JP4558425B2 - ラマン増幅器、ラマン増幅器に使用するための励起源、光信号を増幅するための方法 - Google Patents

ラマン増幅器、ラマン増幅器に使用するための励起源、光信号を増幅するための方法 Download PDF

Info

Publication number
JP4558425B2
JP4558425B2 JP2004260952A JP2004260952A JP4558425B2 JP 4558425 B2 JP4558425 B2 JP 4558425B2 JP 2004260952 A JP2004260952 A JP 2004260952A JP 2004260952 A JP2004260952 A JP 2004260952A JP 4558425 B2 JP4558425 B2 JP 4558425B2
Authority
JP
Japan
Prior art keywords
excitation
sbs
dominant
light
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004260952A
Other languages
English (en)
Other versions
JP2005099795A (ja
Inventor
芳博 江森
ブロマージ ジェイク
イー.ネルソン リン
周 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JP2005099795A publication Critical patent/JP2005099795A/ja
Application granted granted Critical
Publication of JP4558425B2 publication Critical patent/JP4558425B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems

Description

本発明は、ラマン増幅器、ラマン増幅器に使用するための光励起、及び、様々な光媒体内で光信号を増幅するための方法に関する。特に、本発明は、ラマン増幅器および励起に関し、また、ラマン増幅器用の励起を使用することにより、システム性能要件を満たすと考えられる所定の大きさを超えない相対強度ノイズ(RIN)を生じさせる増幅ファイバ内で形成される誘導ブリュアン散乱(SBS)の許容範囲を特定する方法に関する。
ラマン増幅器および光学システムを使用する技術的背景および動機の多くは、米国特許第6,292,288号に記載されている。この米国特許の全内容は、これを参照することにより、本願に組み込まれる。
システムレベルの観点からは、高ビットレートシステムを低コストで提供することが望ましい。しかし、高ビットレートシステムに対応するためには、適切なビット誤り率(BER)を与えるため、受信器において高い信号対雑音比(SNR)が必要である。SNRに関しては、信号源からの入力パワーを増大することにより、信号レベルを増大しても良い。しかし、所定の大きさを超えるまで信号パワーを増大させる利点は、光ファイバ自体の非線形効果により消耗されてしまう可能性がある(すなわち、パワーペナルティ)。すなわち、所定のBERにおいて、パワーペナルティは、非線形効果によって加えられるノイズまたは混信が存在しない場合に比べて同じBERを生じるために余分に必要な光パワーである。したがって、光通信において信号パワーの大きさを増大させることは、最大性能を得るための全体的なシステム解析の単なる一態様である。
非線形効果の限界の解決を補助するために、ファイバラマン増幅器が有用となってきている。ラマン増幅器は、リピータが必要とされる距離を増大することにより再生リピータのためのコストを低減するため、システムの観点から有益である。リピータ間の距離が増大すると、システム内におけるリピータの総数が減少し、そのため、コストを低減して、システムの平均故障間隔を長くすることができる。
従来、励起光の伝搬方向が信号光の伝搬方向と反対である後方励起型ラマン増幅器が一般に使用されてきた。このようにすると、励起光の変化は、利益を害して信号の特定の部分を過大増幅せず、あるいは、過小増幅せず、それにより、比較的不利益とならない増幅率を信号のエンベロープに与える。
例えば非線形効果およびASEノイズに起因する悪化を抑制するため、後方励起型増幅器に対し、同じ利点を有するものとして、前方励起型ラマン増幅器も知られている。しかし、当業界は、一般に、幾つかの問題を理由に、前方励起型ラマン増幅器を採用してこなかった。第1に、励起相対強度ノイズ(RIN)が信号光へ伝わることにより余計なノイズが存在する。後方励起とは異なり、前方励起型ラマン増幅器においては、励起強度の変化が信号光に伝わる。この問題に対処するため、低RINレーザが開発された。しかし、低RIN励起レーザは、後に、ラマン増幅システムで使用される際に励起光の誘導ブリュアン散乱(SBS)を生じるという新たな問題を引き起こすことが分かった。その結果、励起がSBSを生じる際に、ファイバ内で励起RINが低下する(すなわち、ノイズの大きさが増大する)。励起RINが大きくなると、励起と信号との間でRINが伝わることに起因して、増幅された信号には更に大きなノイズが含まれ、それにより、システム性能が悪化する。そのうえ、特に大きなレベルでSBSが存在することは、励起パワーの一部が失われて増幅効率の低下を招くことを意味する。
前方励起システムにおけるこれらの限界により、従来の設計理念は、光通信システムでの使用において励起SBSが許容されないことを決定付けている。前方励起型システムを使用するための従来の方法は、励起反射パワーを増幅ファイバ内に励起される励起光のレイリー散乱パワーとほぼ一致させることにより、励起SBSを存在させないようにしている。さらに、レイリー散乱励起パワーレベルは、SBSの存在とは無関係に存在する。
SBSおよびレイリー散乱の両方とも励起反射パワーの成分であるため、励起反射パワーがレイリー散乱レベルとほぼ一致するように設定されると、SBSが効果的に無くなる。
低RIN励起レーザダイオードは、一般に、細い縦形態のスペクトル線幅を有しており、そのため、従来の広い線幅の励起LDよりも大きいSBSがファイバ内に生じる。前と同じように、従来の設計手法ではSBSがゼロに設定されるため、低RIN励起LDをそのフルパワー能力で使用することができない。したがって、SBSが全く問題とされていなかった場合に比べて、低RIN励起LDの有効性が低下してしまっている。
従来、Ohki等による“共伝搬ラマン励起レーザでのファイバ伝送後における相対強度ノイズの増大”(OAA2002,論文PD7)は、ファイバ増幅器を通過した後にSBSに起因して励起RINが増大することを明らかにしたが、それにもかかわらず、RIN増大と励起SBSとの間の量的な関係は確認されなかった。
低RINとSBSとの間の関連を認識した後、本発明者等は、従来の前方励起型ラマン増幅器(または、同方向励起型ラマン増幅器)に関するシステム解析により、SBS、RINとシステム性能との間でより良い関係が分かった場合には、ある程度の量のSBSを許容できることを認識した。さらに、本発明者等は、RINとSBSとの間の正確な関係の源を評価しないと、前方励起型ラマン増幅器または同方向励起型ラマン増幅器のための励起LDを選択することができないばかりか、最大のシステム性能を得ることができず、すなわち、LDの励起パワー能力を十分に引き出すことができないことを認識した。
SBSを測定するための従来の技術を図1に示す。励起2は、モニタ/カプラ8を介して、光励起パワーをファイバ9に供給する。カプラ8は、入力モニタとして機能する光パワー計測器6に対して所定の大きさの励起パワー(例えば、1%)を供給するため、例えば、1%カップリングであっても良い。その後、光パワー計測器及び/又は光学スペクトル分析器4であっても良い反射モニタによってパワー反射率が監視される。反射パワーは、モニタ/カプラ8を通過して、光パワー計測器または光学スペクトル分析器4に対して供給される。光学スペクトル分析器4を使用できる場合には、各レイリー後方散乱ピークの長い方の側に0.1nmで存在するSBSを、反射光から分離することができる。前述したように、従来の手法においては、励起SBSを許容できない。また、励起SBSが存在しないように、従来の監視技術は、励起反射パワーがレイリー散乱パワーとほぼ同じレベルに設定されるようにする。
SBSの検出の選択と整合性がとれるのは、システムでの使用において許容されるLDを選択するためのパワーペナルティの使用である。一般に、パワーペナルティ仕様が設定されるとともに、適したLDを選択するための基準として、全入力パワーに対する全反射パワーの比率である関連するパワー反射率(PRR)が使用される。パワーペナルティとPRRとの間の関係がこれまで明らかにされてこなかったため、許容される範囲の低PRR(例えば、レイリー後方散乱によって引き起こされる程度と同じ程度のPRR)を与えるLDモジュールが選択されてきた。LDモジュールは高価であるため、 “許容される” 各部品のコストは、製造の歩留りが減少するにつれて増大する。同様に、より多くのLDが、選択基準よりも高いPRRを生じる場合、許容されないと判断される。
本発明の1つの目的は、同方向励起型(または前方励起型)ラマンシステムでSBSを与えない従来の設計手法が、そのようなシステムを構成するための健全な基準であるか否かを更に正確に判定することである。
本発明の別の目的は、同方向励起型(または前方励起型)ラマン増幅システムにおけるSBSの大きさを監視する従来の手法の限界に対処して、システムで使用できる光励起を更に広い範囲で選択できるようにすることである。さらに、システム性能を低下させることなくSBSの適切なレベルを選択することにより、システム性能を向上させることができる。
これらの目的、従来の方法およびシステムにおける他の欠陥は、本発明によって対処される。本発明の特徴は、(その場で、および、製造中における部品のスクリーニング中に)マルチモード励起レーザにおける励起SBSを測定するとともに、その測定結果を判断して励起SBSの許容範囲を特定する新たな方法を提供することである。SBSの大きさを正確に測定することにより、ある許容範囲の大きさの励起SBSを有するLDを、光通信システムにおいて使用できるようになる。
さらに、本発明に係る方法、励起、ラマン増幅器は、ラマン増幅励起によって形成される誘導ブリュアン散乱(SBS)の大きさを制御して、SBSに起因して受信器により受けられるパワーペナルティを調整する。マルチモード半導体レーザは、所定の波長に優位モードを有するマルチモード励起光を形成する。マルチモード励起光の少なくとも一部は、前方励起方向でラマンゲイン媒体に対して接続される。反射センサは、前記ラマンゲイン媒体から少なくとも部分的に反射された反射光を監視する。反射センサは、前記反射光の優位SBSピークの光パワーを通過させるが、前記優位SBSピークから波長がオフセットされた他のSBSピークを抑制する通過域特性を有している。コントローラは、前記マルチモード励起光のパワーレベルに対する前記優位SBSピークにおける前記光パワーの比率である加重モード反射率を算出し、算出結果に基づいて励起モジュールを制御する。
本発明の更なる完全な認識および本発明に伴う利点の多くは、以下の詳細な説明を参照して添付の図面と共に考慮することによって容易に得られ、また、本発明を更に良く理解できよう。
図面を参照すると、図2は、適切な励起を選択してSBSレベルを正確に判定するための本発明によって使用することができる測定機構のブロック図である。励起源211は、例えば“光反射側に回折格子を有する半導体レーザ装置”と題された米国特許第6,614,823号に記載されるような1443nm iGM(インナー・グレーティング・スタビライズド・マルチモード・励起レーザ)である。なお、この米国特許の全内容は、これを参照することにより本願に組み込まれる。iGMレーザは、内蔵アイソレータを有する低RIN励起レーザである。励起211の出力は、10メートルの偏光維持ファイバから成る外部減偏光子212に供給される。外部減偏光子212の出力は、一定の励起出力パワー下で増幅ファイバ24(この場合は、高非線形ファイバ)への入力パワーを変更(手動あるいはコンピュータ制御下で変更)して励起レーザの同じ動作状態(例えば、レーザ電流および温度)を維持するために使用される可変光減衰器213に供給される。
分散フィードバックレーザ23からは、光信号が1540nmで供給される。この信号は、その後、任意の偏光制御器(3つのリングとして図示されており、出力ファイバが偏光維持ファイバである場合には任意である)を通過する。その後、この出力は、変調器25に対して供給される。この場合、変調器25は、ニオブ酸リチウム型の変調器であり、したがって、入力される偏光に対して感度が良い。DFBレーザ23から供給された信号は、RINが−150dB/Hzよりも小さく、ビット誤り率測定のための信頼できるデータソースを与えるために231−1疑似ランダム・ビットストリームの10.7Gb/sNRZフォーマットデータによって変調される。変調器24の出力は、信号光と励起光とを組み合わせるWDMカプラ22に通される。WDMカプラ22の出力は、ファイバ24を通過した後、他のWDMカプラ26を経由して出力される。高非線形ファイバ24は、長さが約3.7キロメートルであり、損失が0.8dB/kmであり、1550nmでの分散が1.83ps/nm/kmである。そのゼロ分散波長は1400nmよりも短い。
WDMカプラ26からの光の一部は、電気光学スペクトル分析器または光学スペクトル分析器227に供給され、残りの部分は、帯域通過フィルタ216と、可変光減衰器217と、10%カプラ218とに対して供給される。信号波長に中心付けられた帯域通過フィルタ216は、信号の全スペクトルエネルギを含む変調信号の帯域幅をカバーできる十分な帯域幅(例えば、0.56nm)を有しているが、依然として、検出帯域幅からノイズを除去する。フィルタ216の出力は、システムの感度を下げるために設けられた可変光減衰器217によってスケーリングされる。プリアンプ(前置増幅器)への入力パワーを減らすと、増幅器の後の光学的SNRが悪化する。このようにBER対光SNRを測定することができる。さらに、この構成により、所定のBERを与える光SNRを確認することができ、これを受信器感度における基準として使用することができる。信号が余分なノイズを含む場合には、同じBERを得るために、良好な光SNR(または、更に大きなパワー)が必要となる。このパワーの増大がパワーペナルティである。再び、所定のBERを得るためにどの程度のパワーが必要かを確認するため、減衰器217が使用される。
減衰器217を経て、10%カプラ218を通過した後、出力パワーが光パワー計測器3(要素219)によって測定される。カプラ218からの光の10%が、要素219として示される光パワー計測器3に対して供給される。パワーの残りの90%は、一次増幅器221に供給された後、帯域通過フィルタ222に通され、その後、二次増幅器223に供給された後、帯域通過フィルタ224に通され、受信器225によって受信される。図示しないが、入力信号のビット誤り率を監視するため、受信器225には、ビット誤り率ユニットが接続されている。一次フィルタ222は、増幅器221によって供給される広帯域ノイズを抑える1.24nmファブリ・ペローフィルタである。同様に、フィルタ224は、受信器225での検出前に二次増幅器223のスプリアス出力およびノイズを抑制する。受信器225の出力部は、変調器25によって形成されるデータストリームと比べてビット誤り率を検出するBER測定ユニットに接続されている。
送出および反射された励起パワーは、パワー計測器214とパワー計測器215によって監視される。OSA227は、SBSピークからレイリー散乱ピークを分離することができる分解能帯域幅(例えば0.01nm)を使用する。同様に、検出帯域幅は、OSA227がレイリー散乱ピークまたは他のSBSピークからの隣接エネルギによって汚染されることなく優位SBSピークの全パワーを観察できる程度に十分小さい。また、この構成により、反射パワーにおける“特性”の測定が可能になり、また、後述するように、PRRの代替的測定が可能になる。SBSピークのエネルギの分離は、有用な測定である。これは、SBSに起因するRINの増大がSNR低下の主な原因だからである。なお、励起波長での分散が小さく且つファイバの長さが短いため、モード分割に起因するRINの増大が抑制されると考えられる。
また、図2には、モニタ/カプラ28によって分析して光パワー計測器1(要素214)および光学スペクトル分析器227の両方によって観察するために入力パワーの2%を供給する2%モニタカプラ29が示されている。同様に、高非線形のファイバ24からの反射パワーは、光パワー計測器2(要素215)および光学スペクトル分析器227での観察のため、光カプラ29と光カプラ210を経由して供給される。
図3は、励起RINスペクトル(RINの単位はdB/Hz)と周波数(MHz)との関係を示すグラフである。このRINスペクトルは、励起反射率が−19.3dBから−27.5dBまでの間(約2dBずつ増加)で増幅器ファイバに励起光を通過させた後に測定される。これらの測定結果は、他のものがRIN増大と励起SBSとの間の定量的な関係を、以前に評価又は確認していなかったため、重要である。図2のブロック図を参照すると、可変光減衰器213は、SBSのレベルを変えるため、2dBずつの増加で変えられた。その後、光学スペクトル分析器227を用いてスペクトルが捕捉された。以上のように、この測定機構の励起信号RIN伝達関数の−3dBコーナ周波数は、1GHz未満のところにあるため、この特定の分析においては、この周波数範囲だけに焦点が合わされる。RINの大きさはパワー反射によって決まるが、スペクトルパターンは基本的に同じである。図3からは、RINの増大が励起SBSに起因している場合、励起反射率が増大するにつれてRINのレベルが増大するということが分かる。
図4は、累積RIN(dB)と励起反射率(PRR)(dB)との間の関係を示すグラフである。RINは、スペクトルデータをノイズパワー量に変換するために累積されている。したがって、図3に示される各励起RINスペクトル毎に、各曲線の下側の面積が最大1GHzまで積算され且つ励起反射率の関数としてプロットされている。
図4のプロットにおいて、ファイバの前のRINレベルの測定結果は−56dBであった。これは、送出された励起光においては典型的な値である。しかし、図示のように、ノイズの大きさは、励起反射率が大きくなるにしたがって単調に増加している。反射率が約8dB増大すると、ノイズが約20dB増加するのが分かる。この場合、ノイズパワーのこのような増加は、SBSによるものである。レイリー後方散乱(約−30dB)が、得られる励起反射率の大きさの下限を定める。
図5は、様々な励起反射率に応じた10-9のビット誤り率で観察される“パワーペナルティ”を示すグラフである。さらに、図5は、4つの異なる状態を示している。この場合、状態1〜3は、励起レーザ動作状態(例えば、電流および温度の変化)と、SBSが観察されない4番目の状態(すなわち、反射パワーは、レイリー後方散乱のみに起因するエネルギから成る)との間の差を示している。
前方励起ラマン増幅器において、励起RINの一部は、増幅された信号へと移される。そのため、励起RINが大きければ大きいほど、増幅された信号におけるRINも大きくなり、したがって、受信器によって受けられるパワーペナルティも大きくなる。この場合、パワーペナルティは、ラマンゲインが全く無い場合と比較した10-9BERでの受信パワー増として規定される。図示のように、パワーペナルティは、一般に、SBSまたはラマンゲインが増大するにつれて増大する。
しかし、従来の測定基準(すなわちPRR)を使用してこのデータを観察すると、10.2dBのラマンゲインでは、状態No.1におけるPRRが状態No.2におけるそれよりも大きいにもかかわらず、状態No.1におけるパワーペナルティが状態No.2におけるそれよりも小さいことが分かった(図5の円で囲まれた2つの点を参照)。所定のラマンゲインにおいて励起反射率が大きい場合には、それ以上にパワーペナルティが大きいと考えられるため、このデータは、従来の理論と矛盾している。
本発明者等によってなされたこれらの観察に基づき、本発明者等は、ラマンシステムにおいて許容されるパワーペナルティレベルを従来の測定基準PRRを使用して設定するという設計手法に欠陥があることを見出し、所定のLDにおいて最大のシステム性能が得られない問題の根源がそこにあることに気付いた。
図6は、同じ3つの状態における、反射励起パワーと波長との間の関係を示すグラフである。さらに、各グラフは、状態1〜3におけるSBSスペクトルの差を示している。それぞれの場合において、ピークSBSパワーは、3つの状態全てにおいて同じであった。しかし、サイドモードSBSパワーは異なっている(すなわち、全SBS反射パワーが異なっていることが分かった)。図6から分かるように、ピークパワーとサイドモードピークパワーとの間の差は3.5dBであるが、状態2および状態3においては、その差が17.5dBおよび15dBであるという観察結果が得られている。
3つの異なる状態における各グラフにおいて、分解能帯域幅は、0.01nmに設定され、観察されたスペクトルを通過した。このようにして、反射励起パワーを図6に示される波長範囲にわたって測定することができる。各スペクトルは、反射励起パワーの様々なモードにおける特徴的な二重ピーク“サイン” を示した。各ピーク対(各ピークが“特性”である)においては、最も右側のピーク(*を用いて特定されている)がSBSピークであり、一方、星印が無いピークがレイリー散乱成分(すなわち、励起光のピーク波長)を表わしている。同じように、図6は、LD励起動作状態間で実質的に異なり得るピークSBSとサイドモードピークとの間の動作状態の差を示す。
図7は、全励起入力パワーおよび全反射パワーにおける各スペクトルを示している。2つのスペクトルには、ピーク入力パワーモードおよびピーク優位SBS特性が示されている。更に、入力スペクトルの異なる各モードは、簡単に識別することができる(4つのモードを示す)。この場合、各モードにおける全パワーは、全モードパワーが検出器によって観察されるそれと同じになるように設定された適当な帯域幅を持つ光学スペクトル分析器を用いて測定される。反射パワーにおけるスペクトルに示されるように、異なるモードにおいては、特徴的な二重ピークが観察される。この場合、左側のピークはレイリー後方散乱に起因しており、最も右側のピークはSBSに起因している。
従来のPRRの測定において、PRRは、全入力パワーに対する全反射パワーの比に等しい。しかし、本発明者等は、この手法がSBS−RIN現象を十分に特徴付けないことを認識した。これは、この手法が反射スペクトル内におけるSBSパワー分布を完全に無視しているからである。本発明者等は、反射スペクトルの特性検出を使用することによってこの欠落に対処し、特定のSBS特性を分離して測定できるようにする。したがって、ここでは、加重モード反射率(WMRR)という新たな定義を定め、SBSおよびRINをより正確な方法で与えて特徴付ける。WMRRは、ピーク入力パワー/全入力パワーと優位SBSパワー/入力ピークパワーとの積に等しい。言い換えると、WMRRは、優位SBSパワー/全入力パワーの比率を与える。すなわち、WMRRの分子は、全モードパワーが検出器で受けられる時に適当な帯域幅条件で光学スペクトル分析器によって測定される優位SBSモードの全パワーである。
この修正された定義を使用して、WMRRは、図8のグラフにおいて、従来の定義PRRと比較される。図8は、10-9ビット誤り率でのパワーペナルティと励起反射率(またはWMRR)との間の関係を示している。図示するように、測定基準としてWMRRを使用するデータは、予測しているパワーペナルティに対して非常に良好である。この場合、−19dB未満(すなわち、更にマイナス)におけるWMRRは、0.5dB未満のパワーペナルティに対応している。そのうえ、データは、(従来の測定を用いた場合のように)励起反射率がより大きい値の場合において、その励起反射率がより小さく対応するパワーペナルティを有するという状態が現れないという点で一貫している。
図9は、WMRRとPRRとを比較する他のグラフである。このグラフは、累積RINとPRR(WMRR)との間の関係を示している。図示のように、WMRRは、データの線形で単調且つ(直線に沿った)良好な集積性から明らかなように、PRRよりも良いこの関係を予測している。励起反射率が大きければ大きいほどRINも大きくなるが、WMRRにおいては−16.5dBと−17dBとの間の差が非常に小さく、PRRにおいてはそのようになっていない。このようにしてデータを与え且つ反射パワーの特性を分離することにより、本発明者等は、優位SBSと2番目に大きいSBSとの間のパワー率が励起レーザの様々な動作状態間で異なることを認識することができた。したがって、WMRRという修正された定義を使用することにより、矛盾のおそれが無く、更なるデータを前のデータと容易に組み合わせることができる。これに対し、PRRの従来の技術は、これと同じ確実性を与えない。
2つの定義間の反射率の差が反射率の小さい範囲で大きくなる理由は、全反射パワーにおいてレイリー後方散乱が優位となり、SBSのパワーが全反射パワーと比べて小さくなるからである。
図8および図9に示す結果は、非常に重要性が大きい。性能を測定するための従来の測定基準(PRR)は、主として散乱されたデータを与えるため、これらのプロットに基づいてシステムで使用する励起LDを選択する基準が設定される場合には、多くの良好なLDが許容されないと考えられ、それにより、励起LDにおける歩留りが低下する。一方、提案されたWMRR手法を使用すると、散乱が非常に小さくなり、異なる結果が得られる(歩留りが大きくなる)。例えば、パワーペナルティが2dBで且つPRRが−17dB以下である場合には、図8で与えられたプロットから分かるように、状態1の下で全ての励起が良好な励起ではなくシステムで使用できないと判断される。一方、WMRRが使用される場合、WMRRを使用する同じパワーペナルティのための基準は同じ(−17dB以下)であるが、状態1の下で励起の約66%が許容できるサンプルであると判断される。したがって、LDの許容可能性を特徴付けるための本発明の方法が、かなり広い産業上の利用性を有していることは言うまでもない。
図10は、図17に関して説明するプロセスによって選択された励起源を使用するラマン増幅システムを示す。信号は、励起源102から前方に励起され且つ励起/信号コンバイナ1001を用いて組み合わされる励起光によるラマン増幅によってファイバ内で増幅される。励起内での使用のために選択されるLDは、−21dB未満の励起反射率を生じるように選択される。
図11は同様のシステムを示しているが、このシステムは、前方励起および後方励起を使用して同方向励起システムを形成している。このシステムにおいて、前方励起源1012は、励起/信号コンバイナ1013に対して励起パワーを与える。励起/信号コンバイナ1013は、ファイバに対して前方励起光を与える。励起源1012は、前方励起での使用のためにSBSが抑制される適切な性能が得られるように、WMRR評価によって予め選択される。同様に、励起源1015は、後方励起光源を形成するため、励起信号コンバイナ1014を介してファイバに対して励起光を与える。励起源1015は、後方励起動作を行なうため、必ずしもWMRR評価を用いて選択される必要はない。
図12は、励起レーザ出力および反射パワーの両方を監視するシステムを含む。励起レーザ1025は、カプラ1026(例えば2%カプラ)を介して、励起信号コンバイナ1021に対して励起光を供給する。励起信号コンバイナ1021は、ファイバ内で信号をラマン増幅するため、励起光と信号光とを組み合わせる。入力パワーを測定することができるように、光の一部がフォトダイオード1024で検出される。同様に、反射励起光の一部は、フィルタ1023を通過する。フィルタ1023は、優位SBSの特性を分離するように寸法付けられており、そのため、SBS優位ピークの全パワーをフォトダイオード1022で検出することができる。フィルタ1023は、優位SBSスペクトル位置に中心付けられるように設定されている。これにより、優位SBSモードの全パワーをフォトダイオード1022により監視することができる。また、フォトダイオード1024によって測定された全パワーとフォトダイオード1022によって測定された優位SBS全パワーとの間で比較を互いに行なってWMRRを特定しても良い。この比較は、図示しないプロセッサ内または比較回路内で行なわれても良い。同様に、この分野で使用される場合、各フォトダイオードによって検出される結果に基づいて、励起レーザ1025の持続的な適合性が(プロセッサにより)判定されても良い。フィルタ1023は、優位SBSピークに中心付けることが調整可能なチューナブルフィルタであっても良い。
図13は、図12に類似しているが、マルチ励起構成を示す。第1の励起1032は、カプラ1131を介して、励起コンバイナ1034に対して励起光を供給する。励起レーザ1032からの大部分の励起レーザ光は、図12の場合と同様に、フォトダイオード1033によって観測される。同様に、反射パワーは、優位SBSモードに中心付けられるフィルタ1031を通過した後、フォトダイオード1030によって観測される。カプラ1131は、ここを通過する光学的なレーザ光のための2方向カップリングを行なう。同様に、励起レーザ2(要素1039)からの光は、光カプラ1132を通過して、(その一部が)フォトダイオード1038によって観測される。ファイバからの反射は、フィルタ1037を経由して観測され、フォトダイオード1036で検出される。レーザ励起光は、励起コンバイナ1034により組み合わされた後、励起/信号コンバイナ1035を介して、光ファイバ内の光信号に対して加えられる。図12の場合と同様に、プロセッサを使用して、WMRRを判定し、それを所定の閾値と比較しても良い。
図14は、図12に示すものに類似しているが、更なるチューナブルフィルタ1044を使用して、濾過された入力をフォトダイオード1045に供給している。これは、励起源1043が複数の励起波長を有していることを前提としているからである。フィルタ1044は、励起源1043によって供給される1つの励起波長にわたる全パワーを監視できるように、特定の波長領域の選択が可能である。励起源1043、カプラ1046、フィルタ1042、フォトダイオード1041、励起/信号コンバイナ1040は、図12で説明した機能と同様の機能を果たす。
図15は、レーザ励起1052のフィードバック制御を行なう自動(または元の位置)制御システムを示す。レーザ励起1052はカプラ1056に対して励起光を供給し、カプラ1056は、光ファイバ内で信号を増幅するため、励起信号コンバイナ1050に対して励起光を供給する。励起光1052の一部は、フォトダイオード1051によって検出されるとともに、全パワー入力としてコントローラ1055に対して供給される。反射光の一部は、フィルタ1053を通過するとともに、第2の入力(優位SBSパワー)をコントローラ1055に供給するべくフォトダイオード1054によって検出される。その後、コントローラ1055は、優位SBSレベルと全パワーレベルとを比較する(WMRRを判定する)とともに、パワーペナルティが所定の閾値を上回っているか或いは下回っているかどうかを判断する。パワーペナルティが所定の閾値を上回っていると判断されると、コントローラ1055は、励起レーザ1052を調整して、その出力パワー又はレーザチップ温度を変更し、システムを仕様の範囲内で動作させる。LDモジュールの動作温度を調整する1つの方法は、コントローラ1055の制御下で動作するペルチェモジュール(作動温度制御機構)によって温度を下げることである。
図16は、本発明におけるコントローラの一実施形態を実行することができるコンピュータシステム1201を示す。しかし、特に動作の監視および励起パラメータの調整のためにコントローラを使用する実施形態においては、内蔵プロセッサシステムを同様に使用しても良い。図示のコンピュータシステム1201は、製造設定における励起の選択に最適である。コンピュータシステム1201は、情報を通信するためのバス1202または他の通信機構と、バス1202に接続され且つ情報を処理するプロセッサ1203とを有している。また、コンピュータシステム1201は、バス1202に接続され且つプロセッサ1203によって実行される情報および命令を記憶するランダムアクセスメモリ(RAM)または他の動的記憶装置(例えば、ダイナミックRAM(DRAM)、スタティックRAM(SRAM)、シンクロナスDRAM(SDRAM))等の主メモリ1204を有している。また、主メモリ1204は、一時的な変数(例えば、測定されたSBSピークレベルまたは全パワーレベル)またはプロセッサ1203によって命令が実行されている最中の他の中間情報を記憶するために使用されても良い。更に、コンピュータシステム1201は、バス1202に接続され且つプロセッサ1203のための静的情報および命令を記憶するための読み出し専用メモリ(ROM)1205または他の静的記憶装置(例えば、プログラマブルROM(PROM)、消去可能PROM(EPROM)、電気的消去可能PROM(EEPROM))を有している。
また、コンピュータシステム1201は、磁気ハードディスク1207およびリムーバブルメディアドライブ1208(例えば、フロッピー(登録商標)ディスクドライブ、読み出し専用コンパクトディスクドライブ、リード/ライトコンパクトディスクドライブ、コンパクトディスクジュークボックス、テープドライブ、リムーバブル光磁気ドライブ)等の情報および命令を記憶するための1つまたは複数の記憶装置を制御するためにバス1202に接続されるディスクコントローラ1206を有している。適当なデバイスインタフェース(例えば、小型コンピュータシステムインタフェース(SCSI)、集積デバイスエレクトロニクス(IDE)、拡張IDE(E−IDE)、ダイレクトメモリアクセス(DMA)、あるいは、超DMA)を使用して記憶装置をコンピュータシステム1201に対して付加しても良い。
また、コンピュータシステム1201は、専用論理回路(例えば、特定用途向け集積回路(ASIC))または構造化可能な論理回路(例えば、シンプルプログラム可能論理回路(SPLD)、結合プログラム可能論理回路(CPLD)、フィールドプログラム可能ゲートアレー(FPGA))を有していても良い。
また、コンピュータシステム1201は、コンピュータのユーザに対して情報を表示するブラウン管(CRT)等のディスプレイ1210を制御するためにバス1202に接続されたディスプレイコントローラ1209を有していても良い。コンピュータシステムは、コンピュータのユーザとやりとりを行ない且つ情報をプロセッサ1203に供給するためのキーボード1211およびポインティングデバイス1212等の入力デバイスを有している。ポインティングデバイス1212は、例えば、プロセッサ1203に対して方向情報およびコマンド選択を通信し且つディスプレイ1210上におけるカーソルの動きを制御するためのマウス、トラックボール、ポインティングスティックであっても良い。また、プリンタは、コンピュータシステム1201によって記憶され及び/又は形成されたデータの印刷リストを供給しても良い。
コンピュータシステム1201は、主メモリ1204等のメモリ内に収容された1つまたは複数の命令から成る、1つまたは複数のシーケンスを実行するプロセッサ1203に応答して、本発明の処理ステップの一部または全てを行なう。そのような命令は、ハードディスク1207やリムーバブルメディアドライブ1208等の他のコンピュータ読取可能な媒体から主メモリ1204内へ読み込まれても良い。多重処理装置内の1つまたは複数のプロセッサを使用して、主メモリ1204内に収容された命令シーケンスを実行しても良い。他の実施形態においては、ソフトウェア命令に代えて、あるいは、ソフトウェア命令と共に、ハードワイヤード回路を使用しても良い。すなわち、実施形態は、ハードウェア回路とソフトウェアとの任意の特定の組み合わせに限定されない。
前述したように、コンピュータシステム1201は、本発明の教示内容によってプログラムされた命令を保持し且つデータ構造、表、記録あるいはここで説明した他のデータを収容するための少なくとも1つのコンピュータ読取可能な媒体またはメモリを有している。コンピュータ読取可能な媒体の例としては、コンパクトディスク、ハードディスク、フロッピー(登録商標)ディスク、テープ、光磁気ディスク、PROM(EPROM、EEPROM、フラッシュEPROM)、DRAM、SRAM、SDRAM、あるいは、任意の他の磁気媒体、コンパクトディスク(例えば、CD−ROM)、または、任意の他の光媒体、パンチカード、ペーパーテープ、あるいは、ホールパターンを有する他の物理的媒体、搬送波(後述する)、または、コンピュータで読み取り可能な任意の他の媒体を挙げることができる。
コンピュータ読取可能な媒体のうちの任意の1つあるいはそれらの組み合わせの中に記憶される場合、本発明は、コンピュータシステム1201を制御し且つ本発明を実施するための1つまたは複数の装置を駆動し、且つコンピュータシステム1201と人間のユーザ(例えば印刷物製作作業者)との間の交信を可能にするためのソフトウェアを含む。そのようなソフトウェアとしては、デバイスドライバ、オペレーティングシステム、開発ツール、アプリケーションソフトウェアを挙げることができるが、これらに制限されない。そのようなコンピュータ読取可能な媒体は、本発明の実施において行なわれる処理の全て又は一部(処理が分散される場合)を実行するための本発明のコンピュータプログラムプロダクトを更に含む。
本発明のコンピュータコードデバイスは、任意の解釈可能な或いは実行可能なコード機構であっても良く、スクリプト、解釈可能プログラム、動的リンク・ライブラリ(DLL)、Java(登録商標)クラス、完全実行可能プログラムを挙げることができるがこれらに限定されない。さらに、性能、信頼性、及び/又は、コストをより良くにするため、本発明の処理の一部が分散されても良い。
ここで使用される用語“コンピュータ読取可能な媒体”は、プロセッサ1203に命令を供給して実行することに関与する任意の媒体を示している。コンピュータ読取可能な媒体は、不揮発性媒体、揮発性媒体、伝送媒体を含む多くの形式をとっても良いが、これらに限定されない。不揮発性媒体としては、例えば、ハードディスク1207やリムーバブルメディアドライブ1208といった、光ディスク、磁気ディスク、光磁気ディスクを挙げることができる。揮発性媒体としては、主メモリ1204等のダイナミックメモリを挙げることができる。伝送媒体としては、バス1202を構成するワイヤを含む、同軸ケーブル、銅線、光ファイバを挙げることができる。また、伝送媒体は、例えば無線波通信中および赤外線データ通信中に形成される音波や光波の形態を成しても良い。
プロセッサ1203で実行するための1つまたは複数の命令から成る1つまたは複数のシーケンスを実行する際に、様々な形式のコンピュータ読取可能な媒体が必要とされても良い。例えば、命令は、最初に遠隔コンピュータの磁気ディスク上で実行されても良い。遠隔コンピュータは、本発明の全て又は一部を実施するための命令をダイナミックメモリ内に取り込むとともに、その命令を、モデムを使用して電話線にわたって送信することができる。コンピュータシステム1201のモデム部は、電話線によりデータを受信するとともに、赤外線送信器を使用してそのデータを赤外線信号に変換しても良い。バス1202に接続された赤外線検出器は、赤外線信号の状態で送られてきたデータを受信するとともに、そのデータをバス1202上に置くことができる。バス1202はデータを主メモリ1204へ伝送し、プロセッサ1203は、この主メモリ1204から命令を検索して実行する。主メモリ1204によって受信された命令は、任意的に、プロセッサ1203による実行前または実行後に、記憶装置1207または記憶装置1208に記憶されても良い。
また、コンピュータシステム1201は、バス1202に接続された通信インタフェース1213を有している。通信インタフェース1213は、ネットワークリンク1214に対する双方向データ通信カップリングを行なう。ネットワークリンク1214は、例えば、ローカルエリアネットワーク(LAN)1215またはインターネット等の他の通信ネットワーク1216に対して接続されている。例えば、通信インタフェース1213は、任意のパケット交換LANに取り付けるためのネットワークインタフェースカードであっても良い。他の例として、通信インタフェース1213は、非対称型デジタル加入者回線(ADSL)カード、総合デジタル通信網(ISDN)カード、対応するタイプの通信ラインへのデータ通信接続を行なうためのモデムであっても良い。無線リンクが実施されても良い。そのような任意の実施において、通信インタフェース1213は、様々なタイプの情報を表わすデジタルデータストリームを伝送する電気的信号、電磁的信号、光信号を送受信する。
ネットワークリンク1214は、一般に、1つまたは複数のネットワークを介して、他のデータデバイスに対してデータ通信を行なう。例えば、ネットワークリンク1214は、ローカルネットワーク1215(例えばLAN)を介して、または、通信ネットワーク1216を介して通信サービスを行なうサービスプロバイダによって動作される装置を介して、他のコンピュータに対する接続を行なっても良い。ローカルネットワーク1214および通信ネットワーク1216は、例えば、デジタルデータストリームを伝送する電気信号、電磁信号、または、光信号および対応する物理層(例えば、CAT5ケーブル、同軸ケーブル、光ファイバ等)を使用する。様々なネットワークを経由した信号、ネットワークライン1214上の信号、デジタルデータをコンピュータシステム1201へ運び且つデジタルデータをコンピュータシステム1201から運ぶ通信インタフェース1213を経由した信号は、ベースバンド信号内あるいは搬送波に基づく信号内で実施されても良い。ベースバンド信号は、デジタルデータビットのストリームを記述した変調されていない電気パルスとしてデジタルデータを伝送する。ここで、用語“ビット”は、記号を意味するものとして広く解釈されたい。この場合、各記号が少なくとも1つまたは複数の情報ビットを伝送する。また、デジタルデータは、例えば、伝導媒体を通じて伝搬され或いは伝搬媒体を通じて電磁波として送信される振幅、位相、及び/又は、周波数偏移符号化信号等の搬送波を変調するために使用されても良い。したがって、デジタルデータは、変調されていないベースバンドデータとして“有線”通信チャンネルを通じて送られても良く、及び/又は、搬送波を変調することにより、ベースバンドとは異なる所定の周波数帯域内で送られても良い。コンピュータシステム1201は、ネットワーク1215、ネットワーク1216、ネットワークリンク1214、通信インタフェース1213を介して、プログラムコードを含むデータを送受信することができる。さらに、ネットワークリンク1214は、LAN1215を通じて、携帯端末(PDA)、ラップトップコンピュータまたは携帯電話等のモバイル機器1217に対する接続を行なっても良い。
図17は、WMRRを監視し且つWMRRが所定のレベルから外れた場合に修正処置を行なうためのプロセスを示すフローチャートである。このプロセスはステップS10から始まる。ステップS10では、全ての励起パワーが検出されるとともに、優位SBSパワーレベルが検出される。その後、プロセスは、WMRRが計算されるステップS11へ進む。その後、プロセスはステップS12に進む。このステップS12では、WMRRが所定の閾値よりも大きいか否かに関する問い合わせがなされる。例えば、所定の閾値は、−19dB(例えば、累積RINが所望の値よりも大きいことを示す−15dB)より大きくても良い。ステップS12における問い合わせが否定である場合、プロセスは、監視プロセスが続けられるステップS10に進む。しかし、ステップS12における問い合わせが肯定である場合、プロセスは、ステップS14に進む。このステップS14で、励起動作状態は、SBS、従ってRINの大きさを下げるように調整されるか、励起選択プロセスへ進む。この場合の励起は、許容できないものと見なされ、システム内に含まれない。ステップ14において調整が行なわれた後、プロセスはステップS12に戻る。
言うまでもなく、前述した教示内容に照らして、本発明の多数の改良および変形が可能である。したがって、添付の請求の範囲内において、本発明を本明細書で具体的に説明した方法とは別の方法でも実施することができる。
前方励起型ラマン増幅器におけるSBSを測定するための従来の測定システムのブロック図である。 本発明に係る測定システムのブロック図である。 様々な励起反射率における、RINと周波数との間の関係を示すグラフである。 レイリー後方散乱を限界とする、累積RINと励起反射率との間の関係を示すグラフである。 様々な動作状態における、所定のビット誤り率でのパワーペナルティと励起反射率との間の関係を示すグラフである。 反射励起パワーと波長との間の関係を示す図であり、様々な励起状態におけるグラフのセットを含む図である。 ピーク入力パワースペクトルと優位SBSの場所での全反射パワーとの間のスペクトル関係を示すグラフである。 ピーク反射パワー率の従来の定義(PRR)および修正された定義(WMRR)の両方における、所定のビット誤り率におけるパワーペナルティと励起反射率との間の関係を示すグラフである。 新たな定義WMRRおよび従来のPRRの両方における、累積RINと励起反射率との間の関係を示すグラフである。 本発明によって選択された励起源を有する前方励起型ラマン増幅器を示すブロック図である。 本発明によって選択された励起源を有する同方向励起型ラマン増幅システムを示す、本発明の他の実施形態のブロック図である。 本発明によって反射率を監視するための監視技術を使用する本発明の他の実施形態のブロック図である。 図12に示された反射技術を使用するマルチ励起ラマン増幅システムのブロック図である。 図12と同様であり、オプトエレクトロニクスの監視において別個のフィルタリングを含む図である。 レーザ励起にフィードバックを与えてレーザ励起の出力を制御するコントローラを有する自己制御ラマン増幅器のブロック図である。 本発明に係るコントローラのブロック図である。 本発明の方法に係るステップを示すフローチャートである。
符号の説明
2 励起
4 光パワー計測器または光学スペクトル分析器
6 光パワー計測器
8 モニタ/カプラ
9 ファイバ
22 WDMカプラ
23 分散フィードバックレーザ
24 高非線形ファイバ
25 変調器
26 WDMカプラ
28 モニタ/カプラ
29 2%モニタカプラ
210 光カプラ
211 励起源
212 外部減偏光子
213 可変光減衰器
214 パワー計測器1
215 パワー計測器2
216 帯域通過フィルタ
217 可変光減衰器
218 10%カプラ
219 パワー計測器3
221 一次増幅器
222 帯域通過フィルタ
223 二次増幅器
224 帯域通過フィルタ
225 受信器
227 電気光学スペクトル分析器または光学スペクトル分析器
1001 励起/信号コンバイナ
1002 励起源
1012 励起源
1013 励起/信号コンバイナ
1014 励起/信号コンバイナ
1015 励起源
1021 励起信号コンバイナ
1022 フォトダイオード
1023 フィルタ
1024 フォトダイオード
1025 励起レーザ
1026 カプラ
1030 フォトダイオード
1031 フィルタ
1032 励起レーザ
1033 フォトダイオード
1034 励起コンバイナ
1035 励起/信号コンバイナ
1036 フォトダイオード
1037 フィルタ
1038 フォトダイオード
1039 励起レーザ2
1131 カプラ
1132 光カプラ
1040 励起/信号コンバイナ
1041 フォトダイオード
1042 フィルタ
1043 励起源
1044 チューナブルフィルタ
1045 フォトダイオード
1046 カプラ
1050 励起/信号コンバイナ
1051 フォトダイオード
1052 レーザ励起
1053 フィルタ
1054 フォトダイオード
1055 コントローラ
1056 カプラ
1201 コンピュータシステム
1202 バス
1203 プロセッサ
1204 主メモリ
1205 読み出し専用メモリ
1206 ディスクコントローラ
1207 ハードディスク
1208 リムーバブルメディアドライブ
1209 ディスプレイコントローラ
1210 ディスプレイ
1211 キーボード
1212 ポインティングデバイス
1213 通信インタフェース
1214 ネットワークリンク
1215 LAN
1216 通信ネットワーク
1217 モバイル機器

Claims (18)

  1. 所定の波長に優位モードを有するマルチモード励起光を形成するように構成されたマルチモード半導体レーザを有する励起モジュールと、
    前記励起光の少なくとも一部を前方励起方向でラマンゲイン媒体に対して供給するように構成されたカプラと、
    前記ラマンゲイン媒体から少なくとも部分的に反射された反射光を監視するように構成された反射センサであって、前記反射光の優位SBSピークの光パワーを通過させるが、前記優位SBSピークから波長がオフセットされた他のSBSピークを抑制する通過域特性を有する反射センサと、
    前記マルチモード励起光のパワーレベルに対する前記優位SBSピークにおける前記光パワーの比率である加重モード反射率を算出し、算出結果に基づいて励起モジュールを制御するコントローラと
    を備えるラマン増幅器用の励起源。
  2. 前記マルチモード励起光の光パワーを監視するように構成されたパワーモニタを更に備える請求項1に記載の励起源。
  3. 前記カプラは、前記マルチモード励起光の主要部分を前記ラマンゲイン媒体に供給するとともに、主要でない部分をパワーモニタに供給するように構成される請求項2に記載の励起源。
  4. 前記コントローラは、優位SBSピーク中に含まれる光パワーを減らすために前記マルチモード励起光の光パワーのレベルを調整する請求項1に記載の励起源。
  5. 前記コントローラは、前記優位SBSピーク中に含まれる光パワーのレベルが所定のレベルよりも大きいために励起モジュールが励起源での使用に適さないことを示唆する請求項1に記載の励起源。
  6. 前記コントローラは、励起モジュールが励起源での使用に適さない場合、前記マルチモード半導体レーザの温度を調整する請求項に記載の励起源。
  7. SBSに起因して受信器により受けられるパワーペナルティを調整するためにラマン増幅励起によって形成される誘導ブリュアン散乱(SBS)の大きさを制御する方法において、
    マルチモード半導体レーザを用いて、所定の波長に優位モードを有するマルチモード励起光を形成するステップと、
    前記マルチモード励起光の少なくとも一部を前方励起方向でラマンゲイン媒体に接続する接続ステップと、
    前記ラマンゲイン媒体から少なくとも部分的に反射された反射光を反射センサによって監視するステップであって、前記反射センサが、前記反射光の優位SBSピークの光パワーを通過させるが、前記優位SBSピークから波長がオフセットされた他のSBSピークを抑制する通過域特性を有するステップと、
    前記マルチモード励起光のパワーレベルに対する前記優位SBSピークにおける前記光パワーの比率である加重モード反射率を算出し、算出結果に基づいて励起モジュールを制御する制御ステップと
    を含む方法。
  8. 前記マルチモード励起光の光パワーを監視するステップを更に含む請求項に記載の方法。
  9. 前記接続ステップは、前記マルチモード励起光の主要部分を前記ラマンゲイン媒体に供給するとともに、主要でない部分をパワーモニタに供給することを含む請求項に記載の方法。
  10. 前記制御ステップは、優位SBSピーク中に含まれる光パワーを減らすために前記マルチモード励起光の光パワーのレベルを調整するステップを含む請求項に記載の方法。
  11. 前記制御ステップは、前記優位SBSピーク中に含まれる光パワーのレベルが所定のレベルよりも大きいために励起モジュールが励起源での使用に適さないことを示唆するステップを含む請求項に記載の方法。
  12. 前記制御ステップは、励起モジュールが励起源での使用に適さない場合に前記マルチモード半導体レーザの温度を調整するステップを含む請求項11に記載の方法。
  13. ラマン増幅器用の励起源で使用するためのレーザダイオードモジュールを選択する方法において、
    マルチモード半導体レーザを用いて、所定の波長に優位モードを有するマルチモード励起光を形成するステップと、
    前記マルチモード励起光の少なくとも一部を前方励起方向でラマンゲイン媒体に接続するステップと、
    前記ラマンゲイン媒体から少なくとも部分的に反射された反射光を監視するステップであって、前記反射光の優位SBSピークの光パワーを監視するが、前記優位SBSピークから波長がオフセットされたSBSピークを監視しないステップと、
    加重モード反射率を判定するステップであって、前記加重モード反射率が、前記マルチモード励起光の光パワーに対する前記優位SBSピークの光パワーの比率であるステップと、
    前記加重モード反射率を所定の比率と比較するステップと、
    前記加重モード反射率が前記所定の比率を上回っている場合に、前記マルチモード半導体レーザを、問題があるとして拒絶するステップとを含む方法。
  14. 前記所定の比率が−19dB以下である請求項13に記載の方法。
  15. 前記所定の比率が−20dB以下である請求項14に記載の方法。
  16. 前記所定の比率が−21dB以下である請求項15に記載の方法。
  17. 所定の波長に優位モードを有するマルチモード励起光を形成する手段と、
    前記マルチモード励起光の少なくとも一部を前方励起方向でラマンゲイン媒体に接続する手段と、
    前記ラマンゲイン媒体から少なくとも部分的に反射された反射光を監視する手段であって、前期監視手段は、前記反射光の優位SBSピークの光パワーを通過させるが、前記優位SBSピークから波長がオフセットされた他のSBSピークを抑制する通過域特性を有し、
    前記マルチモード励起光のパワーレベルに対する前記優位SBSピークにおける前記光パワーの比率である加重モード反射率を算出し、算出結果に基づいて励起モジュールを制御する制御手段
    を備えるラマン増幅器用の励起源。
  18. ラマンゲイン媒体であって、励起光がラマンゲイン媒体に加えられる際にラマンゲイン媒体を通じて伝播する光信号を増幅するように構成されたラマンゲイン媒体と、
    前記励起光を前記ラマンゲイン媒体に通すように構成されたカプラと、
    前記励起光を前記カプラに供給するように構成された励起源とを備え、
    前記励起源は、
    所定の波長に優位モードを有するマルチモード励起光を形成するように構成されたマルチモード半導体レーザを有する励起モジュールと、
    前記励起光の少なくとも一部を前方励起方向でラマンゲイン媒体に対して供給するように構成されたカプラと、
    前記ラマンゲイン媒体から少なくとも部分的に反射された反射光を監視するように構成された反射センサであって、前記反射光の優位SBSピークの光パワーを通過させるが、前記優位SBSピークから波長がオフセットされた他のSBSピークを抑制する通過域特性を有する反射センサと、
    前記マルチモード励起光のパワーレベルに対する前記優位SBSピークにおける前記光パワーの比率である加重モード反射率を算出し、算出結果に基づいて励起モジュールを制御するコントローラ
    を有するラマン増幅器。
JP2004260952A 2003-09-08 2004-09-08 ラマン増幅器、ラマン増幅器に使用するための励起源、光信号を増幅するための方法 Active JP4558425B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US50068203P 2003-09-08 2003-09-08

Publications (2)

Publication Number Publication Date
JP2005099795A JP2005099795A (ja) 2005-04-14
JP4558425B2 true JP4558425B2 (ja) 2010-10-06

Family

ID=34572737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260952A Active JP4558425B2 (ja) 2003-09-08 2004-09-08 ラマン増幅器、ラマン増幅器に使用するための励起源、光信号を増幅するための方法

Country Status (2)

Country Link
US (1) US7206123B2 (ja)
JP (1) JP4558425B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391561B2 (en) 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
US7768700B1 (en) 2006-11-30 2010-08-03 Lockheed Martin Corporation Method and apparatus for optical gain fiber having segments of differing core sizes
US8179594B1 (en) 2007-06-29 2012-05-15 Lockheed Martin Corporation Method and apparatus for spectral-beam combining of fanned-in laser beams with chromatic-dispersion compensation using a plurality of diffractive gratings
JP5119998B2 (ja) * 2008-03-18 2013-01-16 富士通株式会社 光増幅装置および光増幅装置の駆動方法
US8441718B2 (en) * 2009-11-23 2013-05-14 Lockheed Martin Corporation Spectrally beam combined laser system and method at eye-safer wavelengths
US8503840B2 (en) 2010-08-23 2013-08-06 Lockheed Martin Corporation Optical-fiber array method and apparatus
WO2011130131A1 (en) 2010-04-12 2011-10-20 Lockheed Martin Corporation Beam diagnostics and feedback system and method for spectrally beam-combined lasers
US8854726B2 (en) 2012-03-13 2014-10-07 Adva Optical Networking Se Method for controlling signal gain of a Raman amplifier
CN102769509B (zh) * 2012-06-07 2015-10-21 华为技术有限公司 一种物理层信号的发送方法、装置及系统
US8885248B2 (en) 2012-10-17 2014-11-11 Ciena Corporation Raman amplifier gain compression systems and methods based on signal power monitoring
US9547354B2 (en) * 2013-04-11 2017-01-17 Dell Products L.P. System and method for increasing current monitor power telemetry accuracy
US10250326B2 (en) * 2013-05-24 2019-04-02 Ciena Corporation Embedded apparatus to monitor simulated brillouin scattering from Raman amplifier in fiber optics transmission system
US9419408B2 (en) 2013-12-27 2016-08-16 Arris Enterprises, Inc. Optical amplifier with self-adjusting gain based on reflected feedback
CN103715480B (zh) * 2014-01-20 2015-12-02 吉林大学 一种超高品质因数的单带通可调谐微波光子滤波器
US9366872B2 (en) 2014-02-18 2016-06-14 Lockheed Martin Corporation Apparatus and method for fiber-laser output-beam shaping for spectral beam combination
CN104618022B (zh) * 2015-01-29 2017-02-22 吉林大学 毫米波信号的光子学产生方法及装置
US11336073B2 (en) * 2018-11-29 2022-05-17 Ofs Fitel, Llc Brillouin dynamic grating generation using dual-Brillouin-peak optical fiber
WO2021240731A1 (ja) * 2020-05-28 2021-12-02 日本電信電話株式会社 光漏洩確認方法、光漏洩確認装置、およびプログラム
CN113810106B (zh) * 2021-08-26 2022-06-21 广东工业大学 一种光纤能量信息共传系统的安全监测方法及装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616898A (en) * 1980-03-31 1986-10-14 Polaroid Corporation Optical communication systems using raman repeaters and components therefor
US4699452A (en) * 1985-10-28 1987-10-13 American Telephone And Telegraph Company, At&T Bell Laboratories Optical communications system comprising Raman amplification means
US5272717A (en) * 1992-01-17 1993-12-21 Hughes Aircraft Company Single focus backward Raman laser
US5485481A (en) * 1994-06-28 1996-01-16 Seastar Optics Inc. Fibre-grating-stabilized diode laser
JP3618008B2 (ja) * 1995-03-17 2005-02-09 富士通株式会社 光増幅器
US5673280A (en) * 1996-02-12 1997-09-30 Lucent Technologies Inc. Article comprising low noise optical fiber raman amplifier
JP3741767B2 (ja) * 1996-02-26 2006-02-01 富士通株式会社 光ファイバ増幅器
KR100224921B1 (ko) * 1996-12-12 1999-10-15 윤종용 원고뒷면 스캐닝 검색방법
US5940209A (en) * 1997-03-18 1999-08-17 Lucent Technologies Inc. Interactive optical fiber amplifier, system and method
JPH118590A (ja) * 1997-04-25 1999-01-12 Oki Electric Ind Co Ltd 光伝送システム及びその監視制御方法
US6188705B1 (en) * 1997-05-16 2001-02-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fiber grating coupled light source capable of tunable, single frequency operation
US6072614A (en) * 1997-08-21 2000-06-06 Nortel Networks Corporation Monitoring induced counterpropagating signals in optical communications systems
US5887093A (en) * 1997-09-12 1999-03-23 Lucent Technologies Incorporated Optical fiber dispersion compensation
JPH11121848A (ja) * 1997-10-16 1999-04-30 Fujitsu Ltd 光増幅器及び該光増幅器を備えた光伝送システム
US5912761A (en) * 1998-01-22 1999-06-15 Tyco Submarine Systems Ltd. Apparatus and method for controlling shared optical pump power sources
EP1036440A1 (en) * 1998-02-20 2000-09-20 Ciena Corporation Optical amplifier having an improved noise figure
US6320884B1 (en) * 1998-02-26 2001-11-20 Tycom (Us) Inc., Wide bandwidth Raman amplifier employing a pump unit generating a plurality of wavelengths
US6115174A (en) * 1998-07-21 2000-09-05 Corvis Corporation Optical signal varying devices
US6344922B1 (en) * 1998-07-21 2002-02-05 Corvis Corporation Optical signal varying devices
WO2000005622A1 (fr) * 1998-07-23 2000-02-03 The Furukawa Electric Co., Ltd. Amplificateur raman, repeteur optique et procede d'amplification raman
US6151160A (en) * 1998-10-05 2000-11-21 Tyco Submarine Systems Ltd. Broadband Raman pre-amplifier for wavelength division multiplexed optical communication systems
US6246510B1 (en) * 1999-04-28 2001-06-12 Marconi Communications, Inc. Light amplification apparatus with automatic monitoring and controls
US6313940B1 (en) * 1999-12-31 2001-11-06 Lucent Technologies Inc. System based control of optical amplifier transmission functions
US6305851B1 (en) * 2000-01-12 2001-10-23 Ciena Corporation Systems and methods for detecting imperfect connections in optical systems
WO2001051986A1 (en) 2000-01-14 2001-07-19 The Furukawa Electric Co., Ltd. Raman amplifier
US6384963B2 (en) * 2000-03-03 2002-05-07 Lucent Technologies Inc. Optical communication system with co-propagating pump radiation for raman amplification
US6433920B1 (en) * 2000-04-27 2002-08-13 Jds Uniphase Corporation Raman-based utility optical amplifier
DE10028144C1 (de) * 2000-06-07 2001-11-29 Siemens Ag Messverfahren zur Bestimmung der Nichtlinearitäten einer optischen Faser
US6310716B1 (en) * 2000-08-18 2001-10-30 Corning Incorporated Amplifier system with a discrete Raman fiber amplifier module
JP2002141608A (ja) * 2000-11-02 2002-05-17 Furukawa Electric Co Ltd:The 半導体レーザモジュールとそれを用いたラマン増幅器
JP4629852B2 (ja) * 2000-11-02 2011-02-09 古河電気工業株式会社 半導体レーザモジュールとそれを用いた光増幅器
US6417959B1 (en) * 2000-12-04 2002-07-09 Onetta, Inc. Raman fiber amplifier
US6433921B1 (en) * 2001-01-12 2002-08-13 Onetta, Inc. Multiwavelength pumps for raman amplifier systems
JP2002250947A (ja) * 2001-02-23 2002-09-06 Fujitsu Ltd ラマン励起制御方法及び、これを用いる光伝送装置
JPWO2003005508A1 (ja) 2001-07-02 2004-10-28 古河電気工業株式会社 半導体レーザモジュール、光増幅器及び半導体レーザモジュールの製造方法
US20030039025A1 (en) * 2001-08-27 2003-02-27 The Furukawa Electric Co. Ltd. Semiconductor laser module
JP2003283036A (ja) * 2001-12-27 2003-10-03 Furukawa Electric Co Ltd:The 半導体レーザモジュールおよびこれを用いたラマン増幅器
US7082152B2 (en) * 2002-03-01 2006-07-25 The Furukawa Electric Co., Ltd. Semiconductor laser apparatus, semiconductor laser module, optical fiber amplifier and semiconductor laser usage determining method
US20040057485A1 (en) * 2002-07-16 2004-03-25 The Furukawa Electric Co., Ltd. Semiconductor laser device, semiconductor laser module, and optical fiber amplifier

Also Published As

Publication number Publication date
JP2005099795A (ja) 2005-04-14
US7206123B2 (en) 2007-04-17
US20050105165A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP4558425B2 (ja) ラマン増幅器、ラマン増幅器に使用するための励起源、光信号を増幅するための方法
US6433922B1 (en) Apparatus and method for a self adjusting Raman amplifier
US11139633B2 (en) In-situ fiber characterization using nonlinear skirt measurement
US7688498B2 (en) Optical amplifier and optical monitor circuit
US7199919B2 (en) Tunable multimode wavelength division multiplex Raman pump and amplifier, and a system, method, and computer program product for controlling tunable Raman pumps, and Raman amplifiers
JP5089723B2 (ja) 波長多重励起ラマンアンプ、波長多重励起ラマンアンプの制御方法および制御プログラム
EP1564915A1 (en) Low relative intensity noise fiber grating type laser diode
US9641252B2 (en) Method of optimizing optical signal quality in an optical communications link, optical network element and optical communications link
JP4478489B2 (ja) ラマン光増幅器およびラマン光増幅器の調整方法
US20160006206A1 (en) Self-automatic gain control distributed raman fiber amplifier and automatic gain control method
US9614616B2 (en) Optical time domain reflectometer systems and methods using wideband optical signals for suppressing beat noise
KR20210025858A (ko) 제어관리용 보조채널 송신장치 및 방법
JPH07235907A (ja) 光空間伝送装置
US11799546B2 (en) Optical fiber characterization using a nonlinear skirt measurement
US20220368448A1 (en) Optical transmission device, optical transmission system, and optical transmitting power control method
US6646790B2 (en) Optical amplifier gain control monitoring
US10205520B2 (en) Method and device for measuring optical signal-to-noise ratio
US7065111B2 (en) Method for testing laser using side mode suppression ratio
US7359648B2 (en) Wavelength tuning optimization of semiconductor lasers
JPH07297791A (ja) 光空間伝送装置
US20240031022A1 (en) Optical fiber characterization using transmission of shaped ASE
US20230411924A1 (en) Method for Monitoring a Pump Laser of at Least One Optical Amplifier in an Optical Transmission Link in Operation
US11876559B2 (en) Optical transmission system and fiber type determination method
Liu et al. Building a digital twin of EDFA: a grey-box modeling approach
Emori et al. Impact of stimulated Brillouin scattering of multimode pump light within co-pumped Raman amplifiers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R151 Written notification of patent or utility model registration

Ref document number: 4558425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250