WO2013183787A1 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
WO2013183787A1
WO2013183787A1 PCT/JP2013/066000 JP2013066000W WO2013183787A1 WO 2013183787 A1 WO2013183787 A1 WO 2013183787A1 JP 2013066000 W JP2013066000 W JP 2013066000W WO 2013183787 A1 WO2013183787 A1 WO 2013183787A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
focal length
zoom
object side
Prior art date
Application number
PCT/JP2013/066000
Other languages
French (fr)
Japanese (ja)
Inventor
安達 宣幸
Original Assignee
株式会社タムロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムロン filed Critical 株式会社タムロン
Publication of WO2013183787A1 publication Critical patent/WO2013183787A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Definitions

  • the present invention relates to a zoom lens, more specifically, a compact, at least three-group configuration, including a positive first lens group, a negative second lens group, and a positive third lens group in order from the object side, and a zoom ratio.
  • the present invention relates to a zoom lens having a high magnification of about 10 times.
  • a first lens group G1 having a positive refractive power in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. It has at least a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power at the telephoto end, and the first lens group G1 and the second lens group G3.
  • the air gap between the lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens group G4
  • the distance between the first lens group G1 and the second lens group G1 at the telephoto end is changed by expanding the air distance between the fourth lens group G4 and the fifth lens group G5.
  • the distance between the lens groups G2 is D1T
  • the first lens group G1 at the wide-angle end is The interval between the second lens group G2 and D1W, the focal length of the entire system at the wide angle end fw, the focal length of the first lens group G1 f1, the focal length of the second lens group G2 and the f2, (1) 2.3 ⁇ (D1T ⁇ D1W) / fw ⁇ 10 (2) 6.6 ⁇ f1 /
  • a zoom lens satisfying the above has been proposed (see, for example, Patent Document 1).
  • a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refraction in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refraction.
  • a fourth lens group having a positive refractive power and a fifth lens group having a positive refractive power, and the distance between the first lens group and the second lens group increases upon zooming from the wide-angle end to the telephoto end.
  • At least the first lens group so that the distance between the third lens group and the third lens group decreases, the distance between the third lens group and the fourth lens group increases, and the distance between the fourth lens group and the fifth lens group decreases.
  • a zoom lens for moving the third lens group and the fifth lens group to the object side wherein the focal lengths of the first lens group and the third lens group are f1, f3, and the focal points of the entire system at the wide-angle end and the telephoto end, respectively.
  • the distances are fW and fT, respectively (paraxial lateral magnification at the telephoto end) / (paraxial lateral magnification at the wide-angle end).
  • variable magnification sharing values of the second lens group and the third lens group defined are Z2 and Z3, respectively, 0.3 ⁇ f1 / fT ⁇ 0.8, 1.2 ⁇ Z2 / Z3 ⁇ 3.0 , 0.5 ⁇ f3 / fW ⁇ 0.8 has been proposed (for example, see Patent Document 2).
  • a fifth lens group having positive refractive power and at the time of zooming from the wide angle end to the telephoto end, the distance between the first lens group and the second lens group, and the third lens group and the fourth lens group.
  • the zoom lens is characterized in that the distance between the second lens group and the third lens group and the distance between the fourth lens group and the fifth lens group are reduced, and the following conditional expression is satisfied.
  • fW is the focal length f1 of the entire system at the wide angle end
  • the focal length f2 of the first lens group, the focal length f3 of the second lens group, and the focal length f4 of the third lens group is the focal point of the fourth lens group.
  • a zoom lens has been proposed in which the distance f5 is the focal length fT345 of the fifth lens group, and the focal length is from the third lens group to the fifth lens group at the telephoto end (see Patent Document 3, for example).
  • the zoom lens disclosed in Patent Document 1 or the like with the same lens group configuration as that of the present invention, the air distance between the first lens group and the second lens group is narrowed, and the focal length between the first lens group and the second lens group is further reduced.
  • the zoom lens of Patent Document 1 does not reach the target size of the present invention, and is not compact enough.
  • the lens type disclosed in Patent Document 1 has a limit in improving the deterioration of the spherical aberration and the longitudinal chromatic aberration at the telephoto end due to compactification.
  • the present invention has been made in view of the above-described problems of conventional zoom lenses, and an object of the present invention is to provide a compact zoom lens that can obtain high imaging performance while having a high magnification.
  • the high-power zoom lens is made compact to make it difficult to ensure the imaging performance at the telephoto end. This is because the axial chromatic aberration and the lateral chromatic aberration at the telephoto end are significantly deteriorated by shortening the focal length of the first lens group.
  • each lens group has an appropriate focal length, a material with high anomalous dispersion is incorporated, and chromatic aberration is improved to produce a product.
  • the first lens group has a four-lens configuration and is suitable for chromatic aberration correction.
  • a zoom lens suitable for downsizing which is a lens type in which a plurality of lens groups move, has a four-lens first lens group as in the present invention, has a short overall length, and a small outer diameter of the first lens group, has been proposed.
  • An object of the present invention is to provide a zoom lens in which the first lens group is composed of four lenses to correct chromatic aberration and realize a compact size.
  • the first lens group In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, At the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and all the lens groups constituting the lens group A moving zoom lens,
  • the first lens group includes one negative lens and three positive lenses in order from the object side, and satisfies the following conditional expression.
  • the distance between the first lens group and the second lens group is increased, the distance between the second lens group and the third lens group is decreased, and the third lens group and the second lens group are
  • the first lens group, the third lens group, the fourth lens group, and the fifth lens group are placed on the object side so that the distance between the four lens groups changes and the distance between the fourth lens group and the fifth lens group decreases.
  • a zoom lens to be moved to The first lens group includes one negative lens and three positive lenses in order from the object side, and satisfies the following conditional expression.
  • Vdi Abbe number of the i-th glass material from the object side
  • the distance between the first lens group and the second lens group is increased, the distance between the second lens group and the third lens group is decreased, and the third lens group and the second lens group are
  • the first lens group, the third lens group, the fourth lens group, and the fifth lens group are placed on the object side so that the distance between the four lens groups changes and the distance between the fourth lens group and the fifth lens group decreases.
  • a zoom lens to be moved to The first lens group is composed of one negative lens and three positive lenses in order from the object side, and a part or the whole of the fourth lens group moves during camera shake correction, and satisfies the following conditional expression: Zoom lens characterized by. (1) Nd1> 1.84 vd1 ⁇ 35 (2) Nd2 ⁇ 1.60 vd2> 60 (3) Nd3 ⁇ 1.65 vd3> 60 (4) Nd4-Nd3> 0.02 Nd4>Nd3> Nd2 Ndi: Refractive index of the i-th glass material from the object side Vdi: Abbe number of the i-th glass material from the object side
  • the third lens group is composed of three convex lenses and one concave lens in order from the object side.
  • the aperture stop is disposed between the second lens group and the third lens group, and moves integrally with the third lens group.
  • the zoom lens of the present invention it is possible to construct a compact zoom lens that can obtain a high imaging performance while having a high magnification with the first lens group having four lenses.
  • conditional expressions In general, a lens system having four first lens groups is not preferable because the first lens group becomes large. Further, the addition of one lens to the first lens group in the three-lens configuration increases the overall length of the zoom lens. In addition, the first lens diameter increases as the entrance pupil position becomes deeper. The present invention reasonably solves the above-described problems with the following conditional expressions.
  • the refractive index of the glass material of the lens closest to the object side in the first lens group is set in the range of the conditional expression (1)
  • the refractive index of the glass material of the second lens is set in the range of the conditional expression (2)
  • the refractive index of the glass material of the third lens is set in the range of the conditional expression (3)
  • the refractive index of the fourth lens and the third lens is set in the range of the condition (4)
  • Ndi Refractive index of the i-th glass material from the object side
  • Vdi Abbe number of the i-th glass material counted from the object side
  • the glass material of the second convex lens counted from the object side must satisfy the following conditions. (2) Nd2 ⁇ 1.60 vd2> 60 Selecting a glass material having a large refractive index that exceeds the range of conditional expression (2) is not desirable because it becomes difficult to correct chromatic aberration.
  • the glass material of the third convex lens counted from the object side needs to satisfy the following conditions.
  • Selecting a glass material having a large refractive index that exceeds conditional expression (3) is not desirable because it becomes difficult to optimize spherical aberration and chromatic aberration at the telephoto end.
  • the glass materials of the third and fourth convex lenses counted from the object side need to satisfy the following conditions.
  • Increasing the refractive index of the glass material of the fourth convex lens relative to the third convex lens is preferable in order to optimize the spherical aberration chromatic aberration at the telephoto end while reducing the size of the first lens group.
  • Conditional expression (5) shortens the total lens length, particularly the total length at the telephoto end, while shortening the focal length of the first lens group. Further, it is also a condition that the diameter of the lens barrel is reduced by reducing the diameter of the light beam incident on the image side from the second lens group and reducing the diameter of the aperture, thereby avoiding the enlargement of the aperture unit. If the focal length of the first lens group is shortened beyond the lower limit value, the spherical aberration on the telephoto side that occurs in this group becomes remarkably large, and it is difficult to correct this mutually in the lens groups after the second lens group. It becomes.
  • Conditional expression (5) preferably satisfies 0.26 ⁇ f1 / ft ⁇ 0.38. With this condition, the imaging performance in the telephoto state can be further enhanced.
  • Conditional expression (6) is a condition for setting an appropriate power arrangement range of the second lens group. For example, when trying to achieve a zoom lens having an angle of view of 70 ° or more and a zoom ratio of 10 times or more by downsizing and reducing the diameter, the power balance between the first lens group and the second lens group becomes important. In particular, in the present invention, since a strong retrofocus power arrangement is used at the wide-angle end, in order to achieve good aberration correction, the power balance of the second lens group is appropriately set in combination with the conditional expression (1). Conditional expression (6) is necessary. If the upper limit of conditional expression (6) is exceeded, the focal length of the second lens group has a relatively large absolute value, that is, the power of the second lens group is set to a relatively loose value.
  • the focal length of the second lens group has a relatively small absolute value, that is, the power of the second lens group is set to a relatively strong value.
  • the distortion on the wide-angle side increases, the astigmatism increases due to the deterioration of the Petzval sum, the fluctuation due to the zooming of the lower coma aberration, the increase of the spherical aberration on the telephoto side, etc., which is not preferable.
  • the lower limit of conditional expression (6) By setting the lower limit of conditional expression (6) to a value larger than 0.04, it is possible to make the filter size smaller. Furthermore, the effect of the present invention can be maximized by setting the upper limit of conditional expression (6) to a value smaller than 0.05.
  • Conditional expression (7) defines the focal length of the third lens group. Although it is inevitable that the focal length of the third lens group is shortened in order to reduce the overall length, if an optical system having a compact and high imaging performance is to be obtained, the residual aberration generated in the third lens group is appropriately suppressed. I have to.
  • Conditional expression (7) is a condition that gives a good balance between the amount of aberration and the total length by appropriately giving the focal length. If the focal length is shortened beyond the lower limit of the conditional expression (7), it is difficult to correct the aberration generation by the third lens group, which is not preferable. Exceeding the upper limit of conditional expression (7) is not preferable because the back focus becomes long and it becomes difficult to make the entire length compact. Regarding conditional expression (7), it is preferable that 0.06 ⁇ f3 / ft ⁇ 0.21. The imaging performance from wide to tele, especially the difference in spherical aberration can be reduced.
  • Conditional expression (8) is a conditional expression that defines the ratio of paraxial imaging magnification between the telephoto end and the wide-angle end of the second lens group.
  • it is necessary to devise a method for reducing the diameter of the first lens group.
  • it is essential to appropriately set the zoom ratio of the front and rear lens groups that greatly contribute to zooming. If the zoom ratio of the lens unit on the object side is smaller than that of the stop and the zoom ratio of the lens group on the image side is increased, the stop position can be arranged on the object side, so the entrance pupil position is shallow. Thus, the outer diameter of the first lens group can be reduced.
  • the zoom ratio is reduced beyond the lower limit of conditional expression (8), the outer diameter of the object-side lens of the first lens group can be reduced, but the focal length of the second lens group is reduced and the image plane at the wide-angle end is reduced. Overcurvation is caused and desired imaging performance cannot be obtained. Further, the subsequent lens group is enlarged, which is not preferable. If the zoom ratio of the second group increases beyond the lower limit of conditional expression (8), the outer diameter of the object side lens of the first lens group increases, which is not preferable. Regarding conditional expression (8), it is preferable that 3.4 ⁇ Z2 ⁇ 5.2. The imaging performance from wide to tele, especially the difference in field curvature can be reduced.
  • Conditional expression (9) defines the combined focal length of the third lens group to the fifth lens group. In order to reduce the overall length, it is inevitable to shorten the combined focal length of the third lens unit to the fifth lens unit. However, if an optical system having a compact and high imaging performance is to be obtained, the third lens unit is changed from the third lens unit to the fifth lens unit. Residual aberrations generated in the five lens groups must be appropriately suppressed.
  • Conditional expression (9) is a condition for giving a good balance between the amount of aberration and the total length by appropriately giving the focal length. If the focal length is shortened beyond the lower limit of the conditional expression (9), it is difficult to correct the aberrations caused by the third lens group to the fifth lens group, which is not preferable.
  • the third lens group includes three convex lenses and a concave lens in order from the object side. This arrangement is particularly preferable for correcting coma on the lower ray side of off-axis rays at the wide-angle end. Furthermore, the spherical aberration correction on the tele side can be corrected simultaneously. Regarding conditional expression (9), 0.43 ⁇ f345t / f3 ⁇ 1.25 is preferable. The imaging performance from wide to tele, especially the difference in spherical aberration can be reduced.
  • Conditional expression (10) defines the focal length of the fourth lens group.
  • the fourth lens group is a group that contributes to the correction of the spherical aberration at the intermediate focal length, and is an important lens group for improving the imaging performance in the entire zoom range from the wide-angle end to the telephoto end.
  • the fourth lens group is set as a camera shake correction group, it is necessary to set an appropriate focal length in order to prevent deterioration in image forming performance during camera shake correction. If the lower limit of conditional expression (10) is exceeded and the focal length of the fourth lens group becomes shorter, the spherical aberration at the intermediate focal length becomes under and it becomes impossible to ensure a flat image surface property.
  • the off-axis light beam passing through the fifth lens group becomes high, and the peripheral light amount decreases. It is not preferable. If the focal length of the fourth lens unit is increased beyond the upper limit of the conditional expression (10), the spherical aberration at the intermediate focal length is over, and it becomes impossible to ensure flat image surface property. The total length of is increased, which is not preferable. Regarding conditional expression (10), it is preferable that ⁇ 2.0 ⁇ f4 / f345t ⁇ 2.3. The imaging performance from wide to tele, especially the difference in spherical aberration can be reduced.
  • the aspherical surface in the second lens group be arranged closest to the object side. This is for maintaining good distortion.
  • An aspherical surface can be disposed closest to the image side in the second lens group, and the curvature of field at the intermediate focal length from the wide angle end can be maintained well.
  • the aspherical surface that can be placed in the third lens group is preferably arranged on the surface closer to the image side. Since the third lens group is a lens group through which Fno rays pass thickly, there is a great influence on the imaging performance due to local deformation and surface waviness on all lens surfaces. Among them, the present invention obtains high imaging performance while maintaining high magnification by lowering the Fno ray toward the image side to make the light beam narrower and selecting an aspherical surface in the image side direction. The problem can be realized. More preferably, the second to fourth lenses from the object side are provided with aspheric surfaces. The aspherical surface in the fourth lens group is effective in enhancing the imaging performance by the camera shake correction when the fourth lens group is a camera shake correction lens group.
  • FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the zoom lens according to the first embodiment of the present invention is in focus at infinity in the wide-angle end state.
  • FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the first embodiment of the zoom lens of the present invention.
  • FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the first embodiment of the zoom lens of the present invention.
  • FIG. 3 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the first embodiment of the present invention. It is an optical sectional view at the wide angle end of a lens configuration concerning a 2nd embodiment of a zoom lens of the present invention.
  • FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the lens according to the second embodiment of the zoom lens of the present invention.
  • FIG. 7 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the second embodiment of the zoom lens of the present invention.
  • FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the lens according to the second embodiment of the zoom lens of the present invention. It is an optical sectional view in the wide angle end of a lens composition concerning a 3rd embodiment of a zoom lens of the present invention.
  • FIG. 10 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the third embodiment of the present invention.
  • FIG. 10 is a spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the zoom lens according to the fourth embodiment of the present invention is focused on infinity in the wide-angle end state.
  • FIG. 10 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the fourth embodiment of the zoom lens of the present invention.
  • the surface number NS in the specification optical data is the order of the lens surface counted from the object side
  • R is the radius of curvature of the lens surface (mm)
  • D is the distance on the optical axis of the lens surface (mm).
  • the surface number with STOP attached to the rear side indicates a stop.
  • the surface number with ASPH on the back side indicates an aspheric surface
  • the column of the radius of curvature R indicates the paraxial radius of curvature (mm) of the aspheric surface.
  • X (y) (y 2 / R) / [1+ (1 ⁇ ⁇ y 2 / R 2 ) 1/2 ] + A 4 ⁇ y 4 + A 6 ⁇ y 6 + A 8 ⁇ y 8 + A 10 ⁇ y 10
  • X (y) is the distance (sag amount) along the optical axis direction from the apex of each aspheric surface at the height y in the vertical direction from the optical axis
  • R is the curvature radius (paraxial curvature radius) of the reference spherical surface
  • is a conical coefficient
  • A4, A6, A8, and A10 are aspherical coefficients.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

The purpose of the present invention is to provide a compact zoom lens capable of acquiring high imaging performance even with high magnification. The zoom lens comprises, sequentially from an object, a first lens group with positive power, a second lens group with negative power and a third lens group with positive power. When zooming from a wide angle end to a telescopic end, the distance between the first lens group and the second lens group increases and the distance between the second lens group and the third lens group decreases so that all the lens groups constituting the zoom lens move. The first lens group comprises, sequentially from the object, a single negative lens and three positive lenses. The zoom lens satisfies the following expressions: (1) Nd1 > 1.84 vd1 < 35. (2) Nd2 < 1.60 vd2 > 60, (3) Nd3 < 1.65 vd3 > 60 and (4) Nd4 - Nd3 >0.02 Nd4 > Nd3 >Nd2. Where, Ndi is the refractive index of an i-th glass material from the object and Vdi is Abbe's number of an i-th glass material from the object.

Description

ズームレンズZoom lens
 本発明は、ズームレンズ、さらに詳しくは、コンパクトで、少なくとも3群構成で、物体側から順に正の第1レンズ群、負の第2レンズ群、正の第3レンズ群を含み、変倍比10倍程度の高倍率のズームレンズに関する。 The present invention relates to a zoom lens, more specifically, a compact, at least three-group configuration, including a positive first lens group, a negative second lens group, and a positive third lens group in order from the object side, and a zoom ratio. The present invention relates to a zoom lens having a high magnification of about 10 times.
 従来の上述した高倍率のズームレンズとしては、物体側から順に、正の屈折力を有する第1レンズ群G1と負の屈折力を有する第2レンズ群G2と正の屈折力を有する第3レンズ群G3と負の屈折力を有する第4レンズ群G4と正の屈折力を有する第5レンズ群G5を少なくとも有し、広角端に対し望遠端においては、該第1レンズ群G1と該第2レンズ群G2との間の空気間隔が拡大し、該第2レンズ群G2と該第3レンズ群G3との間の空気間隔が縮小し、該第3レンズ群G3と該第4レンズ群G4との間の空気間隔が拡大し、該第4レンズ群G4と該第5レンズ群G5との間の空気間隔が縮小することによって変倍し、望遠端における該第1レンズ群G1と該第2レンズ群G2の間隔をD1Tとし、広角端における該第1レンズ群G1と該第2レンズ群G2の間隔をD1Wとし、広角端の全系の焦点距離をfw、前記第1レンズ群G1の焦点距離をf1、前記第2レンズ群G2の焦点距離をf2としたとき、
(1)2.3<(D1T-D1W)/fw<10
(2)6.6<f1/|f2|<15
を満足するズームレンズが提案されている(例えば、特許文献1参照)。
As the conventional high-power zoom lens described above, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. It has at least a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power at the telephoto end, and the first lens group G1 and the second lens group G3. The air gap between the lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the third lens group G3 and the fourth lens group G4 The distance between the first lens group G1 and the second lens group G1 at the telephoto end is changed by expanding the air distance between the fourth lens group G4 and the fifth lens group G5. The distance between the lens groups G2 is D1T, and the first lens group G1 at the wide-angle end is The interval between the second lens group G2 and D1W, the focal length of the entire system at the wide angle end fw, the focal length of the first lens group G1 f1, the focal length of the second lens group G2 and the f2,
(1) 2.3 <(D1T−D1W) / fw <10
(2) 6.6 <f1 / | f2 | <15
A zoom lens satisfying the above has been proposed (see, for example, Patent Document 1).
 従来の他の高倍率のズームレンズとしては、物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群及び正の屈折力の第5レンズ群で構成され、広角端から望遠端への変倍に際し、前記第1レンズ群と第2レンズ群の間隔が増加、前記第2レンズ群と第3レンズ群の間隔が減少、前記第3レンズ群と第4レンズ群の間隔が増加、前記第4レンズ群と第5レンズ群の間隔が減少するように少なくとも前記第1レンズ群、第3レンズ群、第5レンズ群を物体側に移動させるズームレンズであって、前記第1レンズ群、第3レンズ群の焦点距離を各々f1,f3、広角端、望遠端における全系の焦点距離を各々fW,fT、(望遠端の近軸横倍率)/(広角端の近軸横倍率)で定義される前記第2レンズ群、第3レンズ群の変倍分担値を各々Z2,Z3とするとき、0.3<f1/fT<0.8、1.2<Z2/Z3<3.0、0.5<f3/fW<0.8なる条件式を満足する高変倍ズームレンズが提案されている(例えば、特許文献2参照)。 As another conventional high-power zoom lens, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative refraction. A fourth lens group having a positive refractive power and a fifth lens group having a positive refractive power, and the distance between the first lens group and the second lens group increases upon zooming from the wide-angle end to the telephoto end. At least the first lens group, so that the distance between the third lens group and the third lens group decreases, the distance between the third lens group and the fourth lens group increases, and the distance between the fourth lens group and the fifth lens group decreases. A zoom lens for moving the third lens group and the fifth lens group to the object side, wherein the focal lengths of the first lens group and the third lens group are f1, f3, and the focal points of the entire system at the wide-angle end and the telephoto end, respectively. The distances are fW and fT, respectively (paraxial lateral magnification at the telephoto end) / (paraxial lateral magnification at the wide-angle end). When the variable magnification sharing values of the second lens group and the third lens group defined are Z2 and Z3, respectively, 0.3 <f1 / fT <0.8, 1.2 <Z2 / Z3 <3.0 , 0.5 <f3 / fW <0.8 has been proposed (for example, see Patent Document 2).
 従来のさらに高倍率のズームレンズとしては、物体側より順に、正屈折力の第1レンズ群、負屈折力の第2レンズ群、正屈折力の第3レンズ群、負屈折力の第4レンズ群、及び、正屈折力の第5レンズ群で構成され、広角端から望遠端への変倍時に、第1レンズ群と第2レンズ群の間隔、及び、第3レンズ群と第4レンズ群の間隔が大きくなり、第2レンズ群と第3レンズ群の間隔、及び、第4レンズ群と第5レンズ群の間隔が小さくなり、以下の条件式を満足することを特徴とするズームレンズ。
2.0<f1 /fW ≦4.8424・・(1)
0.4<|f2 /fW |<1.0・・・(2)
0.3<f3 /fT345≦0.8217・・(3)
0.6<|f4 |/fT345<5.0・・(4)
0.9154≦f5 /fT345<4.0・・(5)
ただし、
fW は、広角端における全系の焦点距離
f1 は、第1レンズ群の焦点距離
f2 は、第2レンズ群の焦点距離
f3 は、第3レンズ群の焦点距離
f4 は、第4レンズ群の焦点距離
f5 は、第5レンズ群の焦点距離
fT345は、望遠端における第3レンズ群から第5レンズ群までの焦点距離
であるズームレンズが提案されている(例えば、特許文献3参照)。
As a conventional higher magnification zoom lens, in order from the object side, a first lens unit having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power. And a fifth lens group having positive refractive power, and at the time of zooming from the wide angle end to the telephoto end, the distance between the first lens group and the second lens group, and the third lens group and the fourth lens group. The zoom lens is characterized in that the distance between the second lens group and the third lens group and the distance between the fourth lens group and the fifth lens group are reduced, and the following conditional expression is satisfied.
2.0 <f1 / fW ≦ 4.8424 (1)
0.4 <| f2 / fW | <1.0 (2)
0.3 <f3 / fT345 ≦ 0.8217 (3)
0.6 <| f4 | / fT345 <5.0 (4)
0.9154 ≦ f5 / fT345 <4.0 (5)
However,
fW is the focal length f1 of the entire system at the wide angle end, the focal length f2 of the first lens group, the focal length f3 of the second lens group, and the focal length f4 of the third lens group is the focal point of the fourth lens group. A zoom lens has been proposed in which the distance f5 is the focal length fT345 of the fifth lens group, and the focal length is from the third lens group to the fifth lens group at the telephoto end (see Patent Document 3, for example).
特許第4051731号公報Japanese Patent No. 4051731 特許第3236037号公報Japanese Patent No. 3236037 特許第3807712号公報Japanese Patent No. 3807712
 特許文献1等のズームレンズにおいては、本発明と同じレンズ群構成で、第1レンズ群と第2レンズ群との空気間隔を狭くし、さらに第1レンズ群と第2レンズ群の焦点距離を短くすることでコンパクト化した光学系を提案している。しかし、特許文献1のズームレンズにおいては、本発明が目的とするサイズに達しておらず、コンパクト化が不足している。さらに、特許文献1のレンズタイプでは、コンパクト化に伴う望遠端の球面収差及び軸上色収差の悪化の改善に限界がある。 In the zoom lens disclosed in Patent Document 1 or the like, with the same lens group configuration as that of the present invention, the air distance between the first lens group and the second lens group is narrowed, and the focal length between the first lens group and the second lens group is further reduced. We have proposed an optical system that is made compact by shortening it. However, the zoom lens of Patent Document 1 does not reach the target size of the present invention, and is not compact enough. Furthermore, the lens type disclosed in Patent Document 1 has a limit in improving the deterioration of the spherical aberration and the longitudinal chromatic aberration at the telephoto end due to compactification.
 特許文献2等のズームレンズにおいては、本発明の5レンズ群の実施形態4~12と同じパワー配分の光学系を提案しているが、実施例を見る限り結像性能の優れた光学系とはなっていない。特に望遠端の球面収差、軸上色収差の補正が不十分である。コンパクト化も不十分である。 In the zoom lens disclosed in Patent Document 2 and the like, an optical system having the same power distribution as those in Embodiments 4 to 12 of the five lens group of the present invention is proposed. It is not. In particular, correction of spherical aberration and axial chromatic aberration at the telephoto end is insufficient. Compactness is also insufficient.
 特許文献3等のズームレンズにおいては、本発明の5レンズ群の実施形態4~12と同じパワー配分の光学系を提案している。しかし、構成レンズ枚数が少ないため、結像性能を満足させることが困難となっている。特に、望遠端の色収差補正が不十分であり、コンパクト化も不十分である。 In the zoom lens disclosed in Patent Document 3 and the like, an optical system having the same power distribution as in Embodiments 4 to 12 of the five lens group of the present invention is proposed. However, since the number of constituent lenses is small, it is difficult to satisfy the imaging performance. In particular, the correction of chromatic aberration at the telephoto end is insufficient, and the compactness is also insufficient.
(発明の目的)
 本発明は、従来のズームレンズの上述した問題点に鑑みてなされたものであって、高倍率でありながら高い結像性能を得ることができるコンパクトなズームレンズを提供することを目的とする。
(Object of invention)
The present invention has been made in view of the above-described problems of conventional zoom lenses, and an object of the present invention is to provide a compact zoom lens that can obtain high imaging performance while having a high magnification.
 一般的に、高倍率ズームレンズのコンパクト化は、望遠端の結像性能を確保することを困難にする。なぜならば、第1レンズ群の焦点距離の短縮により、望遠端の軸上色収差や倍率色収差の劣化が著しくなるからである。この問題を解決するため、従来は、各レンズ群に適度な焦点距離を持たせ、また異常分散性の高い材料を組み込み、色収差を改善して製品化を行っている。しかし、魅力的なコンパクト化を実現しようとすると、従来のレンズタイプである第1レンズ群3枚構成では限界がある。 In general, the high-power zoom lens is made compact to make it difficult to ensure the imaging performance at the telephoto end. This is because the axial chromatic aberration and the lateral chromatic aberration at the telephoto end are significantly deteriorated by shortening the focal length of the first lens group. In order to solve this problem, conventionally, each lens group has an appropriate focal length, a material with high anomalous dispersion is incorporated, and chromatic aberration is improved to produce a product. However, in order to realize attractive compactness, there is a limit in the configuration of the first lens group having three lenses which is a conventional lens type.
 第1レンズ群を4枚構成として色収差補正に適した構成とすることは公知である。しかしながら、コンパクト化に適した、複数レンズ群が移動するレンズタイプで、本発明の如く第1ンズ群が4枚構成で、全長が短く、第1レンズ群の外径が小さいズームレンズは提案されていない。本発明は、第1レンズ群を4枚構成として色収差の補正を行いかつコンパクト化を実現したズームレンズを提供することを目的とする。 It is well known that the first lens group has a four-lens configuration and is suitable for chromatic aberration correction. However, a zoom lens suitable for downsizing, which is a lens type in which a plurality of lens groups move, has a four-lens first lens group as in the present invention, has a short overall length, and a small outer diameter of the first lens group, has been proposed. Not. SUMMARY OF THE INVENTION An object of the present invention is to provide a zoom lens in which the first lens group is composed of four lenses to correct chromatic aberration and realize a compact size.
(第1発明)
 物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群で構成され、
 広角端から望遠端への変倍時に、前記第1レンズ群と第2レンズ群の間隔が増加し、前記第2レンズ群と第3レンズ群の間隔が減少し、構成するすべてのレンズ群が移動するズームレンズであって、
 前記第1レンズ群は、物体側から順に負レンズ1枚と、正レンズ3枚からなり、以下の条件式を満足することを特徴とするズームレンズ。
(1)Nd1>1.84  vd1<35
(2)Nd2<1.60  vd2>60
(3)Nd3<1.65  vd3>60
(4)Nd4-Nd3>0.02  Nd4>Nd3>Nd2
Ndi:物体側から数えてi番目の硝材の屈折率
Vdi:物体側から数えてi番目の硝材のアッベ数
(First invention)
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
At the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and all the lens groups constituting the lens group A moving zoom lens,
The first lens group includes one negative lens and three positive lenses in order from the object side, and satisfies the following conditional expression.
(1) Nd1> 1.84 vd1 <35
(2) Nd2 <1.60 vd2> 60
(3) Nd3 <1.65 vd3> 60
(4) Nd4-Nd3> 0.02 Nd4>Nd3> Nd2
Ndi: Refractive index of the i-th glass material from the object side
Vdi: Abbe number of the i-th glass material from the object side
(第1発明の実施形態)
 第1発明において、以下の条件式を満足することを特徴とする。
(5)0.24<f1/ft<0.42
(6)0.03<|f2/ft|<0.06
(7)0.05<f3/ft<0.23
(8)3.1<Z2<5.8
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
f3:第3レンズ群の焦点距離
ft:望遠端の焦点距離
 Z2 : 第2レンズ群の望遠端での近軸結像倍率と広角端の近軸結像倍率の比
(Embodiment of the first invention)
In the first invention, the following conditional expression is satisfied.
(5) 0.24 <f1 / ft <0.42
(6) 0.03 <| f2 / ft | <0.06
(7) 0.05 <f3 / ft <0.23
(8) 3.1 <Z2 <5.8
f1: focal length of the first lens group f2: focal length of the second lens group f3: focal length of the third lens group ft: focal length at the telephoto end Z2: paraxial imaging magnification at the telephoto end of the second lens group To the paraxial magnification at the wide-angle end
(第2発明)
 物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、及び正の屈折力の第5レンズ群で構成され、
 広角端から望遠端への変倍時に、前記第1レンズ群と第2レンズ群の間隔が増加し、前記第2レンズ群と第3レンズ群の間隔が減少し、前記第3レンズ群と第4レンズ群の間隔が変化し、前記第4レンズ群と第5レンズ群の間隔が減少するように、前記第1レンズ群、第3レンズ群、第4レンズ群、第5レンズ群を物体側に移動させるズームレンズであって、
 前記第1レンズ群は、物体側から順に負レンズ1枚と、正レンズ3枚からなり、以下の条件式を満足することを特徴とするズームレンズ。
(1)Nd1>1.84  vd1<35
(2)Nd2<1.60  vd2>60
(3)Nd3<1.65  vd3>60
(4)Nd4-Nd3>0.02  Nd4>Nd3>Nd2
Ndi:物体側から数えてi番目の硝材の屈折率
Vdi:物体側から数えてi番目の硝材のアッベ数
(Second invention)
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power Of the fifth lens group,
At the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group is increased, the distance between the second lens group and the third lens group is decreased, and the third lens group and the second lens group are The first lens group, the third lens group, the fourth lens group, and the fifth lens group are placed on the object side so that the distance between the four lens groups changes and the distance between the fourth lens group and the fifth lens group decreases. A zoom lens to be moved to
The first lens group includes one negative lens and three positive lenses in order from the object side, and satisfies the following conditional expression.
(1) Nd1> 1.84 vd1 <35
(2) Nd2 <1.60 vd2> 60
(3) Nd3 <1.65 vd3> 60
(4) Nd4-Nd3> 0.02 Nd4>Nd3> Nd2
Ndi: Refractive index of the i-th glass material from the object side
Vdi: Abbe number of the i-th glass material from the object side
(第2発明の実施形態)
 第2発明において、以下の条件式を満足することを特徴とする。
(5)0.24<f1/ft<0.42
(6)0.03<|f2/ft|<0.06
(9)0.39<f345t/f3<1.39
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
f3:第3レンズ群の焦点距離
ft:望遠端の焦点距離
f345t:望遠端における第3レンズ群から第5レンズ群までの合成焦点距離
(Embodiment of the second invention)
In the second invention, the following conditional expression is satisfied.
(5) 0.24 <f1 / ft <0.42
(6) 0.03 <| f2 / ft | <0.06
(9) 0.39 <f345t / f3 <1.39
f1: Focal length of the first lens group f2: Focal length of the second lens group f3: Focal length of the third lens group ft: Focal length at the telephoto end f345t: From the third lens group to the fifth lens group at the telephoto end Composite focal length
(第3発明)
 物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、及び正の屈折力の第5レンズ群で構成され、
 広角端から望遠端への変倍時に、前記第1レンズ群と第2レンズ群の間隔が増加し、前記第2レンズ群と第3レンズ群の間隔が減少し、前記第3レンズ群と第4レンズ群の間隔が変化し、前記第4レンズ群と第5レンズ群の間隔が減少するように、前記第1レンズ群、第3レンズ群、第4レンズ群、第5レンズ群を物体側に移動させるズームレンズであって、
 前記第1レンズ群は、物体側から順に負レンズ1枚と、正レンズ3枚からなり、手振れ補正時、前記第4レンズ群の一部もしくは全体が移動し、以下の条件式を満足することを特徴とするズームレンズ。
(1)Nd1>1.84  vd1<35
(2)Nd2<1.60  vd2>60
(3)Nd3<1.65  vd3>60
(4)Nd4-Nd3>0.02  Nd4>Nd3>Nd2
Ndi:物体側から数えてi番目の硝材の屈折率
Vdi:物体側から数えてi番目の硝材のアッベ数
(Third invention)
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power Of the fifth lens group,
At the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group is increased, the distance between the second lens group and the third lens group is decreased, and the third lens group and the second lens group are The first lens group, the third lens group, the fourth lens group, and the fifth lens group are placed on the object side so that the distance between the four lens groups changes and the distance between the fourth lens group and the fifth lens group decreases. A zoom lens to be moved to
The first lens group is composed of one negative lens and three positive lenses in order from the object side, and a part or the whole of the fourth lens group moves during camera shake correction, and satisfies the following conditional expression: Zoom lens characterized by.
(1) Nd1> 1.84 vd1 <35
(2) Nd2 <1.60 vd2> 60
(3) Nd3 <1.65 vd3> 60
(4) Nd4-Nd3> 0.02 Nd4>Nd3> Nd2
Ndi: Refractive index of the i-th glass material from the object side
Vdi: Abbe number of the i-th glass material from the object side
(第3発明の実施形態)
 第3発明において、以下の条件式を満足することを特徴とする。
(5)0.24<f1/ft<0.42
(6)0.03<|f2/ft|<0.06
(10)-2.0<f4/f345t<2.3
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
f4:第4レンズ群の焦点距離
ft:望遠端の焦点距離
f345t:望遠端のにおける第3レンズ群から第5レンズ群までの合成焦点距離
(Embodiment of the third invention)
In the third invention, the following conditional expression is satisfied.
(5) 0.24 <f1 / ft <0.42
(6) 0.03 <| f2 / ft | <0.06
(10) -2.0 <f4 / f345t <2.3
f1: Focal length of the first lens group f2: Focal length of the second lens group f4: Focal length of the fourth lens group ft: Focal length at the telephoto end f345t: From the third lens group to the fifth lens group at the telephoto end Composite focal length
(第2発明及び第3発明の実施形態)
 第2発明及び第3発明において、以下の条件式を満足することを特徴とする。
(11)-17.8<Z5<9.5
Z5:(望遠端のおける第5レンズ群の倍率)/(広角端のおける第5レンズ群の倍率)
(Embodiments of the second and third inventions)
In the second and third inventions, the following conditional expressions are satisfied.
(11) -17.8 <Z5 <9.5
Z5: (Magnification of the fifth lens unit at the telephoto end) / (Magnification of the fifth lens unit at the wide-angle end)
(第1発明~第3発明の実施形態1)
 第1発明~第3発明において、前記第3レンズ群は物体側から順に、凸レンズ3枚と凹レンズ1枚からなることを特徴とする。
(Embodiment 1 of the first to third inventions)
In the first to third inventions, the third lens group is composed of three convex lenses and one concave lens in order from the object side.
(第1発明~第3発明の実施形態2)
 第1発明~第3発明において、前記第1レンズ群を除くすべてのレンズ群中に非球面を持つことを特徴とする。
(Embodiment 2 of the first to third inventions)
In the first to third inventions, all the lens groups except the first lens group have an aspherical surface.
(第1発明~第3発明の実施形態3)
 第1発明~第3発明において、開口絞りを、第2レンズ群と第3レンズ群との間に配置し、かつ第3レンズ群と一体で移動することを特徴とする。
(Embodiment 3 of the first to third inventions)
In the first to third inventions, the aperture stop is disposed between the second lens group and the third lens group, and moves integrally with the third lens group.
 本発明のズームレンズによれば、第1レンズ群を4枚構成として高倍率でありながら高い結像性能を得ることができるコンパクトなズームレンズを構成することができる。 According to the zoom lens of the present invention, it is possible to construct a compact zoom lens that can obtain a high imaging performance while having a high magnification with the first lens group having four lenses.
(条件式の説明)
 一般的に、第1レンズ群が4枚構成のレンズ系では、第1レンズ群が大きくなり好ましくない。さらに、第1レンズ群が3枚構成に比べてレンズが1枚追加されることでズームレンズ全長が伸びる。また入射瞳位置が深くなることで第1レンズ径が大きくなる。本発明は、以下の条件式で上述した問題点を合理的に解決している。
(Explanation of conditional expressions)
In general, a lens system having four first lens groups is not preferable because the first lens group becomes large. Further, the addition of one lens to the first lens group in the three-lens configuration increases the overall length of the zoom lens. In addition, the first lens diameter increases as the entrance pupil position becomes deeper. The present invention reasonably solves the above-described problems with the following conditional expressions.
 第1レンズ群の凸レンズの屈折率を物体側から数えて第4番目のレンズから第2番目のレンズにかけて順次下げて行くことは、結像性能を高めつつ前玉径をコンパクトにする上で望ましい。 It is desirable to reduce the refractive index of the convex lens of the first lens group from the fourth side to the second lens in order from the object side in order to make the front lens diameter compact while improving the imaging performance. .
 本発明は、第1レンズ群の最も物体側のレンズの硝材の屈折率を条件式(1)の範囲に設定し、第2番目レンズの硝材の屈折率を条件式(2)の範囲に設定し、第3番目レンズの硝材の屈折率を条件式(3)の範囲に設定し、第4番目レンズと第3番目レンズの屈折率の条件(4)の範囲に設定し、第1レンズ群のコンパクト化を図っている。 In the present invention, the refractive index of the glass material of the lens closest to the object side in the first lens group is set in the range of the conditional expression (1), and the refractive index of the glass material of the second lens is set in the range of the conditional expression (2). Then, the refractive index of the glass material of the third lens is set in the range of the conditional expression (3), the refractive index of the fourth lens and the third lens is set in the range of the condition (4), and the first lens group We are trying to make it more compact.
 すなわち、
(1)Nd1>1.84 vd1<36
ただし、
Ndi:物体側から数えてi番目の硝材の屈折率
Vdi:物体側から数えてi番目の硝材のアッベ数
 条件式(1)の範囲を超えて屈折率の小さな硝材を選択すると、第1レンズ群のコンパクト化が望めない。
That is,
(1) Nd1> 1.84 vd1 <36
However,
Ndi: Refractive index of the i-th glass material from the object side
Vdi: Abbe number of the i-th glass material counted from the object side If a glass material having a small refractive index exceeding the range of conditional expression (1) is selected, the first lens unit cannot be made compact.
 また、物体側から数えて2番目の凸レンズの硝材は下記の条件を満足する必要がある。
(2)Nd2<1.60 vd2>60
 条件式(2)の範囲を超えて屈折率の大きな硝材を選択すると、色収差補正が困難となるため望ましくない。
The glass material of the second convex lens counted from the object side must satisfy the following conditions.
(2) Nd2 <1.60 vd2> 60
Selecting a glass material having a large refractive index that exceeds the range of conditional expression (2) is not desirable because it becomes difficult to correct chromatic aberration.
 また、物体側から数えて3番目の凸レンズの硝材は下記の条件を満足する必要がある。
(3)Nd3<1.65 vd3>60
 条件式(3)を超えて屈折率の大きな硝材を選択すると、望遠端の球面収差、色収差の最適化を図る上で困難となるため望ましくない。
Further, the glass material of the third convex lens counted from the object side needs to satisfy the following conditions.
(3) Nd3 <1.65 vd3> 60
Selecting a glass material having a large refractive index that exceeds conditional expression (3) is not desirable because it becomes difficult to optimize spherical aberration and chromatic aberration at the telephoto end.
 また、物体側から数えて3番目と4番目の凸レンズの硝材は下記の条件を満足する必要がある。
(4)Nd4-Nd3>0.02 Nd4>Nd3>Nd2
 3番目の凸レンズに対して4番目の凸レンズの硝材の屈折率を高くすることは、第1レンズ群を小型化しつつ、望遠端の球面収差色収差の最適化するために好ましい。第1レンズ群を構成する3枚の凸レンズにおいて、像側から物体側へ屈折率を順次下げることは、第1レンズ群の有効径を効率的に縮小化する上で好ましい。
Further, the glass materials of the third and fourth convex lenses counted from the object side need to satisfy the following conditions.
(4) Nd4-Nd3> 0.02 Nd4>Nd3> Nd2
Increasing the refractive index of the glass material of the fourth convex lens relative to the third convex lens is preferable in order to optimize the spherical aberration chromatic aberration at the telephoto end while reducing the size of the first lens group. In order to efficiently reduce the effective diameter of the first lens group, it is preferable to sequentially reduce the refractive index from the image side to the object side in the three convex lenses constituting the first lens group.
 条件式(5)は、第1レンズ群の焦点距離を短くしつつ、レンズ全長、特に望遠端での全長を短くするものである。また、第2レンズ群より像側へ入射する光束径を小さくし、絞り径を小さくすることにより、絞りユニットの大型化を避け鏡筒外径を小さくする条件でもある。
 下限値を越えて第1レンズ群の焦点距離が短くなると、この群で発生する望遠側での球面収差が著しく大きくなり、これを第2レンズ群以降のレンズ群で相互に補正することが困難となる。
 上限値を越えると、前述のコンパクト化の目的に反する他に、所望とする変倍比を得るためのレンズ移動量を大きく与えねばならず、鏡筒をカム筒等で構成させた場合、筒の繋ぎ部の保持構造が複雑になりその設計が困難になる。
 条件式(5)は、好ましくは、0.26<f1/ft<0.38である。この条件により、望遠状態の結像性能をより高めることができる。
Conditional expression (5) shortens the total lens length, particularly the total length at the telephoto end, while shortening the focal length of the first lens group. Further, it is also a condition that the diameter of the lens barrel is reduced by reducing the diameter of the light beam incident on the image side from the second lens group and reducing the diameter of the aperture, thereby avoiding the enlargement of the aperture unit.
If the focal length of the first lens group is shortened beyond the lower limit value, the spherical aberration on the telephoto side that occurs in this group becomes remarkably large, and it is difficult to correct this mutually in the lens groups after the second lens group. It becomes.
If the upper limit is exceeded, in addition to the purpose of downsizing, the lens movement amount for obtaining the desired zoom ratio must be given, and when the lens barrel is composed of a cam barrel or the like, The holding structure of the connecting portion becomes complicated and its design becomes difficult.
Conditional expression (5) preferably satisfies 0.26 <f1 / ft <0.38. With this condition, the imaging performance in the telephoto state can be further enhanced.
 条件式(6)は、第2レンズ群の適切なパワー配置の範囲を設定した条件である。例えば、画角70°以上で、変倍比10倍以上のズームレンズを、小型化・小径化で達成しようとすると、第1レンズ群および第2レンズ群のパワーバランスが重要になる。特に本発明では、広角端において強いレトロフォーカスのパワー配置にしているため、良好な収差補正を達成するためには、条件式(1)と合わせ、第2レンズ群のパワーバランスを適切に設定するための条件式(6)が必要である。
 条件式(6)の上限を上回る場合、第2レンズ群の焦点距離が絶対値が比較的大きい、すなわち第2レンズ群のパワーを比較的緩い値で設定することになる。この場合には、変倍時の移動量が増加するため、全系の大型化や全長変化の増大を招く。また、相対的に第1レンズ群のパワーが強くなるため、特に広角端の主光線の入射高が上昇し、結果的にフィルターサイズの増大を招き、好ましくない。
 条件式(6)の下限を下回る場合、第2レンズ群の焦点距離が絶対値が比較的小さい、すなわち第2レンズ群のパワーを比較的強い値で設定することになる。この場合、広角側の歪曲の増大、ペッツバール和の悪化による非点収差の増大、下方コマ収差の変倍による変動、望遠側の球面収差の増大等を招き、好ましくない。
 なお、条件式(6)の下限を0.04より大きい設定にすることによって、より確実なフィルターサイズの小径化が可能になる。更に、条件式(6)の上限を0.05より小さい設定にすることによって、本発明の効果を最大限に発揮できる。
Conditional expression (6) is a condition for setting an appropriate power arrangement range of the second lens group. For example, when trying to achieve a zoom lens having an angle of view of 70 ° or more and a zoom ratio of 10 times or more by downsizing and reducing the diameter, the power balance between the first lens group and the second lens group becomes important. In particular, in the present invention, since a strong retrofocus power arrangement is used at the wide-angle end, in order to achieve good aberration correction, the power balance of the second lens group is appropriately set in combination with the conditional expression (1). Conditional expression (6) is necessary.
If the upper limit of conditional expression (6) is exceeded, the focal length of the second lens group has a relatively large absolute value, that is, the power of the second lens group is set to a relatively loose value. In this case, the amount of movement at the time of zooming increases, leading to an increase in the size of the entire system and an increase in the total length. Further, since the power of the first lens group becomes relatively strong, the incident height of the chief ray at the wide-angle end increases, resulting in an increase in filter size, which is not preferable.
When falling below the lower limit of conditional expression (6), the focal length of the second lens group has a relatively small absolute value, that is, the power of the second lens group is set to a relatively strong value. In this case, the distortion on the wide-angle side increases, the astigmatism increases due to the deterioration of the Petzval sum, the fluctuation due to the zooming of the lower coma aberration, the increase of the spherical aberration on the telephoto side, etc., which is not preferable.
By setting the lower limit of conditional expression (6) to a value larger than 0.04, it is possible to make the filter size smaller. Furthermore, the effect of the present invention can be maximized by setting the upper limit of conditional expression (6) to a value smaller than 0.05.
 条件式(7)は、第3レンズ群の焦点距離を規定するものである。全長の小型化には第3レンズ群の焦点距離の短縮化が避けられないが、コンパクトで高い結像性能の光学系を得ようとすると、第3レンズ群で発生する残存収差を適切に抑えねばならない。条件式(7)は焦点距離を適正に与えて収差の発生量と全長の良好なバランスを与える条件である。
 条件式(7)の下限を越えて焦点距離を短くなると、第3レンズ群による収差発生を補正することが困難となるので好ましくない。
 条件式(7)の上限を越えると、バックフォーカスが長くなり、全長のコンパクト化を図ることが困難となり、好ましくない。
 条件式(7)に関し、好ましくは、0.06<f3/ft<0.21である。ワイドからテレにかけての結像性能、特に球面収差の差を小さくすることができる。
Conditional expression (7) defines the focal length of the third lens group. Although it is inevitable that the focal length of the third lens group is shortened in order to reduce the overall length, if an optical system having a compact and high imaging performance is to be obtained, the residual aberration generated in the third lens group is appropriately suppressed. I have to. Conditional expression (7) is a condition that gives a good balance between the amount of aberration and the total length by appropriately giving the focal length.
If the focal length is shortened beyond the lower limit of the conditional expression (7), it is difficult to correct the aberration generation by the third lens group, which is not preferable.
Exceeding the upper limit of conditional expression (7) is not preferable because the back focus becomes long and it becomes difficult to make the entire length compact.
Regarding conditional expression (7), it is preferable that 0.06 <f3 / ft <0.21. The imaging performance from wide to tele, especially the difference in spherical aberration can be reduced.
 条件式(8)は、第2レンズ群の望遠端と広角端との近軸結像倍率の比を規定する条件式である。光学系をコンパクト化するためには第1レンズ群の径を小さくする工夫が必要となる。本発明のズームレンズで第1レンズ群の外径を小型化するには、変倍に大きく寄与する絞り前後レンズ群の変倍比を適切に設定することが必須である。絞りよりも物体側のレンズ群の変倍比を小さくし、像側のレンズ群の変倍比を大きくすると、絞り位置を物体側に配置させることができるようになるため、入射瞳位置が浅くなり第1レンズ群の外径を小さくすることができる。
 条件式(8)の下限を超えて変倍比を小さくすると、第1レンズ群の物体側レンズの外径を小さくできるものの、第2レンズ群の焦点距離の短縮とともに、広角端での像面湾曲のオーバー化をもたらし、所望の結像性能が得られなくなる。また後続レンズ群の大型化をもたらし、好ましくない。
 条件式(8)の下限を超えて2群の変倍比が大きくなると、第1レンズ群の物体側レンズの外径が大きくなり、好ましくない。
 条件式(8)に関し、好ましくは、3.4<Z2<5.2である。ワイドからテレにかけての結像性能、特に像面湾曲の差を小さくすることができる。
Conditional expression (8) is a conditional expression that defines the ratio of paraxial imaging magnification between the telephoto end and the wide-angle end of the second lens group. In order to make the optical system compact, it is necessary to devise a method for reducing the diameter of the first lens group. In order to reduce the outer diameter of the first lens group in the zoom lens of the present invention, it is essential to appropriately set the zoom ratio of the front and rear lens groups that greatly contribute to zooming. If the zoom ratio of the lens unit on the object side is smaller than that of the stop and the zoom ratio of the lens group on the image side is increased, the stop position can be arranged on the object side, so the entrance pupil position is shallow. Thus, the outer diameter of the first lens group can be reduced.
If the zoom ratio is reduced beyond the lower limit of conditional expression (8), the outer diameter of the object-side lens of the first lens group can be reduced, but the focal length of the second lens group is reduced and the image plane at the wide-angle end is reduced. Overcurvation is caused and desired imaging performance cannot be obtained. Further, the subsequent lens group is enlarged, which is not preferable.
If the zoom ratio of the second group increases beyond the lower limit of conditional expression (8), the outer diameter of the object side lens of the first lens group increases, which is not preferable.
Regarding conditional expression (8), it is preferable that 3.4 <Z2 <5.2. The imaging performance from wide to tele, especially the difference in field curvature can be reduced.
 条件式(9)は、第3レンズ群から第5レンズ群の合成焦点距離を規定するものである。全長の小型化には、第3レンズ群から第5レンズ群の合成焦点距離の短縮化が避けられないが、コンパクトで高い結像性能の光学系を得ようとすると、第3レンズ群から第5レンズ群で発生する残存収差を適切に抑えねばならない。条件式(9)は、焦点距離を適正に与えて収差の発生量と全長の良好なバランスを与える条件である。
 条件式(9)の下限を越えて焦点距離を短くすると、第3レンズ群から第5レンズ群による収差発生を補正することが困難となり、好ましくない。
 条件式(9)の上限を越えると、バックフォーカスが長くなり、全長のコンパクト化を図ることが困難となり、好ましくない。
 本発明では、第3レンズ群を、物体側から順に3枚の凸レンズと凹レンズより構成している。この配置が特に広角端における軸外光線の下光線側のコマ収差の補正に好ましい。
さらにテレ側の球面収差補正も同時に補正できるようになる。
 条件式(9)に関し、好ましくは、0.43<f345t/f3<1.25である。ワイドからテレにかけての結像性能、特に球面収差の差を小さくすることができる。
Conditional expression (9) defines the combined focal length of the third lens group to the fifth lens group. In order to reduce the overall length, it is inevitable to shorten the combined focal length of the third lens unit to the fifth lens unit. However, if an optical system having a compact and high imaging performance is to be obtained, the third lens unit is changed from the third lens unit to the fifth lens unit. Residual aberrations generated in the five lens groups must be appropriately suppressed. Conditional expression (9) is a condition for giving a good balance between the amount of aberration and the total length by appropriately giving the focal length.
If the focal length is shortened beyond the lower limit of the conditional expression (9), it is difficult to correct the aberrations caused by the third lens group to the fifth lens group, which is not preferable.
Exceeding the upper limit of conditional expression (9) is not preferable because the back focus becomes long and it becomes difficult to make the entire length compact.
In the present invention, the third lens group includes three convex lenses and a concave lens in order from the object side. This arrangement is particularly preferable for correcting coma on the lower ray side of off-axis rays at the wide-angle end.
Furthermore, the spherical aberration correction on the tele side can be corrected simultaneously.
Regarding conditional expression (9), 0.43 <f345t / f3 <1.25 is preferable. The imaging performance from wide to tele, especially the difference in spherical aberration can be reduced.
 条件式(10)は、第4レンズ群の焦点距離を規定するものである。第4レンズ群は中間焦点距離の球面収差の補正に寄与する群であり、広角端から望遠端にかけて全ズーム域の結像性能を高める上で重要なレンズ群である。また、第4レンズ群を手振れ補正群にした場合、手振れ補正時の結像性能の劣化を防ぐ上で適切な焦点距離とすることが必要である。
 条件式(10)の下限を超えて第4レンズ群の焦点距離が短くなると、中間焦点距離での球面収差がアンダーになり平坦な像面性を確保することができなくなる。さらに、第5レンズ群を通る軸外光線が高くなり、周辺光量が低下し。好ましくない。
 条件式(10)の上限を超えて第4レンズ群の焦点距離が長くなると、中間焦点距離での球面収差がオーバーになり、平坦な像面性を確保することができなくなる上、レンズ全系の全長が長くなり、好ましくない。
 条件式(10)に関し、好ましくは、-2.0<f4/f345t<2.3である。ワイドからテレにかけての結像性能、特に球面収差の差を小さくすることができる。
Conditional expression (10) defines the focal length of the fourth lens group. The fourth lens group is a group that contributes to the correction of the spherical aberration at the intermediate focal length, and is an important lens group for improving the imaging performance in the entire zoom range from the wide-angle end to the telephoto end. In addition, when the fourth lens group is set as a camera shake correction group, it is necessary to set an appropriate focal length in order to prevent deterioration in image forming performance during camera shake correction.
If the lower limit of conditional expression (10) is exceeded and the focal length of the fourth lens group becomes shorter, the spherical aberration at the intermediate focal length becomes under and it becomes impossible to ensure a flat image surface property. Furthermore, the off-axis light beam passing through the fifth lens group becomes high, and the peripheral light amount decreases. It is not preferable.
If the focal length of the fourth lens unit is increased beyond the upper limit of the conditional expression (10), the spherical aberration at the intermediate focal length is over, and it becomes impossible to ensure flat image surface property. The total length of is increased, which is not preferable.
Regarding conditional expression (10), it is preferable that −2.0 <f4 / f345t <2.3. The imaging performance from wide to tele, especially the difference in spherical aberration can be reduced.
 第2レンズ群内における非球面は、もっとも物体側に配置することが好ましい。歪曲収差を良好に保つためである。非球面を第2レンズ群内のもっとも像側に配置し、広角端から中間焦点距離における像面湾曲を良好に保つこともできる。 It is preferable that the aspherical surface in the second lens group be arranged closest to the object side. This is for maintaining good distortion. An aspherical surface can be disposed closest to the image side in the second lens group, and the curvature of field at the intermediate focal length from the wide angle end can be maintained well.
 第3レンズ群内に置ける非球面は、像側寄りの面に配置することが好ましい。第3レンズ群は、Fno光線が太く通過するレンズ群のため、全てのレンズ面上の局部的な変形や面のうねりなどによる結像性能への影響が大きい。その中で、より像側に向かってFno光線を下げて光束を細くし像側方向の面に非球面を選択することですることで、高倍率でありながら高い結像性能を得るという本発明の課題を実現することができる。より好ましくは、物体側から第2番目~第4番目のレンズに非球面を備えることである。
 第4レンズ群内おける非球面は、第4レンズ群を手振れ補正レンズ群とした場合、手振れ補正による結像性能を高める上で効果的である。
The aspherical surface that can be placed in the third lens group is preferably arranged on the surface closer to the image side. Since the third lens group is a lens group through which Fno rays pass thickly, there is a great influence on the imaging performance due to local deformation and surface waviness on all lens surfaces. Among them, the present invention obtains high imaging performance while maintaining high magnification by lowering the Fno ray toward the image side to make the light beam narrower and selecting an aspherical surface in the image side direction. The problem can be realized. More preferably, the second to fourth lenses from the object side are provided with aspheric surfaces.
The aspherical surface in the fourth lens group is effective in enhancing the imaging performance by the camera shake correction when the fourth lens group is a camera shake correction lens group.
本発明のズームレンズの第1実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view at the wide-angle end of the lens configuration according to the first embodiment of the zoom lens of the present invention. 本発明のズームレンズの第1実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the zoom lens according to the first embodiment of the present invention is in focus at infinity in the wide-angle end state. 本発明のズームレンズの第1実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the first embodiment of the zoom lens of the present invention. 本発明のズームレンズの第1実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 3 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the first embodiment of the present invention. 本発明のズームレンズの第2実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view at the wide angle end of a lens configuration concerning a 2nd embodiment of a zoom lens of the present invention. 本発明のズームレンズの第2実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the lens according to the second embodiment of the zoom lens of the present invention. 本発明のズームレンズの第2実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 7 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the second embodiment of the zoom lens of the present invention. 本発明のズームレンズの第2実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 6 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the lens according to the second embodiment of the zoom lens of the present invention. 本発明のズームレンズの第3実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide angle end of a lens composition concerning a 3rd embodiment of a zoom lens of the present invention. 本発明のズームレンズの第3実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the third embodiment of the present invention. 本発明のズームレンズの第3実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the third embodiment of the zoom lens of the present invention. 本発明のズームレンズの第3実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 10 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the third embodiment of the present invention. 本発明のズームレンズの第4実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide angle end of a lens composition concerning a 4th embodiment of a zoom lens of the present invention. 本発明のズームレンズの第4実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 10 is a spherical aberration diagram, an astigmatism diagram, and a distortion diagram when the zoom lens according to the fourth embodiment of the present invention is focused on infinity in the wide-angle end state. 本発明のズームレンズの第4実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。FIG. 10 is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the fourth embodiment of the zoom lens of the present invention. 本発明のズームレンズの第4実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the lens according to Embodiment 4 of the zoom lens of the present invention. 本発明のズームレンズの第5実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide angle end of a lens composition concerning a 5th embodiment of a zoom lens of the present invention. 本発明のズームレンズの第5実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the fifth embodiment of the present invention. 本発明のズームレンズの第5実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the fifth embodiment of the zoom lens of the present invention. 本発明のズームレンズの第5実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the fifth embodiment of the present invention. 本発明のズームレンズの第6実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view at the wide-angle end of a lens configuration concerning a 6th embodiment of a zoom lens according to the present invention. 本発明のズームレンズの第6実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the sixth embodiment of the present invention. 本発明のズームレンズの第6実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to Sixth Embodiment of the zoom lens of the present invention. 本発明のズームレンズの第6実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the sixth embodiment of the present invention. 本発明のズームレンズの第7実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide-angle end of a lens composition concerning a 7th embodiment of a zoom lens of the present invention. 本発明のズームレンズの第7実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide angle end state of the zoom lens according to the seventh embodiment of the present invention. 本発明のズームレンズの第7実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the seventh embodiment of the zoom lens of the present invention. 本発明のズームレンズの第7実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the seventh embodiment of the present invention. 本発明のズームレンズの第8実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view at the wide-angle end of a lens configuration concerning an eighth embodiment of a zoom lens according to the present invention. 本発明のズームレンズの第8実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the eighth embodiment of the present invention. 本発明のズームレンズの第8実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the eighth embodiment of the zoom lens of the present invention. 本発明のズームレンズの第8実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the lens according to Embodiment 8 of the zoom lens of the present invention. 本発明のズームレンズの第9実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view at the wide-angle end of a lens configuration concerning a 9th embodiment of a zoom lens according to the present invention. 本発明のズームレンズの第9実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide angle end state of the zoom lens according to the ninth embodiment of the present invention. 本発明のズームレンズの第9実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the ninth embodiment of the zoom lens of the present invention. 本発明のズームレンズの第9実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the ninth embodiment of the present invention. 本発明のズームレンズの第10実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide angle end of a lens composition concerning a 10th embodiment of a zoom lens of the present invention. 本発明のズームレンズの第10実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the tenth embodiment of the present invention. 本発明のズームレンズの第10実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the tenth embodiment of the zoom lens of the present invention. 本発明のズームレンズの第10実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the tenth embodiment of the present invention. 本発明のズームレンズの第11実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view at the wide-angle end of a lens configuration concerning an eleventh embodiment of the zoom lens according to the present invention. 本発明のズームレンズの第11実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the eleventh embodiment of the present invention. 本発明のズームレンズの第11実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to Embodiment 11 of the zoom lens of the present invention. 本発明のズームレンズの第11実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the eleventh embodiment of the present invention. 本発明のズームレンズの第12実施形態に係るレンズ構成の広角端での光学断面図である。It is an optical sectional view in the wide-angle end of a lens configuration concerning a 12th embodiment of a zoom lens according to the present invention. 本発明のズームレンズの第12実施形態に係るレンズの広角端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the wide-angle end state of the zoom lens according to the twelfth embodiment of the present invention. 本発明のズームレンズの第12実施形態に係るレンズの中間焦点距離状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the intermediate focal length state of the lens according to the twelfth embodiment of the zoom lens of the present invention. 本発明のズームレンズの第12実施形態に係るレンズの望遠端状態に於ける無限遠合焦時の球面収差図、非点収差図及び歪曲収差図である。It is a spherical aberration diagram, an astigmatism diagram, and a distortion aberration diagram at the time of focusing on infinity in the telephoto end state of the zoom lens according to the twelfth embodiment of the present invention.
 以下に示す実施形態において、諸元光学データにおける面番号NSは物体側から数えたレンズ面の順番、Rはレンズ面の曲率半径(mm)、Dはレンズ面の光軸上の間隔(mm)、Ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、面番号の後側にSTOPを付したものは、絞りを示す。面番号の後側にASPHを付したものは、非球面を示し、その曲率半径Rの欄には該非球面の近軸曲率半径(mm)を示している。 In the embodiment shown below, the surface number NS in the specification optical data is the order of the lens surface counted from the object side, R is the radius of curvature of the lens surface (mm), and D is the distance on the optical axis of the lens surface (mm). , Nd represents the refractive index for the d-line (wavelength λ = 587.6 nm), and νd represents the Abbe number for the d-line (wavelength λ = 587.6 nm). Also, the surface number with STOP attached to the rear side indicates a stop. The surface number with ASPH on the back side indicates an aspheric surface, and the column of the radius of curvature R indicates the paraxial radius of curvature (mm) of the aspheric surface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上表において、面番号の後側にASPHを付した非球面は、次式で表わされる。
X(y)=(y2/R)/〔1+(1-ε・y2/R21/2〕+A4・y4+A6・y6+A8・y8+A10・y10
 ここで、X(y)は光軸から垂直方向の高さyにおける各非球面の頂点から光軸方向に沿った距離(サグ量)、Rは基準球面の曲率半径(近軸曲率半径)、εは円錐係数、A4,A6,A8,A10は非球面係数である。
In the above table, an aspherical surface with ASPH on the back side of the surface number is represented by the following equation.
X (y) = (y 2 / R) / [1+ (1−ε · y 2 / R 2 ) 1/2 ] + A 4 · y 4 + A 6 · y 6 + A 8 · y 8 + A 10 · y 10
Here, X (y) is the distance (sag amount) along the optical axis direction from the apex of each aspheric surface at the height y in the vertical direction from the optical axis, R is the curvature radius (paraxial curvature radius) of the reference spherical surface, ε is a conical coefficient, and A4, A6, A8, and A10 are aspherical coefficients.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.5457mm)、中間焦点距離状態(f=91.5008mm)、及び望遠端状態(f=291.2659mm)の面間隔を示す。
   f    28.5457   91.5008  291.2659
 D( 7)   1.8099   30.7948   53.6750
 D(15)  20.3407   10.3361    0.9800
 D(23)   7.4741    3.1732    0.6809
 D(34)  42.6549   76.0270   96.6281
In the following, changes in the surface interval in zoom operation, that is, the surface interval in the wide-angle end state (f = 28.5457 mm), the intermediate focal length state (f = 91.5008 mm), and the telephoto end state (f = 291.2659 mm) are shown.
f 28.5457 91.5008 291.2659
D (7) 1.8099 30.7948 53.6750
D (15) 20.3407 10.3361 0.9800
D (23) 7.4741 3.1732 0.6809
D (34) 42.6549 76.0270 96.6281
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8400mm)、中間焦点距離状態(f=91.5017mm)、及び望遠端状態(f=291.2648mm)の面間隔を示す。
    f    28.8400   91.5017  291.2648
  D( 7)   1.4914   29.9944   53.3812
  D(15)  17.3679    9.1947    1.3409
  D(27)   9.5335    3.0114    0.6797
  D(37)  39.9998   75.8619   89.9911
In the following, changes in the surface interval during zoom operation, that is, the surface intervals in the wide-angle end state (f = 28.8400 mm), the intermediate focal length state (f = 91.5017 mm), and the telephoto end state (f = 291.2648 mm) are shown.
f 28.8400 91.5017 291.2648
D (7) 1.4914 29.9944 53.3812
D (15) 17.3679 9.1947 1.3409
D (27) 9.5335 3.0114 0.6797
D (37) 39.9998 75.8619 89.9911
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8400mm)、中間焦点距離状態(f=91.4998mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
    f    28.8400   91.4998  291.2621
  D( 7)   1.0567   30.9510   53.0979
  D(15)  16.8921    8.8481    0.8134
  D(35)  40.0000   73.7383   94.0183
In the following, changes in the surface interval during zoom operation, that is, the surface interval in the wide-angle end state (f = 28.8400 mm), the intermediate focal length state (f = 91.4998 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.8400 91.4998 291.2621
D (7) 1.0567 30.9510 53.0979
D (15) 16.8921 8.8481 0.8134
D (35) 40.0000 73.7383 94.0183
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8400mm)、中間焦点距離状態(f=91.4978mm)、及び望遠端状態(f=291.9106mm)の面間隔を示す。
    f    28.8400   91.4978  291.9106
  D( 7)   1.5848   29.3804   53.3355
  D(15)  17.4488    8.8591    1.3179
  D(23)   2.1872    3.9166    3.6301
  D(27)   9.5117    3.2729    0.6567
  D(37)  41.2269   74.4210   89.8828
In the following, changes in the surface interval during zoom operation, that is, the surface intervals in the wide-angle end state (f = 28.8400 mm), the intermediate focal length state (f = 91.4978 mm), and the telephoto end state (f = 291.9106 mm) are shown.
f 28.8400 91.4978 291.9106
D (7) 1.5848 29.3804 53.3355
D (15) 17.4488 8.8591 1.3179
D (23) 2.1872 3.9166 3.6301
D (27) 9.5117 3.2729 0.6567
D (37) 41.2269 74.4210 89.8828
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.7690mm)、中間焦点距離状態(f=91.4978mm)、及び望遠端状態(f=291.9106mm)の面間隔を示す。
    f     28.7960    91.5003   291.2646
  D( 7)    1.8099    34.1120    54.2662
  D(15)   18.7574    10.2822     0.9800
  D(23)   11.1754     5.4379     1.0000
  D(26)    5.6467     4.7725     1.5783
  D(34)   40.3618    66.1272    89.8230
In the following, changes in the surface interval in zoom operation, that is, the surface interval in the wide-angle end state (f = 28.7690 mm), the intermediate focal length state (f = 91.4978 mm), and the telephoto end state (f = 291.9106 mm) are shown.
f 28.7960 91.5003 291.2646
D (7) 1.8099 34.1120 54.2662
D (15) 18.7574 10.2822 0.9800
D (23) 11.1754 5.4379 1.0000
D (26) 5.6467 4.7725 1.5783
D (34) 40.3618 66.1272 89.8230
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8400mm)、中間焦点距離状態(f=91.4986mm)、及び望遠端状態(f=291.2633mm)の面間隔を示す。
    f     28.8400    91.4986   291.2633
  D( 7)    1.7000    38.0000    62.6908
  D(15)   17.6703     9.4203     0.9800
  D(23)    9.5131     3.3814     1.0000
  D(26)    3.9394     3.1524     0.5000
  D(34)   40.8665    69.0556    93.9552
In the following, changes in the surface interval in zoom operation, that is, the surface interval in the wide-angle end state (f = 28.8400 mm), the intermediate focal length state (f = 91.4986 mm), and the telephoto end state (f = 291.2633 mm) are shown.
f 28.8400 91.4986 291.2633
D (7) 1.7000 38.0000 62.6908
D (15) 17.6703 9.4203 0.9800
D (23) 9.5131 3.3814 1.0000
D (26) 3.9394 3.1524 0.5000
D (34) 40.8665 69.0556 93.9552
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.7760mm)、中間焦点距離状態(f=91.5000mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
    f     28.7760    91.5000   291.2621
  D( 7)    1.7749    29.8104    55.2778
  D(15)   18.7563     9.2121     1.3652
  D(23)    1.9370     3.9682     3.7576
  D(27)    9.9943     3.2110     0.4000
  D(37)   40.1487    73.8282    89.5105
In the following, changes in the surface interval during zoom operation, that is, the surface intervals in the wide-angle end state (f = 28.7760 mm), the intermediate focal length state (f = 91.5000 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.7760 91.5000 291.2621
D (7) 1.7749 29.8104 55.2778
D (15) 18.7563 9.2121 1.3652
D (23) 1.9370 3.9682 3.7576
D (27) 9.9943 3.2110 0.4000
D (37) 40.1487 73.8282 89.5105
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8400mm)、中間焦点距離状態(f=91.5019mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
    f     28.8400    91.5019   291.2621
  D( 7)    1.5646    28.7572    54.8326
  D(16)   19.1273     9.4444     1.3000
  D(24)    1.8201     3.2665     2.5548
  D(28)    9.6480     3.0416     0.4000
  D(38)   39.0434    74.3198    88.5154
In the following, changes in the surface interval in zoom operation, that is, the surface interval in the wide-angle end state (f = 28.8400 mm), the intermediate focal length state (f = 91.5019 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.8400 91.5019 291.2621
D (7) 1.5646 28.7572 54.8326
D (16) 19.1273 9.4444 1.3000
D (24) 1.8201 3.2665 2.5548
D (28) 9.6480 3.0416 0.4000
D (38) 39.0434 74.3198 88.5154
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.7442mm)、中間焦点距離状態(f=91.4991mm)、及び望遠端状態(f=291.5990mm)の面間隔を示す。
    F     28.7442    91.4991   291.5990
  D( 7)    5.4575    29.6109    54.8055
  D(16)   18.0576     8.8108     1.3295
  D(24)    0.1636     1.9296     5.0546
  D(28)    9.5223     2.8824     0.1500
  D(37)   40.0643    76.7149    88.7267
In the following, changes in the surface interval in zoom operation, that is, the surface interval in the wide-angle end state (f = 28.7442 mm), the intermediate focal length state (f = 91.4991 mm), and the telephoto end state (f = 291.5990 mm) are shown.
F 28.7442 91.4991 291.5990
D (7) 5.4575 29.6109 54.8055
D (16) 18.0576 8.8108 1.3295
D (24) 0.1636 1.9296 5.0546
D (28) 9.5223 2.8824 0.1500
D (37) 40.0643 76.7149 88.7267
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.7959mm)、中間焦点距離状態(f=91.5116mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
    F     28.7959    91.5116   291.2621
  D( 7)    2.1321    27.3283    55.4292
  D(15)   18.9992     9.4912     1.6641
  D(23)    1.0524     4.2277     4.0844
  D(27)    7.1106     2.0361     0.1500
  D(36)   40.0020    75.5249    84.8693
In the following, the change in the surface interval in zoom operation, that is, the surface interval in the wide-angle end state (f = 28.7959 mm), the intermediate focal length state (f = 91.5116 mm), and the telephoto end state (f = 291.2621 mm) will be shown.
F 28.7959 91.5116 291.2621
D (7) 2.1321 27.3283 55.4292
D (15) 18.9992 9.4912 1.6641
D (23) 1.0524 4.2277 4.0844
D (27) 7.1106 2.0361 0.1500
D (36) 40.0020 75.5249 84.8693
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.5215mm)、中間焦点距離状態(f=91.4992mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
    f     28.5215    91.4992   291.2621
  D( 7)    0.5999    34.2348    56.7829
  D(16)   19.2430     9.4166     1.1174
  D(24)    1.0976     4.4620     2.3121
  D(28)    9.9078     3.6736     0.1500
  D(37)   40.2236    64.2124    91.7096
In the following, changes in the surface interval in zoom operation, that is, the surface intervals in the wide-angle end state (f = 28.5215 mm), the intermediate focal length state (f = 91.4992 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.5215 91.4992 291.2621
D (7) 0.5999 34.2348 56.7829
D (16) 19.2430 9.4166 1.1174
D (24) 1.0976 4.4620 2.3121
D (28) 9.9078 3.6736 0.1500
D (37) 40.2236 64.2124 91.7096
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 以下に、ズーム作動における面間隔の変化、すなわち広角端状態(f=28.8400mm)、中間焦点距離状態(f=91.5003mm)、及び望遠端状態(f=291.2621mm)の面間隔を示す。
    f     28.8400    91.5003   291.2621
  D( 7)    0.5119    34.3502    58.9247
  D(16)   19.9354     9.7842     1.1474
  D(24)    1.0011     4.0400     2.6181
  D(28)    9.4599     3.2931     0.1500
  D(36)   40.0089    65.6117    89.0771
In the following, changes in the surface interval during zoom operation, that is, the surface intervals in the wide-angle end state (f = 28.8400 mm), the intermediate focal length state (f = 91.5003 mm), and the telephoto end state (f = 291.2621 mm) are shown.
f 28.8400 91.5003 291.2621
D (7) 0.5119 34.3502 58.9247
D (16) 19.9354 9.7842 1.1474
D (24) 1.0011 4.0400 2.6181
D (28) 9.4599 3.2931 0.1500
D (36) 40.0089 65.6117 89.0771
 各実施形態の条件式の値は、以下に示す。
Figure JPOXMLDOC01-appb-T000025
The value of the conditional expression of each embodiment is shown below.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
STOP     絞り
G1       第1レンズ群
G2       第2レンズ群
G3       第3レンズ群
G4       第4レンズ群
G5       第5レンズ群
STOP diaphragm G1 first lens group G2 second lens group G3 third lens group G4 fourth lens group G5 fifth lens group

Claims (10)

  1.  物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群で構成され、
     広角端から望遠端への変倍時に、前記第1レンズ群と第2レンズ群の間隔が増加し、前記第2レンズ群と第3レンズ群の間隔が減少し、構成するすべてのレンズ群が移動するズームレンズであって、
     前記第1レンズ群は、物体側から順に負レンズ1枚と、正レンズ3枚からなり、以下の条件式を満足することを特徴とするズームレンズ。
    (1)Nd1>1.84  vd1<35
    (2)Nd2<1.60  vd2>60
    (3)Nd3<1.65  vd3>60
    (4)Nd4-Nd3>0.02  Nd4>Nd3>Nd2
    Ndi:物体側から数えてi番目の硝材の屈折率
    Vdi:物体側から数えてi番目の硝材のアッベ数
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power,
    At the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, and all the lens groups constituting the lens group A moving zoom lens,
    The first lens group includes one negative lens and three positive lenses in order from the object side, and satisfies the following conditional expression.
    (1) Nd1> 1.84 vd1 <35
    (2) Nd2 <1.60 vd2> 60
    (3) Nd3 <1.65 vd3> 60
    (4) Nd4-Nd3> 0.02 Nd4>Nd3> Nd2
    Ndi: Refractive index of the i-th glass material from the object side
    Vdi: Abbe number of the i-th glass material from the object side
  2.  以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ
    (5)0.24<f1/ft<0.42
    (6)0.03<|f2/ft|<0.06
    (7)0.05<f3/ft<0.23
    (8)3.1<Z2<5.8
    f1:第1レンズ群の焦点距離
    f2:第2レンズ群の焦点距離
    f3:第3レンズ群の焦点距離
    ft:望遠端の焦点距離
     Z2 : 第2レンズ群の望遠端での近軸結像倍率と広角端の近軸結像倍率の比
    The zoom lens (5) according to claim 1, wherein the following conditional expression is satisfied: 0.24 <f1 / ft <0.42.
    (6) 0.03 <| f2 / ft | <0.06
    (7) 0.05 <f3 / ft <0.23
    (8) 3.1 <Z2 <5.8
    f1: focal length of the first lens group f2: focal length of the second lens group f3: focal length of the third lens group ft: focal length at the telephoto end Z2: paraxial imaging magnification at the telephoto end of the second lens group To the paraxial magnification at the wide-angle end
  3.  物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、及び正の屈折力の第5レンズ群で構成され、
     広角端から望遠端への変倍時に、前記第1レンズ群と第2レンズ群の間隔が増加し、前記第2レンズ群と第3レンズ群の間隔が減少し、前記第3レンズ群と第4レンズ群の間隔が変化し、前記第4レンズ群と第5レンズ群の間隔が減少するように、少なくとも前記第1レンズ群、第3レンズ群、第4レンズ群、第5レンズ群を物体側に移動させるズームレンズであって、
     前記第1レンズ群は、物体側から順に負レンズ1枚と、正レンズ3枚からなり、以下の条件式を満足することを特徴とするズームレンズ。
    (1)Nd1>1.84  vd1<35
    (2)Nd2<1.60  vd2>60
    (3)Nd3<1.65  vd3>60
    (4)Nd4-Nd3>0.02  Nd4>Nd3>Nd2
    Ndi:物体側から数えてi番目の硝材の屈折率
    Vdi:物体側から数えてi番目の硝材のアッベ数
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power Of the fifth lens group,
    At the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group is increased, the distance between the second lens group and the third lens group is decreased, and the third lens group and the second lens group are At least the first lens group, the third lens group, the fourth lens group, and the fifth lens group are objects so that the distance between the four lens groups changes and the distance between the fourth lens group and the fifth lens group decreases. A zoom lens that moves to the side,
    The first lens group includes one negative lens and three positive lenses in order from the object side, and satisfies the following conditional expression.
    (1) Nd1> 1.84 vd1 <35
    (2) Nd2 <1.60 vd2> 60
    (3) Nd3 <1.65 vd3> 60
    (4) Nd4-Nd3> 0.02 Nd4>Nd3> Nd2
    Ndi: Refractive index of the i-th glass material from the object side
    Vdi: Abbe number of the i-th glass material from the object side
  4.  以下の条件式を満足することを特徴とする請求項3記載のズームレンズ
    (5)0.24<f1/ft<0.42
    (6)0.03<|f2/ft|<0.06
    (9)0.39<f345t/f3<1.39
    f1:第1レンズ群の焦点距離
    f2:第2レンズ群の焦点距離
    f3:第3レンズ群の焦点距離
    ft:望遠端の焦点距離
    f345t:望遠端における第3レンズ群から第5レンズ群までの合成焦点距離
    4. The zoom lens according to claim 3, wherein the following conditional expression is satisfied: 0.24 <f1 / ft <0.42.
    (6) 0.03 <| f2 / ft | <0.06
    (9) 0.39 <f345t / f3 <1.39
    f1: Focal length of the first lens group f2: Focal length of the second lens group f3: Focal length of the third lens group ft: Focal length at the telephoto end f345t: From the third lens group to the fifth lens group at the telephoto end Composite focal length
  5.  物体側から順に、正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、負の屈折力の第4レンズ群、及び正の屈折力の第5レンズ群で構成され、
     広角端から望遠端への変倍時に、前記第1レンズ群と第2レンズ群の間隔が増加し、前記第2レンズ群と第3レンズ群の間隔が減少し、前記第3レンズ群と第4レンズ群の間隔が変化し、前記第4レンズ群と第5レンズ群の間隔が減少するように、少なくとも前記第1レンズ群、第3レンズ群、第4レンズ群、第5レンズ群を物体側に移動させるズームレンズであって、
     前記第1レンズ群は、物体側から順に負レンズ1枚と、正レンズ3枚からなり、手振れ補正時、前記第4レンズ群の一部もしくは全体が移動し、以下の条件式を満足することを特徴とするズームレンズ。
    (1)Nd1>1.84  vd1<35
    (2)Nd2<1.60  vd2>60
    (3)Nd3<1.65  vd3>60
    (4)Nd4-Nd3>0.02  Nd4>Nd3>Nd2
    Ndi:物体側から数えてi番目の硝材の屈折率
    Vdi:物体側から数えてi番目の硝材のアッベ数
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power Of the fifth lens group,
    At the time of zooming from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group is increased, the distance between the second lens group and the third lens group is decreased, and the third lens group and the second lens group are At least the first lens group, the third lens group, the fourth lens group, and the fifth lens group are objects so that the distance between the four lens groups changes and the distance between the fourth lens group and the fifth lens group decreases. A zoom lens that moves to the side,
    The first lens group is composed of one negative lens and three positive lenses in order from the object side, and a part or the whole of the fourth lens group moves during camera shake correction, and satisfies the following conditional expression: Zoom lens characterized by.
    (1) Nd1> 1.84 vd1 <35
    (2) Nd2 <1.60 vd2> 60
    (3) Nd3 <1.65 vd3> 60
    (4) Nd4-Nd3> 0.02 Nd4>Nd3> Nd2
    Ndi: Refractive index of the i-th glass material from the object side
    Vdi: Abbe number of the i-th glass material from the object side
  6.  以下の条件式を満足することを特徴とする請求項5記載のズームレンズ
    (5)0.24<f1/ft<0.42
    (6)0.03<|f2/ft|<0.06
    (10)-2.0<f4/f345t<2.3
    f1:第1レンズ群の焦点距離
    f2:第2レンズ群の焦点距離
    f4:第4レンズ群の焦点距離
    ft:望遠端の焦点距離
    f345t:望遠端のにおける第3レンズ群から第5レンズ群までの合成焦点距離
    The zoom lens according to claim 5, wherein the following conditional expression is satisfied: 0.24 <f1 / ft <0.42
    (6) 0.03 <| f2 / ft | <0.06
    (10) -2.0 <f4 / f345t <2.3
    f1: Focal length of the first lens group f2: Focal length of the second lens group f4: Focal length of the fourth lens group ft: Focal length at the telephoto end f345t: From the third lens group to the fifth lens group at the telephoto end Composite focal length
  7.  以下の条件式を満足することを特徴とする請求項3または5記載のズームレンズ
    (11)-17.8<Z5<9.5
    Z5:(望遠端のおける第5レンズ群の倍率)/(広角端のおける第5レンズ群の倍率)
    The zoom lens (11) -17.8 <Z5 <9.5 according to claim 3 or 5, wherein the following conditional expression is satisfied:
    Z5: (Magnification of the fifth lens unit at the telephoto end) / (Magnification of the fifth lens unit at the wide-angle end)
  8.  前記第3レンズ群は物体側から順に、凸レンズ3枚と凹レンズからなることを特徴とする請求項1から7のうちの一項に記載のズームレンズ。 The zoom lens according to one of claims 1 to 7, wherein the third lens group includes three convex lenses and a concave lens in order from the object side.
  9.  前記第1レンズ群を除くすべてのレンズ群中に非球面を持つことを特徴とする請求項1から8のうちの一項に記載のズームレンズ。 9. The zoom lens according to claim 1, wherein all lens groups except the first lens group have aspheric surfaces.
  10.  開口絞りを、第2レンズ群と第3レンズ群との間に配置し、かつ第3レンズ群と一体で移動することを特徴とする請求項1から9のうちの一項に記載のズームレンズ。 10. The zoom lens according to claim 1, wherein an aperture stop is disposed between the second lens group and the third lens group and moves integrally with the third lens group. 11. .
PCT/JP2013/066000 2012-06-08 2013-06-10 Zoom lens WO2013183787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012131042A JP5885166B2 (en) 2012-06-08 2012-06-08 Zoom lens
JP2012-131042 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013183787A1 true WO2013183787A1 (en) 2013-12-12

Family

ID=49712171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066000 WO2013183787A1 (en) 2012-06-08 2013-06-10 Zoom lens

Country Status (2)

Country Link
JP (1) JP5885166B2 (en)
WO (1) WO2013183787A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104797969B (en) 2012-10-23 2017-08-08 株式会社尼康 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system
WO2015075943A1 (en) 2013-11-22 2015-05-28 株式会社ニコン Zoom lens, optical device, and method for manufacturing zoom lens
JP6293545B2 (en) 2014-03-25 2018-03-14 株式会社東芝 Optical element and manufacturing method thereof
CN106133578B (en) 2014-03-27 2019-09-10 株式会社尼康 Variable-power optical system and photographic device
JP6435620B2 (en) * 2014-03-27 2018-12-12 株式会社ニコン Magnification optical system and imaging device
JP6415278B2 (en) * 2014-11-28 2018-10-31 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6613735B2 (en) 2015-09-07 2019-12-04 リコーイメージング株式会社 Zoom lens system
JP6745430B2 (en) * 2015-12-22 2020-08-26 パナソニックIpマネジメント株式会社 Zoom lens system, imaging device
JP6563329B2 (en) * 2015-12-22 2019-08-21 株式会社タムロン Wide angle zoom lens and imaging device
JP2017004030A (en) * 2016-10-13 2017-01-05 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP6897733B2 (en) * 2016-10-13 2021-07-07 株式会社ニコン Variable magnification optical system, optical device
JP2019138926A (en) * 2018-02-06 2019-08-22 株式会社タムロン Zoom lens and image capturing device
JP6662419B2 (en) * 2018-08-10 2020-03-11 株式会社ニコン Variable power optical system, optical device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189862A (en) * 1996-01-10 1997-07-22 Canon Inc Zoom lens
JP2003066334A (en) * 2001-08-29 2003-03-05 Pentax Corp High variable power zoom lens system
JP2007156251A (en) * 2005-12-07 2007-06-21 Canon Inc Zoom lens and imaging apparatus having the same
JP2007178769A (en) * 2005-12-28 2007-07-12 Tamron Co Ltd Zoom lens
JP2007212847A (en) * 2006-02-10 2007-08-23 Sony Corp Zoom lens and imaging apparatus
JP2010237455A (en) * 2009-03-31 2010-10-21 Canon Inc Zoom lens and imaging apparatus including the same
JP2011048320A (en) * 2009-07-29 2011-03-10 Fujifilm Corp Zoom lens
JP2011085909A (en) * 2009-09-11 2011-04-28 Panasonic Corp Zoom lens system, imaging apparatus and camera
JP2012048199A (en) * 2010-07-28 2012-03-08 Panasonic Corp Zoom lens system, image pickup device, and camera

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727977A (en) * 1993-07-12 1995-01-31 Nikon Corp Zoom lens system with vibration-proof function

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189862A (en) * 1996-01-10 1997-07-22 Canon Inc Zoom lens
JP2003066334A (en) * 2001-08-29 2003-03-05 Pentax Corp High variable power zoom lens system
JP2007156251A (en) * 2005-12-07 2007-06-21 Canon Inc Zoom lens and imaging apparatus having the same
JP2007178769A (en) * 2005-12-28 2007-07-12 Tamron Co Ltd Zoom lens
JP2007212847A (en) * 2006-02-10 2007-08-23 Sony Corp Zoom lens and imaging apparatus
JP2010237455A (en) * 2009-03-31 2010-10-21 Canon Inc Zoom lens and imaging apparatus including the same
JP2011048320A (en) * 2009-07-29 2011-03-10 Fujifilm Corp Zoom lens
JP2011085909A (en) * 2009-09-11 2011-04-28 Panasonic Corp Zoom lens system, imaging apparatus and camera
JP2012048199A (en) * 2010-07-28 2012-03-08 Panasonic Corp Zoom lens system, image pickup device, and camera

Also Published As

Publication number Publication date
JP5885166B2 (en) 2016-03-15
JP2013254160A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
WO2013183787A1 (en) Zoom lens
US7508592B2 (en) Zoom lens system
US8928992B2 (en) Zoom lens and image pickup apparatus including the same
JP6695293B2 (en) Zoom lens and imaging device
US8223440B2 (en) Zoom lens system and image pickup apparatus including the same
US7333273B2 (en) Zoom lens system, imaging apparatus and method for varying focal length
WO2015146067A1 (en) Zoom-lens system, interchangeable-lens device, and camera system
US20140055659A1 (en) Zoom lens and image pickup apparatus
US7359125B2 (en) Two-lens-group zoom lens system
JP5709640B2 (en) Zoom lens and image projection apparatus having the same
US11243384B2 (en) Zoom lens and image pickup apparatus including the same
CN110346926B (en) Zoom lens and image pickup apparatus
JP5627927B2 (en) Zoom lens
GB2568358A (en) Optical system and image pickup apparatus
US10627609B2 (en) Zoom lens and imaging apparatus
JP2011248266A (en) Zoom lens
US8917454B2 (en) Zoom lens and imaging apparatus
US7940474B2 (en) Compact zoom lens
US20110085251A1 (en) Compact zoom lens
JP2010122536A (en) Zoom lens
JP2005037935A (en) Compact lightweight zoom lens
JP2013068926A (en) Zoom lens
WO2014007394A1 (en) Zoom lens
US10606044B2 (en) Zoom lens and imaging apparatus
JP2004264457A (en) Super-high magnifying zoom lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13799783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13799783

Country of ref document: EP

Kind code of ref document: A1