WO2013180384A1 - Optical sheet and method for manufacturing same - Google Patents

Optical sheet and method for manufacturing same Download PDF

Info

Publication number
WO2013180384A1
WO2013180384A1 PCT/KR2013/003090 KR2013003090W WO2013180384A1 WO 2013180384 A1 WO2013180384 A1 WO 2013180384A1 KR 2013003090 W KR2013003090 W KR 2013003090W WO 2013180384 A1 WO2013180384 A1 WO 2013180384A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
optical sheet
length
light source
micro lens
Prior art date
Application number
PCT/KR2013/003090
Other languages
French (fr)
Korean (ko)
Inventor
김영길
Original Assignee
주식회사 코아옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코아옵틱스 filed Critical 주식회사 코아옵틱스
Publication of WO2013180384A1 publication Critical patent/WO2013180384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide

Definitions

  • the present invention relates to an optical sheet and a method for manufacturing the same, and more particularly, to an optical sheet capable of improving luminance and a method for manufacturing the same.
  • the display device has occupied a position that CRT has been unique for more than half a century, but in the rapidly evolving information age, a larger and thinner display technology is required.
  • flat panel display technology that can be enlarged and thinned has been developed.
  • LCD liquid crystal display
  • PDP projection display
  • PDP plasma display
  • FED field emission display
  • ELD electroluminescent display
  • the LCD includes a panel in which a liquid crystal and an electrode matrix are disposed between a pair of light absorbing optical films.
  • the liquid crystal portion moves the liquid crystal portion by an electric field generated by applying a voltage to two electrodes, thereby having an optical state that is changed, and displaying an image using a polarized light in a specific direction.
  • the LCD includes a front optical film and a back optical film that induce polarization.
  • the LCD Since the LCD is not a self-luminous display but a non-luminous display, it includes a backlight unit on the back and uses the light generated therefrom.
  • the backlight unit used in such a non-light emitting display includes an edge type backlight unit that supplies light from a side of the display panel and a direct backlight unit that directly supplies light from a rear side of the display panel.
  • a light guide plate is provided to radiate light emitted from a light source upwardly, and at least one optical sheet, for example, a diffusion sheet, is disposed above the light guide plate to adjust optical characteristics of light passing through the light guide plate. Or a prism sheet.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an optical sheet capable of improving luminance and a manufacturing method thereof.
  • the optical sheet according to an aspect of the present invention for achieving the above object is an optical sheet used in the backlight unit in which the light source is located on at least one side, the axis parallel to the light source is called the x-axis, and
  • the x-axis the axis parallel to the light source
  • the y axis the length of the x axis and the length of the y axis include micro lenses different from each other.
  • the microlens may have an x-axis length longer than the y-axis length, and the microlens may collect light from the light source in the x-axis direction.
  • a micro lens may be, for example, a water droplet in a plane shape, a shape having a concave portion on the x axis, or a shape having the longest y axis length in the center.
  • the microlens When the central y-axis length is in the longest form, the microlens may have a 2: 1 ratio of the x-axis length and the y-axis length. In this case, the ratio of the length and height of the y-axis of the micro lens may be 6: 4.
  • the two or more micro lenses are preferably arranged such that the porosity between the micro lenses has a maximum value closer to the light source.
  • the two or more micro lenses may be arranged such that the porosity between the micro lenses is minimized.
  • the porosity may be 3 to 10% or less.
  • the two or more micro lenses may be arranged in a honeycomb manner.
  • the optical sheet manufacturing method comprising a; forming a microlens so that the length of the x-axis and the length of the y-axis on the substrate are different from each other.
  • the micro lens may be formed by an inkjet method.
  • forming the microlens may include inkjetting the UV ink onto the substrate; And irradiating the UV ink with ultraviolet rays, wherein the substrate may move, and the shape of the microlens may vary depending on the amount of UV ink and the moving speed of the substrate.
  • the light guide plate A light source positioned on at least one side of the light guide plate; And an optical sheet disposed on an upper surface of the light guide plate and having an axis parallel to the light source being an x axis, and an axis perpendicular to the x axis being a y axis, the optical sheet including micro lenses having different lengths of the x axis and length of the y axis.
  • a backlight unit is provided.
  • the backlight unit including the optical sheet according to the present invention has the effect of improving the maximum brightness without additional optical sheet.
  • an optical sheet including a microlens can be manufactured by an inkjet method, so that an optical sheet including a microlens having a desired arrangement can be obtained by a simpler process.
  • FIG. 1 is a cross-sectional view of a backlight unit including an optical sheet according to an embodiment of the present invention
  • Figure 2 is a perspective view of the backlight unit of FIG.
  • FIG 3 is a view illustrating an emission profile in a backlight unit including a light source and a light guide plate.
  • FIGS. 4 and 5 are perspective views of optical sheets according to other embodiments of the present invention.
  • FIG. 6 is a view illustrating a micro lens according to another embodiment of the present invention.
  • FIG. 7 is a graph illustrating luminance according to a change in x-axis length with respect to the y-axis length of the microlens
  • FIG. 8 is a graph illustrating luminance according to a change in height with respect to the y-axis length of the microlens.
  • FIG. 9 is a diagram illustrating an arrangement of microlenses according to another exemplary embodiment of the present invention.
  • FIG. 10 is a view provided to explain the manufacturing method of the optical sheet according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a backlight unit including an optical sheet according to an embodiment of the present invention
  • Figure 2 is a perspective view of the backlight unit of FIG.
  • the backlight unit includes a light guide plate 130, a light source 120 positioned on a side surface of the light guide plate 130, and an optical sheet 110 positioned on an upper surface of the light guide plate 130. It includes. 2, when the axis parallel to the light source 120 is referred to as the x-axis, and the axis perpendicular to the x-axis is referred to as the y-axis, the optical sheet 110 has a length of the x-axis and a length of the y-axis different from each other. ).
  • the light source 120 is for supplying light from the back of the display device.
  • a light source such as a cold cathode fluorescent lamp (CCFL) or a light emitting diode (LED) may be used.
  • the light source 120 may be located on one side of the light guide plate 130 or on a plurality of side surfaces as shown in FIG. 1, but the shape of the microlens 112 of the optical sheet 110 may vary. .
  • the light guide plate 130 is made of a resin made of a transparent material such as polymethyl methacrylate (PMMA), and guides light from the light source 120 to the emission surface to uniformly transmit light to the entire surface of the display device.
  • a reflecting plate (not shown) may be provided on the opposite side of the emitting surface of the light guide plate 130 to reflect the light traveling toward the opposite surface side of the emitting surface back to the emitting surface side, and the upper surface of the light guide plate 130 may be provided on the light emitting plate 130.
  • a diffusion plate (not shown) for uniformly diffusing the light traveling from 130 may be provided.
  • the optical sheet 110 is positioned at the exit surface side of the light guide plate 130, and includes a micro lens 112 for condensing and improving luminance of the light emitted from the light guide plate 130.
  • the microlens 112 is a micrometer sized structure formed of a light transmissive material positioned on a light transmissive substrate 111.
  • the substrate 111 is a substrate on which the microlenses 112 are positioned, and includes a transparent material such as glass, polycarbonate, polyallylate, polyethersulfone, amorphous polyolefin or polyethylene terephthalate, polymethylmethacrylate, or the like.
  • Light transmissive material may be any transparent material such as glass, polycarbonate, polyallylate, polyethersulfone, amorphous polyolefin or polyethylene terephthalate, polymethylmethacrylate, or the like. Light transmissive material).
  • the microlens 112 may include a light transmissive resin, for example, an acrylic resin such as polymethyl methacrylate, polyhydroxyethyl methacrylate or polycyclohexyl methacrylate, polydiethylene glycol bisallyl Allyl resin, such as carbonate or polycarbonate, methacryl resin, polyurethane resin, polyester resin, polyvinyl chloride resin, polyvinyl acetate resin, cellulose resin, polyamide resin, fluorine resin, polypropylene It may include at least one of a resin and a polystyrene resin.
  • an acrylic resin such as polymethyl methacrylate, polyhydroxyethyl methacrylate or polycyclohexyl methacrylate
  • polydiethylene glycol bisallyl Allyl resin such as carbonate or polycarbonate, methacryl resin, polyurethane resin, polyester resin, polyvinyl chloride resin, polyvinyl acetate resin, cellulose resin, polyamide resin, fluorine resin, polypropy
  • the microlens 112 may be formed by applying heat to the above-mentioned light-transmissive resin and curing, or may be used as a photocurable resin by adding a photopolymerization initiator to such light-transmissive resin. That is, the microlens 112 may be formed by irradiating and curing light on a mixture in which a photopolymerization initiator is added to the light transmissive resin.
  • the microlens 112 when the microlens 112 has an axis parallel to the light source 120 as the x-axis and an axis perpendicular to the x-axis as shown in FIG. 2, the length of the x-axis and the y-axis are different from each other. Microlens 112. This is because the light collecting performance or the light collecting direction is different depending on the shape of the microlens 112.
  • the light emission profile of the backlight unit including the light source 220 and the light guide plate 230 will be described with reference to FIG. 3.
  • Light incident from the light source 220 to the light guide plate 230 represents an x-axis optical profile 241, which is an optical profile in a direction parallel to the light source 220, and a y-axis optical profile 242 perpendicular thereto.
  • the x-axis optical profile 241 and the y-axis optical profile 242 are different from each other, depending on the position of the light source 220.
  • the microlens 112 on the optical sheet 110 preferably has a shape considering an optical profile according to the position of the light source. .
  • the x-axis refers to a direction parallel to a direction in which light from each light source 120 directly enters the light guide plate 130, and thus, an 'axis parallel to the light source' means “light guide plate from a light source. Means an axis parallel to the light incident vertically ".
  • the y-axis means a direction perpendicular thereto.
  • the microlens 112 of the present invention has a longer x-axis length, and the microlens 112 can condense the light from the light source 120 in the x-axis direction.
  • the x-axis length of the microlens 112 is formed longer than the y-axis length, condensation of light having the same profile as the x-axis optical profile 241 can be made more efficiently, so that uniform surface light emission is possible and overall Brightness can be improved.
  • the shape of the microlens 112 having different x-axis lengths and y-axis lengths is illustrated as a drop shape in which one diameter is smaller than the other diameter, but the shape of the microlenses in the present invention is limited thereto. It doesn't work.
  • 4 and 5 are perspective views of optical sheets according to other embodiments of the present invention.
  • 4 and 5 illustrate optical sheets on which the microlenses 312 and 322 having different x-axis lengths and y-axis lengths are positioned on the substrates 311 and 321.
  • the microlens 312 has a concave portion on the x-axis
  • the microlens 322 has the longest y-axis in the center.
  • the microlens 312 of FIG. 4 has a shape in which any one of axes in a direction parallel to the light source in the microlens is recessed and drawn into the inside.
  • the microlenses of FIGS. 2, 4, and 5 all have different shapes, but since the x-axis lengths are longer than the y-axis lengths, all of the micro lenses can be condensed in the x-axis direction so that the overall light can be uniformly and efficiently. have.
  • the x-axis length of the microlens 412 is referred to as Dx
  • the y-axis length is referred to as Dy
  • the height is referred to as Dz.
  • the height refers to the height of the highest point in the micro lens 412.
  • the microlens 412 has a shape having the longest central y-axis length. In other words, the hemispherical microlens is elongated in the x-axis direction. Therefore, light condensing in the x-axis direction is efficiently performed.
  • FIGS. 7 and 8 are graph illustrating luminance according to a change in x-axis length with respect to the y-axis length of the microlens
  • FIG. 8 is a graph illustrating luminance according to a change in height with respect to the y-axis length of the microlens.
  • the y-axis length Dy was fixed to 30 ⁇ m, and the x-axis length Dx was changed to the following to obtain a luminance gain value.
  • the luminance gain value is 1 or more, and thus the luminance may be improved when the x-axis length and the y-axis length are implemented differently.
  • the microlens 412 as shown in FIG. 4 when the y-axis length is fixed, it can be seen that the greatest gain of luminance is when the ratio of the x-axis length and the y-axis length is 2: 1. .
  • the x-axis length (Dx) is fixed to 120 ⁇ m and the y-axis length (Dy) to 60 ⁇ m, and the z-axis length (Dz), which is a height, is changed as follows to simulate the luminance gain value and the viewing angle. Got.
  • the luminance gain value is the highest when the ratio of the y-axis length and the height is 6: 4. It can be seen that.
  • the viewing angle is narrow to 80 degrees, which is expected to be excellent in terms of luminance.
  • FIG. 9 is a diagram illustrating an array of micro lenses according to an embodiment of the present invention.
  • the micro lens 112 has a different shape of the x-axis length and the y-axis length, thereby enabling efficient condensing.
  • the light guide plate 730 may be used.
  • the micro lens positioned closest to the light source 720 positioned on the side of the first micro lens 712 is the micro lens positioned farthest is the fourth micro lens 715.
  • the first micro lens 712 includes three micro lenses
  • the second micro lens 713 includes four micro lenses
  • the third micro lens 714 includes five micro lenses
  • the fourth micro lens 715 includes six micro lenses. That is, the second micro lens 713 than the first micro lens 712, the third micro lens 714 than the second micro lens 713, and the fourth micro lens 715 than the third micro lens 714.
  • the density of the microlenses is high. That is, the porosity between the micro lenses of the first micro lens 712 is the largest, and the porosity between the micro lenses of the fourth micro lens 715 is the smallest.
  • micro lenses are illustrated as being arranged in a line, but may be arranged differently.
  • the microlenses are arranged as much as possible in the optical sheet of the same area, the light collecting efficiency may be maximized.
  • the two or more micro lenses may be arranged such that the porosity between the micro lenses is minimized. At this time, the porosity may be 3 to 10% or less.
  • the microlenses may be arranged in a honeycomb manner in order to minimize the porosity between the microlenses.
  • the microlenses may be formed in an inkjet manner to facilitate adjustment of the arrangement or control of the porosity.
  • an optical sheet used for a backlight unit in which a light source is located on at least one side surface is produced.
  • An axis parallel to the light source is referred to as an x axis
  • an axis perpendicular to the x axis is referred to as a y axis.
  • an optical sheet is manufactured by forming a microlens so that the length of the x-axis and the length of the y-axis are different from each other on the substrate.
  • the microlens of the present invention is characterized in that the x-axis length and the y-axis length are different.
  • a micro lens may be, for example, a water droplet in a plane shape, a shape having a concave portion on the x axis, or a shape having the longest y axis length in the center.
  • the micro lens of such a shape can be more simply and precisely adjusted when using the inkjet method.
  • the ultraviolet ray curable ink is used as the ink, since the shape change due to heating is small, a microlens having a desired shape can be manufactured.
  • the microlens passes through the surface modification portion 851 for reforming the surface of the substrate 811 while moving the substrate 811 using the roller 854 as shown in FIG.
  • UV ink is discharged from the unit 852 to form a microlens on the surface of the substrate 811
  • UV is irradiated from the UV irradiator 853 to cure the microlens.
  • the shape of the micro lens is changed according to the amount of UV ink and the moving speed of the substrate 811, it is easy to adjust the shape.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Planar Illumination Modules (AREA)

Abstract

Suggested are an optical sheet of which the luminance can be enhanced and a method for manufacturing same. The optical sheet that is suggested is used in a backlight unit in which a light source is positioned on at least one side surface, wherein the optical sheet comprises a micro lens having an x-axis and a y-axis of different lengths, when an axis that is parallel to the light source is the x-axis and an axis that is perpendicular to the x-axis is the y-axis.

Description

광학시트 및 그 제조방법Optical sheet and its manufacturing method
본 발명은 광학시트 및 그 제조방법에 관한 것으로서, 보다 상세하게는, 휘도향상이 가능한 광학시트 및 그 제조방법에 관한 것이다. The present invention relates to an optical sheet and a method for manufacturing the same, and more particularly, to an optical sheet capable of improving luminance and a method for manufacturing the same.
정보표시기술에서 표시장치는 지난 반세기 이상 브라운관(CRT)이 독보적인 위치를 점하였으나 급속히 발전하는 정보시대를 맞아 보다 대형화되고 박형화된 디스플레이 기술이 요구되었다. 이에 따라 대형화 및 박형화가 가능한 평판디스플레이 기술이 발전되어 왔는데, 평판 디스플레이로는 액정디스플레이(LCD), 프로젝션 디스플레이 및 플라즈마 디스플레이(PDP)가 주류를 이루고 있고, 전계방출디스플레이(FED)와 전계발광디스플레이(ELD) 등이 관련기술의 향상과 더불어 발전되어 왔다. In the information display technology, the display device has occupied a position that CRT has been unique for more than half a century, but in the rapidly evolving information age, a larger and thinner display technology is required. As a result, flat panel display technology that can be enlarged and thinned has been developed. Liquid crystal display (LCD), projection display, and plasma display (PDP) have become mainstream, and field emission display (FED) and electroluminescent display ( ELD) has been developed along with the improvement of related technologies.
LCD는 CRT에 비하여 평면이며 대형화가 가능하여 모니터나 TV와 같은 디스플레이 분야에서 그 사용범위가 확대되고 있으며 평판시장의 80%를 차지하고 있다. LCD는 한 쌍의 흡광성 광학필름들 사이에 액정 및 전극 매트릭스를 배치한 형태의 패널을 포함한다. LCD에 있어서, 액정 부분은 두 전극에 전압을 인가하여 생성되는 전기장에 의해 액정부분을 움직이게 함으로써, 이에 따라 변경되는 광학 상태를 갖고, 정보를 실은 픽셀을 특정 방향의 편광을 이용하여 영상을 표시한다. 따라서, LCD는 편광을 유도하는 전면 광학필름 및 배면 광학필름을 포함한다.Compared with CRTs, LCDs are flat and large in size, and thus their use is expanding in display fields such as monitors and TVs, accounting for 80% of the flat panel market. The LCD includes a panel in which a liquid crystal and an electrode matrix are disposed between a pair of light absorbing optical films. In an LCD, the liquid crystal portion moves the liquid crystal portion by an electric field generated by applying a voltage to two electrodes, thereby having an optical state that is changed, and displaying an image using a polarized light in a specific direction. . Thus, the LCD includes a front optical film and a back optical film that induce polarization.
LCD는 자체발광형 디스플레이가 아니라 비발광형 디스플레이이기 때문에, 배면에 백라이트 유닛을 포함하여 이로부터 발생하는 광을 이용한다. 이러한 비발광형 디스플레이에 사용되는 백라이트 유닛에는 표시패널을 기준으로 하여 측면에서 광을 공급하는 에지형 백라이트 유닛 및 후면에서 직접 광을 공급하는 직하형 백라이트 유닛이 있다. 에지형 백라이트 유닛의 경우, 광원으로부터 출사된 빛이 상측으로 조사되도록 하기 위해 도광판을 구비하며, 도광판을 통과한 빛의 광학적 특성을 조절하기 위해 도광판 위쪽에 적어도 하나의 광학시트, 예를 들어 확산시트 또는 프리즘시트를 구비한다. Since the LCD is not a self-luminous display but a non-luminous display, it includes a backlight unit on the back and uses the light generated therefrom. The backlight unit used in such a non-light emitting display includes an edge type backlight unit that supplies light from a side of the display panel and a direct backlight unit that directly supplies light from a rear side of the display panel. In the case of an edge type backlight unit, a light guide plate is provided to radiate light emitted from a light source upwardly, and at least one optical sheet, for example, a diffusion sheet, is disposed above the light guide plate to adjust optical characteristics of light passing through the light guide plate. Or a prism sheet.
평판 디스플레이의 대형화 및 박형화 경향에 따라 점점 광원의 개수는 유지하거나 최소로 하면서 표시패널에 공급하는 광량 및 휘도를 소정수준으로 확보하고자 하는 노력이 있어왔다. 이에 따라, 백라이트 유닛의 광량 및 휘도를 향상시키고자 광학시트를 추가하였고, 이는 디스플레이의 박형화 추세에 역행하는 문제점이 발생하였다. With the trend toward larger and thinner flat panel displays, efforts have been made to secure a predetermined amount of light and luminance supplied to the display panel while maintaining or minimizing the number of light sources. Accordingly, an optical sheet was added to improve the light quantity and brightness of the backlight unit, which caused a problem contrary to the trend of thinning of the display.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 휘도향상이 가능한 광학시트 및 그 제조방법을 제공하는데 있다. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an optical sheet capable of improving luminance and a manufacturing method thereof.
이상과 같은 목적을 달성하기 위한 본 발명의 일 측면에 따른 광학시트는, 광원이 적어도 어느 한 측면에 위치하는 백라이트 유닛에 사용되는 광학시트로서, 광원과 평행한 축을 x축이라 하고, x축과 수직인 축을 y축이라 할 때, x축의 길이와 y축의 길이가 서로 다른 마이크로 렌즈를 포함한다. The optical sheet according to an aspect of the present invention for achieving the above object is an optical sheet used in the backlight unit in which the light source is located on at least one side, the axis parallel to the light source is called the x-axis, and When the vertical axis is referred to as the y axis, the length of the x axis and the length of the y axis include micro lenses different from each other.
마이크로 렌즈는 x축 길이가 y축 길이보다 긴 것일 수 있고, 마이크로 렌즈는 광원으로부터의 광을 x축 방향으로 집광할 수 있다. 이러한 마이크로 렌즈는 예를 들어, 평면형상이 물방울 형태이거나, x축 상에 오목한 부분이 있는 형상이거나, 중심의 y축 길이가 가장 긴 형태일 수 있다. The microlens may have an x-axis length longer than the y-axis length, and the microlens may collect light from the light source in the x-axis direction. Such a micro lens may be, for example, a water droplet in a plane shape, a shape having a concave portion on the x axis, or a shape having the longest y axis length in the center.
중심의 y축 길이가 가장 긴 형태일 때, 마이크로 렌즈는 x축 길이 및 y축 길이의 비율이 2:1일 수 있다. 또한, 이 때, 마이크로 렌즈는 y축 길이 및 높이의 비율이 6:4일 수 있다. When the central y-axis length is in the longest form, the microlens may have a 2: 1 ratio of the x-axis length and the y-axis length. In this case, the ratio of the length and height of the y-axis of the micro lens may be 6: 4.
또한, 광학시트가 2이상의 마이크로 렌즈를 포함할 때, 2이상의 마이크로 렌즈는 마이크로 렌즈 사이의 공극률이 광원으로부터 가까운 쪽이 최대값을 갖도록 배열되는 것이 바람직하다. In addition, when the optical sheet includes two or more micro lenses, the two or more micro lenses are preferably arranged such that the porosity between the micro lenses has a maximum value closer to the light source.
또한, 광학시트가 2이상의 마이크로 렌즈를 포함할 때, 2이상의 마이크로 렌즈는 마이크로 렌즈 사이의 공극률이 최소화되도록 배열될 수 있다. 이 때, 공극률은 3내지 10%이하일 수 있다. In addition, when the optical sheet includes two or more micro lenses, the two or more micro lenses may be arranged such that the porosity between the micro lenses is minimized. At this time, the porosity may be 3 to 10% or less.
나아가, 광학시트가 2이상의 마이크로 렌즈를 포함할 때, 2이상의 마이크로 렌즈는 허니컴(honeycomb) 방식으로 배열될 수 있다.Further, when the optical sheet includes two or more micro lenses, the two or more micro lenses may be arranged in a honeycomb manner.
본 발명의 다른 측면에 따르면, 광원이 적어도 어느 한 측면에 위치하는 백라이트 유닛에 사용되는 광학시트를 제조하는 방법으로서, 광원과 평행한 축을 x축이라 하고, x축과 수직인 축을 y축이라 할 때, 기재 상에 x축의 길이와 y축의 길이가 서로 다르도록 마이크로 렌즈를 형성하는 단계;를 포함하는 광학시트 제조방법이 제공된다. According to another aspect of the present invention, a method of manufacturing an optical sheet for a backlight unit in which the light source is located on at least one side, the axis parallel to the light source is called the x-axis, the axis perpendicular to the x-axis is called the y-axis At this time, the optical sheet manufacturing method comprising a; forming a microlens so that the length of the x-axis and the length of the y-axis on the substrate are different from each other.
이 때, 마이크로 렌즈는 잉크젯 방식으로 형성될 수 있다. At this time, the micro lens may be formed by an inkjet method.
또는, 마이크로 렌즈를 형성하는 단계는 UV잉크를 기재 상에 잉크젯팅하는 단계; 및 UV잉크에 자외선을 조사하는 단계;를 포함할 수 있는데, 이 때 기재는 이동할 수 있고, 마이크로 렌즈의 형상은 UV잉크의 양 및 기재의 이동속도에 따라 변할 수 있다. Alternatively, forming the microlens may include inkjetting the UV ink onto the substrate; And irradiating the UV ink with ultraviolet rays, wherein the substrate may move, and the shape of the microlens may vary depending on the amount of UV ink and the moving speed of the substrate.
본 발명의 또다른 측면에 따르면, 도광판; 도광판의 적어도 어느 한 측면에 위치하는 광원; 및 도광판의 상면에 위치하고, 광원과 평행한 축을 x축이라 하고, x축과 수직인 축을 y축이라 할 때, x축의 길이와 y축의 길이가 서로 다른 마이크로 렌즈를 포함하는 광학시트;를 포함하는 백라이트 유닛이 제공된다. According to another aspect of the invention, the light guide plate; A light source positioned on at least one side of the light guide plate; And an optical sheet disposed on an upper surface of the light guide plate and having an axis parallel to the light source being an x axis, and an axis perpendicular to the x axis being a y axis, the optical sheet including micro lenses having different lengths of the x axis and length of the y axis. A backlight unit is provided.
본 발명에 따른 광학시트를 포함하는 백라이트 유닛은 추가적인 광학시트 없이도 최대한의 휘도향상이 가능한 효과가 있다. The backlight unit including the optical sheet according to the present invention has the effect of improving the maximum brightness without additional optical sheet.
또한, 잉크젯 방식으로 마이크로 렌즈를 포함하는 광학시트를 제조할 수 있어서, 보다 간단한 공정으로 원하는 배열의 마이크로 렌즈를 포함하는 광학시트를 얻을 수 있다. In addition, an optical sheet including a microlens can be manufactured by an inkjet method, so that an optical sheet including a microlens having a desired arrangement can be obtained by a simpler process.
도 1는 본 발명의 일실시예에 따른 광학시트를 포함하는 백라이트 유닛의 단면도이고, 도 2는 도 1의 백라이트 유닛의 사시도이다. 1 is a cross-sectional view of a backlight unit including an optical sheet according to an embodiment of the present invention, Figure 2 is a perspective view of the backlight unit of FIG.
도 3은 광원 및 도광판을 포함하는 백라이트 유닛에서의 출광프로파일을 도시한 도면이다. 3 is a view illustrating an emission profile in a backlight unit including a light source and a light guide plate.
도 4 및 도 5는 본 발명의 다른 실시예들에 따른 광학시트의 사시도이다. 4 and 5 are perspective views of optical sheets according to other embodiments of the present invention.
도 6은 본 발명의 다른 실시예에 따른 마이크로 렌즈를 도시한 도면이다. 6 is a view illustrating a micro lens according to another embodiment of the present invention.
도 7은 마이크로 렌즈의 y축 길이에 대한 x축 길이의 변화에 따른 휘도를 도시한 그래프이고, 도 8은 마이크로 렌즈의 y축 길이에 대한 높이의 변화에 따른 휘도를 도시한 그래프이다. 7 is a graph illustrating luminance according to a change in x-axis length with respect to the y-axis length of the microlens, and FIG. 8 is a graph illustrating luminance according to a change in height with respect to the y-axis length of the microlens.
도 9는 본 발명의 다른 실시예에 따른 마이크로 렌즈의 배열을 도시한 도면이다. 9 is a diagram illustrating an arrangement of microlenses according to another exemplary embodiment of the present invention.
도 10은 본 발명의 다른 실시예에 따른 광학시트의 제조방법의 설명에 제공되는 도면이다. 10 is a view provided to explain the manufacturing method of the optical sheet according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art. In the accompanying drawings, there may be a component having a specific pattern or having a predetermined thickness, but this is for convenience of description or distinction. It is not limited only.
도 1은 본 발명의 일실시예에 따른 광학시트를 포함하는 백라이트 유닛의 단면도이고, 도 2는 도 1의 백라이트 유닛의 사시도이다. 1 is a cross-sectional view of a backlight unit including an optical sheet according to an embodiment of the present invention, Figure 2 is a perspective view of the backlight unit of FIG.
도 1 및 도 2를 참조하면, 본 발명에 따른 백라이트 유닛은, 도광판(130), 도광판(130)의 측면에 위치하는 광원(120) 및 도광판(130)의 상면에 위치하는 광학시트(110)를 포함한다. 광학시트(110)는 도 2에서와 같이 광원(120)과 평행한 축을 x축이라 하고, x축과 수직인 축을 y축이라 할 때, x축의 길이와 y축의 길이가 서로 다른 마이크로 렌즈(112)를 포함한다. 1 and 2, the backlight unit according to the present invention includes a light guide plate 130, a light source 120 positioned on a side surface of the light guide plate 130, and an optical sheet 110 positioned on an upper surface of the light guide plate 130. It includes. 2, when the axis parallel to the light source 120 is referred to as the x-axis, and the axis perpendicular to the x-axis is referred to as the y-axis, the optical sheet 110 has a length of the x-axis and a length of the y-axis different from each other. ).
광원(120)은 표시장치의 후면에서 광을 공급하기 위한 것으로서, 예를 들면, 냉음극형광램프(Cold Cathode Fluorescent Lamp, CCFL) 또는 발광다이오드(Light emitting diode, LED)와 같은 광원이 사용될 수 있다. 광원(120)은 도 1에서와 같이 도광판(130)의 일측면에 위치하거나 복수의 측면에 위치할 수 있는데, 다만, 그에 따라 광학시트(110)의 마이크로 렌즈(112)의 형상이 달라질 수 있다.The light source 120 is for supplying light from the back of the display device. For example, a light source such as a cold cathode fluorescent lamp (CCFL) or a light emitting diode (LED) may be used. . The light source 120 may be located on one side of the light guide plate 130 or on a plurality of side surfaces as shown in FIG. 1, but the shape of the microlens 112 of the optical sheet 110 may vary. .
도광판(130)은 PMMA(Polymethyl methacrylate)와 같은 투명한 재질의 수지로 구현되며, 광원(120)으로부터의 광을 출사면으로 가이드하여 표시장치 전체면에 균일하게 광을 전달한다. 도광판(130)의 출사면의 반대면에는 출사면의 반대면측으로 진행하는 광을 다시 출사면측으로 반사시키는 반사판(미도시)이 구비될 수 있고, 도광판(130)의 출사면 측 상부에는 도광판(130)으로부터 진행하는 광을 균일하게 확산시키는 확산판(미도시)이 구비될 수 있다. The light guide plate 130 is made of a resin made of a transparent material such as polymethyl methacrylate (PMMA), and guides light from the light source 120 to the emission surface to uniformly transmit light to the entire surface of the display device. A reflecting plate (not shown) may be provided on the opposite side of the emitting surface of the light guide plate 130 to reflect the light traveling toward the opposite surface side of the emitting surface back to the emitting surface side, and the upper surface of the light guide plate 130 may be provided on the light emitting plate 130. A diffusion plate (not shown) for uniformly diffusing the light traveling from 130 may be provided.
광학시트(110)는 도광판(130)의 출사면 측에 위치하는데, 도광판(130)에서 출사한 광의 집광 및 휘도향상을 위한 마이크로 렌즈(112)를 포함한다. The optical sheet 110 is positioned at the exit surface side of the light guide plate 130, and includes a micro lens 112 for condensing and improving luminance of the light emitted from the light guide plate 130.
마이크로 렌즈(112)는 광투과성의 기재(111)(substrate)상에 위치하는 광투과성 물질로 형성되는 마이크로 미터정도 크기의 구조물이다. 기재(111)는 마이크로 렌즈(112)가 위치하기 위한 기판으로서, 글래스, 폴리카보네이트, 폴리알릴레이트, 폴리에테르설폰, 어모퍼스(amorphous) 폴리올레핀 또는 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트 등의 투명 재료(광투과성 재료)를 포함할 수 있다. The microlens 112 is a micrometer sized structure formed of a light transmissive material positioned on a light transmissive substrate 111. The substrate 111 is a substrate on which the microlenses 112 are positioned, and includes a transparent material such as glass, polycarbonate, polyallylate, polyethersulfone, amorphous polyolefin or polyethylene terephthalate, polymethylmethacrylate, or the like. Light transmissive material).
마이크로 렌즈(112)는 광투과성 수지를 포함할 수 있는데, 예를 들어, 폴리메틸메타크릴레이트, 폴리히드록시에틸메타크릴레이트 또는 폴리시클로헥실메타크릴레이트와 같은 아크릴계 수지, 폴리디에틸렌글리콜 비스알릴카보네이트 또는 폴리카보네이트와 같은 알릴계 수지, 메타크릴 수지, 폴리우레탄계 수지, 폴리에스테르계 수지, 폴리염화비닐계 수지, 폴리 초산 비닐계 수지, 셀룰로오스계 수지, 폴리아미드계 수지, 불소계 수지, 폴리프로필렌계 수지 및 폴리스티렌계 수지 중 적어도 하나를 포함할 수 있다. The microlens 112 may include a light transmissive resin, for example, an acrylic resin such as polymethyl methacrylate, polyhydroxyethyl methacrylate or polycyclohexyl methacrylate, polydiethylene glycol bisallyl Allyl resin, such as carbonate or polycarbonate, methacryl resin, polyurethane resin, polyester resin, polyvinyl chloride resin, polyvinyl acetate resin, cellulose resin, polyamide resin, fluorine resin, polypropylene It may include at least one of a resin and a polystyrene resin.
마이크로 렌즈(112)는 전술한 광투과성 수지에 열을 가하여 경화시켜 형성할 수 있고, 또는 이러한 광투과성 수지에 광중합 개시제를 첨가하여 광경화성 수지로 사용할 수 있다. 즉, 마이크로 렌즈(112)는 광투과성 수지에 광중합개시제를 첨가한 혼합물에 광을 조사하여 경화시켜 형성될 수 있다. The microlens 112 may be formed by applying heat to the above-mentioned light-transmissive resin and curing, or may be used as a photocurable resin by adding a photopolymerization initiator to such light-transmissive resin. That is, the microlens 112 may be formed by irradiating and curing light on a mixture in which a photopolymerization initiator is added to the light transmissive resin.
본 발명에서의 마이크로 렌즈(112)는 도 2에서와 같이 광원(120)과 평행한 축을 x축이라 하고, x축과 수직인 축을 y축이라 할 때, x축의 길이와 y축의 길이가 서로 다른 마이크로 렌즈(112)를 포함한다. 이는 마이크로 렌즈(112)의 형상에 따라 집광성능이나 집광방향이 상이하기 때문이다. In the present invention, when the microlens 112 has an axis parallel to the light source 120 as the x-axis and an axis perpendicular to the x-axis as shown in FIG. 2, the length of the x-axis and the y-axis are different from each other. Microlens 112. This is because the light collecting performance or the light collecting direction is different depending on the shape of the microlens 112.
이와 관련하여 광원(220) 및 도광판(230)을 포함하는 백라이트 유닛에서의 출광프로파일을 도시한 도 3을 참조하여 설명하기로 한다. 광원(220)으로부터 도광판(230)으로 입사한 광은 광원(220)과 평행한 방향으로의 광프로파일인 x축 광프로파일(241) 및 이와 수직한 y축 광프로파일(242)을 나타낸다. x축 광프로파일(241)과 y축 광프로파일(242)은 서로 상이한데, 이는 광원(220)의 위치에 따른 것이다. 본 발명에 따른 광학시트(110)는 측면에 광원이 위치하는 백라이트 유닛에 사용되는 것이므로 광학시트(110) 상의 마이크로 렌즈(112)는 이러한 광원의 위치에 따른 광프로파일을 고려한 형상을 갖는 것이 바람직하다. In this regard, the light emission profile of the backlight unit including the light source 220 and the light guide plate 230 will be described with reference to FIG. 3. Light incident from the light source 220 to the light guide plate 230 represents an x-axis optical profile 241, which is an optical profile in a direction parallel to the light source 220, and a y-axis optical profile 242 perpendicular thereto. The x-axis optical profile 241 and the y-axis optical profile 242 are different from each other, depending on the position of the light source 220. Since the optical sheet 110 according to the present invention is used in a backlight unit in which a light source is located on the side surface, the microlens 112 on the optical sheet 110 preferably has a shape considering an optical profile according to the position of the light source. .
여기서, 도 2에서와 같이 x축은 각 광원(120)으로부터의 광이 도광판(130)으로 직접 입사하는 방향과 평행한 방향을 의미하므로, '광원과 평행한 축'이라는 의미는 "광원으로부터의 도광판으로 수직으로 입사한 광과 평행한 축"을 의미한다. 또한, y축은 이와 수직인 방향을 의미한다. Here, as shown in FIG. 2, the x-axis refers to a direction parallel to a direction in which light from each light source 120 directly enters the light guide plate 130, and thus, an 'axis parallel to the light source' means “light guide plate from a light source. Means an axis parallel to the light incident vertically ". In addition, the y-axis means a direction perpendicular thereto.
도 3에서, x축 광프로파일(241)과 y축 광프로파일(242)을 비교하여 보면, 광이 x축방향으로 더 치우쳐 있음을 알 수 있다. 이는 도광판으로 입사한 광이 도광판을 출광할 때 균일한 면발광이 이루어지지 않을 것을 예측하게 한다. 따라서, 본 발명의 마이크로 렌즈(112)는 x축 길이가 더 길게 형성되어 있고, 마이크로 렌즈(112)는 광원(120)으로부터의 광을 x축 방향으로 집광할 수 있다. 즉, 마이크로 렌즈(112)가 x축 길이가 y축 길이보다 더 길게 형성되어 있으므로 x축 광프로파일(241)과 같은 프로파일을 나타내는 광의 집광이 더욱 효율적으로 이루어질 수 있으므로 균일한 면발광이 가능하고 전체적인 휘도향상이 가능하다. In FIG. 3, when comparing the x-axis optical profile 241 and the y-axis optical profile 242, it can be seen that the light is further skewed in the x-axis direction. This makes it possible to predict that uniform surface light emission will not occur when light incident on the light guide plate exits the light guide plate. Therefore, the microlens 112 of the present invention has a longer x-axis length, and the microlens 112 can condense the light from the light source 120 in the x-axis direction. That is, since the x-axis length of the microlens 112 is formed longer than the y-axis length, condensation of light having the same profile as the x-axis optical profile 241 can be made more efficiently, so that uniform surface light emission is possible and overall Brightness can be improved.
도 1 및 도 2에서 x축 길이 및 y축 길이가 상이한 마이크로 렌즈(112)의 형태가 한쪽 직경이 다른 쪽 직경보다 작은 형태인 물방울 형태로 예시되어 있으나 본 발명에서의 마이크로 렌즈의 형태는 이에 한정되지 않는다. In FIGS. 1 and 2, the shape of the microlens 112 having different x-axis lengths and y-axis lengths is illustrated as a drop shape in which one diameter is smaller than the other diameter, but the shape of the microlenses in the present invention is limited thereto. It doesn't work.
도 4 및 도 5는 본 발명의 다른 실시예들에 따른 광학시트의 사시도이다. 도 4 및 도 5는 기재(311, 321) 상에 x축 길이 및 y축 길이가 서로 다른 마이크로 렌즈(312, 322)가 위치한 광학시트를 도시하고 있다. 도 4에서, 마이크로 렌즈(312)는 x축 상에 오목한 부분이 있는 형상을 나타내고 있고, 도 5에서 마이크로 렌즈(322)는 중심에서 y축 길이가 가장 긴 형상을 나타내고 있다. 도 4의 마이크로 렌즈(312)는 마이크로 렌즈에서 광원과 평행한 방향의 축 중 어느 한점이 오목하게 내부로 인입된 형상이다. 4 and 5 are perspective views of optical sheets according to other embodiments of the present invention. 4 and 5 illustrate optical sheets on which the microlenses 312 and 322 having different x-axis lengths and y-axis lengths are positioned on the substrates 311 and 321. In FIG. 4, the microlens 312 has a concave portion on the x-axis, and in FIG. 5, the microlens 322 has the longest y-axis in the center. The microlens 312 of FIG. 4 has a shape in which any one of axes in a direction parallel to the light source in the microlens is recessed and drawn into the inside.
도 2, 도 4 및 도 5의 마이크로 렌즈는 모두 다른 형상을 갖고 있으나, 모두 x축 길이가 y축 길이보다 길게 형성되어 있어서 x축 방향으로의 집광을 강화하여 전체적인 집광이 균일하고 효율적으로 이루어질 수 있다. The microlenses of FIGS. 2, 4, and 5 all have different shapes, but since the x-axis lengths are longer than the y-axis lengths, all of the micro lenses can be condensed in the x-axis direction so that the overall light can be uniformly and efficiently. have.
도 6은 본 발명의 다른 실시예에 따른 마이크로 렌즈를 도시한 도면이다. 마이크로 렌즈(412)의 x축 길이를 Dx라 하고, y축 길이를 Dy라 하고, 높이를 Dz라 한다. 높이는 마이크로 렌즈(412)에서 가장 높은 지점의 높이를 의미한다. 도 6에서, 마이크로 렌즈(412)는 중심의 y축 길이가 가장 긴 형상을 갖는다. 즉, 반구형의 마이크로 렌즈를 x축 방향으로 길게 연장시킨 형상이다. 따라서, x축 방향으로의 집광이 효율적으로 이루어진다. 6 is a view illustrating a micro lens according to another embodiment of the present invention. The x-axis length of the microlens 412 is referred to as Dx, the y-axis length is referred to as Dy, and the height is referred to as Dz. The height refers to the height of the highest point in the micro lens 412. In FIG. 6, the microlens 412 has a shape having the longest central y-axis length. In other words, the hemispherical microlens is elongated in the x-axis direction. Therefore, light condensing in the x-axis direction is efficiently performed.
이와 관련하여 도 7 및 도 8을 참조하여 x축 길이와 y축 길이 및 높이의 상대적 변화에 따른 휘도변화를 설명하기로 한다. 도 7은 마이크로 렌즈의 y축 길이에 대한 x축 길이의 변화에 따른 휘도를 도시한 그래프이고, 도 8은 마이크로 렌즈의 y축 길이에 대한 높이의 변화에 따른 휘도를 도시한 그래프이다. In this regard, the luminance change according to the relative change of the x-axis length, the y-axis length, and the height will be described with reference to FIGS. 7 and 8. 7 is a graph illustrating luminance according to a change in x-axis length with respect to the y-axis length of the microlens, and FIG. 8 is a graph illustrating luminance according to a change in height with respect to the y-axis length of the microlens.
반구형 마이크로 렌즈에서 y축 길이(Dy)를 30㎛으로 고정시키고, x축 길이(Dx)를 다음과 변화시켜 시뮬레이션하여 휘도이득값을 얻었다.In the hemispherical microlens, the y-axis length Dy was fixed to 30 µm, and the x-axis length Dx was changed to the following to obtain a luminance gain value.
표 1
x축 길이(㎛) y축 길이:x축 길이 휘도 이득값
60 1:2 1.83
90 1:3 1.65
120 1:4 1.42
150 1:5 1.41
Table 1
x-axis length (μm) y-axis length: x-axis length Luminance gain
60 1: 2 1.83
90 1: 3 1.65
120 1: 4 1.42
150 1: 5 1.41
표 1 및 도 7로부터 알 수 있듯, y축 길이보다 x축 길이가 긴 경우 휘도 이득값은 1 이상이므로 x축 길이 및 y축 길이를 상이하게 구현하는 경우 휘도향상이 가능한 것을 알 수 있다. 또한, 도 4에서와 같은 마이크로 렌즈(412)의 경우, y축 길이를 고정하였을 때, 휘도이득이 가장 큰 경우는 x축 길이 및 y축 길이의 비율이 2:1인 경우라는 것을 알 수 있다. As can be seen from Table 1 and FIG. 7, when the x-axis length is longer than the y-axis length, the luminance gain value is 1 or more, and thus the luminance may be improved when the x-axis length and the y-axis length are implemented differently. In addition, in the case of the microlens 412 as shown in FIG. 4, when the y-axis length is fixed, it can be seen that the greatest gain of luminance is when the ratio of the x-axis length and the y-axis length is 2: 1. .
또한, 반구형 마이크로 렌즈에서 x축 길이(Dx)를 120㎛ 및 y축 길이(Dy)를 60㎛으로 고정시키고, 높이인 z축 길이(Dz)를 다음과 같이 변화시켜 시뮬레이션하여 휘도이득값 및 시야각을 얻었다. Also, in the hemispherical micro lens, the x-axis length (Dx) is fixed to 120 µm and the y-axis length (Dy) to 60 µm, and the z-axis length (Dz), which is a height, is changed as follows to simulate the luminance gain value and the viewing angle. Got.
표 2
z축 길이(㎛) y축 길이:z축 길이 휘도 이득값 시야각
20 6:2 1.46 122
30 6:3 1.86 95
40 6:4 2.01 80
50 6:5 1.87 71
TABLE 2
z-axis length (μm) y-axis length: z-axis length Luminance gain Viewing angle
20 6: 2 1.46 122
30 6: 3 1.86 95
40 6: 4 2.01 80
50 6: 5 1.87 71
표 2 및 도 8로부터 알 수 있듯, x축 길이 및 y축 길이를 2:1로 고정하고, 높이를 변화시켰을 때, y축 길이와 높이의 비율이 6:4인 경우 휘도 이득값이 가장 높은 것을 알 수 있다. 또한, y축 길이와 높이의 비율이 6:4인 경우 시야각이 80도로 좁아 휘도면에서 우수할 것이 예측된다. As can be seen from Table 2 and FIG. 8, when the x-axis length and the y-axis length are fixed at 2: 1 and the height is changed, the luminance gain value is the highest when the ratio of the y-axis length and the height is 6: 4. It can be seen that. In addition, when the ratio of the length and height of the y-axis is 6: 4, the viewing angle is narrow to 80 degrees, which is expected to be excellent in terms of luminance.
도 9는 본 발명의 실시예에 따른 마이크로 렌즈의 배열을 도시한 도면이다. 광학시트에서 마이크로 렌즈가 2이상일 때, 도 2와 같이 광원(120)을 따라 규칙적으로 배열을 한 경우에도 마이크로 렌즈(112)가 x축 길이 및 y축 길이가 다른 형상이므로 효율적인 집광이 가능하다. 9 is a diagram illustrating an array of micro lenses according to an embodiment of the present invention. When two or more micro lenses in the optical sheet are arranged along the light source 120 as shown in FIG. 2, the micro lens 112 has a different shape of the x-axis length and the y-axis length, thereby enabling efficient condensing.
그러나, 도 9에서와 같이 기재(711)상에 위치한 마이크로 렌즈들(712, 713, 714, 715)의 밀도가 광원으로부터의 거리에 따라 다르게 배열되는 경우, 보다 효율적으로 집광할 수 있다. 즉, 광원(720)으로부터 위치하는 마이크로 렌즈들을 제1마이크로 렌즈(712), 제2마이크로 렌즈(713), 제3마이크로 렌즈(714) 및 제4마이크로 렌즈(715)라 하면, 도광판(730)의 측면에 위치하는 광원(720)으로부터 가장 가까이 위치하는 마이크로 렌즈는 제1마이크로 렌즈(712)이고, 가장 멀리 위치하는 마이크로 렌즈는 제4마이크로 렌즈(715)이다. However, when the densities of the micro lenses 712, 713, 714, and 715 located on the substrate 711 are arranged differently according to the distance from the light source, as shown in FIG. 9, the light can be collected more efficiently. That is, when the micro lenses positioned from the light source 720 are referred to as the first micro lens 712, the second micro lens 713, the third micro lens 714, and the fourth micro lens 715, the light guide plate 730 may be used. The micro lens positioned closest to the light source 720 positioned on the side of the first micro lens 712 is the micro lens positioned farthest is the fourth micro lens 715.
도 9에서, 제1마이크로 렌즈(712)는 3개의 마이크로 렌즈를 포함하고, 제2마이크로 렌즈(713)는 4개의 마이크로 렌즈를 포함하며, 제3마이크로 렌즈(714)는 5개의 마이크로 렌즈를 포함하고, 제4마이크로 렌즈(715)는 6개의 마이크로 렌즈를 포함한다. 즉, 제1마이크로 렌즈(712)보다 제2마이크로 렌즈(713)가, 제2마이크로 렌즈(713)보다 제3마이크로 렌즈(714)가, 제3마이크로 렌즈(714) 보다 제4마이크로 렌즈(715)가 마이크로 렌즈의 밀도가 높다. 즉, 제1마이크로 렌즈(712)의 마이크로 렌즈 간의 공극률이 가장 크고, 제4마이크로 렌즈(715)의 마이크로 렌즈간의 공극률이 가장 작다. 이는 광원으로부터 멀리 이격된 위치에서의 집광을 강화하기 위하여 광원으로부터 가까운 곳은 마이크로 렌즈를 적은 개수로 위치시키고, 멀리 떨어진 곳은 가능한 한 공극률을 최소화시키면서 마이크로 렌즈를 많은 개수로 위치시키는 것이다. 도 9에서는 설명의 편의상 마이크로 렌즈들이 일렬로 위치하는 것으로 도시하였으나 이와 달리 배열되는 것도 가능하다. In FIG. 9, the first micro lens 712 includes three micro lenses, the second micro lens 713 includes four micro lenses, and the third micro lens 714 includes five micro lenses. In addition, the fourth micro lens 715 includes six micro lenses. That is, the second micro lens 713 than the first micro lens 712, the third micro lens 714 than the second micro lens 713, and the fourth micro lens 715 than the third micro lens 714. The density of the microlenses is high. That is, the porosity between the micro lenses of the first micro lens 712 is the largest, and the porosity between the micro lenses of the fourth micro lens 715 is the smallest. This is to place as few micro lenses as possible near the light source and to place as many micro lenses as possible while minimizing the porosity as far as possible in order to enhance the condensing at the position away from the light source. In FIG. 9, for convenience of description, the micro lenses are illustrated as being arranged in a line, but may be arranged differently.
동일한 면적의 광학시트에서 마이크로 렌즈가 최대한 많이 배열되면 집광효율이 최대화될 수 있다. 따라서, 광학시트가 2이상의 마이크로 렌즈를 포함할 때, 2이상의 마이크로 렌즈는 마이크로 렌즈 사이의 공극률이 최소화되도록 배열될 수 있다. 이 때, 공극률은 3내지 10%이하일 수 있다. If the microlenses are arranged as much as possible in the optical sheet of the same area, the light collecting efficiency may be maximized. Thus, when the optical sheet includes two or more micro lenses, the two or more micro lenses may be arranged such that the porosity between the micro lenses is minimized. At this time, the porosity may be 3 to 10% or less.
마이크로 렌즈 사이의 공극률을 최소화하도록 배열하기 위하여 마이크로 렌즈를 허니컴(honeycomb) 방식으로 배열할 수 있다. 마이크로 렌즈는 배열형태의 조절이나 공극률 제어가 용이하도록 잉크젯 방식으로 형성될 수 있다. The microlenses may be arranged in a honeycomb manner in order to minimize the porosity between the microlenses. The microlenses may be formed in an inkjet manner to facilitate adjustment of the arrangement or control of the porosity.
도 10은 본 발명의 다른 실시예에 따른 광학시트의 제조방법의 설명에 제공되는 도면이다. 본 발명의 광학시트의 제조방법에서는, 광원이 적어도 어느 한 측면에 위치하는 백라이트 유닛에 사용되는 광학시트를 제조하는데, 광원과 평행한 축을 x축이라 하고, x축과 수직인 축을 y축이라 할 때, 기재 상에 x축의 길이와 y축의 길이가 서로 다르도록 마이크로 렌즈를 형성하여 광학시트를 제조한다. 10 is a view provided to explain the manufacturing method of the optical sheet according to another embodiment of the present invention. In the method for manufacturing an optical sheet of the present invention, an optical sheet used for a backlight unit in which a light source is located on at least one side surface is produced. An axis parallel to the light source is referred to as an x axis, and an axis perpendicular to the x axis is referred to as a y axis. In this case, an optical sheet is manufactured by forming a microlens so that the length of the x-axis and the length of the y-axis are different from each other on the substrate.
마이크로 렌즈의 제조방법에는 금형을 이용하여 성형하는 방법, 스탬퍼를 이용하여 성형하는 방법, 포토리소그래피 방식을 이용하는 방법 또는 잉크젯 방식을 이용하는 방법이 있다. There are a method of manufacturing a microlens using a method of molding using a mold, a method of molding using a stamper, a method using a photolithography method, or a method using an inkjet method.
본 발명의 마이크로 렌즈는 x축 길이 및 y축 길이가 상이한 것을 특징으로 한다. 이러한 마이크로 렌즈는 예를 들어, 평면형상이 물방울 형태이거나, x축 상에 오목한 부분이 있는 형상이거나, 중심의 y축 길이가 가장 긴 형태일 수 있다. 이러한 형상의 마이크로 렌즈는 잉크젯 방식을 이용하는 경우, 보다 간단하고 정확한 형상조절이 가능하다. 또한, 잉크젯 방식에서도 잉크를 자외선 경화형 잉크를 사용하는 경우 가열 등에 따른 형상변화가 적어 원하는 형상의 마이크로 렌즈의 제조가 가능하므로 바람직하다. The microlens of the present invention is characterized in that the x-axis length and the y-axis length are different. Such a micro lens may be, for example, a water droplet in a plane shape, a shape having a concave portion on the x axis, or a shape having the longest y axis length in the center. The micro lens of such a shape can be more simply and precisely adjusted when using the inkjet method. In addition, in the inkjet method, when the ultraviolet ray curable ink is used as the ink, since the shape change due to heating is small, a microlens having a desired shape can be manufactured.
따라서, 마이크로 렌즈는 도 10에서와 같이 기재(811)를 롤러(854)를 이용하여 이동시키면서, 기재(811)의 표면을 개질처리하는 표면개질부(851)을 거치고, 잉크가 토출되는 잉크토출부(852)에서 UV 잉크가 토출되어 기재(811) 표면에 마이크로 렌즈를 형성하면, UV조사부(853)에서 UV가 조사되어 마이크로 렌즈를 경화시켜 형성하게 된다. 이 때, 마이크로 렌즈의 형상은 UV 잉크의 양 및 기재(811)의 이동속도에 따라 변하게 되므로 형상조절이 용이하다. Therefore, the microlens passes through the surface modification portion 851 for reforming the surface of the substrate 811 while moving the substrate 811 using the roller 854 as shown in FIG. When the UV ink is discharged from the unit 852 to form a microlens on the surface of the substrate 811, UV is irradiated from the UV irradiator 853 to cure the microlens. At this time, the shape of the micro lens is changed according to the amount of UV ink and the moving speed of the substrate 811, it is easy to adjust the shape.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니라, 첨부된 청구범위에 의해 해석되어야 한다. 또한, 본 발명에 대하여 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당해 기술분야의 통상의 지식을 가진 자에게 자명할 것이다.The invention is not to be limited by the foregoing embodiments and the accompanying drawings, but should be construed by the appended claims. In addition, it will be apparent to those skilled in the art that various forms of substitution, modification, and alteration are possible within the scope of the present invention without departing from the technical spirit of the present invention.

Claims (18)

  1. 광원이 적어도 어느 한 측면에 위치하는 백라이트 유닛에 사용되는 광학시트로서, An optical sheet used for a backlight unit in which the light source is located on at least one side,
    상기 광원과 평행한 축을 x축이라 하고, 상기 x축과 수직인 축을 y축이라 할 때, When the axis parallel to the light source is called the x-axis, and the axis perpendicular to the x-axis is called the y-axis,
    상기 x축의 길이와 상기 y축의 길이가 서로 다른 마이크로 렌즈를 포함하는 광학시트.The optical sheet including a micro lens having a different length of the x-axis and a length of the y-axis.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 마이크로 렌즈는 상기 x축 길이가 y축 길이보다 긴 것을 특징으로 하는 광학시트.The microlens is optical sheet, characterized in that the x-axis length is longer than the y-axis length.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 마이크로 렌즈는 상기 광원으로부터의 광을 x축 방향으로 집광하는 것을 특징으로 하는 광학시트.And the micro lens collects light from the light source in the x-axis direction.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 마이크로 렌즈는 평면형상이 물방울 형태인 것을 특징으로 하는 광학시트. The micro lens is an optical sheet, characterized in that the plane shape of the water droplets.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 마이크로 렌즈는 x축 상에 오목한 부분이 있는 것을 특징으로 하는 광학시트.The microlens is an optical sheet, characterized in that the concave portion on the x-axis.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 마이크로 렌즈는 중심의 y축 길이가 가장 긴 것을 특징으로 하는 광학시트.The micro lens is the optical sheet, characterized in that the longest y-axis length of the center.
  7. 청구항 6에 있어서, The method according to claim 6,
    상기 마이크로 렌즈는 x축 길이 및 y축 길이의 비율이 2:1인 것을 특징으로 하는 광학시트.The micro lens has an optical sheet having a ratio of x-axis length and y-axis length of 2: 1.
  8. 청구항 6에 있어서, The method according to claim 6,
    상기 마이크로 렌즈는 y축 길이 및 높이의 비율이 6:4인 것을 특징으로 하는 광학시트. The micro-lens is an optical sheet, characterized in that the ratio of the y-axis length and height is 6: 4.
  9. 청구항 1에 있어서, The method according to claim 1,
    2이상의 마이크로 렌즈를 포함하고,Including two or more microlenses,
    상기 2이상의 마이크로 렌즈는 상기 마이크로 렌즈 사이의 공극률이 상기 광원으로부터 가까운 쪽이 최대값을 갖도록 배열되는 것을 특징으로 하는 광학시트. The two or more microlenses are arranged such that the porosity between the microlenses is closest to the light source to have a maximum value.
  10. 청구항 1에 있어서, The method according to claim 1,
    2이상의 마이크로 렌즈를 포함하고,Including two or more microlenses,
    상기 2이상의 마이크로 렌즈는 상기 마이크로 렌즈 사이의 공극률이 최소화되도록 배열되는 것을 특징으로 하는 광학시트. The two or more micro lenses are arranged such that the porosity between the micro lenses is minimized.
  11. 청구항 10에 있어서, The method according to claim 10,
    상기 공극률은 3내지 10%이하인 것을 특징으로 하는 광학시트. The porosity is an optical sheet, characterized in that less than 3 to 10%.
  12. 청구항 1에 있어서, The method according to claim 1,
    2이상의 마이크로 렌즈를 포함하고,Including two or more microlenses,
    상기 2이상의 마이크로 렌즈는 허니컴(honeycomb) 방식으로 배열되는 것을 특징으로 하는 광학시트. The two or more micro lens is an optical sheet, characterized in that arranged in a honeycomb (honeycomb) method.
  13. 광원이 적어도 어느 한 측면에 위치하는 백라이트 유닛에 사용되는 광학시트를 제조하는 방법으로서, 상기 광원과 평행한 축을 x축이라 하고, 상기 x축과 수직인 축을 y축이라 할 때, 기재 상에 상기 x축의 길이와 상기 y축의 길이가 서로 다르도록 마이크로 렌즈를 형성하는 단계;를 포함하는 광학시트 제조방법.A method of manufacturing an optical sheet for use in a backlight unit in which a light source is located on at least one side surface, wherein an axis parallel to the light source is referred to as an x axis, and an axis perpendicular to the x axis is referred to as a y axis. and forming a microlens such that the length of the x-axis and the length of the y-axis are different from each other.
  14. 청구항 13에 있어서, The method according to claim 13,
    상기 마이크로 렌즈는 잉크젯 방식으로 형성되는 것을 특징으로 하는 광학시트 제조방법.The micro lens is an optical sheet manufacturing method, characterized in that formed by the inkjet method.
  15. 청구항 13에 있어서, The method according to claim 13,
    상기 마이크로 렌즈를 형성하는 단계는,Forming the micro lens,
    UV잉크를 상기 기재 상에 잉크젯팅하는 단계; 및Inkjetting a UV ink onto the substrate; And
    상기 UV잉크에 자외선을 조사하는 단계;를 포함하는 것을 특징으로 하는 광학시트 제조방법. Irradiating ultraviolet rays to the UV ink; optical sheet manufacturing method comprising a.
  16. 청구항 15에 있어서, The method according to claim 15,
    상기 기재는 이동하는 것을 특징으로 하는 광학시트 제조방법.The substrate is an optical sheet manufacturing method characterized in that the movement.
  17. 청구항 16에 있어서, The method according to claim 16,
    상기 마이크로 렌즈의 형상은 상기 UV잉크의 양 및 상기 기재의 이동속도에 따라 변하는 것을 특징으로 하는 광학시트 제조방법. The shape of the micro lens is an optical sheet manufacturing method, characterized in that it changes depending on the amount of the UV ink and the moving speed of the substrate.
  18. 도광판;Light guide plate;
    상기 도광판의 적어도 어느 한 측면에 위치하는 광원; 및 A light source positioned on at least one side of the light guide plate; And
    상기 도광판의 상면에 위치하고, Located on the upper surface of the light guide plate,
    상기 광원과 평행한 축을 x축이라 하고, 상기 x축과 수직인 축을 y축이라 할 때, When the axis parallel to the light source is called the x-axis, and the axis perpendicular to the x-axis is called the y-axis,
    상기 x축의 길이와 상기 y축의 길이가 서로 다른 마이크로 렌즈를 포함하는 광학시트;를 포함하는 백라이트 유닛.And an optical sheet including micro lenses having different lengths of the x-axis and lengths of the y-axis.
PCT/KR2013/003090 2012-05-31 2013-04-12 Optical sheet and method for manufacturing same WO2013180384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120058539A KR101195337B1 (en) 2012-05-31 2012-05-31 Optical sheet and manufacturing method thereof
KR10-2012-0058539 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013180384A1 true WO2013180384A1 (en) 2013-12-05

Family

ID=47288856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003090 WO2013180384A1 (en) 2012-05-31 2013-04-12 Optical sheet and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101195337B1 (en)
WO (1) WO2013180384A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115047565B (en) * 2022-05-13 2023-04-07 北京驭光科技发展有限公司 Diffraction light waveguide and display device with same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053377A (en) * 2007-08-27 2009-03-12 Hitachi Displays Ltd Liquid crystal display
KR20090031055A (en) * 2007-09-21 2009-03-25 엘지마이크론 주식회사 Optical sheet and back light unit using optical sheet with microlens array
KR101034312B1 (en) * 2010-11-29 2011-05-16 도레이첨단소재 주식회사 Light guiding plate for surface light source device and back light unit using the same
KR101044193B1 (en) * 2011-03-23 2011-06-28 정필문 Patterned light guide plate of led flat lighting apparatus type and manufacturing method thereof and led flat lighting apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053377A (en) * 2007-08-27 2009-03-12 Hitachi Displays Ltd Liquid crystal display
KR20090031055A (en) * 2007-09-21 2009-03-25 엘지마이크론 주식회사 Optical sheet and back light unit using optical sheet with microlens array
KR101034312B1 (en) * 2010-11-29 2011-05-16 도레이첨단소재 주식회사 Light guiding plate for surface light source device and back light unit using the same
KR101044193B1 (en) * 2011-03-23 2011-06-28 정필문 Patterned light guide plate of led flat lighting apparatus type and manufacturing method thereof and led flat lighting apparatus using the same

Also Published As

Publication number Publication date
KR101195337B1 (en) 2012-10-29

Similar Documents

Publication Publication Date Title
CN101042488A (en) Light scattering diaphragm and manufacturing method therefore, and back light module unit using same and display apparatus
KR20090123418A (en) Optical sheet, back light unit and liquid crystal display device comprising the same
CN101435955A (en) Light concentrating sheet, backlight unit including the light concentrating sheet and liquid crystal display module including the backlight unit
KR101219591B1 (en) Back light guide plate and manufacturing method for the same
CN111474624A (en) Backlight structure and L CD display module
JP5098520B2 (en) Light diffusing plate, backlight unit for display, display device
WO2013047945A1 (en) Optical film having an atypical pattern, method for manufacturing same, and backlight assembly to which the optical film is applied
US7954983B2 (en) Optical component, manufacturing method of the same and backlight module
WO2013180384A1 (en) Optical sheet and method for manufacturing same
JP2010262770A (en) Light emission sheet and lighting apparatus using the same, backlight unit, as well as display device
WO2013180385A1 (en) Optical sheet and method for manufacturing same
WO2011062461A2 (en) Integrated optical sheet and optical device including same
WO2010114345A2 (en) Light guide plate comprising light diffusing particles
KR101008030B1 (en) Complex optical sfeet
JP2011064745A (en) Optical sheet, backlight unit and display apparatus
JP4957317B2 (en) Display, backlight unit for display, optical sheet, and method of manufacturing optical sheet
WO2010005205A2 (en) High-diffusion condenser sheet and backlight assembly using same
WO2021107470A1 (en) Optical film having narrow viewing angle
JP2010135220A (en) Surafce light source element and image display device using the same
KR20110034926A (en) Light diffusion member
JP2012074308A (en) Light source unit and liquid crystal display device
WO2014007483A1 (en) Light guide plate and backlight unit comprising same
KR100962442B1 (en) Optical Sheet, Back light Unit And Liquid Crystallization Display Comprising Thereof
KR100936713B1 (en) Optical Sheet, Back Light Unit And Liquid Crystal display Device Comprising the same
WO2023132545A1 (en) Light guide plate having improved exterior visibility using complex pattern and display device including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797869

Country of ref document: EP

Kind code of ref document: A1