WO2013180538A1 - Turbo compression system - Google Patents

Turbo compression system Download PDF

Info

Publication number
WO2013180538A1
WO2013180538A1 PCT/KR2013/004851 KR2013004851W WO2013180538A1 WO 2013180538 A1 WO2013180538 A1 WO 2013180538A1 KR 2013004851 W KR2013004851 W KR 2013004851W WO 2013180538 A1 WO2013180538 A1 WO 2013180538A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
passage
impeller
discharge
fluid
Prior art date
Application number
PCT/KR2013/004851
Other languages
French (fr)
Korean (ko)
Inventor
이헌석
Original Assignee
한국터보기계 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국터보기계 주식회사 filed Critical 한국터보기계 주식회사
Priority to JP2015514924A priority Critical patent/JP2015518113A/en
Priority to CN201380028423.8A priority patent/CN104364530A/en
Priority to US14/403,384 priority patent/US20150110606A1/en
Priority to EP13796768.3A priority patent/EP2857692A4/en
Publication of WO2013180538A1 publication Critical patent/WO2013180538A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/04Units comprising pumps and their driving means the pump being fluid driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0269Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors

Definitions

  • the present invention relates to a turbocompression system as a whole, and more particularly, has a plurality of design points, that is, a characteristic of a two-stage turbocompression system and a characteristic of a two-stage two-stage turbocompression system, which can be selectively switched.
  • a turbo compression system a turbocompression system as a whole, and more particularly, has a plurality of design points, that is, a characteristic of a two-stage turbocompression system and a characteristic of a two-stage two-stage turbocompression system, which can be selectively switched.
  • the turbo compression system is a system that sucks and compresses a gas such as a fluid or a refrigerant gas by a rotary driving of an impeller included in a turbo compressor, and discharges the gas, and the discharge pressure is relatively high.
  • Korean Patent No. 0273433 discloses a turbo compression system having two compression devices to improve the cooling efficiency of the motor by activating the flow of refrigerant flowing into the motor
  • Korea Patent 0304562 discloses a turbocompression system which facilitates the processing and assembly of radial support means.
  • turbocompression systems are typically designed to exhibit the highest efficiency at one design point, i.e. one particular design flow rate and one particular design pressure, and have high compression ratio characteristics at that design point. do.
  • the compression ratio is low compared to the design point, and thus the compression efficiency is lowered than that of the two-stage single-stage turbocompressor having two compression apparatuses, thereby reducing the maximum flow rate at low pressure.
  • the present invention is to solve the above problems of the conventional turbo compression system, a turbo compression system capable of selectively switching between the design point of the high-pressure two-stage turbo compression system and the low-pressure one-stage two-stage turbo compression system For the purpose of providing.
  • a turbo compression system includes: a first impeller having a first suction port and a first discharge port, and compressing a fluid flowing into the first suction port by a rotational motion to discharge the fluid to the first discharge port; A second impeller having a second suction port and a second discharge port, for compressing the fluid flowing into the second suction port by a rotational motion and discharging the fluid to the second discharge port; A second discharge passage connected to the second discharge port; A first discharge passage communicating the second discharge passage with the first discharge port; A first valve provided in the first discharge passage and controlling a flow of the fluid; A second inflow passage connected to the second suction port and selectively introducing fluid into the second impeller; A second valve provided at an end of the second inflow passage; And a compression passage having one end connected to the first valve and having the other end connected to the second inflow passage.
  • the motor having a rotating shaft on one side and the other side, respectively, the first impeller and the second impeller is connected to the rotating shaft, respectively; the motor may further include.
  • the first valve may include a two-stage compression path through which the fluid introduced into the first suction port is compressed and discharged through the first impeller and the second impeller, and discharged from the first discharge port and the second discharge port.
  • the fluid may be provided to selectively control the one-stage compression path to be discharged by laminating.
  • the second valve when the fluid is controlled to flow along the two-stage compression path, the second valve is blocked, and when the fluid is controlled to flow along the first-stage compression path, the second valve may be provided to open.
  • the first valve may be selectively opened and closed to control to operate as one of a two-stage turbo compression system and a one-stage turbo compression system.
  • first impeller and the second impeller may be provided to have the same diameter.
  • first motor connected to the first impeller to rotate the first impeller;
  • second motor provided separately from the first motor and connected to the second impeller to rotate the second impeller.
  • the first valve may include a three-way valve configured to communicate any one of the second discharge passage and the compression passage with the first discharge passage, and the second valve may be formed of the compression passage and the second valve from the second suction port. 2 is provided farther than the laminated position of the inflow passage, it may be provided as a solenoid valve for opening and closing the second inflow passage.
  • the first valve may include a three-way valve configured to communicate any one of the second discharge passage and the compression passage with the first discharge passage, and the second valve may be formed by combining the compression passage and the second inflow passage. It may be provided in a position, and optionally provided with a three-way valve for communicating the compression passage and the second inflow passage.
  • the turbo compression system according to another embodiment of the present invention, a first impeller having a first suction port and the first discharge port, the first impeller for compressing the fluid flowing into the first suction port by the rotary motion to discharge to the first discharge port ;
  • a first motor for rotationally driving the first impeller;
  • a second impeller having a second suction port and a second discharge port, for compressing the fluid flowing into the second suction port by a rotational motion and discharging the fluid to the second discharge port;
  • a second motor provided separately from the first motor and driving the second impeller to rotate;
  • a first valve provided at an end of the first discharge passage;
  • a second compression passage communicating with the first discharge passage via the first valve;
  • a second valve provided at an end of the second compression passage;
  • the first valve may include a two-stage compression path through which the fluid introduced into the first suction port is compressed and discharged through the first impeller and the second impeller sequentially, and discharged from the first discharge port and the second discharge port.
  • the fluid may be provided to selectively control the one-stage compression path to be discharged by laminating.
  • the second valve when the fluid is controlled to flow along the two-stage compression path, the second valve is controlled such that the second inflow path communicates with the second compression path, and controls the fluid to flow along the first compression path. If so, the second valve may be controlled such that the second inflow passage communicates with the suction passage.
  • first valve and the second valve may be provided as a three-way valve.
  • turbo compression system compared to the conventional two-stage turbo compression system of the same capacity may have the advantage that the maximum flow rate that can be operated at low pressure is increased.
  • turbo compression system when the minimum flow rate is required at low pressure by operating to the design point of the high pressure two-stage turbo compression system to increase the operating range for the minimum flow rate at low pressure It may have an advantage.
  • FIG. 1 is a schematic configuration diagram of a turbo compression system according to a first embodiment of the present invention
  • FIG. 2 is a view showing a driving state at a design point D2 corresponding to the high pressure two-stage turbocompression system in FIG. 1;
  • FIG. 3 is a view showing a driving state at a design point D1 corresponding to the low pressure one-stage two-stage turbocompression system in FIG. 1;
  • FIG. 4 is a graph showing the pressure (P) and flow rate (Q) characteristics of the design point (D2) of the high-pressure two-stage turbo compression system and the design point (D1) of the first-stage two-stage turbocompression system in FIG.
  • FIG. 5 is a schematic structural diagram of a turbo compression system according to a second embodiment of the present invention.
  • FIG. 6 is a view showing a driving state at a design point D2 corresponding to the high pressure two-stage turbocompression system in FIG. 2 and FIG.
  • FIG. 7 is a view showing a driving state at the design point D1 corresponding to the low pressure one-stage two-stage turbocompression system in FIG. 3.
  • FIG. 1 is a schematic configuration diagram of a turbo compression system according to a first embodiment of the present invention
  • FIG. 2 is a view showing a driving state at a design point D2 corresponding to a high pressure two-stage turbo compression system in FIG. 1
  • FIG. 3 is a view showing a driving state at a design point D1 corresponding to the low pressure one-stage two-stage turbocompression system in FIG. 1.
  • the turbo compression system 100 includes a first discharge passage 121 connected to a second discharge passage 170 including a first valve 130 at a discharge port side.
  • a second impeller having a first impeller 120 and a second valve 150 formed therein, and a second inflow passage 151 for selectively introducing fluid and a discharge port side connected to the second discharge passage 170; 160, a motor 110 driving the first impeller 120 and the second impeller 160, one end of which is connected to the first valve 130 and the other end of the second valve 150.
  • It is configured to include a compression passage 141 coupled to the second inflow passage 151 downstream of the.
  • the first valve 130 is provided as a three-way valve
  • the second valve 150 is preferably provided as a solenoid valve.
  • the first valve 130 and the second valve 150 may drive the design point D2 of the high pressure two-stage turbo compression system or the design point D1 of the low pressure one-stage two-stage turbo compression system. It is configured to be on / off control for selection. Details will be described later with reference to FIG. 4.
  • the 2nd stage which discharges the 1st stage suction suction of a low pressure or the maximum flow volume of a high pressure is performed. It achieves simultaneous compression and two stages of compression to discharge the minimum flow rate of low pressure.
  • the two-stage turbo compression system 100 shuts off the second valve 150 and opens the first valve 130 to the first discharge passage 121 and the first valve. 2, in the case of controlling to connect the compression flow path 141, the pressure P and the flow rate Q of the design point D2 It is driven to discharge the fluid.
  • the second valve 150 is opened, and the first valve 130 is connected to the first discharge passage 121 and the second discharge passage 170, and the compression passage 141 is connected to the first valve 130.
  • the side side is driven to have the pressure P and the air volume Q of the low-pressure single stage intake turbo compressor design point D1 for compressing and discharging the suction fluid in one stage in the low pressure operation region. .
  • the fluid introduced through the first inflow passage i is compressed by the first impeller 120 and then discharged into the second discharge passage 170, and the fluid introduced through the second valve 150. Is introduced into the second impeller 160 and compressed in one stage, and then is discharged through the second discharge passage 170.
  • the two-stage compression is performed at the two-stage turbocompressor design point D2.
  • Lower flow rates extend the minimum flow range.
  • FIG. 4 is a graph showing the characteristics of pressure P and flow rate Q at the design point D2 of the high pressure two-stage turbo compression system and the design point D1 of the one-stage two-stage turbocompression system.
  • the turbocompression system 100 is driven at a design point D2 of a two-stage turbocompression system having a high flow rate or a low pressure minimum flow rate by selectively controlling the opening of the flow path of the valves. It can be seen that the drive at the design point D1 of the first stage double suction turbocompression system can be performed simultaneously.
  • the turbo compression system 100 has the characteristics of the two-stage turbo compression system and the one-stage turbo compression system simultaneously according to the driving method, thereby extending the minimum flow rate operation range at low pressure.
  • first impeller 120 and the second impeller 160 driven by one motor have the same diameter so as to control the same compression ratio at the same rotation speed.
  • the impellers may have the same diameter or may have different diameters as necessary. This is because, when using different motors, the desired compression ratio can be controlled by individually controlling the motors.
  • FIG. 5 is a schematic configuration diagram of a turbo compression system according to a second embodiment of the present invention
  • FIG. 6 is a view showing a driving state at a design point D2 corresponding to a high pressure two-stage turbo compression system in FIG.
  • FIG. 7 is a view showing a driving state at the design point D1 corresponding to the low pressure one-stage two-stage turbocompression system in FIG. 3.
  • the turbo compression system 200 includes a first discharge passage 232, a first valve 230, and a first compression passage 231 on the discharge port side.
  • the first impeller 220 connected to the second discharge passage 270, the first motor 210 driving the first impeller 220, and the second discharge passage 270 at the first valve 230.
  • a second valve 240 for selectively shielding the second compression passage 241 branching from the outside and the suction passage 242 for suction of the fluid compressed from the outside is provided on the inlet side by the second inflow passage 243.
  • Coupled to the discharge port side is characterized in that it comprises a second impeller 260 to which the second discharge passage 270 is connected, and a second motor 250 for driving the second impeller 260.
  • both the first valve 230 and the second valve 150 are provided as three-way valves.
  • the turbo compression system 200 of the above-described configuration allows the first valve 230 to be connected to the second compression passage 241, and the second valve 240 is connected to the fluid through the suction passage 242.
  • Two-stage turbo compression that performs high pressure two stage compression or low pressure minimum flow compression by blocking suction and controlling the fluid flowing through the first valve 230 to flow into the second impeller 260. It is driven to have a pressure P and a flow rate Q at the design point D2 of the system.
  • the fluid introduced through the first inflow passage 221 is compressed in the first stage through the first impeller 220, and then compressed in the second impeller 260 via the second compression passage 241. It is discharged through the second discharge passage 270.
  • the first valve 230 is opened toward the first compression passage 231, and the second valve 240 blocks the first valve 230 and the suction passage 242 and the second inflow passage.
  • the compressed fluid having the pressure P and the flow rate Q of the first stage double suction turbocompressor design point D1 operating in the low pressure operating region is discharged.
  • the fluid introduced through the first inflow passage 221 is first compressed through the first impeller 220 and then discharged into the second discharge passage 270 through the first compression passage 231.
  • the fluid introduced through the valve 240 is first compressed by the second impeller 260 and then discharged through the second discharge passage 270.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

Disclosed is a turbo compression system comprising: a first impeller which has a first intake port and a first discharge port, and which compresses a fluid flowing into the first intake port by using a rotational motion such that the fluid is discharged to the first discharge port; a second impeller which has a second intake port and a second discharge port, and which compresses a fluid flowing into the second intake port by using such that the fluid is discharged to the second discharge port; a second discharge channel which is provided to be connected to the second discharge port; a first discharge channel which allows the second discharge channel to communicate with the first discharge port; a first valve which is provided in the first discharge channel, and which controls the flow of the fluid; a second inlet channel which is connected to the second intake port, and which selectively allows the fluid to flow into the second impeller; a second valve provided at the end of the second inlet channel; and a compression channel which has one end connected to the first valve and the other end connected to the second inlet channel, wherein the provided turbo compression system has a plurality of design points, that is, characteristics of both a two-stage turbo compression system and a one-stage double-suction turbo compression system, and can selectively convert the design points.

Description

[규칙 제26조에 의한 보정 13.08.2013] 터보압축 시스템[Correction 13.08.2013 by Rule 26] 보 Turbo compression system
본 발명(Disclosure)은 전체적으로 터보압축 시스템에 관한 것으로, 더욱 상세하게는 복수의 설계점, 즉 2단 터보압축 시스템의 특성과 1단 양 흡입 터보압축 시스템의 특성을 모두 가지며 선택적으로 전환시킬 수 있는 터보압축 시스템에 관한 것이다.The present invention relates to a turbocompression system as a whole, and more particularly, has a plurality of design points, that is, a characteristic of a two-stage turbocompression system and a characteristic of a two-stage two-stage turbocompression system, which can be selectively switched. A turbo compression system.
여기서는, 본 발명에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).This section provides background information related to the present disclosure which is not necessarily prior art.
터보압축 시스템은 터보 압축기에 포함된 임펠러의 회전 구동에 의해 유체, 냉매가스 등의 기체를 흡입하여 압축한 후 토출시키는 시스템으로서, 비교적 토출 압력이 높게 설정되는 것을 특징으로 한다.The turbo compression system is a system that sucks and compresses a gas such as a fluid or a refrigerant gas by a rotary driving of an impeller included in a turbo compressor, and discharges the gas, and the discharge pressure is relatively high.
종래 터보압축 시스템은 정속 회전 하는 모터에 증속기어를 이용하여 고속회전을 구현하는 방식이었으나, 최근 베어링과 인버터(Invertor)기술 등의 발전으로 직접 모터에 연결하는 직결식 고속회전 기술이 적용되고 있다.Conventional turbo compression system is a method of implementing a high speed rotation by using a speed increase gear in a constant speed motor, but in recent years, a direct-type high speed rotation technology that is directly connected to the motor by the development of bearings and inverter (Invertor) technology has been applied.
한편 터보압축 시스템과 관련하여, 대한민국 등록특허 제0273433호는 모터 내부로 유입되는 냉매의 유동을 활발하게 하여 모터의 냉각 효율을 향상시키는 2개의 압축장치를 가지는 터보압축 시스템을 개시하고 있으며, 대한민국 등록특허 제0304562호는 반경 방향 지지수단의 가공 및 조립이 용이한 터보압축 시스템을 개시하고 있다.On the other hand, in relation to the turbo compression system, Korean Patent No. 0273433 discloses a turbo compression system having two compression devices to improve the cooling efficiency of the motor by activating the flow of refrigerant flowing into the motor, registered in Korea Patent 0304562 discloses a turbocompression system which facilitates the processing and assembly of radial support means.
그러나, 종래 터보압축 시스템은 통상 하나의 설계점(design point), 즉 특정한 하나의 설계유량 및 특정한 하나의 설계압력에서 최고 효율의 특성을 나타내도록 설계되며, 해당 설계점에서 높은 압축비의 특성을 가지게 된다.However, conventional turbocompression systems are typically designed to exhibit the highest efficiency at one design point, i.e. one particular design flow rate and one particular design pressure, and have high compression ratio characteristics at that design point. do.
따라서, 압축비가 낮은 영역에서는 설계점 대비 압축비가 낮아 2개의 압축장치를 가지는 양 흡입 1단 터보압축기보다 압축 효율이 저하되어 저압에서 최대 유량이 작아지는 문제점을 가진다.Therefore, in the region where the compression ratio is low, the compression ratio is low compared to the design point, and thus the compression efficiency is lowered than that of the two-stage single-stage turbocompressor having two compression apparatuses, thereby reducing the maximum flow rate at low pressure.
본 발명은 종래 터보압축 시스템의 상술한 문제점을 해결하기 위한 것으로서, 고압의 2단 터보압축 시스템의 설계점과 저압의 1단 양 흡입 터보압축 시스템의 설계점을 선택적으로 전환할 수 있는 터보압축 시스템의 제공을 일 목적으로 한다.The present invention is to solve the above problems of the conventional turbo compression system, a turbo compression system capable of selectively switching between the design point of the high-pressure two-stage turbo compression system and the low-pressure one-stage two-stage turbo compression system For the purpose of providing.
본 발명의 일 예에 따른 터보압축 시스템은, 제1 흡입구와 제1 토출구를 가지며, 상기 제1 흡입구로 유입되는 유체를 회전운동에 의해 압축하여 상기 제1 토출구로 배출시키는 제1 임펠러; 제2 흡입구와 제2 토출구를 가지며, 상기 제2 흡입구로 유입되는 유체를 회전운동에 의해 압축하여 상기 제2 토출구로 배출시키는 제2 임펠러; 상기 제2 토출구에 연결되어 구비되는 제2 토출유로; 상기 제2 토출유로와 상기 제1 토출구를 연통시키는 제1 토출유로; 상기 제1 토출유로에 구비되며 유체의 유동을 제어하는 제1 밸브; 상기 제2 흡입구에 연결되며, 상기 제2 임펠러로 유체를 선택적으로 유입시키는 제2 유입유로; 상기 제2 유입유로의 말단에 구비되는 제2 밸브; 및 상기 제1 밸브에 일단이 연결되며, 상기 제2 유입유로에 타단이 연결되는 압축유로;를 포함한다.According to an embodiment of the present invention, a turbo compression system includes: a first impeller having a first suction port and a first discharge port, and compressing a fluid flowing into the first suction port by a rotational motion to discharge the fluid to the first discharge port; A second impeller having a second suction port and a second discharge port, for compressing the fluid flowing into the second suction port by a rotational motion and discharging the fluid to the second discharge port; A second discharge passage connected to the second discharge port; A first discharge passage communicating the second discharge passage with the first discharge port; A first valve provided in the first discharge passage and controlling a flow of the fluid; A second inflow passage connected to the second suction port and selectively introducing fluid into the second impeller; A second valve provided at an end of the second inflow passage; And a compression passage having one end connected to the first valve and having the other end connected to the second inflow passage.
여기서, 일측과 타측에 각각 회전축을 가지는 모터;로서, 상기 제1 임펠러와 제2 임펠러가 상기 회전축에 각각 연결되어 회전되는 모터;를 더 포함할 수 있다.Here, the motor having a rotating shaft on one side and the other side, respectively, the first impeller and the second impeller is connected to the rotating shaft, respectively; the motor may further include.
또한, 상기 제1 밸브는, 상기 제1 흡입구로 유입된 유체가 상기 제1 임펠러 및 제2 임펠러를 순차로 지나며 압축되어 토출되는 2단 압축경로와, 상기 제1 토출구와 제2 토출구에서 배출되는 유체가 합지되어 토출되는 1단 압축경로를 선택적으로 제어하도록 구비될 수 있다.The first valve may include a two-stage compression path through which the fluid introduced into the first suction port is compressed and discharged through the first impeller and the second impeller, and discharged from the first discharge port and the second discharge port. The fluid may be provided to selectively control the one-stage compression path to be discharged by laminating.
또한, 상기 2단 압축경로를 따라 유체가 유동하도록 제어되는 경우 상기 제2 밸브는 차단되며, 상기 1단 압축경로를 따라 유체가 유동하도록 제어되는 경우 상기 제2 밸브는 개방되도록 구비될 수 있다.In addition, when the fluid is controlled to flow along the two-stage compression path, the second valve is blocked, and when the fluid is controlled to flow along the first-stage compression path, the second valve may be provided to open.
또한, 상기 제1 밸브는 선택적으로 개폐되어 2단 터보압축 시스템과 1단 터보압축 시스템 중 어느 하나의 시스템으로 작동하도록 제어하도록 구비될 수 있다.In addition, the first valve may be selectively opened and closed to control to operate as one of a two-stage turbo compression system and a one-stage turbo compression system.
또한, 상기 제1 임펠러와 제2 임펠러는 동일한 직경을 갖는 것으로 구비될 수 있다.In addition, the first impeller and the second impeller may be provided to have the same diameter.
또한, 상기 제1 임펠러에 연결되어 상기 제1 임펠러를 회전시키는 제1 모터; 및 상기 제1 모터와 별개로 구비되며, 상기 제2 임펠러에 연결되어 상기 제2 임펠러를 회전시키는 제2 모터;를 더 포함할 수 있다.In addition, a first motor connected to the first impeller to rotate the first impeller; And a second motor provided separately from the first motor and connected to the second impeller to rotate the second impeller.
또한, 상기 제1 밸브는 상기 제2 토출유로 및 상기 압축유로 중 어느 하나를 상기 제1 토출유로와 연통시키는 삼방밸브로 구비되며, 상기 제2 밸브는 상기 제2 흡입구로부터 상기 압축유로와 상기 제2 유입유로의 합지 위치 보다 멀리 위치되어 구비되며, 상기 제2 유입유로를 개폐하는 솔레노이드 밸브로 구비될 수 있다.The first valve may include a three-way valve configured to communicate any one of the second discharge passage and the compression passage with the first discharge passage, and the second valve may be formed of the compression passage and the second valve from the second suction port. 2 is provided farther than the laminated position of the inflow passage, it may be provided as a solenoid valve for opening and closing the second inflow passage.
또한, 상기 제1 밸브는 상기 제2 토출유로 및 상기 압축유로 중 어느 하나를 상기 제1 토출유로와 연통시키는 삼방밸브로 구비되며, 상기 제2 밸브는 상기 압축유로와 상기 제2 유입유로가 합지되는 위치에 구비되며, 선택적으로 상기 압축유로와 상기 제2 유입유로를 연통시키는 삼방밸브로 구비될 수 있다.The first valve may include a three-way valve configured to communicate any one of the second discharge passage and the compression passage with the first discharge passage, and the second valve may be formed by combining the compression passage and the second inflow passage. It may be provided in a position, and optionally provided with a three-way valve for communicating the compression passage and the second inflow passage.
한편, 본 발명의 다른 일 예에 따른 터보압축 시스템은, 제1 흡입구와 제1 토출구를 가지며, 상기 제1 흡입구로 유입되는 유체를 회전운동에 의해 압축하여 상기 제1 토출구로 배출시키는 제1 임펠러; 상기 제1 임펠러를 회전 구동시키는 제1 모터; 제2 흡입구와 제2 토출구를 가지며, 상기 제2 흡입구로 유입되는 유체를 회전운동에 의해 압축하여 상기 제2 토출구로 배출시키는 제2 임펠러; 상기 제1 모터와 별개로 구비되며, 상기 제2 임펠러를 회전 구동시키는 제2 모터; 상기 제1 토출구에 연결되어 구비되는 제1 토출유로; 상기 제1 토출유로와 별개로 상기 제2 토출구에 연결되어 구비되는 제2 토출유로; 상기 제1 토출유로의 말단에 구비되는 제1 밸브; 상기 제1 밸브와 상기 제2 토출유로를 연통시키는 제1 압축유로; 상기 제1 밸브를 경유하여 상기 제1 토출유로와 연통되는 제2 압축유로; 상기 제2 압축유로의 말단에 구비되는 제2 밸브; 상기 제2 밸브와 상기 제2 흡입구를 연통시키는 제2 유입유로; 및 상기 제2 흡입유로와 별개로 상기 제2 밸브에 연결되며, 선택적으로 상기 제2 흡입유로와 연통되는 흡입유로;를 포함한다.On the other hand, the turbo compression system according to another embodiment of the present invention, a first impeller having a first suction port and the first discharge port, the first impeller for compressing the fluid flowing into the first suction port by the rotary motion to discharge to the first discharge port ; A first motor for rotationally driving the first impeller; A second impeller having a second suction port and a second discharge port, for compressing the fluid flowing into the second suction port by a rotational motion and discharging the fluid to the second discharge port; A second motor provided separately from the first motor and driving the second impeller to rotate; A first discharge passage connected to the first discharge port; A second discharge passage connected to the second discharge port separately from the first discharge passage; A first valve provided at an end of the first discharge passage; A first compression passage communicating the first valve with the second discharge passage; A second compression passage communicating with the first discharge passage via the first valve; A second valve provided at an end of the second compression passage; A second inflow passage communicating the second valve with the second suction port; And a suction passage connected to the second valve separately from the second suction passage and selectively in communication with the second suction passage.
여기서, 상기 제1 밸브는, 상기 제1 흡입구로 유입된 유체가 상기 제1 임펠러 및 제2 임펠러를 순차로 지나며 압축되어 토출되는 2단 압축경로와, 상기 제1 토출구와 제2 토출구에서 배출되는 유체가 합지되어 토출되는 1단 압축경로를 선택적으로 제어하도록 구비될 수 있다.The first valve may include a two-stage compression path through which the fluid introduced into the first suction port is compressed and discharged through the first impeller and the second impeller sequentially, and discharged from the first discharge port and the second discharge port. The fluid may be provided to selectively control the one-stage compression path to be discharged by laminating.
또한, 상기 2단 압축경로를 따라 유체가 유동하도록 제어되는 경우 상기 제2 밸브는 상기 제2 유입유로가 상기 제2 압축유로와 연통되도록 제어되며, 상기 1단 압축경로를 따라 유체가 유동하도록 제어되는 경우 상기 제2 밸브는 상기 제2 유입유로가 상기 흡입유로와 연통되도록 제어될 수 있다.In addition, when the fluid is controlled to flow along the two-stage compression path, the second valve is controlled such that the second inflow path communicates with the second compression path, and controls the fluid to flow along the first compression path. If so, the second valve may be controlled such that the second inflow passage communicates with the suction passage.
또한, 상기 제1 밸브와 제2 밸브는 삼방밸브로 구비될 수 있다.In addition, the first valve and the second valve may be provided as a three-way valve.
본 발명의 일 예에 따른 터보압축 시스템에 따르면, 종래 동일한 용량의 2단 터보압축 시스템에 비하여 저압에서 운전 가능한 최대 유량이 증가되는 이점을 가질 수 있다.According to the turbo compression system according to an embodiment of the present invention, compared to the conventional two-stage turbo compression system of the same capacity may have the advantage that the maximum flow rate that can be operated at low pressure is increased.
또한, 본 발명의 일 예에 따른 터보압축 시스템에 따르면, 저압에서 최소 유량을 요구하는 경우 고압의 2단 터보압축 시스템의 설계점으로 구동하도록 하는 것에 의해 저압에서 최소 유량을 위한 운전 범위가 증가되는 이점을 가질 수 있다.In addition, according to the turbo compression system according to an embodiment of the present invention, when the minimum flow rate is required at low pressure by operating to the design point of the high pressure two-stage turbo compression system to increase the operating range for the minimum flow rate at low pressure It may have an advantage.
도 1은 본 발명의 제1 실시 예에 따른 터보압축 시스템의 개략적인 구성도,1 is a schematic configuration diagram of a turbo compression system according to a first embodiment of the present invention;
도 2는 도 1에서 고압의 2단 터보압축 시스템에 대응하는 설계점(D2)에서의 구동 상태를 나타내는 도면,FIG. 2 is a view showing a driving state at a design point D2 corresponding to the high pressure two-stage turbocompression system in FIG. 1;
도 3은 도 1에서 저압의 1단 양 흡입 터보압축 시스템에 대응하는 설계점(D1)에서의 구동 상태를 나타내는 도면,FIG. 3 is a view showing a driving state at a design point D1 corresponding to the low pressure one-stage two-stage turbocompression system in FIG. 1;
도 4는 도 1에서 고압의 2단 터보압축 시스템의 설계점(D2)과 1단 양 흡입 터보압축 시스템의 설계점(D1)에서의 압력(P), 유량(Q) 특성을 나타내는 그래프,4 is a graph showing the pressure (P) and flow rate (Q) characteristics of the design point (D2) of the high-pressure two-stage turbo compression system and the design point (D1) of the first-stage two-stage turbocompression system in FIG.
도 5는 본 발명의 제2 실시 예에 따른 터보압축 시스템의 개략적인 구성도,5 is a schematic structural diagram of a turbo compression system according to a second embodiment of the present invention;
도 6은 도 2에서 고압의 2단 터보압축 시스템에 대응하는 설계점(D2)에서의 구동 상태를 나타내는 도면 및6 is a view showing a driving state at a design point D2 corresponding to the high pressure two-stage turbocompression system in FIG. 2 and FIG.
도 7은 도 3에서 저압의 1단 양 흡입 터보압축 시스템에 대응하는 설계점(D1)에서의 구동 상태를 나타내는 도면이다.FIG. 7 is a view showing a driving state at the design point D1 corresponding to the low pressure one-stage two-stage turbocompression system in FIG. 3.
이하, 첨부된 도면을 참조하여 본 발명에 따른 터보압축 시스템의 다양한 실시예를 자세히 설명한다.Hereinafter, various embodiments of the turbocompression system according to the present invention will be described in detail with reference to the accompanying drawings.
이에 앞서, 발명자는 그 자신의 발명을 최선의 방법으로 설명하기 위해서 용어 개념을 적절하게 정의할 수 있으므로, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the inventor may appropriately define the concept of terms in order to best describe his invention, the terms or words used in the present specification and claims are to be interpreted limited to the ordinary or dictionary meanings It should not be interpreted as meanings and concepts corresponding to the technical spirit of the present invention.
또한, 이하에서 설명될 다양한 실시예들은 본 발명의 실시를 위한 예시로서 설명한 것에 불과하고, 본 발명의 권리범위는 설명될 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 당업자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 한다.In addition, various embodiments to be described below are merely described as examples for the practice of the present invention, and the scope of the present invention is not limited to the embodiments to be described, but within the spirit and scope of the present invention. Various changes, modifications or substitutions will be made by those skilled in the art and such embodiments are to be understood as falling within the scope of the invention.
먼저, 본 발명의 제1 실시예에 따른 터보압축 시스템에 대해 설명한다.First, a turbo compression system according to a first embodiment of the present invention will be described.
도 1은 본 발명의 제1 실시 예에 따른 터보압축 시스템의 개략적인 구성도, 도 2는 도 1에서 고압의 2단 터보압축 시스템에 대응하는 설계점(D2)에서의 구동 상태를 나타내는 도면, 도 3은 도 1에서 저압의 1단 양 흡입 터보압축 시스템에 대응하는 설계점(D1)에서의 구동 상태를 나타내는 도면이다.1 is a schematic configuration diagram of a turbo compression system according to a first embodiment of the present invention, FIG. 2 is a view showing a driving state at a design point D2 corresponding to a high pressure two-stage turbo compression system in FIG. 1; FIG. 3 is a view showing a driving state at a design point D1 corresponding to the low pressure one-stage two-stage turbocompression system in FIG. 1.
도 1 내지 도 3을 참조하면, 본 예에 따른 터보압축 시스템(100)은 토출구 측에서 제1 밸브(130)를 포함하여 제2 토출유로(170)와 연결되는 제1 토출유로(121)가 형성되는 제1 임펠러(120)와, 제2 밸브(150)를 구비하여 유체를 선택적으로 유입시키는 제2 유입유로(151)와 토출구 측이 상기 제2 토출유로(170)와 연결되는 제2 임펠러(160)와, 상기 제1 임펠러(120)와 제2 임펠러(160)를 구동시키는 모터(110)와, 일 단은 상기 제1 밸브(130)와 연결되고 타단은 상기 제2 밸브(150)의 하류에서 제2 유입유로(151)에 결합되는 압축유로(141)를 포함하여 구성된다.1 to 3, the turbo compression system 100 according to the present example includes a first discharge passage 121 connected to a second discharge passage 170 including a first valve 130 at a discharge port side. A second impeller having a first impeller 120 and a second valve 150 formed therein, and a second inflow passage 151 for selectively introducing fluid and a discharge port side connected to the second discharge passage 170; 160, a motor 110 driving the first impeller 120 and the second impeller 160, one end of which is connected to the first valve 130 and the other end of the second valve 150. It is configured to include a compression passage 141 coupled to the second inflow passage 151 downstream of the.
여기서, 상기 제1 밸브(130)는 삼방밸브로 구비되고, 상기 제2 밸브(150)는 솔레노이드 밸브로 구비되는 것이 바람직하다.Here, the first valve 130 is provided as a three-way valve, the second valve 150 is preferably provided as a solenoid valve.
상기 제1 밸브(130) 및 상기 제2 밸브(150)는 고압의 2단 터보압축 시스템의 설계점(D2)의 구동 또는 저압의 1단 양 흡입 터보압축 시스템의 설계점(D1)의 구동을 선택할 수 있도록 온/오프 제어 가능하게 구성된다. 자세한 내용은 도 4를 참조하여 후술한다.The first valve 130 and the second valve 150 may drive the design point D2 of the high pressure two-stage turbo compression system or the design point D1 of the low pressure one-stage two-stage turbo compression system. It is configured to be on / off control for selection. Details will be described later with reference to FIG. 4.
이러한 구성에 의해 상기 제1 밸브(130) 및 상기 제2 밸브(150)의 적절한 조작에 의해 흡입, 토출 유체의 유로를 제어함으로써, 저압의 1단 양 흡입 압축 또는 고압의 최대유량을 토출하는 2단 압축, 저압의 최소유량을 토출하는 2단 압축을 동시에 구현한다.By controlling the flow path of suction and discharge fluid by appropriate operation of the said 1st valve 130 and the said 2nd valve 150 by this structure, the 2nd stage which discharges the 1st stage suction suction of a low pressure or the maximum flow volume of a high pressure is performed. It achieves simultaneous compression and two stages of compression to discharge the minimum flow rate of low pressure.
구체적으로, 본 예에 따른 2단 터보압축 시스템(100)은 도 2와 같이, 상기 제2 밸브(150)를 차단하고 상기 제1 밸브(130)를 상기 제1 토출유로(121)와 상기 제2 압축유로(141)를 연결하도록 제어하는 경우, 고압의 최대 유량 운전 또는 저압의 최소 유량 운전을 가능하게 하는 2단 터보압축 시스템의 설계점(D2)의 압력(P) 및 유량(Q)의 유체를 토출하도록 구동하게 된다.Specifically, the two-stage turbo compression system 100 according to the present embodiment, as shown in FIG. 2, shuts off the second valve 150 and opens the first valve 130 to the first discharge passage 121 and the first valve. 2, in the case of controlling to connect the compression flow path 141, the pressure P and the flow rate Q of the design point D2 It is driven to discharge the fluid.
이 경우 제1 유입유로(i)를 통해 유입된 유체가 제1 임펠러(120)에 의해 1단 압축된 후, 제1 토출유로(121), 제1 밸브(130), 압축유로(141) 및 제2 유입유로(151)를 경유하여 제2 임펠러(160)로 유입되는 것에 의해 2단 압축되어 토출된다.In this case, after the fluid introduced through the first inflow passage i is compressed by the first impeller 120, the first discharge passage 121, the first valve 130, the compression passage 141, and By being introduced into the second impeller 160 via the second inflow passage 151, the second stage is compressed and discharged.
이와 달리 도 3과 같이, 상기 제2 밸브(150)를 개방하고, 상기 제1 밸브(130)를 상기 제1 토출유로(121)와 제2 토출유로(170)가 연결되고 상기 압축유로(141) 측은 차폐하도록 제어하는 경우에는 저압 운전 영역에서 흡입 유체를 1단 압축하여 토출하는 저압의 1단 양 흡입 터보압축기 설계점(D1)의 압력(P) 및 풍량(Q)을 가지도록 구동하게 된다.Unlike this, as shown in FIG. 3, the second valve 150 is opened, and the first valve 130 is connected to the first discharge passage 121 and the second discharge passage 170, and the compression passage 141 is connected to the first valve 130. In the case of controlling the shielding, the side side is driven to have the pressure P and the air volume Q of the low-pressure single stage intake turbo compressor design point D1 for compressing and discharging the suction fluid in one stage in the low pressure operation region. .
이 경우 제1 유입유로(i)를 통해 유입된 유체는 제1 임펠러(120)에 의해 1단 압축된 후 제2 토출유로(170)로 토출되고, 제2 밸브(150)를 통해 유입된 유체는 제2 임펠러(160)로 유입되어 1단 압축된 후 제2 토출유로(170)를 통해 토출된다.In this case, the fluid introduced through the first inflow passage i is compressed by the first impeller 120 and then discharged into the second discharge passage 170, and the fluid introduced through the second valve 150. Is introduced into the second impeller 160 and compressed in one stage, and then is discharged through the second discharge passage 170.
또한, 저압 운전 영역에서 보다 적은 최소 풍량을 요구하는 경우에는 2단 압축하는 상기 2단 터보압축기 설계점(D2)에서 구동시키는 것에 의해 저압의 경우 종래기술의 1단 양 흡입 터보압축기에 의해 비해 최소 유량이 더욱 적어지게 되어 최소 유량 운전 범위가 확장된다.In addition, when the minimum amount of air flow is required in the low-pressure driving region, the two-stage compression is performed at the two-stage turbocompressor design point D2. Lower flow rates extend the minimum flow range.
구체적으로, 도 4를 참조하면 다음과 같다.Specifically, referring to FIG. 4.
도 4는 도 1에서 고압의 2단 터보압축 시스템의 설계점(D2)과 1단 양 흡입 터보압축 시스템의 설계점(D1)에서의 압력(P), 유량(Q) 특성을 나타내는 그래프이다.FIG. 4 is a graph showing the characteristics of pressure P and flow rate Q at the design point D2 of the high pressure two-stage turbo compression system and the design point D1 of the one-stage two-stage turbocompression system.
도 4를 참조하면, 본 예에 따른 터보압축 시스템(100)은 밸브들의 유로 개방을 선택적으로 제어하는 것에 의해 고압 또는 저압 최소 유량의 2단 터보압축 시스템의 설계점(D2)에서의 구동과 저압의 1단 양 흡입 터보압축 시스템의 설계점(D1)에서의 구동을 동시에 수행할 수 있는 것을 알 수 있다.Referring to FIG. 4, the turbocompression system 100 according to the present example is driven at a design point D2 of a two-stage turbocompression system having a high flow rate or a low pressure minimum flow rate by selectively controlling the opening of the flow path of the valves. It can be seen that the drive at the design point D1 of the first stage double suction turbocompression system can be performed simultaneously.
즉, 본 예에 따른 터보압축 시스템(100)은 운전 방식에 따라 2단 터보압축 시스템의 특성과 1단 터보압축 시스템의 특성을 동시에 가지게 되며, 이에 의해 저압에서의 최소 유량 운전 범위를 확장시킨다.That is, the turbo compression system 100 according to the present example has the characteristics of the two-stage turbo compression system and the one-stage turbo compression system simultaneously according to the driving method, thereby extending the minimum flow rate operation range at low pressure.
본 예에서 하나의 모터에 의해 구동되는 상기 제1 임펠러(120)와 제2 임펠러(160)는 동일 회전수에서 동일 압축비의 제어가 가능하도록 동일 직경을 갖는 것이 바람직하다.In this example, it is preferable that the first impeller 120 and the second impeller 160 driven by one motor have the same diameter so as to control the same compression ratio at the same rotation speed.
그러나 서로 다른 모터를 사용하여 구동시키는 경우에는 상기 임펠러들은 동일 직경을 갖는 것을 사용할 할 수도 있고, 필요에 따라 서로 다른 직경을 가지는 것을 사용할 수도 있다. 이는 서로 다른 모터를 사용하는 경우에는 모터들을 개별 제어하는 것에 의해 원하는 압축비의 제어가 가능하기 때문이다.However, in the case of driving using different motors, the impellers may have the same diameter or may have different diameters as necessary. This is because, when using different motors, the desired compression ratio can be controlled by individually controlling the motors.
이하에서는, 본 발명의 제2 실시예에 따른 터보압축 시스템에 대해 설명한다.Hereinafter, a turbo compression system according to a second embodiment of the present invention will be described.
도 5는 본 발명의 제2 실시 예에 따른 터보압축 시스템의 개략적인 구성도, 도 6은 도 2에서 고압의 2단 터보압축 시스템에 대응하는 설계점(D2)에서의 구동 상태를 나타내는 도면 및 도 7은 도 3에서 저압의 1단 양 흡입 터보압축 시스템에 대응하는 설계점(D1)에서의 구동 상태를 나타내는 도면이다.5 is a schematic configuration diagram of a turbo compression system according to a second embodiment of the present invention, FIG. 6 is a view showing a driving state at a design point D2 corresponding to a high pressure two-stage turbo compression system in FIG. FIG. 7 is a view showing a driving state at the design point D1 corresponding to the low pressure one-stage two-stage turbocompression system in FIG. 3.
도 5 내지 도 7을 참조하면, 본 예에 따른 터보압축 시스템(200)은, 토출구 측에 제1 토출유로(232), 제1 밸브(230)와 제1 압축유로(231)를 포함하여 제2 토출유로(270)와 연결되는 제1 임펠러(220)와, 상기 제1 임펠러(220)를 구동시키는 제1 모터(210)와, 상기 제1 밸브(230)에서 상기 제2 토출유로(270)와 분기되는 제2 압축유로(241)와 외부로부터 압축되는 유체의 흡입을 위한 흡입유로(242)를 선택적으로 차폐하는 제2 밸브(240)가 제2 유입유로(243)에 의해 흡입구 측에 결합되며 토출구 측에는 상기 제2 토출유로(270)가 연결되는 제2 임펠러(260)와, 상기 제2 임펠러(260)를 구동시키는 제2 모터(250)를 포함하여 구성되는 것을 특징으로 한다.5 to 7, the turbo compression system 200 according to the present example includes a first discharge passage 232, a first valve 230, and a first compression passage 231 on the discharge port side. The first impeller 220 connected to the second discharge passage 270, the first motor 210 driving the first impeller 220, and the second discharge passage 270 at the first valve 230. ) And a second valve 240 for selectively shielding the second compression passage 241 branching from the outside and the suction passage 242 for suction of the fluid compressed from the outside is provided on the inlet side by the second inflow passage 243. Coupled to the discharge port side is characterized in that it comprises a second impeller 260 to which the second discharge passage 270 is connected, and a second motor 250 for driving the second impeller 260.
여기서, 상기 제1 밸브(230)와 상기 제2 밸브(150)는 모두 삼방밸브로 구비되는 것이 바람직하다.Here, it is preferable that both the first valve 230 and the second valve 150 are provided as three-way valves.
상술한 구성의 상기 터보압축 시스템(200)은 상기 제1 밸브(230)를 상기 제2 압축유로(241)와 연결되도록 하고, 상기 제2 밸브(240)가 흡입유로(242)를 통한 유체의 흡입을 차단하고, 상기 제1 밸브(230)를 통해 유입되는 유체를 상기 제2 임펠러(260)로 유입되도록 제어하는 것에 의해 고압의 2단 압축 또는 저압의 최소 유량 압축을 수행하는 2단 터보압축 시스템의 설계점(D2)의 압력(P)과 유량(Q)을 가지도록 구동된다. The turbo compression system 200 of the above-described configuration allows the first valve 230 to be connected to the second compression passage 241, and the second valve 240 is connected to the fluid through the suction passage 242. Two-stage turbo compression that performs high pressure two stage compression or low pressure minimum flow compression by blocking suction and controlling the fluid flowing through the first valve 230 to flow into the second impeller 260. It is driven to have a pressure P and a flow rate Q at the design point D2 of the system.
이 경우 제1 유입유로(221)를 통해 유입된 유체가 제1 임펠러(220)를 통해 1단 압축된 후 제2 압축유로(241)를 경유하여 제2 임펠러(260)에서 2단 압축된 후 제2 토출유로(270)를 통해 토출된다.In this case, the fluid introduced through the first inflow passage 221 is compressed in the first stage through the first impeller 220, and then compressed in the second impeller 260 via the second compression passage 241. It is discharged through the second discharge passage 270.
이와 달리 상기 제1 밸브(230)를 상기 제1 압축유로(231) 측으로 개방하고, 상기 제2 밸브(240)는 제1 밸브(230) 측을 차단하고 흡입유로(242)와 제2 유입유로(243)를 연통시켜 외부로부터 유체가 유입하도록 제어하는 경우에는 저압의 운전 영역에서 동작하는 1단 양 흡입 터보압축기 설계점(D1)의 압력(P)과 유량(Q)을 가지는 압축 유체를 토출하도록 동작한다. Unlike this, the first valve 230 is opened toward the first compression passage 231, and the second valve 240 blocks the first valve 230 and the suction passage 242 and the second inflow passage. In the case of controlling the inflow of fluid from the outside by communicating 243, the compressed fluid having the pressure P and the flow rate Q of the first stage double suction turbocompressor design point D1 operating in the low pressure operating region is discharged. To work.
이 경우 제1 유입유로(221)를 통해 유입된 유체는 제1 임펠러(220)를 통해 1단 압축된 후 제1 압축유로(231)을 통해 제2 토출유로(270)로 토출되고, 제2 밸브(240)를 통해 유입된 유체는 제2 임펠러(260)에서 1단 압축된 후 제2 토출유로(270)를 통해 토출된다.In this case, the fluid introduced through the first inflow passage 221 is first compressed through the first impeller 220 and then discharged into the second discharge passage 270 through the first compression passage 231. The fluid introduced through the valve 240 is first compressed by the second impeller 260 and then discharged through the second discharge passage 270.

Claims (13)

  1. 제1 흡입구와 제1 토출구를 가지며, 상기 제1 흡입구로 유입되는 유체를 회전운동에 의해 압축하여 상기 제1 토출구로 배출시키는 제1 임펠러;A first impeller having a first suction port and a first discharge port, compressing the fluid flowing into the first suction port by a rotational motion and discharging the fluid to the first discharge port;
    제2 흡입구와 제2 토출구를 가지며, 상기 제2 흡입구로 유입되는 유체를 회전운동에 의해 압축하여 상기 제2 토출구로 배출시키는 제2 임펠러;A second impeller having a second suction port and a second discharge port, for compressing the fluid flowing into the second suction port by a rotational motion and discharging the fluid to the second discharge port;
    상기 제2 토출구에 연결되어 구비되는 제2 토출유로;A second discharge passage connected to the second discharge port;
    상기 제2 토출유로와 상기 제1 토출구를 연통시키는 제1 토출유로;A first discharge passage communicating the second discharge passage with the first discharge port;
    상기 제1 토출유로에 구비되며 유체의 유동을 제어하는 제1 밸브; A first valve provided in the first discharge passage and controlling a flow of the fluid;
    상기 제2 흡입구에 연결되며, 상기 제2 임펠러로 유체를 선택적으로 유입시키는 제2 유입유로;A second inflow passage connected to the second suction port and selectively introducing fluid into the second impeller;
    상기 제2 유입유로의 말단에 구비되는 제2 밸브; 및A second valve provided at an end of the second inflow passage; And
    상기 제1 밸브에 일단이 연결되며, 상기 제2 유입유로에 타단이 연결되는 압축유로;를 포함하는 터보압축 시스템.And a compression passage having one end connected to the first valve and the other end connected to the second inflow passage.
  2. 청구항 1에 있어서,The method according to claim 1,
    일측과 타측에 각각 회전축을 가지는 모터;로서, 상기 제1 임펠러와 제2 임펠러가 상기 회전축에 각각 연결되어 회전되는 모터;를 더 포함하는 것을 특징으로 하는 터보압축 시스템.And a motor having a rotating shaft on one side and the other side, respectively, wherein the first impeller and the second impeller are respectively connected to the rotating shaft and rotated.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 밸브는, 상기 제1 흡입구로 유입된 유체가 상기 제1 임펠러 및 제2 임펠러를 순차로 지나며 압축되어 토출되는 2단 압축경로와, 상기 제1 토출구와 제2 토출구에서 배출되는 유체가 합지되어 토출되는 1단 압축경로를 선택적으로 제어하는 것을 특징으로 하는 터보압축 시스템.The first valve may include a two-stage compression path through which the fluid introduced into the first suction port is compressed and discharged sequentially passing through the first impeller and the second impeller, and the fluid discharged from the first discharge port and the second discharge port. Turbo compression system, characterized in that for selectively controlling the one-stage compression path is laminated and discharged.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 2단 압축경로를 따라 유체가 유동하도록 제어되는 경우 상기 제2 밸브는 차단되며, 상기 1단 압축경로를 따라 유체가 유동하도록 제어되는 경우 상기 제2 밸브는 개방되는 것을 특징으로 하는 터보압축 시스템.The second valve is closed when the fluid is controlled to flow along the two-stage compression path, and the second valve is opened when the fluid is controlled to flow along the first stage compression path. .
  5. 청구항 3에 있어서,The method according to claim 3,
    상기 제1 밸브는 선택적으로 개폐되어 2단 터보압축 시스템과 1단 터보압축 시스템 중 어느 하나의 시스템으로 작동하도록 제어하는 것을 특징으로 하는 터보압축 시스템. The first valve is selectively opened and closed to control to operate as any one of a two-stage turbo compression system and a first-stage turbo compression system.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 임펠러와 제2 임펠러는 동일한 직경을 갖는 것을 특징으로 하는 터보압축 시스템. And the first impeller and the second impeller have the same diameter.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 임펠러에 연결되어 상기 제1 임펠러를 회전시키는 제1 모터; 및A first motor connected to the first impeller to rotate the first impeller; And
    상기 제1 모터와 별개로 구비되며, 상기 제2 임펠러에 연결되어 상기 제2 임펠러를 회전시키는 제2 모터;를 더 포함하는 것을 특징으로 하는 터보압축 시스템. And a second motor provided separately from the first motor and connected to the second impeller to rotate the second impeller.
  8. 청구항 3에 있어서,The method according to claim 3,
    상기 제1 밸브는 상기 제2 토출유로 및 상기 압축유로 중 어느 하나를 상기 제1 토출유로와 연통시키는 삼방밸브로 구비되며, The first valve is provided as a three-way valve for communicating any one of the second discharge passage and the compression passage with the first discharge passage,
    상기 제2 밸브는 상기 제2 흡입구로부터 상기 압축유로와 상기 제2 유입유로의 합지 위치 보다 멀리 위치되어 구비되며, 상기 제2 유입유로를 개폐하는 솔레노이드 밸브로 구비되는 것을 특징으로 하는 터보압축 시스템. And the second valve is positioned farther from the second suction port at a position where the compression channel and the second inflow channel are laminated, and are provided as a solenoid valve for opening and closing the second inflow channel.
  9. 청구항 3에 있어서,The method according to claim 3,
    상기 제1 밸브는 상기 제2 토출유로 및 상기 압축유로 중 어느 하나를 상기 제1 토출유로와 연통시키는 삼방밸브로 구비되며, The first valve is provided as a three-way valve for communicating any one of the second discharge passage and the compression passage with the first discharge passage,
    상기 제2 밸브는 상기 압축유로와 상기 제2 유입유로가 합지되는 위치에 구비되며, 선택적으로 상기 압축유로와 상기 제2 유입유로를 연통시키는 삼방밸브로 구비되는 것을 특징으로 하는 터보압축 시스템. And the second valve is provided at a position where the compression passage and the second inflow passage are laminated, and optionally provided as a three-way valve for communicating the compression passage and the second inflow passage.
  10. 제1 흡입구와 제1 토출구를 가지며, 상기 제1 흡입구로 유입되는 유체를 회전운동에 의해 압축하여 상기 제1 토출구로 배출시키는 제1 임펠러;A first impeller having a first suction port and a first discharge port, compressing the fluid flowing into the first suction port by a rotational motion and discharging the fluid to the first discharge port;
    상기 제1 임펠러를 회전 구동시키는 제1 모터;A first motor for rotationally driving the first impeller;
    제2 흡입구와 제2 토출구를 가지며, 상기 제2 흡입구로 유입되는 유체를 회전운동에 의해 압축하여 상기 제2 토출구로 배출시키는 제2 임펠러;A second impeller having a second suction port and a second discharge port, for compressing the fluid flowing into the second suction port by a rotational motion and discharging the fluid to the second discharge port;
    상기 제1 모터와 별개로 구비되며, 상기 제2 임펠러를 회전 구동시키는 제2 모터;A second motor provided separately from the first motor and driving the second impeller to rotate;
    상기 제1 토출구에 연결되어 구비되는 제1 토출유로;A first discharge passage connected to the first discharge port;
    상기 제1 토출유로와 별개로 상기 제2 토출구에 연결되어 구비되는 제2 토출유로;A second discharge passage connected to the second discharge port separately from the first discharge passage;
    상기 제1 토출유로의 말단에 구비되는 제1 밸브;A first valve provided at an end of the first discharge passage;
    상기 제1 밸브와 상기 제2 토출유로를 연통시키는 제1 압축유로;A first compression passage communicating the first valve with the second discharge passage;
    상기 제1 밸브를 경유하여 상기 제1 토출유로와 연통되는 제2 압축유로;A second compression passage communicating with the first discharge passage via the first valve;
    상기 제2 압축유로의 말단에 구비되는 제2 밸브;A second valve provided at an end of the second compression passage;
    상기 제2 밸브와 상기 제2 흡입구를 연통시키는 제2 유입유로; 및A second inflow passage communicating the second valve with the second suction port; And
    상기 제2 흡입유로와 별개로 상기 제2 밸브에 연결되며, 선택적으로 상기 제2 흡입유로와 연통되는 흡입유로;를 포함하는 터보압축 시스템. And a suction passage connected to the second valve separately from the second suction passage and selectively in communication with the second suction passage.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 제1 밸브는, 상기 제1 흡입구로 유입된 유체가 상기 제1 임펠러 및 제2 임펠러를 순차로 지나며 압축되어 토출되는 2단 압축경로와, 상기 제1 토출구와 제2 토출구에서 배출되는 유체가 합지되어 토출되는 1단 압축경로를 선택적으로 제어하는 것을 특징으로 하는 터보압축 시스템.The first valve may include a two-stage compression path through which the fluid introduced into the first suction port is compressed and discharged sequentially passing through the first impeller and the second impeller, and the fluid discharged from the first discharge port and the second discharge port. Turbo compression system, characterized in that for selectively controlling the one-stage compression path is laminated and discharged.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 2단 압축경로를 따라 유체가 유동하도록 제어되는 경우 상기 제2 밸브는 상기 제2 유입유로가 상기 제2 압축유로와 연통되도록 제어되며, 상기 1단 압축경로를 따라 유체가 유동하도록 제어되는 경우 상기 제2 밸브는 상기 제2 유입유로가 상기 흡입유로와 연통되도록 제어되는 것을 특징으로 하는 터보압축 시스템.When the fluid is controlled to flow along the two-stage compression path, the second valve is controlled such that the second inflow passage communicates with the second compression path, and when the fluid is controlled to flow along the first compression path. And the second valve is controlled such that the second inflow passage communicates with the suction passage.
  13. 청구항 10에 있어서,The method according to claim 10,
    상기 제1 밸브와 제2 밸브는 삼방밸브로 구비되는 것을 특징으로 하는 터보압축 시스템.The first valve and the second valve is a turbo compression system, characterized in that provided as a three-way valve.
PCT/KR2013/004851 2012-05-31 2013-05-31 Turbo compression system WO2013180538A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015514924A JP2015518113A (en) 2012-05-31 2013-05-31 Turbo compression system
CN201380028423.8A CN104364530A (en) 2012-05-31 2013-05-31 Turbo compression system
US14/403,384 US20150110606A1 (en) 2012-05-31 2013-05-31 Turbo compression system
EP13796768.3A EP2857692A4 (en) 2012-05-31 2013-05-31 Turbo compression system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120058317A KR101360799B1 (en) 2012-05-31 2012-05-31 Hybrid 2 stage turbo compressor
KR10-2012-0058317 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013180538A1 true WO2013180538A1 (en) 2013-12-05

Family

ID=49673654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004851 WO2013180538A1 (en) 2012-05-31 2013-05-31 Turbo compression system

Country Status (6)

Country Link
US (1) US20150110606A1 (en)
EP (1) EP2857692A4 (en)
JP (1) JP2015518113A (en)
KR (1) KR101360799B1 (en)
CN (1) CN104364530A (en)
WO (1) WO2013180538A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938967B2 (en) 2014-10-29 2018-04-10 Emerson Climate Technologies, Inc. Reciprocating compressor system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107044437A (en) * 2017-05-22 2017-08-15 无锡商业职业技术学院 The regulation and control system of compound compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990075384A (en) * 1998-03-20 1999-10-15 이헌석 Compact Turbo Compressor
KR100253250B1 (en) * 1998-02-26 2000-05-01 구자홍 Turbo compressor
KR100273433B1 (en) 1998-07-01 2001-01-15 구자홍 Drive motor cooling structure of turbo compressor
KR100304562B1 (en) 1998-07-23 2001-12-12 구자홍 Turbo compressor
JP2009185712A (en) * 2008-02-06 2009-08-20 Ihi Corp Turbo compressor and refrigerator
JP2012072690A (en) * 2010-09-28 2012-04-12 Kobe Steel Ltd Compression device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR577936A (en) * 1923-02-27 1924-09-12 Erste Bruenner Maschinen Fab Multi-stage rotary compressor
CH347295A (en) * 1955-09-19 1960-06-30 Gutehoffnungshuette Sterkrade Method and device for increasing the economic efficiency of multistage turbo compressors
FR1334393A (en) * 1962-06-18 1963-08-09 Rateau Soc Improvement in anti-pumping devices for coils or groups of compressors
JPS5025105U (en) * 1973-06-28 1975-03-22
JP2000097189A (en) * 1998-09-21 2000-04-04 Teral Kyokuto Inc Piping for speed-up water supplying pump, operation control method, and control device
KR100421390B1 (en) * 2001-11-20 2004-03-09 엘지전자 주식회사 Turbo compressor cooling structure
US7107972B1 (en) * 2004-08-03 2006-09-19 Accessible Technologies, Inc. Multi-phase centrifugal supercharging air induction system
JP2007064139A (en) * 2005-09-01 2007-03-15 Shimadzu Corp High speed rotation device
DE102007024584B4 (en) * 2007-05-25 2010-06-02 Audi Ag Device for charging internal combustion engines
EP2263009A2 (en) * 2007-11-01 2010-12-22 Danfoss Turbocor Compressors BV. Multi-stage compressor
GB2469015B (en) * 2009-01-30 2011-09-28 Compair Uk Ltd Improvements in multi-stage centrifugal compressors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100253250B1 (en) * 1998-02-26 2000-05-01 구자홍 Turbo compressor
KR19990075384A (en) * 1998-03-20 1999-10-15 이헌석 Compact Turbo Compressor
KR100273433B1 (en) 1998-07-01 2001-01-15 구자홍 Drive motor cooling structure of turbo compressor
KR100304562B1 (en) 1998-07-23 2001-12-12 구자홍 Turbo compressor
JP2009185712A (en) * 2008-02-06 2009-08-20 Ihi Corp Turbo compressor and refrigerator
JP2012072690A (en) * 2010-09-28 2012-04-12 Kobe Steel Ltd Compression device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2857692A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938967B2 (en) 2014-10-29 2018-04-10 Emerson Climate Technologies, Inc. Reciprocating compressor system
US10815979B2 (en) 2014-10-29 2020-10-27 Emerson Climate Technologies, Inc. Reciprocating compressor having first and second cylinders in selective fluid communication with respective first and second suction plenums

Also Published As

Publication number Publication date
US20150110606A1 (en) 2015-04-23
EP2857692A1 (en) 2015-04-08
CN104364530A (en) 2015-02-18
JP2015518113A (en) 2015-06-25
KR101360799B1 (en) 2014-02-12
EP2857692A4 (en) 2016-03-02
KR20130134656A (en) 2013-12-10

Similar Documents

Publication Publication Date Title
US8764413B2 (en) Pumping arrangement
US5897299A (en) Anti-reverse rotation apparatus of compressor
KR20120042481A (en) Compressor
WO2013176532A1 (en) Turbo compressor system having at least two driving motors
CN107850062A (en) Vacuum pump system
AU2012372806B2 (en) High pressure ratio multi-stage centrifugal compressor
WO2013180538A1 (en) Turbo compression system
US4558992A (en) Pump device
CN1637360A (en) Oil equalizing method for multi-compressor
EP4328449A1 (en) Screw compressor
JP3659784B2 (en) Pump flow switching device
CN205207179U (en) Compressor and air conditioner
EP1333187A3 (en) Exhaust apparatus with control means for a multistage labyrinth seal of a hydrostatic bearing used in vacuum
WO2017003207A1 (en) Rotary fluid machine and fluid system having same
KR20210014837A (en) Control valve for multi-super charger system
KR100585809B1 (en) Modulation type multi rotary compressor and operation method
JPS5815677Y2 (en) turbo compressor
JPH03115795A (en) Centrifugal compressor
JPH04119373U (en) Vacuum exhaust equipment
JP2009091919A (en) Multistage vacuum pump device
GB2572958A (en) A multi-stage vacuum pump and a method of differentially pumping multiple vacuum chambers
EP4184010A1 (en) Scroll compressor
CN212250496U (en) Centrifugal compressor
CN111379703B (en) Air compressor unit
CN115637420A (en) Exhaust pipeline for double-cavity semiconductor equipment and double-cavity semiconductor equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14403384

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013796768

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013796768

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015514924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE