WO2013182082A1 - 页岩气开采的气动脆裂法与设备 - Google Patents

页岩气开采的气动脆裂法与设备 Download PDF

Info

Publication number
WO2013182082A1
WO2013182082A1 PCT/CN2013/077007 CN2013077007W WO2013182082A1 WO 2013182082 A1 WO2013182082 A1 WO 2013182082A1 CN 2013077007 W CN2013077007 W CN 2013077007W WO 2013182082 A1 WO2013182082 A1 WO 2013182082A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
gas
control valve
shale
delivery pipe
Prior art date
Application number
PCT/CN2013/077007
Other languages
English (en)
French (fr)
Inventor
高峰
谢和平
周福宝
鞠杨
谢凌志
刘应科
高亚楠
刘建锋
张茹
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Publication of WO2013182082A1 publication Critical patent/WO2013182082A1/zh
Priority to US14/335,935 priority Critical patent/US9347301B2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2605Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • E21B43/247Combustion in situ in association with fracturing processes or crevice forming processes

Definitions

  • the present invention relates to the field of shale gas mining, and more particularly to a method and apparatus for shale gas mining using a dynamic fatigue fragile cracking technique to fracture a shale formation.
  • Shale gas is a natural gas extracted from shale formations, which is mainly composed of methane and is an important unconventional natural gas resource.
  • the global shale gas resources are very rich. It is predicted that the world's shale gas resources are 456 trillion cubic meters.
  • the shale gas reservoir has the advantages of wide distribution range, long mining life and long production cycle.
  • the aerodynamic brittle fracture method for shale gas exploitation according to the present invention is to apply alternating high temperature compressed gas of at least two different pressures to the shale formation until the shale formation forms a fracture structure, and the temperature of the high temperature compressed gas is at least At 80 ° C, the maximum pressure is at least 25 MPa, and the minimum pressure is 1/4 to 1/3 of the maximum pressure.
  • the fissure structure refers to the shale rupture, and the dense micropores inside the rock formation penetrate each other, and the conditions for collecting shale gas are provided.
  • the high temperature compressed gas is preferably high temperature compressed air or high temperature compressed carbon dioxide gas.
  • the high temperature compressed gas is high temperature compressed air
  • the temperature is at least 150 ° C
  • the maximum pressure is at least 45 MPa .
  • the water content of the high temperature compressed air is preferably controlled at 10 vol. % ⁇ 50 vol. %.
  • the high temperature compressed gas is a high temperature compressed carbon dioxide gas
  • the temperature is at least 80 ° C and the maximum pressure is at least 25 MPa.
  • An occluder forming a plurality of annular air chambers;
  • Each annular gas chamber is alternately filled with a high temperature compressed gas that meets the maximum pressure requirement and a high temperature compressed gas that meets the minimum pressure requirement, and acts on the shale rock formation;
  • the pneumatic brittle fracture device for shale gas exploitation has the following two structures:
  • the first type of pneumatic blasting equipment for shale gas mining includes a compressor, a supercharger and a pressure control system, and the pressure control system is composed of a pressure controller, a first control valve and a second control valve, the first The control valve is installed on the intake line of the high-pressure gas delivery pipe, and the second control valve is installed on the exhaust line of the high-pressure gas delivery pipe, and the exhaust port of the compressor is connected to the inlet of the supercharger through the pipe fitting
  • the exhaust port of the supercharger is connected to the air inlet of the first control valve through a pipe, and the pressure controller is respectively connected to the compressor, the supercharger, the first control valve and the second control through the data line
  • the valve is connected to control the formation of high-temperature compressed gas and the repeated alternating changes and pressure of the pressure in the high-pressure gas delivery pipe.
  • This type of shale gas mining pneumatic brittle equipment is suitable for the temperature generated during the compression of the gas, that is, the compressed gas can reach the required high temperature
  • the second type of pneumatic blasting equipment for shale gas mining includes a compressor, a supercharger, a heater and a pressure control system, and the pressure control system is composed of a pressure controller, a first control valve and a second control valve.
  • the first control valve is installed at high pressure On the intake line of the gas delivery pipe, the second control valve is installed on the exhaust line of the high-pressure gas delivery pipe, and the exhaust port of the compressor is connected to the inlet of the supercharger through a pipe fitting, the supercharging
  • the exhaust port of the machine is connected to the air inlet of the heater through a pipe, and the exhaust port of the heater is connected to the air inlet of the first control valve through a pipe, and the pressure controller is respectively compressed by the data line
  • the machine, the supercharger, the heater, the first control valve and the second control valve are connected to control the formation of the high-temperature compressed gas and the repeated alternating change and pressure of the pressure in the high-pressure gas delivery pipe.
  • the pneumatic brittle cracking device for shale gas mining may further include a dehumidifier to reduce the water content of the compressed gas, wherein the air inlet of the dehumidifier and the exhaust port of the compressor are connected by a pipe, and the row of the dehumidifier The air port is connected to the air inlet of the supercharger through a pipe, and the dehumidifier is connected to the pressure controller through a data line.
  • the pressure controller is a computer equipped with control software.
  • the compressor compresses the atmospheric pressure gas to 1 MPa ⁇ 10 MPa.
  • the dehumidifier reduces the moisture in the compressed gas from the compressor to the required water content, and the booster will come from the compressor.
  • the compressed gas or the compressed gas from the dehumidifier is pressurized to a high temperature compressed gas that meets the maximum pressure requirement. If the compressed gas temperature after the booster is pressurized is lower than the required temperature, the heater will compress the gas from the supercharger.
  • the first control valve is opened or closed, the second control valve is closed or opened, and the first control valve is used to install the high temperature compressed gas input that meets the maximum pressure requirement on the shale
  • the method of the present invention provides a technical solution different from the prior art concept for the exploitation of shale gas, which not only solves the problem that the shale gas cannot be mined in the water-poor and water-deficient areas, but also contributes to the ecological environment protection. .
  • the method of the present invention causes the shale to be cracked by brittle fatigue failure under the repeated alternating action of different pressures by using high temperature and high pressure gas, thereby enabling the development and penetration of dense micropores in the shale, greatly improving the page.
  • the permeability of the rock mass promotes the desorption of shale gas, and the activity of oil and gas molecules is increased, and the seepage and diffusion capacity in the porous medium is increased, thereby improving the shale oil and gas production efficiency.
  • the supporting equipment of the method of the invention can perform multi-stage gas compression and multi-unit parallel connection for mining, thereby ensuring gas cracking pressure and thermal energy.
  • FIG. 1 is a schematic view showing a first process flow and a layout of ancillary equipment according to the method of the present invention
  • FIG. 2 is a schematic view showing a fracture structure formed by a shale formation under the process flow shown in FIG. 1.
  • FIG. FIG. 4 is a schematic view showing the formation of a fracture structure of a shale formation under the process flow shown in FIG. 3;
  • FIG. 1 is a schematic view showing a first process flow and a layout of ancillary equipment according to the method of the present invention
  • FIG. 2 is a schematic view showing a fracture structure formed by a shale formation under the process flow shown in FIG. 1.
  • FIG. FIG. 4 is a schematic view showing the formation of a fracture structure of a shale formation under the process flow shown in FIG. 3;
  • FIG. 5 is a third process flow of the method of the present invention
  • Figure 6 is a schematic view showing the formation of a fracture structure of a shale formation under the process flow shown in Figure 5
  • Figure 7 is a schematic view of the fourth process flow and the layout of the supporting equipment of the method of the present invention
  • FIG. 9 is a schematic view showing the fifth process flow and the layout of the supporting equipment in the process of the present invention
  • FIG. 10 is a schematic diagram of the process flow shown in FIG. Schematic diagram of the rock formation forming a fracture structure
  • FIG. 11 is a schematic diagram of the sixth process flow and the layout of the supporting equipment of the method of the present invention
  • FIG. 12 is a shale rock under the process flow of FIG. FIG.
  • FIG. 13 is a schematic view showing the seventh process flow and the layout of the supporting equipment of the method of the present invention
  • FIG. 14 is a schematic view showing the formation of a crack structure in the shale rock formation under the process flow shown in FIG. 13
  • FIG. 16 is a schematic view showing the formation of a fracture structure of the shale rock formation under the process flow shown in FIG.
  • the compressor is a gas compressor (air compressor) of type SF-10/250 or VW-16.7/40.
  • a shaft 5 extending into the shale formation and a horizontal well 6 communicating with the shaft are drilled, and a high pressure gas delivery pipe 8 having a heat insulating property is installed in the shaft 5 and the horizontal well 6, outside the high pressure gas delivery pipe
  • the diameter is smaller than the inner diameter of the shaft 5 and the horizontal well 6, and the high-pressure gas delivery pipe 8 installed in the horizontal well 6 is provided with an air outlet 9 on the inner wall of the horizontal well and the outer surface of the high-pressure gas transmission pipe.
  • an annular occluder 7 is arranged every 30m to form a plurality of annular air chambers;
  • the pneumatic brittle fracture device for shale gas mining is composed of compressor 1, supercharger 2 and pressure control system, pressure control
  • the system consists of a pressure controller 4, a first control valve 11 and a second control valve 12; the first control valve 11 is mounted on an intake line of a high pressure gas delivery pipe 8, and the second control valve 12 is mounted on a high pressure gas
  • An exhaust port of the compressor is connected to an intake port of the supercharger 2 through a pipe member, and an exhaust port of the supercharger 2 and an intake port of the first control valve Connected by pipe fittings,
  • the pressure controller 4 is connected to the compressor 1, the supercharger 2, the first control valve 11 and the second control valve 12 via data lines respectively; B.
  • the first control valve 11 is in an open state, the compressor 1 compresses the atmospheric air to a primary pressure of 5 MPa, and the supercharger 2 pressurizes the compressed air from the compressor to 45 MPa to form a high-temperature compressed air having a temperature exceeding 150 ° C (
  • the high-temperature compressed air is the maximum pressure high-temperature compressed air set in the embodiment, and the high-pressure gas delivery pipe 8 is input through the first control valve 11, and the pressure is maintained for 0.5 hours.
  • the pressure controller 4 is Under control, the first control valve 11 is closed, the second control valve 12 is opened, and the gas pressure in the high-pressure gas delivery pipe is reduced to 15 MPa (the pressure is the minimum pressure high-temperature compressed air set in the embodiment), so that each annular gas The room is alternately filled with high temperature compressed air of 45 MPa and high temperature compressed air of 15 MPa, acting on the shale rock formation;
  • step B Under the control of the pressure controller 4, the operation of step B is repeated for 7 days, and the shale formation surrounding the horizontal well 6 forms a fracture structure as shown in FIG.
  • Example 2 the pneumatic brittle cracking method and supporting equipment for shale gas mining are as shown in FIG. 3.
  • two different pressures of high-temperature compressed carbon dioxide gas are repeatedly applied to the shale rock formation:
  • a shaft 5 extending into the shale formation and a horizontal well 6 communicating with the shaft are drilled, and a high pressure gas delivery pipe 8 having a heat insulating property is installed in the shaft 5 and the horizontal well 6, outside the high pressure gas delivery pipe
  • the diameter is smaller than the inner diameter of the shaft 5 and the horizontal well 6, and the high-pressure gas delivery pipe 8 installed in the horizontal well 6 is provided with an air outlet 9 on the inner wall of the horizontal well and the outer surface of the high-pressure gas transmission pipe.
  • an annular occluder 7 is arranged every 40m to form a plurality of annular air chambers;
  • the pneumatic brittle cracking device for shale gas mining is composed of a compressor 1, a supercharger 2, a heater 3 and a pressure control system.
  • the pressure control system is composed of a pressure controller 4, a first control valve 11 and a second control valve 12; the first control valve 11 is mounted on an intake line of the high pressure gas delivery pipe 8, and the second control valve 12 Installed on the exhaust line of the high-pressure gas delivery pipe, the exhaust port of the compressor is connected to the intake port of the supercharger 2 through a pipe, the exhaust port of the supercharger 2 and the intake of the heater 3 The mouth is connected by a pipe fitting, The exhaust port of the heater 3 is connected to the intake port of the first control valve 11 through a pipe, and the pressure controller 4 passes through the data line to the compressor 1, the booster 2, the heater 3, and the A control valve 11 and a second control valve 12 are connected; B. operating the pressure controller 4, starting the compressor 1, the booster 2, and the heater 3 to operate, so that the first control valve
  • the compressor 1 compresses the atmospheric pressure carbon dioxide gas to 2 MPa
  • the supercharger 2 pressurizes the compressed carbon dioxide gas from the compressor to 25 MPa
  • the heater 3 heats the compressed carbon dioxide gas of the supercharger to the temperature.
  • the carbon dioxide gas (the maximum pressure high-temperature compressed carbon dioxide gas set in this embodiment) is compressed at a high temperature of 100 ° C, and is supplied to the high-pressure gas delivery pipe 8 through the first control valve 11 and maintained at the pressure for 1 hour.
  • the first control valve 11 is closed, the second control valve 12 is opened, and the gas pressure in the high pressure gas delivery pipe is lowered to 8 MPa (the pressure is the minimum pressure high temperature compressed carbon dioxide gas set in the embodiment) , each annular gas chamber is alternately filled with high-temperature compressed carbon dioxide gas of 25 MPa and high-temperature compressed carbon dioxide gas of 8 MPa to act on shale rock formation;
  • step B Repeat the operation of step B under the control of the pressure controller 4 for 10 days, and the shale formation surrounding the horizontal well 6 forms a fracture structure as shown in FIG. Embodiment 3
  • the pneumatic brittle fracture method and supporting equipment for shale gas mining are as shown in Fig. 5.
  • two different pressures of high temperature compressed air are alternately applied to the shale rock formation:
  • a shaft 5 extending into the shale formation and a horizontal well 6 communicating with the shaft are drilled, and a high pressure gas delivery pipe 8 having a heat insulating property is installed in the shaft 5 and the horizontal well 6, outside the high pressure gas delivery pipe
  • the diameter is smaller than the shaft 5
  • the inner diameter of the horizontal well 6, the high-pressure gas delivery pipe 8 installed in the horizontal well 6, the pipe wall is provided with an air outlet 9, and the annular space enclosed by the inner surface of the horizontal well and the outer surface of the high-pressure gas transmission pipe
  • an annular occluder 7 is arranged every 50m to form a plurality of annular air chambers;
  • the pneumatic brittle cracking device for shale gas mining is composed of a compressor 1, a supercharger 2, a heater 3, a dehumidifier 10 and a pressure control system.
  • the pressure control system is composed of a pressure controller 4, a first control valve 11 and a second control valve 12; the first control valve 11 is mounted on an intake line of the high pressure gas delivery pipe 8, and the second control valve 12 Installed on the exhaust line of the high-pressure gas delivery pipe, the exhaust port of the compressor is connected to the intake port of the dehumidifier 10 through a pipe, and the exhaust port of the dehumidifier 10 and the intake port of the supercharger 2 Through the pipe connection, the exhaust port of the supercharger 2 is connected to the air inlet of the heater 3 through a pipe, and the exhaust port of the heater 3 is connected to the air inlet of the first control valve 11 through a pipe.
  • the pressure controller 4 passes through the data line and the compressor 1, respectively a supercharger 2, a heater 3, a first control valve 11 and a second control valve 12 are connected;
  • the pressure controller 4 Operating the pressure controller 4, starting the compressor 1, the dehumidifier 10, the supercharger 2, and the heater 3 to operate, so that the first control valve 11 is in an open state, and the compressor 1 compresses the atmospheric air to a primary pressure of 1 MPa.
  • the dehumidifier 10 reduces the moisture in the compressed air from the compressor to 10 vol. %, and the supercharger 2 pressurizes the compressed air from the dehumidifier to 50 MPa, and the heater 3 heats the compressed air of the supercharger to the temperature.
  • the high pressure gas delivery pipe 8 is input through the first control valve 11, and the pressure is maintained for 1 hour, after the pressure holding time is reached, the pressure is controlled.
  • the first control valve 11 is closed, the second control valve 12 is opened, and the gas pressure in the high pressure gas delivery pipe is lowered to 14 MPa (the pressure is the minimum pressure high temperature compressed air set in the embodiment),
  • Each annular gas chamber is alternately filled with 50MPa high-temperature compressed air and 14MPa high-temperature compressed air to act on the shale rock formation;
  • step B Repeat the operation of step B under the control of the pressure controller 4 for 8 days, the shale formation surrounding the horizontal well 6 forms a fracture structure as shown in Fig. 6.
  • Embodiment 4 In this embodiment, the pneumatic brittle cracking method and supporting equipment for shale gas mining are as shown in Fig. 7.
  • two different pressures of high temperature compressed air are alternately applied to the shale rock formation:
  • An annular occluder 7 is disposed every 30 m in an annular space surrounded by the inner surface and the outer surface of the high-pressure gas delivery pipe to form a plurality of annular plenums;
  • the pneumatic brittle cracking device for shale gas mining is composed of a compressor 1, a supercharger 2, a heater 3, a dehumidifier 10 and a pressure control system, and the pressure control system is controlled by a pressure controller 4, a first control valve 11 and a second control.
  • the valve 12 is composed of; the first control valve 11 is installed on the intake pipe of the high-pressure gas delivery pipe 8, and the second control valve 12 is installed on the exhaust pipe of the high-pressure gas delivery pipe, and the exhaust port of the compressor
  • the air inlet of the dehumidifier 10 is connected to the air inlet of the dehumidifier 10, and the air outlet of the dehumidifier 10 is connected to the air inlet of the supercharger 2 through a pipe, and the exhaust port of the supercharger 2 and the heater 3 are advanced.
  • the air port is connected by a pipe, the exhaust port of the heater 3 is connected to the air inlet of the first control valve 11 through a pipe, and the pressure controller 4 passes through the data line to the compressor 1 and the booster 2 respectively.
  • the heater 3, the first control valve 11 and the second control valve 12 are connected;
  • C high-temperature compressed air (maximum pressure high-temperature compressed air set in this embodiment), is input to the high-pressure gas delivery pipe 8 through the first control valve 11, and maintains the pressure for 0.5 hours, after the pressure-holding time is reached, at the pressure controller 4 Under control, the first control valve 11 is closed, the second control valve 12 is opened, and the gas pressure in the high-pressure gas delivery pipe is reduced to 15 MPa (the pressure is the minimum pressure high-temperature compressed air set in the embodiment), so that each annular gas chamber is Alternately filled with 45MPa high temperature compressed air and 15MPa high temperature compressed air, acting on shale rock formation;
  • step B Repeat the operation of step B under the control of the pressure controller 4 for 3 days, and the shale formation surrounding the horizontal well 6 forms a fracture structure as shown in FIG. Embodiment 5
  • the pneumatic brittle cracking method and supporting equipment for shale gas mining are as shown in Fig. 9.
  • This embodiment repeatedly applies two different pressures of high-temperature compressed carbon dioxide gas to the shale rock layer:
  • An annular occluder 7 is arranged every 40 m in the annular space enclosed by the inner surface and the outer surface of the high-pressure gas conveying pipe to form a plurality of annular plenums;
  • the pneumatic brittle-cracking device for shale gas mining is composed of the compressor 1 , a supercharger 2, a heater 3 and a pressure control system, the pressure control system is composed of a pressure controller 4, a first control valve 11 and a second control valve 12; the first control valve 11 is installed in a high
  • the exhaust port of the press 2 is connected to the intake port of the heater 3 through a pipe member, and the exhaust port of the heater 3 is connected to the intake port of the first control valve 11 through a pipe member, the pressure controller 4 Connected to the compressor 1, the supercharger 2, the heater 3, the first control valve 11 and the second control valve 12 via data lines;
  • the gas pressure in the high-pressure gas delivery pipe is reduced to 8 MPa (the pressure is the minimum pressure high-temperature compressed carbon dioxide gas set in the embodiment), so that each annular gas chamber is alternately filled with a high-temperature compressed carbon dioxide gas of 25 MPa and a high-temperature compressed carbon dioxide gas of 8 MPa.
  • the pressure is the minimum pressure high-temperature compressed carbon dioxide gas set in the embodiment
  • step B Repeat the operation of step B under the control of the pressure controller 4 for 7 days, and the shale formation surrounding the horizontal well 6 forms a fracture structure as shown in FIG. Embodiment 6
  • the pneumatic brittle fracture method and supporting equipment for shale gas mining are as shown in Fig. 11.
  • two different pressures of high temperature compressed air are alternately applied to the shale rock formation:
  • An annular occluder 7 is arranged every 40 m in the annular space enclosed by the inner surface and the outer surface of the high-pressure gas conveying pipe to form a plurality of annular plenums; the pneumatic brittle-cracking device for shale gas mining is composed of the compressor 1
  • the supercharger 2 and the pressure control system are composed of a pressure controller 4, a first control valve 11 and a second control valve 12; the first control valve 11 is installed in the intake pipe of the high pressure gas delivery pipe 8.
  • the second control valve 12 is installed on the exhaust line of the high-pressure gas delivery pipe, and the exhaust port of the compressor is connected to the intake port of the supercharger 2 through a pipe, and the row of the supercharger 2 Air port
  • the first control valve through a gas inlet tube connected to a pressure controller 4 through a data line 2, a first control valve 11 and the second control valve 12 connected to the compressor 1, respectively supercharger;
  • step B Repeat the operation of step B under the control of the pressure controller 4 for 3 days, and the shale formation surrounding the horizontal well 6 forms a fracture structure as shown in FIG. Embodiment 7
  • the pneumatic brittle fracture method and supporting equipment for shale gas mining are as shown in Fig. 13.
  • two different pressures of high temperature compressed carbon dioxide gas are alternately applied to the shale formation:
  • An annular occluder 7 is arranged every 50 m in the annular space enclosed by the inner surface and the outer surface of the high-pressure gas conveying pipe to form a plurality of annular plenums;
  • the pneumatic brittle-cracking device for shale gas mining is composed of the compressor 1 , a supercharger 2, a heater 3 and a pressure control system, the pressure control system is composed of a pressure controller 4, a first control valve 11 and a second control valve 12; the first control valve 11 is installed in a
  • the gas pressure in the high pressure gas delivery pipe is reduced to 12 MPa (this pressure is the minimum pressure and high temperature pressure set in the embodiment) Carbon dioxide gas), the annular gas chamber is alternately filled with high temperature compressed carbon dioxide gas of 45 MPa and high temperature compressed carbon dioxide gas of 12 MPa to act on shale rock formation;
  • step B Repeat the operation of step B under the control of the pressure controller 4 for 5 days, and the shale formation surrounding the horizontal well 6 forms a fracture structure as shown in FIG. Embodiment 8
  • the pneumatic brittle fracture method and supporting equipment for shale gas mining are as shown in Fig. 15.
  • two different pressures of high temperature compressed air are alternately applied to the shale rock formation:
  • An annular occluder 7 is arranged every 50m in the annular space enclosed by the inner surface and the outer surface of the high-pressure gas conveying pipe to form a plurality of annular plenums; the pneumatic brittle-cracking device for shale gas mining is provided by the compressor 1.
  • the supercharger 2 and the pressure control system are composed of a pressure controller 4, a first control valve 11 and a second control valve 12; the first control valve 11 is mounted on the intake line of the high pressure gas delivery pipe 8.
  • the second control valve 12 is mounted on an exhaust line of the high-pressure gas delivery pipe, and the exhaust port of the compressor is connected to the intake port of the supercharger 2 through a pipe member, and the exhaust of the supercharger 2 Mouth
  • a first intake port of said control valve member is connected by a pipe, the pressure controller 4 through a data line of the compressor 1, respectively, booster 2, a first control valve 11 and the second control valve 12 is connected;
  • the pressure controller 4 Operating the pressure controller 4, starting the compressor 1, the booster 2 is working, the first control valve 11 is in an open state, the compressor 1 compresses the atmospheric air to a primary pressure of 10 MPa, and the supercharger 2 will be from the compressor.
  • the compressed air is pressurized to 45 MPa to form a high-temperature compressed air having a temperature exceeding 150 ° C (the high-temperature compressed air is the maximum pressure high-temperature compressed air set in the embodiment), and is input to the high-pressure gas delivery pipe 8 through the first control valve 11 and maintained.
  • the minimum pressure high-temperature compressed air set in the embodiment is such that each annular gas chamber is alternately filled with high-temperature compressed air of 45 MPa and high-temperature compressed air of 15 MPa to act on the shale rock formation;
  • step B Repeat the operation of step B under the control of the pressure controller 4 for 7 days, and the shale formation surrounding the horizontal well 6 forms a fracture structure as shown in FIG.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

本发明所述页岩气开采的气动脆裂法,是对页岩岩层反复交替施加至少两种不同压力的高温压缩气体,直至页岩岩层形成裂隙结构为止,所述高温压缩气体的温度至少为80°C,其最大压力至少为25MPa,最小压力为最大压力的1/4~1/3。上述方法中,所述高温压缩气体优选高温压缩空气或高温压缩二氧化碳气体。当高温压缩气体为高温压缩空气时,其温度至少为150°C,其最大压力至少为45MPa;当高温压缩气体为高温压缩二氧化碳气体时,其温度至少为80°C,其最大压力至少为25MPa。

Description

页岩气开采的气动脆裂法与设备
技术领域 本发明属于页岩气开采领域, 特别涉及一种用气体动态疲劳脆性致裂技术致裂页 岩岩层实现页岩气开采的方法与设备。 背景技术 页岩气是从页岩层中开采出来的天然气,成分以甲烷为主,是一种重要的非常规天 然气资源。 全球页岩气资源非常丰富,据预测,世界页岩气资源量为 456万亿立方米,页 岩气藏具有分布范围广、 开采寿命长和生产周期长的优点。 随着社会对清洁能源需求 的不断扩大,以及天然气价格不断上涨, 页岩气的开采影响到国家能源战略安全, 因而 越来越得到各国的重视。 页岩气被束缚在岩石内, 如何使被束缚在岩石内的"致密气 (页岩气) "高效释放 是制约页岩气开采的瓶颈。 现有页岩油气资源开采均采用水力压裂技术, 即通过将压 裂液压入油井中, 将岩层压裂, 产生高导流能力的裂缝通道, 再注入支撑剂 (主要是 石英砂)撑住裂缝, 进而提高油气采收率的开采工艺。 页岩气开采所使用的压裂液中, 98wt%为水, 2^%为化学添加剂。 因而存在以下问题: (1 ) 耗水量巨大, 对贫水、 缺水的页岩气分布区域无法利用该技术进行油气开采; (2) 虽然水力压裂有很高的起 裂压力 (最高达 140MPa), 但是水力压裂形成的主裂纹数目有限, 压裂形式单一, 对 页岩的破裂程度不高, 且液体表面张力大, 液体分子相对较大, 渗透性差, 难以进入 页岩致密孔隙, 难以有效提高页岩中油气的渗透性油气, 采出率低; (3 ) 压裂液中的 化学添加剂和页岩气 (主要是甲烷) 进入地下水中, 对生态环境破坏严重, 严重制约 了页岩气的开采。 发明内容 本发明的目的在于提供一种页岩气开采的气动脆裂法与设备, 以促进贫水、 缺水 地区页岩气的开采, 并提高页岩气的采出率, 保护生态环境。 本发明所述页岩气开采的气动脆裂法, 是对页岩岩层反复交替施加至少两种不同 压力的高温压缩气体, 直至页岩岩层形成裂隙结构为止, 所述高温压缩气体的温度至 少为 80°C,其最大压力至少为 25MPa, 最小压力为最大压力的 1/4〜1/3。所述裂隙结构 是指页岩破裂, 岩层内部致密的微孔隙相互贯通, 具备了收集页岩气的条件。 上述方法中, 所述高温压缩气体优选高温压缩空气或高温压缩二氧化碳气体。 当 高温压缩气体为高温压缩空气时, 其温度至少为 150°C, 其最大压力至少为 45MPa; 为了提高对页岩岩层的致裂效果, 高温压缩空气的含水量优选控制在 10 vol. %~50 vol. %。 当高温压缩气体为高温压缩二氧化碳气体时, 其温度至少为 80°C, 其最大压 力至少为 25MPa。 本发明所述页岩气开采的气动脆裂法, 采用以下操作步骤:
A、 钻取伸入页岩岩层的竖井和与竖井连通的水平井, 在竖井和水平井中安装具 有保温性能的高压气体输送管,所述高压气体输送管的外径小于竖井和水平井的内径, 安装在水平井中的高压气体输送管, 其管壁上设置有出气孔, 在水平井的内表面与高 压气体输送管的外表面所围成的环形空间内, 每隔 30m〜50m设置一环形封堵器, 形 成多个环形气室;
B、将符合最大压力要求的高温压缩气体输入高压气体输送管,并保持该压力 0.5~1 小时, 保压时间到达后, 将高压气体输送管内的气体压力降低至符合最小压力要求的 压力, 使各环形气室内交替充满符合最大压力要求的高温压缩气体和符合最小压力要 求的高温压缩气体, 作用于页岩岩层;
C、 重复步骤 B的操作, 重复次数以页岩岩层形成裂隙结构为止。 本发明所述页岩气开采的气动脆裂设备有以下两种结构:
1、 第一种结构 页岩气开采的气动脆裂设备包括压缩机、 增压机和压力控制系统, 压力控制系统 由压力控制器、 第一控制阀和第二控制阀组成, 所述第一控制阀安装在高压气体输送 管的进气管路上, 所述第二控制阀安装在高压气体输送管的排气管路上, 所述压缩机 的排气口与增压机的进气口通过管件连接, 所述增压机的排气口与所述第一控制阀的 进气口通过管件连接, 所述压力控制器通过数据线分别与压缩机、 增压机、 第一控制 阀和第二控制阀连接, 用于控制高温压缩气体的形成及高压气体输送管内压力的反复 交替变化与保压。 此种页岩气开采的气动脆裂设备, 适用于压缩气体过程中产生的温 度即能使压缩气体达到所要求的高温的情况。
2、 第二种结构 页岩气开采的气动脆裂设备包括压缩机、 增压机、 加热器和压力控制系统, 压力 控制系统由压力控制器、 第一控制阀和第二控制阀组成, 所述第一控制阀安装在高压 气体输送管的进气管路上, 所述第二控制阀安装在高压气体输送管的排气管路上, 所 述压缩机的排气口与增压机的进气口通过管件连接, 所述增压机的排气口与加热器的 进气口通过管件连接,所述加热器的排气口与所述第一控制阀的进气口通过管件连接, 所述压力控制器通过数据线分别与压缩机、 增压机、 加热器、 第一控制阀和第二控制 阀连接, 用于控制高温压缩气体的形成及高压气体输送管内压力的反复交替变化与保 压。 此种页岩气开采的气动脆裂设备, 适用于压缩气体过程中产生的温度不能使压缩 气体达到所要求的高温的情况。 上述页岩气开采的气动脆裂设备, 还可包括除湿机, 以降低压缩气体的含水量, 所述除湿机的进气口与压缩机的排气口通过管件连接, 所述除湿机的排气口与增压机 的进气口通过管件连接, 所述除湿机通过数据线与压力控制器连接。 上述页岩气开采的气动脆裂设备中,所述压力控制器为安装有控制软件的计算机。 在压力控制器的控制下, 压缩机将常压气体初级压缩至 l MPa〜10 MPa, 除湿机将来 自压缩机的压缩气体中的水分降低至符合要求的含水量, 增压机将来自压缩机的压缩 气体或来自除湿机的压缩气体增压至符合最大压力要求的高温压缩气体, 若增压机增 压后的压缩气体温度低于所要求的温度, 加热器将来自增压机的压缩气体升温至要求 的温度; 在压力控制器的控制下, 第一控制阀开启或关闭, 第二控制阀关闭或开启, 第一控制阀用于将符合最大压力要求的高温压缩气体输入安装在页岩岩层所钻竖井和 水平井中的高压气体输送管, 第二控制阀用于排气, 降低高压气体输送管内的气体的 压力。 本发明具有以下有益效果:
1、 本发明所述方法为页岩气的开采提供了一种与现有技术构思不同的技术方案, 不仅解决了贫水、 缺水地区无法开采页岩气的难题, 而且有利于生态环境保护。
2、本发明所述方法由于利用高温高压气体使页岩在不同压力的反复交替作用下发 生脆性疲劳破坏而致裂, 因而能使页岩中致密的微孔隙生长发育和贯通, 极大提高页 岩体的渗透性, 促进页岩气解吸, 并能使油气分子活性增大, 在孔隙介质中的渗流、 扩散能力加大, 从而提高页岩油气产出效率。
3、本发明所述方法的配套设备可进行多级气体压缩及采用多机组并联的方式进行 开采, 因而能保证气体的致裂压力和热力能量。
4、本发明所述方法的配套设备能控制高温压缩气体的压力幅度和频率,使页岩体 内部裂隙不断扩大并向深部发展, 从而拓宽页岩油气涌出的通道和范围。 附图说明 图 1是本发明所述方法的第一种工艺流程及配套设备的布局示意图; 图 2是在图 1所述工艺流程下页岩岩层形成裂隙结构的示意图; 图 3是本发明所述方法的第二种工艺流程及配套设备的布局示意图; 图 4是在图 3所述工艺流程下页岩岩层形成裂隙结构的示意图; 图 5是本发明所述方法的第三种工艺流程及配套设备的布局示意图; 图 6是在图 5所述工艺流程下页岩岩层形成裂隙结构的示意图; 图 7是本发明所述方法的第四种工艺流程及配套设备的布局示意图; 图 8是在图 7所述工艺流程下页岩岩层形成裂隙结构的示意图; 图 9是本发明所述方法的第五种工艺流程及配套设备的布局示意图; 图 10是在图 9所述工艺流程下页岩岩层形成裂隙结构的示意图; 图 11是本发明所述方法的第六种工艺流程及配套设备的布局示意图; 图 12是在图 11所述工艺流程下页岩岩层形成裂隙结构的示意图; 图 13是本发明所述方法的第七种工艺流程及配套设备的布局示意图; 图 14是在图 13所述工艺流程下页岩岩层形成裂隙结构的示意图; 图 15是本发明所述方法的第八种工艺流程及配套设备的布局示意图; 图 16是在图 15所述工艺流程下页岩岩层形成裂隙结构的示意图。 图中, 1一压缩机、 2—增压机、 3—加热器、 4 压力控制器、 5 竖井、 6—水平 井、 7—封堵器、 8—高压气体输送管、 9一出气孔、 10—除湿机、 11 第一控制阀、 12— 第二控制阀、 13—页岩裂隙。 具体实施方式 下面通过实施例对本发明所述页岩气开采的气动脆裂法及设备作进一步说明。 下 述实施例中,压缩机选用型号为 SF-10/250的气体压缩机(空气压缩机)或 VW-16.7/40 (二氧化压缩机) (中国蚌埠市艾普压缩机厂生产), 增压机选用型号为 ST140-7.5GH (济南赛思特流体系统设备有限公司生产), 加热器选用型号为 QL-GD-685的气体加 热器 (奇联电力设备有限公司生产), 除湿机选用型号为 HZXW的微热再生吸附式干燥 机(汉正气源设备有限公司生产), 第一控制阀和第二控制阀均选用型号为 PO的高压 气动球阀 〔普雷沃 (POLOVO) 生产〕, 压力控制器为安装有控制软件的工业计算机。 实施例 1 本实施例中, 页岩气开采的气动脆裂法及配套设备如图 1所示, 本实施例对页岩 岩层反复交替施加两种不同压力的高温压缩空气:
A、钻取了伸入页岩岩层的竖井 5和与竖井连通的一口水平井 6, 在竖井 5和水平 井 6中安装具有保温性能的高压气体输送管 8,所述高压气体输送管的外径小于竖井 5 和水平井 6的内径,安装在水平井 6中的高压气体输送管 8,其管壁上设置有出气孔 9, 在水平井的内表面与高压气体输送管的外表面所围成的环形空间内, 每隔 30m设置一 环形封堵器 7, 形成多个环形气室; 页岩气开采的气动脆裂设备由压缩机 1、 增压机 2和压力控制系统组成, 压力控 制系统由压力控制器 4、 第一控制阀 11和第二控制阀 12组成; 所述第一控制阀 11安 装在高压气体输送管 8的进气管路上,所述第二控制阀 12安装在高压气体输送管的排 气管路上, 所述压缩机的排气口与增压机 2的进气口通过管件连接, 所述增压机 2的 排气口与所述第一控制阀的进气口通过管件连接, 所述压力控制器 4通过数据线分别 与压缩机 1、 增压机 2、 第一控制阀 11和第二控制阀 12连接; B、 操作压力控制器 4, 启动压缩机 1、 增压机 2工作, 使第一控制阀 11处于开 启状态, 压缩机 1将常压空气初级压缩至 5MPa, 增压机 2将来自压缩机的压缩空气 增压至 45 MPa形成温度超过 150°C的高温压缩空气(该高温压缩空气为本实施例设定 的最大压力高温压缩空气), 经第一控制阀 11输入高压气体输送管 8, 并保持该压力 0.5小时, 保压时间到达后, 在压力控制器 4的控制下, 第一控制阀 11关闭、 第二控 制阀 12开启, 将高压气体输送管内的气体压力降低至 15 MPa (该压力为本实施例设 定的最小压力高温压缩空气),使各环形气室内交替充满 45 MPa的高温压缩空气和 15 MPa的高温压缩空气, 作用于页岩岩层;
C、 在压力控制器 4的控制下, 重复步骤 B的操作 7 天, 环绕水平井 6的页岩岩 层即形成如图 2所示的裂隙结构。 实施例 2 本实施例中, 页岩气开采的气动脆裂法及配套设备如图 3所示, 本实施例对页岩 岩层反复交替施加两种不同压力的高温压缩二氧化碳气体:
A、钻取了伸入页岩岩层的竖井 5和与竖井连通的一口水平井 6, 在竖井 5和水平 井 6中安装具有保温性能的高压气体输送管 8,所述高压气体输送管的外径小于竖井 5 和水平井 6的内径,安装在水平井 6中的高压气体输送管 8,其管壁上设置有出气孔 9, 在水平井的内表面与高压气体输送管的外表面所围成的环形空间内, 每隔 40m设置一 环形封堵器 7, 形成多个环形气室; 页岩气开采的气动脆裂设备由压缩机 1、增压机 2、加热器 3和压力控制系统组成, 压力控制系统由压力控制器 4、 第一控制阀 11和第二控制阀 12组成; 所述第一控制 阀 11安装在高压气体输送管 8的进气管路上, 所述第二控制阀 12安装在高压气体输 送管的排气管路上, 所述压缩机的排气口与增压机 2的进气口通过管件连接, 所述增 压机 2的排气口与加热器 3的进气口通过管件连接, 所述加热器 3的排气口与所述第 一控制阀 11的进气口通过管件连接, 所述压力控制器 4通过数据线分别与压缩机 1、 增压机 2、 加热器 3、 第一控制阀 11和第二控制阀 12连接; B、 操作压力控制器 4, 启动压缩机 1、 增压机 2、 加热器 3工作, 使第一控制阀
11处于开启状态, 压缩机 1将常压二氧化碳气体初级压缩至 2MPa, 增压机 2将来自 压缩机的压缩二氧化碳气体增压至 25 MPa,加热器 3将来增压机的压缩二氧化碳气体 加热至温度为 100°C高温压缩二氧化碳气体 (本实施例设定的最大压力高温压缩二氧 化碳气体), 经第一控制阀 11输入高压气体输送管 8, 并保持该压力 1小时, 保压时 间到达后, 在压力控制器 4的控制下, 第一控制阀 11关闭、 第二控制阀 12开启, 将 高压气体输送管内的气体压力降低至 8MPa (该压力为本实施例设定的最小压力高温 压缩二氧化碳气体), 使各环形气室内交替充满 25 MPa 的高温压缩二氧化碳气体和 8MPa的高温压缩二氧化碳气体, 作用于页岩岩层;
C、在压力控制器 4的控制下, 重复步骤 B的操作 10天, 环绕水平井 6的页岩岩 层即形成如图 4所示的裂隙结构。 实施例 3 本实施例中, 页岩气开采的气动脆裂法及配套设备如图 5所示, 本实施例对页岩 岩层反复交替施加两种不同压力的高温压缩空气:
A、钻取了伸入页岩岩层的竖井 5和与竖井连通的一口水平井 6, 在竖井 5和水平 井 6中安装具有保温性能的高压气体输送管 8,所述高压气体输送管的外径小于竖井 5 和水平井 6的内径,安装在水平井 6中的高压气体输送管 8,其管壁上设置有出气孔 9, 在水平井的内表面与高压气体输送管的外表面所围成的环形空间内, 每隔 50m设置一 环形封堵器 7, 形成多个环形气室; 页岩气开采的气动脆裂设备由压缩机 1、 增压机 2、 加热器 3、 除湿机 10和压力 控制系统组成, 压力控制系统由压力控制器 4、 第一控制阀 11和第二控制阀 12组成; 所述第一控制阀 11安装在高压气体输送管 8的进气管路上, 所述第二控制阀 12安装 在高压气体输送管的排气管路上,所述压缩机的排气口与除湿机 10的进气口通过管件 连接,所述除湿机 10的排气口与增压机 2的进气口通过管件连接,所述增压机 2的排 气口与加热器 3的进气口通过管件连接, 所述加热器 3的排气口与所述第一控制阀 11 的进气口通过管件连接, 所述压力控制器 4通过数据线分别与压缩机 1、增压机 2、加 热器 3、 第一控制阀 11和第二控制阀 12连接;
B、 操作压力控制器 4, 启动压缩机 1、 除湿机 10、 增压机 2、 加热器 3工作, 使 第一控制阀 11处于开启状态, 压缩机 1将常压空气初级压缩至 1 MPa, 除湿机 10将 来自压缩机的压缩空气中的水分降至 10 vol. %, 增压机 2将来自除湿机的压缩空气增 压至 50 MPa, 加热器 3将来增压机的压缩空气加热至温度为 180°C高温压缩空气 (本 实施例设定的最大压力高温压缩空气), 经第一控制阀 11输入高压气体输送管 8, 并 保持该压力 1小时,保压时间到达后,在压力控制器 4的控制下,第一控制阀 11关闭、 第二控制阀 12开启, 将高压气体输送管内的气体压力降低至 14 MPa (该压力为本实 施例设定的最小压力高温压缩空气), 使各环形气室内交替充满 50MPa的高温压缩空 气和 14MPa的高温压缩空气, 作用于页岩岩层;
C、 在压力控制器 4的控制下, 重复步骤 B的操作 8天, 环绕水平井 6的页岩岩 层即形成如图 6所示的裂隙结构。 实施例 4 本实施例中, 页岩气开采的气动脆裂法及配套设备如图 7所示, 本实施例对页岩 岩层反复交替施加两种不同压力的高温压缩空气:
A、 钻取了伸入页岩岩层的竖井 5和与竖井连通的两口相隔一定距离、 且位于竖 井同一侧的水平井 6,在竖井 5和各水平井 6中安装具有保温性能的高压气体输送管 8, 所述高压气体输送管的外径小于竖井 5和水平井 6的内径, 安装在两口水平井 6中的 高压气体输送管 8,其管壁上设置有出气孔 9,在水平井的内表面与高压气体输送管的 外表面所围成的环形空间内, 每隔 30 m设置一环形封堵器 7, 形成多个环形气室; 页岩气开采的气动脆裂设备由压缩机 1、 增压机 2、 加热器 3、 除湿机 10和压力 控制系统组成, 压力控制系统由压力控制器 4、 第一控制阀 11和第二控制阀 12组成; 所述第一控制阀 11安装在高压气体输送管 8的进气管路上, 所述第二控制阀 12安装 在高压气体输送管的排气管路上,所述压缩机的排气口与除湿机 10的进气口通过管件 连接,所述除湿机 10的排气口与增压机 2的进气口通过管件连接,所述增压机 2的排 气口与加热器 3的进气口通过管件连接, 所述加热器 3的排气口与所述第一控制阀 11 的进气口通过管件连接, 所述压力控制器 4通过数据线分别与压缩机 1、增压机 2、加 热器 3、 第一控制阀 11和第二控制阀 12连接;
B、 操作压力控制器 4, 启动压缩机 1、 除湿机 10、 增压机 2、 加热器 3工作, 使 第一控制阀 11处于开启状态, 压缩机 1将常压空气初级压缩至 lMPa, 除湿机 10将 来自压缩机的压缩空气中的水分降至 50vol. %, 增压机 2将来自除湿机的压缩空气增 压至 45MPa, 加热器 3将来增压机的压缩空气加热至温度为 180°C高温压缩空气 (本 实施例设定的最大压力高温压缩空气), 经第一控制阀 11输入高压气体输送管 8, 并 保持该压力 0.5小时, 保压时间到达后, 在压力控制器 4的控制下, 第一控制阀 11关 闭、 第二控制阀 12开启, 将高压气体输送管内的气体压力降低至 15MPa (该压力为 本实施例设定的最小压力高温压缩空气), 使各环形气室内交替充满 45MPa的高温压 缩空气和 15MPa的高温压缩空气, 作用于页岩岩层;
C、 在压力控制器 4的控制下, 重复步骤 B的操作 3天, 环绕水平井 6的页岩岩 层即形成如图 8所示的裂隙结构。 实施例 5 本实施例中, 页岩气开采的气动脆裂法及配套设备如图 9所示本实施例对页岩岩 层反复交替施加两种不同压力的高温压缩二氧化碳气体:
A、 钻取了伸入页岩岩层的竖井 5和与竖井连通的两口相隔一定距离、 且位于竖 井同一侧的水平井 6,在竖井 5和各水平井 6中安装具有保温性能的高压气体输送管 8, 所述高压气体输送管的外径小于竖井 5和水平井 6的内径, 安装在两口水平井 6中的 高压气体输送管 8,其管壁上设置有出气孔 9,在水平井的内表面与高压气体输送管的 外表面所围成的环形空间内, 每隔 40 m设置一环形封堵器 7, 形成多个环形气室; 页岩气开采的气动脆裂设备由压缩机 1、增压机 2、加热器 3和压力控制系统组成, 压力控制系统由压力控制器 4、 第一控制阀 11和第二控制阀 12组成; 所述第一控制 阀 11安装在高压气体输送管 8的进气管路上, 所述第二控制阀 12安装在高压气体输 送管的排气管路上, 所述压缩机的排气口与增压机 2的进气口通过管件连接, 所述增 压机 2的排气口与加热器 3的进气口通过管件连接, 所述加热器 3的排气口与所述第 一控制阀 11的进气口通过管件连接, 所述压力控制器 4通过数据线分别与压缩机 1、 增压机 2、 加热器 3、 第一控制阀 11和第二控制阀 12连接;
B、 操作压力控制器 4, 启动压缩机 1、 增压机 2、 加热器 3工作, 使第一控制阀 11处于开启状态, 压缩机 1将常压二氧化碳气体初级压缩至 lMPa, 增压机 2将来自 压缩机的压缩二氧化碳气体增压至 25MPa, 加热器 3将来增压机的压缩二氧化碳气体 加热至温度为 80°C高温压缩二氧化碳气体(本实施例设定的最大压力高温压缩二氧化 碳气体), 经第一控制阀 11输入高压气体输送管 8, 并保持该压力 1小时, 保压时间 到达后, 在压力控制器 4的控制下, 第一控制阀 11关闭、 第二控制阀 12开启, 将高 压气体输送管内的气体压力降低至 8MPa (该压力为本实施例设定的最小压力高温压 缩二氧化碳气体),使各环形气室内交替充满 25MPa的高温压缩二氧化碳气体和 8MPa 的高温压缩二氧化碳气体, 作用于页岩岩层;
C、 在压力控制器 4的控制下, 重复步骤 B的操作 7天, 环绕水平井 6的页岩岩 层即形成如图 10所示的裂隙结构。 实施例 6 本实施例中, 页岩气开采的气动脆裂法及配套设备如图 11所示, 本实施例对页岩 岩层反复交替施加两种不同压力的高温压缩空气:
A、 钻取了伸入页岩岩层的竖井 5和与竖井连通的两口相隔一定距离、 且位于竖 井同一侧的水平井 6,在竖井 5和各水平井 6中安装具有保温性能的高压气体输送管 8, 所述高压气体输送管的外径小于竖井 5和水平井 6的内径, 安装在两口水平井 6中的 高压气体输送管 8,其管壁上设置有出气孔 9,在水平井的内表面与高压气体输送管的 外表面所围成的环形空间内, 每隔 40 m设置一环形封堵器 7, 形成多个环形气室; 页岩气开采的气动脆裂设备由压缩机 1、 增压机 2和压力控制系统组成, 压力控 制系统由压力控制器 4、 第一控制阀 11和第二控制阀 12组成; 所述第一控制阀 11安 装在高压气体输送管 8的进气管路上,所述第二控制阀 12安装在高压气体输送管的排 气管路上, 所述压缩机的排气口与增压机 2的进气口通过管件连接, 所述增压机 2的 排气口与所述第一控制阀的进气口通过管件连接, 所述压力控制器 4通过数据线分别 与压缩机 1、 增压机 2、 第一控制阀 11和第二控制阀 12连接;
B、 操作压力控制器 4, 启动压缩机 1、 增压机 2工作, 使第一控制阀 11处于开 启状态, 压缩机 1将常压空气初级压缩至 lMPa, 增压机 2将来自压缩机的压缩空气 增压至 60MPa形成温度超过 150°C的高温压缩空气 (该高温压缩空气为本实施例设定 的最大压力高温压缩空气), 经第一控制阀 11输入高压气体输送管 8, 并保持该压力 1 小时, 保压时间到达后, 在压力控制器 4的控制下, 第一控制阀 11关闭、 第二控制阀 12开启, 将高压气体输送管内的气体压力降低至 20MPa (该压力为本实施例设定的最 小压力高温压缩空气), 使各环形气室内交替充满 60MPa的高温压缩空气和 20MPa的 高温压缩空气, 作用于页岩岩层;
C、 在压力控制器 4的控制下, 重复步骤 B的操作 3天, 环绕水平井 6的页岩岩 层即形成如图 12所示的裂隙结构。 实施例 7 本实施例中, 页岩气开采的气动脆裂法及配套设备如图 13所示,本实施例对页岩 岩层反复交替施加两种不同压力的高温压缩二氧化碳气体:
A、 钻取了伸入页岩岩层的竖井 5和与竖井连通的两口相隔一定距离、 且位于竖 井两侧的水平井 6, 在竖井 5和各水平井 6中安装具有保温性能的高压气体输送管 8, 所述高压气体输送管的外径小于竖井 5和水平井 6的内径, 安装在两口水平井 6中的 高压气体输送管 8,其管壁上设置有出气孔 9,在水平井的内表面与高压气体输送管的 外表面所围成的环形空间内, 每隔 50 m设置一环形封堵器 7, 形成多个环形气室; 页岩气开采的气动脆裂设备由压缩机 1、增压机 2、加热器 3和压力控制系统组成, 压力控制系统由压力控制器 4、 第一控制阀 11和第二控制阀 12组成; 所述第一控制 阀 11安装在高压气体输送管 8的进气管路上, 所述第二控制阀 12安装在高压气体输 送管的排气管路上, 所述压缩机的排气口与增压机 2的进气口通过管件连接, 所述增 压机 2的排气口与加热器 3的进气口通过管件连接, 所述加热器 3的排气口与所述第 一控制阀 11的进气口通过管件连接, 所述压力控制器 4通过数据线分别与压缩机 1、 增压机 2、 加热器 3、 第一控制阀 11和第二控制阀 12连接;
B、 操作压力控制器 4, 启动压缩机 1、 增压机 2、 加热器 3工作, 使第一控制阀 11处于开启状态, 压缩机 1将常压二氧化碳气体初级压缩至 lMPa, 增压机 2将来自 压缩机的压缩二氧化碳气体增压至 45MPa, 加热器 3将来增压机的压缩二氧化碳气体 加热至温度为 80°C高温压缩二氧化碳气体(本实施例设定的最大压力高温压缩二氧化 碳气体), 经第一控制阀 11输入高压气体输送管 8, 并保持该压力 0.5小时, 保压时间 到达后, 在压力控制器 4的控制下, 第一控制阀 11关闭、 第二控制阀 12开启, 将高 压气体输送管内的气体压力降低至 12MPa (该压力为本实施例设定的最小压力高温压 缩二氧化碳气体), 使各环形气室内交替充满 45MPa 的高温压缩二氧化碳气体和 12MPa的高温压缩二氧化碳气体, 作用于页岩岩层;
C、 在压力控制器 4的控制下, 重复步骤 B的操作 5天, 环绕水平井 6的页岩岩 层即形成如图 14所示的裂隙结构。 实施例 8 本实施例中, 页岩气开采的气动脆裂法及配套设备如图 15所示,本实施例对页岩 岩层反复交替施加两种不同压力的高温压缩空气:
A、 钻取了伸入页岩岩层的竖井 5和与竖井连通的两口相隔一定距离、 且位于竖 井两侧的水平井 6, 在竖井 5和各水平井 6中安装具有保温性能的高压气体输送管 8, 所述高压气体输送管的外径小于竖井 5和水平井 6的内径, 安装在两口水平井 6中的 高压气体输送管 8,其管壁上设置有出气孔 9,在水平井的内表面与高压气体输送管的 外表面所围成的环形空间内, 每隔 50m设置一环形封堵器 7, 形成多个环形气室; 页岩气开采的气动脆裂设备由压缩机 1、 增压机 2和压力控制系统组成, 压力控 制系统由压力控制器 4、 第一控制阀 11和第二控制阀 12组成; 所述第一控制阀 11安 装在高压气体输送管 8的进气管路上,所述第二控制阀 12安装在高压气体输送管的排 气管路上, 所述压缩机的排气口与增压机 2的进气口通过管件连接, 所述增压机 2的 排气口与所述第一控制阀的进气口通过管件连接, 所述压力控制器 4通过数据线分别 与压缩机 1、 增压机 2、 第一控制阀 11和第二控制阀 12连接;
B、 操作压力控制器 4, 启动压缩机 1、 增压机 2工作, 使第一控制阀 11处于开 启状态, 压缩机 1将常压空气初级压缩至 10MPa, 增压机 2将来自压缩机的压缩空气 增压至 45MPa形成温度超过 150°C的高温压缩空气 (该高温压缩空气为本实施例设定 的最大压力高温压缩空气), 经第一控制阀 11输入高压气体输送管 8, 并保持该压力 1 小时, 保压时间到达后, 在压力控制器 4的控制下, 第一控制阀 11关闭、 第二控制阀 12开启, 将高压气体输送管内的气体压力降低至 15MPa (该压力为本实施例设定的最 小压力高温压缩空气), 使各环形气室内交替充满 45MPa的高温压缩空气和 15MPa的 高温压缩空气, 作用于页岩岩层;
C、 在压力控制器 4的控制下, 重复步骤 B的操作 7天, 环绕水平井 6的页岩岩 层即形成如图 16所示的裂隙结构。

Claims

权 利 要 求 书 、 一种页岩气开采的气动脆裂法, 其特征是对页岩岩层反复交替施加至少两种不 同压力的高温压缩气体, 直至页岩岩层形成裂隙结构为止, 所述高温压缩气体 的温度至少为 80°C,其最大压力至少为 25MPa, 最小压力为最大压力的 1/4〜 1/3。 、 根据权利要求 1所述页岩气开采的气动脆裂法, 其特征是所述高温压缩气体为 高温压缩空气或高温压缩二氧化碳气体。 、 根据权利要求 2所述页岩气开采的气动脆裂法, 其特征是当高温压缩气体为高 温压缩空气时, 其温度至少为 150°C, 其最大压力至少为 45MPa。 、 根据权利要求 3所述页岩气开采的气动脆裂法, 其特征是所述高温压缩空气的 含水量控制在 10 vol. %~50 vol. %。 、 根据权利要求 2所述页岩气开采的气动脆裂法, 其特征是当高温压缩气体为高 温压缩二氧化碳气体时, 其温度至少为 80°C, 其最大压力至少为 25MPa。 、 根据权利要求 1至 5中任一权利要求所述页岩气开采的气动脆裂法, 其特征是 操作步骤如下:
A、钻取伸入页岩岩层的竖井(5 )和与竖井连通的水平井(6),在竖井(5 ) 和水平井(6)中安装具有保温性能的高压气体输送管(8), 所述高压气体输送 管的外径小于竖井(5 )和水平井(6) 的内径, 安装在水平井 (6) 中的高压气 体输送管 (8), 其管壁上设置有出气孔 (9), 在水平井的内表面与高压气体输 送管的外表面所围成的环形空间内, 每隔 30m〜50m设置一环形封堵器 (7), 形成多个环形气室;
B、 将符合最大压力要求的高温压缩气体输入高压气体输送管, 并保持该 压力 0.5~1小时, 保压时间到达后, 将高压气体输送管内的气体压力降低至符 合最小压力要求的压力, 使各环形气室内交替充满符合最大压力要求的高温压 缩气体和符合最小压力要求的高温压缩气体, 作用于页岩岩层;
C、 重复步骤 B的操作, 重复次数以页岩岩层形成裂隙结构为止。 、 一种页岩气开采的气动脆裂设备, 其特征是所述设备包括压缩机 (1 )、 增压机
(2)和压力控制系统, 压力控制系统由压力控制器(4)、 第一控制阀 (11 )和 第二控制阀 (12) 组成, 所述第一控制阀 (11 ) 安装在高压气体输送管的进气 管路上, 所述第二控制阀 (12) 安装在高压气体输送管的排气管路上, 所述压 缩机的排气口与增压机 (2) 的进气口通过管件连接, 所述增压机 (2) 的排气 口与所述第一控制阀的进气口通过管件连接, 所述压力控制器(4)通过数据线 分别与压缩机(1 )、 增压机 (2)、 第一控制阀 (11 )和第二控制阀 (12)连接, 用于控制高温压缩气体的形成及高压气体输送管内压力的反复交替变化与保 压。 、 一种页岩气开采的气动脆裂设备, 其特征是所述设备包括压缩机 (1 )、 增压机
(2)、 加热器(3 )和压力控制系统, 压力控制系统由压力控制器(4)、 第一控 制阀 (11 ) 和第二控制阀 (12) 组成, 所述第一控制阀 (11 ) 安装在高压气体 输送管的进气管路上, 所述第二控制阀 (12) 安装在高压气体输送管的排气管 路上, 所述压缩机的排气口与增压机(2)的进气口通过管件连接, 所述增压机
(2) 的排气口与加热器(3 ) 的进气口通过管件连接, 所述加热器(3 ) 的排气 口与所述第一控制阀的进气口通过管件连接, 所述压力控制器(4)通过数据线 分别与压缩机 (1 )、 增压机 (2)、 加热器 (3 )、 第一控制阀 (11 ) 和第二控制 阀 (12) 连接, 用于控制高温压缩气体的形成及高压气体输送管内压力的反复 交替变化与保压。 、 根据权利要求 7或 8所述页岩气开采的气动脆裂设备, 其特征在于还包括除湿 机 (10), 所述除湿机的进气口与压缩机 (1 ) 的排气口通过管件连接, 所述除 湿机的排气口与增压机的进气口通过管件连接, 所述除湿机通过数据线与压力 控制器 (4) 连接。 、 根据权利要求 7或 8所述页岩气开采的气动脆裂设备, 其特征在于所述压力控 制器 (4) 为安装有控制软件的计算机。
PCT/CN2013/077007 2012-06-08 2013-06-08 页岩气开采的气动脆裂法与设备 WO2013182082A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/335,935 US9347301B2 (en) 2012-06-08 2014-07-20 Pneumatic fracturing method and system for exploiting shale gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210188794.X 2012-06-08
CN201210188794.XA CN102691494B (zh) 2012-06-08 2012-06-08 页岩气开采的气动脆裂法与设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/335,935 Continuation-In-Part US9347301B2 (en) 2012-06-08 2014-07-20 Pneumatic fracturing method and system for exploiting shale gas

Publications (1)

Publication Number Publication Date
WO2013182082A1 true WO2013182082A1 (zh) 2013-12-12

Family

ID=46857212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077007 WO2013182082A1 (zh) 2012-06-08 2013-06-08 页岩气开采的气动脆裂法与设备

Country Status (3)

Country Link
US (1) US9347301B2 (zh)
CN (1) CN102691494B (zh)
WO (1) WO2013182082A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691494B (zh) * 2012-06-08 2014-10-22 四川大学 页岩气开采的气动脆裂法与设备
MX2015004345A (es) * 2012-10-04 2015-06-10 Nexen Energy Ulc Proceso mejorado de fracturacion hidraulica para pozos desviados.
CN102913274B (zh) * 2012-11-07 2015-03-04 中国矿业大学 一种用于瓦斯抽采钻井增产的系统及其方法
CN103924956B (zh) * 2014-04-29 2016-05-25 西安科技大学 一种块煤开采用超前预裂方法
US11618849B2 (en) 2016-06-24 2023-04-04 Cleansorb Limited Shale treatment
CN106644871B (zh) * 2016-09-12 2019-03-26 中国石油大学(华东) 超临界二氧化碳压裂液对油气储层渗流影响评价装置与方法
CN109025938B (zh) * 2018-06-22 2020-07-24 中国矿业大学 一种煤矿井下多级燃烧冲击波致裂煤体强化瓦斯抽采方法
CN109025937B (zh) * 2018-06-22 2020-09-08 中国矿业大学 水力割缝与多级燃烧冲击波联合致裂煤体瓦斯抽采方法
CN111610303A (zh) * 2020-06-30 2020-09-01 重庆地质矿产研究院 一种页岩气开发区地下水环境检测方法
CN112762781B (zh) * 2021-01-13 2023-07-25 东北大学 露天矿用瞬态静态气体压裂共同作用的破岩装置及方法
CN112727427B (zh) * 2021-01-13 2024-03-01 东北大学 一种可控冲击波与气体压裂联合致裂增产装置及方法
US11834942B2 (en) 2021-04-15 2023-12-05 Iven Terez Simultaneous gas-solid chemical stimulation of hydraulically fractured oil wells and gas-condensate wells in shales
CN115370339B (zh) * 2021-05-21 2024-04-16 中国石油化工股份有限公司 燃煤关键气态污染物在页岩气开采中的应用及水力压裂液和提高页岩气采收率的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056598A (en) * 1990-09-20 1991-10-15 Mobil Oil Corporation Method of protecting casing during high pressure well stimulation
CN1584288A (zh) * 2004-05-28 2005-02-23 西安石油大学 油气层液体火药压裂方法及其装置
CN102691494A (zh) * 2012-06-08 2012-09-26 四川大学 页岩气开采的气动脆裂法与设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1676870B (zh) * 2005-04-20 2010-05-05 太原理工大学 对流加热油页岩开采油气的方法
CN103429846B (zh) * 2011-01-17 2016-02-10 米伦纽姆促进服务有限公司 用于地下地层的压裂系统和方法
CN102168545B (zh) * 2011-03-30 2013-11-06 中国石油大学(北京) 连续油管超临界co2喷射压裂方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056598A (en) * 1990-09-20 1991-10-15 Mobil Oil Corporation Method of protecting casing during high pressure well stimulation
CN1584288A (zh) * 2004-05-28 2005-02-23 西安石油大学 油气层液体火药压裂方法及其装置
CN102691494A (zh) * 2012-06-08 2012-09-26 四川大学 页岩气开采的气动脆裂法与设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, JIANZHONG: "The Application of High-energy Gas Fracture Technique in the Development of CBM in Enhong Basin of Yunnan Province.", CHINA COALBED METHANE., vol. 7, no. 5, October 2010 (2010-10-01), pages 14 - 17 *

Also Published As

Publication number Publication date
US20140326450A1 (en) 2014-11-06
CN102691494B (zh) 2014-10-22
US9347301B2 (en) 2016-05-24
CN102691494A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
WO2013182082A1 (zh) 页岩气开采的气动脆裂法与设备
CN106894799B (zh) 一种利用超临界二氧化碳驱替煤层瓦斯的装置及方法
CN110173246B (zh) 一种水-液氮交替疲劳压裂干热岩提高采热率的方法
CN103122759B (zh) 一种煤层气井多元热流体强化开采方法
WO2016110185A1 (zh) 一种振荡脉冲式高能气体压裂与注热交变抽采瓦斯方法
CN111173485B (zh) 一种提高干热岩热储改造体积的方法
CN102536305B (zh) 一种注温度和压力耦合作用下的氮气增透抽采瓦斯的方法
CN102493795A (zh) 液化氮气在油气层内气化压裂方法
CN201884015U (zh) 天然气井排液采气装置
CN104005748B (zh) 用于页岩气低渗透油气藏开采的静态爆破压裂方法
WO2014176933A1 (zh) 油页岩原位水平井压裂化学干馏提取页岩油气方法及工艺
CN108756839B (zh) 油页岩隔热增效原位转化方法及系统
US20160298425A1 (en) System and Method for Permanent Storage of Carbon Dioxide in Shale Reservoirs
WO2016183974A1 (zh) 一种无损治理煤田火区的液氮系统及方法
CN105114116A (zh) 一种水热耦合压裂强化区域瓦斯抽采方法
CN113309519B (zh) 一种液氮预裂后接氮气压裂的页岩无水压裂方法
CN104847322A (zh) 深层普通稠油水驱后转蒸汽驱提高采收率方法
CN114876437B (zh) 一种利用超临界水的煤层原位制氢方法
CN114458266A (zh) 一种提高干热岩热储改造人工裂缝复杂性的方法及其应用
CN108005626A (zh) 一种基于热管技术的天然气水合物开采装置及方法
CN117052366B (zh) 一种深部有机岩矿层原位开采及能量高效利用的方法
CN102162352A (zh) 一种煤层气开采的新方法
EP3368738A1 (en) System and method for permanent storage of carbon dioxide in shale reservoirs
CN207296982U (zh) 一种新型页岩气增产设备
CN110005382B (zh) 一种煤层气液态co2与活性水协同压裂工艺方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800702

Country of ref document: EP

Kind code of ref document: A1