施范例, 用于控制 多数个基于发光二极管的照明段的电路示意图。 此一变更的优选实施范例 中,该照明装置同样的连接了多数个基于发光二极管的照明段 101〜10k。与 图 7不同的是,一个单独的发光二极管 1001将节点 NA连接到第一个基于发 光二极管的照明段 101的正端。 其它的线路都与图 7相似。 其中有三个基于 发光二极管的照明段, 分别包含 1, 2, 和 4个发光二极管。该照明装置可以 连接 1到 8个发光二极管, 以提供 8种不同的照明模式。
图 9显示了图 5的另一实施范例中控制器 121的示意图。 在控制器 121 里用来控制多个基于发光二极管的照明段 101〜 10k的控制逻辑, 就装置在 一亮度调节器 1301 中, 以发送各别的控制信号到每个基于发光二极管的照 明段 101〜10k的开关器 B和开关器 S。 不同的调节句柄, 可以加载此一实 施范例中的亮度调节器 1301, 来各别控制每个基于发光二极管的照明段 101 〜10k, 根据不同的亮度需求, 以提供不同的照明亮度。 控制器 121还包括 一个电流控制电路 1205, 以控制可变电流源 115。
总之, 本发明提供了一种分割, 控制和连接多个基于发光二极管的照明 段的照明装置和方法, 其中一些基于发光二极管的照明段可以串联连接, 而 一些基于发光二极管的照明段则可以短路绕过。每个基于发光二极管的照明 段可以包括一个或多个基于发光二极管照明单位串联, 如图 10所示, 每个 照明单位可以包括一个或多个发光二极管串联, 并联或者是两者都有的组合 方式连接。 这里应该注意的是, 虽然图 10只有显示三个如何连接发光二极 管的例子, 熟悉本技术领域的技术人员应该很容易就可看出, 本发明的每个 照明单位, 还可以其它方式来连接多个发光二极管。 应用本发明的分段和驱 动方法, 可以根据不同的亮度需求, 灵活的连接发光二极管的数量, 而提供 多种照明模式。
虽然以上只藉由几个优选的实施范例来描述本发明, 然而熟悉本技术领 域的技术人员, 很明显的可以了解, 仍有许多未描述的变通及修改, 都在不 偏离以下所定义的本发明的申请专利范围之内。

Claims

权利要求
1.一种基于发光二极管的照明装置, 其特征在于, 包括:
多个串接的基于发光二极管的照明段, 每个照明段有一正端, 一负端, 一个绕接开关器连接上述正端和负端, 和至少一个基于发光二极管的照明单 位串联连接至少一个串接开关器于上述正端和负端之间;
一输入电源连接到上述多个基于发光二极管的照明段; 以及
一控制器, 用来控制上述多个基于发光二极管的照明段;
其中上述控制器可以各别控制上述多个基于发光二极管的照明段, 每个 照明段的捧作包括一串联连接模式将该照明段与其它的照明段串联, 和一短 路绕接模式将该照明段以短路方式绕过。
2.如权利要求 1所述的照明装置, 其特征在于, 上述控制器各别对每一 个基于发光二极管的照明段发送一对控制信号, 用来将相对的照明段的绕接 开关器接通, 使相对的照明段以上述短路绕接模式操作, 或将相对的照明段 的串接开关器接通并切断相对的照明段的绕接开关器, 使相对的照明段以上 述串联连接模式操作。
3.如权利要求 1所述的照明装置, 其特征在于, 又包括一电流控制器与 上述多个基于发光二极管的照明段串联连接。
4.如权利要求 3所述的照明装置, 其特征在于, 上述电流控制器发送一 电压值至上述控制器, 而上述控制器根据该电压值来各别控制上述多个基于 发光二极管的照明段, 使每一个基于发光二极管的照明段各别运作于上述串 联连接模式, 或上述短路绕接模式。
5.如权利要求 4所述的照明装置, 其特征在于, 上述控制器根据上述电 流控制器发送的电压值, 和上述输入电源的电压值来各别控制上述多个基于 发光二极管的照明段, 使每一个基于发光二极管的照明段各别运作于上述串 联连接模式, 或上述短路绕接模式。
6.如权利要求 3所述的照明装置, 其特征在于, 上述控制器包括第一个 A/D转换器, 将上述输入电源的电压转换成被传送至一个状态机的第一数字 信号;第二个 A/D转换器,将上述电流控制器的电压转换成被传送至上述状 态机的第二数字信号, 和一个连接于上述状态机的储存存储元件; 上述控制 器各别对每一个基于发光二极管的照明段发送一对控制信号, 用来将相对的 照明段的绕接开关器接通, 使其以上述短路绕接模式操作, 或将相对的照明 段的串接开关器接通并切断相对的照明段的绕接开关器, 使其以上述串联连 接模式操作。
7.如权利要求 3所述的照明装置, 其特征在于, 上述电流控制器是一电 流检测电阻器。
8.如权利要求 3所述的照明装置, 其特征在于, 上述电流控制器是被上 述控制器控制下的一可变的电流源。
9.如权利要求 3所述的照明装置, 其特征在于, 总共包含有 N个基于发 光二极管的照明单位, N : 为上述输入电源的最高电
Figure imgf000018_0001
压, VF 为每个基于发光二极管的照明单位, 在被上述电流控制器限制的一 电流 IMAX下的正向电压, 的整数部分 <
Figure imgf000018_0002
10.如权利要求 3所述的照明装置, 其特征在于, 总共包含有 N个基于
V,
发光二极管的照明单位, IN(max)
N≥ + 1,其中 V: IN(max)为上述输入电源的最 高电压, VF 为每个基于发光二极管的照明单位, 在被上述控制器控制的一 最高电流 ΙΜΑχ下的正向电压, 的整数部分。
Figure imgf000018_0003
11.如权利要求 10所述的照明装置,其特征在于, VJN为上述输入电源的 电压, 上述多个基于发光二极管的照明段在上述控制器的控制下, 当 0
ViN ^ VF时, 只将一个基于发光二极管的照明单位串联; 当 VF VrN
2VF时,至少有两个基于发光二极管的照明单位串联;当 2VF VIN 3VF 时, 至少有三个基于发光二极管的照明单位串联; 以此类推, 当 (N-2)VF VIN (N-1)VF时, 至少有 (N-l)个基于发光二极管的照明单位串联; 而当 (N-1)VF < ViN VIN(max) ^ NVF时, 则有 N个基于发光二极管的照明单位 串联。
12.如权利要求 1所述的照明装置, 其特征在于, 总共包含有 N个基于 发光二极管的照明单位, 分割成 k个基于发光二极管的照明段, 上述 k个照 明段里各别有 S2, …, 和 Sk个基于发光二极管的照明单位, 其中 k是大 于 3的整数, Llog2N」 + 1 k : , Ll。g2N」为数字 log2N的整数部分,
S, = l , Sn Si+ 1 当 2 n k, 而且
ι=ί
kA
Sk = N - ∑Si。
=1
13.如权利要求 1所述的照明装置, 其特征在于, 总共包含有 N个基于 发光二极管的照明单位, 分割成 k个基于发光二极管的照明段, 上述 k个照 明段里各别有 Si, S2, ···,和 Sk个基于发光二极管的照明单位,其中 3 k k
Llog2Nj , ί^2Ν」为数字 log2N的整数部分, 而且∑Si = N。
(=1
14.如权利要求 1所述的照明装置,其特征在于,上述控制器包括一个亮 度调节器, 各别对每一个基于发光二极管的照明段发送一对控制信号, 用来 将相对的照明段的绕接开关器接通, 使其以上述短路绕接模式操作, 或将相 对的照明段的串接开关器接通并切断相对的照明段的绕接开关器, 使其以上 述串联连接模式操作。
15.如权利要求 1 所述的照明装置, 其特征在于, 上述控制器包括一个 A/D转换器, 将上述输入电源的电压转换成被传送至一个状态机的一数字信 号; 上述状态机各别对每一个基于发光二极管的照明段发送一对控制信号, 用来将相对的照明段的绕接开关器接通, 使其以上述短路绕接模式操作, 或 将相对的照明段的串接开关器接通并切断相对的照明段的绕接幵关器, 使其 以上述串联连接模式操作。
16.如权利要求 1所述的照明装置,其特征在于, 又包括一未被上述控制 器控制的基于发光二极管的照明单位, 与上述多个基于发光二极管的照明段 串联。
17.如权利要求 1所述的照明装置,其特征在于,上述多个基于发光二极 管的照明单位的每一照明单位包括一个或多个发光二极管串联于该照明单 位的正极端和负极端之间。
18.如权利要求 1所述的照明装置,其特征在于,上述多个基于发光二极 管的照明单位的每一照明单位包括多个发光二极管并联于该照明单位的正 极端和负极端之间。
19.如权利要求 1所述的照明装置,其特征在于,上述多个基于发光二极 管的照明单位的每一照明单位包括多个发光二极管以并联和串联的组合连 接于该照明单位的正极端和负极端之间。
20.如权利要求 1所述的照明装置,其特征在于, 上述控制器根据上述输 入电源的电压值来各别控制上述多个基于发光二极管的照明段, 使每一个基 于发光二极管的照明段各别运作于上述串联连接模式, 或上述短路绕接模 式。
21.—种用来分割与驱动多个基于发光二极管的照明单位的方法,其特征 在于, 包含下列步骤:
将 N个基于发光二极管的照明单位分割成串接的 k个基于发光二极管的 照明段,上述 k个照明段里各别有串接于各别照明段的正端和负端之间的 S2, …, 和 Sk个基于发光二极管的照明单位, 其中每个基于发光二极管的照 明单位在一最高电流 ΙΜΑχ下的正向电压为 VF
将一输入电源连接到上述多个基于发光二极管的照明段, 上述输入电源 的最高电压为 V1N(max) ; 以及
各别对每一个基于发光二极管的照明段发送一对控制信号, 用来将相对 的照明段以串联连接, 或将相对的照明段以短路绕接;
其中 k是大于 3的整数, Llog2N」 + 1 k N, ! g2N」为数字 l0g2N 的整数部分, S = l , Sn ^; Si+ 1 当 2 n k , 而且
kA
Sk = N - ∑S;
22.如权利要求 21所述的方法, 其特征在于, 又将一电流控制器与上述 多个基于发光二极管的照明段串联连接。
23.如权利要求 22所述的方法, 其特征在于, IN(max)
N≤ 上述最高电 流 ΙΜΑχ被上述电流控制器所限制,
Figure imgf000021_0001
V,
24.如权利要求 21所述的方法, 其特征在于, IN(max) + 1, 上述最 高电流 IMAX被上述控制器所控制, 的整数部分 (
Figure imgf000021_0002
25.如权利要求 24所述的方法,其特征在于, VJN为上述输入电源的电压, 上述多个基于发光二极管的照明段在上述控制器的控制下, 当 0
VF时, 只将一个基于发光二极管的照明单位串联; 当 VF VJN 2VF时, 至少有两个基于发光二极管的照明单位串联; 当 2VF ^ Vm ^ 3VF时, 至 少有三个基于发光二极管的照明单位串联; 以此类推, 当 (N-2)VF ^ VJN ^ (N-1)VF时, 至少有 (N-1)个基于发光二极管的照明单位串联; 而当 (N-1)VF < VIN ^ VrN(max) NVF时, 则有 N个基于发光二极管的照明单位串联。
26.—种用来分割与驱动多个基于发光二极管的照明单位的方法,其特征 在于, 包含下列步骤:
将 N个基于发光二极管的照明单位分割成串接的 k个基于发光二极管的 照明段,上述 k个照明段里各别有串接于各别照明段的正端和负端之间的 SP S2, …, 和 Sk个基于发光二极管的照明单位, 其中每个基于发光二极管的照 明单位在一最高电流 ΙΜΑχ下的正向电压为 !^ ;
将一输入电源连接到上述多个基于发光二极管的照明段, 上述输入电源 的最高电压为 ViN(max); 以及
各别对每一个基于发光二极管的照明段发送一对控制信号, 用来将相对 的照明段以串联连接, 或将相对的照明段以短路绕接; 其中 N : 的整数部分, 3 < k
Figure imgf000021_0004
Figure imgf000021_0003
Llog2N」, |jog2N」为数字 l0g2N的整数部分, 而且 = Ν
27.如权利要求 26所述的方法, 其特征在于, 又将一电流控制器与上述 多个基于发光二极管的照明段串联连接。
V,
28.如权利要求 27所述的方法, 其特征在于, ax)
N 上述最高电
Figure imgf000022_0001
V, IN(max)
流 ΙΜΑχ被上述电流控制器所限制, 为数字 (VIN(MAX) VF)的整数部分,
V, IN(max)
29.如权利要求 26所述的方法, 其特征在于, N≥ + 1, 上述最
IN(max)
高电流 ΙΜΑχ被上述控制器所控制, 为数字 (vIN(MAX)/vF)的整数部分 <
30.如权利要求 29所述的方法,其特征在于, VJN为上述输入电源的电压, 上述多个基于发光二极管的照明段在上述控制器的控制下, 当 0 VJK VF时, 只将一个基于发光二极管的照明单位串联; 当 VF VIN 2VF时, 至少有两个基于发光二极管的照明单位串联; 当 2VF VrN 3VF时, 至 少有三个基于发光二极管的照明单位串联; 以此类推, 当 (N-2)VF ^ VM ^ (N-1)VF时, 至少有 (N-1)个基于发光二极管的照明单位串联; 而当 (N-1)VF < VIN V max) ^ NVF时, 则有 N个基于发光二极管的照明单位串联。
PCT/CN2012/000830 2012-06-15 2012-06-15 基于发光二极管的照明设备的分段驱动方法和装置 WO2013185261A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/000830 WO2013185261A1 (zh) 2012-06-15 2012-06-15 基于发光二极管的照明设备的分段驱动方法和装置
DE112012005774.0T DE112012005774T5 (de) 2012-06-15 2012-06-15 Verfahren und Vorrichtung zur Segmentierung und Antrieb von LED-basierten Beleuchtungseinheiten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/000830 WO2013185261A1 (zh) 2012-06-15 2012-06-15 基于发光二极管的照明设备的分段驱动方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/267,847 Continuation US9838501B2 (en) 2011-11-04 2014-05-01 Method and server for generating contact relationship data in network communication system

Publications (1)

Publication Number Publication Date
WO2013185261A1 true WO2013185261A1 (zh) 2013-12-19

Family

ID=49757391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000830 WO2013185261A1 (zh) 2012-06-15 2012-06-15 基于发光二极管的照明设备的分段驱动方法和装置

Country Status (2)

Country Link
DE (1) DE112012005774T5 (zh)
WO (1) WO2013185261A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562438B2 (en) 2016-04-22 2020-02-18 Rohm Co., Ltd. Light-emitting element driving semiconductor integrated circuit, light-emitting element driving device, light-emitting device, and vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691126A (zh) * 2004-04-20 2005-11-02 索尼株式会社 恒流驱动设备、背光光源设备和彩色液晶显示设备
JP2007123562A (ja) * 2005-10-28 2007-05-17 Terada Electric Works Co Ltd Led駆動回路およびled駆動方法
CN101779522A (zh) * 2007-07-23 2010-07-14 Nxp股份有限公司 具有旁路驱动的led装置
TW201143515A (en) * 2010-05-25 2011-12-01 Optromax Electronics Co Ltd Illuminating apparatus and light source control circuit thereof
CN102404898A (zh) * 2010-09-13 2012-04-04 凯杰照明股份有限公司 Led灯具的驱动电路
US20120139448A1 (en) * 2010-12-07 2012-06-07 Yung-Hsin Chiang Two-terminal current controller and related led lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1691126A (zh) * 2004-04-20 2005-11-02 索尼株式会社 恒流驱动设备、背光光源设备和彩色液晶显示设备
JP2007123562A (ja) * 2005-10-28 2007-05-17 Terada Electric Works Co Ltd Led駆動回路およびled駆動方法
CN101779522A (zh) * 2007-07-23 2010-07-14 Nxp股份有限公司 具有旁路驱动的led装置
TW201143515A (en) * 2010-05-25 2011-12-01 Optromax Electronics Co Ltd Illuminating apparatus and light source control circuit thereof
CN102404898A (zh) * 2010-09-13 2012-04-04 凯杰照明股份有限公司 Led灯具的驱动电路
US20120139448A1 (en) * 2010-12-07 2012-06-07 Yung-Hsin Chiang Two-terminal current controller and related led lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562438B2 (en) 2016-04-22 2020-02-18 Rohm Co., Ltd. Light-emitting element driving semiconductor integrated circuit, light-emitting element driving device, light-emitting device, and vehicle

Also Published As

Publication number Publication date
DE112012005774T5 (de) 2014-10-30

Similar Documents

Publication Publication Date Title
US8816591B2 (en) Methods and apparatus for segmenting and driving LED-based lighting units
US20140159593A1 (en) Apparatus having universal structure for driving a plurality of led strings
US9258861B2 (en) Apparatus for driving multi-color LED strings
JP6113885B2 (ja) 半導体発光素子を適用した照明装置
US8648537B2 (en) Methods and apparatus for driving LED-based lighting units
US9544960B2 (en) AC LED lamp involving an LED string having separately shortable sections
US20150042234A1 (en) Dynamically reconfigurable led drivers and lighting systems
TWI584672B (zh) 驅動數種顏色的發光二極體串之裝置
TW201242421A (en) AC LED light source with reduced flicker
US9055639B2 (en) Apparatus for driving a plurality of segments of LED-based lighting units
TWI584683B (zh) Light - emitting diode - based lighting device for segmented driving method and device
JP2017504173A (ja) 高性能電流式複数段切換可能なledコントローラ
WO2014153678A1 (zh) 驱动数种颜色的发光二极管串的装置
WO2013185261A1 (zh) 基于发光二极管的照明设备的分段驱动方法和装置
TWI624193B (zh) 使用高電壓驅動發光二極體之通用裝置
WO2013191806A1 (en) Light emitting diode driver
CN103517479B (zh) 基于发光二极管的照明设备的分段驱动方法和装置
JP5981689B2 (ja) 電流制御および駆動回路
TWI450639B (zh) 基於發光二極體的照明設備之驅動方法和裝置
TW201427485A (zh) 具有驅動多數個發光二極體串的通用結構之裝置
TWI451810B (zh) 基於發光二極體的多數個照明單位之驅動裝置
WO2014100919A1 (zh) 具有驱动多数个发光二极管串的通用结构的装置
CN108668400A (zh) Led灯
TW201536104A (zh) 驅動應用高電壓之發光二極體串的裝置
WO2014047749A1 (zh) 基于发光二极管的多数个照明单位的驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012005774

Country of ref document: DE

Ref document number: 1120120057740

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879028

Country of ref document: EP

Kind code of ref document: A1