WO2013181967A1 - Ion polymer membrane material, preparation process therefor and lithium secondary battery - Google Patents

Ion polymer membrane material, preparation process therefor and lithium secondary battery Download PDF

Info

Publication number
WO2013181967A1
WO2013181967A1 PCT/CN2013/073856 CN2013073856W WO2013181967A1 WO 2013181967 A1 WO2013181967 A1 WO 2013181967A1 CN 2013073856 W CN2013073856 W CN 2013073856W WO 2013181967 A1 WO2013181967 A1 WO 2013181967A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfonate
membrane material
polymer
ionic polymer
ceramic filler
Prior art date
Application number
PCT/CN2013/073856
Other languages
French (fr)
Chinese (zh)
Inventor
潘中来
黄兴兰
马先果
邓佳闽
王璐
高建东
杜鸿昌
李仁贵
邓正华
Original Assignee
成都中科来方能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210181362.6A external-priority patent/CN102702657B/en
Priority claimed from CN201210219590.8A external-priority patent/CN102719046B/en
Application filed by 成都中科来方能源科技有限公司 filed Critical 成都中科来方能源科技有限公司
Publication of WO2013181967A1 publication Critical patent/WO2013181967A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Cell Separators (AREA)

Abstract

An ion polymer membrane material and an ion polymer membrane material/ceramic composite membrane material relate to the field of the manufacture of lithium batteries. The ion polymer membrane material is composed of polymer colloid particles with sulfonate groups on the surface thereof. The ion polymer membrane material is obtained using a reactive sulfonate surfactant as an emulsifying agent to synthesize an emulsion of acrylic polymer colloid with sulfonate groups on the surface thereof, and subjecting the emulsion to a casting and film-forming process to form a membrane. The ion polymer/ceramic filler composite membrane material is composed of the polymer colloidal particles with sulfonate groups on the surface thereof and a ceramic filler. The ion polymer/ceramic filler composite membrane material is obtained using a reactive sulfonate surfactant as an emulsifying agent to synthesize an emulsion of acrylic polymer colloid with sulfonate groups on the surface thereof, adding a ceramic filler slurry to the emulsion of acrylic polymer colloid, and after full dispersion to uniformity, subjecting the emulsion to a casting and film-forming process to form an ion polymer/ceramic filler composite membrane keeping the colloid particle structure.

Description

离子聚合物膜材料及其制备方法和锂二次电池 技术领域 本发明涉及用于锂离子二次电池等储能器件的隔膜材料及其制备方法, 属于锂电池 制造领域。 背景技术 电池是由正极、 负极、 隔膜和电解液组成。 隔膜在电池中是重要组件原之一, 它在电 池中的作用是作为电池内部正负极之间的隔离膜, 防止正负极直接接触造成内部短路, 同 时又要隔绝电子而确保电解液中的离子顺畅穿越, 以支撑电池的电化学反应。 它的微孔结 构、物理性能、化学特性、热性能等与电池性能有密切的相关性。对于锂离子电池的隔膜, 由于锂离子电池具有工作电压高, 正极材料的氧化性和负极材料的还原性较高, 锂离子电 池隔膜材料与高电化学活性的正负极材料应具备优良的相容性, 同时还应具备优良的稳定 性、 耐溶剂性、 离子导电性、 电子绝缘性、 较好的机械强度、较高的耐热性及熔断隔离性。 隔膜的物理、 化学特性取决于隔膜材料的材基, 不同材料的隔膜具有不同的物理、 化学特 性, 因而在电池中表现出较大差异的电池性能。  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator material for an energy storage device such as a lithium ion secondary battery and a method of producing the same, and relates to the field of lithium battery manufacturing. Background Art A battery is composed of a positive electrode, a negative electrode, a separator, and an electrolyte. The separator is one of the important components in the battery. Its function in the battery is to act as a separator between the positive and negative electrodes inside the battery. It prevents the direct contact between the positive and negative electrodes and causes internal short circuit. At the same time, it is necessary to isolate the electrons and ensure the electrolyte. The ions pass smoothly to support the electrochemical reaction of the battery. Its microporous structure, physical properties, chemical properties, thermal properties, etc. are closely related to battery performance. For the separator of a lithium ion battery, since the lithium ion battery has a high operating voltage, the oxidation property of the positive electrode material and the reduction property of the negative electrode material are high, the lithium ion battery separator material and the highly electrochemically active positive and negative electrode materials should have an excellent phase. Capacitance, should also have excellent stability, solvent resistance, ionic conductivity, electronic insulation, good mechanical strength, high heat resistance and fuse isolation. The physical and chemical properties of the membrane depend on the material of the membrane material. Different membranes have different physical and chemical properties and thus exhibit significantly different battery performance in the battery.
商品化的锂离子电池, 金属锂二次电池, 锂硫电池所使用的电池隔离膜, 主要是聚烯 烃微孔膜。 微孔膜在电池中的作用是作为电池内部正负极之间的隔离膜, 防止正负极直接 接触造成内部短路, 同时又要隔绝电子而确保电解液中的离子顺畅穿越, 以支撑电池的电 化学反应。  Commercialized lithium ion batteries, metal lithium secondary batteries, and battery separators used in lithium-sulfur batteries, mainly polyolefin microporous membranes. The role of the microporous membrane in the battery is to act as a separator between the positive and negative electrodes inside the battery, to prevent internal short circuit caused by direct contact between the positive and negative electrodes, and to isolate electrons while ensuring smooth passage of ions in the electrolyte to support the battery. Electrochemical reaction.
商品化的锂离子电池, 金属锂二次电池, 锂硫电池所使用的电池隔离膜, 主要是聚烯 烃微孔膜。 聚烯烃微孔膜制造方法有二种技术路线: 一种是干法技术路线; 另一种是湿法 技术路线。  Commercialized lithium ion batteries, metal lithium secondary batteries, and battery separators used in lithium-sulfur batteries, mainly polyolefin microporous membranes. There are two technical routes for the production of polyolefin microporous membranes: one is the dry technical route; the other is the wet technical route.
干法是将聚烯烃树脂熔融、挤压、吹塑成膜制成结晶性聚合物薄膜,经过结晶化处理、 退火后, 得到高度取向的多层结构, 在高温下进一步拉伸, 将结晶界面进行剥离, 形成多 孔结构, 可以增加薄膜的孔径。 干法按拉伸方向不同可分为干法单向拉伸和双向拉伸。  In the dry method, a polyolefin resin is melted, extruded, and blown into a film to form a crystalline polymer film, which is subjected to crystallization treatment and annealing to obtain a highly oriented multilayer structure, which is further stretched at a high temperature to form a crystal interface. Peeling is performed to form a porous structure, and the pore diameter of the film can be increased. The dry method can be divided into dry uniaxial stretching and biaxial stretching according to different stretching directions.
干法单向拉伸工艺是通过硬弹性纤维的方法, 制备出低结晶度的高取向 PE或 PP隔 膜,再高温退火获得高结晶度的取向薄膜。这种薄膜先在低温下进行拉伸形成银纹等缺陷, 然后在高温下使缺陷拉开, 形成微孔。 目前美国 Celgard公司、 日本宇部公司均采用此种 工艺生产单层 PE、 PP以及 3层 PP / PE / PP复合膜。 该工艺生产的隔膜具有扁长的微孔 结构, 由于只进行单向拉伸, 隔膜的横向强度比较差, 但横向几乎没有热收縮。 The dry uniaxial stretching process is a method of producing a highly crystalline oriented film by using a method of hard elastic fibers to prepare a highly oriented PE or PP separator having a low crystallinity and then annealing at a high temperature. The film is first stretched at a low temperature to form defects such as silver streaks, and then the defects are pulled apart at a high temperature to form micropores. At present, the United States Celgard company, Japan Ube company use this The process produces a single layer of PE, PP and a 3-layer PP / PE / PP composite film. The membrane produced by this process has a flat long microporous structure, and since the uniaxial stretching is performed only, the transverse strength of the separator is relatively poor, but there is almost no heat shrinkage in the transverse direction.
干法双向拉伸工艺是中国科学院化学研究所 20世纪 90年代初开发的制备工艺。通过 在 PP中加入具有成核作用的 β晶型改进剂, 利用 ΡΡ不同相态间密度的差异, 在拉伸过程 中发生晶型转变形成微孔。 与单向拉伸相比, 其在横向方向的强度有所提高, 而且可以根 据隔膜对强度的要求, 适当的改变横向和纵向的拉伸比来获得所需性能。  The dry biaxial stretching process is a preparation process developed by the Institute of Chemistry of the Chinese Academy of Sciences in the early 1990s. By adding a nucleation β crystal modifier in PP, the crystal form is transformed into micropores during the stretching process by utilizing the difference in density between different phases of ruthenium. Compared with uniaxial stretching, the strength in the transverse direction is improved, and the transverse and longitudinal stretching ratios can be appropriately changed according to the strength requirements of the separator to obtain desired properties.
干法拉伸工艺较简单, 且无污染, 是锂离子电池隔膜制备的常用方法, 但该工艺存在 孔径及孔隙率较难控制, 拉伸比较小, 只有约 1〜3, 同时低温拉伸时容易导致隔膜穿孔, 产品不能做得很薄。  The dry stretching process is simple and non-polluting, and is a common method for preparing lithium ion battery separators. However, the pore size and porosity of the process are difficult to control, and the stretching is relatively small, only about 1 to 3, while stretching at low temperature. It is easy to cause perforation of the diaphragm, and the product cannot be made very thin.
湿法又称相分离法或热致相分离法, 将液态烃或一些小分子物质与聚烯烃树脂混合, 加热熔融后, 形成均匀的混合物, 然后降温进行相分离, 压制得膜片, 再将膜片加热至接 近熔点温度, 进行双向拉伸使分子链取向, 最后保温一定时间, 用易挥发物质洗脱残留的 溶剂, 可制备出相互贯通的微孔膜材料, 此方法适用的材料范围广。 用湿法双向拉伸方法 生产的隔膜孔径范围处于相微观界面的尺寸数量级, 比较小而均匀, 双向的拉伸比均可达 到 5〜7, 因而隔膜性能呈现各向同性, 横向拉伸强度高, 穿刺强度大, 正常的工艺流程不 会造成穿孔, 产品可以做得更薄, 使电池能量密度更高。  The wet method is also called phase separation method or thermal phase separation method. The liquid hydrocarbon or some small molecular substances are mixed with the polyolefin resin, heated and melted to form a uniform mixture, and then the temperature is separated for phase separation, and the membrane is pressed to be pressed. The membrane is heated to near the melting point temperature, biaxially stretched to orient the molecular chain, and finally kept for a certain period of time, and the residual solvent is eluted with a volatile substance to prepare a microporous membrane material which is interpenetrated. The method is applicable to a wide range of materials. . The pore size range of the membrane produced by the wet biaxial stretching method is on the order of the size of the phase micro interface, which is relatively small and uniform, and the biaxial stretching ratio can reach 5 to 7, so that the membrane performance is isotropic and the transverse tensile strength is high. The puncture strength is large, the normal process will not cause perforation, the product can be made thinner, and the battery energy density is higher.
从聚烯烃微孔膜制造工艺可以看出,无论是干法还是湿法,成孔前都要进行机械拉伸, 所用的聚烯烃树脂均为聚丙烯(ΡΡ )或聚乙烯 (ΡΕ)非极性材料。 正由于 ΡΡ或 ΡΕ材料固有 的化学与物理特性及微孔膜制造工艺等原因, 在确保锂离子电池安全性和使用寿命方面聚 烯烃微孔膜还存在着性能缺陷。  It can be seen from the manufacturing process of polyolefin microporous membrane that whether it is dry or wet, mechanical stretching is carried out before the hole is formed, and the polyolefin resin used is polypropylene (ΡΡ) or polyethylene (ΡΕ) non-polar. Sexual material. Due to the inherent chemical and physical properties of the tantalum or niobium material and the microporous membrane manufacturing process, there are performance defects in the polyolefin microporous membrane to ensure the safety and service life of the lithium ion battery.
聚烯烃微孔膜存在的主要问题:一是微孔膜的吸液与保液能力差, ΡΡ或 ΡΕ是一种非 极性材料, 它与强极性的电解质溶液亲和性差, 电解液与聚烯烃微孔膜较低的亲和能力导 致了微孔膜的吸收与保持电解液能力差, 而微孔膜的吸液与保液能力强弱对电池的充放电 循环使用寿命有着密切的相关性; 二是微孔膜膜热稳定性差, 由于聚烯烃微孔膜是通过机 械拉伸致孔, 或机械拉伸后再用有机溶剂萃取致孔, 并经过热定型制得的微孔膜, 这种制 备工艺使得微孔膜存在残留应力, 使得微孔膜具有形状记忆效应, 当聚烯烃树脂受热温度 接近软化点后, 微孔膜有趋于恢复拉伸前的形状, 并产生较大的收縮, 微孔膜热收縮必伴 随体积收縮, 膜面积縮小现象发生, 使微孔膜散失正负之间的阻隔作用, 从而使电池内部 正负极发生短路, 引发电池燃烧、 爆炸等安全性问题。  The main problems of polyolefin microporous membrane: First, the microporous membrane has poor liquid absorption and liquid retention ability. Tantalum or niobium is a non-polar material, which has poor affinity with strong polar electrolyte solution, electrolyte and The lower affinity of the polyolefin microporous membrane leads to the poor absorption and retention of the microporous membrane. The absorption and retention of the microporous membrane is closely related to the charge and discharge cycle life of the battery. Second, the microporous membrane is poor in thermal stability, because the polyolefin microporous membrane is a microporous membrane obtained by mechanical stretching, or mechanically stretching and then extracting the pores with an organic solvent, and being heat-set. The preparation process causes residual stress in the microporous membrane, so that the microporous membrane has a shape memory effect. When the temperature of the polyolefin resin is close to the softening point, the microporous membrane tends to restore the shape before stretching and produces a larger shape. Shrinkage, microporous film heat shrinkage must accompany volume shrinkage, film area shrinkage occurs, so that the microporous membrane loses the barrier between positive and negative, thus causing a short circuit between the positive and negative electrodes inside the battery, causing battery burning, Security issues such as explosions.
基于聚烯烃微孔膜存在的性能缺陷, 及产生这些性能缺陷的成因, 本发明的发明人曾 经提出了一种具有热胀融合关闭效应的锂离子电池隔膜 (中国专利申请 CN 102280605A), 该膜包括微孔聚烯烃隔膜和其表面覆盖着粒径为 10-lOOOnm 的聚合物胶体粒子涂层。 所 述聚合物胶体粒子涂层是由丙烯腈于 EVA 的有机溶剂中聚合形成的聚合物胶体乳液涂覆 于微孔聚烯烃隔膜的表面, 干燥后形成的。 该改性后的隔膜具有热胀融合关闭效应, 热 稳定性好, 受热后的收縮率低, 避免电池燃烧、 爆炸现象的发生。 提高了电池的安全可 靠性; 另外它对电解质熔液具有良好的吸液和保液能力, 从而赋予锂离子电池优良的循 环寿命。 Based on the performance defects of polyolefin microporous membranes and the causes of these performance defects, the inventors of the present invention have A lithium ion battery separator having a thermal expansion fusion closing effect (Chinese Patent Application No. CN 102280605A) has been proposed, which comprises a microporous polyolefin membrane and a surface coated with a polymer colloidal particle coating having a particle size of 10 to 100 nm. . The polymer colloidal particle coating is a polymer colloidal emulsion formed by polymerizing acrylonitrile in an organic solvent of EVA, and is formed by drying on the surface of the microporous polyolefin separator. The modified membrane has a thermal expansion and fusion closing effect, good thermal stability, low shrinkage after heating, and avoids burning and explosion of the battery. It improves the safety and reliability of the battery; in addition, it has good liquid absorption and liquid retention ability for the electrolyte melt, thereby giving the lithium ion battery excellent cycle life.
本发明的发明人认为, 该膜虽有良好的电池性能和安全性, 但它是在微孔聚烯烃隔 膜的基础上改性而获得, 这势必提高了电池隔膜的成本, 在实用上受到隔膜价格的制约, 另外, 该膜在制备过程中需使用大量的甲苯作为溶剂, 这对环境存在污染问题, 同时也 增大了这种聚合物膜的制造成本。  The inventors of the present invention believe that although the film has good battery performance and safety, it is obtained by modifying on the basis of the microporous polyolefin separator, which is bound to increase the cost of the battery separator and is practically affected by the separator. In addition, the film needs to use a large amount of toluene as a solvent in the preparation process, which has a problem of environmental pollution and also increases the manufacturing cost of the polymer film.
发明内容 本发明的目的在于提供一种具有胶体粒子结构的无孔隙的致密膜, 离子聚合物膜材 料。 本发明提供的离子聚合物膜材料是由表面带有磺酸盐基团的聚合物胶体粒子构成。 它 是一种无孔隙的致密膜, 当电池过热后隔膜不会产生明显的热收縮。 Disclosure of the Invention An object of the present invention is to provide a non-porous dense film having an colloidal particle structure, an ionic polymer film material. The ionic polymer film material provided by the present invention is composed of polymer colloidal particles having a sulfonate group on the surface. It is a non-porous dense membrane that does not cause significant heat shrinkage when the battery is overheated.
上述方案优选的是, 所述表面带有磺酸盐基团的聚合物胶体粒子是表面带有磺酸盐基 团的丙烯酸酯类聚合物胶体粒子, 保证了离子聚合物膜材料与电解液有较好的相溶性。  Preferably, the polymer colloidal particles having a sulfonate group on the surface are acrylate-based polymer colloidal particles having a sulfonate group on the surface, which ensures that the ionic polymer membrane material and the electrolyte have Better compatibility.
本发明离子聚合物膜材料是在聚合反应过程中, 以反应型磺酸盐表面活性剂为乳化 剂, 合成表面带有磺酸盐基团的聚合物胶体乳液。 所述反应型磺酸盐表面活性剂为乙烯基 磺酸盐、 烯丙基磺酸盐、 甲基烯丙基磺酸盐、 烯丙氧基羟丙基磺酸盐、 甲基丙烯酸羟丙基 磺酸盐、 2-丙烯酰胺基 -2-甲基丙磺酸盐、 苯乙烯磺酸盐中的一种或多种混合使用; 其中, 阳离子为锂离子、 钠离子或钾离子。  The ionic polymer membrane material of the present invention is a polymer colloidal emulsion having a sulfonate group on its surface during the polymerization reaction using a reactive sulfonate surfactant as an emulsifier. The reactive sulfonate surfactants are vinyl sulfonate, allyl sulfonate, methallyl sulfonate, allyloxy hydroxypropyl sulfonate, hydroxypropyl methacrylate One or more of a sulfonate, 2-acrylamido-2-methylpropanesulfonate, and a styrenesulfonate are used in combination; wherein the cation is a lithium ion, a sodium ion or a potassium ion.
所述聚合物胶体乳液经流延成膜后形成保持胶体粒子结构的聚合物薄膜。 当电池过热 后隔膜基本不发生热收縮。 另外, 由于聚合物薄膜吸收电解液后胶体粒子与胶体粒子间形 成贯通的离子传导路径, 且, 吸收电解质溶液或溶剂后, 该离子聚合物膜材料能够依旧保 持胶体粒子结构, 胶体粒子球体结构的密集堆积, 增大了离子传导路径的曲折度, 提高了 聚阴离子电解质膜的电子绝缘性能。  The polymer colloidal emulsion is cast into a film to form a polymer film that maintains a colloidal particle structure. When the battery is overheated, the diaphragm does not substantially shrink. In addition, since the polymer film absorbs the electrolyte, a colloidal ion conduction path is formed between the colloidal particles and the colloidal particles, and after absorbing the electrolyte solution or the solvent, the ionic polymer film material can still maintain the colloidal particle structure, and the colloidal particle spherical structure The dense accumulation increases the tortuosity of the ion conduction path and improves the electronic insulation performance of the polyanion electrolyte membrane.
所述表面带有磺酸盐基团的聚合物胶体乳液成膜后, 采用扫描电镜观察胶体粒子的平 均粒径范围为 10nm〜1.0 m, 优选的是 20〜200nm。 离子聚合物膜的厚度为 10〜40 m。 本发明的第二个目的在于: 通过在上述离子聚合物膜中添加陶瓷填料, 制成离子聚合 物 /陶瓷复合膜, 以提高离子聚合物膜的刚性, 降低离子聚合物膜的形变。 它仍然是一种无 90 孔隙的致密膜。 After forming a polymer colloidal emulsion with a sulfonate group on the surface, the colloidal particles were observed by scanning electron microscopy. The average particle size ranges from 10 nm to 1.0 m, preferably from 20 to 200 nm. The ionic polymer film has a thickness of 10 to 40 m. A second object of the present invention is to form an ionic polymer/ceramic composite film by adding a ceramic filler to the above ionic polymer film to increase the rigidity of the ionic polymer film and to reduce the deformation of the ionic polymer film. It is still a dense film with no 90 pores.
上述方案优选的是, 所述表面带有磺酸盐基团的聚合物胶体粒子是表面带有磺酸盐基 团的丙烯酸酯类聚合物胶体粒子, 保证了离子聚合物膜材料与电解液有较好的相溶性。  Preferably, the polymer colloidal particles having a sulfonate group on the surface are acrylate-based polymer colloidal particles having a sulfonate group on the surface, which ensures that the ionic polymer membrane material and the electrolyte have Better compatibility.
本发明离子聚合物膜材料是在聚合反应过程中, 以反应型磺酸盐表面活性剂为乳化 剂, 合成表面带有磺酸盐基团的聚合物胶体乳液。 在上述聚合物胶体乳液中加入陶瓷填料 95 浆料, 充分分散均匀后经流延成膜, 形成离子聚合物 /陶瓷填料复合膜。 离子聚合物 /陶瓷 填料复合膜吸收电解液后胶体粒子与胶体粒子间形成贯通的离子传导路径, 且, 吸收电解 质溶液或溶剂后, 该复合膜材料能够依旧保持胶体粒子结构。 胶体粒子球体结构的密集堆 积, 以及均匀分散在膜中的陶瓷填料粒子, 增大了离子传导路径的曲折度, 提高了聚电解 质膜的电子绝缘性能。 同时, 陶瓷填料粒子的存在提高了离子聚合物膜的刚性, 降低离子 100 聚合物膜的形变。  The ionic polymer membrane material of the present invention is a polymer colloidal emulsion having a sulfonate group on its surface during the polymerization reaction using a reactive sulfonate surfactant as an emulsifier. A ceramic filler 95 slurry is added to the above polymer colloidal emulsion, uniformly dispersed, and then cast into a film to form an ionic polymer/ceramic filler composite film. The ionic polymer/ceramic filler composite film forms a penetrating ion conduction path between the colloidal particles and the colloidal particles after absorbing the electrolyte, and the composite film material can maintain the colloidal particle structure after absorbing the electrolyte solution or solvent. The dense packing of the colloidal particle structure and the ceramic filler particles uniformly dispersed in the film increase the tortuosity of the ion conduction path and improve the electronic insulation properties of the polyelectrolytic film. At the same time, the presence of ceramic filler particles increases the rigidity of the ionic polymer film and reduces the deformation of the ion 100 polymer film.
所述反应型磺酸盐表面活性剂为乙烯基磺酸盐、 烯丙基磺酸盐、 甲基烯丙基磺酸盐、 烯丙氧基羟丙基磺酸盐、 甲基丙烯酸羟丙基磺酸盐、 2-丙烯酰胺基 -2-甲基丙磺酸盐、 苯 乙烯磺酸盐中的一种或多种混合使用; 其中, 阳离子为锂离子、 钠离子或钾离子。  The reactive sulfonate surfactants are vinyl sulfonate, allyl sulfonate, methallyl sulfonate, allyloxy hydroxypropyl sulfonate, hydroxypropyl methacrylate One or more of a sulfonate, 2-acrylamido-2-methylpropanesulfonate, and a styrenesulfonate are used in combination; wherein the cation is a lithium ion, a sodium ion or a potassium ion.
所述表面带有磺酸盐基团的离子聚合物 /陶瓷填料中, 胶体粒子的平均粒径范围为 105 10nm〜1. 0 , 陶瓷填料粒子的平均粒径范围 10nm〜5. 00 ; 优选的是, 胶体粒子的平均 粒径范围为 20〜200nm,陶瓷填料粒子的平均粒径范围 20 nn!〜 0. 5 ;更优选 20nm〜200nm。  The preferred particle size range of the ceramic filler particles is from 10 nm to 5.00; the preferred particle size of the ceramic filler particles is from 10 nm to 5.00; Yes, the average particle size of the colloidal particles ranges from 20 to 200 nm, and the average particle size of the ceramic filler particles ranges from 20 nn! 〜 0. 5 ; more preferably 20 nm to 200 nm.
陶瓷填料粒子在膜中所占的质量百分比为 10-60%。 优选的是 15-50%, 更优选的是 25-30%。 所述离子聚合物 /陶瓷填料复合膜的厚度为 10〜40 m。 以下是制备方法:  The ceramic filler particles account for 10-60% by mass of the film. It is preferably 15-50%, more preferably 25-30%. The ionic polymer/ceramic filler composite film has a thickness of 10 to 40 m. The following are the preparation methods:
110 本发明所述离子聚合物膜是由以下方法制备而成: 110 The ionic polymer film of the present invention is prepared by the following method:
a.聚合物胶体乳液的合成: 将胶体保护剂和蒸馏水加入到反应瓶中, 加热搅拌直到完 全溶解, 加入反应型磺酸盐表面活性剂、 聚合反应单体和交联剂 (任意顺序) 混合均匀, 然后加入引发剂聚合反应得到聚合物胶体乳液; b . 聚合物胶体乳液, 涂覆在塑料基带上, 干燥后剥离即得。 a. Synthesis of polymer colloidal emulsion: Add colloidal protective agent and distilled water to the reaction flask, heat and stir until completely dissolved, and add reactive sulfonate surfactant, polymerization monomer and crosslinker (in any order) Uniform, then adding initiator polymerization to obtain a polymer colloidal emulsion; b. Polymer colloidal emulsion, coated on a plastic base tape, peeled off after drying.
115 作为本发明优选的方案是所述聚合反应单体是丙烯酸甲酯。 115. As a preferred embodiment of the present invention, the polymerization monomer is methyl acrylate.
上述方法所述反应型磺酸盐表面活性剂为乙烯基磺酸盐、 烯丙基磺酸盐、 甲基烯丙基 磺酸盐、 烯丙氧基羟丙基磺酸盐、 甲基丙烯酸羟丙基磺酸盐、 2-丙烯酰胺基 -2-甲基丙磺 酸盐、 苯乙烯磺酸盐中的一种或多种混合使用; 其中, 阳离子为锂离子、钠离子或钾离子。  The reactive sulfonate surfactants of the above methods are vinyl sulfonate, allyl sulfonate, methallyl sulfonate, allyloxy hydroxypropyl sulfonate, hydroxy methacrylate One or more of propyl sulfonate, 2-acrylamido-2-methylpropane sulfonate, and styrene sulfonate are used in combination; wherein the cation is a lithium ion, a sodium ion or a potassium ion.
为了调整膜材料的热收縮性、 对电解液的吸液保液能力和调节聚合物的柔韧性等等, 120 本发明进一步优选的方案是,聚合反应体系中还加入第二种聚合单体 CH^CRiR2进行聚合 反应。 In order to adjust the heat shrinkability of the film material, the liquid absorbing ability of the electrolyte, and the flexibility of the polymer, etc., a further preferred embodiment of the present invention is to add a second polymerization monomer CH to the polymerization reaction system. ^CRiR 2 is subjected to polymerization.
其中, R — H或一 CH3 ; R2=— C6H5、一 OCOCH3、一 CN、一 C4H6ON、一 C2H3C03、 -COO ( CH2)nCH3, n为 0〜14。 Wherein R - H or a CH 3 ; R 2 = - C 6 H 5 , an OCOCH 3 , a CN, a C 4 H 6 ON, a C 2 H 3 C0 3 , -COO ( CH 2 ) n CH 3 , n is 0~14.
第二种单体为上述单体中的任一种或多种混合使用, 其用量为聚合单体总重量的 2〜 125 50%, 优选 2〜10%。  The second monomer is used in combination of any one or more of the above monomers in an amount of 2 to 125 50%, preferably 2 to 10% by weight based on the total mass of the polymerizable monomers.
作为本发明优选的方案是, 聚合反应的原料: 反应型磺酸盐表面活性剂、 聚合反应单 体和交联剂是一次加入、 滴加或分步加入进行反应。 此处所述聚合反应单体是丙烯酸甲酯 单体或丙烯酸甲酯单体与第二单体的组合。  As a preferred embodiment of the present invention, the starting materials for the polymerization: the reactive sulfonate surfactant, the polymerization monomer and the crosslinking agent are added in one portion, dropwise or stepwise. The polymerization monomer described herein is a combination of a methyl acrylate monomer or a methyl acrylate monomer and a second monomer.
进一步优选的是, 先加入 1/5〜1/3的聚合反应的原料 (按重量计), 聚合反应一定时 130 间后再滴加或分步加入剩余的聚合反应的原料。  Further preferably, 1/5 to 1/3 of the raw material (by weight) of the polymerization reaction is first added, and the polymerization reaction is carried out for 130 minutes, and then the raw materials of the remaining polymerization are added dropwise or stepwise.
聚合反应时间以完成聚合反应完成为宜。 通常 4-36小时, 以 8〜24小时为佳。  The polymerization reaction time is preferably completed to complete the polymerization reaction. Usually 4-36 hours, preferably 8 to 24 hours.
聚合反应温度为 50〜90°C, 以 55〜70°C为佳。  The polymerization temperature is 50 to 90 ° C, preferably 55 to 70 ° C.
本发明所述离子聚合物 /陶瓷填料复合膜是由以下方法制备而成: The ionic polymer/ceramic filler composite film of the present invention is prepared by the following method:
135 1. 聚合物胶体乳液的合成: 将胶体保护剂和蒸馏水加入到反应瓶中, 加热搅拌直到 完全溶解, 加入反应型磺酸盐表面活性剂、聚合反应单体和交联剂(任意顺序)混合均匀, 然后加入引发剂聚合反应得到聚合物胶体乳液; 135 1. Synthesis of polymer colloidal emulsion: Add colloidal protective agent and distilled water to the reaction flask, heat and stir until completely dissolved, add reactive sulfonate surfactant, polymerization monomer and crosslinker (in any order) Mixing uniformly, then adding initiator polymerization to obtain a polymer colloidal emulsion;
2. 陶瓷填料浆料的制备: 在蒸馏水中加入陶瓷填料和分散剂, 分散均匀后, 再用球 磨机进一步碾磨分散, 过 200目的筛以除去未碾细的较大颗粒的物料既得。  2. Preparation of ceramic filler slurry: Ceramic filler and dispersant are added to distilled water. After dispersing evenly, it is further milled and dispersed by a ball mill. The sieve is passed through 200 mesh to remove the unmilled larger particles.
140 3. 将步骤 1制备的聚合物胶体乳液中加入步骤 2制备的陶瓷填料浆料, 分散均匀后 涂覆在塑料基带上, 如 PET (聚对苯二甲酸乙二醇酯)基带, 经烘干水分后, 剥离, 即得离 子聚合物 /陶瓷填料复合膜。 陶瓷填料在离子聚合物 /陶瓷填料复合膜中所占的质量百分比为 10-60%。 优选的是 15-50%。 140 3. Add the polymer colloidal emulsion prepared in step 1 to the ceramic filler slurry prepared in step 2, disperse uniformly and then apply it on a plastic base tape, such as PET (polyethylene terephthalate) base tape, and bake. After drying the water, it is peeled off to obtain an ionic polymer/ceramic filler composite film. The mass percentage of the ceramic filler in the ionic polymer/ceramic filler composite film is 10-60%. It is preferably 15-50%.
145  145
作为本发明优选的方案, 上述方法所述反应型磺酸盐表面活性剂为乙烯基磺酸盐、 烯 丙基磺酸盐、 甲基烯丙基磺酸盐、 烯丙氧基羟丙基磺酸盐、 甲基丙烯酸羟丙基磺酸盐、 2- 丙烯酰胺基 -2-甲基丙磺酸盐、 苯乙烯磺酸盐中的一种或多种混合使用; 其中, 阳离子为 锂离子、 钠离子或钾离子, 用量为聚合反应单体总重量的 2〜50%, 优选 2〜10%。  As a preferred embodiment of the present invention, the reactive sulfonate surfactant of the above method is vinyl sulfonate, allyl sulfonate, methallyl sulfonate, allyloxy hydroxypropyl sulfonate. a mixture of one or more of an acid salt, a hydroxypropyl methacrylate sulfonate, a 2-acrylamido-2-methylpropane sulfonate, and a styrene sulfonate; wherein the cation is a lithium ion, The sodium ion or potassium ion is used in an amount of 2 to 50%, preferably 2 to 10%, based on the total mass of the polymerization monomer.
150 作为本发明优选的方案, 步骤 1所述的胶体保护剂为聚乙烯醇、 聚氧化乙烯、 聚丙烯 酸盐、 聚乙烯基吡咯烷酮中的一种, 优选的是聚乙烯醇。 胶体保护剂的用量为聚合反应单 体总重量的 5〜30%, 优选的是 10〜25%。 150. In a preferred embodiment of the present invention, the colloidal protective agent described in the step 1 is one of polyvinyl alcohol, polyethylene oxide, polyacrylate, and polyvinylpyrrolidone, and preferably polyvinyl alcohol. The amount of the colloidal protective agent is 5 to 30%, preferably 10 to 25%, based on the total mass of the polymerization monomer.
步骤 2所述分散剂为聚乙烯醇、 聚氧化乙烯、 聚丙烯酸盐、 聚乙烯基吡咯烷酮中的一 种, 优选聚乙烯醇。所述陶瓷填料浆料中, 陶瓷填料的含量为 80〜95%, 分散剂的含量 5〜 155 20%, 浆料的固含量为 20〜50%。  The dispersing agent in the step 2 is one of polyvinyl alcohol, polyethylene oxide, polyacrylate, and polyvinylpyrrolidone, preferably polyvinyl alcohol. In the ceramic filler slurry, the content of the ceramic filler is 80 to 95%, the content of the dispersant is 5 to 155 20%, and the solid content of the slurry is 20 to 50%.
作为本发明优选的方案是所述聚合单体是丙烯酸甲酯, 在聚合物胶体中丙烯酸甲酯含 量为 40〜80%。  As a preferred embodiment of the present invention, the polymerizable monomer is methyl acrylate, and the methyl acrylate content in the polymer colloid is 40 to 80%.
为了调整膜材料的热收縮性、 对电解液的吸液保液能力和调节聚合物的柔韧性等等, 本发明进一步优选的方案是,聚合反应体系中还加入第二种聚合单体 CH2=CR R2进行聚合 160 反应; In order to adjust the heat shrinkability of the film material, the liquid absorbing ability of the electrolyte, and the flexibility of the polymer, etc., a further preferred embodiment of the present invention is to add a second polymerizable monomer CH 2 to the polymerization reaction system. =CR R 2 to carry out polymerization 160 reaction;
其中, -H 或一 CH3; R2= _C6H5、 _OCOCH3、 一 CN、 一 C4H6ON、 _C2H3C03、 — COO(CH2)nCH3, n为 0〜14。 Wherein -H or a CH 3 ; R 2 = _C 6 H 5 , _OCOCH 3 , a CN, a C 4 H 6 ON, _C 2 H 3 C0 3 , — COO(CH 2 )nCH 3 , n is 0~ 14.
第二种单体为上述单体中的任一种或多种混合使用, 其用量为聚合单体总重量的 2〜 50%, 优选 2〜10%。  The second monomer is used in combination of any one or more of the above monomers in an amount of 2 to 50%, preferably 2 to 10% based on the total mass of the polymerizable monomers.
165 所述的交联剂为含二个双键或二个双键以上的可聚合的单体, 如二乙烯苯、 三羟甲基 丙烷三丙烯酸酯、 已二酸二丙烯酯、 亚甲基双丙烯酰胺等, 其用量为聚合反应单体总重量 的 2. 0〜10. 0%。  The crosslinking agent described in 165 is a polymerizable monomer having two or more double bonds, such as divinylbenzene, trimethylolpropane triacrylate, dipropylene adipate, methylene. 0〜10. 0%。 The bis acrylamide, the amount of the total weight of the polymerization monomer is 2. 0~10. 0%.
所述的引发剂为过硫酸铵、 过硫酸钾、 过氧化氢、 偶氮二异丁脒等水溶性引发剂, 其 用量为单体重量的 0. 2〜1. 0%。  0%。 The initiator is 0. 2~1. 0%。 The initiator is 0. 2~1. 0%.
170 作为本发明优选的方案是, 聚合反应的原料: 反应型磺酸盐表面活性剂、 聚合反应单 体和交联剂是一次加入、 滴加或分步加入进行反应。 此处所述聚合反应单体是丙烯酸甲酯 单体或丙烯酸甲酯单体与第二单体的组合。 170 As a preferred embodiment of the present invention, the starting materials for the polymerization: the reactive sulfonate surfactant, the polymerization monomer and the crosslinking agent are added in one portion, dropwise or stepwise. The polymerization monomer described herein is methyl acrylate A combination of a monomer or a methyl acrylate monomer and a second monomer.
进一步优选的是, 先加入 1/5〜1/3 的聚合反应的原料 (按重量计), 聚合反应一定时 间后再滴加或分步加入剩余的聚合反应的原料。  Further preferably, 1/5 to 1/3 of the raw material (by weight) of the polymerization reaction is first added, and after the polymerization reaction for a certain period of time, the remaining polymerization raw materials are added dropwise or stepwise.
175 聚合反应时间以单体聚合反应的转化率达到 92%以上为宜。 通常 4-36小时, 以 8〜24 小时为佳。 175 The polymerization reaction time is preferably 92% or more of the conversion ratio of the monomer polymerization reaction. Usually 4-36 hours, preferably 8~24 hours.
聚合反应温度为 50〜90°C, 以 55〜70°C为佳。  The polymerization temperature is 50 to 90 ° C, preferably 55 to 70 ° C.
所述的陶瓷填料为金属氧化物和金属复合氧化物, 其通式为 NzMxOy, 其中 N为碱金 属或碱土金属元素, M为金属元素, Z为 0〜5, X为 1〜6, y为 1〜15。 陶瓷填料平均粒 180 径(D50)为 10 nn!〜 5.0 ,优选 20 nn!〜 0.5 ,优选的陶瓷填料为 A1203,平均粒径(D50) 为 20nm〜200nm。 本发明的有益效果 本发明提供了一种生产工艺简单、 制造成本低廉、 以水为分散介质对环境友好、 无污 染、 绿色环保的锂离子电池隔膜以及离子聚合物 /陶瓷填料复合膜的制备方法。 The ceramic filler is a metal oxide and a metal composite oxide, and has the general formula NzMxOy, wherein N is an alkali metal or alkaline earth metal element, M is a metal element, Z is 0 to 5, and X is 1 to 6, y is 1 to 15. The average grain diameter (D50) of the ceramic filler is 10 nn! ~ 5.0, preferably 20 nn! 〜 0.5 , the preferred ceramic filler is A1 2 0 3 and the average particle diameter (D50) is 20 nm to 200 nm. Advantageous Effects of the Invention The present invention provides a lithium ion battery separator and an ionic polymer/ceramic filler composite membrane which are simple in production process, low in manufacturing cost, environmentally friendly, non-polluting, and environmentally friendly with water as a dispersion medium. .
185 本发明的离子聚合物膜材料是丙烯酸酯类聚合物胶体粒子构成, 离子聚合物 /陶瓷填 料复合膜材料是丙烯酸酯类聚合物胶体粒子与无机填料构成, 丙烯酸酯类聚合物的溶解度 参数与电解液有机溶剂的溶解度参数相近, 保证了离子聚合物 /陶瓷填料复合膜与电解液 有较好的相溶性, 达到良好的吸液与保液能力, 可提高电池循环使用寿命。  185 The ionic polymer membrane material of the invention is composed of acrylate polymer colloidal particles, and the ionic polymer/ceramic filler composite membrane material is composed of acrylate polymer colloid particles and inorganic filler, and the solubility parameter of the acrylate polymer is The solubility parameters of the electrolyte organic solvent are similar, which ensures that the ionic polymer/ceramic filler composite membrane has good compatibility with the electrolyte, achieves good liquid absorption and liquid retention capacity, and can improve battery cycle life.
本发明是采用聚合物胶体乳液流延成膜工艺制成, 所得产品为无孔隙的致密膜, 无应 The invention is made by using a polymer colloidal emulsion casting film forming process, and the obtained product is a non-porous dense film, which should not be
190 力残留, 当电池过热时隔膜无明显的热收縮, 从而防止电池内部正负极短路。 离子聚合物 /陶瓷填料复合膜吸收电解液后胶体粒子与胶体粒子间形成贯通的离子传导路径, 且吸收 电解质溶液或溶剂后, 该复合膜材料能够依旧保持胶体粒子结构。 胶体粒子球体结构的密 集堆积, 以及均匀分散在膜中的陶瓷填料粒子, 增大了离子传导路径的曲折度, 提高了聚 电解质膜的电子绝缘性能。 同时, 陶瓷填料粒子的存在提高了离子聚合物膜的刚性, 降低190 force residual, when the battery is overheated, the diaphragm has no obvious heat shrinkage, thus preventing the internal and negative internal short circuit of the battery. The ionic polymer/ceramic filler composite film absorbs the electrolyte and forms a penetrating ion conduction path between the colloidal particles and the colloidal particles, and after absorbing the electrolyte solution or solvent, the composite film material can maintain the colloidal particle structure. The dense packing of the colloidal particle structure and the ceramic filler particles uniformly dispersed in the film increase the tortuosity of the ion conduction path and improve the electronic insulation performance of the polyelectrolyte film. At the same time, the presence of ceramic filler particles increases the rigidity of the ionic polymer film and reduces
195 离子聚合物膜的形变。 Deformation of 195 ionic polymer film.
附图说明  DRAWINGS
图 1单个表面含有磺酸盐基团的聚合物胶体粒子示意图, a表示磺酸根基团, b表示表 面带有磺酸根基团的聚合物胶体粒子。  Figure 1. Schematic diagram of polymer colloidal particles containing a sulfonate group on a single surface, a for the sulfonate group and b for the polymer colloidal particles bearing the sulfonate group on the surface.
图 2表面含有磺酸盐基团的聚合物胶体乳液示意图。  Figure 2 is a schematic illustration of a polymer colloidal emulsion containing a sulfonate group on the surface.
200 图 3由表面含有磺酸盐基团的聚合物胶体粒子构成的离子聚合物薄膜示意图。 图 4是本发明的离子聚合物膜电解液浸渍后的 SEM。 200 Figure 3 is a schematic representation of an ionic polymer film composed of polymer colloidal particles containing sulfonate groups on the surface. 4 is an SEM after immersion of the ionic polymer membrane electrolyte of the present invention.
图 5是本发明的离子聚合物膜为隔膜的锂电池充放电特性曲线, 纵坐标为电压 (V) 横坐标为克容量 (mAh/g)。  Fig. 5 is a graph showing the charge and discharge characteristics of a lithium battery in which the ionic polymer film of the present invention is a separator, and the ordinate is the voltage (V) and the abscissa is the gram capacity (mAh/g).
图 6是离子聚合物膜的锂电池充放电循环过程中容量保持率随循环次数变化曲线, 纵 205 坐标为容量保持率 (%), 横坐标为循环次数 (次)。  Fig. 6 is a graph showing the capacity retention ratio of the ionic polymer film during the charge and discharge cycle of the lithium battery as a function of the number of cycles. The vertical 205 coordinate is the capacity retention ratio (%), and the abscissa is the number of cycles (times).
图 7是实施例 1和实施例 13制备的离子聚合物膜和离子聚合物 /A1203复合膜的锂电池 放电曲线对比, 纵坐标为电压 (V), 横坐标为克容量 (mAh/g), a为离子聚合物 /A1203复合 膜电池, b为离子聚合物膜电池。 7 is a comparison of discharge curves of lithium batteries prepared by the ionic polymer film and the ionic polymer/A1 2 3 composite film prepared in Example 1 and Example 13, wherein the ordinate is voltage (V) and the abscissa is gram capacity (mAh/). g), a is an ionic polymer/A1 2 0 3 composite membrane battery, and b is an ionic polymer membrane battery.
图 8是实施例 13制备的离子聚合物 /A1203复合膜的锂电池第 5次和第 100次充放电曲 210 线, 纵坐标为电压 (V), 横坐标为克容量 (mAh/g), A为第 5次充放电曲线, B为第 100 次充放电曲线。 Figure 8 is a diagram showing the fifth and 100th charge and discharge curves of a lithium battery of the ionic polymer/A1 2 3 composite film prepared in Example 13, with the ordinate on the voltage (V) and the abscissa as the gram capacity (mAh/). g), A is the 5th charge and discharge curve, and B is the 100th charge and discharge curve.
图 9是实施例 13制备的离子聚合物 /A1203复合膜的扫描电镜图片。 以下通过具体实施例的方式对本发明做进一步详述, 但不代表本发明只能以以下方式 实施。 Figure 9 is a scanning electron micrograph of the ionic polymer/A1 2 3 composite film prepared in Example 13. The invention is further described in detail below by way of specific examples, but does not represent that the invention can be practiced in the following manner.
215 具体实施方式 215 Detailed Description
离子聚合物膜材料, 是由表面带有磺酸盐基团的丙烯酸酯类聚合物胶体粒子构成。 所 述聚合物优选与电解液所用溶剂溶解度参数相近的丙烯酸酯类聚合物, 同时离子聚合物膜 表面的强极性基团与非水电解质的超级溶剂可形成化学缔合作用, 保证了本发明离子聚合 物膜材料与电解液有较好的相溶性, 达到良好的吸液与保液能力。  The ionic polymer film material is composed of acrylate-based polymer colloidal particles having a sulfonate group on the surface. The polymer is preferably an acrylate-based polymer having a solvent solubility parameter similar to that used in the electrolyte, and the strong polar group on the surface of the ionic polymer film forms a chemical association with the super solvent of the non-aqueous electrolyte, thereby ensuring the present invention. The ionic polymer membrane material has good compatibility with the electrolyte, and achieves good liquid absorption and liquid retention capabilities.
220 本发明离子聚合物膜材料是在聚合反应过程中, 以反应型磺酸盐表面活性剂为乳化 剂, 合成表面带有磺酸盐基团的丙烯酸酯类聚合物胶体乳液。 乳液经流延成膜后形成保持 胶体粒子结构的聚合物薄膜。 这种具有胶体粒子结构的聚合物薄膜吸收电解质溶液后, 在 胶体粒子间可形成贯通的离子传导路径, 另外, 吸收电解质溶液或溶剂后, 该离子聚合物 膜材料能够依旧保持胶体粒子结构, 胶体粒子球体结构的密集堆积, 增大了离子传导路径 The ionic polymer film material of the present invention is an acrylate polymer colloidal emulsion having a sulfonate group on the surface thereof during the polymerization reaction using a reactive sulfonate surfactant as an emulsifier. The emulsion is cast into a film to form a polymer film that maintains the structure of the colloidal particles. When the polymer film having the colloidal particle structure absorbs the electrolyte solution, a through ion conduction path can be formed between the colloidal particles, and after the electrolyte solution or the solvent is absorbed, the ionic polymer film material can maintain the colloidal particle structure, colloid. Dense packing of particle sphere structure, increasing ion conduction path
225 的曲折度, 提高了聚阴离子电解质膜的电子绝缘性能。 The tortuosity of 225 improves the electrical insulation properties of the polyanion electrolyte membrane.
作为本发明优选的方案, 表面带有磺酸盐基团的聚合物胶体乳液成膜后, 采用扫描电 镜观察胶体粒子的平均粒径范围为 10nm〜1.0 m, 优选的是 20〜200nm。 离子聚合物膜 的厚度为 10〜40 m。 所述反应型磺酸盐表面活性剂为乙烯基磺酸盐、 烯丙基磺酸盐、 甲基烯丙基磺酸盐、 230 烯丙氧基羟丙基磺酸盐、 甲基丙烯酸羟丙基磺酸盐、 2-丙烯酰胺基 -2-甲基丙磺酸盐、 苯 乙烯磺酸盐中的一种或多种混合使用; 其中, 阳离子为锂离子、 钠离子或钾离子。 As a preferred embodiment of the present invention, after forming a film of a polymer colloidal emulsion having a sulfonate group on the surface, the average particle diameter of the colloidal particles is observed by a scanning electron microscope to be in the range of 10 nm to 1.0 m, preferably 20 to 200 nm. The ionic polymer film has a thickness of 10 to 40 m. The reactive sulfonate surfactants are vinyl sulfonate, allyl sulfonate, methallyl sulfonate, 230 allyloxy hydroxypropyl sulfonate, hydroxypropyl methacrylate One or more of a sulfonate, a 2-acrylamido-2-methylpropanesulfonate, and a styrenesulfonate are used in combination; wherein the cation is a lithium ion, a sodium ion or a potassium ion.
所述离子聚合物膜是由以下方法制备而成:  The ionic polymer film is prepared by the following method:
a.聚合物胶体乳液的合成: 将胶体保护剂和蒸馏水加入到反应瓶中, 加热搅拌直到完 全溶解, 加入反应型磺酸盐表面活性剂、 聚合反应单体和交联剂 (任意顺序) 混合均匀, a. Synthesis of polymer colloidal emulsion: Add colloidal protective agent and distilled water to the reaction flask, heat and stir until completely dissolved, and add reactive sulfonate surfactant, polymerization monomer and crosslinker (in any order) Evenly,
235 然后加入引发剂聚合反应得到聚合物胶体乳液; 235 then adding an initiator polymerization to obtain a polymer colloidal emulsion;
b . 聚合物胶体乳液, 涂覆在塑料基带上, 干燥后剥离即得。  b. Polymer colloidal emulsion, coated on a plastic base tape, peeled off after drying.
作为本发明优选的方案是所述聚合单体是丙烯酸甲酯。  As a preferred embodiment of the present invention, the polymerizable monomer is methyl acrylate.
为了调整膜材料的热收縮性、 对电解液的吸液保液能力和调节聚合物的柔韧性等等, 本发明进一步优选的方案是,聚合反应体系中还加入第二种聚合单体 CHfCR^R2进行聚合 240 反应。 In order to adjust the heat shrinkability of the film material, the liquid absorbing ability of the electrolyte, and the flexibility of the polymer, etc., a further preferred embodiment of the present invention is to add a second polymerization monomer CHfCR^ to the polymerization reaction system. R 2 is subjected to a polymerization 240 reaction.
其中, R — H或一 CH3; R2=— C6H5、一 OCOCH3、一 CN、一 C4H6ON、一 C2H3C03、 -COO ( CH2)nCH3, n为 0〜14。 Wherein R - H or a CH 3 ; R 2 = - C 6 H 5 , an OCOCH 3 , a CN, a C 4 H 6 ON, a C 2 H 3 C0 3 , -COO ( CH 2 ) n CH 3 , n is 0~14.
第二种单体为上述单体中的任一种或多种混合使用, 其用量为聚合单体总重量的 2〜 50%, 优选 2〜10%。  The second monomer is used in combination of any one or more of the above monomers in an amount of 2 to 50%, preferably 2 to 10% based on the total mass of the polymerizable monomers.
245 作为本发明优选的方案是, 聚合反应的原料: 反应型磺酸盐表面活性剂、 聚合单体和 交联剂是一次加入、 滴加或分步加入进行反应。 此处所述聚合反应单体是丙烯酸甲酯单体 或丙烯酸甲酯单体与第二单体的组合。  245 As a preferred embodiment of the present invention, the starting materials for the polymerization: the reactive sulfonate surfactant, the polymerizable monomer and the crosslinking agent are added in one portion, dropwise or stepwise. The polymerization monomer described herein is a combination of a methyl acrylate monomer or a methyl acrylate monomer and a second monomer.
进一步优选的是, 先加入 1/5〜1/3的聚合反应的原料 (按重量计), 聚合反应一定时 间后再滴加或分步加入剩余的聚合反应的原料。  Further preferably, 1/5 to 1/3 of the raw material (by weight) of the polymerization reaction is first added, and after the polymerization reaction is carried out for a certain period of time, the remaining polymerization raw materials are added dropwise or stepwise.
250 聚合反应时间以完成聚合反应完成为宜。 通常 4-36小时, 以 8〜24小时为佳。 250 The polymerization time is preferably completed to complete the polymerization. Usually 4-36 hours, preferably 8 to 24 hours.
聚合反应温度为 50〜90°C, 以 55〜70°C为佳。  The polymerization temperature is 50 to 90 ° C, preferably 55 to 70 ° C.
作为优选的方案是, 蒸馏水和聚乙烯醇加入反应装置后升温至 85-95 °C, 待聚乙烯醇 完全溶解后冷却至 55〜70°C, 然后再加入聚合反应原料进行聚合反应。  Preferably, distilled water and polyvinyl alcohol are added to the reaction apparatus, and the temperature is raised to 85 to 95 ° C. After the polyvinyl alcohol is completely dissolved, it is cooled to 55 to 70 ° C, and then the polymerization raw material is further added to carry out polymerization.
本发明所述胶体保护剂是为聚乙烯醇、 聚氧化乙烯、 聚丙烯酸盐、 聚乙烯基吡咯烷酮 255 中的一种, 优选的是聚乙烯醇。 胶体保护剂的用量为聚合反应单体总重量的 5〜30%, 优选 的是 10〜25%。  The colloidal protective agent of the present invention is one of polyvinyl alcohol, polyethylene oxide, polyacrylate, and polyvinylpyrrolidone 255, and is preferably polyvinyl alcohol. The amount of the colloidal protective agent is 5 to 30%, preferably 10 to 25%, based on the total mass of the polymerization monomer.
所述的交联剂为含二个双键或二个双键以上的可聚合的单体, 如二乙烯苯、 三羟甲基 丙烷三丙烯酸酯、 已二酸二丙烯酯、 亚甲基双丙烯酰胺等, 其用量为聚合反应单体总重量 的 2. 0〜10. 0%, 优选的是 5. 0〜7. 0%。 The crosslinking agent is a polymerizable monomer having two or more double bonds, such as divinylbenzene or trimethylol. 0%, 0%, preferably 0. 0~7. 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0%, 0% .
260 所述的引发剂是聚合反应常用引发剂, 比如过硫酸铵、 过硫酸钾、 过氧化氢、 偶氮二 异丁脒等水溶性引发剂, 其用量为聚合单体总重量的 0. 1〜2. 0%, 优选的是 0. 5〜1. 0%。 离子聚合物 /陶瓷填料复合膜材料, 是由表面带有磺酸盐基团的丙烯酸酯类聚合物胶 体粒子和陶瓷填料构成。 所述聚合物优选与电解液所用溶剂溶解度参数相近的丙烯酸酯类 聚合物, 同时离子聚合物 /陶瓷填料复合膜胶体粒子表面的强极性基团与非水电解质的超 265 级溶剂可形成化学缔合作用, 保证了本发明离子聚合物膜材料与电解液有较好的相溶性, 达到良好的吸液与保液能力。 至1. The total weight of the polymerized monomer is 0.1% by weight of the total weight of the polymerized monomer. The initiator is a commonly used initiator for the polymerization, such as ammonium persulfate, potassium persulfate, hydrogen peroxide, azobisisobutyl hydrazine and the like. 〜 0. 0%, preferably 0. 5~1. 0%. The ionic polymer/ceramic filler composite film material is composed of acrylate-based polymer colloidal particles having a sulfonate group on the surface and a ceramic filler. The polymer is preferably an acrylate-based polymer having a solvent solubility parameter similar to that used in the electrolyte, and the strong polar group on the surface of the ionic polymer/ceramic filler composite membrane colloidal particles and the non-aqueous electrolyte of the super-265 electrolyte form chemistry. The cooperation ensures that the ionic polymer membrane material of the invention has good compatibility with the electrolyte, and achieves good liquid absorption and liquid retention ability.
作为本发明优选的方案, 表面带有磺酸盐基团的聚合物胶体粒子的平均粒径范围为 10nm〜1. 0 , 陶瓷填料粒子的粒径范围 ΙΟηιι!〜 5. 00 ; 优选的是, 胶体粒子的平均粒径 范围为 20〜200nm, 陶瓷填料粒子的平均粒径范围 20 nn!〜 0. 5 ; 更优选 20nm〜200nm。  As a preferred embodiment of the present invention, the polymer colloidal particles having a sulfonate group on the surface have an average particle diameter ranging from 10 nm to 1.0. The particle size range of the ceramic filler particles ΙΟηιι! ~ 5. 00; Preferably, the colloidal particles have an average particle size ranging from 20 to 200 nm, and the ceramic filler particles have an average particle size range of 20 nn! 〜 0. 5 ; more preferably 20 nm to 200 nm.
270 所述离子聚合物 /陶瓷填料复合膜是由以下方法制备而成: 270 The ionic polymer/ceramic filler composite film is prepared by the following method:
1.首先合成表面含有阴离子基团的聚合物胶体乳液, 将胶体保护剂和蒸馏水加入到反 应瓶中, 加热搅拌直到完全溶解; 再将反应器温度恒定到所需反应温度 50〜90°C, 以 60〜 70°C为佳, 一次加入反应型磺酸盐表面活性剂与丙烯酸甲酯和第二种单体及交联剂, 然后 加入引发剂引发聚合, 也可以先加入 1/5〜1/3的反应型磺酸盐表面活性剂与丙烯酸甲酯, 1. Firstly synthesize a polymer colloidal emulsion containing an anionic group on the surface, add a colloidal protective agent and distilled water to the reaction flask, heat and stir until completely dissolved; and then constant the reactor temperature to a desired reaction temperature of 50 to 90 ° C, Preferably, the reaction type sulfonate surfactant is added with methyl acrylate and the second monomer and the crosslinking agent at a time of 60 to 70 ° C, and then the initiator is added to initiate polymerization, or 1/5 to 1 may be added first. /3 reactive sulfonate surfactant with methyl acrylate,
275 随后滴加或分步加入剩余的反应型磺酸盐表面活性剂与丙烯酸甲酯和第二种单体及交联 剂, 聚合反应 4〜36小时, 以 8〜24小时为佳。 275 Subsequently, the remaining reactive sulfonate surfactant is added dropwise or stepwise to the methyl acrylate and the second monomer and the crosslinking agent, and the polymerization is carried out for 4 to 36 hours, preferably 8 to 24 hours.
2.预分散陶瓷填料浆料的制备, 在蒸馏水中加入陶瓷填料和份分散剂, 搅拌分散均匀 后, 再采用搅拌球磨机进一步碾磨分散, 碾磨分散时间羽 2〜10小时, 优选 3〜5小碾磨 后的浆料再通过〈200目的筛网过滤以除去未碾细的较大颗粒的物料。  2. Preparation of pre-dispersed ceramic filler slurry, adding ceramic filler and dispersant in distilled water, stirring and dispersing uniformly, then further grinding and dispersing by using agitating ball mill, grinding and dispersing time plume for 2~10 hours, preferably 3~5 The milled slurry was then filtered through a <200 mesh screen to remove unmilled larger particles.
280 3.将合成好的聚合物胶体乳液中加入规定量的预分散好的陶瓷填料浆料, 聚合物胶体 乳液与陶瓷填料浆料的混合物再采用搅拌分散设备充分搅拌分散均匀, 然后采用流延涂布 方法涂覆在塑料基带上, 如 PET (聚对苯二甲酸乙二醇酯)基带, 经烘干水分后, 剥离, 即 得离子聚合物 /陶瓷填料复合膜。  280 3. Add a predetermined amount of pre-dispersed ceramic filler slurry to the synthesized polymer colloidal emulsion, and mix the polymer colloidal emulsion and the ceramic filler slurry with agitation and dispersion equipment, stir and disperse uniformly, and then cast. The coating method is coated on a plastic base tape, such as a PET (polyethylene terephthalate) base tape, and after drying the moisture, it is peeled off to obtain an ionic polymer/ceramic filler composite film.
所述反应型磺酸盐表面活性剂为乙烯基磺酸盐、 烯丙基磺酸盐、 甲基烯丙基磺酸盐、 The reactive sulfonate surfactant is a vinyl sulfonate, an allyl sulfonate, a methallyl sulfonate,
285 烯丙氧基羟丙基磺酸盐、 甲基丙烯酸羟丙基磺酸盐、 2-丙烯酰胺基 -2-甲基丙磺酸盐、 苯 乙烯磺酸盐中的一种或多种混合使用; 其中, 阳离子为锂离子、 钠离子或钾离子, 用量为 聚合反应单体总重量的 2〜50%, 优选 2〜10%。 285 allyloxyhydroxypropyl sulfonate, hydroxypropyl sulfonate methacrylate, 2-acrylamido-2-methylpropane sulfonate, benzene One or more of the ethylene sulfonates are used in combination; wherein the cation is lithium ion, sodium ion or potassium ion, and the amount is 2 to 50%, preferably 2 to 10%, based on the total weight of the polymerization monomer.
步骤 1所述的胶体保护剂为聚乙烯醇、 聚氧化乙烯、 聚丙烯酸盐、 聚乙烯基吡咯烷酮 中的一种, 优选的是聚乙烯醇。 胶体保护剂的用量为聚合反应单体总重量的 5〜30%, 优选 290 的是 10〜25%。  The colloidal protective agent according to step 1 is one of polyvinyl alcohol, polyethylene oxide, polyacrylate, and polyvinylpyrrolidone, and preferably polyvinyl alcohol. The amount of the colloidal protective agent is 5 to 30% by weight based on the total weight of the polymerization monomer, preferably 10 to 25% by 290.
步骤 2所述陶瓷填料分散剂为聚乙烯醇、 聚氧化乙烯、 聚丙烯酸盐、 聚乙烯基吡咯烷 酮中的一种, 优选聚乙烯醇。 所述陶瓷填料浆料中, 陶瓷填料的含量为 80〜95%, 分散剂 的含量 5〜20%, 浆料的固含量为 20〜50%。  The ceramic filler dispersant of the step 2 is one of polyvinyl alcohol, polyethylene oxide, polyacrylate, and polyvinylpyrrolidone, preferably polyvinyl alcohol. In the ceramic filler slurry, the content of the ceramic filler is 80 to 95%, the content of the dispersant is 5 to 20%, and the solid content of the slurry is 20 to 50%.
作为本发明优选方案的聚合物胶体中丙烯酸甲酯含量为 40〜80%。  The polymer colloid which is a preferred embodiment of the present invention has a methyl acrylate content of 40 to 80%.
295 所述第二种聚合单体为 CHfCRiR 其中, Rf—H或— CH3; R2= _C6H5、 _OCOCH3295 The second polymerizable monomer is CHfCRiR wherein Rf—H or —CH 3 ; R 2 = _C 6 H 5 , _OCOCH 3 ,
— CN、 _C4H6ON、 — C2H3C03、 -COO(CH2)nCH3 , n为 0〜14。 — CN, _C 4 H 6 ON, — C 2 H 3 C0 3 , —COO(CH 2 )nCH 3 , n is 0-14.
第二种单体为上述单体中的任一种或多种混合使用, 其用量为聚合反应单体总重量的 2〜50%, 优选 2〜10%。  The second monomer is used in combination of any one or more of the above monomers in an amount of 2 to 50%, preferably 2 to 10% based on the total mass of the polymerization monomer.
所述的交联剂为含二个双键或二个双键以上的可聚合的单体, 如二乙烯苯、 三羟甲基 300 丙烷三丙烯酸酯、已二酸二丙烯酯、亚甲基双丙烯酰胺等,其用量为单体重量的 2.0〜10.0%。  The crosslinking agent is a polymerizable monomer having two or more double bonds, such as divinylbenzene, trimethylol 300 propane triacrylate, dipropylene adipate, methylene Bisacrylamide or the like is used in an amount of from 2.0 to 10.0% by weight based on the weight of the monomer.
所述的引发剂为过硫酸铵、 过硫酸钾、 过氧化氢、 偶氮二异丁脒等水溶性引发剂, 其 用量为单体重量的 0.2〜1.0%。  The initiator is a water-soluble initiator such as ammonium persulfate, potassium persulfate, hydrogen peroxide or azobisisobutylphosphonate, and is used in an amount of 0.2 to 1.0% by weight based on the weight of the monomer.
作为本发明优选的方案是, 聚合反应的原料: 反应型磺酸盐表面活性剂、 聚合反应单 体和交联剂是一次加入、 滴加或分步加入进行反应。 此处所述聚合反应单体是丙烯酸甲酯 305 单体或丙烯酸甲酯单体与第二单体的组合。  As a preferred embodiment of the present invention, the starting materials for the polymerization: the reactive sulfonate surfactant, the polymerization monomer and the crosslinking agent are added in one portion, dropwise or stepwise. The polymerization monomer described herein is a combination of a methyl acrylate 305 monomer or a methyl acrylate monomer and a second monomer.
进一步优选的是, 先加入 1/5〜1/3 的聚合反应的原料 (按重量计), 聚合反应一定时 间后再滴加或分步加入剩余的聚合反应的原料。  Further preferably, 1/5 to 1/3 of the raw material (by weight) of the polymerization reaction is first added, and after the polymerization reaction for a certain period of time, the remaining polymerization raw materials are added dropwise or stepwise.
所述的陶瓷填料为金属氧化物和金属复合氧化物, 其通式为 NzMxOy, 其中 N为碱金 属或碱土金属元素, M为金属元素, Z为 0〜5, X为 1〜6, y为 1〜15。 比如: A1203, Si02, 310 Li4Ti5012The ceramic filler is a metal oxide and a metal composite oxide, and has the general formula NzMxOy, wherein N is an alkali metal or alkaline earth metal element, M is a metal element, Z is 0 to 5, and X is 1 to 6, y is 1 to 15. For example: A1 2 0 3 , Si0 2 , 310 Li 4 Ti 5 0 12 .
陶瓷填料平均粒径(D50 ), 较好为 10 nn!〜 5.0 , 更好为 20 nn!〜 0.5 , 优选的陶瓷 填料为 A1203, 平均粒径 (D50 ) 为 20nm〜200nm。 以下是具体实施例。 315 实施例 1 在带冷凝水的四口反应容器中,加入 1000g蒸馏水和聚乙烯醇 51g,然后升温至 92°C, 搅拌溶解,待聚乙烯醇完全溶解后冷却至 60°C, 加入 156g 丙烯酸甲酯 (MA) 单体、 10g 烯丙氧基羟丙基磺酸钠(AHPS)和 10g交联剂亚甲基双丙烯酰胺搅拌 lh, 加入 2g过硫酸 铵引发聚合, 反应进行 6小时后, 再加入 100g (MA) 和 5gAHPS, 同时补加 1.5g过硫酸 320 铵继续聚合 10小时, 得固形物含量 23.9%的白色的聚合物胶体乳液, 单体转换率达 96%。 The average particle size of the ceramic filler (D50) is preferably 10 nn! ~ 5.0, better for 20 nn! ~ 0.5 , The preferred ceramic filler is A1 2 0 3 and the average particle diameter (D50) is 20 nm to 200 nm. The following are specific examples. 315 Example 1 In a four-port reaction vessel with condensed water, 1000 g of distilled water and 51 g of polyvinyl alcohol were added, and then the temperature was raised to 92 ° C, stirred and dissolved. After the polyvinyl alcohol was completely dissolved, it was cooled to 60 ° C, and 156 g of acrylic acid was added. Methyl ester (MA) monomer, 10 g of sodium allyloxyhydroxypropyl sulfonate (AHPS) and 10 g of cross-linking agent methylene bis acrylamide were stirred for 1 h, and polymerization was initiated by adding 2 g of ammonium persulfate. After the reaction was carried out for 6 hours, Further, 100 g (MA) and 5 g of AHPS were added, and 1.5 g of ammonium persulfate was further added for further polymerization for 10 hours to obtain a white polymer colloidal emulsion having a solid content of 23.9%, and the monomer conversion rate was 96%.
所合成的聚合物胶体乳液, 采用激光粒度分析仪测定的胶体粒子平均粒径 (D50) 为 1.62 。  The synthesized polymer colloidal emulsion had a gel particle average particle diameter (D50) of 1.62 as measured by a laser particle size analyzer.
将制备的聚合物胶体乳液涂覆在 PET基带上, 烘干水分后, 得厚度为 20〜25 m厚 的离子聚合物膜, 采用扫描电镜观察胶体粒子的粒径范围在 80〜100nm。  The prepared polymer colloidal emulsion was coated on a PET base tape, and after drying the moisture, an ionic polymer film having a thickness of 20 to 25 m was obtained, and the particle size of the colloidal particles was observed by scanning electron microscopy to be in the range of 80 to 100 nm.
325 图 1是单个表面含有磺酸盐基团的聚合物胶体粒子示意图, a表示磺酸根基团, b表示 表面带有磺酸根基团的聚合物胶体粒子。 图 2表面含有磺酸根基团的聚合物胶体乳液示意 图。 图 3由表面含有磺酸根基团的聚合物胶体粒子构成的离子聚合物薄膜示意图。 325 Figure 1 is a schematic representation of polymer colloidal particles containing a sulfonate group on a single surface, a for the sulfonate group and b for the polymer colloidal particles bearing a sulfonate group on the surface. Figure 2 is a schematic representation of a polymer colloidal emulsion containing a sulfonate group on the surface. Figure 3 is a schematic representation of an ionic polymer film composed of polymer colloidal particles having a sulfonate group on the surface.
实施例 2 在带冷凝水的四口反应容器中,加入 1000g蒸馏水和聚乙烯醇 51g,然后升温至 92°C, 330 搅拌溶解,待聚乙烯醇完全溶解后冷却至 60°C, 加入 156g丙烯酸甲酯 (MA) 单体、 10g2- 丙烯酰胺基 -2-甲基丙磺酸盐 (AMPS) 和 10g交联剂亚甲基双丙烯酰胺搅拌 lh, 加入 2g 过硫酸铵引发聚合, 反应进行 6小时后, 再加入 100g (MA) 和 5gAMPS, 同时补加 1.5g 过硫酸铵继续聚合 10小时, 得白色的聚合物胶体乳液。  Example 2 In a four-port reaction vessel with condensed water, 1000 g of distilled water and 51 g of polyvinyl alcohol were added, and then the temperature was raised to 92 ° C, and the mixture was stirred and dissolved. After the polyvinyl alcohol was completely dissolved, it was cooled to 60 ° C, and 156 g of acrylic acid was added. Methyl ester (MA) monomer, 10 g of 2-acrylamido-2-methylpropane sulfonate (AMPS) and 10 g of crosslinker methylene bis acrylamide were stirred for 1 h, and 2 g of ammonium persulfate was added to initiate polymerization. After the hour, 100 g (MA) and 5 g of AMPS were further added, and 1.5 g of ammonium persulfate was further added for further polymerization for 10 hours to obtain a white polymer colloidal emulsion.
将制备的聚合物胶体乳液涂覆在 PET基带上, 烘干水分后, 得厚度为 20〜25 m厚 335 的离子聚合物膜, 采用扫描电镜观察胶体粒子的粒径范围在 80〜100nm。  The prepared polymer colloidal emulsion was coated on a PET base tape, and after drying the moisture, an ionic polymer film having a thickness of 20 to 25 m thick was obtained, and the particle size of the colloidal particles was observed by scanning electron microscopy to be in the range of 80 to 100 nm.
实施例 3 在带冷凝水的四口反应容器中,加入 1000g蒸馏水和聚乙烯醇 51g,然后升温至 92°C, 搅拌溶解,待聚乙烯醇完全溶解后冷却至 60°C, 加入 156g丙烯酸甲酯 (MA) 单体、 8g烯 丙基磺酸盐 (SAS) 和 10g交联剂亚甲基双丙烯酰胺搅拌 lh, 加入 2g过硫酸铵引发聚合, 340 反应进行 6小时后, 再加入 100g (MA) 和 4gSAS, 同时补加 1.5g过硫酸铵继续聚合 10 小时, 得白色的聚合物胶体乳液。  Example 3 In a four-port reaction vessel with condensed water, 1000 g of distilled water and 51 g of polyvinyl alcohol were added, and then the temperature was raised to 92 ° C, stirred and dissolved. After the polyvinyl alcohol was completely dissolved, it was cooled to 60 ° C, and 156 g of acrylic acid was added. The ester (MA) monomer, 8 g of allyl sulfonate (SAS) and 10 g of crosslinker methylene bis acrylamide were stirred for 1 h, and 2 g of ammonium persulfate was added to initiate polymerization. After 340 reaction for 6 hours, 100 g ( MA) and 4 g of SAS were simultaneously added with 1.5 g of ammonium persulfate to continue polymerization for 10 hours to obtain a white polymer colloidal emulsion.
将制备的聚合物胶体乳液涂覆在 PET基带上, 烘干水分后, 得到厚度为 20〜25μηι厚 的离子聚合物膜, 采用扫描电镜观察胶体粒子的粒径范围在 40〜60nm。 实施例 4 The prepared polymer colloidal emulsion was coated on a PET base tape, and after drying the moisture, an ionic polymer film having a thickness of 20 to 25 μm was obtained, and the particle diameter of the colloidal particles was observed by a scanning electron microscope to be in the range of 40 to 60 nm. Example 4
345 在带冷凝水的四口反应容器中,加入 1000g蒸馏水和聚乙烯醇 51g,然后升温至 92°C, 搅拌溶解,待聚乙烯醇完全溶解后冷却至 60°C, 加入 156g丙烯酸甲酯 (MA) 单体、 8g烯 丙基磺酸盐 (SAS ) 和 10g交联剂已二酸二丙烯酯搅拌 lh, 加入 2g过硫酸铵引发聚合, 反应进行 6小时后, 再加入 100g ( MA) 和 4gSAS, 同时补加 1.5g过硫酸铵继续聚合 10 小时, 得白色的聚合物胶体乳液。 345 In a four-port reaction vessel with condensed water, add 1000 g of distilled water and 51 g of polyvinyl alcohol, then raise the temperature to 92 ° C, stir to dissolve, and after the polyvinyl alcohol is completely dissolved, cool to 60 ° C, and add 156 g of methyl acrylate ( MA) monomer, 8g allyl sulfonate (SAS) and 10g of cross-linking agent dipropylene diacrylate were stirred for 1h, 2g ammonium persulfate was added to initiate polymerization, after 6 hours of reaction, 100g (MA) and then added 4 g of SAS, while adding 1.5 g of ammonium persulfate to continue polymerization for 10 hours, gave a white polymer colloidal emulsion.
350 将制备的聚合物胶体乳液涂覆在 PET基带上, 烘干水分后, 得厚度为 20〜25 μ πι厚的 离子聚合物膜, 采用扫描电镜观察胶体粒子的粒径范围在 4(T60nm。 实施例 5 The polymer coated colloidal emulsion 350 produced in the baseband PET, after drying the water, a thickness of 20~25 μ πι ionic polymer thick film, using a particle size range of colloidal particles in scanning electron microscope 4 (T60n m Example 5
本实施例聚合物胶体乳液和离子聚合物膜的制法同于实施例 4, 唯一不同的是, 增加 了 25g第二种单体丙烯酰胺 (CH2CHCONH2)。 The polymer colloidal emulsion and the ionic polymer membrane of this example were prepared in the same manner as in Example 4 except that 25 g of the second monomer acrylamide (CH 2 CHCONH 2 ) was added.
355 实施例 6  355 Example 6
本实施例聚合物胶体乳液和离子聚合物膜的制法同于实施例 4, 唯一不同的是, 增加 了 25g第二种单体丙烯腈 (CH2CHCN)。 The polymer colloidal emulsion and ionic polymer film of this example were prepared in the same manner as in Example 4 except that 25 g of the second monomer acrylonitrile (CH 2 CHCN) was added.
实施例 7  Example 7
本实施例聚合物胶体乳液和离子聚合物膜的制法同于实施例 4, 唯一不同的是, 增加 360 了 25g第二种单体丙烯酸丁酯 (CH2CHCOOCH2CH2CH2CH3)。 The polymer colloidal emulsion and the ionic polymer membrane of this example were prepared in the same manner as in Example 4, except that the addition of 25 g of the second monomer butyl acrylate (CH 2 CHCOOCH 2 CH 2 CH 2 CH 3 ) was increased by 360. .
实施例 8  Example 8
本实施例聚合物胶体乳液和离子聚合物膜的制法同于实施例 4, 唯一不同的是, 增加 了 25g第二种单体乙烯基碳酸乙烯酯 (CH2CHC2H3C03)。 The polymer colloidal emulsion and the ionic polymer film of this example were prepared in the same manner as in Example 4 except that 25 g of the second monomer vinyl vinyl carbonate (CH 2 CHC 2 H 3 C0 3 ) was added.
以下实施例采用的陶瓷填料浆料通过以下方法制备:  The ceramic filler slurry used in the following examples was prepared by the following method:
365 A1203浆料的制备: 在 1000份蒸馏水中加入聚合度为 1700、水解度为 99%的聚乙烯醇 Preparation of 365 A1 2 0 3 slurry: Polyvinyl alcohol having a degree of polymerization of 1700 and a degree of hydrolysis of 99% was added to 1000 parts of distilled water.
20份, 然后加热至 90〜94°C, 在搅拌下溶解聚乙烯醇 3小时, 随后冷却至室温再加 200份 平均粒径(D50 )为 36nm的 A1203, 搅拌分散均匀后, 再采用搅拌球磨机进一步碾磨分散, 碾磨分散时间为 4小时,碾磨后的浆料再通过 <200目的筛网过滤以除去未碾细的较大颗粒 的物料。 20 parts, then heated to 90~94 ° C, dissolved polyvinyl alcohol under stirring for 3 hours, then cooled to room temperature and then added 200 parts of A1 2 0 3 with an average particle diameter (D50) of 36 nm, stirred and dispersed evenly, and then The dispersion was further milled using a stirring ball mill, and the milling dispersion time was 4 hours. The milled slurry was then filtered through a <200 mesh screen to remove unmilled larger particles.
370 在 A1203浆料加工过程中, 因水分的挥发流失, 最终得到的浆料中 A1203的含量为 370 During the processing of A1 2 0 3 slurry, the content of A1 2 0 3 in the finally obtained slurry is due to the loss of moisture evaporation.
21.5%。 实施例 9 离子聚合物 /陶瓷填料复合膜 的制备 21.5%. Example 9 Preparation of ionic polymer/ceramic filler composite membrane
取实施例 1制备的聚合物胶体乳液 100g, A1203浆料 12.4g, 置于三口烧瓶中搅拌时间 10小时,, 得分散均匀的聚合物胶体乳液与 A1203浆料混合物浆料, 然后采用流延涂布方 375 法将混合物浆料涂覆在 PET(聚对苯二甲酸乙二醇酯)基带上, 经烘干水分后, 剥离, 得厚 度为 20〜25μηι的离子聚合物 /Α1203复合膜, 其中, Α1203在膜中所占的质量百分比为 10%。 实施例 10 离子聚合物 /陶瓷填料复合膜 的制备 100 g of the polymer colloidal emulsion prepared in Example 1 and 12.4 g of the A1 2 0 3 slurry were placed in a three-necked flask for 10 hours to obtain a uniformly dispersed polymer colloidal emulsion and A1 2 0 3 slurry mixture slurry. Then, the mixture slurry is coated on a PET (polyethylene terephthalate) base tape by a cast coating method 375, and after drying the water, it is peeled off to obtain an ionic polymer having a thickness of 20 to 25 μm. /Α1 2 0 3 composite film, wherein Α1 2 0 3 accounts for 10% by mass in the film. Example 10 Preparation of Ionic Polymer/Ceramic Filler Composite Film
本实施例离子聚合物 /Α1203复合膜的制法同于实施例 9, 唯一不同的是, Α1203浆料加 380 入是为 19.6g, 其中, A1203在膜中所占的质量百分比为 15%, 离子聚合物 /A1203复合膜厚 度为 20〜25μηι。 The ionic polymer/Α1 2 3 composite film of this embodiment was prepared in the same manner as in Example 9, except that the Α1 2 0 3 slurry plus 380 was 19.6 g, wherein A1 2 0 3 was in the film. The mass percentage is 15%, and the ionic polymer/A1 2 0 3 composite film has a thickness of 20 to 25 μm.
实施例 11离子聚合物 /陶瓷填料复合膜 的制备  Example 11 Preparation of ionic polymer/ceramic filler composite membrane
本实施例离子聚合物 /Α1203复合膜的制法同于实施例 9, 唯一不同的是, Α1203浆料加 入是为 27.8g, 其中, A1203在膜中所占的质量百分比为 20%, 离子聚合物 /A1203复合膜厚 385 度为 20〜25μηι。 Example embodiment of the present ionic polymer / Α1 2 0 3 Composite Membrane prepared in Example 9 in the same, the only difference is, Α1 2 0 3 is added to 27.8 g of the slurry, wherein, A1 2 0 3 film in proportion The mass percentage is 20%, and the ionic polymer/A1 2 0 3 composite film has a thickness of 385 degrees of 20 to 25 μm.
实施例 12离子聚合物 /陶瓷填料复合膜 的制备  Example 12 Preparation of Ionic Polymer/Ceramic Filler Composite Film
本实施例离子聚合物 /Α1203复合膜的制法同于实施例 9, 唯一不同的是, Α1203浆料加 入是为 37.1g, 其中, A1203在膜中所占的质量百分比为 25%, 离子聚合物 /A1203复合膜厚 度为 20〜25μηι。 Example embodiment of the present ionic polymer / Α1 2 0 3 Composite Membrane prepared in Example 9 in the same, the only difference is, Α1 2 0 3 is added to 37.1 g of the slurry, wherein, A1 2 0 3 film in proportion The mass percentage is 25%, and the ionic polymer/A1 2 0 3 composite film has a thickness of 20 to 25 μm.
390 实施例 13 离子聚合物 /陶瓷填料复合膜 的制备  390 Example 13 Preparation of ionic polymer/ceramic filler composite membrane
本实施例离子聚合物 /Α1203复合膜的制法同于实施例 9, 唯一不同的是, Α1203浆料加 入是为 47.6g, 其中, A1203在膜中所占的质量百分比为 30%, 离子聚合物 /A1203复合膜厚 度为 20〜25μηι。 Example embodiment of the present ionic polymer / Α1 2 0 3 Composite Membrane prepared in Example 9 in the same, the only difference is, Α1 2 0 3 is added to 47.6 g of the slurry, wherein, A1 2 0 3 film in proportion The mass percentage is 30%, and the ionic polymer/A1 2 0 3 composite film has a thickness of 20 to 25 μm.
实施例 14离子聚合物 /陶瓷填料复合膜 的制备  Example 14 Preparation of ionic polymer/ceramic filler composite membrane
395 本实施例离子聚合物 /Α1203复合膜的制法同于实施例 9, 唯一不同的是, Α1203浆料加 入是为 74.1g, 其中, A1203在膜中所占的质量百分比为 40%, 离子聚合物 /A1203复合膜厚 度为 20〜25μηι。 395 cases of embodiment of ionic polymer / Α1 2 0 3 Composite Membrane prepared in Example 9 in the same, the only difference is, Α1 2 0 3 is added to the slurry 74.1 g, wherein, A1 2 0 3 film in Suo The mass percentage is 40%, and the ionic polymer/A1 2 0 3 composite film has a thickness of 20 to 25 μm.
实施例 15离子聚合物 /陶瓷填料复合膜 的制备  Example 15 Preparation of ionic polymer/ceramic filler composite membrane
本实施例离子聚合物 /Α1203复合膜的制法同于实施例 9, 唯一不同的是, Α1203浆料加 400 入是为 111.2g, 其中, A1203在膜中所占的质量百分比为 50%, 离子聚合物 /A1203复合膜厚 度为 20〜25μηι。 The ionic polymer/Α1 2 3 3 composite film of this embodiment is prepared in the same manner as in the embodiment 9, except that the Α1 2 0 3 slurry is added. The 400-in is 111.2 g, wherein A1 2 0 3 accounts for 50% by mass in the film, and the ionic polymer/A1 2 0 3 composite film has a thickness of 20 to 25 μm.
实施例 16 离子聚合物 /陶瓷填料复合膜 的制备  Example 16 Preparation of ionic polymer/ceramic filler composite membrane
本实施例离子聚合物 /Α1203复合膜的制法同于实施例 9, 唯一不同的是, Α1203浆料加 入是为 166.7g, 其中, A1203在膜中所占的质量百分比为 60%, 离子聚合物 /A1203复合膜厚 405 度为 20〜25μηι。 Example embodiment of the present ionic polymer / Α1 2 0 3 Composite Membrane prepared in Example 9 in the same, the only difference is, Α1 2 0 3 is added to 166.7 g paste, wherein, A1 2 0 3 film in proportion The mass percentage is 60%, and the ionic polymer/A1 2 0 3 composite film has a thickness of 405 degrees of 20 to 25 μm.
试验例 1  Test example 1
将实施例 1〜8 制得的离子聚合物膜浸渍在碳酸乙烯酯 /碳酸二乙酯 /碳酸二甲酯和 LiPF6组成的电解质溶液中, 待离子聚合物膜充分吸收电解质溶液后, 使用电化学阻抗仪 测定其离子电导率、 测定电解质溶液吸收量, 同时也以商品化的聚丙烯和聚丙烯微孔膜在 410 同样的条件下测定其离子电导率和电解质溶液吸收量作为对比, 测试结果列于表 1。 The ionic polymer film prepared in Examples 1 to 8 was immersed in an electrolyte solution composed of ethylene carbonate/diethyl carbonate/dimethyl carbonate and LiPF 6 to be used after the ionic polymer film sufficiently absorbed the electrolyte solution. The chemical conductivity meter was used to measure the ionic conductivity and the absorption of the electrolyte solution. The ionic conductivity and the absorption of the electrolyte solution were also measured under the same conditions of commercial polypropylene and polypropylene microporous membranes. Listed in Table 1.
离子聚合物膜在电解质溶液中浸渍后, 膜的典型的微观形态结构扫描电镜照片如图 4 所示, 本发明的离子聚合物膜微观形态结构经电解质溶液浸渍后依旧保持胶体粒子形态。 试验例 2  After the ionic polymer film is immersed in the electrolyte solution, the scanning electron micrograph of the typical microscopic morphology of the film is shown in Fig. 4. The microstructure of the ionic polymer film of the present invention remains in the form of colloidal particles after being impregnated with the electrolyte solution. Test example 2
将实施例 1〜8制得的离子聚合物膜和商品化的聚丙烯和聚丙烯微孔膜加热至 130°C和 415 150°C, 测定其热收縮率, 测试结果列于表 1。  The ionic polymer films obtained in Examples 1 to 8 and commercial polypropylene and polypropylene microporous films were heated to 130 ° C and 415 150 ° C, and the heat shrinkage ratio thereof was measured. The test results are shown in Table 1.
表 1.本发明离子聚合物膜的电解液吸收量、 离子电导率和热收縮率  Table 1. Electrolyte absorption, ionic conductivity and thermal shrinkage of the ionic polymer membrane of the present invention
Figure imgf000017_0001
由表 1的对比数据表明本发明的离子聚合物膜的热收縮率很小, 聚乙烯和聚丙烯微孔 膜在相同温度下如 150°C已产生严重收縮或熔化。 试验例 3
Figure imgf000017_0001
The comparative data from Table 1 shows that the ionic polymer film of the present invention has a small heat shrinkage rate, and the polyethylene and polypropylene microporous films have undergone severe shrinkage or melting at the same temperature, for example, 150 °C. Test Example 3
420 将实施例 5制备的离子聚合物膜按本行业技术人员均熟悉的扣式电池制备工艺组装成420 The ionic polymer film prepared in Example 5 was assembled into a button cell preparation process familiar to those skilled in the art.
2032扣式电池, 该电池以 LiMn204为正极材料, 金属锂为负极材料和碳酸乙烯酯 /碳酸二 乙酯 /碳酸二甲酯/ LiPF6组成的电解质溶液构成, 2032扣式锂电池在 0.2C倍率条件下进行 充放电性能测试。 2032 button battery, which uses LiMn 2 0 4 as the positive electrode material, lithium metal as the negative electrode material and electrolyte solution composed of ethylene carbonate / diethyl carbonate / dimethyl carbonate / LiPF 6 , 2032 button lithium battery in The charge and discharge performance test was carried out under the condition of 0.2 C rate.
图 5是离子聚合物膜的锂电池充放电曲线, 它表明使用离子聚合物膜为电池隔膜, 其 425 电池具有良好的充放电性能。  Figure 5 is a graph of the charge and discharge of a lithium battery of an ionic polymer film, which shows that the ionic polymer film is used as a battery separator, and the 425 battery has good charge and discharge performance.
图 6是离子聚合物膜的锂电池充放电循环过程中容量保持率随循环次数变化曲线, 它 证实了离子聚合物膜的电池具有良好的充放电循环性能。  Fig. 6 is a graph showing the capacity retention ratio as a function of the number of cycles during the charge and discharge cycle of the lithium battery of the ionic polymer film, which confirmed that the battery of the ionic polymer film has good charge and discharge cycle performance.
试验例 4  Test example 4
将实施例 9〜16制得的离子聚合物 /A1203复合膜浸渍在碳酸乙烯酯 /碳酸二乙酯 /碳酸二 430 甲酯和 LiPF6组成的电解质溶液中, 待复合膜充分吸收电解质溶液后, 测定电解质溶液吸 收量, 并使用电化学阻抗仪测定其离子电导率, 测试结果列于表 2。 The ionic polymer/A1 2 3 composite film prepared in Examples 9 to 16 was immersed in an electrolyte solution composed of ethylene carbonate/diethyl carbonate/dicarbonate 430 methyl ester and LiPF 6 until the composite film sufficiently absorbed the electrolyte. After the solution, the amount of absorption of the electrolyte solution was measured, and the ionic conductivity was measured using an electrochemical impedance meter. The test results are shown in Table 2.
试验例 5  Test example 5
将实施例 9〜16制得的离子聚合物 /A1203复合膜加热至 130°C,测定其热收縮率,测试 结果列于表 2。 The ionic polymer/A1 2 3 composite film obtained in Examples 9 to 16 was heated to 130 ° C, and the heat shrinkage ratio thereof was measured. The test results are shown in Table 2.
435 表 2. 离子聚合物 /A1203复合膜的电解液吸收量、 离子电导率和热收縮率 435 Table 2. Electrolyte absorption, ionic conductivity and thermal shrinkage of ionic polymer/A1 2 0 3 composite membrane
Figure imgf000018_0001
表 2的数据表明本发明的离子聚合物 /A1203复合膜, 随 A1203的增加热收縮率逐渐减 小, 电导率在陶瓷填料 30%左右呈现最佳值, 当陶瓷填料含量超过 50%后, 电导率随之 下降。 因此, 从以上数据表明, 陶瓷填料的含量不宜超过 60%。 优选的是 15-50%, 更优 440 选的是 25-30%。
Figure imgf000018_0001
The data in Table 2 shows that the ionic polymer/A1 2 3 composite film of the present invention gradually decreases in thermal shrinkage rate with the increase of A1 2 0 3 , and the electrical conductivity exhibits an optimum value at about 30% of the ceramic filler. After more than 50%, the conductivity decreases. Therefore, from the above data, the content of the ceramic filler should not exceed 60%. Preferably, it is 15-50%, more preferably 440 is 25-30%.
试验例 6  Test example 6
将实施例 1和实施例 13制备的离子聚合物和离子聚合物 / A1203复合膜按本行业技术 人员均熟悉的扣式电池制备工艺组装成 2032扣式电池, 该电池以 LiMn204为正极材料, 金属锂为负极材料和碳酸乙烯酯 /碳酸二乙酯 /碳酸二甲酯 /LiPF6 组成的电解质溶液构成,The ionic polymer and ionic polymer/A1 2 3 composite film prepared in Example 1 and Example 13 were assembled into a 2032 button battery according to a button cell preparation process familiar to those skilled in the art, and the battery was LiMn 2 0 . 4 is a positive electrode material, metal lithium is composed of an anode material and an electrolyte solution composed of ethylene carbonate/diethyl carbonate/dimethyl carbonate/LiPF6,
445 2032扣式锂电池在 0.2C倍率条件下进行充放电性能测试。 The 445 2032 button lithium battery was tested for charge and discharge performance at 0.2C rate.
图 7是实施例 1和实施例 13制备的离子聚合物膜和离子聚合物 /A1203复合膜的锂电池 放电曲线, 它表明离子聚合物 /A1203复合膜比离子聚合物膜具有更好的充放电性能, 在相 同条件下, 离子聚合物膜的电池锰酸锂材料的克容量只有 107mAh/g, 而离子聚合物 /A1203 复合膜的电池锰酸锂材料的克容量达到 115mAh/g。 锰酸锂材料克容量的提高是得助于Figure 7 is a lithium battery discharge curve of the ionic polymer film and the ionic polymer/A1 2 3 composite film prepared in Example 1 and Example 13, which shows that the ionic polymer/A1 2 0 3 composite film is more than the ionic polymer film. has better charge-discharge characteristics, under the same conditions, the battery capacity g g manganese lithium ion polymer film material only 107mAh / g, and the ionic polymer / A1 2 battery lithium manganate material 03 of the composite film The capacity reaches 115 mAh/g. The increase in the gram capacity of lithium manganate material is supported by
450 A1203与聚合物胶体间的异相界面的存在,这种异相界面有助于提高离子聚合物 /A1203复合 膜的离子电导率。 The presence of a heterophase interface between the 450 A1 2 0 3 and the polymer colloid helps to increase the ionic conductivity of the ionic polymer/A1 2 3 composite film.
图 8是实施例 13制备的离子聚合物 /A1203复合膜的锂电池第 5次和第 100次充放电曲 线, 进行了 100次充放电循环后, 其容量保持率为初始容量的 98%, 呈现优异的充放电循 环性能。 8 is a fifth and 100th charge-discharge curve of a lithium battery of the ionic polymer/A1 2 3 composite film prepared in Example 13, and after 100 charge-discharge cycles, the capacity retention rate is 98 of the initial capacity. %, exhibits excellent charge and discharge cycle performance.
455 图 9是实施例 13制备的离子聚合物 /A1203复合膜的扫描电镜图片,图片可以显示复合 膜在电解质溶液浸渍后, 依旧由胶体粒子与陶瓷填料粒子构成其膜的微观结构。 455 Figure 9 is a scanning electron micrograph of the ionic polymer/A1 2 3 composite film prepared in Example 13, which shows that the composite film is still composed of colloidal particles and ceramic filler particles after the electrolyte solution is impregnated.

Claims

权利要求书 claims
1、 一种离子聚合物膜材料, 其特征在于: 它是由表面带有磺酸盐基团的聚合物胶体 460 粒子构成。 1. An ionic polymer membrane material, characterized by: It is composed of polymer colloid 460 particles with sulfonate groups on the surface.
2、 根据权利要求书 1 所述的离子聚合物膜材料, 其特征在于: 所述聚合物胶体粒子 是丙烯酸甲酯类聚合物胶体粒子。 2. The ionic polymer membrane material according to claim 1, characterized in that: the polymer colloid particles are methyl acrylate polymer colloid particles.
3、 根据权利要求书 2所述的离子聚合物膜材料, 其特征在于: 所述磺酸盐基团为乙 烯基磺酸盐、 烯丙基磺酸盐、 甲基烯丙基磺酸盐、 烯丙氧基羟丙基磺酸盐、 甲基丙烯酸羟 3. The ionic polymer membrane material according to claim 2, characterized in that: the sulfonate group is vinyl sulfonate, allyl sulfonate, methylallyl sulfonate, Allyloxyhydroxypropyl sulfonate, hydroxymethacrylate
465 丙基磺酸盐、 2-丙烯酰胺基 -2-甲基丙磺酸盐、 苯乙烯磺酸盐中的一种或多种。 465 One or more of propyl sulfonate, 2-acrylamido-2-methylpropane sulfonate, and styrene sulfonate.
4、根据权利要求书 1-3任一项所述的离子聚合物膜材料, 其特征在于: 聚合物胶体乳 液成膜后, 胶体粒子的粒径范围为 10nm〜1.0 m, 优选的是 20〜200nm。 4. The ionic polymer membrane material according to any one of claims 1 to 3, characterized in that: after the polymer colloidal emulsion is film-formed, the particle size range of the colloidal particles is 10 nm~1.0 m, preferably 20~ 200nm.
5、 根据权利要求书 4所述的离子聚合物膜材料, 其特征在于: 所述离子聚合物膜的 厚度为 10〜40 m。 5. The ionic polymer membrane material according to claim 4, characterized in that: the thickness of the ionic polymer membrane is 10~40 m.
470 6、 离子聚合物膜材料的制备方法, 其特征在于: 在聚合反应形成聚合物胶体粒子的 过程中, 加入反应型磺酸盐表面活性剂为乳化剂, 合成表面带有磺酸盐基团的丙烯酸酯类 聚合物胶体乳液, 该乳液成膜、 干燥既得。 470 6. Preparation method of ionic polymer membrane material, characterized by: During the polymerization reaction to form polymer colloidal particles, a reactive sulfonate surfactant is added as an emulsifier, and the synthetic surface has a sulfonate group. The acrylic polymer colloidal emulsion is formed into a film and dried.
7、 根据权利要求书 6所述的离子聚合物膜材料的制备方法, 其特征在于: 反应型磺 酸盐表面活性剂为乙烯基磺酸盐、 烯丙基磺酸盐、 甲基烯丙基磺酸盐、 烯丙氧基羟丙基磺 7. The preparation method of ionic polymer membrane material according to claim 6, characterized in that: the reactive sulfonate surfactant is vinyl sulfonate, allyl sulfonate, methylallyl sulfonate Sulfonate, Allyloxyhydroxypropyl Sulfonate
475 酸盐、 甲基丙烯酸羟丙基磺酸盐、 2-丙烯酰胺基 -2-甲基丙磺酸盐、 苯乙烯磺酸盐中的一 种或多种混合使用; 其中, 阳离子为锂离子、 钠离子或钾离子。 475 acid salt, methacrylic acid hydroxypropyl sulfonate, 2-acrylamido-2-methylpropane sulfonate, styrene sulfonate, or a mixture of one or more thereof; wherein the cation is lithium ion , sodium ions or potassium ions.
8、 根据权利要求书 7所述的离子聚合物膜材料的制备方法, 其特征在于: 离子聚合 物膜是由以下方法制备而成: 8. The method for preparing an ionomer membrane material according to claim 7, characterized in that: the ionomer membrane is prepared by the following method:
a.聚合物胶体乳液的合成: 将胶体保护剂和蒸馏水加入到反应瓶中, 加热搅拌直到完 480 全溶解, 加入反应型磺酸盐表面活性剂、 聚合反应单体和交联剂混合均匀, 然后加入引发 剂聚合反应得到聚合物胶体乳液; a. Synthesis of polymer colloidal emulsion: Add the colloidal protective agent and distilled water into the reaction bottle, heat and stir until completely dissolved, add reactive sulfonate surfactant, polymerization monomer and cross-linking agent and mix evenly. Then an initiator is added for polymerization reaction to obtain a polymer colloidal emulsion;
b . 聚合物胶体乳液, 涂覆在塑料基带上, 干燥后剥离即得。 b. Polymer colloidal emulsion, coated on the plastic base tape, dried and peeled off.
9、 根据权利要求书 8 所述的离子聚合物膜材料的制备方法, 其特征在于: 所述聚合 反应单体是丙烯酸甲酯。 9. The method for preparing an ionic polymer membrane material according to claim 8, characterized in that: the polymerization reaction monomer is methyl acrylate.
485 10、 根据权利要求书 9所述的离子聚合物膜材料的制备方法, 其特征在于: 聚合反应 体系中还加入第二种聚合单体 CH^CRiR2进行聚合反应; 其中, Ι^= _Η或 _CH3 ; 485 10. The method for preparing an ionic polymer membrane material according to claim 9, characterized in that: a second polymerized monomer CH^CRiR 2 is also added to the polymerization reaction system to perform the polymerization reaction; Wherein, Ι^=_H or _CH 3 ;
R2=— C6H5、 — OCOCH3、 — CN、 — C4H6ON、 — C2H3C03、 -COO ( CH2)nCH3, n为 0〜 R 2 =—C 6 H 5 , — OCOCH 3 , — CN, — C 4 H 6 ON , — C 2 H 3 C0 3 , -COO (CH 2 ) n CH 3 , n is 0~
14, 中的任一种或多种混合使用。 14, any one or a mixture of more of them is used.
490 1 1、 根据权利要求书 9所述的离子聚合物膜材料的制备方法, 其特征在于: 所述第二 种单体用量为聚合单体总重量的 2〜50%, 优选 2〜10%。 490 1 1. The preparation method of ionomer membrane material according to claim 9, characterized in that: the amount of the second monomer is 2~50% of the total weight of polymerized monomers, preferably 2~10% .
12、 根据权利要求书 8-11任一项所述的离子聚合物膜材料的制备方法, 其特征在于: 所述胶体保护剂是为聚乙烯醇、 聚氧化乙烯、 聚丙烯酸盐、 聚乙烯基吡咯烷酮中的一种, 优选的是聚乙烯醇。 12. The preparation method of ionomer membrane material according to any one of claims 8-11, characterized in that: the colloidal protective agent is polyvinyl alcohol, polyethylene oxide, polyacrylate, polyvinyl alcohol One type of pyrrolidone is preferably polyvinyl alcohol.
495 13、 根据权利要求书 12所述的离子聚合物膜材料的制备方法, 其特征在于: 胶体保 护剂的用量为聚合反应单体总重量的 5〜30%。 495 13. The preparation method of ionomer membrane material according to claim 12, characterized in that: the amount of colloidal protective agent is 5~30% of the total weight of polymerization monomers.
14、 根据权利要求书 8-13任一项所述的离子聚合物膜材料的制备方法, 其特征在于: 所述的交联剂为含二个双键或二个双键以上的可聚合的单体。 14. The method for preparing an ionic polymer membrane material according to any one of claims 8 to 13, characterized in that: the cross-linking agent is polymerizable containing two double bonds or more than two double bonds. monomer.
15、 根据权利要求书 14所述的离子聚合物膜材料的制备方法, 其特征在于: 所述的 500 交联剂为二乙烯苯、 三羟甲基丙烷三丙烯酸酯、 已二酸二丙烯酯、 亚甲基双丙烯酰胺等, 其用量为聚合反应单体总重量的 2. 0〜10. 0%, 优选的是 5. 0〜7. 0%。 15. The preparation method of ionomer membrane material according to claim 14, characterized in that: the 500% cross-linking agent is divinylbenzene, trimethylolpropane triacrylate, and dipropylene adipate 0%。 , methylene bisacrylamide, etc., the amount of which is 2. 0~10. 0% of the total weight of polymerization monomers, preferably 5. 0~7. 0%.
16、 锂二次电池, 其特征在于: 它是以权利要求书 1-5任一项所述的离子聚合物膜材 料为隔膜或以权利要求书 6-15任一项所述方法制备而成的离子聚合物膜材料为隔膜。 16. Lithium secondary battery, characterized in that: it is prepared by using the ionic polymer membrane material described in any one of claims 1-5 as a separator or by the method described in any one of claims 6-15. The ionic polymer membrane material is the separator.
17、 一种离子聚合物 /陶瓷填料复合膜材料, 其特征在于: 它是由表面带有磺酸盐基 505 团的丙烯酸酯类聚合物胶体粒子与分散在其中的陶瓷填料粒子构成。 17. An ionic polymer/ceramic filler composite membrane material, characterized in that: it is composed of acrylate polymer colloid particles with sulfonate groups on the surface and ceramic filler particles dispersed therein.
18、 根据权利要求书 17所述的离子聚合物 /陶瓷填料复合膜材料, 其特征在于: 所述 聚合物胶体粒子是丙烯酸甲酯类聚合物胶体粒子, 所述陶瓷填料粒子为金属氧化物或金属 复合氧化物粒子。 18. The ionic polymer/ceramic filler composite membrane material according to claim 17, characterized in that: the polymer colloid particles are methyl acrylate polymer colloid particles, and the ceramic filler particles are metal oxides or Metal composite oxide particles.
19、 根据权利要求书 18所述的离子聚合物 /陶瓷填料复合膜材料, 其特征在于: 陶瓷 510 填料粒子在所述复合膜材料中所占的质量百分比为 10-60%, 优选的是 15-50%, 更优选的 是 25-40%。 19. The ionic polymer/ceramic filler composite membrane material according to claim 18, characterized in that: the mass percentage of ceramic 510 filler particles in the composite membrane material is 10-60%, preferably 15 -50%, more preferably 25-40%.
20、 根据权利要求书 18 所述的离子聚合物膜材料, 其特征在于: 所述磺酸盐基团为 乙烯基磺酸盐、 烯丙基磺酸盐、 甲基烯丙基磺酸盐、 烯丙氧基羟丙基磺酸盐、 甲基丙烯酸 羟丙基磺酸盐、 2-丙烯酰胺基 -2-甲基丙磺酸盐、 苯乙烯磺酸盐中的一种或多种。 20. The ionic polymer membrane material according to claim 18, characterized in that: the sulfonate group is vinyl sulfonate, allyl sulfonate, methylallyl sulfonate, One or more of allyloxy hydroxypropyl sulfonate, methacrylic acid hydroxypropyl sulfonate, 2-acrylamido-2-methylpropane sulfonate, and styrene sulfonate.
515 21、 根据权利要求书 17〜19任一项所述的离子聚合物 /陶瓷填料复合膜材料, 其特征 在于: 所述离子聚合物 /陶瓷填料复合膜材料中, 胶体粒子的平均粒径范围为 10nm〜1. 0 , 陶瓷填料粒子的平均粒径范围 10nm〜5. 00 m ; 优选的是, 胶体粒子的平均粒径范围 为 20〜200nm, 陶瓷填料粒子的平均粒径范围 20 nn!〜 0. 5 ; 更优选 20nm〜200nm。 515 21. The ionic polymer/ceramic filler composite membrane material according to any one of claims 17 to 19, characterized by It is: In the ionic polymer/ceramic filler composite membrane material, the average particle size range of the colloidal particles is 10 nm ~ 1. 0, and the average particle size range of the ceramic filler particles is 10 nm ~ 5. 00 m ; preferably, the colloid particles The average particle size range of the particles is 20~200nm, and the average particle size range of the ceramic filler particles is 20 nn! ~0.5; more preferably 20nm~200nm.
22、 根据权利要求书 20所述的离子聚合物 /陶瓷填料复合膜材料, 其特征在于: 所述 520 离子聚合物 /陶瓷填料复合膜的厚度为 10〜40 。 22. The ionic polymer/ceramic filler composite membrane material according to claim 20, characterized in that: the thickness of the 520 ionic polymer/ceramic filler composite membrane is 10~40.
23、权利要求书 17所述的离子聚合物 /陶瓷填料复合膜材料的制备方法,其特征在于: 在聚合反应形成聚合物胶体粒子的过程中, 加入反应型磺酸盐表面活性剂为乳化剂, 合成 表面带有磺酸盐基团的丙烯酸酯类聚合物胶体乳液, 然后, 加入金属氧化物或金属复合氧 化物粒子, 混合均匀后成膜、 干燥既得。 23. The preparation method of ionic polymer/ceramic filler composite membrane material according to claim 17, characterized in that: during the polymerization reaction to form polymer colloidal particles, a reactive sulfonate surfactant is added as an emulsifier. , synthesize an acrylate polymer colloidal emulsion with sulfonate groups on the surface, then add metal oxide or metal composite oxide particles, mix evenly, form a film, and dry.
525 24、 根据权利要求书 23所述的离子聚合物 /陶瓷填料复合膜材料的制备方法, 其特征 在于: 反应型磺酸盐表面活性剂为乙烯基磺酸盐、 烯丙基磺酸盐、 甲基烯丙基磺酸盐、 烯 丙氧基羟丙基磺酸盐、 甲基丙烯酸羟丙基磺酸盐、 2-丙烯酰胺基 -2-甲基丙磺酸盐、 苯乙 烯磺酸盐中的一种或多种混合使用; 其中, 阳离子为锂离子、 钠离子或钾离子。 525 24. The preparation method of ionic polymer/ceramic filler composite membrane material according to claim 23, characterized in that: the reactive sulfonate surfactant is vinyl sulfonate, allyl sulfonate, Methallyl Sulfonate, Allyloxy Hydroxypropyl Sulfonate, Methacrylic Acid Hydroxypropyl Sulfonate, 2-Acrylamido-2-Methylpropane Sulfonate, Styrene Sulfonate One or more of them are used in mixture; among them, the cation is lithium ion, sodium ion or potassium ion.
25、 根据权利要求书 23所述的离子聚合物 /陶瓷填料复合膜材料的制备方法, 其特征 530 在于: 经过以下步骤: 25. The method for preparing the ionic polymer/ceramic filler composite membrane material according to claim 23, characterized in that: through the following steps:
a、 聚合物胶体乳液的合成: 将胶体保护剂和蒸馏水加入到反应瓶中, 加热搅拌直到 完全溶解, 加入反应型磺酸盐表面活性剂、 聚合反应单体和交联剂混合均匀, 然后加入引 发剂聚合反应得到聚合物胶体乳液; a. Synthesis of polymer colloidal emulsion: Add the colloidal protective agent and distilled water into the reaction bottle, heat and stir until completely dissolved, add the reactive sulfonate surfactant, polymerization monomer and cross-linking agent and mix evenly, then add The polymerization reaction of the initiator produces a polymer colloidal emulsion;
b、 陶瓷填料浆料的制备: 在蒸馏水中加入陶瓷填料和分散剂, 分散均匀后, 再用球 535 磨机进一步碾磨分散, 过 200目的筛; b. Preparation of ceramic filler slurry: Add ceramic filler and dispersant to distilled water. After dispersing evenly, use a 535 ball mill to further grind and disperse, and pass through a 200-mesh sieve;
c、将步骤 a的聚合物胶体乳液中加入步骤 b制备的陶瓷填料浆料,分散均匀后涂覆在 塑料基带上, 干燥后剥离, 即得。 c. Add the ceramic filler slurry prepared in step b to the polymer colloidal emulsion in step a, disperse it evenly, apply it on the plastic base tape, dry it and peel it off to obtain the result.
26、 根据权利要求书 25所述的离子聚合物 /陶瓷填料复合膜材料的制备方法, 其特征 在于: 所述聚合反应单体是丙烯酸甲酯。 26. The method for preparing the ionic polymer/ceramic filler composite membrane material according to claim 25, characterized in that: the polymerization monomer is methyl acrylate.
540 27、 根据权利要求书 26所述的离子聚合物 /陶瓷填料复合膜材料的制备方法, 其特征 在于: 聚合反应体系中还加入第二种聚合单体 CH^CRiR2进行聚合反应; 540 27. The method for preparing the ionic polymer/ceramic filler composite membrane material according to claim 26, characterized in that: a second polymerization monomer CH^CRiR 2 is also added to the polymerization reaction system to perform the polymerization reaction;
其中, Ι^= _Η或 _CH3; Wherein, Ι^=_H or _CH 3 ;
R2=— C6H5、 — OCOCH3、 — CN、 — C4H6ON、 — C2H3C03、 -COO ( CH2)nCH3, n为 0〜 R 2 =—C 6 H 5 , — OCOCH 3 , — CN, — C 4 H 6 ON , — C 2 H 3 C0 3 , -COO (CH 2 ) n CH 3 , n is 0~
14, 中的任一种或多种混合使用。 54514, any one or a mixture of more of them is used. 545
28、 根据权利要求书 27所述的离子聚合物 /陶瓷填料复合膜材料的制备方法, 其特征 在于: 所述第二种单体用量为聚合单体总重量的 2〜50%, 优选 2〜10%。 28. The preparation method of ionic polymer/ceramic filler composite membrane material according to claim 27, characterized in that: the second monomer dosage is 2~50% of the total weight of polymerized monomers, preferably 2~ 10%.
29、 根据权利要求书 25-28 任一项所述的离子聚合物 /陶瓷填料复合膜材料的制备方 法, 其特征在于: 步骤 1所述胶体保护剂是为聚乙烯醇、 聚氧化乙烯、 聚丙烯酸盐、 聚乙 烯基吡咯烷酮中的一种, 优选的是聚乙烯醇; 胶体保护剂的用量为聚合反应单体总重量的 29. The method for preparing the ionic polymer/ceramic filler composite membrane material according to any one of claims 25 to 28, characterized in that: the colloidal protective agent in step 1 is polyvinyl alcohol, polyethylene oxide, polyethylene oxide, One of acrylate and polyvinylpyrrolidone, preferably polyvinyl alcohol; the amount of colloidal protective agent is the total weight of polymerization monomers
550 5〜30%; 进一步优选的方案是, 所述分散剂为聚乙烯醇、 聚氧化乙烯、 聚丙烯酸盐、 聚乙 烯基吡咯烷酮中的一种,优选聚乙烯醇;所述陶瓷填料浆料中,陶瓷填料的含量为 80〜95%, 分散剂的含量 5〜20%, 浆料的固含量为 20〜50%。 550 5~30%; A further preferred solution is that the dispersant is one of polyvinyl alcohol, polyethylene oxide, polyacrylate, and polyvinylpyrrolidone, preferably polyvinyl alcohol; in the ceramic filler slurry , the content of ceramic filler is 80~95%, the content of dispersant is 5~20%, and the solid content of slurry is 20~50%.
30、 锂二次电池, 其特征在于: 它是以权利要求书 17-22 任一项所述的离子聚合物 / 陶瓷填料复合膜材料为隔膜或以权利要求书 23-29任一项所述方法制备而成的离子聚合物 30. Lithium secondary battery, characterized in that: it uses the ionic polymer/ceramic filler composite membrane material as described in any one of claims 17-22 as the separator or uses the ionic polymer/ceramic filler composite membrane material as described in any one of claims 23-29. Ionic polymers prepared by
555 /陶瓷填料复合膜材料为隔膜。 555/Ceramic filler composite membrane material is used as diaphragm.
PCT/CN2013/073856 2012-06-04 2013-04-08 Ion polymer membrane material, preparation process therefor and lithium secondary battery WO2013181967A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210181362.6A CN102702657B (en) 2012-06-04 2012-06-04 Ionic polymer film material and preparation method thereof, and lithium secondary battery
CN201210181362.6 2012-06-04
CN201210219590.8 2012-06-28
CN201210219590.8A CN102719046B (en) 2012-06-28 2012-06-28 Ionic polymer/ceramic composite membrane material, preparation method thereof and lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2013181967A1 true WO2013181967A1 (en) 2013-12-12

Family

ID=49711341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073856 WO2013181967A1 (en) 2012-06-04 2013-04-08 Ion polymer membrane material, preparation process therefor and lithium secondary battery

Country Status (2)

Country Link
TW (1) TWI511352B (en)
WO (1) WO2013181967A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920954A (en) * 2019-03-14 2019-06-21 王在福 A kind of Nano chitosan composite lithium battery membrane and its manufacturing method
CN114156595A (en) * 2021-12-02 2022-03-08 新乡市中科科技有限公司 Composite diaphragm for semi-solid lithium battery and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117060011B (en) * 2023-10-09 2024-03-29 宁德卓高新材料科技有限公司 Coated diaphragm and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183725A (en) * 2007-12-20 2008-05-21 成都中科来方能源科技有限公司 Proton exchange film, proton exchange film fuel battery and method for making same
CN101212036A (en) * 2007-12-21 2008-07-02 成都中科来方能源科技有限公司 Microporous polymer isolating film for Li-ion battery and method for producing the same
CN102702657A (en) * 2012-06-04 2012-10-03 常州中科来方能源发展有限公司 Ionic polymer film material and preparation method thereof, and lithium secondary battery
CN102719046A (en) * 2012-06-28 2012-10-10 成都中科来方能源科技有限公司 Ionic polymer/ceramic composite membrane material, preparation method thereof and lithium secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286627A1 (en) * 2004-07-06 2008-11-20 Kouzou Kubota Electrolyte Membrane and Fuel Cell Employing Said Electrolyte Membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183725A (en) * 2007-12-20 2008-05-21 成都中科来方能源科技有限公司 Proton exchange film, proton exchange film fuel battery and method for making same
CN101212036A (en) * 2007-12-21 2008-07-02 成都中科来方能源科技有限公司 Microporous polymer isolating film for Li-ion battery and method for producing the same
CN102702657A (en) * 2012-06-04 2012-10-03 常州中科来方能源发展有限公司 Ionic polymer film material and preparation method thereof, and lithium secondary battery
CN102719046A (en) * 2012-06-28 2012-10-10 成都中科来方能源科技有限公司 Ionic polymer/ceramic composite membrane material, preparation method thereof and lithium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO, JIANDONG ET AL.: "Self-Assembly of P(AN-AA)/PVA colloids into PEMs", PROCEEDINGS OF THE 28TH ANNUAL MEETING ON POWER SOURCES, 19 November 2009 (2009-11-19), pages 253 - 254 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920954A (en) * 2019-03-14 2019-06-21 王在福 A kind of Nano chitosan composite lithium battery membrane and its manufacturing method
CN114156595A (en) * 2021-12-02 2022-03-08 新乡市中科科技有限公司 Composite diaphragm for semi-solid lithium battery and preparation method thereof
CN114156595B (en) * 2021-12-02 2024-04-02 新乡市中科科技有限公司 Composite diaphragm for semisolid lithium battery and preparation method thereof

Also Published As

Publication number Publication date
TW201351759A (en) 2013-12-16
TWI511352B (en) 2015-12-01

Similar Documents

Publication Publication Date Title
US10811659B2 (en) Separator for electricity storage device, laminate and porous film
KR102563082B1 (en) Composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer and non-aqueous secondary battery
US10193119B2 (en) Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
JP6225119B2 (en) Separator comprising a porous layer and method for producing said separator
JP6872932B2 (en) Separator for power storage device
JP6221875B2 (en) Nonaqueous secondary battery porous membrane binder, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery
JP6273956B2 (en) Binder for secondary battery porous membrane, slurry composition for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
WO2015064411A1 (en) Particulate polymer for use in binder for lithium-ion secondary battery; adhesive layer; and porous-membrane composition
JP6413419B2 (en) Non-aqueous secondary battery porous membrane composite particles, non-aqueous secondary battery porous membrane, non-aqueous secondary battery member, and non-aqueous secondary battery
KR20120091028A (en) Porous membrane for secondary battery, and secondary battery
KR102647091B1 (en) Conductive material dispersion liquid for electrochemical device electrodes, slurry composition for electrochemical device electrodes and method for producing the same, electrodes for electrochemical devices, and electrochemical devices
KR20210127925A (en) Composition for electrochemical device functional layer, functional layer for electrochemical device and electrochemical device
JPWO2017221572A1 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer and non-aqueous secondary battery
JP2016048670A (en) Binder for nonaqueous secondary battery porous film, composition for nonaqueous secondary battery porous film, porous film for nonaqueous secondary battery, and nonaqueous secondary battery
JP2016071963A (en) Separator for power storage device
WO2013181967A1 (en) Ion polymer membrane material, preparation process therefor and lithium secondary battery
JP4543442B2 (en) Polymer particles, polymer dispersion composition, slurry for battery electrode, electrode and battery
JP2019008884A (en) Slurry for pattern coating
JP2018200788A (en) Separator for lithium ion secondary battery
JP6718669B2 (en) Storage device separator winding body
JP6337554B2 (en) Nonaqueous secondary battery porous membrane binder, nonaqueous secondary battery porous membrane composition, nonaqueous secondary battery porous membrane and nonaqueous secondary battery
CN110770943B (en) Composition for non-aqueous secondary battery porous membrane, and non-aqueous secondary battery
JP2014165159A (en) Porous membrane for secondary battery, slurry for secondary battery porous membrane, and method of manufacturing porous membrane for secondary battery, and electrode for secondary battery, separator for secondary battery, and secondary battery
JP7017345B2 (en) Separator for power storage device
TW200939551A (en) Non-woven-fabric enhancement micro-pore polymeric membrane and the preparation method

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13799844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13799844

Country of ref document: EP

Kind code of ref document: A1