WO2013182779A1 - Stabilisation d'une ligne de visée d'un système d'imagerie embarqué à bord d'un satellite - Google Patents

Stabilisation d'une ligne de visée d'un système d'imagerie embarqué à bord d'un satellite Download PDF

Info

Publication number
WO2013182779A1
WO2013182779A1 PCT/FR2013/051176 FR2013051176W WO2013182779A1 WO 2013182779 A1 WO2013182779 A1 WO 2013182779A1 FR 2013051176 W FR2013051176 W FR 2013051176W WO 2013182779 A1 WO2013182779 A1 WO 2013182779A1
Authority
WO
WIPO (PCT)
Prior art keywords
sight
line
photodetectors
image
sensor
Prior art date
Application number
PCT/FR2013/051176
Other languages
English (en)
Inventor
Pierre-Luc Georgy
Original Assignee
Astrium Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium Sas filed Critical Astrium Sas
Priority to CN201380001631.9A priority Critical patent/CN103782224B/zh
Priority to EP13731363.1A priority patent/EP2753971B1/fr
Priority to US14/124,362 priority patent/US9143689B2/en
Priority to ES13731363.1T priority patent/ES2547706T3/es
Publication of WO2013182779A1 publication Critical patent/WO2013182779A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/684Vibration or motion blur correction performed by controlling the image sensor readout, e.g. by controlling the integration time
    • H04N23/6842Vibration or motion blur correction performed by controlling the image sensor readout, e.g. by controlling the integration time by controlling the scanning position, e.g. windowing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/689Motion occurring during a rolling shutter mode

Definitions

  • the present invention relates to a method of stabilizing a line of sight of an imaging system which is on board a satellite. It also relates to an imaging system that is adapted to allow such stabilization.
  • Another application of the stabilization of the line of sight of an imaging system that is embedded onboard a satellite is to reduce a blur of images that are captured.
  • This blur is caused by unintentional line-of-sight changes that occur during the exposure time of the image sensor photodetectors.
  • Such unintended variations may be caused by vibrations that are produced by moving elements of the satellite, such as attitude control actuators, or a filter wheel, or even liquid phase fuel.
  • the stabilization of the line of sight of the imaging system is all the more effective when the latency time is short, between the occurrence of a new variation of the line of sight on the one hand, and the moment at which is obtained the result of the characterization of this variation on the other hand.
  • this latency time is short, it is possible to effectively control the satellite attitude control system, or a mobile support of the imaging system, or a variable pointing system, of to compensate for at least part of the line of sight variation that has been detected and characterized. In other words, it is then possible to effectively stabilize the line of sight, with great reactivity compared to its involuntary variations.
  • Another general goal of the line of sight stabilization processes is to produce successive characterizations of the direction of this line of sight at a frequency of characterization which is sufficiently high.
  • Still another object of the line of sight stabilization methods of an imaging system which is on board a satellite is to allow such stabilization with a high accuracy.
  • Another object of the invention is to obtain such improved stabilization of the line of sight, which does not require boarding the satellite additional equipment that is heavy, bulky or expensive.
  • the invention aims to improve the stabilization of the line of sight by modifying as little as possible the equipment that is already present on board the satellite.
  • the invention provides a novel method of stabilizing a line of sight of an imaging system that is embedded onboard a satellite, when the imaging system comprises:
  • a telescope which is arranged to form an image of a scene in a focal plane, along the line of sight of the imaging system;
  • At least one matrix image sensor which is arranged in the focal plane, and adapted to capture successive images in a sequential mode in which photodetectors of the sensor are successively and individually controlled for a phase of accumulation of detection signal; received radiation followed by a reading phase of an accumulated signal, in a scanning order of the photodetectors which is repeated continuously in a loop, each repetition of the scanning of the photodetectors corresponding to a new captured image, and the reading phase for any one of the photodetectors being carried out at the same time as the accumulation phase for other photodetectors.
  • the image sensor that is used for the method of the invention is adapted to capture images in so-called “rolling shutter” mode in English, as opposed to the so-called global mode, or “snapshot” mode, for which the phase detection signal accumulation is synchronous for all photodetectors, to capture the same image.
  • a portion of An image that is captured in one of the windows during one of the repetitions of the photodetector scan is compared with a reference image content for the same window.
  • a variation of the line of sight can be characterized, between the repetition of the scanning of the photodetectors and a reference scan, and a new characterization of the variation of the line of sight is obtained separately for each window at each repetition of the scanning of the photodetectors.
  • An orientation of at least a portion of the imaging system is then changed to alter the line of sight, to at least partially compensate for the variation in line of sight that has been characterized.
  • the stabilization method of the invention uses the image sensor that operates in "rolling shutter” mode, so that this sensor is not added specifically to stabilize the line of sight when it is already planned for a imaging function, including a high resolution imaging function.
  • the total playing time of each window is less than the duration of capturing a complete image with all of the photodetectors of the sensor. It can be much lower than the latter when the window is much smaller than the total area of the sensor that is used for the imaging function.
  • the portion of the image that is captured in each window at each scanning of the "rolling shutter" mode is compared with that captured during a previous scan, but the use of several different windows makes it possible to obtain comparisons of image portions at the scanning frequency of the rolling shutter mode multiplied by the number of windows.
  • the frequency of characterization of the variations of the line of sight is greater, and may even be much greater than that of the capture of complete images by the sensor.
  • the windows can be read with a total reading time that is short for each window. This is the case, in particular, when the photodetectors of the same window are read consecutively, that is to say one after the other.
  • the corresponding image portions also constitute amounts of data which are reduced, for which the comparison and correlation operations of image contents can be performed quickly. In other words, the latency between the occurrence of a new variation of the line of sight and obtaining the result of its characterization can be short or very short. Thus, it is possible to achieve a very reactive stabilization of the line of sight.
  • the variations of the line of sight are characterized by using the same image sensor as that of the imaging function, which can have a very fine resolution. In this way, the variations of the line of sight are characterized with a sensitivity and a precision which are high.
  • An advantage of the method of the invention further results from the fact that the characterization of the variations of the line of sight can be performed while complete images are captured with the sensor, without interruption or disruption of this imaging function.
  • the method of the invention does not require additional components or adaptations that are consistent with the components already provided for the imaging function.
  • the same reference image content can be used for several successive characterizations of the variation of the line of sight which are obtained from the same windows, so that a same reference direction is used for these characterizations ;
  • the reference image content that is used for each window may be the portion of the image that has been captured in the same window during the repetition of the scanning photodetectors corresponding to the characterization of the variation of the line of sight just prior to the new characterization.
  • a direction of the line of sight that results from the previous characterization constitutes a reference direction for the new characterization
  • the windows for which the portions of images are compared between two repetitions of the scanning of the photodetectors, can be disjointed inside the sensor
  • the windows for which the image portions are compared between two repetitions of the scanning of the photodetectors may correspond to different positions of a same template inside the sensor.
  • the windows are then determined by successive translations of the template inside the sensor as the photodetectors scan for each image that is captured;
  • a result of each characterization of the variation of the line of sight can be weighted, selected or rejected according to a content or a level of quality of the portion of the image that is captured and compared with the content of reference image for this characterization;
  • an average variation of the line of sight can be calculated from several results of characterizations of the variation of the line of sight which were obtained for different windows or for repetitions different from the scanning of photodetectors;
  • the method of the invention may further comprise the following steps: calculating the Fourier series decomposition for the results of the successive characterizations of the variation of the line of sight, in the form of a sum of components with variations periodicals which are respectively associated with values of a frequency of variation of the line of sight; applying a correction to certain amplitudes of these periodically varying components, so as to reduce variations of these amplitudes in intervals which are limited around multiples of the scanning frequency of the photodetectors; then compute a Fourier series recomposition from the periodically varying components, using the amplitudes that have been corrected within the limited intervals around the multiples of the scanning frequency of the photodetectors, this Fourier series recomposition providing results corrected for the successive characterizations of the variation of the line of sight;
  • the repeated scanning of the photodetectors for capturing the successive images can be done first at a first frequency during a first duration, then at a second frequency which is different from the first frequency during a second duration, the first and second frequencies being selected so that spectrum folds that affect the results obtained during each duration for the variation of the line of sight, are different.
  • the scanning of the photodetectors during one of the first and second durations may be slower than during the other of these durations, using the same number of photodetectors for the sequential mode which is implemented during each of the durations .
  • the scan which is performed at the highest frequency can be restricted to a first number of the photodetectors of the image sensor, smaller than a second number of the photodetectors of the image sensor which are used for scanning at the frequency the weakest ; and
  • Several matrix image sensors may be arranged in the focal plane to simultaneously capture respective images according to the sequential mode which is then implemented separately for each image sensor.
  • the scanning of the photodetectors for the sequential mode can advantageously be repeated at a first frequency for a first of these image sensors and at a second frequency for a second frequency of these, with the first and second frequencies which are different and selected so that multiples of the first frequency do not coincide with multiples of the second frequency.
  • the image sensor may comprise at least two separate control and reading circuits which are respectively dedicated to complementary parts of the sensor each formed of a subset of adjacent photodetectors, so that image parts are respectively entered by the parts of the sensor according to the sequential mode which is implemented separately and simultaneously within them. At least one of the windows is defined within each portion of the sensor, and the portions of images that are captured in each window within each portion of the sensor are compared between two different repetitions of the scanning of the photodetectors of that sensor. part of the sensor.
  • the characterization frequency of the line-of-sight variation can also be increased by using a plurality of parallel image sensors.
  • separate image sensors may be arranged in the focal plane, so as to simultaneously capture respective images in the sequential mode implemented separately for each sensor. Portions images that are captured in windows inside each sensor, are then compared between two different repetitions of the scanning of the photodetectors of this sensor, simultaneously for all the sensors.
  • the orientation of at least a portion of the imaging system can be changed by varying an orientation of a moving support of the imaging system. compared to a main structure of the satellite.
  • an orientation of a variable pointing device which is arranged to adjust the line of sight with respect to the image sensor, may be varied equivalently.
  • the orientation of the imaging system can be changed by varying the attitude of the satellite and keeping the line of sight fixed relative to the satellite.
  • the invention also proposes an imaging system which is intended to be on board a satellite, and which is adapted to stabilize a line of sight of this imaging system, comprising:
  • a telescope which is arranged to form an image of a scene in a focal plane, along the line of sight of the imaging system;
  • At least one matrix image sensor which is arranged in the focal plane, and adapted to capture successive images in the sequential mode
  • an image comparison unit which is adapted to select several windows each formed from a different subset of adjacent photodetectors inside the sensor, each window being smaller than a total useful area of the sensor, and adapted to compare an image portion that is captured in one of the windows during one of the repetitions of the scanning of the photodetectors with a reference image content for the same window, so as to characterize a variation of the line of between the repetition of the scanning of the photodetectors and a reference scan, with a new characterization of the variation of the line of sight which is obtained separately for each window at each repetition of the scanning of the photodetectors;
  • a control unit which is adapted to control a change of an orientation of at least part of the imaging system, so as to change the line of sight to at least partially compensate for its variation.
  • Such a system is adapted to implement a stabilization method as described above.
  • control unit may be arranged to control a change of orientation, a displacement or an operation of at least one mobile device to compensate at least partially the variation of the line of referred.
  • This equipment can be a mobile support of the imaging system which is adapted to vary the orientation of the latter, a variable pointing device of the imaging system which is arranged to modify the line of sight with respect to the image sensor. , or a satellite attitude and orbit control system.
  • several of these mobile devices can be controlled in a combined way by the control unit.
  • FIG. 1 schematically shows a satellite which is equipped with an observation telescope, to which the invention can be applied;
  • FIGS. 2a and 2b respectively show two image sensors operating in sequential mode, which can be used to implement the invention
  • FIG. 3a is a timing diagram which illustrates a sequence of a method according to the invention for characterizing variations of a line of sight
  • FIG. 3b corresponds to FIG. 3a for a variant of the mode of characterization of the variations of the line of sight; and FIGS. 4a to 4e illustrate an improvement of the invention, to eliminate a systematic error in the characterization of the line of sight.
  • FIG. 1 symbolically represents a satellite 100, which may be a geostationary satellite or a low orbiting satellite around the Earth. It is equipped with a telescope 10, whose line of sight is denoted LS for "line of sight" in English.
  • the telescope 10 may have a structure with two mirrors: a primary mirror 11 and a secondary mirror 12.
  • the references 13 and 14 respectively designate a reflecting mirror and the optical input of the telescope 10.
  • the telescope 10 forms the image of a surface portion of the Earth in a focal plane, inside which is disposed an image sensor 20.
  • the image sensor 20 is fixed relative to the telescope 10.
  • the object of the invention is to effectively stabilize the LS line of sight, to suppress or reduce unintentional variations of this line of sight.
  • Such variations may be caused by vibrations of the satellite 100 itself, caused for example by the residual terrestrial atmosphere at the altitude of the satellite 100, or by mobile elements which are present on board.
  • At least one telescope variable pointing system which can be a fine pointing system, a coarse pointing or a combination of both, can be used to adjust the line of sight LS with respect to the image sensor 20.
  • the architecture and operation of such pointing systems are known to those skilled in the art, so that it is not necessary to repeat them here.
  • the telescope 10 can be rigidly attached to the satellite 100, and the line of sight LS is directed to an observation area on the surface of the Earth by directly adjusting the attitude of the satellite itself.
  • the stabilization of the line of sight LS is obtained by directly controlling an operation of the orbit control system and attitude of the satellite 100, known by the acronym SCOA.
  • Reference 101 designates a symbolic representation of this SCAO system.
  • the image sensor 20 comprises a matrix of photodetectors 21 which are arranged in rows and columns.
  • this image sensor may comprise two thousand photodetectors 21 along its two row and column directions, which are denoted respectively DL and DC.
  • the sensor 20 is adapted to capture images continuously in sequential mode, or "rolling mode". According to this particular mode of image capture, all photodetectors 21 or a selection of them are read in turn according to a fixed scanning order of the photodetectors, and each new execution of the scan corresponds to a new image which is captured.
  • Each reading of one of the photodetectors 21 is consecutive to an exposure time of the photodetector, during which an electrical signal is accumulated proportionally to a light intensity which is received by this photodetector during the exposure time.
  • the image acquisition frequency which is equal to the repetition frequency of the scanning of photodetectors 21, may be of the order of 0.1 Hz (hertz).
  • the scan traverses all the photodetectors 21 of the sensor 20, the images which are captured are hereinafter referred to as full-frame images, or full-frame image capture mode ("full frame images"). image capture mode ").
  • the reference 102 in FIG. 1 denotes a processing unit for the images that are captured. It is connected in input to a data output of the image sensor 20, and output to a control unit 103, which is adapted to control the operation of the mobile equipment used to change the direction of the line of sight LS .
  • the scanning order of the photodetectors 21 may be arbitrary with respect to the location of each photodetector in the array 20.
  • the present invention is compatible with any scanning order, but for reasons of simplicity of 2a and 2b show one (of) scan (s) which is (are) carried out progressively in the matrix 20 following each line in the direction DL, then passing to the next line in the direction DC . After having finished reading the last photodetector 21 of the last line, the scanning is repeated without interruption to the first detector of the first line, cyclically.
  • several windows are defined in the matrix 20, which are each formed of adjacent photodetectors 21.
  • the photodetectors 21 of the same window can be read consecutively one after the other during the scanning of the sequential mode, in order to minimize the total duration of reading of the window.
  • image distortion within each window which is due to the sequential mode of image capture, can also be minimized by such consecutive reading.
  • the same set of windows is repeated each time the scan is repeated.
  • the definition or calculation of the windows can be performed by the processing unit 102, as well as comparison or correlation operations between image contents that are captured during different executions of the sequential mode scan.
  • the windows that are used can be defined in several ways. For example, it may be fixed windows which are marked by the coordinates of the photodetectors 21 in the matrix of the sensor 20. In this case, they may be disjoint and distributed evenly throughout the useful surface of the sensor 20. Alternatively, each window may result from window template, fixed dimensions but which is shifted in the matrix of the sensor 20 as and sweeping. Such a mode of defining the windows may be advantageous when the order of travel of the photodetectors 21 in the scanning of the sequential mode of image capture is fixed elsewhere. Each window may be rectangular or square inside the matrix, and has a number of photodetectors 21 smaller than, or much smaller than, the total number of photodetectors of the image sensor 20. For example, each window may have 100 x 100 photodetectors, so that the total reading time of a window can be 400 times shorter than that of the entire matrix. In Figure 2a, four windows have been fixed, which are referenced 22a to 22d.
  • the image content within each window is stored. Then, at each subsequent entry of a new image, the image content of each window is compared with that of the first image captured for the same window. Such a comparison can be made using one of the known methods of image correlation. Such methods may implement image content recalculations with respect to one another to obtain correlations between image contents up to finer scales than the step of photodetectors in the image sensor which is used. In this way, a variation of the line of sight LS is determined from the variation of image content for each window between the first scan and each new scan of the sequential image capture mode.
  • a window which is used in the first image captured is taken up in the subsequent image, so that the variation of position of the image content in this window between the two executions of the scanning makes it possible to measure the variation of the line sighting LS.
  • the frequency of obtaining a new result of characterization of the variation of the line of sight LS is therefore equal to the repetition frequency of the scanning of the sequential mode, multiplied by the number of windows that are used.
  • FIG. 3a symbolically illustrates a complete sequence of implementation of a method according to the invention.
  • the ordinate axis identifies all the photodetectors 21 of the sensor 20, indicating the windows 22a-22d.
  • the axis of the abscissa identifies the time which is noted t, and each integer value which is indicated on this axis corresponds to an additional scan of all the photodetectors 21 according to the sequential mode of image capture.
  • the scans corresponding to four images in full frame which are seized successively are represented, and Atf is the duration of each full frame scan.
  • the duration of the accumulation phase is Ati, and the duration of the reading phase Atr.
  • a measurement image content that is noted Ma is obtained for the window 22a at the end of a new duration Ata within the acquisition time of the second complete picture.
  • Mb-Md measurement image contents are also obtained for the windows 22b-22d, respectively.
  • the measurement image content Ma is obtained, it is compared with the reference image content Ra to obtain the first result C1 characterizing the variation of the line of sight LS.
  • Atx is the processing time which is necessary to obtain the result C1 from the two contents of images Ra and Ma.
  • C2-C4 results of characterization of the variation of the line of sight LS are also obtained for each windows 22b-22d during the second scan of the matrix of the sensor 20, and the collection of successive results C5, ..., C12, ... is continued identically during subsequent scans.
  • the image content Ma that is obtained during each scan of the sensor matrix 20 from the second of these scans is compared with the same reference picture content Ra that was obtained during of the first scan.
  • the reference picture contents Rb-Rd are identically taken up in each subsequent scan for comparison with the measurement picture content Mb-Md for the corresponding window 22b-22d.
  • the direction of the line of sight corresponding to each reference image portion Ra-Rd is taken as the reference direction for the variations that are subsequently characterized separately for each window 22a-22d.
  • the average frequency of obtaining the results of characterization of the variation of the line of sight LS is the image acquisition frequency with all the detectors of the matrix 20, multiplied by the number N of the windows used, that is to say N x 1 / Atf.
  • the invention thus makes it possible to characterize the instantaneous direction of the line of sight LS with a refresh rate that can be greater by at least one order of magnitude with respect to the observation image capture frequency when more than ten windows are used.
  • the minimum duration that is necessary to obtain a new result for the variation of the line of sight LS, from an actual variation of the direction of the line of sight, is Ata + ⁇ for the window 22a, and with expressions similar for other windows 22b-22d.
  • This duration for each window is commonly called latency. It is much lower than that which would result from a characterization of the variation of the line of sight made from the images in full frame. In the latter case, that is to say in using the invention, the duration of latency would indeed be equal to the sum of Atf and the processing time required to correlate two images in full frame.
  • the invention makes it possible to reduce by more than two orders of magnitude the latency time to characterize the variation of the line of sight.
  • At least some of the results of the characterizations of the variation of the line of sight LS can be weighted, selected or rejected among the following of all the results C1, C2, ... which are successively obtained.
  • a result which is obtained for a window whose measurement image content is weakly contrasted can be associated with a low value of a reliability coefficient, or with the zero value of this coefficient corresponding to a rejection of the result. This may be the case when the image content of the window is an area of cloud cover on the surface of the Earth or a maritime area.
  • a low value of reliability coefficient can also be assigned to all results that come from the same window whose reference image content has a low contrast or a poor image quality at the first image that is captured.
  • the series of results C1, C2, ... which are successively obtained for the variations of the line of sight LS can be processed in different ways. For example, it can be divided into successive subsets of results, with each subset containing a fixed number of results that have been obtained successively. An average of the results for the variation of the line of sight LS can then be calculated for each subset, possibly using values of a reliability coefficient which have been determined in accordance with one of the first improvements of the invention. .
  • the number of elementary results in each subset is equal to the number of windows that are used in the matrix of the sensor 20, each average result corresponds to a variation of the line of sight LS which is associated with a new image in full frame entered in sequential mode.
  • a filtering can be applied to the elementary results C1, C2, ... which are obtained for the variation of the line of sight LS, successively for all the windows and for the repetitions of the scan.
  • a filtering may consist in averaging a fixed number of elementary results, in a sliding manner with a progressive shift in the ordered series of all the elementary results which are successively obtained.
  • Such a filtering is of the low-pass type with respect to the rate of variation of the results C1, C2, etc.
  • Other filterings can be applied alternately, with characteristics of filters that are different.
  • a third improvement of the invention allows to eliminate a systematic error which could intervene in the successive results C1, C2, ... which are obtained for the variations of the line of sight LS.
  • Such systematic error may arise from the fact that reference directions for the line of sight LS, which are used for characterizations made from different windows, are themselves different.
  • This difficulty stems from the fact that separate reference times are used to set the reference direction of the line of sight LS for each window, and the line of sight LS may have varied between these times.
  • an error of this type which affects the series of results C1, C2,... Has a time period which is equal to that of the repetition of the scanning of the matrix of the sensor 20, for the sequential mode of image capture.
  • the abscissa axis identifies the time t as in FIG. 3a, indicating the number of the image in full frame that has been inputted. It is assumed that the number N of the windows used is sufficiently high for the curves of diagrams 4b-4e to appear continuous.
  • FIG. 4a schematically represents an example of real variations of the line of sight LS, which are denoted ALSree on the ordinate. These variations are represented according to a single coordinate on the diagrams of FIGS. 4a-4e to facilitate their display, it being understood that they correspond in reality to two separate angular coordinates.
  • the frame which is denoted Ref in FIG. 4a corresponds to the capture of the first image, for which the image contents inside the windows are subsequently taken up as reference image contents.
  • the dashed line curve of the diagram of FIG. 4b links the results C1, C2, ... which are obtained for the variation of the line of sight LS using the sequence of the method of FIG. 3a.
  • These results which are located on the ordinate axis noted ALSmeasurement, are deduced directly from the comparisons between each measurement image content acquired during a subsequent scan, and the corresponding reference image content acquired during the scanning. capture of the first image Ref.
  • the actual displacement of the line of sight LS that occurred during this first scan Ref therefore appears in inverted form as a systematic error in all the successive results of characterization of the line of sight.
  • This systematic error therefore possesses a time period which is equal to the duration Atf of the scanning of the complete frame of the detector 20.
  • the curve in broken line of the diagram of FIG. 4b is taken from FIG. 4a, since it forms the basis of the variations of the line of sight that are calculated, on which is superimposed the systematic error.
  • the diagram of Figure 4c represents the amplitudes A Fo urier direct Fourier decomposition of components of changes which have been calculated for the line of sight LS, as represented by the solid line curve in this figure 4b.
  • the abscissa axis of the diagram is therefore a temporal frequency, which is expressed in multiples of the frequency 1 / Atf of the sequential mode scan.
  • the components whose frequencies are located around the zero frequency correspond to the actual variation of the line of sight LS during successive sweeps of the sequential mode.
  • the components whose frequencies are multiples of 1 / Atf correspond to repeated repetitions of the variations of the line of sight which occurred during the capture scan of the first image Ref, because of successive repetitions of the reference image contents for be correlated with the contents of measurement images.
  • FIG. 4e illustrates the result of this recomposition noted AL-corrected: the measured variations of the line of sight which have been filtered in this way reproduce the real variations of FIG. 4a, without the error due to the displacement of the line of sight during the capture scan of the first image Ref.
  • a fourth enhancement detects components of the actual variation of the line of sight LS, whose frequencies are multiples of that of the sequential image capture mode scan. Indeed, in principle, these components can not be detected using sampling that is restricted by the repetition frequency of the sequential mode scan. To overcome this limitation, the repetition frequency of the sequential mode scan between two series of successive images is voluntarily changed. For example, image capture in sequential mode is continued for a first imaging time according to the maximum frequency that is enabled by the image sensor 20 with full frame operation, corresponding to the use of all photodetectors. . Then the image capture can be performed during a second imaging time by increasing the duration of a full frame scan to a value that is greater than Atf.
  • the frequencies for which the variations of the line of sight can not be detected are different between the two imaging times. If a periodically varying component of the line of sight extends at least in part over the two imaging times, then it is necessarily detected during at least one of the two imaging times.
  • the duration of a full frame scan can be increased for example by intentionally introducing delays in the sequencing of accumulation and reading phases that are performed for the photodetectors during scanning, without changing the number of photodetectors that are used.
  • the effective duration of a sequential mode scan can be reduced while maintaining a constant rate for reading the photodetectors, but reducing the number of photodetectors that are used during a scan.
  • a reduced number of photodetectors is used for images that are captured during the second imaging period, so that the sequential scan frequency is higher during the second imaging period than is effective during the first imaging time.
  • the photodetectors which are used during the second imaging period may be limited to a determined number of columns of the image sensor 20, counted progressively from an edge thereof. The windows that are used during the second imaging period are then also located within this set of columns.
  • this fourth improvement consists in modifying the frequency of the sequential mode scan so that the spectral folds that are due to measurement sampling of the variations of the line of sight, are different for the two imaging times.
  • the fourth improvement of the invention can also be implemented by modifying the reading frequency between at least some of the sensors.
  • the frequencies for which line-of-sight variations can not be detected because they coincide with multiple repetition frequency multiples of the sequential mode scan, differ from sensor to sensor.
  • one of the image sensors compensates for the spectral deficiencies of another of the sensors, to restore all the possible frequency values for the variations of the line of sight by meeting the spectral intervals in which each of the sensors is effective.
  • the repetition frequency of the mode scan sequential can be initially 5 Hz (hertz) for all image sensors but, for one of the sensors, a pause of 50 ms (millisecond) can be introduced after each complete scan of its photodetectors.
  • the apparent sequential scan repeat frequency becomes 4 Hz, while it remains 5 Hz for the other sensor (s).
  • the components of the LS line of sight variation which have frequencies multiple of that of the sequential image capture mode scan can be determined using other means than those of the imaging system.
  • the amplitudes of these components can be determined from measurements that are made using inertial sensors of the satellite 100, such as gyroscopes, or using stellar sensors. The results of such complementary measurements may be combined with those obtained using the imaging system according to the invention.
  • Figure 2b corresponds to Figure 2a for another alternative embodiment of the invention.
  • the image sensor 20 is equipped with several, for example two circuits for controlling and reading photodetectors, which are each dedicated to a complementary part of the sensor 20.
  • the photodetectors of a first half 20a of the useful surface of the sensor 20 are controlled and read by a first circuit (not shown), and those of a second half 20b of the useful surface are controlled and read by a second circuit (also not shown), separated from the first.
  • the parallel use of several control and read circuits in combination with the same matrix of photodetectors is well known to those skilled in the art.
  • Sequential mode image capture operations can then be performed in parallel and simultaneously in each sensor half 20a, 20b, so that the total time of capture of a full frame image is halved.
  • the method of the invention can then be implemented inside each sensor half 20a, 20b, using at least one window inside each of them.
  • the windows 22a-22c are located in the half 20a of the image sensor 20, and the windows 22d-22f are located in the half 22b of the same sensor.
  • This variant of the invention makes it possible to double the maximum frequency of the variations of the line of sight LS that can be measured.
  • the image sensor 20 can be replaced by several independent sensors which are placed in the focal plane of the telescope 10. It is understood by several independent sensors matrix sensors of the type of that of Figure 2a, and which have respective and separate matrices of photodetectors. The results of line-of-sight variation characterizations that are obtained from the images captured by the different sensors are grouped into a chronologically ordered single series, which can be processed as described above.
  • the windows are preferably selected within each sensor portion or each sensor to be read at times that are different. In this way, superior accuracy can be obtained to characterize the variations of the line of sight, from all the windows thus selected.
  • these two variants may be combined with any one or more of the four improvements that have been described.
  • the implementation variant which is illustrated in FIG. 3b can present a systematic error which affects the successive characterizations of the variation of the line of sight, similar to that of the embodiment of FIG. 3a. It can then be deleted in the same way using the third improvement described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Image Input (AREA)
  • Studio Devices (AREA)

Abstract

Un procédé de stabilisation d'une ligne de visée (LS) d'un système d'imagerie qui est embarqué à bord d'un satellite (100) utilise des fenêtres sélectionnées à l'intérieur d'un capteur d'image (20). Des variations de la ligne de visée peuvent être caractérisées à une fréquence qui est supérieure à celle d'un mode séquentiel de saisie d'images par le capteur. Le procédé de stabilisation peut être mis en œuvre en même temps que les images sont saisies en pleine trame au moyen du système d'imagerie.

Description

STABILISATION D'UNE LIGNE DE VISEE D'UN SYSTEME D'IMAGERIE EMBARQUE A BORD D'UN SATELLITE
La présente invention concerne un procédé de stabilisation d'une ligne de visée d'un système d'imagerie qui est embarqué à bord d'un satellite. Elle concerne aussi un système d'imagerie qui est adapté pour permettre une telle stabilisation.
Il est connu d'utiliser des images qui sont saisies successivement à partir d'un satellite pour détecter des variations d'une ligne de visée d'imagerie, puis de corriger cette ligne de visée pour en compenser les variations.
Lorsque la ligne de visée est fixe par rapport au satellite, des modifications de l'orientation du satellite entier qui sont effectuées pour compenser les variations de la ligne de visée permettent de stabiliser l'attitude du satellite, c'est-à-dire son orientation angulaire par rapport à des repères externes. En particulier, ces repères peuvent être imagés dans les images qui sont saisies.
Une autre application de la stabilisation de la ligne de visée d'un système d'imagerie qui est embarqué à bord d'un satellite consiste à réduire un flou des images qui sont saisies. Ce flou est causé par les variations involontaires de la ligne de visée qui interviennent pendant la durée d'exposition des photodétecteurs du capteur d'image. Ces variations involontaires peuvent être provoquées par des vibrations qui sont produites par des éléments mobiles du satellite, telles que des actionneurs de contrôle d'attitude, ou une roue à filtres, ou même du carburant en phase liquide.
De façon générale, la stabilisation de la ligne de visée du système d'imagerie est d'autant plus efficace que le temps de latence est court, entre la survenance d'une nouvelle variation de la ligne de visée d'une part, et l'instant auquel est obtenu le résultat de la caractérisation de cette variation d'autre part. Lorsque ce temps de latence est court, il est possible de commander efficacement le système de contrôle d'attitude du satellite, ou un support mobile du système d'imagerie, ou encore un système de pointage variable, de façon à compenser au moins en partie la variation de la ligne de visée qui a été détectée et caractérisée. Autrement dit, il est alors possible de stabiliser efficacement la ligne de visée, avec une grande réactivité par rapport à ses variations involontaires.
Un autre but général des procédés de stabilisation de la ligne de visée consiste à produire des caractérisations successives de la direction de cette ligne de visée selon une fréquence de caractérisation qui soit suffisamment élevée.
Un autre but encore des procédés de stabilisation de la ligne de visée d'un système d'imagerie qui est embarqué à bord d'un satellite consiste à permettre une telle stabilisation avec une précision qui soit élevée. En particulier, il est nécessaire de caractériser les variations de la ligne de visée avec une précision supérieure à celle qui peut être obtenue en utilisant des gyroscopes ou des détecteurs stellaires.
Enfin, un autre but encore de l'invention consiste en l'obtention d'une telle stabilisation améliorée de la ligne de visée, qui ne nécessite pas d'embarquer à bord du satellite des équipements supplémentaires qui soient lourds, encombrants ou coûteux. Autrement dit, l'invention vise à améliorer la stabilisation de la ligne de visée en modifiant le moins possible les équipements qui sont déjà présents à bord du satellite.
Pour atteindre ces buts et d'autres, l'invention propose un nouveau procédé de stabilisation d'une ligne de visée d'un système d'imagerie qui est embarqué à bord d'un satellite, lorsque ce système d'imagerie comprend :
- un télescope, qui est agencé pour former une image d'une scène dans un plan focal, suivant la ligne de visée du système d'imagerie ; et
- au moins un capteur d'image matriciel qui est disposé dans le plan focal, et adapté pour saisir des images successives selon un mode séquentiel dans lequel des photodétecteurs du capteur sont commandés successivement et individuellement pour une phase d'accumulation de signal de détection d'un rayonnement reçu suivie par une phase de lecture d'un signal accumulé, selon un ordre de balayage des photodétecteurs qui est répété continûment en boucle, chaque répétition du balayage des photodétecteurs correspondant à une nouvelle image saisie, et la phase de lecture pour l'un quelconque des photodétecteurs étant effectuée en même temps que la phase d'accumulation pour d'autres des photodétecteurs.
Autrement dit, le capteur d'image qui est utilisé pour le procédé de l'invention est adapté pour saisir les images en mode dit «rolling shutter» en anglais, par opposition au mode dit global, ou «snapshot», pour lequel la phase d'accumulation du signal de détection est synchrone pour tous les photodétecteurs, pour saisir une même image.
Dans le procédé de l'invention, pour plusieurs fenêtres qui sont formées chacune d'un sous-ensemble différent de photodétecteurs adjacents à l'intérieur du capteur, et chaque fenêtre étant plus petite qu'une surface utile totale du capteur, une portion d'image qui est saisie dans l'une des fenêtres lors d'une des répétitions du balayage des photodétecteurs est comparée avec un contenu d'image de référence pour la même fenêtre. Ainsi, une variation de la ligne de visée peut être caractérisée, entre la répétition du balayage des photodétecteurs et un balayage de référence, et une nouvelle caractérisation de la variation de la ligne de visée est obtenue séparément pour chaque fenêtre à chaque répétition du balayage des photodétecteurs. Une orientation d'une partie au moins du système d'imagerie est alors changée de façon à modifier la ligne de visée, pour compenser au moins partiellement la variation de la ligne de visée qui a été caractérisée.
Ainsi, le procédé de stabilisation de l'invention utilise le capteur d'image qui fonctionne en mode «rolling shutter», si bien que ce capteur n'est pas ajouté spécialement pour stabiliser la ligne de visée lorsqu'il est déjà prévu pour une fonction d'imagerie, notamment une fonction d'imagerie à haute résolution.
Grâce à l'utilisation de fenêtres dans le capteur pour acquérir des portions d'image qui sont réduites, la durée totale de lecture de chaque fenêtre est inférieure à la durée de saisie d'une image complète avec tous les photodétecteurs du capteur. Elle peut être très inférieure à cette dernière lorsque la fenêtre est beaucoup plus petite que la surface totale du capteur qui est utilisée pour la fonction d'imagerie. La portion d'image qui est saisie dans chaque fenêtre à chaque balayage du mode «rolling shutter» est comparée à celle qui a été saisie lors d'un balayage antérieur, mais l'utilisation de plusieurs fenêtres différentes permet d'obtenir des comparaisons de portions d'image à la fréquence du balayage du mode «rolling shutter» multipliée par le nombre de fenêtres. Ainsi, la fréquence de caractérisation des variations de la ligne de visée est supérieure, et peut être même très supérieure, à celle de la saisie d'images complètes par le capteur.
En outre, grâce à la taille réduite des fenêtres, celles-ci peuvent être lues avec une durée totale de lecture qui soit courte pour chaque fenêtre. Tel est le cas, notamment, lorsque les photodétecteurs d'une même fenêtre sont lus consécutivement, c'est-à-dire les uns à la suite des autres. Les portions d'image correspondantes constituent aussi des quantités de données qui sont réduites, pour lesquelles les opérations de comparaison et de corrélation de contenus d'images peuvent être réalisées rapidement. Autrement dit, le temps de latence entre la survenance d'une nouvelle variation de la ligne de visée et l'obtention du résultat de sa caractérisation peut être court ou très court. Ainsi, il est possible de réaliser une stabilisation très réactive de la ligne de visée.
De plus, les variations de la ligne de visée sont caractérisées en utilisant le même capteur d'image que celui de la fonction d'imagerie, qui peut posséder une résolution très fine. De cette façon, les variations de la ligne de visée sont caractérisées avec une sensibilité et une précision qui sont élevées.
Un avantage du procédé de l'invention résulte en outre du fait que la caractérisation des variations de la ligne de visée peut être effectuée pendant que des images complètes sont saisies avec le capteur, sans interruption ni perturbation de cette fonction d'imagerie.
Enfin, le procédé de l'invention ne nécessite pas de composants supplémentaires, ni d'adaptations qui soient conséquentes, par rapport aux composants déjà prévus pour la fonction d'imagerie.
Dans divers modes de mise en œuvre de l'invention, les perfectionnements suivants peuvent être utilisés, séparément ou en combinaison de plusieurs d'entre eux : - le même contenu d'image de référence peut être repris pour plusieurs caractérisations successives de la variation de la ligne de visée qui sont obtenues à partir d'une même des fenêtres, de sorte qu'une même direction de référence soit utilisée pour ces caractérisations ;
- alternativement, pour chaque nouvelle caractérisation de la variation de la ligne de visée, le contenu d'image de référence qui est utilisé pour chaque fenêtre peut être la portion d'image qui a été saisie dans la même fenêtre lors de la répétition du balayage des photodétecteurs correspondant à la caractérisation de la variation de la ligne de visée juste antérieure à la nouvelle caractérisation. Autrement dit, une direction de la ligne de visée qui résulte de la caractérisation antérieure constitue une direction de référence pour la nouvelle caractérisation ;
- les fenêtres pour lesquelles les portions d'images sont comparées entre deux répétitions du balayage des photodétecteurs, peuvent être disjointes à l'intérieur du capteur ;
- les fenêtres pour lesquelles les portions d'images sont comparées entre deux répétitions du balayage des photodétecteurs, peuvent correspondre à des positions différentes d'un même gabarit à l'intérieur du capteur. Les fenêtres sont alors déterminées par des translations successives du gabarit à l'intérieur du capteur au fur et à mesure du balayage des photodétecteurs pour chaque image qui est saisie ;
- un résultat de chaque caractérisation de la variation de la ligne de visée peut être pondéré, sélectionné ou rejeté en fonction d'un contenu ou d'un niveau de qualité de la portion d'image qui est saisie et comparée avec le contenu d'image de référence pour cette caractérisation ;
- plusieurs résultats de caractérisations de la variation de la ligne de visée qui ont été obtenus successivement pour des fenêtres différentes ou pour des répétitions différentes du balayage des photodétecteurs, peuvent ensuite être filtrés par rapport à une vitesse de variation de ces résultats ;
- une variation moyenne de la ligne de visée peut être calculée à partir de plusieurs résultats de caractérisations de la variation de la ligne de visée qui ont été obtenus pour des fenêtres différentes ou pour des répétitions différentes du balayage des photodétecteurs ;
- une erreur systématique qui peut être présente dans les résultats des caractérisations successives de la variation de la ligne de visée peut être supprimée, par exemple en utilisant une décomposition en série de Fourier. Pour cela, le procédé de l'invention peut comprendre en outre les étapes suivantes : calculer la décomposition en série de Fourier pour les résultats des caractérisations successives de la variation de la ligne de visée, sous la forme d'une somme de composantes à variations périodiques qui sont associées respectivement à des valeurs d'une fréquence de variation de la ligne de visée ; appliquer une correction à certaines amplitudes de ces composantes à variations périodiques, de façon à réduire des variations de ces amplitudes dans des intervalles qui sont limités autour de multiples de la fréquence du balayage des photodétecteurs ; puis calculer une recomposition de série Fourier à partir des composantes à variations périodiques, en utilisant les amplitudes qui ont été corrigées à l'intérieur des intervalles limités autour des multiples de la fréquence du balayage des photodétecteurs, cette recomposition de série de Fourier fournissant des résultats corrigés pour les caractérisations successives de la variation de la ligne de visée ;
- le balayage répété des photodétecteurs pour saisir les images successives peut être effectué d'abord à une première fréquence pendant une première durée, puis à une seconde fréquence qui est différente de la première fréquence pendant une seconde durée, les première et seconde fréquences étant sélectionnées de sorte que des repliements de spectre qui affectent les résultats obtenus pendant chaque durée pour la variation de la ligne de visée, soient différents. Dans ce cas, le balayage des photodétecteurs pendant l'une des première et seconde durées peut être plus lent que pendant l'autre de ces durées, en utilisant un même nombre de photodétecteurs pour le mode séquentiel qui est mis en œuvre pendant chacune des durées. Alternativement, le balayage qui est effectué à la fréquence la plus élevée peut être restreint à un premier nombre des photodétecteurs du capteur d'image, plus petit qu'un second nombre des photodétecteurs du capteur d'image qui sont utilisés pour le balayage effectué à la fréquence la plus faible ; et
- plusieurs capteurs d'images matriciels peuvent être disposés dans le plan focal pour saisir simultanément des images respectives selon le mode séquentiel qui est alors mis en œuvre séparément pour chaque capteur d'image. Dans ce cas, le balayage des photodétecteurs pour le mode séquentiel peut avantageusement être répété à une première fréquence pour un premier de ces capteurs d'images et à une seconde fréquence pour un second de ceux-ci, avec les première et seconde fréquences qui sont différentes et sélectionnées de sorte que des multiples de la première fréquence ne coïncident pas avec des multiples de la seconde fréquence.
Selon un mode préféré de mise en œuvre de l'invention, plusieurs canaux de lecture des photodétecteurs du capteur d'image peuvent être prévus pour fonctionner simultanément et en parallèle. De cette façon, la fréquence de caractérisation de la variation de la ligne de visée peut encore être augmentée. Pour cela, le capteur d'image peut comprendre au moins deux circuits séparés de contrôle et de lecture qui sont dédiés respectivement à des parties complémentaires du capteur formées chacune d'un sous-ensemble de photodétecteurs adjacents, de sorte que des parties d'image sont saisies respectivement par les parties du capteur selon le mode séquentiel qui est mis en œuvre séparément et simultanément à l'intérieur de celles-ci. Au moins une des fenêtres est définie à l'intérieur de chaque partie du capteur, et les portions d'images qui sont saisies dans chaque fenêtre à l'intérieur de chaque partie du capteur sont comparées entre deux répétitions différentes du balayage des photodétecteurs de cette partie du capteur.
La fréquence de caractérisation de la variation de la ligne de visée peut aussi être augmentée en utilisant plusieurs capteurs d'images en parallèle. Pour cela, des capteurs d'images séparés peuvent être disposés dans le plan focal, de façon à saisir simultanément des images respectives selon le mode séquentiel mis en œuvre séparément pour chaque capteur. Des portions d'images qui sont saisies dans des fenêtres à l'intérieur de chaque capteur, sont alors comparées entre deux répétitions différentes du balayage des photodétecteurs de ce capteur, simultanément pour tous les capteurs.
Pour des premières applications de l'invention dont la réduction du flou de bouger d'image, l'orientation d'une partie au moins du système d'imagerie peut être changée en variant une orientation d'un support mobile du système d'imagerie par rapport à une structure principale du satellite. Alternativement, une orientation d'un dispositif de pointage variable qui est agencé pour ajuster la ligne de visée par rapport au capteur d'image, peut être variée de façon équivalente.
Pour des secondes applications de l'invention dont la stabilisation de l'attitude du satellite, l'orientation du système d'imagerie peut être changée en variant l'attitude du satellite et en gardant fixe la ligne de visée par rapport au satellite.
L'invention propose aussi un système d'imagerie qui est destiné à être embarqué à bord d'un satellite, et qui est adapté pour stabiliser une ligne de visée de ce système d'imagerie, en comprenant :
- un télescope, qui est agencé pour former une image d'une scène dans un plan focal, suivant la ligne de visée du système d'imagerie ;
- au moins un capteur d'image matriciel, qui est disposé dans le plan focal, et adapté pour saisir des images successives selon le mode séquentiel ; et
- une unité de comparaison d'images, qui est adaptée pour sélectionner plusieurs fenêtres formées chacune d'un sous-ensemble différent de photodétecteurs adjacents à l'intérieur du capteur, chaque fenêtre étant plus petite qu'une surface utile totale du capteur, et adaptée pour comparer une portion d'image qui est saisie dans l'une des fenêtres lors d'une des répétitions du balayage des photodétecteurs avec un contenu d'image de référence pour la même fenêtre, de façon à caractériser une variation de la ligne de visée entre la répétition du balayage des photodétecteurs et un balayage de référence, avec une nouvelle caractérisation de la variation de la ligne de visée qui est obtenue séparément pour chaque fenêtre à chaque répétition du balayage des photodétecteurs ; et
- une unité de commande, qui est adaptée pour contrôler un changement d'une orientation d'une partie au moins du système d'imagerie, de façon à modifier la ligne de visée pour compenser au moins partiellement sa variation.
Un tel système est adapté pour mettre en œuvre un procédé de stabilisation tel que décrit précédemment.
En fonction de l'application de l'invention, l'unité de commande peut être agencée pour contrôler un changement d'orientation, un déplacement ou un fonctionnement d'au moins un équipement mobile pour compenser au moins partiellement la variation de la ligne de visée. Cet équipement peut être un support mobile du système d'imagerie qui est adapté pour varier l'orientation de ce dernier, un dispositif de pointage variable du système d'imagerie qui est agencé pour modifier la ligne de visée par rapport au capteur d'image, ou encore un système de contrôle d'attitude et d'orbite du satellite. Eventuellement, plusieurs de ces équipements mobiles peuvent être contrôlés d'une façon combinée par l'unité de commande.
D'autres particularités et avantages de la présente invention apparaîtront dans la description ci-après d'exemples de mise en œuvre non limitatifs, en référence aux dessins annexés, dans lesquels :
- la figure 1 représente schématiquement un satellite qui est équipé d'un télescope d'observation, auquel l'invention peut être appliquée ;
- les figures 2a et 2b représentent respectivement deux capteurs d'images fonctionnant en mode séquentiel, qui peuvent être utilisés pour mettre en œuvre l'invention ;
- la figure 3a est un diagramme temporel qui illustre une séquence d'un procédé conforme à l'invention, pour caractériser des variations d'une ligne de visée ;
- la figure 3b correspond à la figure 3a pour une variante du mode de caractérisation des variations de la ligne de visée ; et - les figures 4a à 4e illustrent un perfectionnement de l'invention, pour supprimer une erreur systématique de caractérisation de la ligne de visée.
Pour raison de clarté, les dimensions des éléments qui sont représentés dans ces figures ne correspondent ni à des dimensions réelles ni à des rapports de dimensions réels. En outre, des références identiques qui sont indiquées dans des figures différentes désignent des éléments identiques ou qui ont des fonctions identiques. Sur les figures 3a et 3b, les petits cercles évidés symbolisent des opérations de corrélation ou de comparaison de contenus d'images, qui produisent les résultats des caractérisations de variation de ligne de visée.
La figure 1 représente symboliquement un satellite 100, qui peut être un satellite géostationnaire ou un satellite à orbite basse autour de la Terre. Il est équipé d'un télescope 10, dont la ligne de visée est notée LS pour «line of sight» en anglais. A titre d'illustration, le télescope 10 peut avoir une structure à deux miroirs : un miroir primaire 1 1 et un miroir secondaire 12. Les références 13 et 14 désignent respectivement un miroir de renvoi et l'entrée optique du télescope 10. Le télescope 10 forme l'image d'une portion de surface de la Terre dans un plan focal, à l'intérieur duquel est disposé un capteur d'image 20. Le capteur d'image 20 est fixe par rapport au télescope 10.
L'objet de l'invention consiste à stabiliser efficacement la ligne de visée LS, pour supprimer ou réduire des variations involontaires de cette ligne de visée. De telles variations peuvent être provoquées par des vibrations du satellite 100 lui-même, causées par exemple par l'atmosphère terrestre résiduelle à l'altitude du satellite 100, ou par des éléments mobiles qui sont présents à son bord.
Lorsqu'il s'agit de stabiliser la ligne de visée 100 dans un but d'imagerie par exemple, il peut être approprié de modifier l'orientation du télescope 10 par rapport à la structure principale du satellite 100, si le télescope est monté sur la structure par l'intermédiaire d'un support mobile orientable (non représenté). Alternativement, au moins un système de pointage variable du télescope, qui peut être un système de pointage fin, un système de pointage grossier ou une combinaison des deux, peut être utilisé pour ajuster la ligne de visée LS par rapport au capteur d'image 20. L'architecture et le fonctionnement de tels systèmes de pointage sont connus de l'Homme du métier, si bien qu'il n'est pas nécessaire de les répéter ici.
Enfin, le télescope 10 peut être fixé rigidement sur le satellite 100, et la ligne de visée LS est dirigée vers une zone d'observation à la surface de la Terre en ajustant directement l'attitude du satellite lui-même. Dans ce cas, la stabilisation de la ligne de visée LS est obtenue en contrôlant directement un fonctionnement du système de contrôle d'orbite et d'attitude du satellite 100, connu sous l'acronyme SCOA. La référence 101 désigne une représentation symbolique de ce système SCAO.
En référence à la figure 2a, le capteur d'image 20 comprend une matrice de photodétecteurs 21 qui sont disposés en lignes et en colonnes. Par exemple, ce capteur d'image peut comprendre deux mille photodétecteurs 21 selon ses deux directions de lignes et de colonnes, qui sont notées respectivement DL et DC. Le capteur 20 est adapté pour saisir des images de façon continue en mode séquentiel, ou «rolling mode». Selon ce mode particulier de saisie d'images, tous les photodétecteurs 21 ou une sélection d'entre eux sont lus tour à tour selon un ordre de balayage fixé des photodétecteurs, et chaque nouvelle exécution du balayage correspond à une nouvelle image qui est saisie. Chaque lecture de l'un des photodétecteurs 21 est consécutive à une durée d'exposition du photodétecteur, lors de laquelle un signal électrique est accumulé proportionnellement à une intensité lumineuse qui est reçue par ce photodétecteur pendant la durée d'exposition. Un tel fonctionnement peut être mis en œuvre pour une mission d'imagerie, notamment pour une mission d'observation à haute définition. Par exemple, la fréquence d'acquisition des images, qui est égale à la fréquence de répétition du balayage des photodétecteurs 21 , peut être de l'ordre de 0,1 Hz (hertz). Lorsque le balayage parcourt tous les photodétecteurs 21 du capteur 20, les images qui sont saisies sont dites dans la suite images en pleine trame («full frame images» en anglais), ou mode de saisie d'image en pleine trame («full frame image capture mode»). La référence 102 sur la figure 1 désigne une unité de traitement des images qui sont saisies. Elle est reliée en entrée à une sortie de données du capteur d'image 20, et en sortie à une unité de commande 103, qui est adaptée pour contrôler le fonctionnement de l'équipement mobile utilisé pour modifier la direction de la ligne de visée LS.
De façon connue, l'ordre de balayage des photodétecteurs 21 peut être quelconque par rapport à l'emplacement de chaque photodétecteur dans la matrice 20. La présente invention est compatible avec n'importe quel ordre de balayage, mais pour raison de simplicité d'illustration, les figures 2a et 2b représentent un (des) balayage(s) qui est (sont) effectué(s) progressivement dans la matrice 20 en suivant chaque ligne selon la direction DL, puis en passant à la ligne suivante selon la direction DC. Après avoir fini de lire le dernier photodétecteur 21 de la dernière ligne, le balayage est recommencé sans interruption au premier détecteur de la première ligne, de façon cyclique.
Pour mettre en œuvre l'invention, on définit plusieurs fenêtres dans la matrice 20, qui sont formées chacune de photodétecteurs 21 adjacents. De préférence, les photodétecteurs 21 d'une même fenêtre peuvent être lus consécutivement les uns à la suite des autres au cours du balayage du mode séquentiel, afin de réduire au maximum la durée totale de lecture de la fenêtre. En outre, une distorsion d'image à l'intérieur de chaque fenêtre, qui est due au mode séquentiel de saisie d'image, peut aussi être minimisée par une telle lecture consécutive. Le même ensemble de fenêtres est repris à chaque répétition du balayage.
La définition ou le calcul des fenêtres peut être effectué par l'unité de traitement 102, ainsi que des opérations de comparaison ou de corrélation entre des contenus d'image qui sont saisis lors d'exécutions différentes du balayage du mode séquentiel.
Les fenêtres qui sont utilisées peuvent être définies de plusieurs façons. Par exemple, ce peut être des fenêtres fixes qui sont repérées par les coordonnées des photodétecteurs 21 dans la matrice du capteur 20. Dans ce cas, elles peuvent être disjointes et réparties régulièrement dans toute la surface utile du capteur 20. Alternativement, chaque fenêtre peut résulter d'un gabarit de fenêtre, aux dimensions fixes mais qui est décalé dans la matrice du capteur 20 au fur et à mesure du balayage. Un tel mode de définition des fenêtres peut être avantageux lorsque l'ordre de parcours des photodétecteurs 21 dans le balayage du mode séquentiel de saisie des images est fixé par ailleurs. Chaque fenêtre peut être rectangulaire ou carrée à l'intérieur de la matrice, et comporte un nombre de photodétecteurs 21 inférieur, ou très inférieur, au nombre total des photodétecteurs du capteur d'image 20. Par exemple, chaque fenêtre peut comporter 100 x 100 photodétecteurs, si bien que la durée totale de lecture d'une fenêtre peut être 400 fois plus courte que celle de la matrice entière. Sur la figure 2a, quatre fenêtres ont été fixées, qui sont référencées 22a à 22d.
Lors de la saisie d'une première image en pleine trame selon le mode séquentiel, le contenu d'image à l'intérieur de chaque fenêtre est mémorisé. Puis, lors de chaque saisie ultérieure d'une nouvelle image, le contenu d'image de chaque fenêtre est comparé à celui de la première image saisie pour la même fenêtre. Une telle comparaison peut être effectuée en utilisant l'une des méthodes connues de corrélation d'images. De telles méthodes peuvent mettre en œuvre des recalages de contenus d'images les uns par rapport aux autres, pour obtenir des corrélations entre contenus d'images jusqu'à des échelles plus fines que le pas des photodétecteurs dans le capteur d'image qui est utilisé. De cette façon, une variation de la ligne de visée LS est déterminée, à partir de la variation de contenu d'image pour chaque fenêtre entre le premier balayage et chaque nouveau balayage du mode séquentiel de saisie d'image. Autrement dit, une fenêtre qui est utilisée dans la première image saisie est reprise dans l'image ultérieure, de sorte que la variation de position du contenu d'image dans cette fenêtre entre les deux exécutions du balayage permet de mesurer la variation de la ligne de visée LS. La fréquence d'obtention d'un nouveau résultat de caractérisation de la variation de la ligne de visée LS est donc égale à la fréquence de répétition du balayage du mode séquentiel, multipliée par le nombre de fenêtres qui sont utilisées.
La figure 3a illustre symboliquement une séquence complète de mise en œuvre d'un procédé conforme à l'invention. L'axe des ordonnées repère tous les photodétecteurs 21 du capteur 20, en indiquant les fenêtres 22a-22d. L'axe des abscisses repère le temps qui est noté t, et chaque valeur entière qui est indiquée sur cet axe correspond à un balayage supplémentaire de l'ensemble des photodétecteurs 21 selon le mode séquentiel de saisie d'image. Ainsi, les balayages correspondant à quatre images en pleine trame qui sont saisies successivement sont représentés, et Atf est la durée de chaque balayage de pleine trame. Pour chacun des photodétecteurs 21 , la durée de la phase d'accumulation est Ati, et la durée de la phase de lecture Atr. Lorsque tous les photodétecteurs 21 de chaque fenêtre sont lus successivement, les durées respectives de lecture des fenêtres 22a-22d sont respectivement Ata, ..., Atd, avec Ata=Na x Atr où Na est le nombre des photodétecteurs 21 qui sont à l'intérieur de la fenêtre 22a, et de même pour les autres fenêtres 22b- 22d. Pour le premier balayage de la matrice du capteur 20, un contenu d'image de référence noté Ra est donc obtenu pour la fenêtre 22a à la fin de la durée Ata. De même, lors de ce même premier balayage, un contenu d'image de référence noté Rb est obtenu pour la fenêtre 22b à la fin de la durée Atb, et encore de même pour les fenêtres 22c et 22d. Pour le deuxième balayage de la matrice du capteur 20, un contenu d'image de mesure qui est noté Ma est obtenu pour la fenêtre 22a à la fin d'une nouvelle durée Ata à l'intérieur de la durée d'acquisition de la seconde image complète. De même, lors de ce même deuxième balayage, des contenus d'image de mesure Mb-Md sont aussi obtenus pour les fenêtres 22b-22d, respectivement. Lorsque le contenu d'image de mesure Ma est obtenu, il est comparé avec le contenu d'image de référence Ra pour obtenir le premier résultat C1 de caractérisation de la variation de la ligne de visée LS. Atx est la durée de traitement qui est nécessaire pour obtenir le résultat C1 à partir des deux contenus d'images Ra et Ma. De même, des résultats C2-C4 de caractérisation de la variation de la ligne de visée LS sont aussi obtenus pour chacune des fenêtres 22b-22d pendant le deuxième balayage de la matrice du capteur 20, et la collecte des résultats successifs C5, ..., C12, ...est poursuivie identiquement lors des balayages ultérieurs. Pour le procédé tel qu'il est illustré dans la partie inférieure de la figure 3a, le contenu d'image Ma qui est obtenu lors de chaque balayage de la matrice du capteur 20 à partir du second de ces balayages, est comparé avec le même contenu d'image de référence Ra qui a été obtenu lors du premier balayage. De même, les contenus d'image de référence Rb-Rd sont repris de façon identique lors de chaque balayage ultérieur, pour la comparaison avec le contenu d'image de mesure Mb-Md pour la fenêtre 22b- 22d correspondante. Ainsi, la direction de la ligne de visée qui correspond à chaque portion d'image de référence Ra-Rd est reprise comme direction de référence pour les variations qui sont caractérisées ultérieurement, séparément pour chaque fenêtre 22a-22d.
A partir de la seconde image en pleine trame qui est saisie par le capteur 20, la fréquence moyenne d'obtention des résultats de caractérisation de la variation de la ligne de visée LS est la fréquence d'acquisition des images avec tous les détecteurs de la matrice 20, multipliée par le nombre N des fenêtres utilisées, c'est-à-dire N x 1 /Atf. L'invention permet donc de caractériser la direction instantanée de la ligne de visée LS avec une fréquence d'actualisation qui peut être supérieure d'un ordre de grandeur au moins par rapport à la fréquence de saisie des images d'observation lorsque plus de dix fenêtres sont utilisées.
La durée minimale qui est nécessaire pour obtenir un nouveau résultat pour la variation de la ligne de visée LS, à partir d'une variation réelle de la direction de la ligne de visée, est Ata + Δΐχ pour la fenêtre 22a, et avec des expressions similaires pour les autres fenêtres 22b-22d. Cette durée pour chaque fenêtre est couramment appelée durée de latence. Elle est très inférieure à celle qui résulterait d'une caractérisation de la variation de la ligne de visée effectuée à partir des images en pleine trame. Dans ce dernier cas, c'est-à-dire dans utiliser l'invention, la durée de latence serait en effet égale à la somme de Atf et de la durée de traitement nécessaire pour corréler deux images en pleine trame. Typiquement, l'invention permet de réduire de plus de deux ordres de grandeur la durée de latence pour caractériser la variation de la ligne de visée.
Dans des premiers perfectionnements de l'invention, certains au moins des résultats des caractérisations de la variation de la ligne de visée LS peuvent être pondérés, sélectionnés ou rejetés parmi la suite de tous les résultats C1 , C2, ... qui sont obtenus successivement. Par exemple, un résultat qui est obtenu pour une fenêtre dont le contenu d'image de mesure est faiblement contrasté peut être associé à une valeur faible d'un coefficient de fiabilité, ou bien à la valeur nulle de ce coefficient correspondant à un rejet du résultat. Tel peut être le cas lorsque le contenu d'image de la fenêtre est une zone de couverture nuageuse à la surface de la Terre ou une zone maritime. Une valeur faible du coefficient de fiabilité peut aussi être affectée à tous les résultats qui proviennent d'une même fenêtre dont le contenu d'image de référence présente un faible contraste ou une mauvaise qualité d'image lors de la première image qui est saisie.
Dans des deuxièmes perfectionnements de l'invention, la série des résultats C1 , C2, ... qui sont obtenus successivement pour les variations de la ligne de visée LS peut être traitée de différentes façons. Par exemple, elle peut être découpée en sous-ensembles successifs de résultats, avec chaque sous- ensemble qui contient un nombre fixé de résultats qui ont été eux-mêmes obtenus successivement. Une moyenne des résultats pour la variation de la ligne de visée LS peut alors être calculée pour chaque sous-ensemble, éventuellement en utilisant des valeurs d'un coefficient de fiabilité qui ont été déterminées conformément à l'un des premiers perfectionnements de l'invention. Lorsque le nombre de résultats élémentaires dans chaque sous- ensemble est égal au nombre de fenêtres qui sont utilisées dans la matrice du capteur 20, chaque résultat de moyenne correspond à une variation de la ligne de visée LS qui est associée à une nouvelle image en pleine trame saisie selon le mode séquentiel. Alternativement, un filtrage peut être appliqué aux résultats élémentaires C1 , C2, ... qui sont obtenus pour la variation de la ligne de visée LS, successivement pour toutes les fenêtres et pour les répétitions du balayage. Par exemple, un tel filtrage peut consister à moyenner un nombre fixe de résultats élémentaires, d'une façon glissante avec un décalage progressif dans la série ordonnée de tous les résultats élémentaires qui sont obtenus successivement. Un tel filtrage est de type passe-bas par rapport à la vitesse de variation des résultats C1 , C2... D'autres filtrages peuvent être appliqués alternativement, avec des caractéristiques de filtres qui sont différentes.
Un troisième perfectionnement de l'invention qui est maintenant décrit, permet de supprimer une erreur systématique qui pourrait intervenir dans les résultats successifs C1 , C2, ... qui sont obtenus pour les variations de la ligne de visée LS. Une telle erreur systématique peut provenir du fait que des directions de référence pour la ligne de visée LS, qui sont utilisées pour les caractérisations réalisées à partir de fenêtres différentes, sont elles-mêmes différentes. Cette difficulté provient du fait que des instants de référence distincts sont utilisés pour fixer la direction de référence de la ligne de visée LS pour de chaque fenêtre, et la ligne de visée LS peut avoir varié entre ces instants. Mais une erreur de ce type qui affecte la série des résultats C1 , C2, ... présente une période temporelle qui est égale à celle de la répétition du balayage de la matrice du capteur 20, pour le mode séquentiel de saisie des images. Il est alors possible de supprimer ou d'atténuer cette erreur de plusieurs façons, notamment en utilisant des filtrages de Wiener ou de Kalman, ou encore à partir d'une décomposition en série de Fourier de la succession des résultats élémentaires qui sont obtenus pour la variation de la ligne de visée LS. Le principe de cette dernière méthode est décrit maintenant à titre d'illustration non limitative, en référence aux figures 4a à 4e. Il consiste à supprimer les composantes de Fourier dont les fréquences temporelles sont multiples de celle de la répétition du balayage des photodétecteurs 21 , ou à ramener des amplitudes de ces composantes à un niveau local moyen par lissage.
Sur les diagrammes des figures 4a, 4b et 4e, l'axe des abscisses repère le temps t comme pour la figure 3a, en indiquant le numéro de l'image en pleine trame qui a été saisie. On suppose que le nombre N des fenêtres utilisées est suffisamment élevé pour que les courbes des diagrammes 4b-4e apparaissent continues.
Le diagramme de la figure 4a représente schématiquement un exemple de variations réelles de la ligne de visée LS, qui sont notées ALSréei en ordonnée. Ces variations sont représentées selon une seule coordonnée sur les diagrammes des figures 4a-4e pour en faciliter la visualisation, étant entendu qu'elles correspondent dans la réalité à deux coordonnées angulaires séparées. Le cadre qui est noté Ref dans la figure 4a correspond à la saisie de la première image, pour laquelle les contenus d'image à l'intérieur des fenêtres sont repris ultérieurement comme contenus d'image de référence.
La courbe en trait continu du diagramme de la figure 4b relie les résultats C1 , C2, ... qui sont obtenus pour la variation de la ligne de visée LS en utilisant la séquence du procédé de la figure 3a. Ces résultats, qui sont repérés sur l'axe d'ordonnée noté ALSmesure directe, sont déduits directement des comparaisons entre chaque contenu d'image de mesure acquis pendant un balayage ultérieur, et le contenu d'image de référence correspondant acquis pendant le balayage de saisie de la première image Ref. Le déplacement réel de la ligne de visée LS qui est survenu pendant ce premier balayage Ref apparaît donc sous forme inversée comme une erreur systématique dans tous les résultats successifs de caractérisation de la ligne de visée. Cette erreur systématique possède donc une période temporelle qui est égale à la durée Atf du balayage de la trame complète du détecteur 20. La courbe en trait interrompu du diagramme de la figure 4b est reprise de la figure 4a, car elle constitue la base des variations de la ligne de visée qui sont calculées, sur laquelle est superposée l'erreur systématique.
Le diagramme de la figure 4c représente les amplitudes AFourier directe des composantes de la décomposition de Fourier des variations qui ont été calculées pour la ligne de visée LS, telles que représentées par la courbe en trait continu de cette figure 4b. L'axe des abscisses du diagramme est donc une fréquence temporelle, qui est exprimée en multiples de la fréquence 1 /Atf du balayage du mode séquentiel. Les composantes dont les fréquences sont situées autour de la fréquence nulle correspondent à la variation réelle de la ligne de visée LS lors des balayages successifs du mode séquentiel. Mais les composantes dont les fréquences sont multiples de 1 /Atf correspondent aux reprises répétées des variations de la ligne de visée qui sont survenues pendant le balayage de saisie de la première image Ref, à cause des reprises successives des contenus d'image de référence pour être corrélés avec les contenus d'images de mesure.
On effectue alors un lissage de la courbe des amplitudes des composantes de Fourier, comme représenté dans le diagramme de la figure 4d. Le lissage est limité à l'intérieur d'intervalles de fréquence qui s'étendent autour des multiples successifs de 1 /Atf, et les amplitudes des composantes de Fourier qui sont ainsi modifiées sont repérées sur l'axe noté AFourier corrigée- ar intervalle qui s'étend autour de chaque multiple de 1 /Atf on entend par exemple un intervalle qui s'étend jusqu'à moins de 0,2/Atf, ou moins de 0,1 /Atf de part et d'autre du multiple de1 /Atf.
Puis on calcule une décomposition de Fourier inverse, ou recomposition, à partir des amplitudes lissées des composantes de Fourier. Le diagramme de la figure 4e illustre le résultat de cette recomposition noté ALScorrigée : les variations mesurées de la ligne de visée qui ont été ainsi filtrées reproduisent les variations réelles de la figure 4a, sans l'erreur due au déplacement de la ligne de visée pendant le balayage de saisie de la première image Réf.
Un quatrième perfectionnement permet de détecter des composantes de la variation réelle de la ligne de visée LS, dont les fréquences sont multiples de celle du balayage du mode séquentiel de saisie des images. En effet, par principe, ces composantes ne peuvent pas être détectées en utilisant un échantillonnage qui soit restreint par la fréquence de répétition du balayage du mode séquentiel. Pour pallier cette limitation, on change volontairement la fréquence de répétition du balayage du mode séquentiel entre deux séries d'images successives. Par exemple, la saisie d'images en mode séquentiel est poursuivie pendant une première durée d'imagerie selon la fréquence maximale qui est permise par le capteur d'image 20 avec un fonctionnement en pleine trame, correspondant à l'utilisation de tous les photodétecteurs. Puis la saisie d'images peut être effectuée pendant une seconde durée d'imagerie en augmentant la durée d'un balayage de pleine trame à une valeur qui est supérieure à Atf. Ainsi, les fréquences pour lesquelles les variations de la ligne de visée ne peuvent être détectées, sont différentes entre les deux durées d'imagerie. Si une composante à variation périodique de la ligne de visée se prolonge au moins en partie sur les deux durées d'imagerie, elle est alors détectée nécessairement pendant l'une au moins des deux durées d'imagerie. La durée d'un balayage de pleine trame peut être augmentée par exemple en introduisant volontairement des retards dans l'enchaînement des phases d'accumulation et de lecture qui sont effectuées pour les photodétecteurs lors du balayage, sans modifier le nombre de photodétecteurs qui sont utilisés. Alternativement, la durée effective d'un balayage du mode séquentiel peut être réduite tout en maintenant un débit constant pour la lecture des photodétecteurs, mais en réduisant le nombre des photodétecteurs qui sont utilisés lors d'un balayage. Par exemple, un nombre réduit de photodétecteurs est utilisé pour les images qui sont saisies pendant la seconde durée d'imagerie, si bien que la fréquence du balayage du mode séquentiel est plus élevée pendant la seconde durée d'imagerie, que celle qui est effective pendant la première durée d'imagerie. Notamment, les photodétecteurs qui sont utilisés pendant la seconde durée d'imagerie peuvent être limités à un nombre déterminé de colonnes du capteur d'image 20, comptées progressivement à partir d'un bord de celui-ci. Les fenêtres qui sont utilisées pendant la seconde durée d'imagerie sont alors aussi situées à l'intérieur de cet ensemble de colonnes. Mathématiquement, ce quatrième perfectionnement consiste à modifier la fréquence du balayage du mode séquentiel pour que les repliements de spectre qui sont dus aux échantillonnages de mesure des variations de la ligne de visée, soient différents pour les deux durées d'imagerie.
Lorsque plusieurs capteurs d'images distincts sont utilisés dans le plan focal, par exemple pour saisir en image simultanément et respectivement des éléments de scène qui sont contenus dans des parties différentes du champ d'observation, le quatrième perfectionnement de l'invention peut aussi être mis en œuvre en modifiant la fréquence de lecture entre certains au moins des capteurs. De cette façon, les fréquences pour lesquelles les variations de la ligne de visée ne peuvent pas être détectées, parce qu'elles coïncident avec des multiples de fréquences de répétition du balayage du mode séquentiel, diffèrent d'un capteur à l'autre. Autrement dit, l'un des capteurs d'images pallie les carences spectrales d'un autre des capteurs, pour restituer l'ensemble des valeurs de fréquence possibles pour les variations de la ligne de visée par réunion des intervalles spectraux dans lesquels chacun des capteurs est efficace. Par exemple, la fréquence de répétition du balayage du mode séquentiel peut être initialement de 5 Hz (hertz) pour tous les capteurs d'images mais, pour l'un des capteurs, une pause de 50 ms (milliseconde) peut être introduite après chaque balayage complet de ses photodétecteurs. Pour ce capteur, la fréquence apparente de répétition du balayage du mode séquentiel devient 4 Hz, alors qu'elle reste égale à 5 Hz pour le (les) autre(s) capteur(s).
Alternativement au quatrième perfectionnement de l'invention qui vient d'être décrit, les composantes de la variation de la ligne de visée LS qui possèdent des fréquences multiples de celle du balayage du mode séquentiel de saisie d'images, peuvent être déterminées en utilisant d'autres moyens que ceux du système d'imagerie. Par exemple, les amplitudes de ces composantes peuvent être déterminées à partir de mesures qui sont réalisées en utilisant des capteurs inertiels du satellite 100, tels que des gyroscopes, ou en utilisant des capteurs stellaires. Les résultats de telles mesures complémentaires peuvent être combinés avec ceux qui sont obtenus en utilisant le système d'imagerie conformément à l'invention.
Dans la séquence de procédé qui est représentée sur la figure 3a, le même contenu d'image qui est saisi lors du premier balayage Ref, est repris lors de chaque balayage ultérieur pour comparer les contenus d'image de mesure qui sont lus successivement avec les contenus d'image de référence issus du premier balayage, pour chaque fenêtre. La figure 3b correspond à la partie inférieure de la figure 3a pour une variante de mise en œuvre de l'invention, et les mêmes notations sont reprises. Selon la variante de la figure 3b, lors de chaque nouvelle répétition du balayage du mode séquentiel, le contenu d'image de chaque fenêtre est comparé à celui obtenu pour la même fenêtre lors de la répétition précédente du balayage. Autrement dit, chaque contenu d'image qui est lu lors d'une exécution du balayage du mode séquentiel de saisie d'image pour l'une des fenêtres, sert de contenu d'image de référence pour la même fenêtre lors de la caractérisation de la ligne de visée qui résulte de l'exécution suivante du balayage.
La figure 2b correspond à la figure 2a pour une autre variante de mise en œuvre de l'invention. Selon cette autre variante, le capteur d'image 20 est équipé de plusieurs, par exemple deux circuits de contrôle et de lecture des photodétecteurs, qui sont dédiés chacun à une partie complémentaire du capteur 20. Ainsi, les photodétecteurs d'une première moitié 20a de la surface utile du capteur 20 sont commandés et lus par un premier circuit (non représenté), et ceux d'une seconde moitié 20b de la surface utile sont commandés et lus par un second circuit (aussi non représenté), séparé du premier. L'utilisation en parallèle de plusieurs circuits de contrôle et de lecture en combinaison avec une même matrice de photodétecteurs est bien connue de l'Homme du métier. Des fonctionnements de saisie d'image en mode séquentiel peuvent alors être réalisés en parallèle et simultanément dans chaque moitié de capteur 20a, 20b, si bien que la durée totale de saisie d'une image en pleine trame est divisée par deux. Le procédé de l'invention peut alors être mis en œuvre à l'intérieur de chaque moitié de capteur 20a, 20b, en utilisant au moins une fenêtre à l'intérieur de chacune d'elles. Ainsi, les fenêtres 22a-22c sont situées dans la moitié 20a du capteur d'image 20, et les fenêtres 22d-22f sont situées dans la moitié 22b du même capteur. Cette variante de l'invention permet de doubler la fréquence maximale des variations de la ligne de visée LS qui peuvent être mesurées.
Selon encore une autre variante de mise en œuvre de l'invention, dont le but est aussi d'augmenter la fréquence maximale des variations de la ligne de visée qui peuvent être mesurées, le capteur d'image 20 peut être remplacé par plusieurs capteurs indépendants qui sont placés dans le plan focal du télescope 10. On entend par plusieurs capteurs indépendants des capteurs matriciels du type de celui de la figure 2a, et qui ont des matrices respectives et séparées de photodétecteurs. Les résultats des caractérisations de la variation de la ligne de visée qui sont obtenus à partir des images saisies par les différents capteurs sont regroupés dans une série unique ordonnée chronologiquement, qui peut être traitée comme décrit plus haut.
Pour les deux variantes à plusieurs circuits de contrôle et de lecture qui sont associés au même capteur, et de plusieurs capteurs indépendants qui sont agencés dans le plan focal, les fenêtres sont sélectionnées de préférence à l'intérieur de chaque partie de capteur ou de chaque capteur pour être toutes lues à des instants qui sont différents. De cette façon, une précision supérieure peut être obtenue pour caractériser les variations de la ligne de visée, à partir de l'ensemble des fenêtres ainsi sélectionnées. De plus, ces deux variantes peuvent être combinées avec l'un quelconque des quatre perfectionnements qui ont été décrits, ou plusieurs d'entre eux. En particulier, la variante de mise en œuvre qui est illustrée par la figure 3b peut présenter une erreur systématique qui affecte les caractérisations successives de la variation de la ligne de visée, analogue à celle du mode de mise en œuvre de la figure 3a. Elle peut alors être supprimée de la même façon en utilisant le troisième perfectionnement décrit.

Claims

R E V E N D I C A T I O N S
1 . Procédé de stabilisation d'une ligne de visée (LS) d'un système d'imagerie embarqué à bord d'un satellite (100), ledit système d'imagerie comprenant :
- un télescope (10) agencé pour former une image d'une scène dans un plan focal, suivant la ligne de visée du système d'imagerie ; et
- au moins un capteur d'image (20) matriciel disposé dans le plan focal, et adapté pour saisir des images successives selon un mode séquentiel, dans lequel des photodétecteurs (21 ) du capteur sont commandés successivement et individuellement pour une phase d'accumulation de signal de détection d'un rayonnement reçu suivie par une phase de lecture d'un signal accumulé, selon un ordre de balayage des photodétecteurs qui est répété continûment en boucle, chaque répétition du balayage des photodétecteurs correspondant à une nouvelle image saisie, et la phase de lecture pour l'un quelconque des photodétecteurs étant effectuée en même temps que la phase d'accumulation pour d'autres des photodétecteurs ; suivant lequel, pour plusieurs fenêtres (22a-22d) formées chacune d'un sous- ensemble différent de photodétecteurs adjacents à l'intérieur du capteur, et chaque fenêtre étant plus petite qu'une surface utile totale du capteur, une portion d'image (Ma-Md) qui est saisie dans l'une des fenêtres lors d'une des répétitions du balayage des photodétecteurs est comparée avec un contenu d'image de référence (Ra-Rd) pour la même fenêtre de façon à caractériser une variation de la ligne de visée entre ladite répétition du balayage des photodétecteurs et un balayage de référence, et une nouvelle caractérisation de la variation de la ligne de visée étant obtenue séparément pour chaque fenêtre à chaque répétition du balayage des photodétecteurs ; et suivant lequel une orientation d'une partie au moins du système d'imagerie est changée de façon à modifier la ligne de visée pour compenser au moins partiellement la variation de ladite ligne de visée.
2. Procédé selon la revendication 1 , suivant lequel le même contenu d'image de référence (Ra-Rd) est repris pour plusieurs caractérisations successives de la variation de la ligne de visée (LS) obtenues à partir d'une même des fenêtres, de sorte qu'une même direction de référence soit utilisée pour les dites caractérisations de la variation de la ligne de visée.
3. Procédé selon la revendication 1 , suivant lequel pour chaque nouvelle caractérisation de la variation de la ligne de visée (LS), le contenu d'image de référence utilisé pour chaque fenêtre (22a-22d) est la portion d'image qui a été saisie dans la même fenêtre lors de la répétition du balayage des photodétecteurs (21 ) correspondant à la caractérisation de la variation de la ligne de visée juste antérieure à ladite nouvelle caractérisation, de sorte qu'une direction de la ligne de visée résultant de la caractérisation antérieure constitue une direction de référence pour la nouvelle caractérisation.
4. Procédé selon l'une quelconque des revendications précédentes, suivant lequel les fenêtres (22a-22d) pour lesquelles les portions d'images sont comparées entre deux répétitions du balayage des photodétecteurs (21 ), sont disjointes à l'intérieur du capteur (20).
5. Procédé selon l'une quelconque des revendications précédentes, suivant lequel les fenêtres (22a-22d) pour lesquelles les portions d'images sont comparées entre deux répétitions du balayage des photodétecteurs (21 ), correspondent à des positions différentes d'un même gabarit à l'intérieur du capteur (20), et les fenêtres sont déterminées par des translations successives du gabarit à l'intérieur du capteur au fur et à mesure du balayage des photodétecteurs pour chaque image saisie.
6. Procédé selon l'une quelconque des revendications précédentes, suivant lequel le capteur d'image (20) comprend au moins deux circuits séparés de contrôle et de lecture dédiés respectivement à des parties du capteur (20a, 20b) complémentaires et formées chacune d'un sous-ensemble de photodétecteurs (21 ) adjacents, de sorte que des parties d'image sont saisies respectivement par les parties du capteur selon le mode séquentiel mis en œuvre séparément et simultanément à l'intérieur des dites parties du capteur, au moins une des fenêtres (20a-20f) étant définie à l'intérieur de chaque partie du capteur, et suivant lequel les portions d'images saisies dans chaque fenêtre à l'intérieur de chaque partie du capteur, sont comparées entre deux répétitions différentes du balayage des photodétecteurs de ladite partie du capteur.
7. Procédé selon l'une quelconque des revendications précédentes, suivant lequel plusieurs capteurs d'images séparés sont disposés dans le plan focal, de façon à saisir simultanément des images respectives selon le mode séquentiel mis en œuvre séparément pour chaque capteur, et suivant lequel des portions d'images saisies dans des fenêtres à l'intérieur de chaque capteur, sont comparées entre deux répétitions différentes du balayage des photodétecteurs dudit capteur, simultanément pour les dits plusieurs capteurs.
8. Procédé selon l'une quelconque des revendications précédentes, suivant lequel un résultat de chaque caractérisation de la variation de la ligne de visée (LS) est pondéré, sélectionné ou rejeté en fonction d'un contenu ou d'un niveau de qualité de la portion d'image qui est saisie et comparée avec le contenu d'image de référence pour ladite caractérisation.
9. Procédé selon l'une quelconque des revendications précédentes, suivant lequel plusieurs résultats de caractérisations de la variation de la ligne de visée (LS) qui ont été obtenus successivement pour des fenêtres (22a-22d) différentes ou pour des répétitions différentes du balayage des photodétecteurs (21 ), sont ensuite filtrés par rapport à une vitesse de variation des dits résultats.
10. Procédé selon l'une quelconque des revendications précédentes, suivant lequel une variation moyenne de la ligne de visée (LS) est calculée à partir de plusieurs résultats de caractérisations de la variation de la ligne de visée qui ont été obtenus pour des fenêtres (22a-22d) différentes ou pour des répétitions différentes du balayage des photodétecteurs (21 ).
1 1 . Procédé selon l'une quelconque des revendications précédentes, comprenant en outre les étapes suivantes :
- calculer une décomposition en série de Fourier pour des résultats de caractérisations successives de la variation de la ligne de visée (LS), sous forme d'une somme de composantes à variations périodiques respectivement associées à des valeurs d'une fréquence de variation de la ligne de visée ;
- appliquer une correction à certaines amplitudes des composantes à variations périodiques, de façon à réduire des variations des dites amplitudes dans des intervalles limités autour de multiples de la fréquence du balayage des photodétecteurs (21 ) ; puis
- calculer une recomposition de série Fourier à partir des composantes à variations périodiques, en utilisant les amplitudes corrigées à l'intérieur des intervalles limités autour des multiples de la fréquence du balayage des photodétecteurs, ladite recomposition de série de Fourier fournissant des résultats corrigés pour les caractérisations successives de la variation de la ligne de visée.
12. Procédé selon l'une quelconque des revendications précédentes, suivant lequel le balayage répété des photodétecteurs (21 ) pour saisir les images successives est effectué d'abord à une première fréquence pendant une première durée, puis à une seconde fréquence différente de la première fréquence pendant une seconde durée, les première et seconde fréquences étant sélectionnées de sorte que des repliements de spectre qui affectent les résultats obtenus pendant chaque durée pour la variation de la ligne de visée (LS), soient différents.
13. Procédé selon la revendication 12, suivant lequel le balayage des photodétecteurs (21 ) pendant l'une des première et seconde durées est plus lent que pendant l'autre des dites durées, en utilisant un même nombre de photodétecteurs pour le mode séquentiel qui est mis en œuvre pendant chacune des dites durées.
14. Procédé selon la revendication 12, suivant lequel le balayage qui est effectué à la fréquence la plus élevée est restreint à un premier nombre des photodétecteurs (21 ) du capteur d'image (20), plus petit qu'un second nombre des photodétecteurs dudit capteur d'image utilisés pour le balayage qui est effectué à la fréquence la plus faible.
15. Procédé selon l'une quelconque des revendications précédentes, suivant lequel plusieurs capteurs d'images matriciels sont disposés dans le plan focal pour saisir simultanément des images respectives selon le mode séquentiel mis en œuvre séparément pour chaque capteur d'image, et suivant lequel le balayage des photodétecteurs pour le mode séquentiel est répété à une première fréquence pour un premier des dits capteurs d'images et à une seconde fréquence pour un second des dits capteurs d'images, les première et seconde fréquences étant différentes et sélectionnées de sorte que des multiples de la première fréquence ne coïncident pas avec des multiples de la seconde fréquence.
16. Procédé selon l'une quelconque des revendications 1 à 15, suivant lequel l'orientation de la partie du système d'imagerie (10) est changée en variant une orientation d'un support mobile dudit système d'imagerie par rapport à une structure principale du satellite (100), ou en variant une orientation d'un dispositif de pointage variable agencé pour ajuster la ligne de visée (LS) par rapport au capteur d'image (20).
17. Procédé selon l'une quelconque des revendications 1 à 15, suivant lequel l'orientation du système d'imagerie (10) est changée en variant une attitude du satellite (100) et en gardant fixe la ligne de visée (LS) par rapport au satellite.
18. Système d'imagerie destiné à être embarqué à bord d'un satellite (100), et adapté pour stabiliser une ligne de visée (LS) dudit système d'imagerie, comprenant : - un télescope (10) agencé pour former une image d'une scène dans un plan focal, suivant la ligne de visée du système d'imagerie ;
- au moins un capteur d'image (20) matriciel disposé dans le plan focal, et adapté pour saisir des images successives selon un mode séquentiel, dans lequel des photodétecteurs (21 ) du capteur sont commandés successivement et individuellement pour une phase d'accumulation de signal de détection d'un rayonnement reçu suivie par une phase de lecture d'un signal accumulé, selon un ordre de balayage des photodétecteurs qui est répété continûment en boucle, chaque répétition du balayage des photodétecteurs correspondant à une nouvelle image saisie, et la phase de lecture pour l'un quelconque des photodétecteurs étant effectuée en même temps que la phase d'accumulation pour d'autres des photodétecteurs ; et
- une unité de comparaison d'images (102), adaptée pour sélectionner plusieurs fenêtres (22a-22d) formées chacune d'un sous-ensemble différent de photodétecteurs adjacents à l'intérieur du capteur, chaque fenêtre étant plus petite qu'une surface utile totale du capteur, et adaptée pour comparer une portion d'image (Ma-Md) qui est saisie dans l'une des fenêtres lors d'une des répétitions du balayage des photodétecteurs avec un contenu d'image de référence (Ra-Rd) pour la même fenêtre, de façon à caractériser une variation de la ligne de visée entre ladite répétition du balayage des photodétecteurs et un balayage de référence, et adaptée pour obtenir une nouvelle caractérisation de la variation de la ligne de visée séparément pour chaque fenêtre à chaque répétition du balayage des photodétecteurs ; et
- une unité de commande (103) adaptée pour contrôler un changement d'une orientation d'une partie au moins du système d'imagerie, de façon à modifier la ligne de visée pour compenser au moins partiellement la variation de ladite ligne de visée.
19. Système selon la revendication 18, adapté pour mettre en œuvre un procédé selon l'une quelconque des revendications 1 à 15.
20. Système selon la revendication 18 ou 19, comprenant en outre un support mobile du système d'imagerie agencé pour varier une orientation dudit système d'imagerie, et l'unité de commande est agencée pour contrôler un changement d'une orientation du support mobile, de façon à modifier la ligne de visée (LS) pour compenser au moins partiellement la variation de ladite ligne de visée.
21 . Système selon la revendication 18 ou 19, comprenant en outre un dispositif de pointage variable agencé pour modifier la ligne de visée (LS) par rapport au capteur d'image (20), et l'unité de commande est agencée pour contrôler un déplacement du dispositif de pointage variable de façon à compenser au moins partiellement la variation de ladite ligne de visée.
22. Système selon la revendication 18 ou 19, dans lequel l'unité de commande (103) est adaptée pour contrôler un fonctionnement d'un système de contrôle d'attitude et d'orbite (101 ) du satellite (100), de façon à varier l'attitude du satellite pour compenser au moins partiellement la variation de la ligne de visée (LS).
PCT/FR2013/051176 2012-06-06 2013-05-27 Stabilisation d'une ligne de visée d'un système d'imagerie embarqué à bord d'un satellite WO2013182779A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380001631.9A CN103782224B (zh) 2012-06-06 2013-05-27 星载成像系统瞄准线的稳定化
EP13731363.1A EP2753971B1 (fr) 2012-06-06 2013-05-27 Stabilisation d'une ligne de visée d'un système d'imagerie embarqué à bord d'un satellite
US14/124,362 US9143689B2 (en) 2012-06-06 2013-05-27 Stabilization of a line of sight of an on-board satellite imaging system
ES13731363.1T ES2547706T3 (es) 2012-06-06 2013-05-27 Estabilización de una línea de visión de un sistema de formación de imágenes instalado a bordo de un satélite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1201632 2012-06-06
FR1201632A FR2991785B1 (fr) 2012-06-06 2012-06-06 Stabilisation d'une ligne de visee d'un systeme d'imagerie embarque a bord d'un satellite

Publications (1)

Publication Number Publication Date
WO2013182779A1 true WO2013182779A1 (fr) 2013-12-12

Family

ID=46754501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/051176 WO2013182779A1 (fr) 2012-06-06 2013-05-27 Stabilisation d'une ligne de visée d'un système d'imagerie embarqué à bord d'un satellite

Country Status (6)

Country Link
US (1) US9143689B2 (fr)
EP (1) EP2753971B1 (fr)
CN (1) CN103782224B (fr)
ES (1) ES2547706T3 (fr)
FR (1) FR2991785B1 (fr)
WO (1) WO2013182779A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202513A (zh) * 2014-06-30 2014-12-10 北京控制工程研究所 一种基于fpga的星敏感器多模式图像预处理方法
EP3839600A1 (fr) 2019-12-19 2021-06-23 Thales Procede d'estimation precis avec une disponibilite totale de la ligne de visee d'un telescope embarque a bord d'un satellite d'observation de la terre

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104748750B (zh) * 2013-12-28 2015-12-02 华中科技大学 一种模型约束下的在轨三维空间目标姿态估计方法及系统
CN104859866A (zh) * 2014-09-23 2015-08-26 航天东方红卫星有限公司 星敏感器一体化安装支架
CN104316046B (zh) * 2014-10-10 2017-03-15 北京航天控制仪器研究所 一种强度关联星敏感器
CN104483899B (zh) * 2014-11-12 2017-02-08 中国科学院长春光学精密机械与物理研究所 臂式空间天文望远镜的惯性指向控制方法及控制系统
US10223472B2 (en) * 2015-12-15 2019-03-05 Facebook, Inc. Systems and methods for providing progressive images based on data range requests
CN107957895B (zh) * 2017-12-01 2020-05-19 中国人民解放军国防科技大学 敏捷对地卫星的协调控制策略
EP3776065A4 (fr) 2018-03-30 2021-12-29 DRS Network & Imaging Systems, LLC Procédé et système de balayage d'un réseau de plans focaux pendant une imagerie d'observation de la terre
US10645291B1 (en) 2018-04-26 2020-05-05 General Atomics Aeronautical Systems, Inc. Systems and methods to mitigate adverse jitter effects in mobile imaging
CN108680154B (zh) * 2018-06-11 2023-09-29 中国科学院西安光学精密机械研究所 一种点目标探测相机焦面对接系统及方法
US10739609B1 (en) * 2018-08-01 2020-08-11 National Technology & Engineering Solutions Of Sandia, Llc Jitter minimization flexure pointing system
US11317026B1 (en) 2020-08-19 2022-04-26 General Atomics Aeronautical Systems, Inc. Mobile imaging systems and methods utilizing angular velocity in mitigating adverse jitter effects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000334A1 (fr) * 1988-07-01 1990-01-11 Plessey Overseas Limited Ameliorations relatives a la stabilisation d'images
US20070103556A1 (en) * 2005-11-08 2007-05-10 Casio Computer Co., Ltd. Image shake correction image processing apparatus and program
US20080186386A1 (en) * 2006-11-30 2008-08-07 Sony Corporation Image taking apparatus, image processing apparatus, image processing method, and image processing program
US20090021588A1 (en) * 2007-07-20 2009-01-22 Border John N Determining and correcting for imaging device motion during an exposure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6154611A (en) * 1998-05-18 2000-11-28 Canon Kabushiki Kaisha Image-shake compensation apparatus
FR2968499B1 (fr) * 2010-12-06 2013-06-14 Astrium Sas Procede d'utilisation d'un capteur d'image.
JP5751040B2 (ja) * 2011-06-17 2015-07-22 リコーイメージング株式会社 天体自動追尾撮影方法及び天体自動追尾撮影装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000334A1 (fr) * 1988-07-01 1990-01-11 Plessey Overseas Limited Ameliorations relatives a la stabilisation d'images
US20070103556A1 (en) * 2005-11-08 2007-05-10 Casio Computer Co., Ltd. Image shake correction image processing apparatus and program
US20080186386A1 (en) * 2006-11-30 2008-08-07 Sony Corporation Image taking apparatus, image processing apparatus, image processing method, and image processing program
US20090021588A1 (en) * 2007-07-20 2009-01-22 Border John N Determining and correcting for imaging device motion during an exposure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202513A (zh) * 2014-06-30 2014-12-10 北京控制工程研究所 一种基于fpga的星敏感器多模式图像预处理方法
EP3839600A1 (fr) 2019-12-19 2021-06-23 Thales Procede d'estimation precis avec une disponibilite totale de la ligne de visee d'un telescope embarque a bord d'un satellite d'observation de la terre
FR3105447A1 (fr) 2019-12-19 2021-06-25 Thales Procede d'estimation precis avec une disponibilite totale de la ligne de visee d'un telescope embarque a bord d'un satellite d'observation de la terre

Also Published As

Publication number Publication date
CN103782224A (zh) 2014-05-07
EP2753971B1 (fr) 2015-07-01
FR2991785B1 (fr) 2014-07-18
US20150085147A1 (en) 2015-03-26
EP2753971A1 (fr) 2014-07-16
CN103782224B (zh) 2017-05-24
US9143689B2 (en) 2015-09-22
FR2991785A1 (fr) 2013-12-13
ES2547706T3 (es) 2015-10-08

Similar Documents

Publication Publication Date Title
EP2753971B1 (fr) Stabilisation d'une ligne de visée d'un système d'imagerie embarqué à bord d'un satellite
EP1843295B1 (fr) Procédé de restitution de mouvements de la ligne de visée d'un instrument optique
FR3044141A1 (fr) Drone muni d'une camera video delivrant des sequences d'images corrigees de l'effet wobble
EP0738074B1 (fr) Procédé de détection à cycles d'intégration et de lecture répartis pour caméra à balayage, et barrette de détection correspondante
WO2011138541A1 (fr) Procede d'imagerie polychrome
EP2243115B1 (fr) Correction d'images captees et stabilisees
EP0920677B1 (fr) Procede et dispositif de reconnaissance air-sol pour equipement optronique
EP4078083B1 (fr) Procédé d'acquisition d'images d'une zone terrestre par un engin spatial
EP0608945B1 (fr) Viseur d'étoile à matrice de DTC, procédé de détection, et application au recalage d'un engin spatial
FR2968499A1 (fr) Procede d'utilisation d'un capteur d'image.
EP3217649B1 (fr) Capteur d'images par decalage temporel et integration etendue
EP2388646B1 (fr) Procédé de prise d'image
EP3402178B1 (fr) Capteur de mouvement et capteur d'images
EP3839814B1 (fr) Instrument d'observation optique embarque a resolution spatiale et spectrale variables
EP3853653B1 (fr) Procédé, système et programme d'ordinateur adaptatives d'acqusition d'une image
WO2023047036A1 (fr) Systeme d'imagerie a balayage pour saisir des images selon deux valeurs d'inclinaison de ligne de visee
WO2023037066A1 (fr) Procédé d'acquisition d'images d'une zone terrestre par un engin spatial comportant un module d'émission laser
WO2023046551A1 (fr) Procede pour l'acquisition d'images multispectrales et d'imagettes panchromatiques
EP4203490A1 (fr) Système d observation et procédé d observation associé
EP4185532A1 (fr) Procede et systeme pour detecter une ou plusieurs cibles dans l'espace a partir d'images prises depuis un engin spatial tel qu'un satellite d'inspection visuelle, et satellite equipe d'un tel systeme
FR3066268A1 (fr) Capteur d'images
FR3135329A1 (fr) Procédé de génération d’image par un satellite par fusion à bord d’images acquises par ledit satellite
FR2731785A1 (fr) Tete chercheuse notamment pour missile
EP2012526A1 (fr) Procédé et dispositif d'observation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013731363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14124362

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13731363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE