WO2013182075A1 - 信道的指派方法及装置 - Google Patents

信道的指派方法及装置 Download PDF

Info

Publication number
WO2013182075A1
WO2013182075A1 PCT/CN2013/076910 CN2013076910W WO2013182075A1 WO 2013182075 A1 WO2013182075 A1 WO 2013182075A1 CN 2013076910 W CN2013076910 W CN 2013076910W WO 2013182075 A1 WO2013182075 A1 WO 2013182075A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
train
channel
serving cell
network side
Prior art date
Application number
PCT/CN2013/076910
Other languages
English (en)
French (fr)
Inventor
刘星辰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013182075A1 publication Critical patent/WO2013182075A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/005Moving wireless networks

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for assigning a channel.
  • the high-speed railway refers to the railway system that achieves a transportation rate of more than 300 kilometers per hour by renovating the original line (linearization, gauge standardization) or building a new "high-speed new line".
  • the high-speed rail is faster than ordinary trains and has the same safety as ordinary trains. It costs less than airplanes and fully meets people's requirements for safety and high cost.
  • the Global System for Mobile Communication For Railways (GSM-R) system is a comprehensive dedicated digital mobile communication system designed for railway communications. It is suitable for railway communications, especially for railway-specific dispatching communications.
  • FIG. 1 is a schematic diagram of train operation in a GSM-R system according to the related art.
  • a train traveling at a high speed runs normally on a railway
  • FIG. 1 schematically shows three stations through which a train runs (SITE 1 , SITE 2, SITE 3).
  • SITE 1 , SITE 2 a train runs
  • FIG. 1 schematically shows three stations through which a train runs (SITE 1 , SITE 2, SITE 3).
  • domestic high-speed railways can run at speeds of up to 300 kilometers per hour, or 83 meters per second.
  • the GSM-R system specification requires a normal point-to-point call delay of 5-10 seconds, an emergency call delay of 2-3 seconds, and a group call and broadcast call delay of 5-7 seconds, so the distance traveled by the train during the call. It can be calculated: the train travels 415-830 meters for point-to-point calls, 166-249 meters for emergency calls, and 415-581 meters for group calls and broadcast calls.
  • the current GSM-R system has no targeted solution, and the protocol has not been described or explained.
  • the call can only be completed by manual re-initiation, which affects user experience.
  • the embodiment of the present invention provides a channel assignment method and device to solve at least the above problem.
  • the network side device measures the receiving level and the moving speed of the train mobile station, and calculates the frequency offset information of the train moving station;
  • the network side device determines, according to the frequency offset information, whether the moving direction of the train mobile station located in the first serving cell is to enter the first serving cell or leave the first serving cell;
  • the network side device assigns a channel to the train mobile station according to the reception level, the moving speed, and the determination result of the moving direction of the train mobile station.
  • the method further includes: The network side device receives the train function number registered by the train mobile station;
  • the network side device acquires a train number according to the train function number
  • the network side device determines a cell list along the line of the train mobile station according to the pre-stored information along the line cell and the train number.
  • the method before the network side device receives the train function number registered by the train mobile station, the method further includes:
  • the network side device Receiving, by the network side device, a registration request of the train mobile station;
  • the network side device performs authentication verification on the train mobile station according to the registration request; after the authentication verification is passed, the network side device returns a verification success message to the train mobile station.
  • the network side device measures the receiving level of the train mobile station, the moving speed, and calculates the frequency offset information of the train mobile station, including:
  • the network side device After receiving the request information sent by the train mobile station on the independent dedicated control channel SDCCH channel, the network side device measures the receiving level of the train mobile station and the moving speed, and calculates the frequency offset information; or ,
  • the network side device When it is determined that the train mobile station has occupied the SDCCH channel, the network side device measures the uplink receiving level and the moving speed according to the uplink measurement result, and calculates the frequency offset information.
  • the network side device assigning a channel to the train mobile station according to the receiving level, the moving speed, and the determining result includes:
  • the network side device assigns a channel of the first serving cell to the train mobile station;
  • the network side device assigns the first mobile cell to the train mobile station according to the receiving level and the moving speed. Channel or assignment.
  • the network side device allocates a channel to the train mobile station according to the receiving level and the moving speed, including :
  • the network side device compares the receiving level with a threshold level, and compares the moving speed with a threshold speed
  • the network side device assigns a channel of the second serving cell to the train mobile station, where the second The serving cell is a next serving cell adjacent to the first serving cell on the train mobile station operating line; wherein the moving level is greater than or equal to the threshold level, or the moving speed is less than or equal to
  • the network side device allocates a channel of the first serving cell to the train mobile station.
  • the network side assigns a channel of the second serving cell to the train mobile station, include:
  • a next serving cell of the first serving cell that is, a second serving cell, according to a cell list along which the train mobile station runs;
  • the network side device assigns a channel of the second serving cell to the train mobile station.
  • the method further includes:
  • the threshold level is -95 dBm, and the threshold speed is 260 km/h.
  • the channel is a SDCCH channel or a traffic channel TCH.
  • An apparatus for assigning a channel according to an embodiment of the present invention includes:
  • a measuring module configured to: measure a receiving level and a moving speed of the train mobile station, and calculate frequency offset information of the train mobile station;
  • a judging module configured to: determine, according to the frequency offset information, whether a moving direction of the train mobile station located in the first serving cell is to enter the first serving cell or leave the first serving cell;
  • a channel assignment module configured to: assign a channel to the train mobile station according to the receiving level, the moving speed, and a determination result of the determining module.
  • the device further includes:
  • a train function number receiving module configured to: receive a train function number registered by the train mobile station;
  • a vehicle number acquisition module configured to: obtain a train number according to the train function number; and a cell list determination module, configured to: determine, according to the pre-stored information along the line cell and the train number, the train mobile station running along the line List of cells.
  • the device further includes:
  • a registration request receiving module configured to: receive a registration request of the train mobile station;
  • An authentication authentication module configured to: perform authentication verification on the train mobile station according to the registration request;
  • the message replying module is configured to: after the authentication verification is passed, reply to the train mobile station with a verification success message.
  • the measuring module comprises:
  • a first calculating unit configured to: after receiving the request information sent by the train mobile station on the independent dedicated control channel SDCCH channel, measuring a receiving level of the train mobile station, the moving speed, and calculating the Frequency offset information; or,
  • a second calculating unit configured to: when determining that the train mobile station has occupied the SDCCH channel, measure an uplink receiving level, the moving speed according to an uplink measurement result, and calculate the frequency offset information.
  • the channel assignment module includes:
  • a first assigning unit configured to: assign a channel of the first serving cell to the train mobile station if a result of the determining by the determining module is that the train mobile station enters the first serving cell; as well as
  • a second assigning unit configured to: assign a channel to the train mobile station according to the receiving level and the moving speed, if a result of the determining by the determining module is that the train mobile station leaves the current serving cell .
  • the second assigning unit comprises:
  • the setting is: comparing the magnitudes of the receiving level and the threshold level, and comparing the moving speeds with the threshold speeds;
  • a first processing subunit configured to: assign a second serving cell to the train mobile station if the moving level is less than the threshold level, and the moving speed is greater than the threshold speed a channel, wherein the second serving cell is a next serving cell of the first serving cell on the train mobile station operating line;
  • the first processing subunit includes:
  • Determining a subunit configured to: determine a next serving cell of the pre-away serving cell, ie, a second serving cell, according to a cell list along which the train mobile station operates;
  • a subunit is assigned which is arranged to: assign a channel of the second serving cell to the train mobile station.
  • the device further includes:
  • a configuration module configured to: configure the threshold level and the threshold speed; wherein, the threshold level is -95 dBm, and the threshold speed is 260 km/h.
  • the channel is a SDCCH channel or a traffic channel TCH.
  • the network side measures the receiving level and the moving speed of the train mobile station, and calculates the frequency offset information of the train mobile station, and then the network side determines whether the train mobile station enters the current serving cell or leaves the current according to the frequency offset information.
  • the serving cell finally allocates the channel of the corresponding serving cell to the train mobile station according to the receiving level, the moving speed and the judgment result, and solves the problem that the cell edge of the high-speed train operation scenario in the related art is easy to fail, thereby reducing the railway accident.
  • the occurrence probability improve the network performance indicators, improve the user's perception, and further ensure the strict requirements of the railway for network reliability.
  • 1 is a schematic diagram of train operation under the GSM-R system according to the related art
  • FIG. 2 is a flowchart of a method of assigning channels according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a network side allocation SDCCH channel allocation phase according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a network side allocation TCH channel allocation phase according to an embodiment of the present invention
  • FIG. 5 is a channel according to an embodiment of the present invention. a block diagram of the assignment device
  • FIG. 6 is a first specific structural block diagram of a channel assignment apparatus according to an embodiment of the present invention
  • 2 is a second detailed structural block diagram of a channel assigning apparatus according to an embodiment of the present invention
  • FIG. 8 is a third specific structural block diagram of a channel assigning apparatus according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method and an apparatus for assigning channels. The details will be described below by way of examples.
  • the present embodiment provides a method for assigning a channel, as shown in the flowchart of the method for assigning a channel as shown in FIG. 2, the method may be implemented on the network side, and the method includes the following steps (step S202-step S206):
  • Step S202 the network side measures the receiving level and the moving speed of the train mobile station, and calculates the frequency offset information of the train mobile station;
  • Step S204 The network side determines, according to the frequency offset information, whether the train mobile station enters the current serving cell or leaves the current serving cell.
  • Step S206 the network side assigns a channel of the corresponding serving cell to the train mobile station according to the receiving level, the moving speed, and the determination result of the train mobile station operation.
  • the network side measures the receiving level and moving speed of the train mobile station, and calculates the frequency offset information of the train mobile station, and then the network side determines whether the train mobile station enters the current serving cell or leaves the current serving cell according to the frequency offset information. Finally, according to the receiving level, the moving speed and the judgment result, the train mobile station is assigned a channel of the corresponding serving cell, which solves the problem that the cell edge is easy to fail in the high-speed train operation scenario in the related art, thereby reducing the occurrence of the railway accident. Probability, improve network performance indicators, improve user perception, and ensure the strict requirements of railway reliability for the network.
  • the network side Before measuring the receiving level, moving speed and frequency offset information of the train mobile station on the network side, it is necessary to first determine the running route of the train, so that it is convenient to determine the current serving cell and the next serving cell of the train according to the running route, therefore, the implementation
  • the example provides a preferred embodiment, that is, the network side receives the registration request of the train mobile station, and performs authentication verification on the train mobile station according to the registration request. After the authentication verification is passed, the network side returns the verification success message to the train mobile station. . Then, the network side receives the train function number registered by the train mobile station, obtains the train number according to the train function number, and determines the cell list along the train mobile station operation according to the pre-stored information along the line cell and the train number.
  • the receiving level, moving speed and frequency offset information of the train mobile station are measured, and then an appropriate threshold level and threshold speed need to be configured to facilitate the judgment of the train. Whether the mobile station is in the normal process or at the edge of the cell.
  • the threshold level and threshold speed are mainly empirical values and can be configured in the background.
  • the threshold level is configured based on how much the probability of packet loss occurs when the uplink and downlink levels are large. Based on the simulation results and network data, an empirical value of -95 dBm is recommended.
  • the threshold speed is configured according to whether, under different call types, the mobile station traveling at the threshold speed can complete the call flow under the call delay of the call type in the serving cell, and recommend an empirical value according to channel simulation and network data. It is 260km/h.
  • the configuration of the threshold level and the threshold speed can be performed at any timing as long as the subsequent execution of the reception level and the threshold level, and the comparison operation of the moving speed and the threshold speed are performed, and the specific value can also be determined according to the actual situation. .
  • the network side determines whether the train mobile station enters the current serving cell or leaves the current serving cell. If it enters the current serving cell, it indicates that the receiving level of the mobile station is getting larger and larger, and the call quality is improved. It is ensured that the network side can allocate (or refer to) the channel of the current serving cell to the train mobile station; if it is leaving the current serving cell, it is assumed that the network side allocates the channel of the current serving cell to the train mobile station, and may be missed. The risk of the event, therefore, the network side can take corresponding channel allocation measures according to the measured receiving level and moving speed. Specifically, it can be implemented in the following ways:
  • the network side compares the receiving level and the threshold level, and the moving speed and the threshold speed. When the receiving level is less than the threshold level and the moving speed is greater than the threshold speed, the network side can assign the current to the train mobile station. The channel of the next serving cell of the serving cell, otherwise, the network side normally allocates a channel for the train mobile station. Based on the above-mentioned description, the network side assigns a channel flow of the corresponding serving cell to the train mobile station according to the receiving level, the moving speed, and the judgment result.
  • This embodiment provides a preferred implementation manner, that is, the result of the determination is that the train mobile station enters.
  • the network side assigns the channel of the current serving cell to the train mobile station; when the judgment result is that the train mobile station leaves the current serving cell, the network side assigns a corresponding correspondence to the train mobile station according to the receiving level and the moving speed.
  • the channel of the serving cell In the above manner, the channel assignment efficiency and the success rate of the cell edge call are improved.
  • the network side assigns the channel of the corresponding serving cell to the train mobile station according to the receiving level and the moving speed, which may be specifically implemented by the following preferred implementation manner: the network side compares the receiving level and the threshold level, and compares the moving speed with The size of the threshold speed; when the moving level is less than the threshold level, and the moving speed is greater than the threshold speed, the network side assigns the channel of the corresponding serving cell to the train mobile station; specifically, the network side runs along the line of the train mobile station The cell list determines the next serving cell of the pre-away serving cell and then assigns the train mobile station the channel of the next serving cell. Otherwise, the network side normally assigns the channel of the serving cell to the train mobile station.
  • the success rate of the cell edge call is improved, the user experience is improved, and the safety hazard of the train is reduced.
  • the specific implementation of this embodiment is mainly divided into two parts, one is the processing mechanism when the network allocates the SDCCH channel, and the other is the processing mechanism when the network allocates the TCH channel. Therefore, the foregoing channel may be a Stand-Alone Dedicated Control Channel (SDCCH) or a Traffic Channel (TC).
  • SDCCH Stand-Alone Dedicated Control Channel
  • TC Traffic Channel
  • the assignment process for the SDCCH channel and the assignment process of the TCH channel are different in that the network side measures the reception level, the moving speed, and the frequency offset information of the train mobile station including: For the SDCCH channel, the network side receives the train mobile station at After the request information sent on the SDCCH channel, the receiving level and the moving speed of the train mobile station are measured, and the frequency offset information is calculated; or, for the TCH channel, when determining that the train mobile station has occupied the SDCCH channel, the network side according to the uplink measurement result The reception level and the moving speed of the uplink are measured, and the frequency offset information is calculated.
  • the assignment process of the SDCCH channel and the assignment process of the TCH channel are respectively introduced below.
  • the interaction process of the SDCCH channel allocated by the network side is as follows:
  • Step 1 Before registering the train, register the train function number with the network side.
  • Step 2 The network side obtains the train number of the train by the train function number, according to the pre-stored line Cell information, compile a list of cells along the train.
  • Step 3 The network side receives the channel request message (Channel Request) sent by the train mobile station, measures the receiving level and moving speed of the mobile station movement, and calculates the frequency offset.
  • Channel Request channel request message
  • Step 4 The network side determines, according to the frequency offset information, whether the train mobile station is entering the current serving cell or leaving the current serving cell. If the current serving cell is entering, the SDCCH channel of the current serving cell is allocated; if the current serving cell is left, step 5 is performed.
  • Step 5 The network side sets a threshold level and threshold speed, and compares the receiving level and threshold level as well as the moving speed and threshold speed.
  • Step 6 If the receiving level is less than the set threshold level and the moving speed is greater than the threshold speed, step 7 is performed; if the receiving level is greater than or equal to the set threshold level or the moving speed is less than or equal to the threshold speed, the current service is allocated.
  • the SDCCH channel of the cell If the receiving level is less than the set threshold level and the moving speed is greater than the threshold speed, step 7 is performed; if the receiving level is greater than or equal to the set threshold level or the moving speed is less than or equal to the threshold speed, the current service is allocated.
  • the SDCCH channel of the cell is the receiving level is less than the set threshold level and the moving speed is greater than the threshold speed.
  • Step 7 The network side searches for the next cell that the train is going to pass according to the foregoing cell list, and assigns the SDCCH channel of the next cell to the train mobile station in advance through the serving cell.
  • step S302 the flow includes the following steps (step S302 - step S318): Step S302, before the train departs, register with the network side. Train function number.
  • the train mobile station Before the train departs, the train mobile station sends a request for registration of the train number function to the network side. After receiving the request, the network side performs authentication verification, and after successful, replies to the mobile station verification success message.
  • Step S304 the network side obtains the train number of the train by the function number, and compiles the cell list along the train operation according to the pre-stored area information along the line. A list of cell numbers along the train.
  • Step S306 when the network side receives the channel request message sent by the train mobile station, the receiving level, the moving speed, and the frequency offset when the train mobile station moves are calculated.
  • Step S308 the network side determines, according to the frequency offset information, whether the mobile station is entering the current serving cell or leaving the current serving cell. If it is entering the current serving cell, step S310 is performed, and if it is leaving the current serving cell, step S312 is performed.
  • the network side judges whether the mobile station enters a certain cell or leaves a certain cell through the frequency offset information. If it enters, it indicates that the receiving level of the mobile station is getting larger and larger, and the call quality is guaranteed; if leaving a certain cell, it is assumed that the cell is reassigned. Channel, the mobile station will be at risk of an unconnected event.
  • Step S310 the network side assigns an SDCCH channel of the current serving cell.
  • the channel allocation process ends.
  • Step S312 the network side sets a threshold level and a threshold speed.
  • This step can be performed at any timing as long as it is performed before the comparison of the reception level and the threshold level, and the movement speed and the threshold speed.
  • the configuration of the threshold level and the threshold speed value has been previously described.
  • the threshold level and threshold speed are mainly empirical values and can be configured in the background.
  • the threshold level is configured based on how large the uplink and downlink level is, and the probability of error packet loss increases abruptly. According to the simulation result and the network side data, an empirical value of -95dBm is recommended. In order to perform the call flow under the call delay of the call type in the serving cell under different call types, according to the channel simulation and the network side data, an empirical value of 260 km/h is recommended. .
  • the specific values of the threshold level and the threshold speed can be determined according to the actual situation. This embodiment works only when it is determined that the reception level and the moving speed of the mobile station satisfy the threshold level and the threshold speed.
  • step S314 the network side compares the reception level and the threshold level as well as the moving speed and the threshold speed. If the receiving level is less than the set threshold level and the moving speed is greater than the threshold speed, step S316 is performed, and if the receiving level is greater than or equal to the set threshold level or the moving speed is less than or equal to the threshold speed, step S318 is performed.
  • Step S316 the network side searches for the train to be passed according to the cell list along the train.
  • the next cell the SDCCH channel of the next cell is assigned to the mobile station in advance through the serving cell.
  • the channel allocation process ends.
  • the receiving level is less than the threshold level and the moving speed is greater than the threshold speed, it indicates that the mobile station at the moving speed may not be able to successfully complete the calling procedure, and an unconnected event occurs.
  • the BSC judges the traveling direction and position of the train mobile station according to the frequency offset. If it is the direction of leaving the cell, the SDCCH channel of the next path cell needs to be allocated in advance, otherwise the SDCCH channel of the serving cell is still allocated according to the normal procedure.
  • Step S318 Assign the SDCCH channel of the current serving cell.
  • the channel allocation process ends. If the receiving level is less than the threshold level and the moving speed is greater than the threshold speed, the mobile station at the speed can successfully complete the calling procedure, and the SDCCH channel of the serving cell can be allocated according to the normal procedure. If there is any level or bad link quality during the call, it can be improved by switching.
  • the assignment process of the TCH channel is described below.
  • the interaction process of the TCH channel allocated by the network side is as follows:
  • Step 1 Before registering the train, register the train function number with the network side.
  • Step 2 The network side obtains the train number of the train by the function number, and compiles the cell list along the train operation according to the pre-stored cell information along the line.
  • Step 3 When the train mobile station has occupied the SDCCH channel of the serving cell, the network side measures the level of the uplink, and calculates the moving speed and the frequency offset.
  • Step 4 The network side determines, according to the frequency offset information, whether the train mobile station is entering the current serving cell or leaving the current serving cell. If the current serving cell is entering, the TCH channel of the current serving cell is allocated; if the current serving cell is left, step 5 is performed.
  • Step 5 The network side sets a threshold level and a threshold speed, and compares the uplink level and threshold level with the number of movements and the threshold speed.
  • Step 6 if the receiving level is less than the set threshold level and the moving speed is greater than the threshold speed, step 7 is performed; if the receiving level is greater than or equal to the set threshold level or the moving speed is less than or equal to the threshold speed, the current service is allocated.
  • the TCH channel of the cell if the receiving level is less than the set threshold level and the moving speed is greater than the threshold speed, step 7 is performed; if the receiving level is greater than or equal to the set threshold level or the moving speed is less than or equal to the threshold speed, the current service is allocated.
  • the TCH channel of the cell if the receiving level is less than the set threshold level and the moving speed is greater than the threshold speed, step 7 is performed; if the receiving level is greater than or equal to the set threshold level or the moving speed is less than or equal to the threshold speed, the current service is allocated.
  • the TCH channel of the cell if the receiving level is less than the set threshold level and the moving speed is greater than the threshold speed, step 7 is performed; if the receiving level is greater than
  • Step 7 The network side searches for the next cell that the train will pass according to the foregoing cell list, and will The TCH channel of a cell is assigned to the mobile station in advance by the serving cell.
  • step S402 the flow includes the following steps (step S402 - step S418):
  • Step S402 Before the train departs, register the train function number with the network side.
  • the train mobile station Before the train departs, the train mobile station sends a request for registration of the train number function to the network side. After receiving the request, the network side performs authentication verification, and after successful, replies to the mobile station verification success message.
  • Step S404 The network side obtains the train number of the train by the train function number, and compiles the cell list along the train operation according to the pre-stored information along the line cell.
  • Step S406 When the train mobile station has occupied the SDCCH channel of the serving cell, the network side measures the level of the uplink, calculates the moving speed, and calculates the frequency offset.
  • the BTS calculates the uplink receiving level according to the SABM frame and the measurement result reported by the mobile station, and calculates the moving speed and frequency offset of the mobile station by the following method:
  • Step S408 The network side determines, according to the frequency offset information, whether the mobile station is entering the current serving cell or leaving the current serving cell. If it is entering the current serving cell, step S410 is performed, and if it is leaving the current serving cell, step S412 is performed.
  • the network side judges whether the mobile station enters a certain cell or leaves a certain cell through the frequency offset information. If it enters, it indicates that the receiving level of the mobile station is getting larger and larger, and the call quality is guaranteed; if leaving a certain cell, it is assumed that the cell is reassigned. Channel, the mobile station will be at risk of an unconnected event.
  • Step S410 the network side assigns a TCH channel of the current serving cell in advance.
  • the channel allocation process ends.
  • the network side sets a threshold level and a threshold speed.
  • This step can be performed at any timing as long as it is performed before the comparison of the reception level and the threshold level, and the movement speed and the threshold speed.
  • the configuration of the threshold level and the threshold speed value has been previously described. I will not repeat them here. Of course, the specific values of the threshold level and the threshold speed can be determined according to the actual situation.
  • step S414 the network side compares the reception level and the threshold level as well as the moving speed and the threshold speed. If the reception level is less than the set threshold level, and the moving speed is greater than the threshold speed, step S416 is performed, otherwise, step S418 is performed.
  • Step S416 the network side searches for the next cell to be passed by the train according to the cell list along the train, and assigns the TCH channel of the next cell to the mobile station in advance through the serving cell.
  • the channel allocation process ends.
  • the receiving level is less than the threshold level and the moving speed is greater than the threshold speed, it indicates that the mobile station at the moving speed may not be able to successfully complete the calling procedure, and an unconnected event occurs.
  • the BSC judges the traveling direction and position of the train mobile station according to the frequency offset. If it is away from the cell direction, it needs to allocate the TCH channel of the next access cell in advance, otherwise the TCH channel of the current serving cell is still allocated.
  • the channel allocation process ends.
  • the mobile station at the speed can successfully complete the calling procedure, and the TCH channel of the current serving cell can be allocated. If there is any level or poor link quality during the call, it can be improved by switching.
  • FIG. 5 is a structural block diagram of a channel assignment apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus includes: a measurement module 10, a determination module 20, and a channel assignment module 30. The structure will be described below.
  • the measuring module 10 is configured to measure a receiving level and a moving speed of the train mobile station, and calculate frequency offset information of the mobile station of the train;
  • the determining module 20 is connected to the measuring module 10 and configured to determine the train movement according to the frequency offset information. Whether the station enters the current serving cell or leaves the current serving cell;
  • the channel assignment module 30, coupled to the determination module 20, is configured to assign a channel of the corresponding serving cell to the train mobile station based on the reception level, the moving speed, and the determination result of the determination module 20.
  • the measurement module 10 measures the receiving level and the moving speed of the train mobile station, and calculates the frequency offset information, and then the determining module 20 determines, according to the frequency offset information, whether the train mobile station enters the current serving cell or leaves the current serving cell.
  • the last channel assignment module 30 assigns a channel of the corresponding serving cell to the train mobile station according to the receiving level, the moving speed, and the judgment result, and solves the problem that the cell edge of the high-speed train operation scenario in the related art is easy to fail, thereby reducing the railway.
  • the probability of occurrence of accidents, the improvement of network performance indicators, and the improvement of user perception, further ensure the strict requirements of the railway for network reliability.
  • the apparatus further includes: a registration request receiving module configured to receive a registration request of the train mobile station; and an authentication authentication module configured to authenticate the train mobile station according to the registration request Verification;
  • the message replying module is configured to reply to the above-mentioned train mobile station with a verification success message after the authentication verification is passed.
  • FIG. 6 is a first structural block diagram of a device for assigning channels according to an embodiment of the present invention. As shown in FIG. 6, the device includes: a train function number receiving module 40 in addition to the modules in FIG. 5; The vehicle number acquisition module 50 and the cell list determination module 60. The structure will be described below.
  • the train function number receiving module 40 is configured to receive the train function number registered by the train mobile station;
  • the train number acquisition module 50 is connected to the train function number receiving module 40, and is set to obtain the train number according to the train function number;
  • the cell list determining module 60 is connected to the train number acquisition module 50 and the measurement module 10, and is configured to determine a cell list along the train mobile station operation according to the pre-stored information along the line cell and the above-mentioned train number.
  • the device further includes: a configuration module, configured to configure the threshold level and the threshold speed; wherein, the threshold level is -95 dBm, and the threshold speed is 260 km/h.
  • the threshold level and the threshold speed are mainly empirical values, which can be configured in the background. The specific configuration has been introduced as before. It will not be described here. The threshold level and threshold speed can be determined according to the actual situation.
  • the specific implementation of this embodiment is mainly divided into two parts, one is the processing mechanism when the network allocates the SDCCH channel, and the other is the processing mechanism when the network allocates the TCH channel. Therefore, the above channel can be a SDCCH channel or a TCH channel.
  • the assignment process for the SDCCH channel and the assignment process of the TCH channel are different in that the network side measures the reception level, the moving speed, and the frequency offset information of the train mobile station, including: For the SDCCH channel, the network side receives the train mobile station at After the request information sent by the SDCCH channel, the receiving level, the moving speed, and the frequency offset information of the train mobile station are calculated; or, for the TCH channel, when determining that the train mobile station has occupied the SDCCH channel, the network side measures the uplink according to the uplink measurement result. The receiving level of the road, the moving speed, and calculating the frequency offset information.
  • FIG. 7 is a block diagram of a second specific structure of a device for assigning a channel according to an embodiment of the present invention. As shown in FIG. 7, the device further includes: The calculation unit 12 or the second calculation unit. FIG. 7 illustrates the measurement module 10 including the first calculation unit 12 as an example.
  • the first calculating unit 12 is configured to: after receiving the request information sent by the train mobile station on the SDCCH channel, measure the receiving level and the moving speed of the train mobile station, and calculate the frequency offset information; or
  • the second calculating unit is configured to, when determining that the train mobile station has occupied the SDCCH channel, measure an uplink receiving level and a moving speed according to the uplink measurement result, and calculate frequency offset information.
  • FIG. 8 is a third structural block diagram of a device for assigning channels according to an embodiment of the present invention. As shown in FIG. 8, the device includes the following modules: An assignment unit 32 and a second assignment unit 34. The structure will be described below.
  • the first assigning unit 32 is configured to, when the judgment result of the determining module 20 is that the train mobile station enters the current serving cell, assign the channel of the current serving cell to the train mobile station in advance;
  • the second assigning unit 34 is connected to the first assigning unit 32, and is configured to be the train according to the receiving level and the moving speed if the judgment result of the determining module 20 is that the train mobile station leaves the current serving cell.
  • the mobile station assigns a channel of the corresponding serving cell.
  • the second assigning unit 34 includes: a comparing subunit, configured to compare the receiving level and the threshold level, and compare the moving speed with the threshold speed; the first processing subunit is set to the moving level If the threshold level is less than the threshold level, and the moving speed is greater than the threshold speed, the train mobile station is assigned a channel of the corresponding serving cell; the second processing subunit is set to be at a moving level less than the threshold level, and the moving speed In the case of being greater than the threshold speed, the train mobile station is assigned a channel of the current serving cell.
  • the first processing subunit includes: a determining subunit, configured to determine a next serving cell of the pre-away serving cell according to the cell list along the train mobile station; and assigning a subunit, configured to assign the next to the train mobile station The channel of the serving cell.
  • the present invention can ensure the smooth completion of the call and reduce the probability of the railway accident occurring. It greatly improves the user's perception, improves the network performance indicators, and ensures the strict requirements of the railway for network reliability.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any particular combination of hardware and software.
  • the embodiment of the invention solves the problem that the edge of the cell is easy to fail in the high-speed train operation scenario in the related art, thereby reducing the probability of occurrence of the railway accident, improving the network performance index, improving the user's perception, and further ensuring the reliability of the railway to the network. Strict requirements of sex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例开了一种信道的指派方法及装置。其中,该方法包括:网络侧测量列车移动台的接收电平、移动速度,并计算列车移动台的频偏信息;网络侧上述频偏信息,判断上述列车移动台是进入当前服务小区还是离开当前服务小区;网络侧根据上述接收电平、上述移动速度以及列车移动台运行的判断结果,为上述列车移动台指派信道。通过本发明实施例,解决了相关技术中高速列车运行场景下小区边缘起呼易失败的问题,从而降低了铁路事故的发生概率,提升网络性能指标,提高用户的感知度,保证了铁路对网络可靠性的严格要求。

Description

信道的指派方法及装置 技术领域
本发明涉及通信领域, 具体而言, 涉及一种信道的指派方法及装置。
背景技术
随着经济的高速发展, 传统的交通工具已经无法满足人们快捷、 安全、 低价的出行要求, 高速铁路随之出现。 高速铁路简称 "高铁" , 是指通过改 造原有线路(线化、 轨距标准化) , 或者专门修建新的 "高速新线" , 使营 运速率达到每小时 300公里以上的铁路系统。 高铁既比普通火车快, 又与普 通火车的安全性相差无几, 费用比飞机便宜, 完全满足人们对安全和高性价 比的要求。 全球铁路移动通信 ( Global system for Mobile Communication For Railways, 简称为 GSM-R ) 系统则是专门为铁路通信设计的综合专用数字移 动通信系统, 适用于铁路通信特别是铁路专用调度通信的需要。
GSM-R系统的无线环境有其自身的特殊性, 即线性覆盖、 快速移动和单 向行驶。 图 1是根据相关技术的 GSM-R系统下的列车运行示意图, 如图 1 所示, 高速行驶的列车在铁路上正常运行, 图 1示意性的给出列车运行经过 的三个站点(SITE 1、 SITE 2, SITE 3 )。 当高速行驶的列车上的移动台移动 到某小区 (例如 SITE 1 ) 的边缘, 并且方向为驶出该小区时, 如图 1中的 A 点, 若此时移动台发起呼叫, 在电平和无线链路质量都不好的情况下很有可 能导致该呼叫失败。
目前国内高速铁路的运行时速可达每小时 300公里,即每秒 83米。 GSM-R 系统规范中要求普通点对点呼叫时延为 5-10秒, 紧急呼叫时延 2-3秒, 组呼 和广播呼叫时延为 5-7秒, 那么在呼叫的过程中列车的行驶距离就可以计算 得出: 点对点呼叫时列车行史 415-830米, 紧急呼叫时列车行史 166-249米, 组呼和广播呼叫时列车行驶 415-581 米。 若列车移动台在离开小区时的边缘 起呼, 在以上呼叫类型时延的情况下列车行驶的距离, 极有可能上下行电平 下降过快导致列车移动台与网络通信过程中丟失信令消息, 最终导致此次呼 叫失败。 在列车高速行驶的场景下出现此类问题无疑会增加列车安全隐患的 几率。
对于上述容易导致安全隐患的问题,目前的 GSM-R系统还无针对性解决 方案, 协议也未做任何描述和说明, 只能通过人工重新起呼来完成本次呼叫, 影响用户感受度。
针对相关技术中高速列车运行场景下小区边缘起呼易失败的问题, 目前 尚未提出有效的解决方案。 发明内容
针对相关技术中高速列车运行场景下小区边缘起呼易失败的问题, 本发 明实施例提供了一种信道的指派方法及装置, 以至少解决上述问题。
本发明实施例提供的一种信道的指派方法, 包括:
网络侧设备测量列车移动台的接收电平和移动速度, 并计算所述列车移 动台的频偏信息;
所述网络侧设备根据所述频偏信息, 判断位于第一服务小区的所述列车 移动台的移动方向是进入所述第一服务小区还是离开所述第一服务小区; 以 及
所述网络侧设备根据所述接收电平、 所述移动速度以及所述列车移动台 移动方向的判断结果, 为所述列车移动台指派信道。
较佳的, 在所述网络侧设备测量所述列车移动台的所述接收电平和所述 移动速度, 并计算所述列车移动台的所述频偏信息之前, 所述方法还包括: 所述网络侧设备接收所述列车移动台注册的列车功能号;
所述网络侧设备根据所述列车功能号获取车次号;
所述网络侧设备根据预先存储的沿线小区信息以及所述车次号, 确定所 述列车移动台运行沿线的小区列表。
较佳的, 在所述网络侧设备接收所述列车移动台注册的所述列车功能号 之前, 所述方法还包括:
所述网络侧设备接收所述列车移动台的注册请求; 所述网络侧设备根据所述注册请求对所述列车移动台进行鉴权验证; 在鉴权验证通过后, 所述网络侧设备向所述列车移动台回复验证成功消 息。
较佳的, 所述网络侧设备测量所述列车移动台的所述接收电平、 所述移 动速度, 并计算所述列车移动台的所述频偏信息包括:
所述网络侧设备接收到所述列车移动台在独立专用控制信道 SDCCH信 道上发送的请求信息之后,测量所述列车移动台的接收电平和所述移动速度, 并计算所述频偏信息; 或者,
在确定所述列车移动台已占用 SDCCH信道时, 所述网络侧设备根据上 行测量结果测量上行链路的接收电平和所述移动速度,并计算所述频偏信息。
较佳的, 所述网络侧设备根据所述接收电平、 所述移动速度以及所述判 断结果, 为所述列车移动台指派信道包括:
在所述判断结果为所述列车移动台进入所述第一服务小区时 , 所述网络 侧设备为所述列车移动台指派所述第一服务小区的信道;
在所述判断结果为所述列车移动台离开所述第一服务小区时, 所述网络 侧设备根据所述接收电平和所述移动速度, 为所述列车移动台指派所述第一 服务小区的信道或者指派。
较佳的, 在所述判断结果为所述列车移动台离开所述第一服务小区时, 所述网络侧设备根据所述接收电平和所述移动速度, 为所述列车移动台指派 信道, 包括:
所述网络侧设备比较所述接收电平与门限电平的大小, 以及比较所述移 动速度与门限速度的大小;
在所述移动电平小于所述门限电平, 以及所述移动速度大于所述门限速 度时, 所述网络侧设备为所述列车移动台指派第二服务小区的信道, 其中所 述第二服务小区为所述列车移动台运行线路上的与所述第一服务小区相邻的 下一个服务小区; 在所述移动电平大于等于所述门限电平, 或者所述移动速 度小于等于所述门限速度时, 所述网络侧设备为所述列车移动台指派第一服 务小区的信道。 较佳的, 在所述移动电平小于所述门限电平, 以及所述移动速度大于所 述门限速度的时,则所述网络侧为所述列车移动台指派第二服务小区的信道, 包括:
所述网络侧设备根据所述列车移动台运行沿线的小区列表, 确定所述第 一服务小区的下一个服务小区即第二服务小区;
所述网络侧设备为所述列车移动台指派所述第二服务小区的信道。
较佳的, 在所述网络侧设备比较所述接收电平与门限电平的大小, 以及 比较所述移动速度与门限速度的大小之前, 所述方法还包括:
配置所述门限电平和所述门限速度; 其中, 所述门限电平为 -95dBm, 所 述门限速度为 260km/h。
较佳的, 所述信道为 SDCCH信道或者业务信道 TCH。 本发明实施例提供的一种信道的指派装置, 包括:
测量模块, 其设置为: 测量列车移动台的接收电平和移动速度, 并计算 所述列车移动台的频偏信息;
判断模块, 其设置为: 根据所述频偏信息, 判断位于第一服务小区的所 述列车移动台的移动方向是进入所述第一服务小区还是离开所述第一服务小 区; 以及
信道指派模块, 其设置为: 根据所述接收电平、 所述移动速度以及所述 判断模块的判断结果, 为所述列车移动台指派信道。
较佳的, 所述装置还包括:
列车功能号接收模块, 其设置为: 接收所述列车移动台注册的列车功能 号;
车次号获取模块, 其设置为: 根据所述列车功能号获取车次号; 以及 小区列表确定模块, 其设置为: 根据预先存储的沿线小区信息以及所述 车次号, 确定所述列车移动台运行沿线的小区列表。
较佳的, 所述装置还包括:
注册请求接收模块, 其设置为: 接收所述列车移动台的注册请求; 鉴权认证模块, 其设置为: 根据所述注册请求对所述列车移动台进行鉴 权验证; 以及
消息回复模块, 其设置为: 在鉴权验证通过后, 向所述列车移动台回复 验证成功消息。
较佳的, 所述测量模块包括:
第一计算单元, 其设置为: 接收到所述列车移动台在独立专用控制信道 SDCCH信道上发送的请求信息之后, 测量所述列车移动台的接收电平、所述 移动速度, 并计算所述频偏信息; 或者,
第二计算单元, 其设置为: 在确定所述列车移动台已占用 SDCCH信道 时, 根据上行测量结果测量上行链路的接收电平、 所述移动速度, 并计算所 述频偏信息。
较佳的, 所述信道指派模块包括:
第一指派单元, 其设置为: 在所述判断模块的判断结果为所述列车移动 台进入所述第一服务小区的情况下, 为所述列车移动台指派所述第一服务小 区的信道; 以及
第二指派单元, 其设置为: 在所述判断模块的判断结果为所述列车移动 台离开当前服务小区的情况下, 根据所述接收电平和所述移动速度, 为所述 列车移动台指派信道。
较佳的, 所述第二指派单元包括:
比较子单元, 其设置为: 比较所述接收电平与门限电平的大小, 以及比 较所述移动速度与门限速度的大小;
第一处理子单元, 其设置为: 在所述移动电平小于所述门限电平, 以及 所述移动速度大于所述门限速度的情况下, 为所述列车移动台指派第二服务 小区的信道, 其中所述第二服务小区为所述列车移动台运行线路上的所述第 一服务小区的下一个服务小区; 以及
第二处理子单元, 其设置为: 于在所述移动电平大于等于所述门限电平, 或者所述移动速度小于等于所述门限速度的情况下, 为所述列车移动台指派 所述第一服务小区的信道。 较佳的, 所述第一处理子单元包括:
确定子单元, 其设置为: 根据所述列车移动台运行沿线的小区列表, 确 定预离开的服务小区的下一个服务小区即第二服务小区; 以及
指派子单元, 其设置为: 为所述列车移动台指派所述第二服务小区的信 道。
较佳的, 所述装置还包括:
配置模块, 其设置为: 配置所述门限电平和所述门限速度; 其中, 所述 门限电平为 -95dBm, 所述门限速度为 260km/h。
较佳的, 所述信道为 SDCCH信道或者业务信道 TCH。
通过本发明实施例, 网络侧测量列车移动台的接收电平、 移动速度, 并 计算列车移动台的频偏信息, 然后网络侧根据频偏信息, 判断列车移动台是 进入当前服务小区还是离开当前服务小区, 最后根据接收电平、 移动速度和 判断结果为列车移动台指派对应的服务小区的信道, 解决了相关技术中高速 列车运行场景下小区边缘起呼易失败的问题, 从而降低了铁路事故的发生概 率, 提升网络性能指标, 提高用户的感知度, 进一步保证了铁路对网络可靠 性的严格要求。
附图概述
此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1是根据相关技术的 GSM-R系统下的列车运行示意图;
图 2是根据本发明实施例的信道的指派方法的流程图;
图 3是根据本发明实施例的网络侧分配 SDCCH信道分配阶段的流程图; 图 4是根据本发明实施例的网络侧分配 TCH信道分配阶段的流程图; 图 5是根据本发明实施例的信道的指派装置的结构框图;
图 6是根据本发明实施例的信道的指派装置的第一种具体结构框图; 图 Ί是根据本发明实施例的信道的指派装置的第二种具体结构框图; 图 8是根据本发明实施例的信道的指派装置的第三种具体结构框图。
本发明的较佳实施方式
下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
由于 GSM-R系统特有的无线环境 -线性覆盖, 使得特定的列车行驶的线 路和途径小区都是固定的,那么若列车在离开某小区并在其边缘发起呼叫时, 网络只需要判断该呼叫是否符合一定的条件, 就可以将该小区的信道分配给 列车移动台, 或者将下一个小区的信道提前分配给列车移动台, 从而保证列 车在高速行驶过程中发起呼叫的成功率。 基于此, 本发明实施例提供了一种 信道的指派方法及装置。 下面通过实施例进行详细说明。
本实施例提供了一种信道的指派方法, 如图 2所示的信道的指派方法的 流程图, 该方法可以在网络侧实现, 该方法包括以下步骤(步骤 S202-步骤 S206 ) :
步骤 S202, 网络侧测量列车移动台的接收电平、 移动速度, 并计算列车 移动台的频偏信息;
步骤 S204, 网络侧根据上述频偏信息, 判断上述列车移动台是进入当前 服务小区还是离开当前服务小区;
步骤 S206, 网络侧根据上述接收电平、 上述移动速度和列车移动台运行 的判断结果为上述列车移动台指派对应的服务小区的信道。
通过上述方法, 网络侧测量列车移动台的接收电平、 移动速度, 并计算 列车移动台的频偏信息, 然后网络侧根据频偏信息, 判断列车移动台是进入 当前服务小区还是离开当前服务小区, 最后根据接收电平、 移动速度和判断 结果为列车移动台指派对应的服务小区的信道, 解决了相关技术中高速列车 运行场景下小区边缘起呼易失败的问题, 从而降低了铁路事故的发生概率, 提升网络性能指标, 提高用户的感知度, 保证了铁路对网络可靠性的严格要 求。 在网络侧测量列车移动台的接收电平、 移动速度和频偏信息之前, 需要 先确定列车的运行路线, 这样方便后续根据运行路线确定列车的当前服务小 区和下一个服务小区, 因此, 本实施例提供了一种优选实施方式, 即网络侧 接收列车移动台的注册请求, 根据该注册请求对列车移动台进行鉴权验证, 在鉴权验证通过后, 网络侧向列车移动台回复验证成功消息。 然后, 网络侧 接收列车移动台注册的列车功能号, 根据列车功能号获取车次号, 根据预先 存储的沿线小区信息以及车次号, 确定列车移动台运行沿线的小区列表。
在网络侧确定了列车移动台运行路线的小区列表之后, 对列车移动台的 接收电平、 移动速度和频偏信息进行测量, 然后需要配置一个合适的门限电 平和门限速度,从而方便判断列车移动台是处于正常流程还是处于小区边缘。 门限电平和门限速度主要为经验值, 可后台配置。 门限电平的配置依据为上 下行链路电平在多大的情况下出现误码丟包的概率陡然增加, 根据仿真结果 和网络资料, 推荐一个经验值为 -95dBm。 门限速度的配置依据为在不同的呼 叫类型下, 以门限速度行驶的移动台能否在服务小区下以该呼叫类型的呼叫 时延下完成呼叫流程 ,根据信道仿真和网络资料 ,推荐一个经验值为 260km/h。 门限电平和门限速度的配置可以在任何时机进行, 只要在后续执行接收电平 和门限电平、 以及移动速度和门限速度的比较操作之前进行即可, 其具体值 也可以根据实际情况来确定。
在网络侧根据计算得到的频偏信息, 判断列车移动台是进入当前服务小 区还是离开当前服务小区之后, 如果是进入当前服务小区, 则表明移动台的 接收电平越来越大, 通话质量有所保证, 网络侧可以为列车移动台分配(或 称为指派) 当前服务小区的信道; 如果是离开当前服务小区, 假设网络侧再 为列车移动台分配当前服务小区的信道, 有可能产生未接通事件的风险, 因 此, 网络侧可以根据测量得到的接收电平和移动速度, 釆取相应的信道分配 措施。 具体地, 可以通过以下方式实现:
网络侧比较接收电平和门限电平的大小, 以及移动速度和门限速度的大 小, 在接收电平小于门限电平以及移动速度大于门限速度的情况下, 网络侧 可以为列车移动台分配当前服务小区的下一个服务小区的信道, 否则, 网络 侧为列车移动台正常分配信道。 基于上述介绍的网络侧根据接收电平、 移动速度以及判断结果, 为列车 移动台指派对应的服务小区的信道流程,本实施例提供了一种优选实施方式, 即在判断结果为列车移动台进入当前服务小区的情况下, 网络侧为列车移动 台指派当前服务小区的信道; 在判断结果为列车移动台离开当前服务小区的 情况下, 网络侧根据接收电平和移动速度, 为列车移动台指派对应的服务小 区的信道。 通过上述方式, 提高了信道指派效率和小区边缘起呼的成功率。
另外, 网络侧根据接收电平和移动速度, 为列车移动台指派对应的服务 小区的信道具体可以通过以下优选实施方式实现: 网络侧比较接收电平与门 限电平的大小, 以及比较移动速度与门限速度的大小; 在移动电平小于门限 电平, 以及移动速度大于门限速度的情况下, 网络侧为列车移动台指派对应 的服务小区的信道; 具体地, 网络侧根据列车移动台运行沿线的小区列表, 确定预离开的服务小区的下一个服务小区, 然后为列车移动台指派上述下一 个服务小区的信道。 否则, 网络侧为列车移动台正常指派服务小区的信道。 通过上述方式, 提高了小区边缘起呼的成功率, 提高用户感受, 降低列车安 全隐患。
本实施例的具体实施主要分为两部分, 一部分是在网络分配 SDCCH信 道时的处理机制, 一部分是在网络分配 TCH信道时的处理机制。 因此, 上述 信道可以为独立专用控制信道( Stand-Alone Dedicated Control Channel , 简称 为 SDCCH )或者业务信道(Traffic Channel, 简称为 TCH ) 。 对于 SDCCH 信道的指派过程和 TCH信道的指派过程, 其不同之处在于, 网络侧测量列车 移动台的接收电平、 移动速度和频偏信息包括: 对于 SDCCH信道, 网络侧 接收到列车移动台在 SDCCH信道上发送的请求信息之后, 测量列车移动台 的接收电平、 移动速度, 并计算频偏信息; 或者, 对于 TCH信道, 在确定列 车移动台已占用 SDCCH信道时, 网络侧根据上行测量结果测量上行链路的 接收电平、 移动速度, 并计算频偏信息。
下面分别对 SDCCH信道的指派过程和 TCH信道的指派过程进行介绍。 网络侧分配 SDCCH信道的交互流程具体如下:
步骤 1 , 列车出发前, 向网络侧注册列车功能号。
步骤 2, 网络侧由列车功能号获取列车的车次号, 根据预先存储的沿线 小区信息, 编制列车运行沿线的小区列表。
步骤 3 , 网络侧接收列车移动台发送的信道请求消息 ( Channel Request ) 时测量列车移动台移动的接收电平、 移动速度, 并计算其频偏。
步骤 4 , 网络侧根据频偏信息判断列车移动台是正进入当前服务小区还 是离开当前服务小区。 若是正进入当前服务小区, 则分配当前服务小区的 SDCCH信道; 若离开当前服务小区, 则执行步骤 5。
步骤 5 , 网络侧设定一个门限电平和门限速度, 比较接收电平和门限电 平以及移动速度和门限速度。
步骤 6 , 若接收电平小于设定门限电平且移动速度大于门限速度, 则执 行步骤 7; 若接收电平大于等于设定门限电平或者移动速度小于等于门限速 度, 则分配当前服务小区的 SDCCH信道。
步骤 7 , 网络侧根据上述小区列表查找列车将要经过的下一小区, 将下 一小区的 SDCCH信道通过服务小区提前指派给列车移动台。
对于网络侧分配 SDCCH信道时的处理机制中的信道分配阶段, 下面进 行详细介绍。 图 3是根据本发明实施例的网络侧分配 SDCCH信道分配阶段 的流程图, 如图 3所示, 该流程包括以下步骤(步骤 S302-步骤 S318 ) : 步骤 S302, 列车出发前, 向网络侧注册列车功能号。
列车出发前, 列车移动台向网络侧发出车次功能号注册的请求, 网络侧 收到该请求后进行鉴权验证, 成功后回复移动台验证成功消息。
步骤 S304, 网络侧由功能号获取列车的车次号, 根据预先存储的沿线小 区信息, 编制列车运行沿线的小区列表。 列车运行沿线的小区编号列表。
步骤 S306, 网络侧接收到列车移动台发送的信道请求消息时, 计算出列 车移动台移动时的接收电平、 移动速度和频偏。
当基站收到列车移动台发送的信道请求消息时, 可计算出移动台的上行 电平, 再通过以下方法计算出移动台的移动速度和频偏: 首先, 检测移动台发射信号的频率 ; 其次, 利用公式^ = — 计算频 偏 Δ/,其中 是移动台相对于基站静止时基站测量到移动台发射信号的频率; 然后, 利用公式 = 1;* /C计算移动台相对基站的移动速度 V, 其中 C表示电 磁波的速度; 最后, 基站将计算得出的参数上报至基站控制器。
步骤 S308, 网络侧根据频偏信息判断移动台是正进入当前服务小区还是 离开当前服务小区。 如果是正进入当前服务小区, 则执行步骤 S310, 如果是 离开当前服务小区, 则执行步骤 S312。
网络侧通过频偏信息判断移动台是进入某小区还是离开某小区, 若进入 则表明移动台的接收电平越来越大, 通话质量有所保证; 若离开某小区, 假 设再分配该小区的信道, 移动台将会产生未接通事件的风险。
步骤 S310, 网络侧指派当前服务小区的 SDCCH信道。 信道分配流程结 束。
步骤 S312, 网络侧设定一个门限电平和门限速度。
该步骤可以在任何时机执行, 只要在对接收电平和门限电平、 以及移动 速度和门限速度的比较操作之前执行即可, 门限电平和门限速度的值的配置 过程前面已经进行了介绍, 该门限电平和门限速度主要为经验值, 可后台配 置。 门限电平的配置依据为上下行链路电平在多大的情况下出现误码丟包的 概率陡然增加, 根据仿真结果和网络侧资料, 推荐一个经验值为 -95dBm; 门 限速度的配置依据为在不同的呼叫类型下, 以门限速度行驶的移动台能否在 服务小区下以该呼叫类型的呼叫时延下完成呼叫流程, 根据信道仿真和网络 侧资料, 推荐一个经验值为 260km/h。 当然, 门限电平和门限速度的具体值 可以根据实际情况而确定。 只有在测得移动台的接收电平和移动速度都满足 门限电平和门限速度时, 本实施例才会发挥作用。
步骤 S314, 网络侧比较接收电平和门限电平以及移动速度和门限速度。 如果接收电平小于设定门限电平且移动速度大于门限速度,则执行步骤 S316, 如果接收电平大于等于设定门限电平或者移动速度小于等于门限速度, 则执 行步骤 S318。
步骤 S316, 网络侧根据列车运行沿线的小区列表, 查找列车将要经过的 下一小区, 将下一小区的 SDCCH信道通过服务小区提前指派给移动台。 信 道分配流程结束。
如果满足接收电平小于门限电平, 且移动速度大于门限速度, 则说明在 该移动速度下的移动台可能无法顺利完成本次起呼流程, 出现未接通事件。 BSC根据频偏判断列车移动台的行驶方向和位置, 若为离开小区方向则需要 提前分配下一个途径小区的 SDCCH信道, 否则仍然按照正常流程分配服务 小区的 SDCCH信道。
步骤 S318。 指派当前服务小区的 SDCCH信道。 信道分配流程结束。 如 果不满足接收电平小于门限电平, 且移动速度大于门限速度, 则说明在该速 度下的移动台可以顺利完成本次起呼流程, 可以按照正常流程分配服务小区 的 SDCCH信道。 若通话过程中再有电平或链路质量不好的情况可以通过切 换改善。
下面对 TCH信道的指派过程进行介绍。 网络侧分配 TCH信道的交互流 程具体如下:
步骤 1 , 列车出发前, 向网络侧注册列车功能号。
步骤 2, 网络侧由功能号获取列车的车次号, 根据预先存储的沿线小区 信息, 编制列车运行沿线的小区列表。
步骤 3 , 当列车移动台已经占用服务小区的 SDCCH信道时, 网络侧测量 上行链路的电平, 计算移动速度和频偏。
步骤 4, 网络侧根据频偏信息判断列车移动台是正进入当前服务小区还 是离开当前服务小区。若是正进入当前服务小区,则分配当前服务小区的 TCH 信道; 若离开当前服务小区, 则执行步骤 5。
步骤 5 , 网络侧设定一个门限电平和门限速度, 比较上行链路的电平和 门限电平以及移动数和门限速度。
步骤 6, 若接收电平小于设定门限电平且移动速度大于门限速度, 则执 行步骤 7; 若接收电平大于等于设定门限电平或移动速度小于等于门限速度, 则分配当前服务小区的 TCH信道。
步骤 7 , 网络侧根据上述小区列表查找列车将要经过的下一小区, 将下 一小区的 TCH信道通过服务小区提前指派给移动台。
对于网络侧分配 TCH信道时的处理机制中的信道分配阶段,下面进行详 细介绍。图 4是根据本发明实施例的网络侧分配 TCH信道分配阶段的流程图, 如图 4所示, 该流程包括以下步骤 (步骤 S402-步骤 S418 ) :
步骤 S402, 列车出发前, 向网络侧注册列车功能号。
列车出发前, 列车移动台向网络侧发出车次功能号注册的请求, 网络侧 收到该请求后进行鉴权验证, 成功后回复移动台验证成功消息。
步骤 S404 , 网络侧由列车功能号获取列车的车次号, 根据预先存储的沿 线小区信息, 编制列车运行沿线的小区列表。
列车运行沿线小区编号列表。
步骤 S406, 当列车移动台已经占用服务小区的 SDCCH信道时, 网络侧 测量上行链路的电平, 计算移动速度, 并计算其频偏。
当列车移动台已占用服务小区的 SDCCH信道上时, BTS会根据移动台 上报的 SABM帧、 测量结果计算出上行接收电平, 再通过以下方法计算出移 动台的移动速度和频偏:
首先, 检测移动台发射信号的频率 ; 其次, 利用公式^ = — 计算频 偏 Δ/,其中 ·:是移动台相对于基站静止时基站测量到移动台发射信号的频率; 然后, 利用公式 = 1;* /C计算移动台相对基站的移动速度 V, 其中 C表示电 磁波的速度; 最后, 基站将计算得出的参数上报至基站控制器。
步骤 S408, 网络侧根据频偏信息判断移动台是正进入当前服务小区还是 离开当前服务小区。 如果是正进入当前服务小区, 则执行步骤 S410, 如果是 离开当前服务小区, 则执行步骤 S412。
网络侧通过频偏信息判断移动台是进入某小区还是离开某小区, 若进入 则表明移动台的接收电平越来越大, 通话质量有所保证; 若离开某小区, 假 设再分配该小区的信道, 移动台将会产生未接通事件的风险。
步骤 S410, 网络侧提前指派当前服务小区的 TCH信道。 信道分配流程 结束。 步骤 S412, 网络侧设定一个门限电平和门限速度。
该步骤可以在任何时机执行, 只要在对接收电平和门限电平、 以及移动 速度和门限速度的比较操作之前执行即可, 门限电平和门限速度的值的配置 过程前面已经进行了介绍, 在此不再赘述。 当然, 门限电平和门限速度的具 体值可以根据实际情况而确定。
步骤 S414, 网络侧比较接收电平和门限电平以及移动速度和门限速度。 如果接收电平小于设定门限电平, 且移动速度大于门限速度, 则执行步骤 S416, 否则, 执行步骤 S418。
步骤 S416, 网络侧根据列车运行沿线的小区列表, 查找列车将要经过的 下一小区, 将下一小区的 TCH信道通过服务小区提前指派给移动台。 信道分 配流程结束。
如果满足接收电平小于门限电平, 且移动速度大于门限速度, 则说明在 该移动速度下的移动台可能无法顺利完成本次起呼流程, 出现未接通事件。 BSC根据频偏判断列车移动台的行驶方向和位置, 若为离开小区方向则需要 提前分配下一个途径小区的 TCH信道, 否则仍然分配当前服务小区的 TCH 信道。
步骤 S418, 为移动台指派当前服务小区的 TCH信道。 信道分配流程结 束。
如果不满足接收电平小于门限电平, 且移动速度大于门限速度, 则说明 在该速度下的移动台可以顺利完成本次起呼流程, 可以分配当前服务小区的 TCH信道。若通话过程中再有电平或链路质量不好的情况可以通过切换改善。
对应于上述信道的指派方法, 本实施例提供了一种信道的指派装置, 该 装置可以设置在网络侧, 用于实现上述实施例。 图 5是根据本发明实施例的 信道的指派装置的结构框图, 如图 5所示, 该装置包括: 测量模块 10、 判断 模块 20和信道指派模块 30。 下面对该结构进行说明。
测量模块 10, 设置为测量列车移动台的接收电平、 移动速度, 并计算列 车移动台的频偏信息;
判断模块 20, 连接至测量模块 10, 设置为根据频偏信息, 判断列车移动 台是进入当前服务小区还是离开当前服务小区;
信道指派模块 30, 连接至判断模块 20, 设置为根据接收电平、 移动速度 和判断模块 20的判断结果, 为列车移动台指派对应的服务小区的信道。
通过上述装置, 测量模块 10测量列车移动台的接收电平、 移动速度, 并 计算其频偏信息, 然后判断模块 20根据频偏信息, 判断列车移动台是进入当 前服务小区还是离开当前服务小区, 最后信道指派模块 30根据接收电平、 移 动速度和判断结果为列车移动台指派对应的服务小区的信道, 解决了相关技 术中高速列车运行场景下小区边缘起呼易失败的问题, 从而降低了铁路事故 的发生概率, 提升网络性能指标, 提高用户的感知度, 进一步保证了铁路对 网络可靠性的严格要求。
在网络侧测量列车移动台的接收电平、 移动速度和频偏信息之前, 需要 先确定列车的运行路线, 这样方便后续根据运行路线确定列车的当前服务小 区和下一个服务小区, 因此, 本实施例提供了一种优选实施方式, 即上述装 置还包括: 注册请求接收模块, 设置为接收上述列车移动台的注册请求; 鉴 权认证模块, 设置为根据上述注册请求对上述列车移动台进行鉴权验证; 消 息回复模块, 设置为在鉴权验证通过后, 向上述列车移动台回复验证成功消 息。
图 6是根据本发明实施例的信道的指派装置的第一种具体结构框图, 如 图 6所示, 该装置除了包括上述图 5中的各个模块之外, 还包括: 列车功能 号接收模块 40、 车次号获取模块 50和小区列表确定模块 60。 下面对该结构 进行说明。
列车功能号接收模块 40 , 设置为接收列车移动台注册的列车功能号; 车次号获取模块 50, 连接至列车功能号接收模块 40,设置为根据列车功 能号获取车次号;
小区列表确定模块 60, 连接至车次号获取模块 50和测量模块 10, 设置 为根据预先存储的沿线小区信息以及上述车次号, 确定列车移动台运行沿线 的小区列表。
在网络侧确定了列车移动台运行路线的小区列表之后, 对列车移动台的 接收电平、 移动速度进行测量, 并对频偏信息进行计算, 然后需要配置一个 合适的门限电平和门限速度, 从而方便判断列车移动台是处于正常流程还是 处于小区边缘。 上述装置还包括: 配置模块, 用于配置上述门限电平和上述 门限速度; 其中, 上述门限电平为 -95dBm, 上述门限速度为 260km/h。 门限 电平和门限速度主要为经验值, 可后台配置, 具体配置依据前面已经进行了 介绍, 在此不再赘述, 门限电平和门限速度的值可以根据实际情况来确定。
本实施例的具体实施主要分为两部分, 一部分是在网络分配 SDCCH信 道时的处理机制, 一部分是在网络分配 TCH信道时的处理机制。 因此, 上述 信道可以为 SDCCH信道或者 TCH信道。对于 SDCCH信道的指派过程和 TCH 信道的指派过程, 其不同之处在于, 网络侧测量列车移动台的接收电平、 移 动速度和频偏信息包括: 对于 SDCCH信道, 网络侧接收到列车移动台在 SDCCH信道发送的请求信息之后,计算列车移动台的接收电平、移动速度和 频偏信息; 或者,对于 TCH信道,在确定列车移动台已占用 SDCCH信道时, 网络侧根据上行测量结果测量上行链路的接收电平、 移动速度, 并计算频偏 信息。
图 7是根据本发明实施例的信道的指派装置的第二种具体结构框图, 如 图 7所示, 该装置除了包括上述图 6中的各个模块之外, 上述测量模块 10还 包括: 第一计算单元 12或者第二计算单元。 图 7以测量模块 10包括第一计 算单元 12为例进行说明。
第一计算单元 12, 设置为接收到列车移动台在 SDCCH信道上发送的请 求信息之后, 测量列车移动台的接收电平、 移动速度, 并计算频偏信息; 或 者,
第二计算单元, 设置为在确定上述列车移动台已占用 SDCCH信道时, 根据上行测量结果测量上行链路的接收电平、 移动速度, 并计算频偏信息。
图 8是根据本发明实施例的信道的指派装置的第三种具体结构框图, 如 图 8所示, 该装置除了包括上述图 7中的各个模块之外, 上述信道指派模块 30还包括: 第一指派单元 32和第二指派单元 34。 下面对该结构进行说明。
第一指派单元 32, 设置为在判断模块 20的判断结果为列车移动台进入 当前服务小区的情况下, 为上述列车移动台提前指派当前服务小区的信道; 第二指派单元 34, 连接至第一指派单元 32, 设置为在判断模块 20的判 断结果为上述列车移动台离开当前服务小区的情况下, 根据所述接收电平和 所述移动速度, 为上述列车移动台指派对应的服务小区的信道。
具体地, 第二指派单元 34包括: 比较子单元, 设置为比较接收电平与门 限电平的大小, 以及比较移动速度与门限速度的大小; 第一处理子单元, 设 置为在移动电平小于门限电平, 以及移动速度大于门限速度的情况下, 为列 车移动台指派对应的服务小区的信道; 第二处理子单元, 设置为在除移动电 平小于门限电平, 以及移动速度大于门限速度之外的情况下, 为列车移动台 指派当前服务小区的信道。 通过上述装置, 提高了信道指派效率和小区边缘 起呼的成功率。
另外, 第一处理子单元包括: 确定子单元, 设置为根据列车移动台运行 沿线的小区列表, 确定预离开的服务小区的下一个服务小区; 指派子单元, 设置为为列车移动台指派下一个服务小区的信道。 通过上述实施例, 提高了 小区边缘起呼的成功率, 提高用户感受, 降低列车安全隐患。
从以上的描述中可以看出, 高速行驶的列车上的移动台在离开某小区至 小区边缘, 并进行起呼时, 通过本发明能够确保该呼叫的顺利完成, 降低了 铁路事故发生的概率, 大大提高了用户感知度, 提升了网络性能指标, 保证 了铁路对网络可靠性的严格要求。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。 工业实用性
本发明实施例解决了相关技术中高速列车运行场景下小区边缘起呼易失 败的问题, 从而降低了铁路事故的发生概率, 提升网络性能指标, 提高用户 的感知度, 进一步保证了铁路对网络可靠性的严格要求。

Claims

权 利 要 求 书
1、 一种信道的指派方法, 包括: 网络侧设备测量列车移动台的接收电平和移动速度, 并计算所述列车移 动台的频偏信息;
所述网络侧设备根据所述频偏信息, 判断位于第一服务小区的所述列车 移动台的移动方向是进入所述第一服务小区还是离开所述第一服务小区; 以 及
所述网络侧设备根据所述接收电平、 所述移动速度以及所述列车移动台 移动方向的判断结果, 为所述列车移动台指派信道。
2、根据权利要求 1所述的方法, 在所述网络侧设备测量所述列车移动台 的所述接收电平和所述移动速度, 并计算所述列车移动台的所述频偏信息之 前, 所述方法还包括: 所述网络侧设备接收所述列车移动台注册的列车功能号;
所述网络侧设备根据所述列车功能号获取车次号;
所述网络侧设备根据预先存储的沿线小区信息以及所述车次号, 确定所 述列车移动台运行沿线的小区列表。
3、根据权利要求 2所述的方法, 在所述网络侧设备接收所述列车移动台 注册的所述列车功能号之前, 所述方法还包括: 所述网络侧设备接收所述列车移动台的注册请求;
所述网络侧设备根据所述注册请求对所述列车移动台进行鉴权验证; 在鉴权验证通过后, 所述网络侧设备向所述列车移动台回复验证成功消
4、 根据权利要求 1所述的方法, 其中, 所述网络侧设备测量所述列车移 动台的所述接收电平、 所述移动速度, 并计算所述列车移动台的所述频偏信 息包括: 所述网络侧设备接收到所述列车移动台在独立专用控制信道 SDCCH信 道上发送的请求信息之后,测量所述列车移动台的接收电平和所述移动速度, 并计算所述频偏信息; 或者,
在确定所述列车移动台已占用 SDCCH信道时, 所述网络侧设备根据上 行测量结果测量上行链路的接收电平和所述移动速度,并计算所述频偏信息。
5、 根据权利要求 2所述的方法, 其中, 所述网络侧设备根据所述接收电 平、 所述移动速度以及所述判断结果, 为所述列车移动台指派信道包括: 在所述判断结果为所述列车移动台进入所述第一服务小区时 , 所述网络 侧设备为所述列车移动台指派所述第一服务小区的信道;
在所述判断结果为所述列车移动台离开所述第一服务小区时, 所述网络 侧设备根据所述接收电平和所述移动速度, 为所述列车移动台指派信道。
6、 根据权利要求 5所述的方法, 其中, 在所述判断结果为所述列车移动 台离开所述第一服务小区时, 所述网络侧设备根据所述接收电平和所述移动 速度, 为所述列车移动台指派信道, 包括: 所述网络侧设备比较所述接收电平与门限电平的大小, 以及比较所述移 动速度与门限速度的大小;
在所述移动电平小于所述门限电平, 以及所述移动速度大于所述门限速 度时, 所述网络侧设备为所述列车移动台指派第二服务小区的信道, 其中所 述第二服务小区为所述列车移动台运行线路上的与所述第一服务小区相邻的 下一个服务小区; 在所述移动电平大于等于所述门限电平, 或者所述移动速 度小于等于所述门限速度时, 所述网络侧设备为所述列车移动台指派第一服 务小区的信道。
7、 根据权利要求 6所述的方法, 其中, 在所述移动电平小于所述门限电 平, 以及所述移动速度大于所述门限速度的时, 则所述网络侧为所述列车移 动台指派第二服务小区的信道, 包括: 所述网络侧设备根据所述列车移动台运行沿线的小区列表, 确定所述第 一服务小区的下一个服务小区即第二服务小区;
所述网络侧设备为所述列车移动台指派所述第二服务小区的信道。
8、根据权利要求 6所述的方法, 在所述网络侧设备比较所述接收电平与 门限电平的大小, 以及比较所述移动速度与门限速度的大小之前, 所述方法 还包括: 配置所述门限电平和所述门限速度; 其中, 所述门限电平为 -95dBm, 所 述门限速度为 260km/h。
9、根据权利要求 1至 8中任一项所述的方法,其中,所述信道为 SDCCH 信道或者业务信道 TCH。
10、 一种信道的指派装置, 包括: 测量模块, 其设置为: 测量列车移动台的接收电平和移动速度, 并计算 所述列车移动台的频偏信息;
判断模块, 其设置为: 根据所述频偏信息, 判断位于第一服务小区的所 述列车移动台的移动方向是进入所述第一服务小区还是离开所述第一服务小 区; 以及
信道指派模块, 其设置为: 根据所述接收电平、 所述移动速度以及所述 判断模块的判断结果, 为所述列车移动台指派信道。
11、 根据权利要求 10所述的装置, 所述装置还包括: 列车功能号接收模块, 其设置为: 接收所述列车移动台注册的列车功能 号;
车次号获取模块, 其设置为: 根据所述列车功能号获取车次号; 以及 小区列表确定模块, 其设置为: 根据预先存储的沿线小区信息以及所述 车次号, 确定所述列车移动台运行沿线的小区列表。
12、 根据权利要求 11所述的装置, 所述装置还包括: 注册请求接收模块, 其设置为: 接收所述列车移动台的注册请求; 鉴权认证模块, 其设置为: 根据所述注册请求对所述列车移动台进行鉴 权验证; 以及
消息回复模块, 其设置为: 在鉴权验证通过后, 向所述列车移动台回复 验证成功消息。
13、 根据权利要求 10所述的装置, 其中, 所述测量模块包括: 第一计算单元, 其设置为: 接收到所述列车移动台在独立专用控制信道 SDCCH信道上发送的请求信息之后, 测量所述列车移动台的接收电平、所述 移动速度, 并计算所述频偏信息; 或者,
第二计算单元, 其设置为: 在确定所述列车移动台已占用 SDCCH信道 时, 根据上行测量结果测量上行链路的接收电平、 所述移动速度, 并计算所 述频偏信息。
14、 根据权利要求 11所述的装置, 其中, 所述信道指派模块包括: 第一指派单元, 其设置为: 在所述判断模块的判断结果为所述列车移动 台进入所述第一服务小区的情况下, 为所述列车移动台指派所述第一服务小 区的信道; 以及
第二指派单元, 其设置为: 在所述判断模块的判断结果为所述列车移动 台离开当前服务小区的情况下, 根据所述接收电平和所述移动速度, 为所述 列车移动台指派信道。
15、 根据权利要求 14所述的装置, 其中, 所述第二指派单元包括: 比较子单元, 其设置为: 比较所述接收电平与门限电平的大小, 以及比 较所述移动速度与门限速度的大小;
第一处理子单元, 其设置为: 在所述移动电平小于所述门限电平, 以及 所述移动速度大于所述门限速度的情况下, 为所述列车移动台指派第二服务 小区的信道, 其中所述第二服务小区为所述列车移动台运行线路上的所述第 一服务小区的下一个服务小区; 以及 第二处理子单元, 其设置为: 于在所述移动电平大于等于所述门限电平, 或者所述移动速度小于等于所述门限速度的情况下, 为所述列车移动台指派 所述第一服务小区的信道。
16、 根据权利要求 15所述的装置, 其中, 所述第一处理子单元包括: 确定子单元, 其设置为: 根据所述列车移动台运行沿线的小区列表, 确 定预离开的服务小区的下一个服务小区即第二服务小区; 以及
指派子单元, 其设置为: 为所述列车移动台指派所述第二服务小区的信 道。
17、 根据权利要求 15所述的装置, 所述装置还包括: 配置模块, 其设置为: 配置所述门限电平和所述门限速度; 其中, 所述 门限电平为 -95dBm, 所述门限速度为 260km/h。
18、 根据权利要求 10 至 17 中任一项所述的装置, 其中, 所述信道为 SDCCH信道或者业务信道 TCH。
PCT/CN2013/076910 2012-09-26 2013-06-07 信道的指派方法及装置 WO2013182075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210364192.5 2012-09-26
CN201210364192.5A CN103687020B (zh) 2012-09-26 2012-09-26 信道的指派方法及装置

Publications (1)

Publication Number Publication Date
WO2013182075A1 true WO2013182075A1 (zh) 2013-12-12

Family

ID=49711392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076910 WO2013182075A1 (zh) 2012-09-26 2013-06-07 信道的指派方法及装置

Country Status (2)

Country Link
CN (1) CN103687020B (zh)
WO (1) WO2013182075A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10841852B2 (en) 2015-12-09 2020-11-17 DataSpark, PTE. LTD. Transportation network monitoring using cellular radio metadata

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110113120A (zh) * 2019-04-29 2019-08-09 北京六捷科技有限公司 一种gsm-r无线网络覆盖趋势预测方法及装置
CN112468998A (zh) * 2020-11-24 2021-03-09 上海擎昆信息科技有限公司 一种无线通信网络节能方法、系统、电子设备及存储介质
CN112512104B (zh) * 2020-11-24 2023-07-11 上海擎昆信息科技有限公司 一种高铁专网基站节能方法、系统、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859784A (zh) * 2006-03-24 2006-11-08 华为技术有限公司 一种高速移动终端的小区切换控制方法
JP2008219541A (ja) * 2007-03-06 2008-09-18 Nec Corp ドップラーシフト補正方法及びその機能を有する移動通信システム
CN102300319A (zh) * 2011-09-30 2011-12-28 北京交通大学 一种基于列车沿线蜂窝小区的无线信道分配方法
CN102413525A (zh) * 2010-09-20 2012-04-11 中兴通讯股份有限公司 线性覆盖网络中下行快速切换方法、bsc及基站子系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194602B2 (en) * 2008-03-19 2012-06-05 Futurewei Technologies, Inc. System and method for downlink control signal structure for multi-user MIMO

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859784A (zh) * 2006-03-24 2006-11-08 华为技术有限公司 一种高速移动终端的小区切换控制方法
JP2008219541A (ja) * 2007-03-06 2008-09-18 Nec Corp ドップラーシフト補正方法及びその機能を有する移動通信システム
CN102413525A (zh) * 2010-09-20 2012-04-11 中兴通讯股份有限公司 线性覆盖网络中下行快速切换方法、bsc及基站子系统
CN102300319A (zh) * 2011-09-30 2011-12-28 北京交通大学 一种基于列车沿线蜂窝小区的无线信道分配方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10841852B2 (en) 2015-12-09 2020-11-17 DataSpark, PTE. LTD. Transportation network monitoring using cellular radio metadata

Also Published As

Publication number Publication date
CN103687020B (zh) 2018-03-27
CN103687020A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
US11558801B2 (en) Handover management based on speeds of wireless communication devices
JP5312671B2 (ja) 列車制御システムおよび列車制御システムにおけるハンドオーバ方法
US10993245B2 (en) Terminal apparatus, base station, method, and recording medium
Zhu et al. Communication-based train control (CBTC) systems with cooperative relaying: Design and performance analysis
US12005943B2 (en) System and apparatus for determining the position of railbound vehicles on a railway system
DK2705693T3 (en) METHOD OF COMMUNICATION PROCEDURE AND COMMUNICATION SYSTEM FOR VEHICLES AND ROAD EQUIPMENT
WO2013182075A1 (zh) 信道的指派方法及装置
US20130244569A1 (en) Systems and methods for transparent point-to-point handovers of a mobile relay
EP3200378B1 (en) Wireless communication system and method for trains and other vehicles using trackside base stations
US20160323715A1 (en) System and Method for Data Packet Scheduling and Delivery
JPWO2019064986A1 (ja) 通信装置及び通信方法
KR20140050519A (ko) 사물통신 기반 열차 방호장치 및 그 방법
US20200187058A1 (en) Bus communication network wireless backhaul system using portable tvws and operating method
Huang et al. Mobile relay based fast handover scheme in high-speed mobile environment
JP2011130252A (ja) 基地局装置及び通信方法
KR20130012761A (ko) 통신 시스템에서 이동 단말의 고속 핸드오버 방법 및 이를 위한 시스템
CN102630096B (zh) 高速列车通信管理方法、装置和系统
Wang et al. Next generation train-centric communication-based train control system with train-to-train (t2t) communications
KR20130112304A (ko) 차량 통신에서의 핸드오버 방법 및 이를 이용하는 차량 통신 장치
KR20160006329A (ko) 무선통신 열차 제어시스템에서의 열차의 이동패턴에 최적화된 핸드오버 방법
CN107431966B (zh) 移动车辆上的车载的无线通信系统的切换的处理
JP5955707B2 (ja) 列車無線システム
WO2023177502A1 (en) Reputation score assignment for vehicle-based communications
Wang et al. Improved T2T based communication-based train control systems through cooperated security check
CN103533594A (zh) 基于用户移动状态感知的车载移动中继切换方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801139

Country of ref document: EP

Kind code of ref document: A1