WO2013181983A1 - 一种物理层信号的发送方法、装置及系统 - Google Patents

一种物理层信号的发送方法、装置及系统 Download PDF

Info

Publication number
WO2013181983A1
WO2013181983A1 PCT/CN2013/075510 CN2013075510W WO2013181983A1 WO 2013181983 A1 WO2013181983 A1 WO 2013181983A1 CN 2013075510 W CN2013075510 W CN 2013075510W WO 2013181983 A1 WO2013181983 A1 WO 2013181983A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical layer
single frequency
signal
signal frame
layer signal
Prior art date
Application number
PCT/CN2013/075510
Other languages
English (en)
French (fr)
Inventor
肖振宇
张昌明
刘培
Original Assignee
华为技术有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 清华大学 filed Critical 华为技术有限公司
Priority to EP17157077.3A priority Critical patent/EP3264653B1/en
Priority to RU2014153862/08A priority patent/RU2598992C2/ru
Priority to EP13800118.5A priority patent/EP2849376B1/en
Publication of WO2013181983A1 publication Critical patent/WO2013181983A1/zh
Priority to US14/563,799 priority patent/US9461866B2/en
Priority to US15/257,643 priority patent/US9794099B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0086Unequal error protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device, and system for transmitting a physical layer signal. Background technique
  • 60 GHz millimeter wave communication is an emerging short range high speed wireless communication technology defined in the 60 GHz band. Since countries around the world have up to several GHz of uncertified spectrum near the 60 GHz band, the 60 GHz nano-wave technology has enormous communication capacity.
  • WPAN wireless personal area network
  • 60 GHz ⁇ technology which can easily realize high-speed interconnection between mobile devices and wireless display of mobile devices on large-size TVs, displays, and projectors. It can realize ultra-high speed download and synchronization of hotspots, and can provide Internet (Internet) access with Gbps (billions of bits per second), which enhances the user's Internet experience. Because of this, it is gaining worldwide attention.
  • ECMA 387 European Computer Manufactures Association
  • IEEE 802.15.3c Institute of Electrical and Electronics Engineers, USA
  • IEEE 802.11ad is under development.
  • the existing 60 GHz millimeter wave standard defines a method for WPAN physical layer signal transmission, and its typical frame structure is as shown in FIG.
  • the STF short training field
  • CE channel estimation
  • STF is 16 Gal28 sequences and 1 - Gal28 sequence
  • CE is also composed of Shi Gal28 and Shi GM28 sequences, as shown in Figure 2.
  • Both Gal28 and GM28 are Golay sequences of length 128.
  • the physical layer signal is transmitted based on the frame structure, and the receiving end can use the STF to perform burst frame acquisition, frequency offset estimation and compensation, phase offset estimation and compensation, timing error estimation and compensation, etc.; using CE for channel estimation; and then recovering the frame.
  • Header and data block (BLK) information is used for WPAN physical layer signal transmission, and its typical frame structure is as shown in FIG.
  • the STF short training field
  • CE channel estimation
  • STF is 16 Gal28 sequences and 1 - Gal28 sequence
  • CE is also composed of Shi Gal28 and Shi GM28 sequences, as
  • Gal28-based frame capture cannot use multipath energy to improve the robustness of the acquisition, and because of the excessive carrier frequency offset of the 60 GHz system, it can only be captured by differential coherence method.
  • the correlation detector is better under ideal channel. Detection performance. However, under the influence of channel multipath, the performance of the detector will drop significantly.
  • the complex correlation method can be used to counter the carrier phase deviation, under the influence of the large frequency offset, the phase of the rotation is different, which will greatly affect the correlation value, which in turn affects the capture performance. Summary of the invention
  • a technical problem to be solved by the embodiments of the present invention is to provide a method, a device, and a system for transmitting a physical layer signal, which can implement physical layer signal frame capture and improve acquisition performance by a simple acquisition method.
  • an embodiment of the present invention provides a method for sending a physical layer signal, where the method for transmitting a physical layer signal includes:
  • the signal frame includes a single frequency sequence, where the single frequency sequence is used to enable the receiving device to capture the signal frame in the frequency domain according to the single frequency sequence, the single frequency sequence a preset symbol comprising a plurality of single frequencies;
  • the signal frame is transmitted at the physical layer.
  • the embodiment of the present invention further provides a method for receiving a physical layer signal, where the method for receiving a physical layer signal includes:
  • the signal frame of the physical layer signal includes a single frequency sequence
  • the signal frame is captured in the frequency domain according to the single frequency sequence, where the single frequency sequence includes presets of multiple single frequencies symbol.
  • the embodiment of the present invention further provides a device for transmitting a physical layer signal
  • the device for transmitting a physical layer signal includes: a signal frame construction module, configured to construct a signal frame of a physical layer signal, where the signal frame includes a single frequency sequence, where the single frequency sequence is used to enable a receiving device to perform the signal frame in a frequency domain according to the single frequency sequence.
  • the single frequency sequence includes a plurality of preset symbols of a single frequency;
  • a sending module configured to send the signal frame at a physical layer.
  • the embodiment of the present invention further provides a receiving device for a physical layer signal, where the receiving device of the physical layer signal includes:
  • a receiving module configured to receive a signal frame of a physical layer signal
  • a frequency domain frame capture module configured to include a single frequency sequence in a signal frame of a physical layer signal received by the receiving module, where the frequency domain frame capture module captures the signal frame in a frequency domain according to the single frequency sequence
  • the single frequency sequence includes a plurality of preset symbols of a single frequency.
  • the embodiment of the present invention further provides a transmission system of a physical layer signal, which includes a physical layer signal transmitting apparatus and a physical layer signal receiving apparatus as described above.
  • the implementation of the embodiment of the present invention has the following beneficial effects: By constructing a signal frame including a single frequency sequence, the receiving end can be conveniently captured in the frequency domain by the receiving end, which not only overcomes the influence caused by the frequency offset, but also can effectively Increase multi-path energy to improve capture performance. DRAWINGS
  • FIG. 1 is a schematic diagram showing a typical frame structure of a WPAN physical layer signal defined in a 60 GHz millimeter wave standard in the prior art
  • FIG. 2 is a schematic structural diagram of a STF and a CE in a typical signal frame shown in FIG. 1.
  • FIG. 3 is a schematic structural diagram of a physical layer signal transmission system according to an embodiment of the present invention. Signal frame diagram;
  • FIG. 5 is a schematic structural diagram of an STF according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a structure of a physical layer signal transmitting apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a physical layer signal receiving apparatus according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart diagram of a method for transmitting a physical layer signal according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a physical layer signal transmission system according to an embodiment of the present invention.
  • the physical layer signal transmission system proposed by the present invention includes a physical layer signal transmitting device 10 and a physical layer signal receiving device 20, wherein:
  • the transmitting device 10 of the physical layer signal is configured to construct a signal frame of the physical layer signal, the signal frame includes a single frequency sequence, and the single frequency sequence is used for causing the receiving device to pair the signal in the frequency domain according to the single frequency sequence.
  • the frame is captured, the single frequency sequence includes a plurality of preset symbols of a single frequency; and the signal frame is transmitted at a physical layer.
  • the receiving device 20 of the physical layer signal is configured to receive a signal frame of the physical layer signal; when the signal frame of the received physical layer signal includes a single frequency sequence, the signal frame is performed in the frequency domain according to the single frequency sequence. capture.
  • FIG. 6 is a schematic structural diagram of a structure of a physical layer signal transmitting apparatus according to an embodiment of the present invention.
  • the transmitting device of the physical layer signal in this embodiment as shown in the figure includes:
  • a signal frame construction module 110 configured to construct a signal frame of a physical layer signal, where the signal frame includes a single frequency sequence, where the single frequency sequence is used to enable a receiving device to pair the signal frame in a frequency domain according to the single frequency sequence. Capturing, ie frequency domain frame acquisition, is performed, the single frequency sequence comprising a plurality of preset symbols of a single frequency.
  • the signal frame of the physical layer signal in this embodiment may be as shown in FIG. 4, where BLK (block) is a data block, which is data content that the communication actually needs to send.
  • BLK block
  • the difference from the structure of the typical frame mentioned in the background is as follows: (1) The STF used for estimating and compensating the signal frame in the time domain and the frequency domain is different.
  • M is an integer multiple of 128.
  • the single frequency sequence SFS M can be used for frequency domain frame acquisition and IQ imbalance parameter estimation.
  • N Ga 12S will be used for frequency offset estimation and compensation, Phase offset estimation and compensation, timing error estimation and compensation, the subsequent one - Ga 128 will be used for frame delimitation.
  • the SFS M needs to be located before the BLK in the signal frame. As shown in FIG.
  • the SFS M in this embodiment is located in the first part of the STF in the signal frame, so that the receiving device can perform IQ immediately after the frequency domain frame is successfully captured.
  • the estimation and compensation of the imbalance can make the subsequent auxiliary sequence and the valid data part can be compensated.
  • the training data block TBLK like the structure of BLK, is GI+DATA (GI, guard interval, guard interval), except that DATA in TBLK is a preset known symbol used to complete the distortion constellation estimation after equalization. It should be emphasized that TBLK is an optional field and is defined by a field in the header in the signal frame.
  • the nonlinear effects of the power amplifier process are more Small, you can choose to estimate the distortion constellation without training to improve efficiency; while the nonlinear effects of some high-order modulation power amplifier processes are more serious, the port 16QAM (quadature amplitude modulation), 64QAM, generally requires TBLK So that the receiving device estimates the distortion constellation and performs signal demodulation based on the distorted constellation to overcome the nonlinear effects generated by the power amplifier process.
  • the DATA segment of TBLK is used for the estimation of the distortion constellation point caused by the nonlinear influence generated by the power amplifier process, and the modulation method should be the same as the DATA segment of the BLK, that is, the effective data load portion.
  • the specific content of the DATA segment of the TBLK may be different for different modulation modes adopted by the transmitting module 120 for the signal frame before the signal frame is transmitted, but the constructed TBLK shall ensure that all constellation points modulated in the corresponding modulation mode can be The distribution is equal to ensure that the overall estimation performance of the distortion constellation is optimal under a certain training sequence length.
  • the TBLK is located before the BLK in the signal frame, so that the nonlinear suppression module 240 can perform decision demodulation on the subsequent effective BLK according to the estimated distortion constellation, thereby realizing the nonlinearity generated by the power amplifier process of the data signal.
  • the impact is eliminated.
  • the SFS M generally appears before the TBLK because the IQ imbalance can be estimated and compensated for the TBLK, while the STF, CE and header Header sections do not eliminate the nonlinear effects of the power amplifier process. This is mainly because of these
  • the partial sequences are usually BPSK modulated, which has little nonlinear effect due to the power amplifier process, and can not be used against the nonlinear effects generated by the power amplifier process.
  • the sending module 120 is configured to send a physical layer signal based on the signal frame.
  • FIG. 7 is a schematic structural diagram of a device for receiving a physical layer signal according to an embodiment of the present invention.
  • the receiving device of the physical layer signal in the embodiment shown in the figure may at least include:
  • a receiving module 210 configured to receive a signal frame of a physical layer signal
  • the frequency domain frame capture module 220 is configured to: if the signal frame of the physical layer signal received by the receiving module includes a single frequency sequence, the frequency domain frame capturing module 220 pairs the signal frame in the frequency domain according to the single frequency sequence. The capturing is performed, and the single frequency sequence includes a plurality of preset symbols of a single frequency.
  • the signal frame is captured in the frequency domain by using the single frequency sequence SFS M as shown in FIG. 5, that is, frequency domain frame capture. Since the single-frequency sequence is an impact in the frequency domain, the receiving mode of the physical layer signal receiving device 20 using the single-frequency sequence for frame capturing may determine whether the frequency domain peak of the sequence of length M reaches a certain threshold. If it arrives, then we can think that the single-frequency sequence has already appeared, then it is judged that the data frame has arrived, the frequency domain frame is captured successfully, otherwise it is the arrival of countless frames. The details are as follows:
  • r(k) max ⁇ IF (k) (1) 1,1 F (k) (2) I ,..., IF (k) (M) I ⁇
  • the performance of the frequency domain frame acquisition based on SFS M is not lost in the multipath channel. Under the influence of the carrier frequency offset, the singularity of the frequency is still unaffected. Therefore, unlike the conventional solution, the SFS M- based acquisition of the embodiment of the present invention can maintain better performance under the influence of large frequency offset.
  • the receiving device of the physical layer signal may further include:
  • the IQ imbalance estimation module 230 is configured to perform an IQ imbalance estimation according to the received single frequency sequence.
  • the SFS M needs to be located before the BLK in the signal frame. As shown in FIG. 4, the SFS M in this embodiment is located in the first part STF in the signal frame, so that the IQ imbalance estimation module 230 can be in the frequency domain frame capture module 220. Successfully performing the estimation and compensation of the IQ imbalance immediately after capturing the signal frame in the frequency domain, the subsequent auxiliary sequence and the valid data portion can be compensated. Make up
  • the compensation formula can be
  • ⁇ Ul [k] ⁇ is the data load signal received by the receiving module 210
  • ⁇ yJkLyqM ⁇ is the compensated signal.
  • the receiving device of the physical layer signal may further include:
  • the nonlinear suppression module 240 is configured to suppress a nonlinear influence generated by the power amplifier process according to the received training data block.
  • the received signal frame includes a preset training data block TBLK, which is the same as the structure of the BLK, and the DATA in the TBLK is a known symbol, which is used to complete after equalization. Distortion constellation estimation.
  • TBLK is valid in the received signal frame
  • the nonlinear suppression module 240 can effectively suppress the nonlinear influence of the signal frame in the power amplifier process according to TBLK.
  • the following two units may be included:
  • a distortion constellation estimation unit configured to estimate a distortion constellation according to the training data block
  • a decision demodulation unit configured to perform, by using the distortion constellation, a decision demodulation of the physical layer signal.
  • the TBLK is located before the BLK in the signal frame, so that the nonlinear suppression module 240 can perform decision demodulation on the subsequent effective BLK according to the estimated distortion constellation, thereby realizing the nonlinearity generated by the power amplifier process of the data signal.
  • the impact is eliminated.
  • SFS M will always appear in Prior to TBLK, because the IQ imbalance can be estimated and compensated for TBLK, the STF, CE and header Header sections did not eliminate the nonlinear effects of the power amplifier process, mainly because these partial sequences are usually used.
  • BPSK modulation which has little nonlinear effect due to the power amplifier process, can not be used against the nonlinear effects generated by the power amplifier process; on the other hand, the constellation points are scrambled when there is crosstalk between codes, only to eliminate crosstalk between codes.
  • the distortion constellation estimate can then be implemented, so the TBLK portion is set similarly to the subsequent BLK to facilitate channel equalization.
  • FIG. 8 is a schematic flowchart of a method for transmitting a physical layer signal according to an embodiment of the present invention. The process of the embodiment of the present invention as shown in FIG.
  • Step S801 constructing a signal frame of a physical layer signal, where the signal frame includes a single frequency sequence, where the single frequency sequence is used to enable a receiving device to capture the signal frame in a frequency domain according to the single frequency sequence,
  • the single frequency sequence includes a plurality of preset symbols of a single frequency.
  • the signal frame of the physical layer signal in this embodiment may be as shown in FIG. 4.
  • the single frequency sequence SFS 512 can be used for frequency domain frame capture and IQ imbalance parameter estimation.
  • the 14 Ga 128 will be used for frequency offset estimation and compensation, phase offset estimation and compensation, timing error estimation and compensation, and the subsequent 1 - Ga 128 will be used for frame delimitation.
  • the length is 512, including GI of length 64 and DATA of length 448 and modulation mode of 16QAM, except that DATA in TBLK is a preset known symbol for equalization.
  • the distortion constellation estimate is then completed.
  • each constellation point is roughly distributed under 16QAM modulation, that is, each constellation point appears 28 times in this field.
  • the difference compared with 16QAM modulation is only the DATA field in TBLK.
  • the length of TBLK DATA is still 448, but the modulation mode is 64QAM, and the number of occurrences of each constellation point is 7 times. .
  • the modulation mode determines that the nonlinear influence generated by the power amplifier process is not significant, it does not need to be processed.
  • the TBLK training data block may not be set, and the signal frame is not provided. The rest of the portion is still similar to the signal frame in the embodiment under 16QAM and 64Q AM modulation.
  • Step S802 the signal frame is sent at a physical layer.
  • Step S803 the receiving apparatus performs the signal frame in the frequency domain according to the single frequency sequence SFS 512 . Capture. Since the single frequency sequence is an impact in the frequency domain, the receiving apparatus can capture the signal frame in the frequency domain by using the single frequency sequence 8-8 512 to determine whether the frequency domain peak of the sequence of length 512 is Reach a certain threshold. If it arrives, we can think that the single-frequency sequence SFS 512 has already appeared, then it is judged that the data frame has arrived, that is, the frequency domain frame is successfully captured, otherwise no data frame arrives. The details are as follows:
  • r(k) max ⁇ IF (k) (1) I, IF (k) (2) I ,... IF (k) (512) I ⁇
  • Step S804 performing IQ imbalance estimation according to the received single frequency sequence.
  • the receiving device can obtain the IQ imbalance parameter according to the received signal of the SFS 512 sequence by using an estimation algorithm, and the
  • 1 phase imbalance is: A ⁇ : — ⁇ !! ⁇ - ,
  • the receiving device receives the I and Q signals of the SFS 512 sequence.
  • the SFS M needs to be located before the BLK in the signal frame, as shown in FIG. 4, the SFS 51 ⁇ i in the first part of the STF in the signal frame, so that the receiving device can immediately after the frequency domain frame is successfully captured.
  • the compensation formula can be: Cos(A ⁇ ) sin(A ⁇ )
  • Step S805 suppressing the nonlinear influence generated by the power amplifier process according to the training data block TBLK.
  • the method may include: the receiving device estimates a distortion constellation according to the training data block; and performs demodulation of the physical layer signal by using the distortion constellation.
  • the TBLK is located before the BLK in the signal frame, so that the receiving device can perform decision demodulation on the following effective BLK according to the estimated distortion constellation, thereby eliminating the nonlinear influence generated by the power amplifier process of the data signal. .
  • the SFS M will generally appear before the TBLK because the IQ imbalance can be estimated and compensated for the TBLK, while the STF, CE and header Header sections do not eliminate the nonlinear effects of the power amplifier process. This is mainly because of this.
  • Several partial sequences are usually BPSK modulated, which has little nonlinear effect due to the power amplifier process and can be used without the nonlinear effects generated by the power amplifier process.
  • the embodiment of the present invention can facilitate the receiving end to capture the signal frame in the frequency domain, thereby not only overcoming the influence caused by the frequency offset, but also effectively utilizing multipath energy and improving the capture. performance. Further, the IQ imbalance of the physical layer signal can be estimated and compensated according to the single frequency sequence, and the influence of the nonlinear influence generated by the power amplifier process can be eliminated according to the training data block in the signal frame.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Noise Elimination (AREA)

Abstract

本发明实施例公开了一种物理层信号的发送方法、装置和系统,其中所述物理层信号的发送方法包括:构建物理层信号的信号帧,所述信号帧包括一个单频序列,所述单频序列用于使接收装置根据所述单频序列在频域对所述信号帧进行捕获,所述单频序列包括多个单一频率的预设的符号;基于所述信号帧发送物理层信号。采用本发明,可以便于接收端在频域对所述信号帧进行捕获,不仅克服了频偏造成的影响,而且可以有效利用多径能量,提高捕获性能。

Description

一种物理层信号的发送方法、 装置及系统
本申请要求于 2012 年 6 月 7 日提交中国专利局、 申请号为 201210185973.8, 发明名称为 "一种物理层信号的发送方法、 装置及系统" 的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域,尤其涉及一种物理层信号的发送方法、装置及系统。 背景技术
60GHz毫米波通信是一种定义在 60 GHz频段的新兴短距高速无线通信技 术。 由于世界各国在 60GHz频段附近有高达几个 GHz的免认证频谱, 60GHz 亳米波技术拥有巨大的通信容量。采用 60GHz亳米波技术定义 WPAN( wireless personal area network, 无线个域网), 可以方便地实现移动设备间的高速互联 以及移动设备在大尺寸电视、 显示器、 投影仪上的无线显示; 此外, 还可实现 热点地段超高速下载与同步, 并能提供 Gbps (billions of bits per second, 表示 网络交换货款能力级别)的 Internet (互联网)接入, 增强用户的互联网体验。 正因如此, 它正得到全球广泛的关注。 目前, 已经有 ECMA 387 ( European Computer Manufactures Association, 欧洲计算机制造联合会)、 IEEE 802.15.3c ( Institute of Electrical and Electronics Engineers , 美国电气和电子工程师†办会 ) 两个 60GHz标准发布, 且另外一个标准 IEEE 802.11ad正在制定当中。
已有的 60GHz毫米波标准都定义了 WPAN物理层信号发送的方法, 其典 型帧结构如附图 1所示。 其中, STF ( short training field, 短训练域) 为短训 练序列部分, CE ( channel estimation,信道估计)为用于信道估计的辅助序列。 STF为 16个 Gal28序列和 1个- Gal28序列; CE也由士 Gal28与士 GM28序 列组成, 如附图 2所示。 Gal28与 GM28均为长度为 128的 Golay序列。基于 该帧结构进行物理层信号的发送, 接收端可以利用 STF进行突发帧捕获、 频 偏估计与补偿、 相偏估计与补偿、 定时误差估计与补偿等; 利用 CE进行信道 估计; 然后恢复帧头 (Header )及数据块(BLK ) 的信息。
上述现有的物理层信号的发送方法的技术方案中没有充分考虑射频非理 想因素的影响。 对于 60GHz毫米波信号而言, 由于频点高、 带宽大, 射频器 件将不可避免地存在非理想因素的影响。典型地,射频器件存在功放过程产生 的非线性影响、 IQ ( inphase, 同相分量; quadrature, 正交分量)失衡的影响。 尽管针对功放过程产生的非线性影响、 IQ失衡有一些基于盲估计的解决方案, 但对于 60GHz系统而言, 接收机复杂度过高, 且缺乏可实现性。 此外, 基于 Gal28的帧捕获无法利用多径能量提高捕获的鲁棒性, 并将因为 60GHz系统 过大的载波频偏而只能采用差分相干法进行捕获,相关检测器在理想信道下具 有较好的检测性能。 然而, 在信道多径的影响下, 检测器的性能将显著下降。 此外, 虽然采用复相关的方法可以对抗载波相偏, 但在大频偏的影响下, 旋转 的相位不同, 会使相关值大小受到较大的影响, 进而影响捕获性能。 发明内容
本发明实施例所要解决的技术问题在于, 提供一种物理层信号的发送方 法、 装置及系统, 能够通过简单的捕获方法实现物理层信号帧捕获, 提高捕获 性能。
为了解决上述技术问题, 本发明实施例提供了一种物理层信号的发送方 法, 所述物理层信号的发送方法包括:
构建物理层信号的信号帧, 所述信号帧包括一个单频序列, 所述单频序列 用于使接收装置根据所述单频序列在频域对所述信号帧进行捕获,所述单频序 列包括多个单一频率的预设的符号;
在物理层发送所述信号帧。
相应地, 本发明实施例还提供了一种物理层信号的接收方法, 所述物理层 信号的接收方法包括:
接收物理层信号的信号帧;
若接收到的所述物理层信号的信号帧中包括一个单频序列 ,根据所述单频 序列在频域对所述信号帧进行捕获,所述单频序列包括多个单一频率的预设的 符号。
相应地, 本发明实施例还提供了一种物理层信号的发送装置, 所述物理层 信号的发送装置包括: 信号帧构建模块, 用于构建物理层信号的信号帧,所述信号帧包括一个单 频序列,所述单频序列用于使接收装置根据所述单频序列在频域对所述信号帧 进行捕获, 所述单频序列包括多个单一频率的预设的符号;
发送模块, 用于在物理层发送所述信号帧。
相应地, 本发明实施例还提供了一种物理层信号的接收装置, 所述物理层 信号的接收装置包括:
接收模块, 用于接收物理层信号的信号帧;
频域帧捕捉模块,用于若接收模块接收到的物理层信号的信号帧中包括一 个单频序列,所述频域帧捕捉模块根据所述单频序列在频域对所述信号帧进行 捕获, 所述单频序列包括多个单一频率的预设的符号。
相应地, 本发明实施例还提供了一种物理层信号的传输系统, 包括如前文 所述的物理层信号的发送装置和物理层信号的接收装置。
实施本发明实施例,具有如下有益效果: 通过构建了包括一个单频序列的 信号帧,可以便于接收端在频域对所述信号帧进行捕获, 不仅克服了频偏造成 的影响, 而且可以有效利用多径能量, 提高捕获性能。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中 60GHz毫米波标准中定义的 WPAN物理层信号的典型 帧结构示意图;
图 2是图 1所示的典型信号帧中的 STF和 CE的组成结构示意图; 图 3是本发明实施例中一种物理层信号传输系统的组成结构示意图; 图 4是本发明实施例提出的信号帧示意图;
图 5是本发明实施例提出的 STF的结构示意图;
图 6是本发明实施例中一种物理层信号的发送装置的组成结构示意图; 图 Ί是本发明实施例中一种物理层信号的接收装置的组成结构示意图; 图 8是本发明实施例中一种物理层信号的发送方法的流程示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 3是本发明实施例中一种物理层信号传输系统的組成结构示意图。如图 所示本发明提出的物理层信号传输系统包括物理层信号的发送装置 10和物理 层信号的接收装置 20, 其中:
物理层信号的发送装置 10用于构建物理层信号的信号帧, 所述信号帧包 括一个单频序列,所述单频序列用于使接收装置根据所述单频序列在频域对所 述信号帧进行捕获, 所述单频序列包括多个单一频率的预设的符号; 在物理层 发送所述信号帧。
物理层信号的接收装置 20用于接收物理层信号的信号帧; 当接收到的物 理层信号的信号帧中包括一个单频序列时,根据所述单频序列在频域对所述信 号帧进行捕获。
图 6是本发明实施例中一种物理层信号的发送装置的组成结构示意图。如 图所示本实施例中的物理层信号的发送装置包括:
信号帧构建模块 110, 用于构建物理层信号的信号帧, 所述信号帧包括一 个单频序列,所述单频序列用于使接收装置根据所述单频序列在频域对所述信 号帧进行捕获,即频域帧捕获,所述单频序列包括多个单一频率的预设的符号。 具体的, 本实施例中所述物理层信号的信号帧可以如图 4 所示, 其中 BLK ( block ) 为数据块, 是通信实际需要发送的数据内容。 与背景技术中提到的 典型帧的结构区别在于: ( 1 )用于对信号帧在时域及频域进行估计和补偿的 STF不同, 具体可以参考图 5所示, 本实施例中的 STF由一个长度为 M的单 频序列 SFSM、 N 个 Ga128和 1 个- Ga128序列组成, 其中 SFSM序列为 ejn7^,n =l,2,...,M。 一般而言, M为 128的整数倍。 其中单频序列 SFSM可以 用于频域帧捕获及 IQ失衡参数估计。 而 N个 Ga12S将用于频偏估计与补偿、 相偏估计与补偿、 定时误差估计与补偿, 后续的 1个 - Ga128将用于帧定界。 一 般来说 SFSM需要在信号帧中位于 BLK之前, 如图 4所示本实施例中的 SFSM 位于信号帧中的首部分 STF 中, 这样接收装置可以在频域帧捕获成功后立即 执行 IQ失衡的估计及补偿, 可以使后续的辅助序列及有效数据部分都能得到 补偿。
而训练数据块 TBLK, 与 BLK 的结构一样都为 GI+DATA ( GI , guard interval, 保护间隔), 只是 TBLK中的 DATA为预设的已知符号, 用于在均衡 之后完成畸变星座估计。 需要强调的是, TBLK为可选域, 是否出现由在信号 帧中 Header中的某个字段定义。这是因为针对某些低阶调制,如 BPSK( binary phase shift keying,二进制相移键控调制 )、 QPSK ( quadrature phase shift keying, 正交相移键控调制), 功放过程产生的非线性影响较小, 可以选择不用训练估 计出畸变星座以提高效率;而针对某些高阶调制功放过程产生的非线性影响较 为严重, 口 16QAM( quadrature amplitude modulation,正交幅度调制)、 64QAM, 则一般需要 TBLK, 以便接收装置估计失真星座图, 并基于畸变星座完成信号 解调, 以克服功放过程产生的非线性影响。
TBLK的 DATA段用于由功放过程产生的非线性影响引起的畸变星座点估 计, 其调制方式应与 BLK的 DATA段即有效数据负载部分相同。 对于发送模 块 120在发送信号帧之前对信号帧采用的不同调制方式, TBLK的 DATA段的 具体内容可以有所不同,但构建得到的 TBLK应保证在对应调制方式下调制得 到的所有星座点都能够等概的分布,以保证在一定訓练序列长度下畸变星座估 计整体估计性能最佳。 一般来说 TBLK在信号帧中都位于 BLK之前, 这样非 线性抑制模块 240就可以根据估计得到的失真星座图对后面的有效 BLK进行 判决解调, 从而实现对数据信号的功放过程产生的非线性影响进行消除。 而 SFSM一般会出现在 TBLK之前, 因为可以对 TBLK进行 IQ失衡的估计和补 偿, 而 STF、 CE及帧头 Header部分并未对功放过程产生的非线性影响进行消 除,这主要是因为这几个部分序列通常都是采用 BPSK调制, 其受功放过程产 生的非线性影响很小, 可以不用对抗功放过程产生的非线性影响。
发送模块 120, 用于基于所述信号帧发送物理层信号。
图 7是本发明实施例中一种物理层信号的接收装置的组成结构示意图。如 图所示本实施例中的物理层信号的接收装置至少可以包括:
接收模块 210, 用于接收物理层信号的信号帧;
频域帧捕捉模块 220, 用于若接收模块接收到的物理层信号的信号帧中包 括一个单频序列,所述频域帧捕捉模块 220根据所述单频序列在频域对所述信 号帧进行捕获,所述单频序列包括多个单一频率的预设的符号。在本实施例中, 利用如图 5所示的单频序列 SFSM在频域对信号帧进行捕获, 即频域帧捕获。 由于单频序列在频域上为一个冲击, 因此物理层信号的接收装置 20利用单频 序列进行帧捕获的方式可以为判断一段长为 M的序列的频域峰值是否到达一 定的门限。 如果到达, 那么我们可以认为单频序列已经出现, 则判断数据帧已 经到达, 频域帧捕获成功, 否则为无数椐帧到达。 具体如下式所示:
r(k) = max{ I F(k) (1) 1,1 F(k) (2) I ,…, I F(k) (M) I }
|r(k) <7, H。 其中, {F(k)(l),Fw(2), ...,F(k)(M)}为接收模块 210 接收到的信号序列 {r(k + 1), r(k + 2),… , r(k + M) }的 FFT ( Fast Fourier Transform,快速傅里叶变换) 变换结果。 如果上式中 假设成立, 则{1^ + 1),1"(1^ + 2),...,1^ + ^[)}可判断为 单频序列, 从而帧捕获成功。 已有研究表明, 单频序列经过多径串扰之后仍为 单频序列, 信道多径仅引起了固定的相位偏差。 因此基于 SFSM的频域帧捕获 在多径信道下性能不会受到损失。 此外, 在载波频偏的影响下, 频率的单一性 仍不会受到影响, 因此与传统方案不同, 本发明实施例基于 SFSM的捕获可在 大频偏的影响下保持较好性能。
进一步的, 物理层信号的接收装置还可以包括:
IQ失衡估计模块 230,用于根据所述接收到的单频序列进行 IQ失衡估计。 本实施例中所述接收模块 210接收到的单频序列 SFSM序列各符号的相位依次 增加; τ / 2 , 即可以表示为 ejn 2,n = l,2,...,M。 IQ失衡估计模块 230可以根据接 收到的 SFSM序列的信号通过估计算法获取 IQ失衡参数, ξ = \ ^,相 l + Va / b 2 1 - c D+2L D+2L
位失衡为 Δ^ =— arcsm- 其 中 a = ∑ η2Μ , b = ∑ rQ 2[k]
2 Vab
D-H2L
c = -∑ rt[k]r0[k] 0 其中 ]和 [¾分別为接收模块 210接收 SFSM序列的 I k=D+l
路和 Q路信号。 一般来说 SFSM需要在信号帧中位于 BLK之前, 如图 4所示 本实施例中的 SFSM位于信号帧中的首部分 STF中,这样 IQ失衡估计模块 230 可以在频域帧捕捉模块 220成功在频域对所述信号帧进行捕获后立即执行 IQ 失衡的估计及补偿, 可以使后续的辅助序列及有效数据部分都能得到补偿。 补
偿公式可以 为 其中
Figure imgf000008_0001
{Ul[k],uQ[k] }为接收模块 210接收到的数据负载信号, {yJkLyqM}为补偿后 的信号。
可选的, 物理层信号的接收装置还可以包括:
非线性抑制模块 240 , 用于根据所述接收到的训练数据块抑制功放过程产 生的非线性影响。所述接收到的信号帧中还可选的包括一个预设的训练数据块 TBLK, 其与 BLK的结构一样都为 GI+DATA, 只是 TBLK中的 DATA为已知 符号,用于在均衡之后完成畸变星座估计。当接收到的信号帧中 TBLK为有效, 则非线性抑制模块 240可以根据 TBLK对信号帧在功放过程产生的非线性影响 进行有效抑制。 具体可以包括如下两个单元:
失真星座图估计单元, 用于 4艮据所述训练数据块估计失真星座图; 判决解调单元, 用于利用所述失真星座图进行所述物理层信号的判决解 调。
一般来说 TBLK在信号帧中都位于 BLK之前, 这样非线性抑制模块 240 就可以根据估计得到的失真星座图对后面的有效 BLK进行判决解调, 从而实 现对数据信号的功放过程产生的非线性影响进行消除。 而 SFSM—般会出现在 TBLK之前, 因为可以对 TBLK进行 IQ失衡的估计和补偿, 而 STF、 CE及帧 头 Header部分并未对功放过程产生的非线性影响进行消除, 这主要是因为这 几个部分序列通常都是采用 BPSK调制, 其受功放过程产生的非线性影响很 小, 可以不用对抗功放过程产生的非线性影响; 另一方面, 在有码间串扰时星 座点是被打乱的, 只有在消除码间串扰之后才能实施畸变星座估计, 因此 TBLK部分的设置与后续 BLK类似, 以便于完成信道均衡。
图 8是本发明实施例中一种物理层信号的发送方法的流程示意图。如囹所 示本发明实施例的流程包括:
步骤 S801 , 构建物理层信号的信号帧, 所述信号帧包括一个单频序列, 所述单频序列用于使接收装置根据所述单频序列在频域对所述信号帧进行捕 获, 所述单频序列包括多个单一频率的预设的符号。 具体的, 本实施例中所述 物理层信号的信号帧可以如图 4所示, 在 16QAM调制下,本实施例中的 STF 由一个长度为 512的单频序列 SFS512、 14个 Ga128和 1个- Ga128序列组成, 其 中 SFS512序歹' j为 ejn?r/2,n = l,2, ...,512。 其中单频序列 SFS512可以用于频域帧捕 获及 IQ失衡参数估计。 而 14个 Ga128将用于频偏估计与补偿、 相偏估计与补 偿、 定时误差估计与补偿, 后续的 1个- Ga128将用于帧定界。 对于 TBLK及 BLK数据块部分, 其长度均为 512, 均包括长度为 64的 GI 以及长度为 448 且调制方式为 16QAM的 DATA, 只是 TBLK中的 DATA为预设的已知符号, 用于在均衡之后完成畸变星座估计。 对于长度为 448的 TBLK DATA字段, 16QAM调制下每个星座点等概分布, 即每个星座点在该字段出现的次均为 28 次。
在 64QAM调制的实施例中,与 16QAM调制相比的不同之处仅在于 TBLK 中的 DATA字段, 此时 TBLK DATA长度仍为 448 , 但调制方式为 64QAM, 每个星座点出现的次数为 7次。 而对于 BPSK调制下的实施例, 由于其调制方 式决定功放过程产生的非线性影响并不显著, 因此不需要对其进行处理, 为了 提高传输效率, 可以不再设置 TBLK训练数据块, 而信号帧的其它部分仍与 16QAM和 64Q AM调制下的实施例中的信号帧类似。
步骤 S802, 在物理层发送所述信号帧。
步骤 S803 , 接收装置根据所述单频序列 SFS512在频域对所述信号帧进行 捕获。 由于单频序列在频域上为一个冲击, 因此接收装置可以利用单频序列 8?8512在频域对所述信号帧进行捕获的方式可以为判断一段长为 512的序列的 频域峰值是否到达一定的门限。 如果到达, 那么我们可以认为单频序列 SFS512 已经出现,则判断数据帧已经到达,即频域帧捕获成功,否则为无数据帧到达。 具体如下式所示:
r(k) = max{ I F(k) (1) I, I F(k) (2) I ,… I F(k) (512) I }
|r(k) < ^, H 其中, {FWa F^ ^F^ iS)}为接收装置接收到的信号序列 {r(k + l),r(k + 2),…,Γ(k + 512)}的 FFT变换结果。 如果上式中 假设成立, 则 {r(k + l),r(k + 2),...,r(k + 512)}可判断为单频序列, 从而帧捕获成功。 已有研究 表明,单频序列经过多径串扰之后仍为单频序列,信道多径仅引起了固定的相 位偏差。 因此基于 SFSM的频域帧捕获在多径信道下性能不会受到损失。此外, 在载波频偏的影响下, 频率的单一性仍不会受到影响, 因此与传统方案不同, 本发明实施例基于 SFS512的捕获可在大频偏的影响下保持较好性能。 步骤 S804, 根据所述接收到的单频序列进行 IQ失衡估计。 本实施例中接 收装置接收到的单频序列 8?8512序列各符号的相位依次增加; τ / 2, 即可以表 示为 e n /2,n = 1,2,... 512。 接收装置可以根据接收到的 SFS512序列的信号通过 估计算法获取 IQ失衡参数, | = 1 相位失衡为: A^ :—^!!^^^- ,
1 + Va /b 2 ab
D+2L D1-2L D1-2L
其中 a = ∑ r: 2[k] , b = ∑ rQ 2[k] , c = -∑ rt[k]rQ[k]„ 其中 ri[k]和 ¾[k]分别为 k=D 1 k=D 1 k=D 1
接收装置接收到 SFS512序列的 I路和 Q路信号。一般来说 SFSM需要在信号帧 中位于 BLK之前,如图 4所示本实施例中的 SFS51^i于信号帧中的首部分 STF 中, 这样接收装置可以在频域帧捕获成功后立即执行 IQ失衡的估计及补偿, 可以使后续的辅助序列及有效数据部分都能得到补偿。 补偿公式可以为: cos(A^) sin(A^)
1
, 其中 {uJkLuJk] }为接收装置 cos(2A^) 接收到的数据负载信号, {Yl[k], yQ[k] }为补偿后的信号。 步骤 S805 ,根据所述训练数据块 TBLK抑制功放过程产生的非线性影响。 具体可以包括: 接收装置根据所述训练数据块估计失真星座图; 利用所述失真 星座图进行所述物理层信号的判决解调。 一般来说 TBLK在信号帧中都位于 BLK之前, 这样接收装置就可以根据估计得到的失真星座图对后面的有效 BLK进行判决解调, 从而实现对数据信号的功放过程产生的非线性影响进行 消除。 而 SFSM—般会出现在 TBLK之前, 因为可以对 TBLK进行 IQ失衡的 估计和补偿, 而 STF、 CE及帧头 Header部分并未对功放过程产生的非线性影 响进行消除, 这主要是因为这几个部分序列通常都是采用 BPSK调制,其受功 放过程产生的非线性影响很小, 可以不用对抗功放过程产生的非线性影响。
本发明实施例通过构建了包括一个单频序列的信号帧,可以便于接收端在 频域对所述信号帧进行捕获, 不仅克服了频偏造成的影响, 而且可以有效利用 多径能量,提高捕获性能。进而可以根据所述单频序列对所述物理层信号的 IQ 失衡进行估计和补偿,还可以根据信号帧中的训练数据块消除功放过程产生的 非线性影响的影响。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存储记忆体 ( Random Access Memory, RAM )等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种物理层信号的发送方法, 其特征在于, 所述物理层信号的发送方 法包括:
构建物理层信号的信号帧, 所述信号帧包括一个单频序列, 所述单频序列 用于使接收装置根据所述单频序列在频域对所述信号帧进行捕获,所述单频序 列包括多个单一频率的预设的符号;
在物理层发送所述信号帧。
2、 如权利要求 1所述的物理层信号的发送方法, 其特征在于, 所述单频 序列被包含在所述信号帧中的短训练序列部分,所述短训练序列部分用于使接 收装置根据所述短训练序列部分对所述信号帧在时域及频域进行估计和补偿。
3、 如权利要求 1或 2所述的物理层信号的发送方法, 其特征在于, 所述 单频序列中各所述符号的相位依次增加; r / 2。
4、如权利要求 1~3中任一项所述的物理层信号的发送方法,其特征在于, 所述单频序列位于所述信号帧中的数据块之前。
5、如权利要求 1~4中任一项所述的物理层信号的发送方法,其特征在于, 所述信号帧还包括一个预设的训练数据块,所述训练数据块用于使接收装置根 据所述训练数据块抑制功放过程产生的非线性影响。
6、 如权利要求 5所述的物理层信号的发送方法, 其特征在于, 在所述在 物理层发送所述信号帧之前,所述方法还包括将所述信号帧调制到射频,所述 训练数据块经过所述调制后得到的所有星座点为等概分布。
7、 如权利要求 5或 6所述的物理层信号的发送方法, 其特征在于所述训 练数据块位于所述信号帧中的数据块之前。
8、 如权利要求 5~7中任一项所述的物理层信号的发送方法, 其特征在于 所述单频序列位于所述训练数据块之前。
9、 一种物理层信号的接收方法, 其特征在于, 所述物理层信号的接收方 法包括:
接收物理层信号的信号帧;
若接收到的所述物理层信号的信号帧中包括一个单频序列,根据所述单频 序列在频域对所述信号帧进行捕获,所述单频序列包括多个单一频率的预设的 符号。
10、 如权利要求 9所述的物理层信号的接收方法, 其特征在于, 所述单频 序列被包含在所述信号帧中的短训练序列部分,所述短训练序列部分用于对所 述信号帧在时域及频域进行估计和补偿。
11、 如权利要求 9或 10所述的物理层信号的接收方法, 其特征在于, 所 述单频序列中各所述符号的相位依次增加 r / 2 ,在所述根据所述单频序列在频 域对所述信号帧进行捕获之后, 所述物理层信号的接收方法还包括:
根据所述单频序列进行 IQ失衡估计。
12、 如权利要求 9~11中任一项所述的物理层信号的接收方法, 其特征在 于, 所述单频序列位于所述信号帧中的数据块之前。
13、 如权利要求 9~12中任一项所述的物理层信号的接收方法, 其特征在 于,所述包括一个单频序列的信号帧中还包括一个预设的训练数据块,在所述 根据所述单频序列在频域对所述信号帧进行捕获之后,所述物理层信号的接收 方法还包括:
根据所述训练数据块抑制功放过程产生的非线性影响。
14、 如权利要求 13所述的物理层信号的接收方法, 其特征在于, 所述根 据所述训练数据块抑制功放过程产生的非线性影响包括:
根据所述训练数据块估计失真星座图;
利用所述失真星座图进行所述物理层信号的判决解调。
15、 如权利要求 13或 14所述的物理层信号的接收方法, 其特征在于, 所 述训练数据块位于所述信号帧中的数据块之前。
16、如权利要求 13~15中任一项所述的物理层信号的接收方法,其特征在 于, 所述单频序列位于所述训练数据块之前。
17、 一种物理层信号的发送装置, 其特征在于, 所述物理层信号的发送装 置包括:
信号帧构建模块, 用于构建物理层信号的信号帧,所述信号帧包括一个单 频序列,所述单频序列用于使接收装置根据所述单频序列在频域对所述信号帧 进行捕获, 所述单频序列包括多个单一频率的预设的符号;
发送模块, 用于在物理层发送所述信号帧。
18、 如权利要求 17所述的物理层信号的发送装置, 其特征在于, 所述单 频序列被包含在所述接收到的信号帧中的短训练序列部分,所述短训练序列部 分用于使接收装置根据所述短训练序列部分对所述信号帧在时域及频域进行 估计和补偿。
19、 如权利要求 17或 18述的物理层信号的发送装置, 其特征在于, 所述 单频序列中各所述符号的相位依次增加 7Γ / 2。
20、如权利要求 17~19中任一项所述的物理层信号的发送装置,其特征在 于, 所述单频序列位于所述信号帧中的数据块之前。
21、如权利要求 17~20中任一项所述的物理层信号的发送装置,其特征在 于,所述信号帧还包括一个预设的训练数据块, 所述 练数据块用于使接收装 置根据所述训练数据块抑制功放过程产生的非线性影响。
22、 如权利要求 21所述的物理层信号的发送装置, 其特征在于, 所述发 送模块在物理层发送所述信号帧之前先将所述信号帧调制到射频,所述训练数 据块经过调制后得到的所有星座点为等概分布。
23、 如权利要求 21或 22所述的物理层信号的发送装置, 其特征在于, 所 述训练数据块位于所述信号帧中的数据块之前。
24、如权利要求 21~23中任一项所述的物理层信号的发送装置,其特征在 于, 所述单频序列位于所述训练数据块之前。
25、一种物理层信号的接收装置, 其特征在于, 所述物理层信号的接收装 置包括:
接收模块, 用于接收物理层信号的信号帧;
频域帧捕捉模块,用于若接收模块接收到的物理层信号的信号帧中包括一 个单频序列,所述频域帧捕捉模块根据所述单频序列在频域对所述信号帧进行 捕获, 所述单频序列包括多个单一频率的预设的符号。
26、 如权利要求 25所述的物理层信号的接收装置, 其特征在于, 所述单 频序列被包含在所述信号帧中的短训练序列部分,所述短训练序列部分用于对 所述信号帧在时域及频域进行估计和补偿。
27、 如权利要求 25或 26所述的物理层信号的接收装置, 其特征在于, 所 述单频序列中各所述符号的相位依次增加 r / 2 ,所述物理层信号的接收装置还 包括:
IQ失衡估计模块, 用于根据所述单频序列进行 IQ失衡估计。
28、如权利要求 25~27中任一项所述的物理层信号的接收装置,其特征在 于, 所述单频序列位于所述信号帧中的数据块之前。
29、如权利要求 25~28中任一项所述的物理层信号的接收装置,其特征在 于,所述包括一个单频序列的信号帧中还包括一个预设的训练数据块,所述物 理层信号的接收装置还包括:
非线性抑制模块,用于根据所述训练数据块抑制功放过程产生的非线性影 响。
30、 如权利要求 29所述的物理层信号的接收装置, 其特征在于, 所述非 线性抑制模块包括:
失真星座图估计单元, 用于 4艮据所述训练数据块估计失真星座图; 判决解调单元, 用于利用所述失真星座图进行所述物理层信号的判决解 调。
31、 如权利要求 29或 30所述的物理层信号的接收装置, 其特征在于, 所 述训练数据块位于所述信号帧中的数据块之前。
32、如权利要求 29~31中任一项所述的物理层信号的接收装置,其特征在 于, 所述单频序列位于所述训练数据块之前。
33、 一种物理层信号的传输系统, 其特征在于, 包括如权利要求 17~24 中任一项所述的物理层信号的发送装置和如权利要求 25~32 中任一项所述的 物理层信号的接收装置。
PCT/CN2013/075510 2012-06-07 2013-05-10 一种物理层信号的发送方法、装置及系统 WO2013181983A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17157077.3A EP3264653B1 (en) 2012-06-07 2013-05-10 Method, apparatus and system for sending physical layer signal
RU2014153862/08A RU2598992C2 (ru) 2012-06-07 2013-05-10 Способ, устройство и система для отправки сигнала физического уровня
EP13800118.5A EP2849376B1 (en) 2012-06-07 2013-05-10 Method, device and system for transmitting physical layer signal
US14/563,799 US9461866B2 (en) 2012-06-07 2014-12-08 Method, apparatus and system for sending physical layer signal
US15/257,643 US9794099B2 (en) 2012-06-07 2016-09-06 Method, apparatus and system for sending physical layer signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210185973.8A CN102769509B (zh) 2012-06-07 2012-06-07 一种物理层信号的发送方法、装置及系统
CN201210185973.8 2012-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/563,799 Continuation US9461866B2 (en) 2012-06-07 2014-12-08 Method, apparatus and system for sending physical layer signal

Publications (1)

Publication Number Publication Date
WO2013181983A1 true WO2013181983A1 (zh) 2013-12-12

Family

ID=47096771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075510 WO2013181983A1 (zh) 2012-06-07 2013-05-10 一种物理层信号的发送方法、装置及系统

Country Status (5)

Country Link
US (2) US9461866B2 (zh)
EP (2) EP2849376B1 (zh)
CN (1) CN102769509B (zh)
RU (1) RU2598992C2 (zh)
WO (1) WO2013181983A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769509B (zh) 2012-06-07 2015-10-21 华为技术有限公司 一种物理层信号的发送方法、装置及系统
CN103947148B (zh) * 2014-03-28 2017-02-08 华为技术有限公司 一种非连续传输检测装置及方法
GB2537800B (en) * 2014-12-22 2018-05-30 Imagination Tech Ltd IQ imbalance estimator
WO2017024431A1 (zh) * 2015-08-07 2017-02-16 华为技术有限公司 传输数据的方法和设备
US10666961B2 (en) 2016-01-08 2020-05-26 Qualcomm Incorporated Determining media delivery event locations for media transport
CN107566022B (zh) * 2016-06-30 2020-10-23 华为技术有限公司 一种波束训练序列设计方法及装置
WO2019157747A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 数据的传输方法和装置
CN109120568B (zh) * 2018-08-31 2020-04-03 北京邮电大学 基于聚类的频率偏移确定、消除方法、装置及电子设备
WO2020236236A2 (en) * 2019-04-24 2020-11-26 Northeastern University Deep learning-based polymorphic platform
CN110266623B (zh) * 2019-06-05 2020-07-03 北京邮电大学 一种基于5g的低轨卫星通信系统载波同步方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101690294A (zh) * 2007-03-13 2010-03-31 美商亚瑟罗斯通讯股份有限公司 在多信道无线通信系统中估计时序与频率信息
CN101997803A (zh) * 2009-08-20 2011-03-30 清华大学 数字信号的块传输方法及系统
CN102468952A (zh) * 2010-11-08 2012-05-23 中兴通讯股份有限公司 一种超高吞吐量短训练域处理方法和系统
CN102769509A (zh) * 2012-06-07 2012-11-07 华为技术有限公司 一种物理层信号的发送方法、装置及系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU467480A1 (ru) * 1973-03-05 1975-04-15 Одесский электротехнический институт связи Устройство дл защиты от сосредоточенных помех при приеме широкополосного сигнала
US20030156624A1 (en) * 2002-02-08 2003-08-21 Koslar Signal transmission method with frequency and time spreading
US7362821B1 (en) * 2002-05-22 2008-04-22 Marvel International Ltd. Method and apparatus for amplifier linearization using adaptive predistortion
US7085330B1 (en) * 2002-02-15 2006-08-01 Marvell International Ltd. Method and apparatus for amplifier linearization using adaptive predistortion
TWI248723B (en) * 2002-02-22 2006-02-01 Accton Technology Corp Impedance match circuit for rejecting an image signal via a microstrip structure
WO2004075469A2 (en) * 2003-02-19 2004-09-02 Dotcast Inc. Joint, adaptive control of equalization, synchronization, and gain in a digital communications receiver
JP4269855B2 (ja) * 2003-09-05 2009-05-27 ソニー株式会社 データ受信装置
JP4558425B2 (ja) * 2003-09-08 2010-10-06 古河電気工業株式会社 ラマン増幅器、ラマン増幅器に使用するための励起源、光信号を増幅するための方法
US8527003B2 (en) * 2004-11-10 2013-09-03 Newlans, Inc. System and apparatus for high data rate wireless communications
US7414728B2 (en) * 2004-12-23 2008-08-19 Massachusetts Institute Of Technology Reconfigurable polarization independent interferometers and methods of stabilization
GB2434725B (en) * 2006-01-26 2008-06-04 Toshiba Res Europ Ltd Methods for data transmission
US8223625B2 (en) 2006-08-23 2012-07-17 Qualcomm, Incorporated Acquisition in frequency division multiple access systems
WO2008052026A2 (en) * 2006-10-24 2008-05-02 Qualcomm Incorporated Acquisition pilots for wireless communication systems
EP1968205A1 (en) 2007-02-28 2008-09-10 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Signal quality determination in cable networks
US7903970B2 (en) * 2007-03-30 2011-03-08 Georgia Tech Research Corporation Optical network evaluation systems and methods
US20090190633A1 (en) * 2008-01-24 2009-07-30 Smith Francis J Interference mitigation of signals within the same frequency spectrum
KR101670517B1 (ko) * 2009-11-26 2016-10-31 엘지전자 주식회사 반송파 집성 시스템에서 상향링크의 교차 반송파 스케줄링 방법 및 단말
KR101789814B1 (ko) * 2010-03-04 2017-10-26 엘지전자 주식회사 반송파 집성 시스템에서 단말의 제어정보 디코딩 방법 및 단말
KR101771255B1 (ko) * 2010-03-30 2017-08-25 엘지전자 주식회사 다중 반송파 시스템에서 반송파 지시 필드 설정 방법
WO2012013218A1 (en) * 2010-07-27 2012-02-02 Commissariat à l'énergie atomique et aux énergies alternatives Method for predistortion in a communication system
JP5946838B2 (ja) * 2010-11-11 2016-07-06 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて上りリンク制御情報の送受信方法及び装置
CN102227098B (zh) * 2011-06-21 2014-02-26 山东大学 一种多模mimo-scfde自适应传输系统频域承载点选取方法
WO2012119364A1 (en) * 2011-07-27 2012-09-13 Huawei Technologies Co., Ltd. Method and apparatus for determining an optical signal-to-noise ratio (OSNR) penalty

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101690294A (zh) * 2007-03-13 2010-03-31 美商亚瑟罗斯通讯股份有限公司 在多信道无线通信系统中估计时序与频率信息
CN101997803A (zh) * 2009-08-20 2011-03-30 清华大学 数字信号的块传输方法及系统
CN102468952A (zh) * 2010-11-08 2012-05-23 中兴通讯股份有限公司 一种超高吞吐量短训练域处理方法和系统
CN102769509A (zh) * 2012-06-07 2012-11-07 华为技术有限公司 一种物理层信号的发送方法、装置及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2849376A4 *
YE, XIAOYONG: "Research on Synchronization for OFDM", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, CHINA MASTER'S THESES FULL-TEXT DATABASE, 18 May 2007 (2007-05-18), pages 41 - 43, XP008174698 *

Also Published As

Publication number Publication date
US9461866B2 (en) 2016-10-04
US20150092724A1 (en) 2015-04-02
CN102769509A (zh) 2012-11-07
EP2849376A1 (en) 2015-03-18
EP2849376A4 (en) 2015-04-22
EP3264653B1 (en) 2018-11-14
RU2014153862A (ru) 2016-08-10
US9794099B2 (en) 2017-10-17
RU2598992C2 (ru) 2016-10-10
EP2849376B1 (en) 2017-05-03
US20160373282A1 (en) 2016-12-22
EP3264653A1 (en) 2018-01-03
CN102769509B (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2013181983A1 (zh) 一种物理层信号的发送方法、装置及系统
US7139321B2 (en) Channel estimation for wireless OFDM systems
TW201031155A (en) I/Q imbalance estimation using synchronization signals in LTE systems
KR101035218B1 (ko) Mimo ofdm 에 있어서의 클럭 정정을 위한 방법 및 장치
KR101278025B1 (ko) 직교 주파수 분할 다중화 방식의 i/q 불균형 보상을 위한 수신 장치 및 그 수신 장치에서 수행되는 i/q 불균형 보상 방법
US7844018B2 (en) Methods and apparatuses for reducing inter-carrier interference in an OFDM system
CN106712826B (zh) 数据传输方法和装置
CN104901777A (zh) 一种用于太赫兹无线网络的物理层架构
Thaj et al. OTFS modem SDR implementation and experimental study of receiver impairment effects
CN111342957B (zh) 基于y-00协议的co-ofdm密钥分发方法和装置
US20200022024A1 (en) Frame transmission method for wireless local area network and wireless local area network apparatus
US7529306B2 (en) Estimation of asymmetries between inphase and quadrature branches in multicarrier transmission systems
US7606331B2 (en) Frequency offset compensation in radio receiver
Ozan et al. Time precoding enabled non-orthogonal frequency division multiplexing
Xu et al. Blind joint estimation of carrier frequency offset and I/Q imbalance in OFDM systems
Kumar et al. Blind symbol timing offset estimation for offset‐QPSK modulated signals
Chiu et al. Estimation scheme of the receiver IQ imbalance under carrier frequency offset in communication system
Zhuang et al. Joint estimation of carrier frequency offset and in-phase/quadrature-phase imbalances for orthogonal frequency division multiplexing systems
Wu et al. Physical layer security of OFDM communication using artificial pilot noise
Teng et al. Implementation of a novel M-QAM OFDM timing synchronization method with FSO RoF system
Li et al. Transceiver design for an uplink asynchronous NOMA using MSK-type signals
Van Thillo et al. Training sequence versus cyclic prefix for cpm with frequency domain equalization
KR101088916B1 (ko) Ofdma 방식에서 다운 링크의 통신 채널을 추정하는 방법
Rykaczewski et al. Multimode detector and I/Q imbalance compensator in a software defined radio
KR100608916B1 (ko) 직교주파수분할다중방식 무선랜에서 무선 채널 보상 방법및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013800118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013800118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201500068

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2014153862

Country of ref document: RU

Kind code of ref document: A