WO2013183727A1 - 通信制御方法、ユーザ端末、プロセッサ、記憶媒体、及び基地局 - Google Patents

通信制御方法、ユーザ端末、プロセッサ、記憶媒体、及び基地局 Download PDF

Info

Publication number
WO2013183727A1
WO2013183727A1 PCT/JP2013/065745 JP2013065745W WO2013183727A1 WO 2013183727 A1 WO2013183727 A1 WO 2013183727A1 JP 2013065745 W JP2013065745 W JP 2013065745W WO 2013183727 A1 WO2013183727 A1 WO 2013183727A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
base station
logical channel
user terminal
channel group
Prior art date
Application number
PCT/JP2013/065745
Other languages
English (en)
French (fr)
Inventor
空悟 守田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/405,241 priority Critical patent/US20150146637A1/en
Priority to EP13800890.9A priority patent/EP2866483A4/en
Priority to JP2014520052A priority patent/JP6110376B2/ja
Publication of WO2013183727A1 publication Critical patent/WO2013183727A1/ja
Priority to US14/699,972 priority patent/US9826562B2/en
Priority to US15/818,067 priority patent/US10440764B2/en
Priority to US16/556,090 priority patent/US20190394819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a communication control method, a user terminal, a processor, a storage medium, and a base station used in a mobile communication system that supports D2D communication.
  • a plurality of adjacent user terminals can perform direct wireless communication with each other in a state where a wireless connection with the network is established (synchronized state).
  • the D2D communication may also be referred to as proximity service communication.
  • the present invention provides a communication control method, a user terminal, a processor, a storage medium, and a base station that can appropriately control D2D communication.
  • a communication control method used in a mobile communication system that supports D2D communication which is direct inter-terminal communication performed using radio resources allocated from a base station, is a method in which a user terminal is used for the D2D communication.
  • Step A for securing the logical channel group Step B for the user terminal notifying the base station of the logical channel group secured in Step A, and the base station being notified in Step B Assigning a wireless network temporary identifier for D2D communication to a logical channel group.
  • a user terminal that supports D2D communication that is direct inter-terminal communication performed using radio resources allocated from a base station secures a logical channel group for the D2D communication, and A control unit is provided that notifies the base station of a logical channel group for D2D communication.
  • a processor provided in a user terminal that supports D2D communication which is direct terminal-to-terminal communication performed using radio resources allocated from a base station, has secured a logical channel group for the D2D communication. Then, the base station is notified of the logical channel group for D2D communication.
  • a storage medium provided in a user terminal that supports D2D communication which is direct terminal-to-terminal communication performed using a radio resource allocated from a base station, is provided for the user terminal for the D2D communication.
  • a program for storing a logical channel group and for notifying the base station of the logical channel group for D2D communication is stored.
  • a base station used in a mobile communication system that supports D2D communication which is direct terminal-to-terminal communication using allocated radio resources, obtains a logical channel group for D2D communication from a user terminal. When notified, it includes a control unit that assigns the wireless network temporary identifier for D2D communication to the logical channel group for D2D communication.
  • FIG. 1 is a configuration diagram of an LTE system.
  • FIG. 2 is a block diagram of the UE.
  • FIG. 3 is a block diagram of the eNB.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 6 shows a data path in cellular communication.
  • FIG. 7 shows a data path in D2D communication.
  • FIG. 8 is a sequence diagram of a search operation pattern 1 according to the first embodiment.
  • FIG. 9 is a sequence diagram of the search operation pattern 2 according to the first embodiment.
  • FIG. 10 is a flowchart of the determination operation of the radio resource allocation method according to the first embodiment.
  • FIG. 10 is a flowchart of the determination operation of the radio resource allocation method according to the first embodiment.
  • FIG. 11 is a diagram for explaining a radio resource allocation operation according to the first embodiment (part 1).
  • FIG. 12 is a diagram for explaining a radio resource allocation operation according to the first embodiment (part 2).
  • FIG. 13 is a diagram for explaining a radio resource allocation operation according to the first embodiment (part 3).
  • FIG. 14 is a diagram for explaining transmission power control and retransmission control according to the first embodiment.
  • FIG. 15 is a sequence diagram when the transmission power in the D2D communication exceeds the maximum transmission power.
  • FIG. 16 is a diagram for explaining the interference avoidance operation according to the first embodiment (part 1).
  • FIG. 17 is a diagram for explaining the interference avoidance operation according to the first embodiment (part 2).
  • FIG. 18 is a diagram for explaining the D2D communication request operation according to the second embodiment.
  • FIG. 19 is a diagram for explaining the D2D communication operation according to the second embodiment.
  • the communication control method is used in a mobile communication system that supports D2D communication, which is direct inter-terminal communication performed using radio resources allocated from a base station.
  • the communication control method includes a step A in which a user terminal secures a logical channel group for the D2D communication, and a step B in which the user terminal notifies the base station of the logical channel group secured in the step A;
  • the base station assigning the wireless network temporary identifier for the D2D communication to the logical channel group notified in the step B.
  • the base station can perform communication control (for example, radio resource allocation) for D2D communication using the wireless network temporary identifier for D2D communication. Therefore, since D2D communication can be controlled separately from cellular communication, D2D communication can be controlled appropriately.
  • communication control for example, radio resource allocation
  • the user terminal may reserve a logical channel group for the D2D communication for an application used for the D2D communication.
  • the user terminal can transmit the application data in the D2D communication separately from the application data in the cellular communication.
  • the user terminal secures a logical channel group for the D2D communication for a combination of an application used for the D2D communication and another user terminal that is a communication partner of the D2D communication. May be.
  • application data in D2D communication can be transmitted using a different logical channel group for each of other user terminals as communication partners.
  • the user terminal may further secure hardware resources for D2D communication for the logical channel group for D2D communication.
  • D2D communication and cellular communication can be separated in the physical layer.
  • step A the user terminal secures a logical channel group for D2D communication separately from a logical channel group for cellular communication.
  • step C the base station temporarily transmits a wireless network for cellular communication. Apart from the identifier, a wireless network temporary identifier for the D2D communication may be assigned.
  • the base station can separately control the cellular communication and the D2D communication.
  • step D the base station determines a radio resource to be allocated to the D2D communication, and the base station uses the radio network temporary identifier allocated in the step C. And a step E of notifying the user terminal of the determined radio resource.
  • the base station can notify the radio resource allocated to D2D communication separately from the radio resource allocated to cellular communication.
  • the communication control method described above further includes a step F in which the user terminal transmits a buffer status report indicating a transmission waiting data amount in the D2D communication to the base station.
  • the base station A radio resource to be allocated to the D2D communication may be determined based on the buffer status report.
  • the base station can appropriately allocate radio resources in consideration of the amount of data waiting for transmission in D2D communication.
  • LTE system a mobile communication system
  • 3GPP standard 3GPP standard
  • FIG. 1 is a configuration diagram of an LTE system according to the present embodiment.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, an EPC (Evolved Packet Core) 20, and the like.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • the UE 100 is a mobile radio communication device, and performs radio communication with a cell (serving cell) that has established a radio connection.
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 manages a cell and performs radio communication with the UE 100 that has established a radio connection with the cell.
  • cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and OAM 400 (Operation and Maintenance).
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • OAM 400 Operaation and Maintenance
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to the MME / S-GW 300 via the S1 interface.
  • the OAM 400 is a server device managed by an operator, and performs maintenance and monitoring of the E-UTRAN 10.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 corresponds to a storage medium.
  • the UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the antenna 101 includes a plurality of antenna elements.
  • the radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes, for example, various applications and various communication protocols described later. Details of processing performed by the processor 160 will be described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the antenna 201 includes a plurality of antenna elements.
  • the wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 230 and performs various processes.
  • the processor 240 executes, for example, various communication protocols described later. Details of the processing performed by the processor 240 will be described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • the physical layer provides a transmission service to an upper layer using a physical channel. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a MAC scheduler that determines a transport format (transport block size, modulation / coding scheme, etc.) and resource blocks for uplink and downlink.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Data is transmitted via a radio bearer between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • the UE 100 is in the RRC connection state, and otherwise, the UE 100 is in the RRC idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • the LTE system uses OFDMA (Orthogonal Frequency Division Multiplexing Access) for the downlink and SC-FDMA (Single Carrier Division Multiple Access) for the uplink.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH).
  • the remaining section of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • FIG. 6 shows a data path in cellular communication.
  • a data path means a data transfer path of user data (user plane).
  • the data path of cellular communication goes through the network. Specifically, data paths that pass through the eNB 200-1, the S-GW 300, and the eNB 200-2 are set.
  • FIG. 7 shows a data path in D2D communication.
  • a case in which D2D communication is performed between UE (A) 100-1 that establishes a wireless connection with eNB 200-1 and UE (B) 100-2 that establishes a wireless connection with eNB 200-2 is performed. Illustrated.
  • the data path of D2D communication does not go through the network. That is, direct radio communication is performed between UEs. As described above, if UE (B) 100-2 exists in the vicinity of UE (A) 100-1, D2D communication is performed between UE (A) 100-1 and UE (B) 100-2. By doing so, effects such as reducing the traffic load on the network and the battery consumption of the UE 100 can be obtained.
  • D2D communication is assumed to be performed in the frequency band of the LTE system.
  • D2D communication is performed under network control.
  • the UE (A) desiring to start D2D communication must have a function of discovering a communication partner UE (B) existing in the vicinity of the UE (A). Further, the UE (B) must have a (Discoverable) function discovered from the UE (A).
  • UE (A) periodically transmits a search signal (Discover signal) around itself in order to discover UE (B) as a communication partner.
  • UE (B) waits for a search signal to be discovered from UE (A), and transmits a response signal to UE (A) in response to reception of the search signal. Thereafter, the network determines whether or not D2D communication by the UE (A) and the UE (B) is possible.
  • Discover signal search signal
  • UE (B) waits for a search signal to be discovered from UE (A), and transmits a response signal to UE (A) in response to reception of the search signal.
  • the network determines whether or not D2D communication by the UE (A) and the UE (B) is possible.
  • FIG. 8 is a sequence diagram of the search operation pattern 1 according to the present embodiment.
  • UE (A) 100-1 transmits a search signal around itself.
  • the search signal includes an identifier of UE (A) 100-1 and an identifier of an application to be used for D2D communication.
  • the application identifier is used, for example, to limit UEs that should respond to the search signal (UEs that should send response signals).
  • the search signal may further include an identifier of the UE (B) 100-2 that is a communication partner or an identifier of a group of UEs 100 (D2D communication group) that should perform D2D communication.
  • UE (A) 100-1 stores the transmission power of the search signal.
  • UE (B) 100-2 is waiting for a search signal and receives the search signal from UE (A) 100-1.
  • UE (B) 100-2 measures the received power (reception strength) of the search signal and stores the measured received power.
  • step S2 UE (B) 100-2 transmits a response signal to UE (A) in response to reception of the search signal.
  • the response signal includes the identifier of UE (B) 100-2 and the identifier of the application to be used for D2D communication. Further, when transmitting the response signal, the UE (B) 100-2 stores the transmission power of the response signal.
  • UE (A) 100-1 is waiting for a response signal and receives the response signal from UE (B) 100-2.
  • UE (A) 100-1 measures the received power (reception strength) of the response signal and stores the measured received power.
  • step S3 the UE (A) 100-1 transmits to the eNB 200 a D2D communication request (A) indicating that the start of D2D communication is desired in response to reception of the response signal.
  • the D2D communication request (A) includes an identifier of the UE (A) 100-1 and an identifier of an application to be used for D2D communication.
  • the D2D communication request (A) further includes information on the transmission power of the search signal and information on the reception power of the response signal.
  • the eNB 200 When the eNB 200 receives the D2D communication request (A), the eNB 200 measures the received power of the D2D communication request (A), adds the information of the measured received power to the D2D communication request (A), and then adds the D2D communication request (A). ) To the MME / S-GW 300.
  • step S4 the UE (B) 100-2 transmits a D2D communication request (B) indicating that the start of D2D communication is desired to the eNB 200 in response to the transmission of the response signal.
  • the D2D communication request (B) includes an identifier of the UE (B) 100-2 and an identifier of an application to be used for D2D communication.
  • the D2D communication request (B) further includes information on the transmission power of the response signal and information on the reception power of the search signal.
  • the eNB 200 When the eNB 200 receives the D2D communication request (B), the eNB 200 measures the received power of the D2D communication request (B), adds the information of the measured received power to the D2D communication request (B), and then adds the D2D communication request (B). ) To the MME / S-GW 300.
  • the MME / S-GW 300 Upon receiving the D2D communication request (A) and the D2D communication request (B), the MME / S-GW 300 receives the D2D communication request (A) and the D2D communication request (B), the UE-to-UE distance, the UE-eNB distance, Whether or not D2D communication is possible by the UE (A) 100-1 and the UE (B) 100-2 is determined based on application characteristics and the like. For example, the MME / S-GW 300 determines whether or not D2D communication is possible based on at least one of the following first to third determination criteria.
  • the MME / S-GW 300 determines that the D2D communication is not possible when the UE (B) 100-2 does not exist in the vicinity of the UE (A) 100-1. This is because it is assumed that D2D communication is performed between neighboring UEs 100, and if D2D communication is performed between remote UEs 100, interference and battery consumption increase.
  • the MME / S-GW 300 knows the propagation loss by the difference between the transmission power of the search signal included in the D2D communication request (A) and the reception power of the search signal included in the D2D communication request (B).
  • the distance between the UE (A) 100-1 and the UE (B) 100-2 can be estimated based on the propagation loss.
  • the propagation loss is known from the difference between the transmission power of the response signal included in the D2D communication request (B) and the reception power of the response signal included in the D2D communication request (A)
  • the propagation loss is determined based on the propagation loss.
  • the distance between UE (A) 100-1 and UE (B) 100-2 can be estimated.
  • the transmission power information may not be included in the D2D communication request.
  • the MME / S-GW 300 cannot perform D2D communication when the eNB 200 exists in the vicinity of the UE (A) 100-1 or when the eNB 200 exists in the vicinity of the UE (B) 100-2. It is judged that. This is because when the D2D communication is performed in the vicinity of the eNB 200, interference given to the eNB 200 increases.
  • the MME / S-GW 300 knows a rough propagation loss from the received power when the eNB 200 receives the D2D communication request (A). Therefore, the UE (A) 100-1 and the eNB 200 Can be estimated. Similarly, since a rough propagation loss can be found from the received power when the eNB 200 receives the D2D communication request (B), the distance between the UE (B) 100-2 and the eNB 200 is estimated based on the propagation loss. it can. However, in order to obtain an accurate propagation loss, the transmission power of the D2D communication request may be notified from the UE.
  • the MME / S-GW 300 determines that D2D communication is not possible in the case of an application that generates traffic of a small capacity (low load) temporarily. In other words, it is determined that D2D communication is possible only for an application that generates continuous and large-capacity (high load) traffic. This is because the merits of D2D communication are not fully utilized when handling traffic of low load or temporarily.
  • a streaming or video call application generates continuous and high-load traffic, so it is determined that D2D communication is possible.
  • D2D communication may be applied even in the case of an application that generates traffic of a small capacity (low load) temporarily.
  • the MME / S-GW 300 determines that the D2D communication by the UE (A) 100-1 and the UE (B) 100-2 is possible, the MME / S-GW 300 notifies the eNB 200 of the fact and necessary information, and performs the D2D communication under the control of the eNB 200. Is started.
  • the operation pattern 1 it is possible to enable D2D communication only when the UE (A) 100-1 and the UE (B) 100-2 are in a state suitable for D2D communication.
  • FIG. 9 is a sequence diagram of the search operation pattern 2 according to the present embodiment.
  • the UE (A) 100-1 transmits a D2D communication request indicating that it is desired to start D2D communication to the eNB 200.
  • the eNB 200 transfers the D2D communication request from the UE (A) 100-1 to the MME / S-GW 300.
  • the D2D communication request includes the identifier of the UE (A) 100-1 and the identifier of the application to be used for D2D communication.
  • the D2D communication request may further include an identifier of the UE (B) 100-2 as a communication partner or an identifier of a group of UEs 100 (D2D communication group) that should perform D2D communication.
  • the MME / S-GW 300 matches the D2D communication request from the UE (A) 100-1 among the UEs 100 existing in the area (or cell) of the UE (A) 100-1.
  • the UE (B) 100-2 is specified.
  • the MME / S-GW 300 confirms the state of the UE (B) 100-2, and determines whether it is waiting for the search signal or has stopped.
  • the description will be made assuming that UE (B) 100-2 has stopped waiting for a search signal.
  • step S13 the MME / S-GW 300 transmits a standby start request to the UE (B) 100-2 to the eNB 200.
  • the eNB 200 transfers the standby start request from the MME / S-GW 300 to the UE (B) 100-2.
  • step S14 when receiving the standby start request, the UE (B) 100-2 starts waiting for a search signal. Specifically, UE (B) 100-2 attempts to receive a search signal at a predetermined period.
  • the UE (B) 100-2 When the UE (B) 100-2 starts waiting for the search signal and then receives the search signal from the UE (A) 100-1, the UE (A) 100-2 sends a response signal to the search signal to the UE (A) 100- 1 (step S2).
  • the subsequent operations are the same as those in the operation pattern 1.
  • Radio resource means a resource block (RB) which is a unit of time / frequency resources, that is, a frequency band.
  • RB resource block
  • MCS modulation / coding scheme
  • the eNB 200 performs quasi-static radio resource allocation for D2D communication.
  • eNB200 determines the allocation method of the radio
  • FIG. 10 is a flowchart of the determination operation of the radio resource allocation method according to this embodiment.
  • the eNB 200 acquires an identifier of an application used for D2D communication from the MME / S-GW 300.
  • eNB200 may acquire the identifier of the application used for D2D communication from UE100 which performs D2D communication.
  • the eNB 200 grasps the characteristics of the application from the identifier of the application used for D2D communication.
  • the eNB 200 holds in advance a table in which an application identifier and its characteristics are associated, and the application characteristics can be grasped by using the table.
  • step S22 eNB200 allocates the radio
  • code division can be performed by assigning different codes (spreading codes) to each of the plurality of D2D communications to which the same radio resource is assigned. For example, by assigning a code 1 to the D2D communication pair 1 and assigning a code 2 to the D2D communication pair 2, each pair can separate the information of its own pair from the information of another pair.
  • step S23 when traffic by an application used for D2D communication is high load and continuous (for example, when streaming or the like), in step S23, the eNB 200 periodically allocates dedicated radio resources to D2D communication. decide. Thereby, a large amount of traffic can be transmitted in D2D communication.
  • the eNB 200 when traffic by an application used for D2D communication requires high load, continuous, and low delay (for example, video call), the eNB 200 periodically allocates dedicated radio resources in step S24. And, it is decided to allocate so that repeated transmission is possible. Thereby, a large amount of traffic can be transmitted in D2D communication, and the reliability of communication can be increased.
  • the repeated transmission is not limited to a method in which the same data is repeatedly transmitted a plurality of times, but may be a method in which redundant bits are changed each time transmission is performed (for example, an incremental redundancy method).
  • the radio resource allocation method according to the present embodiment can appropriately allocate radio resources in D2D communication according to the characteristics of the application used for D2D communication.
  • eNB 200 can control radio resource allocation separately from cellular communication for D2D communication. .
  • radio resource allocation can be controlled separately from cellular communication for D2D communication.
  • the UE 100 transmits a buffer status report (BSR) indicating the amount of data waiting to be transmitted to the eNB 200 (transmission buffer retention amount) to the eNB 200, and the eNB 200 reaches the UE 100 based on the BSR from the UE 100.
  • BSR buffer status report
  • radio resource allocation can be controlled based on BSR even in D2D communication.
  • FIG. 11 is a diagram for explaining the operation of the UE (A) 100-1 that performs only cellular communication using a plurality of applications.
  • UE (A) 100-1 executes applications 0, 1, 2, 3,..., And transmits traffic and control signals from each application to eNB 200 using a plurality of logical channels. is doing.
  • a buffer is provided for each logical channel to temporarily hold data transmitted through the logical channel.
  • Logical channels are grouped into multiple logical channel groups (LCG).
  • LCG logical channel groups
  • UE (A) 100-1 transmits a BSR to eNB 200 for each of LCG0 to LCG3.
  • the scheduler of the eNB 200 grasps the transmission buffer retention amount indicated by the BSR for each of the LCG0 to LCG3, and performs uplink radio resource allocation according to the transmission buffer retention amount.
  • FIG. 12 is a diagram for explaining the operation of the UE (A) 100-1 when switching some applications to D2D communication with the UE (B) 100-2 from the situation shown in FIG.
  • MME / S-GW 300 (or eNB 200) specifies an application (here, application 0) to be used for D2D communication, and notifies UE (A) 100-1 of the specified application 0. .
  • UE (A) 100-1 divides any LCG (here, LCG3) exclusively for application 0. That is, UE (A) 100-1 secures LCG3 for D2D communication separately from LCG0 to LCG2 for cellular communication.
  • the UE (A) 100-1 secures hardware resources for D2D communication with respect to the LCG 3 for D2D communication.
  • the hardware resource means a resource (processing resource) of the processor 160 and a resource (memory resource) of the memory 150.
  • UE (A) 100-1 notifies LCG 3 for D2D communication to eNB 200.
  • ENB 200 assigns a radio network temporary identifier (RNTI) for D2D communication to LCG 3 for D2D communication notified from UE (A) 100-1.
  • the RNTI is a UE identifier that is temporarily given for control.
  • the PDCCH includes the RNTI of the destination UE 100, and the UE 100 determines the presence / absence of radio resource allocation based on the presence / absence of its own RNTI in the PDCCH.
  • D2D-RNTI the RNTI for D2D communication
  • eNB 200 allocates D2D-RNTI to UE (A) 100-1 separately from RNTI (C-RNTI) for cellular communication.
  • C-RNTI RNTI
  • a total of two RNTIs, C-RNTI and D2D-RNTI, are allocated to UE (A) 100-1, and the initial setting of D2D communication is completed.
  • FIG. 13 is a diagram for explaining the operation of the UE (A) 100-1 during D2D communication.
  • step S31 UE (A) 100-1 transmits BSR MCE (MAC Control Element) to eNB 200 together with transmission data (DAT) to eNB 200.
  • BSR MCE includes BSR for each of LCG0 to LCG3.
  • step S32 the eNB 200 grasps the transmission buffer retention amount indicated by the BSR for each of the LCG0 to LCG3 based on the BSR MCE, and performs radio resource allocation according to the transmission buffer retention amount for each of the LCG0 to LCG3.
  • eNB200 determines the radio
  • step S33 the UE (A) 100-1 performs transmission to the UE (B) 100-2 using radio resources allocated to D2D communication.
  • radio resource allocation can be controlled separately from cellular communication for D2D communication. Also, in D2D communication, radio resource allocation can be controlled based on BSR.
  • FIG. 14 is a diagram for explaining transmission power control and retransmission control in D2D communication.
  • steps S41, S43, and S44 correspond to D2D communication
  • step S42 corresponds to cellular communication.
  • step S41 UE (A) 100-1 transmits data 1 to UE (B) 100-2.
  • UE (A) 100-1 transmits TxPower MCE including the transmission power information of the transmission together with the transmission of data 1.
  • TxPower MCE including the transmission power information of the transmission together with the transmission of data 1.
  • UE (A) 100-1 notifies UE (B) 100-2 of transmission power.
  • UE (A) 100-1 transmits HARQ Ack / Nack MCE including HARQ Ack / Nack information for data 0 previously received from UE (B) 100-2 together with data 1.
  • the UE (B) 100-2 When receiving the data 1 from the UE (A) 100-1, the UE (B) 100-2 measures the received power of the reception. Further, UE (B) 100-2 performs the next transmission to UE (A) 100-1 based on the difference between the measured received power and the transmission power indicated by TxPower MCE transmitted together with data 1. Determine the transmission power to perform. For example, since the propagation loss increases as the difference between the transmission power and reception power of data 1 from the UE (A) 100-1 increases, the transmission when the UE (A) 100-1 performs the next transmission is performed. Decide to increase power.
  • each of the UE (A) 100-1 and the UE (B) 100-2 performs data transmission to the eNB 200.
  • the UE (A) 100-1 and the UE (B) 100-2 transmit the BSR MCE when transmitting data to the eNB 200.
  • step S43 the UE (B) 100-2 transmits data 2 to the UE (A) 100-1.
  • UE (B) 100-2 transmits TxPower MCE including the transmission power information of the transmission together with the transmission of data 2.
  • TxPower MCE including the transmission power information of the transmission together with the transmission of data 2.
  • UE (B) 100-2 notifies UE (B) 100-2 of transmission power.
  • UE (B) 100-2 transmits HARQ Ack / Nack MCE including HARQ Ack / Nack information for data 1 previously received from UE (A) 100-1 together with data 2.
  • the UE (A) 100-1 When receiving the data 2 from the UE (B) 100-2, the UE (A) 100-1 measures the reception power of the reception. Further, UE (A) 100-1 performs the next transmission to UE (B) 100-2 based on the difference between the measured received power and the transmission power indicated by TxPower MCE transmitted together with data 2. Determine the transmission power to perform.
  • step S44 UE (A) 100-1 transmits data 3 to UE (B) 100-2.
  • the UE (A) 100-1 transmits the TxPower MCE including the transmission power information of the transmission together with the transmission of the data 3.
  • UE (A) 100-1 transmits HARQ Ack / Nack MCE including HARQ Ack / Nack information for data 2 received last time from UE (B) 100-2 together with data 3.
  • D2D communication Transmission power increases.
  • control is performed so that D2D communication is stopped and switched to cellular communication.
  • FIG. 15 is a sequence diagram when the transmission power in the D2D communication exceeds the maximum transmission power.
  • the eNB 200 transmits maximum power information indicating the maximum transmission power allowed in the D2D communication on the broadcast channel (BCCH). Specifically, the eNB 200 transmits the maximum power information included in the master information block (MIB) or the system information block (SIB).
  • MIB master information block
  • SIB system information block
  • the UE (A) 100-1 and / or the UE (B) 100-2 acquire and store the maximum power information from the eNB 200.
  • step S52 UE (A) 100-1 and UE (B) 100-2 perform D2D communication.
  • the UE (A) 100-1 detects that the transmission power in the D2D communication exceeds the maximum transmission power, and the description proceeds.
  • step S53 the UE (A) 100-1 notifies the eNB 200 that the transmission power in the D2D communication exceeds the maximum transmission power. In other words, the UE (A) 100-1 requests the eNB 200 to switch the D2D communication to the cellular communication.
  • step S54 the eNB 200 instructs the UE (A) 100-1 and the UE (B) 100-2 to switch the D2D communication to the cellular communication, and performs radio resource allocation for the cellular communication.
  • steps S55 and S56 UE (A) 100-1 and UE (B) 100-2 switch D2D communication to cellular communication.
  • the transmission power control according to this embodiment can appropriately control the transmission power in D2D communication.
  • 16 and 17 are diagrams for explaining the interference avoiding operation according to the present embodiment.
  • the pair of UE (1A) 100-1 and UE (1B) 100-2 performs D2D communication
  • the pair of UE (2A) 100-3 and UE (2B) 100-4 also includes D2D communication is performed.
  • the radio resources used for each D2D communication are the same and are affected by interference with each other.
  • the UE (1A) 100-1 when the UE (1A) 100-1 detects a reception failure, the UE (1A) 100-1 transmits a failure notification regarding the reception failure during the D2D communication to the eNB 200.
  • the reception failure means that reception has failed at the reception timing (specifically, the received data cannot be decoded).
  • the failure notification includes an identifier of the UE (1A) 100-1 and information indicating that D2D communication is being performed. If the UE (1A) 100-1 can receive and decode an interference wave from another D2D communication pair that is the cause of the reception failure, the UE (1A) 100-1 determines that the other D2D communication pair is an interference source, and the other Information regarding the D2D communication pair may be included in the failure notification.
  • the UE (2A) 100-3 detects a reception failure
  • the UE (2A) 100-3 transmits a failure notification regarding the reception failure during D2D communication to the eNB 200.
  • the failure notification includes the identifier of the UE (2A) 100-3 and information indicating that D2D communication is being performed. If the UE (2A) 100-3 can receive and decode an interference wave from another D2D communication pair that is the cause of the reception failure, the UE (2A) 100-3 determines that the other D2D communication pair is an interference source, and the other Information regarding the D2D communication pair may be included in the failure notification.
  • the eNB 200 causes a failure from a D2D communication pair consisting of UE (1A) 100-1 and UE (1B) 100-2 and a D2D communication pair consisting of UE (2A) 100-3 and UE (2B) 100-4, respectively.
  • each D2D communication pair determines whether or not the same radio resource is used for D2D communication.
  • the eNB 200 determines that each D2D communication pair uses the same radio resource for D2D communication, the eNB 200 determines that each D2D communication pair is affected by interference, The allocation of radio resources of the D2D communication pair is changed. For example, the eNB 200 reassigns different radio resources to the D2D communication pair including the UE (1A) 100-1 and the UE (1B) 100-2. Thereby, interference of D2D communication is avoided.
  • the D2D-RNTI is allocated to the UE 100 in the following procedure.
  • the UE 100 secures an LCG for D2D communication for an application used for D2D communication, and secures a hardware resource for D2D communication for an LCG for D2D communication.
  • the UE 100 notifies the eNB 200 of the LCG for D2D communication.
  • the eNB 200 assigns D2D-RNTI to the LCG notified from the UE 100.
  • the UE 100 when the UE 100 performs D2D communication with a plurality of communication partner UEs using the same application, it is preferable that the D2D communication can be controlled for each communication partner UE. Therefore, in this embodiment, the UE 100 secures an LCG for D2D communication for a combination of an application used for D2D communication and another UE 100 that is a communication partner of D2D communication.
  • FIG. 18 is a diagram for explaining the communication control method according to the present embodiment. Here, differences from the first embodiment will be mainly described.
  • step S1 the UE (A) 100-1 transmits a search signal around itself.
  • step S2 UE (B) 100-2 transmits a response signal to UE (A) 100-1 in response to reception of the search signal from UE (A) 100-1.
  • step S3 the UE (A) 100-1 transmits, to the eNB 200, a D2D communication request (A) indicating that it wants to start D2D communication in response to receiving the response signal from the UE (B) 100-2. .
  • the D2D communication request (A) is a transmission source identifier indicating the transmission source UE (that is, UE (A) 100-1) of the D2D communication request (A), and is used in D2D communication. It includes an application identifier indicating an application, transmission power information indicating the transmission power of the search signal, and reception power information indicating the reception power of the response signal.
  • the D2D communication request (A) further includes a partner identifier indicating a communication partner UE (that is, UE (B) 100-2) for D2D communication.
  • the eNB 200 When the eNB 200 receives the D2D communication request (A), the eNB 200 measures the received power of the D2D communication request (A), adds the information of the measured received power to the D2D communication request (A), and then adds the D2D communication request (A). ) To the MME / S-GW 300.
  • step S4 the UE (B) 100-2 transmits a D2D communication request (B) indicating that the start of D2D communication is desired to the eNB 200 in response to the transmission of the response signal.
  • the D2D communication request (B) is a transmission source identifier indicating the transmission source UE (that is, UE (B) 100-2) of the D2D communication request (B), and is used in D2D communication. It includes an application identifier indicating an application, transmission power information indicating the transmission power of the response signal, and reception power information indicating the reception power of the search signal.
  • the D2D communication request (B) further includes a partner identifier indicating a communication partner UE (that is, UE (A) 100-1) for D2D communication.
  • the eNB 200 When the eNB 200 receives the D2D communication request (B), the eNB 200 measures the received power of the D2D communication request (B), adds the information of the measured received power to the D2D communication request (B), and then adds the D2D communication request (B). ) To the MME / S-GW 300.
  • the MME / S-GW 300 Upon receiving the D2D communication request (A) and the D2D communication request (B), the MME / S-GW 300 receives the UE (A) 100-1 and the UE based on the D2D communication request (A) and the D2D communication request (B). (B) It is determined whether or not D2D communication by 100-2 is possible.
  • the MME / S-GW 300 determines that the D2D communication by the UE (A) 100-1 and the UE (B) 100-2 is possible, the MME / S-GW 300 notifies the eNB 200, the UE (A) 100-1, and the UE to that effect and necessary information. (B) Notify 100-2. And D2D communication is started under control of eNB200.
  • the network eNB 200 and MME / S-GW 300 uses which application between which UE and what application D2D. You can see if communication takes place.
  • FIG. 19 is a diagram for explaining the communication control method according to the present embodiment. Here, differences from the first embodiment will be mainly described.
  • UE (A) 100-1 performs cellular communication with eNB 200, D2D communication with UE (B) 100-2, and D2D communication with UE (C) 100-3 at the same time. A case where the same application is used in each D2D communication will be described.
  • UE (A) 100-1 uses LCG 3 for the combination of application 0 used for D2D communication and UE (B) 100-2, which is a communication counterpart UE of D2D communication. Secure. Then, UE (A) 100-1 reserves hardware resources (PHY resources) for LCG 3 for D2D communication. Furthermore, the UE (A) 100-1 notifies the eNB 200 of the LCG 3 for D2D communication. The eNB 200 assigns D2D-RNTI to the LCG 3 notified from the UE (A) 100-1.
  • PHY resources hardware resources
  • UE (A) 100-1 secures LCG2 for the combination of application 0 used for D2D communication and UE (C) 100-3, which is a communication counterpart UE of D2D communication. Then, the UE (B) 100-2 reserves hardware resources (PHY resources) for the LCG 2 for D2D communication. Furthermore, UE (A) 100-1 notifies eNB 200 of LCG2 for D2D communication. The eNB 200 assigns the D2D-RNTI to the LCG 2 notified from the UE (A) 100-1.
  • the UE (A) 100-1 separates application data for each communication partner UE for D2D communication by securing a different LCG for each communication partner UE for D2D communication. Can be transmitted. Further, by assigning a different D2D-RNTI to each communication partner UE of D2D communication, even when the UE 100 performs D2D communication with a plurality of communication partner UEs using the same application, the eNB 200 can communicate with the communication partner UE. D2D communication can be controlled every time.
  • the UE (A) 100-1 transmits the BSR MCE for each of LCG0 to LCG3 to the eNB 200 during the execution of the D2D communication.
  • the eNB 200 grasps the transmission buffer retention amount indicated by the BSR for each of the LCG0 to LCG3 based on the BSR MCE, and performs radio resource allocation according to the transmission buffer retention amount for each of the LCG0 to LCG3.
  • the entity that determines whether or not D2D communication is possible is the MME / S-GW 300, but the eNB 200 may determine whether or not D2D communication is possible.
  • the entity that determines the radio resource allocation method is the eNB 200, but the MME / S-GW 300 may determine the radio resource allocation method and notify the eNB 200 of the result.
  • an application identifier an identifier of communication quality (that is, QoS) required for the application is used. May be.
  • QoS identifier is called a QCI (QoS Class Identifier).
  • the eNB 200 transmits the maximum power information indicating the maximum transmission power allowed in the D2D communication on the broadcast channel (BCCH).
  • the eNB 200 may transmit the maximum power information individually for the UE 100.
  • the eNB 200 determines the maximum transmission power allowed in the D2D communication according to the propagation loss between itself and the UE 100. For example, the smaller the transmission loss between the eNB 200 and the UE 100 is, the smaller the maximum transmission power allowed in D2D communication is determined.
  • the present invention is useful in the field of wireless communication such as cellular mobile communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる通信制御方法は、ユーザ端末が、前記D2D通信用の論理チャネルグループを確保するステップAと、前記ユーザ端末が、前記ステップAで確保した前記論理チャネルグループを前記基地局に通知するステップBと、前記基地局が、前記ステップBで通知された前記論理チャネルグループに対して、前記D2D通信用の無線ネットワーク一時識別子を割り当てるステップCと、を含む。

Description

通信制御方法、ユーザ端末、プロセッサ、記憶媒体、及び基地局
 本発明は、D2D通信をサポートする移動通信システムにおいて用いられる通信制御方法、ユーザ端末、プロセッサ、記憶媒体、及び基地局に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。
 D2D通信においては、近接する複数のユーザ端末が、ネットワークとの無線接続を確立した状態(同期がとられた状態)で、相互に直接的な無線通信を行うことができる。なお、D2D通信は、近傍サービス(Proximity Service)通信と称されることもある。
3GPP技術報告 「TR 22.803 V0.3.0」 2012年5月
 しかしながら、現状の3GPP規格には、D2D通信を適切に制御するための仕様が規定されていない。よって、D2D通信と、セルラ通信(ユーザ端末と基地局との間の無線通信)と、を両立できないといった問題がある。
 そこで、本発明は、D2D通信を適切に制御できる通信制御方法、ユーザ端末、プロセッサ、記憶媒体、及び基地局を提供する。
 一実施形態によれば、基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる通信制御方法は、ユーザ端末が、前記D2D通信用の論理チャネルグループを確保するステップAと、前記ユーザ端末が、前記ステップAで確保した前記論理チャネルグループを前記基地局に通知するステップBと、前記基地局が、前記ステップBで通知された前記論理チャネルグループに対して、前記D2D通信用の無線ネットワーク一時識別子を割り当てるステップCと、を含む。
 一実施形態によれば、基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートするユーザ端末は、前記D2D通信用の論理チャネルグループを確保した上で、該D2D通信用の論理チャネルグループを前記基地局に通知する制御部を備える。
 一実施形態によれば、基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートするユーザ端末に備えられるプロセッサは、前記D2D通信用の論理チャネルグループを確保した上で、該D2D通信用の論理チャネルグループを前記基地局に通知する処理を行う。
 一実施形態によれば、基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートするユーザ端末に備えられる記憶媒体は、前記ユーザ端末が、前記D2D通信用の論理チャネルグループを確保した上で、該D2D通信用の論理チャネルグループを前記基地局に通知する処理、を行うためのプログラムを記憶する。
 一実施形態によれば、割り当てた無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる基地局は、ユーザ端末から前記D2D通信用の論理チャネルグループを通知されると、前記D2D通信用の論理チャネルグループに対して、前記D2D通信用の無線ネットワーク一時識別子を割り当てる制御部を備える。
図1は、LTEシステムの構成図である。 図2は、UEのブロック図である。 図3は、eNBのブロック図である。 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 図5は、LTEシステムで使用される無線フレームの構成図である。 図6は、セルラ通信におけるデータパスを示す。 図7は、D2D通信におけるデータパスを示す。 図8は、第1実施形態に係る探索動作パターン1のシーケンス図である。 図9は、第1実施形態に係る探索動作パターン2のシーケンス図である。 図10は、第1実施形態に係る無線リソース割当方法の決定動作のフロー図である。 図11は、第1実施形態に係る無線リソース割当動作を説明するための図である(その1)。 図12は、第1実施形態に係る無線リソース割当動作を説明するための図である(その2)。 図13は、第1実施形態に係る無線リソース割当動作を説明するための図である(その3)。 図14は、第1実施形態に係る送信電力制御及び再送制御を説明するための図である。 図15は、D2D通信における送信電力が最大送信電力を超える場合のシーケンス図である。 図16は、第1実施形態に係る干渉回避動作を説明するための図である(その1)。 図17は、第1実施形態に係る干渉回避動作を説明するための図である(その2)。 図18は、第2実施形態に係るD2D通信要求動作を説明するための図である。 図19は、第2実施形態に係るD2D通信動作を説明するための図である。
 [実施形態の概要]
 実施形態に係る通信制御方法は、基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる。通信制御方法は、ユーザ端末が、前記D2D通信用の論理チャネルグループを確保するステップAと、前記ユーザ端末が、前記ステップAで確保した前記論理チャネルグループを前記基地局に通知するステップBと、前記基地局が、前記ステップBで通知された前記論理チャネルグループに対して、前記D2D通信用の無線ネットワーク一時識別子を割り当てるステップCと、を含む。
 これにより、基地局は、D2D通信用の無線ネットワーク一時識別子を用いて、D2D通信を対象とした通信制御(例えば、無線リソースの割り当て)を行うことができる。よって、セルラ通信とは別個にD2D通信を制御できるので、D2D通信を適切に制御できる。
 前記ステップAにおいて、前記ユーザ端末は、前記D2D通信に使用するアプリケーションに対して、前記D2D通信用の論理チャネルグループを確保してもよい。
 これにより、ユーザ端末は、D2D通信におけるアプリケーションデータを、セルラ通信におけるアプリケーションデータとは別個に伝送できる。
 前記ステップAにおいて、前記ユーザ端末は、前記D2D通信に使用するアプリケーションと、前記D2D通信の通信相手とする他のユーザ端末と、の組み合わせに対して、前記D2D通信用の論理チャネルグループを確保してもよい。
 これにより、D2D通信におけるアプリケーションデータを、通信相手とする他のユーザ端末毎に異なる論理チャネルグループを用いて伝送できる。
 前記ステップAにおいて、前記ユーザ端末は、前記D2D通信用の論理チャネルグループに対して、前記D2D通信用のハードウェアリソースをさらに確保してもよい。
 これにより、物理レイヤにおいてD2D通信とセルラ通信とを分離できる。
 前記ステップAにおいて、前記ユーザ端末は、セルラ通信用の論理チャネルグループとは別に、前記D2D通信用の論理チャネルグループを確保し、前記ステップCにおいて、前記基地局は、セルラ通信用の無線ネットワーク一時識別子とは別に、前記D2D通信用の無線ネットワーク一時識別子を割り当ててもよい。
 これにより、ユーザ端末がセルラ通信とD2D通信とを同時に行う場合であっても、基地局がセルラ通信とD2D通信とを別個に制御できる。
 上述した通信制御方法は、前記基地局が、前記D2D通信に割り当てる無線リソースを決定するステップDと、前記基地局が、前記ステップCで割り当てた前記無線ネットワーク一時識別子を用いて、前記ステップDで決定した前記無線リソースを前記ユーザ端末に通知するステップEと、をさらに含んでもよい。
 これにより、基地局は、D2D通信に割り当てる無線リソースを、セルラ通信に割り当てる無線リソースとは別個に通知できる。
 上述した通信制御方法は、前記ユーザ端末が、前記D2D通信における送信待ちデータ量を示すバッファ状態報告を前記基地局に送信するステップFをさらに有し、前記ステップDにおいて、前記基地局は、前記バッファ状態報告に基づいて、前記D2D通信に割り当てる無線リソースを決定してもよい。
 これにより、基地局は、D2D通信における送信待ちデータ量を考慮して適切に無線リソースの割り当てを行うことができる。
 [第1実施形態]
 以下において、3GPP規格に準拠して構成される移動通信システム(以下、「LTEシステム」)にD2D通信を導入する場合の実施形態を説明する。
 (1)LTEシステムの概要
 図1は、本実施形態に係るLTEシステムの構成図である。
 図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。本実施形態においてE-UTRAN10及びEPC20は、ネットワークを構成する。
 UE100は、移動型の無線通信装置であり、無線接続を確立したセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。eNB200は、セルを管理しており、セルとの無線接続を確立したUE100との無線通信を行う。
 なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、OAM400(Operation and Maintenance)と、を含む。
 MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介してMME/S-GW300と接続される。
 OAM400は、オペレータによって管理されるサーバ装置であり、E-UTRAN10の保守及び監視を行う。
 次に、UE100及びeNB200の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150は、記憶媒体に相当する。
 UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子を含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。
 GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。
 バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。
 プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。
 プロセッサ160は、例えば、各種のアプリケーションを実行するとともに、後述する各種の通信プロトコルを実行する。プロセッサ160が行う処理の詳細については後述する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサとしてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。アンテナ201は、複数のアンテナ素子を含む。無線送受信機210は、プロセッサ240が出力するベースバンド信号を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。
 プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。
 プロセッサ240は、例えば、後述する各種の通信プロトコルを実行する。プロセッサ240が行う処理の詳細については後述する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。
 図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1~レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。物理レイヤは、物理チャネルを用いて上位レイヤに伝送サービスを提供する。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式など)及びリソースブロックを決定するMACスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、無線ベアラを介してデータが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100はRRC接続状態であり、そうでない場合、UE100はRRCアイドル状態である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ使用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用できる領域である。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用できる領域である。
 (2)D2D通信の概要
 次に、LTEシステムの通常の通信(セルラ通信)とD2D通信とを比較して説明する。
 図6は、セルラ通信におけるデータパスを示す。ここでは、eNB200-1との無線接続を確立したUE(A)100-1と、eNB200-2との無線接続を確立したUE(B)100-2と、の間でセルラ通信を行う場合を例示している。なお、データパスとは、ユーザデータ(ユーザプレーン)のデータ転送経路を意味する。
 図6に示すように、セルラ通信のデータパスはネットワークを経由する。詳細には、eNB200-1、S-GW300、及びeNB200-2を経由するデータパスが設定されている。
 図7は、D2D通信におけるデータパスを示す。ここでは、eNB200-1との無線接続を確立したUE(A)100-1と、eNB200-2との無線接続を確立したUE(B)100-2と、の間でD2D通信を行う場合を例示している。
 図7に示すように、D2D通信のデータパスはネットワークを経由しない。すなわち、UE間で直接的な無線通信を行う。このように、UE(A)100-1の近傍にUE(B)100-2が存在するのであれば、UE(A)100-1とUE(B)100-2との間でD2D通信を行うことによって、ネットワークのトラフィック負荷及びUE100のバッテリ消費量を削減するなどの効果が得られる。
 ただし、D2D通信はLTEシステムの周波数帯域で行われることが想定されており、例えばセルラ通信への干渉を回避するために、ネットワークの制御下でD2D通信が行われる。
 (3)第1実施形態に係る動作
 以下において、第1実施形態に係る動作を説明する。
 (3.1)探索動作
 D2D通信の開始を望むUE(A)は、自身の近傍に存在する通信相手のUE(B)を発見する(Discover)機能を有していなければならない。また、UE(B)は、UE(A)から発見される(Discoverable)機能を有していなければならない。
 本実施形態では、UE(A)は、通信相手のUE(B)を発見するために、自身の周囲に周期的に探索信号(Discover信号)を送信する。UE(B)は、UE(A)から発見されるために、探索信号の待ち受けを行い、探索信号の受信に応じて応答信号をUE(A)に送信する。その後、ネットワークは、UE(A)及びUE(B)によるD2D通信の可否を判断する。
 (3.1.1)動作パターン1
 図8は、本実施形態に係る探索動作パターン1のシーケンス図である。
 図8に示すように、ステップS1において、UE(A)100-1は、自身の周囲に探索信号を送信する。探索信号は、UE(A)100-1の識別子と、D2D通信に使用すべきアプリケーションの識別子と、を含む。アプリケーションの識別子は、例えば、探索信号に反応すべきUE(応答信号を送信すべきUE)を限定するために使用される。探索信号は、さらに、通信相手とするUE(B)100-2の識別子、又はD2D通信を行うべきUE100のグループ(D2D通信グループ)の識別子を含んでもよい。また、UE(A)100-1は、探索信号を送信する際に、該探索信号の送信電力を記憶する。
 UE(B)100-2は、探索信号の待ち受けを行っており、UE(A)100-1からの探索信号を受信する。UE(B)100-2は、探索信号の受信電力(受信強度)を測定し、該測定した受信電力を記憶する。
 ステップS2において、UE(B)100-2は、探索信号の受信に応じて、応答信号をUE(A)に送信する。応答信号は、UE(B)100-2の識別子と、D2D通信に使用すべきアプリケーションの識別子と、を含む。また、UE(B)100-2は、応答信号を送信する際に、該応答信号の送信電力を記憶する。
 UE(A)100-1は、応答信号の待ち受けを行っており、UE(B)100-2からの応答信号を受信する。UE(A)100-1は、応答信号の受信電力(受信強度)を測定し、該測定した受信電力を記憶する。
 ステップS3において、UE(A)100-1は、応答信号の受信に応じて、D2D通信の開始を望むことを示すD2D通信要求(A)をeNB200に送信する。D2D通信要求(A)は、UE(A)100-1の識別子と、D2D通信に使用すべきアプリケーションの識別子と、を含む。D2D通信要求(A)は、さらに、探索信号の送信電力の情報と、応答信号の受信電力の情報と、を含む。
 eNB200は、D2D通信要求(A)を受信すると、D2D通信要求(A)の受信電力を測定し、該測定した受信電力の情報をD2D通信要求(A)に付加して、D2D通信要求(A)をMME/S-GW300に転送する。
 ステップS4において、UE(B)100-2は、応答信号の送信に応じて、D2D通信の開始を望むことを示すD2D通信要求(B)をeNB200に送信する。D2D通信要求(B)は、UE(B)100-2の識別子と、D2D通信に使用すべきアプリケーションの識別子と、を含む。D2D通信要求(B)は、さらに、応答信号の送信電力の情報と、探索信号の受信電力の情報と、を含む。
 eNB200は、D2D通信要求(B)を受信すると、D2D通信要求(B)の受信電力を測定し、該測定した受信電力の情報をD2D通信要求(B)に付加して、D2D通信要求(B)をMME/S-GW300に転送する。
 MME/S-GW300は、D2D通信要求(A)及びD2D通信要求(B)を受信すると、D2D通信要求(A)及びD2D通信要求(B)から求められるUE間距離、UE・eNB間距離、及びアプリケーション特性などに基づいて、UE(A)100-1及びUE(B)100-2によるD2D通信の可否を判断する。例えば、MME/S-GW300は、以下の第1の判断基準~第3の判断基準のうちの少なくとも1つにより、D2D通信の可否を判断する。
 第1に、MME/S-GW300は、UE(A)100-1の近傍にUE(B)100-2が存在しない場合には、D2D通信が不可であると判断する。D2D通信は近傍のUE100同士で行うことが前提であり、遠隔のUE100同士でD2D通信を行うと干渉及びバッテリ消費量が増大してしまうからである。
 例えば、MME/S-GW300は、D2D通信要求(A)に含まれる探索信号の送信電力と、D2D通信要求(B)に含まれる探索信号の受信電力と、の差分により、伝搬損失が分かるので、該伝搬損失に基づいてUE(A)100-1とUE(B)100-2との間の距離を推定できる。同様に、D2D通信要求(B)に含まれる応答信号の送信電力と、D2D通信要求(A)に含まれる応答信号の受信電力と、の差分により、伝搬損失が分かるので、該伝搬損失に基づいてUE(A)100-1とUE(B)100-2との間の距離を推定できる。
 なお、探索信号及び応答信号のそれぞれの送信電力が予めシステム全体で一律に規定されていれば、該送信電力の情報をD2D通信要求に含めなくてもよい。
 第2に、MME/S-GW300は、UE(A)100-1の近傍にeNB200が存在する場合、又はUE(B)100-2の近傍にeNB200が存在する場合には、D2D通信が不可であると判断する。eNB200の近傍でD2D通信を行うと、eNB200へ与える干渉が大きくなるからである。
 例えば、MME/S-GW300は、eNB200がD2D通信要求(A)を受信した際の受信電力から、大まかな伝搬損失が分かるので、該伝搬損失に基づいてUE(A)100-1とeNB200との間の距離を推定できる。同様に、eNB200がD2D通信要求(B)を受信した際の受信電力から、大まかな伝搬損失が分かるので、該伝搬損失に基づいてUE(B)100-2とeNB200との間の距離を推定できる。ただし、正確な伝搬損失を求めるために、D2D通信要求の送信電力をUEから通知してもよい。
 第3に、MME/S-GW300は、一時的に又は小容量(低負荷)のトラフィックを発生させるアプリケーションの場合には、D2D通信が不可であると判断する。言い換えると、連続的かつ大容量(高負荷)のトラフィックを発生させるアプリケーションの場合に限り、D2D通信が可能と判断する。一時的に又は低負荷のトラフィックを取り扱う場合、D2D通信のメリットが十分に活かされないからである。
 例えば、ストリーミングやビデオ通話のアプリケーションは、連続的かつ高負荷のトラフィックを発生させるので、D2D通信が可能と判断する。ただし、詳細については後述するが、一時的に又は小容量(低負荷)のトラフィックを発生させるアプリケーションの場合であっても、D2D通信を適用してもよい。
 MME/S-GW300は、UE(A)100-1及びUE(B)100-2によるD2D通信が可能と判断すると、その旨及び必要な情報をeNB200に通知し、eNB200の制御下でD2D通信が開始される。
 動作パターン1によれば、UE(A)100-1及びUE(B)100-2がD2D通信に適した状態にある場合に限り、D2D通信を可能にすることができる。
 (3.1.2)動作パターン2
 上述した動作パターン1では、UE(B)が、探索信号の待ち受けを常に行うケースを想定していたが、例えばバッテリ消費量を削減するために探索信号の待ち受けを中止するケースも想定される。そこで、動作パターン2では、そのようなD2D通信のスリープ状態にあるUE(B)をUE(A)が発見できるようにする。
 図9は、本実施形態に係る探索動作パターン2のシーケンス図である。
 図9に示すように、ステップS11において、UE(A)100-1は、D2D通信の開始を望むことを示すD2D通信要求をeNB200に送信する。eNB200は、UE(A)100-1からのD2D通信要求をMME/S-GW300に転送する。D2D通信要求は、UE(A)100-1の識別子と、D2D通信に使用すべきアプリケーションの識別子と、を含む。D2D通信要求は、さらに、通信相手とするUE(B)100-2の識別子、又はD2D通信を行うべきUE100のグループ(D2D通信グループ)の識別子を含んでもよい。
 ステップS12において、MME/S-GW300は、UE(A)100-1の在圏エリア(或いは在圏セル)に存在するUE100のうち、UE(A)100-1からのD2D通信要求に合致するUE(B)100-2を特定する。また、MME/S-GW300は、UE(B)100-2の状態を確認し、探索信号の待ち受けを行っているか中止しているかを判断する。ここでは、UE(B)100-2が探索信号の待ち受けを中止していると仮定して説明を進める。
 ステップS13において、MME/S-GW300は、UE(B)100-2への待ち受け開始要求をeNB200に送信する。eNB200は、MME/S-GW300からの待ち受け開始要求をUE(B)100-2に転送する。
 ステップS14において、UE(B)100-2は、待ち受け開始要求を受信すると、探索信号の待ち受けを開始する。詳細には、UE(B)100-2は、探索信号の受信を所定の周期で試みる。
 UE(B)100-2は、探索信号の待ち受けを開始した後、UE(A)100-1からの探索信号を受信(ステップS1)すると、該探索信号に対する応答信号をUE(A)100-1に送信(ステップS2)する。以降の動作は、動作パターン1と同様である。
 動作パターン2によれば、D2D通信のスリープ状態にあるUE(B)100-2であっても、UE(A)100-1から発見されることができる。
 (3.2)D2D通信における無線リソース割当
 次に、D2D通信における無線リソースの割当動作について説明する。「無線リソース」は、時間・周波数リソースの単位であるリソースブロック(RB)、すなわち、周波数帯域を意味する。また、無線通信における変調・符号化方式(MCS)が「無線リソース」に含まれてもよい。
 (3.2.1)無線リソース割当方法
 eNB200は、D2D通信に対して、準静的な無線リソース割当を行う。本実施形態では、eNB200は、D2D通信に使用されるアプリケーションの特性に応じて、D2D通信における無線リソースの割当方法を決定する。
 図10は、本実施形態に係る無線リソース割当方法の決定動作のフロー図である。本フローの実施に先立ち、eNB200は、MME/S-GW300から、D2D通信に使用されるアプリケーションの識別子を取得する。或いは、eNB200は、D2D通信を行うUE100から、D2D通信に使用されるアプリケーションの識別子を取得してもよい。
 図10に示すように、ステップS21において、eNB200は、D2D通信に使用されるアプリケーションの識別子から該アプリケーションの特性を把握する。例えば、eNB200は、アプリケーションの識別子及びその特性を対応付けたテーブルを予め保持しており、該テーブルを用いることで、アプリケーションの特性を把握できる。
 D2D通信に使用されるアプリケーションによるトラフィックが低負荷かつ一時的である場合(例えば、チャットなどである場合)、ステップS22において、eNB200は、他のD2D通信と共用される無線リソースをD2D通信に割り当てるよう決定する。これにより、無線リソースを節約することができる。この場合、同一の無線リソースが割り当てられる複数のD2D通信のそれぞれには、異なる符号(拡散符号)を割り当てることで、符号分割ができるようにする。例えば、D2D通信ペア1に符号1を割り当て、D2D通信ペア2に符号2を割り当てることで、各ペアは自ペアの情報と他のペアの情報とを分離できる。
 また、D2D通信に使用されるアプリケーションによるトラフィックが高負荷かつ連続的である場合(例えば、ストリーミングなどである場合)、ステップS23において、eNB200は、専用の無線リソースをD2D通信に周期的に割り当てるよう決定する。これにより、D2D通信において大量のトラフィックを伝送できる。
 さらに、D2D通信に使用されるアプリケーションによるトラフィックが、高負荷かつ連続的、なおかつ低遅延を要求する場合(例えば、ビデオ通話など)、ステップS24において、eNB200は、専用の無線リソースを、周期的に、かつ繰り返し送信が可能になるよう割り当てるよう決定する。これにより、D2D通信において大量のトラフィックを伝送できると共に、通信の信頼度を高めることができる。繰り返し送信とは、同一のデータを複数回繰り返し送信する方式に限らず、送信の度に冗長ビットを変化させて繰り返し送信する方式(例えば、Incremental Redundancy方式)であってもよい。
 本実施形態に係る無線リソース割当方法によれば、D2D通信に使用されるアプリケーションの特性に応じて、D2D通信における無線リソースを適切に割り当てることが可能になる。
 (3.2.2)バッファ状態報告に基づく無線リソース割当
 UE100がセルラ通信及びD2D通信を同時に行う場合、eNB200は、D2D通信に対して、セルラ通信とは個別に無線リソース割当を制御できることが好ましい。本実施形態では、D2D通信に対して、セルラ通信とは個別に無線リソース割当を制御できるようにする。
 また、セルラ通信においては、UE100が、eNB200への送信待ちデータ量(送信バッファ滞留量)を示すバッファ状態報告(BSR)をeNB200に送信し、eNB200が、UE100からのBSRに基づいてUE100に上り無線リソースの割当を制御する仕組みが存在する。本実施形態では、D2D通信においてもBSRに基づいて無線リソースの割当を制御できるようにする。
 以下において、複数のアプリケーションを使用してセルラ通信のみを行うUE(A)100-1が、一部のアプリケーションをD2D通信に切り替えるケースを例に、D2D通信の無線リソース割当制御を行う動作を説明する。
 図11は、複数のアプリケーションを使用してセルラ通信のみを行うUE(A)100-1の動作を説明するための図である。
 図11に示すように、UE(A)100-1は、アプリケーション0,1,2,3,…を実行しており、各アプリケーションによるトラフィック及び制御信号を複数の論理チャネルを用いてeNB200へ伝送している。物理(PHY)レイヤにおいては、論理チャネル毎に、該論理チャネルで伝送されるデータを一時的に保持するためのバッファが設けられる。
 論理チャネルは、複数の論理チャネルグループ(LCG)にグループ化される。図11の例では、LCG0~LCG3の4つのLCGが存在する。論理チャネル毎にBSRを送信するとオーバーヘッドが大きくなるので、LCG毎にBSRを送信できるよう規定されている。
 UE(A)100-1は、LCG0~LCG3のそれぞれについてeNB200にBSRを送信する。eNB200のスケジューラは、LCG0~LCG3のそれぞれについてBSRが示す送信バッファ滞留量を把握し、送信バッファ滞留量に応じた上り無線リソース割当を行う。
 図12は、図11に示す状況から、一部のアプリケーションをUE(B)100-2とのD2D通信に切り替える場合のUE(A)100-1の動作を説明するための図である。
 D2D通信に切り替える場合、MME/S-GW300(又はeNB200)は、D2D通信に使用すべきアプリケーション(ここでは、アプリケーション0)を特定し、特定したアプリケーション0をUE(A)100-1に通知する。
 UE(A)100-1は、何れかのLCG(ここでは、LCG3)をアプリケーション0専用に分ける。すなわち、UE(A)100-1は、セルラ通信用のLCG0~LCG2とは別に、D2D通信用のLCG3を確保する。
 また、UE(A)100-1は、D2D通信用のLCG3に対して、D2D通信用のハードウェアリソースを確保する。ハードウェアリソースとは、プロセッサ160のリソース(処理リソース)、及びメモリ150のリソース(メモリリソース)を意味する。
 さらに、UE(A)100-1は、D2D通信用のLCG3をeNB200に通知する。
 eNB200は、UE(A)100-1から通知されたD2D通信用のLCG3に対して、D2D通信用の無線ネットワーク一時識別子(RNTI)を割り当てる。RNTIとは、制御のために一時的に与えるUE識別子である。例えば、PDCCHには、送信先のUE100のRNTIが含まれており、UE100は、PDCCHにおける自身のRNTIの有無により無線リソース割当の有無を判断する。
 以下において、D2D通信用のRNTIを「D2D-RNTI」と称する。このように、eNB200は、セルラ通信用のRNTI(C-RNTI)とは別に、D2D-RNTIをUE(A)100-1に割り当てる。その結果、UE(A)100-1には、C-RNTI及びD2D-RNTIの合計2つのRNTIが割り当てられ、D2D通信の初期設定が完了する。
 図13は、D2D通信中のUE(A)100-1の動作を説明するための図である。
 図13に示すように、ステップS31において、UE(A)100-1は、eNB200への送信データ(DAT)と共に、BSR MCE(MAC Control Element)をeNB200に送信する。BSR MCEは、LCG0~LCG3毎のBSRを含む。
 ステップS32において、eNB200は、BSR MCEに基づいて、LCG0~LCG3のそれぞれについてBSRが示す送信バッファ滞留量を把握し、LCG0~LCG3毎に送信バッファ滞留量に応じた無線リソース割当を行う。ここで、eNB200は、LCG3についての送信バッファ滞留量に基づいて、D2D通信に割り当てる無線リソースを決定する。そして、eNB200は、D2D-RNTIを用いて、D2D通信に割り当てる無線リソースをPDCCH上でUE(A)100-1に通知する。
 ステップS33において、UE(A)100-1は、D2D通信に割り当てられた無線リソースを用いて、UE(B)100-2への送信を行う。
 本実施形態に係る無線リソース割当によれば、D2D通信に対して、セルラ通信とは個別に無線リソース割当を制御できる。また、D2D通信においてもBSRに基づいて無線リソースの割当を制御できる。
 (3.3)D2D通信の送信電力制御
 上述したように、D2D通信に使用されるアプリケーションによるトラフィックが高負荷かつ連続的である場合、専用の無線リソースがD2D通信に周期的に割り当てられる。D2D通信を行うUE(A)100-1及びUE(B)100-2は、周期的に割り当てられる無線リソースを交互に送信に使用する。また、エラー状況などに応じて繰り返し送信を行ってもよい。
 図14は、D2D通信における送信電力制御及び再送制御を説明するための図である。図14において、ステップS41、S43、及びS44は、D2D通信に該当し、ステップS42は、セルラ通信に該当する。
 図14に示すように、ステップS41において、UE(A)100-1は、UE(B)100-2に対して、データ1を送信する。UE(A)100-1は、データ1の送信と共に、該送信の送信電力の情報を含んだTxPower MCEを送信する。このように、UE(A)100-1は、UE(B)100-2に無線信号を送信する際、送信電力をUE(B)100-2に通知する。また、UE(A)100-1は、データ1と共に、UE(B)100-2から前回受信したデータ0についてのHARQ Ack/Nackの情報を含んだHARQ Ack/Nack MCEを送信する。
 UE(B)100-2は、UE(A)100-1からのデータ1を受信すると、該受信の受信電力を測定する。また、UE(B)100-2は、測定した受信電力と、データ1と共に送信されたTxPower MCEが示す送信電力と、の差分に基づいて、UE(A)100-1に対して次回送信を行う際の送信電力を決定する。例えば、UE(A)100-1からのデータ1の送信電力と受信電力との差分が大きいほど、伝搬損失が大きいことから、UE(A)100-1に対して次回送信を行う際の送信電力を大きくするよう決定する。
 ステップS42において、UE(A)100-1及びUE(B)100-2のそれぞれは、eNB200へのデータ送信を行う。上述したように、UE(A)100-1及びUE(B)100-2は、eNB200へのデータ送信時に、BSR MCEを送信する。
 ステップS43において、UE(B)100-2は、UE(A)100-1に対して、データ2を送信する。UE(B)100-2は、データ2の送信と共に、該送信の送信電力の情報を含んだTxPower MCEを送信する。このように、UE(B)100-2は、UE(A)100-1に無線信号を送信する際、送信電力をUE(B)100-2に通知する。また、UE(B)100-2は、データ2と共に、UE(A)100-1から前回受信したデータ1についてのHARQ Ack/Nackの情報を含んだHARQ Ack/Nack MCEを送信する。
 UE(A)100-1は、UE(B)100-2からのデータ2を受信すると、該受信の受信電力を測定する。また、UE(A)100-1は、測定した受信電力と、データ2と共に送信されたTxPower MCEが示す送信電力と、の差分に基づいて、UE(B)100-2に対して次回送信を行う際の送信電力を決定する。
 ステップS44において、UE(A)100-1は、UE(B)100-2に対して、データ3を送信する。UE(A)100-1は、データ3の送信と共に、該送信の送信電力の情報を含んだTxPower MCEを送信する。また、UE(A)100-1は、データ3と共に、UE(B)100-2から前回受信したデータ2についてのHARQ Ack/Nackの情報を含んだHARQ Ack/Nack MCEを送信する。
 このような処理の繰り返しにより、D2D通信における送信電力制御及び再送制御が行われる。
 ただし、UE(A)100-1及び/又はUE(B)100-2の移動により、UE(A)100-1とUE(B)100-2との間の距離が長くなると、D2D通信における送信電力が大きくなる。本実施形態では、D2D通信における送信電力が最大送信電力を超える場合には、D2D通信を中止し、セルラ通信に切り替えるよう制御する。
 図15は、D2D通信における送信電力が最大送信電力を超える場合のシーケンス図である。
 図15に示すように、ステップS51において、eNB200は、D2D通信において許容される最大送信電力を示す最大電力情報をブロードキャストチャネル(BCCH)上で送信する。詳細には、eNB200は、最大電力情報をマスタ情報ブロック(MIB)又はシステム情報ブロック(SIB)に含めて送信する。UE(A)100-1及び/又はUE(B)100-2は、D2D通信を開始する際に、eNB200からの最大電力情報を取得して記憶する。
 ステップS52において、UE(A)100-1及びUE(B)100-2は、D2D通信を行う。ここで、UE(A)100-1が、D2D通信における送信電力が最大送信電力を超えることを検知したと仮定して、説明を進める。
 ステップS53において、UE(A)100-1は、D2D通信における送信電力が最大送信電力を超える旨をeNB200に通知する。言い換えると、UE(A)100-1は、D2D通信をセルラ通信に切り替えるようeNB200に要求する。
 ステップS54において、eNB200は、D2D通信をセルラ通信に切り替えるようUE(A)100-1及びUE(B)100-2に指示するとともに、セルラ通信用の無線リソース割当を行う。
 ステップS55及びS56において、UE(A)100-1及びUE(B)100-2は、D2D通信をセルラ通信に切り替える。
 本実施形態に係る送信電力制御によれば、D2D通信における送信電力を適切に制御できる。
 (3.4)D2D通信の干渉回避動作
 本実施形態では、D2D通信がセルラ通信又は他のD2D通信からの干渉を受ける場合には、無線リソース割当の変更により干渉を回避する。
 図16及び図17は、本実施形態に係る干渉回避動作を説明するための図である。図16及び図17において、UE(1A)100-1及びUE(1B)100-2のペアはD2D通信を行っており、UE(2A)100-3及びUE(2B)100-4のペアもD2D通信を行っている。ここで、各D2D通信に使用される無線リソースは同一であり、相互に干渉の影響を受けていると仮定する。
 図16に示すように、UE(1A)100-1は、受信障害を検出すると、D2D通信中の受信障害に関する障害通知をeNB200に送信する。受信障害とは、受信タイミングにおいて受信に失敗した(具体的には、受信データを復号できない)ことを意味する。障害通知は、UE(1A)100-1の識別子と、D2D通信中である旨の情報と、を含む。なお、UE(1A)100-1は、受信障害の原因である他のD2D通信ペアからの干渉波を受信及び復号できるのであれば、該他のD2D通信ペアを干渉源と判断し、該他のD2D通信ペアに関する情報を障害通知に含めてもよい。
 また、UE(2A)100-3も同様に、受信障害を検出すると、D2D通信中の受信障害に関する障害通知をeNB200に送信する。障害通知は、UE(2A)100-3の識別子と、D2D通信中である旨の情報と、を含む。なお、UE(2A)100-3は、受信障害の原因である他のD2D通信ペアからの干渉波を受信及び復号できるのであれば、該他のD2D通信ペアを干渉源と判断し、該他のD2D通信ペアに関する情報を障害通知に含めてもよい。
 eNB200は、UE(1A)100-1及びUE(1B)100-2からなるD2D通信ペアと、UE(2A)100-3及びUE(2B)100-4からなるD2D通信ペアと、からそれぞれ障害通知を受信すると、各D2D通信ペアが同一の無線リソースをD2D通信に使用しているか否かを判断する。
 図17に示すように、eNB200は、各D2D通信ペアが同一の無線リソースをD2D通信に使用していると判断すると、各D2D通信ペアが相互に干渉の影響を受けていると判断し、一方のD2D通信ペアの無線リソースの割当を変更する。例えば、eNB200は、UE(1A)100-1及びUE(1B)100-2からなるD2D通信ペアに対して、異なる無線リソースを割り当て直す。これにより、D2D通信の干渉が回避される。
 [第2実施形態]
 上述した第1実施形態では、以下のような手順でD2D-RNTIをUE100に割り当てていた。第1に、UE100は、D2D通信に使用するアプリケーションに対してD2D通信用のLCGを確保し、D2D通信用のLCGに対してD2D通信用のハードウェアリソースを確保する。第2に、UE100は、D2D通信用のLCGをeNB200に通知する。第3に、eNB200は、UE100から通知されたLCGに対してD2D-RNTIを割り当てる。
 しかしながら、UE100が同一のアプリケーションを使用して複数の通信相手UEとD2D通信を行う場合には、通信相手UE毎にD2D通信を制御できることが好ましい。よって、本実施形態では、UE100は、D2D通信に使用するアプリケーションと、D2D通信の通信相手とする他のUE100と、の組み合わせに対して、D2D通信用のLCGを確保する。
 以下において、本実施形態に係る通信制御方法を説明する。図18は、本実施形態に係る通信制御方法を説明するための図である。ここでは、第1実施形態との相違点を主として説明する。
 図18に示すように、ステップS1において、UE(A)100-1は、自身の周囲に探索信号を送信する。
 ステップS2において、UE(B)100-2は、UE(A)100-1からの探索信号の受信に応じて、応答信号をUE(A)100-1に送信する。
 ステップS3において、UE(A)100-1は、UE(B)100-2からの応答信号の受信に応じて、D2D通信の開始を望むことを示すD2D通信要求(A)をeNB200に送信する。
 D2D通信要求(A)は、第1実施形態で説明したように、D2D通信要求(A)の送信元UE(すなわち、UE(A)100-1)を示す送信元識別子、D2D通信で使用するアプリケーションを示すアプリケーション識別子、探索信号の送信電力を示す送信電力情報、応答信号の受信電力を示す受信電力情報を含む。
 本実施形態では、D2D通信要求(A)は、D2D通信の通信相手UE(すなわち、UE(B)100-2)を示す相手先識別子を更に含む。
 eNB200は、D2D通信要求(A)を受信すると、D2D通信要求(A)の受信電力を測定し、該測定した受信電力の情報をD2D通信要求(A)に付加して、D2D通信要求(A)をMME/S-GW300に転送する。
 ステップS4において、UE(B)100-2は、応答信号の送信に応じて、D2D通信の開始を望むことを示すD2D通信要求(B)をeNB200に送信する。
 D2D通信要求(B)は、第1実施形態で説明したように、D2D通信要求(B)の送信元UE(すなわち、UE(B)100-2)を示す送信元識別子、D2D通信で使用するアプリケーションを示すアプリケーション識別子、応答信号の送信電力を示す送信電力情報、探索信号の受信電力を示す受信電力情報を含む。
 本実施形態では、D2D通信要求(B)は、D2D通信の通信相手UE(すなわち、UE(A)100-1)を示す相手先識別子を更に含む。
 eNB200は、D2D通信要求(B)を受信すると、D2D通信要求(B)の受信電力を測定し、該測定した受信電力の情報をD2D通信要求(B)に付加して、D2D通信要求(B)をMME/S-GW300に転送する。
 MME/S-GW300は、D2D通信要求(A)及びD2D通信要求(B)を受信すると、D2D通信要求(A)及びD2D通信要求(B)に基づいて、UE(A)100-1及びUE(B)100-2によるD2D通信の可否を判断する。
 MME/S-GW300は、UE(A)100-1及びUE(B)100-2によるD2D通信が可能と判断すると、その旨及び必要な情報をeNB200、UE(A)100-1、及びUE(B)100-2に通知する。そして、eNB200の制御下でD2D通信が開始される。
 このように、本実施形態に係るD2D通信要求は、アプリケーション識別子及び相手先識別子を含むので、ネットワーク(eNB200及びMME/S-GW300)は、どのUE間で、どのようなアプリケーションを使用してD2D通信が行われるのかを把握できる。
 図19は、本実施形態に係る通信制御方法を説明するための図である。ここでは、第1実施形態との相違点を主として説明する。次に、UE(A)100-1が、eNB200とのセルラ通信と、UE(B)100-2とのD2D通信と、UE(C)100-3とのD2D通信と、を同時に行う場合であって、且つ、各D2D通信において同一のアプリケーションを使用する場合について説明する。
 図19に示すように、UE(A)100-1は、D2D通信に使用するアプリケーション0と、D2D通信の通信相手UEであるUE(B)100-2と、の組み合わせに対して、LCG3を確保する。そして、UE(A)100-1は、D2D通信用のLCG3に対してハードウェアリソース(PHYリソース)を確保する。さらに、UE(A)100-1は、D2D通信用のLCG3をeNB200に通知する。eNB200は、UE(A)100-1から通知されたLCG3に対してD2D-RNTIを割り当てる。
 また、UE(A)100-1は、D2D通信に使用するアプリケーション0と、D2D通信の通信相手UEであるUE(C)100-3と、の組み合わせに対して、LCG2を確保する。そして、UE(B)100-2は、D2D通信用のLCG2に対してハードウェアリソース(PHYリソース)を確保する。さらに、UE(A)100-1は、D2D通信用のLCG2をeNB200に通知する。eNB200は、UE(A)100-1から通知されたLCG2に対してD2D-RNTIを割り当てる。
 このように、本実施形態によれば、UE(A)100-1は、D2D通信の通信相手UE毎に異なるLCGを確保することで、D2D通信の通信相手UE毎にアプリケーションデータを分離して伝送できる。また、D2D通信の通信相手UE毎に異なるD2D-RNTIを割り当てることで、UE100が同一のアプリケーションを使用して複数の通信相手UEとD2D通信を行う場合であっても、eNB200は、通信相手UE毎にD2D通信を制御できる。
 なお、第1実施形態で説明したように、D2D通信の実行中において、UE(A)100-1は、LCG0~LCG3毎のBSR MCEをeNB200に送信する。eNB200は、BSR MCEに基づいて、LCG0~LCG3のそれぞれについてBSRが示す送信バッファ滞留量を把握し、LCG0~LCG3毎に送信バッファ滞留量に応じた無線リソース割当を行う。
 [その他の実施形態]
 この開示の一部をなす記述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 上述した実施形態では、D2D通信の可否を判断する主体がMME/S-GW300であったが、eNB200がD2D通信の可否を判断してもよい。
 上述した実施形態では、無線リソース割当方法を決定する主体がeNB200であったが、MME/S-GW300が無線リソース割当方法を決定し、その結果をeNB200に通知してもよい。また、上述した実施形態では、アプリケーションの識別子に基づいて無線リソース割当方法を決定する一例を説明したが、アプリケーションの識別子に代えて、アプリケーションに要求される通信品質(すなわち、QoS)の識別子を使用してもよい。このようなQoSの識別子は、QCI(QoS Class Identifier)と称される。
 上述した実施形態では、eNB200は、D2D通信において許容される最大送信電力を示す最大電力情報をブロードキャストチャネル(BCCH)上で送信していたが、最大電力情報をUE100個別に送信してもよい。この場合、eNB200は、自身とUE100との間の伝搬損失に応じて、D2D通信において許容される最大送信電力を決定することが好ましい。例えば、eNB200とUE100との間の伝搬損失が小さいほど、D2D通信において許容される最大送信電力を小さくするよう決定する。
 なお、米国仮出願第61/656166号(2012年6月6日出願)及び米国仮出願第61/694017号(2012年8月28日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明は、D2D通信を適切に制御できるので、セルラ移動通信などの無線通信分野において有用である。

Claims (11)

  1.  基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる通信制御方法であって、
     ユーザ端末が、前記D2D通信用の論理チャネルグループを確保するステップAと、
     前記ユーザ端末が、前記ステップAで確保した前記論理チャネルグループを前記基地局に通知するステップBと、
     前記基地局が、前記ステップBで通知された前記論理チャネルグループに対して、前記D2D通信用の無線ネットワーク一時識別子を割り当てるステップCと、
    を含むことを特徴とする通信制御方法。
  2.  前記ステップAにおいて、前記ユーザ端末は、前記D2D通信に使用するアプリケーションに対して、前記D2D通信用の論理チャネルグループを確保することを特徴とする請求項1に記載の通信制御方法。
  3.  前記ステップAにおいて、前記ユーザ端末は、前記D2D通信に使用するアプリケーションと、前記D2D通信の通信相手とする他のユーザ端末と、の組み合わせに対して、前記D2D通信用の論理チャネルグループを確保することを特徴とする請求項1に記載の通信制御方法。
  4.  前記ステップAにおいて、前記ユーザ端末は、前記D2D通信用の論理チャネルグループに対して、前記D2D通信用のハードウェアリソースをさらに確保することを特徴とする請求項1に記載の通信制御方法。
  5.  前記ステップAにおいて、前記ユーザ端末は、セルラ通信用の論理チャネルグループとは別に、前記D2D通信用の論理チャネルグループを確保し、
     前記ステップCにおいて、前記基地局は、セルラ通信用の無線ネットワーク一時識別子とは別に、前記D2D通信用の無線ネットワーク一時識別子を割り当てることを特徴とする請求項1に記載の通信制御方法。
  6.  前記基地局が、前記D2D通信に割り当てる無線リソースを決定するステップDと、
     前記基地局が、前記ステップCで割り当てた前記無線ネットワーク一時識別子を用いて、前記ステップDで決定した前記無線リソースを前記ユーザ端末に通知するステップEと、
    をさらに含むことを特徴とする請求項1に記載の通信制御方法。
  7.  前記ユーザ端末が、前記D2D通信における送信待ちデータ量を示すバッファ状態報告を前記基地局に送信するステップFをさらに有し、
     前記ステップDにおいて、前記基地局は、前記バッファ状態報告に基づいて、前記D2D通信に割り当てる無線リソースを決定することを特徴とする請求項6に記載の通信制御方法。
  8.  基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートするユーザ端末であって、
     前記D2D通信用の論理チャネルグループを確保した上で、該D2D通信用の論理チャネルグループを前記基地局に通知する制御部を備えることを特徴とするユーザ端末。
  9.  基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートするユーザ端末に備えられるプロセッサであって、
     前記D2D通信用の論理チャネルグループを確保した上で、該D2D通信用の論理チャネルグループを前記基地局に通知する処理を行うことを特徴とするプロセッサ。
  10.  基地局から割り当てられる無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートするユーザ端末に備えられる記憶媒体であって、
     前記ユーザ端末が、前記D2D通信用の論理チャネルグループを確保した上で、該D2D通信用の論理チャネルグループを前記基地局に通知する処理、
    を行うためのプログラムを記憶することを特徴とする記憶媒体。
  11.  割り当てた無線リソースを用いて行う直接的な端末間通信であるD2D通信をサポートする移動通信システムにおいて用いられる基地局であって、
     ユーザ端末から前記D2D通信用の論理チャネルグループを通知されると、前記D2D通信用の論理チャネルグループに対して、前記D2D通信用の無線ネットワーク一時識別子を割り当てる制御部を備えることを特徴とする基地局。
PCT/JP2013/065745 2012-06-06 2013-06-06 通信制御方法、ユーザ端末、プロセッサ、記憶媒体、及び基地局 WO2013183727A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/405,241 US20150146637A1 (en) 2012-06-06 2013-06-06 Communication control method, user terminal, processor, storage medium, and base station
EP13800890.9A EP2866483A4 (en) 2012-06-06 2013-06-06 COMMUNICATION CONTROL PROCEDURE, USER DEVICE, PROCESSOR, STORAGE MEDIUM AND BASE STATION
JP2014520052A JP6110376B2 (ja) 2012-06-06 2013-06-06 制御方法、ユーザ端末、プロセッサ、及び基地局
US14/699,972 US9826562B2 (en) 2012-06-06 2015-04-29 Communication control method, user terminal, processor, storage medium, and base station for D2D communication
US15/818,067 US10440764B2 (en) 2012-06-06 2017-11-20 Communication control method, user terminal, processor, and base station
US16/556,090 US20190394819A1 (en) 2012-06-06 2019-08-29 Communication control method, user terminal, processor, and base station

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261656166P 2012-06-06 2012-06-06
US61/656,166 2012-06-06
US201261694017P 2012-08-28 2012-08-28
US61/694,017 2012-08-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/405,241 A-371-Of-International US20150146637A1 (en) 2012-06-06 2013-06-06 Communication control method, user terminal, processor, storage medium, and base station
US14/699,972 Continuation US9826562B2 (en) 2012-06-06 2015-04-29 Communication control method, user terminal, processor, storage medium, and base station for D2D communication

Publications (1)

Publication Number Publication Date
WO2013183727A1 true WO2013183727A1 (ja) 2013-12-12

Family

ID=49712114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065745 WO2013183727A1 (ja) 2012-06-06 2013-06-06 通信制御方法、ユーザ端末、プロセッサ、記憶媒体、及び基地局

Country Status (4)

Country Link
US (4) US20150146637A1 (ja)
EP (1) EP2866483A4 (ja)
JP (2) JP6110376B2 (ja)
WO (1) WO2013183727A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509264A (ja) * 2014-03-25 2017-03-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド D2d通信の制御プレーンのためのシステムおよび方法
JP2017513359A (ja) * 2014-03-19 2017-05-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるバッファ状態報告の優先順位を決める方法及び装置
JP2017533636A (ja) * 2014-09-26 2017-11-09 アルカテル−ルーセント グループ内のユーザ機器間のダイレクト通信のためのアップリンク・リソース割当
WO2020031346A1 (ja) * 2018-08-09 2020-02-13 富士通株式会社 通信装置、基地局装置、および通信方法
CN111586645A (zh) * 2014-07-30 2020-08-25 索尼公司 通信装置及方法
JP2020528694A (ja) * 2017-07-21 2020-09-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて他の端末から信号を受信した端末がフィードバックを送信する方法及び装置
CN112566280A (zh) * 2014-08-08 2021-03-26 创新技术实验室株式会社 支持终端间通信的无线通信系统中缓冲区状态报告的传输方法和装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2866483A4 (en) * 2012-06-06 2016-03-16 Kyocera Corp COMMUNICATION CONTROL PROCEDURE, USER DEVICE, PROCESSOR, STORAGE MEDIUM AND BASE STATION
CN103581890B (zh) * 2012-08-08 2017-02-08 电信科学技术研究院 一种终端控制方法、设备及系统
US8902907B2 (en) * 2012-10-05 2014-12-02 Futurewei Technologies, Inc. Terminal based grouping virtual transmission and reception in wireless networks
US9585178B2 (en) * 2013-05-21 2017-02-28 Htc Corporation Method for handling proximity-based service discovery and communication in a wireless communications system
WO2015117091A1 (en) * 2014-01-31 2015-08-06 Futurewei Technologies, Inc. System and method for inter-cell coordination for a device-to-device communication resource allocation
CN105101046B (zh) 2014-05-14 2020-11-03 索尼公司 无线通信系统中的电子设备和无线通信方法
EP3198931B1 (en) * 2014-09-23 2020-10-21 Nokia Solutions and Networks Oy Transmitting data based on flow input from base station
US10680976B2 (en) * 2016-09-09 2020-06-09 Intel Corporation Technologies for performing switch-based collective operations in distributed architectures
CN110677872B (zh) * 2017-08-11 2020-11-24 华为技术有限公司 数据传输方法、设备和通信系统
JP7060026B2 (ja) * 2017-12-27 2022-04-26 日本電気株式会社 通信装置及び通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264871A (ja) * 2002-03-08 2003-09-19 Hitachi Kokusai Electric Inc 移動体通信システム
JP2005323150A (ja) * 2004-05-10 2005-11-17 Matsushita Electric Ind Co Ltd 無線情報通信方法、無線通信端末及び無線通信親局
JP2010533429A (ja) * 2007-07-10 2010-10-21 クゥアルコム・インコーポレイテッド ピアツーピアネットワークにおけるピア発見のための識別子の通信
JP2011228806A (ja) * 2010-04-15 2011-11-10 Ntt Docomo Inc 移動通信システムにおける基地局及び方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2324616A1 (en) * 2008-09-12 2011-05-25 Nokia Corporation Session initiation for device-to-device communication
WO2010097645A1 (en) * 2009-02-24 2010-09-02 Nokia Corporation Time-hopping for near-far interference mitigation in device-to-device communications
JP2010219994A (ja) * 2009-03-18 2010-09-30 Hitachi Kokusai Electric Inc 通信システム
US20120134344A1 (en) * 2009-08-07 2012-05-31 Ling Yu Scheduling In Radio Telecommunication System
US8867458B2 (en) * 2010-04-30 2014-10-21 Nokia Corporation Network controlled device to device / machine to machine cluster operation
US9614641B2 (en) * 2010-05-12 2017-04-04 Qualcomm Incorporated Resource coordination for peer-to-peer groups through distributed negotiation
CN102291771B (zh) 2010-06-21 2015-08-12 中兴通讯股份有限公司 一种实现缓冲区状态上报的方法及系统
US8731590B2 (en) * 2011-05-24 2014-05-20 Broadcom Corporation Resource allocation control
US8705398B2 (en) * 2011-09-12 2014-04-22 Broadcom Corporation Mechanism for signaling buffer status information
CN103037359A (zh) * 2011-09-30 2013-04-10 华为技术有限公司 一种实现设备到设备的通讯方法、终端及系统
TWI620459B (zh) 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
US20150126211A1 (en) * 2012-06-06 2015-05-07 Kyocera Corporation Communication control method and base station
EP2866483A4 (en) * 2012-06-06 2016-03-16 Kyocera Corp COMMUNICATION CONTROL PROCEDURE, USER DEVICE, PROCESSOR, STORAGE MEDIUM AND BASE STATION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264871A (ja) * 2002-03-08 2003-09-19 Hitachi Kokusai Electric Inc 移動体通信システム
JP2005323150A (ja) * 2004-05-10 2005-11-17 Matsushita Electric Ind Co Ltd 無線情報通信方法、無線通信端末及び無線通信親局
JP2010533429A (ja) * 2007-07-10 2010-10-21 クゥアルコム・インコーポレイテッド ピアツーピアネットワークにおけるピア発見のための識別子の通信
JP2011228806A (ja) * 2010-04-15 2011-11-10 Ntt Docomo Inc 移動通信システムにおける基地局及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"TR 22.803 V0.3.0", 3GPP TECHNICAL REPORT, May 2012 (2012-05-01)
See also references of EP2866483A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513359A (ja) * 2014-03-19 2017-05-25 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるバッファ状態報告の優先順位を決める方法及び装置
US10165572B2 (en) 2014-03-19 2018-12-25 Lg Electronics Inc. Method and apparatus for canceling triggered buffer status report for device-to-device transmission in wireless communication system
US10165573B2 (en) 2014-03-19 2018-12-25 Lg Electronics Inc. Method and apparatus for determining priorities of buffer status reports in wireless communication system
JP2018207519A (ja) * 2014-03-25 2018-12-27 ホアウェイ・テクノロジーズ・カンパニー・リミテッド D2d通信の制御プレーンのためのシステムおよび方法
US10292191B2 (en) 2014-03-25 2019-05-14 Futurewei Technologies, Inc. Systems and methods for control plane for D2D communications
CN111328050B (zh) * 2014-03-25 2021-11-30 华为技术有限公司 用于d2d通信控制平面的系统和方法
JP2017509264A (ja) * 2014-03-25 2017-03-30 ホアウェイ・テクノロジーズ・カンパニー・リミテッド D2d通信の制御プレーンのためのシステムおよび方法
CN111328050A (zh) * 2014-03-25 2020-06-23 华为技术有限公司 用于d2d通信控制平面的系统和方法
CN111586645A (zh) * 2014-07-30 2020-08-25 索尼公司 通信装置及方法
CN111586645B (zh) * 2014-07-30 2023-11-28 索尼公司 通信装置及方法
CN112566280A (zh) * 2014-08-08 2021-03-26 创新技术实验室株式会社 支持终端间通信的无线通信系统中缓冲区状态报告的传输方法和装置
US10582516B2 (en) 2014-09-26 2020-03-03 Nokia Technologies Oy Uplink resource allocation for direct communications between user equipment within groups
JP2017533636A (ja) * 2014-09-26 2017-11-09 アルカテル−ルーセント グループ内のユーザ機器間のダイレクト通信のためのアップリンク・リソース割当
JP2020528694A (ja) * 2017-07-21 2020-09-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて他の端末から信号を受信した端末がフィードバックを送信する方法及び装置
US11722262B2 (en) 2017-07-21 2023-08-08 Lg Electronics Inc. Method and apparatus for transmitting feedback by terminal receiving signal from another terminal in wireless communication system
JPWO2020031346A1 (ja) * 2018-08-09 2021-08-12 富士通株式会社 通信装置、基地局装置、および通信方法
WO2020031346A1 (ja) * 2018-08-09 2020-02-13 富士通株式会社 通信装置、基地局装置、および通信方法

Also Published As

Publication number Publication date
EP2866483A1 (en) 2015-04-29
EP2866483A4 (en) 2016-03-16
US10440764B2 (en) 2019-10-08
JP2017103797A (ja) 2017-06-08
JP6110376B2 (ja) 2017-04-05
US9826562B2 (en) 2017-11-21
US20150146637A1 (en) 2015-05-28
US20180092144A1 (en) 2018-03-29
US20150319793A1 (en) 2015-11-05
US20190394819A1 (en) 2019-12-26
JP6306753B2 (ja) 2018-04-04
JPWO2013183727A1 (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
JP6306753B2 (ja) 制御方法、ユーザ端末、プロセッサ、及び基地局
JP6687452B2 (ja) 移動通信システム、ユーザ端末、プロセッサ、記憶媒体及びプログラム
JP6062088B2 (ja) ユーザ端末、及びプロセッサ
JP6132840B2 (ja) 通信制御方法、ユーザ端末、プロセッサ、及び記憶媒体
JP5905575B2 (ja) 通信制御方法及び基地局
US10021039B2 (en) Mobile communication system and user terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520052

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14405241

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013800890

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE