WO2013180277A1 - Oscillator - Google Patents
Oscillator Download PDFInfo
- Publication number
- WO2013180277A1 WO2013180277A1 PCT/JP2013/065217 JP2013065217W WO2013180277A1 WO 2013180277 A1 WO2013180277 A1 WO 2013180277A1 JP 2013065217 W JP2013065217 W JP 2013065217W WO 2013180277 A1 WO2013180277 A1 WO 2013180277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- free layer
- layer
- magnetization
- ferromagnetic
- magnetic
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 275
- 230000005415 magnetization Effects 0.000 claims abstract description 129
- 230000005291 magnetic effect Effects 0.000 claims abstract description 120
- 230000010355 oscillation Effects 0.000 claims abstract description 111
- 238000009813 interlayer exchange coupling reaction Methods 0.000 claims abstract description 27
- 230000005294 ferromagnetic effect Effects 0.000 claims description 69
- 239000003302 ferromagnetic material Substances 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 26
- 230000008878 coupling Effects 0.000 claims description 17
- 238000010168 coupling process Methods 0.000 claims description 17
- 238000005859 coupling reaction Methods 0.000 claims description 17
- 239000011229 interlayer Substances 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000000696 magnetic material Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 238000004088 simulation Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 229910000889 permalloy Inorganic materials 0.000 description 5
- 239000010409 thin film Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910005347 FeSi Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B15/00—Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
- H03B15/006—Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects using spin transfer effects or giant magnetoresistance
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
Definitions
- the present invention relates to an oscillation element using the frequency characteristics of a magnetic vortex structure.
- a three-dimensional mounting technique in which semiconductor chips are stacked three-dimensionally has been proposed as a technique for realizing further high integration of electronic devices.
- data is transferred between the stacked semiconductor chips by wireless communication
- the development of a nano-sized high-frequency oscillation element that can be loaded on an integrated circuit is the key to realizing three-dimensional mounting.
- a nonmagnetic layer made of a nonmagnetic material is sandwiched between two ferromagnetic layers made of a ferromagnetic material (a fixed layer and a free layer), and a direct current is applied between the ferromagnetic layers and a magnetic field is applied simultaneously.
- STO Spin-Torque-Oscillator
- Magnetic vortex structure that forms a magnetic vortex in the circumferential direction of the disk by forming the ferromagnetic material into a minute disk shape and forms a perpendicular magnetization (core) in the vertical direction of the disk at the center. It has been known. A technique is disclosed in which the core rotates by changing its position by a magnetic field or current applied from the outside (see, for example, Patent Document 1). This magnetic vortex structure has excellent frequency characteristics due to stable magnetization regardless of the material. As a technique related to the simulation of magnetic vortices, a technique shown in Non-Patent Document 1 is known.
- non-magnetic layer made of a non-magnetic material is sandwiched between two ferromagnetic layers made of a ferromagnetic material, and interlayer exchange coupling in which the direction and strength of the ferromagnetic layer change depending on the film thickness of the non-magnetic material is known.
- interlayer exchange coupling very high thermal stability can be realized.
- a tunnel magnetoresistive element using interlayer exchange coupling is disclosed (see, for example, Patent Document 2).
- Non-Patent Documents 5 and 6 Furthermore, a technique relating to an oscillation element using a magnetic vortex structure is disclosed (for example, see Non-Patent Documents 5 and 6). These technologies have an advantage in output by using a tunnel barrier.
- the currently known STO has poor thermal stability of the ferromagnetic material when it is miniaturized, so that the Q value, the oscillation output, and the S / N ratio due to this decrease. This is a problem.
- Non-Patent Documents 5 and 6 disclose a technique related to an oscillation element using a magnetic vortex, there is a problem that an external magnetic field is considerably large and is not practical. In addition, it is necessary to generate a magnetic vortex in the free layer, but in order to generate a magnetic vortex, the diameter and thickness of the free layer must be adjusted appropriately, the size is limited and the degree of freedom in the shape is lost. It has the problem that it ends up.
- the present invention provides an oscillation element having a high Q value with excellent frequency characteristics and high thermal stability using a magnetic vortex structure.
- an oscillation element having a function capable of high thermal stability and high frequency oscillation using interlayer exchange coupling is provided.
- An oscillation element includes a fixed layer made of a ferromagnetic material having a magnetic vortex structure in which magnetization is fixed and first perpendicular magnetization is formed by a magnetic vortex, and a nonmagnetic layer provided on the fixed layer.
- a fixed layer made of a ferromagnetic material having a magnetic vortex structure in which magnetization is fixed and perpendicular magnetization is formed by a magnetic vortex
- a nonmagnetic layer made of a nonmagnetic material
- a free layer in which perpendicular magnetization is rotated and moved in the plane direction.
- the perpendicular magnetization of the free layer is conducted by passing a current through each layer. Oscillates with an angular difference between the perpendicular magnetization in the fixed layer and the magnetization at the corresponding position in the free layer corresponding to the position of the perpendicular magnetization in the fixed layer.
- the fixed layer and the free layer have a magnetic vortex structure
- stable magnetization can be formed without depending on the material, and by selecting a material capable of high output, high output can be achieved. There is an effect that an oscillation element can be realized.
- the magnetic vortex structure can achieve a high Q value, and the thermal stability can be enhanced by stable magnetization.
- the planar shape of the free layer is a circle or a regular polygon.
- the planar shape of the free layer is a circle or a regular polygon, a single perpendicular magnetization is formed with a stable structure, and an oscillation element having a configuration easy to control is realized. There is an effect that can be done.
- the free layer is sandwiched between a plurality of ferromagnetic free layers made of a conductive ferromagnetic material having the magnetic vortex structure and the plurality of ferromagnetic free layers. And a plurality of nonmagnetic free layers made of a nonmagnetic material, and each of the layers is interlayer exchange coupled.
- the free layer is a plurality of ferromagnetic free layers made of a ferromagnetic material having a magnetic vortex structure, and a plurality of nonmagnetic free layers made of a conductive nonmagnetic material are provided. Since the layers are sandwiched and the layers are exchange-exchange coupled, there is an effect that very high thermal stability can be realized according to the coupling strength.
- the free layer has a first ferromagnetic free layer made of a ferromagnetic material having the magnetic vortex structure, and a non-conductive conductive layer provided on the first ferromagnetic free layer.
- the free layer includes the first ferromagnetic free layer and the second ferromagnetic free layer made of a ferromagnetic material having a magnetic vortex structure, and is made of a conductive nonmagnetic material. Since the nonmagnetic free layer is sandwiched and the layers are interlayer exchange coupled, an extremely high thermal stability can be achieved according to the coupling strength.
- the oscillation element according to the present invention includes a rotation phase of perpendicular magnetization in the first ferromagnetic free layer and rotation of perpendicular magnetization in the second ferromagnetic free layer according to the coupling strength of interlayer exchange coupling in the free layer.
- the phase of rotation of the perpendicular magnetization in the first ferromagnetic free layer and the phase of rotation of the perpendicular magnetization in the second ferromagnetic free layer are different from each other. This is a high frequency oscillation mode that is a phase.
- the rotation direction of the perpendicular magnetization in the first ferromagnetic free layer and the perpendicular magnetization in the second ferromagnetic free layer according to the coupling strength of the interlayer exchange coupling in the free layer. Since the phase of the rotation is the same as the low frequency mode or the different high frequency mode, the oscillation in the two modes can be realized.
- An oscillation element includes a fixed layer made of a ferromagnetic material whose magnetization is fixed, a nonmagnetic layer made of a conductive nonmagnetic material provided on the fixed layer, and a nonmagnetic layer. It is made of a ferromagnetic material that is provided in a stacked manner and has perpendicular magnetization formed by magnetic vortices generated by energization. The formed perpendicular magnetization rotates and moves in the plane direction, and current is passed through each layer. Current supply means, and oscillates using a relative angle difference between magnetization at a predetermined position in the fixed layer and magnetization at a corresponding position corresponding to the position in the free layer.
- the nonmagnetic layer is made of a conductive nonmagnetic material, the magnetic vortex is formed in the free layer and the perpendicular magnetization is rotated by energization from the current supply means.
- an oscillating element having a high degree of freedom can be realized without being limited by the diameter and thickness of the layer.
- the fixed layer is made of a ferromagnetic material in which perpendicular magnetization is formed by a magnetic vortex generated by energization, and the perpendicular magnetization in the fixed layer and the correspondence in the free layer corresponding to the perpendicular magnetization Oscillation is performed using a relative angle difference between the position magnetization and the position magnetization.
- the fixed layer since the fixed layer has a magnetic vortex structure when energized in the same manner as the free layer, an oscillation element having excellent frequency characteristics can be realized by the magnetic vortex structure. There is an effect.
- the fixed layer and the free layer have a magnetic vortex structure
- stable magnetization can be formed without depending on the material, and by selecting a material capable of high output, high output can be achieved. There is an effect that an oscillation element can be realized.
- the magnetic vortex structure can achieve a high Q value, and the thermal stability can be enhanced by stable magnetization.
- the free layer is sandwiched between a plurality of ferromagnetic free layers made of a ferromagnetic material in which perpendicular magnetization is formed by a magnetic vortex generated by energization, and the plurality of ferromagnetic free layers. And a plurality of nonmagnetic free layers made of a conductive nonmagnetic material, and each of the layers is interlayer exchange coupled.
- the free layer is a plurality of ferromagnetic free layers made of a ferromagnetic material in which perpendicular magnetization is formed by magnetic vortices generated by energization, and a plurality of non-magnetic materials made of non-magnetic material. Since the magnetic free layer is sandwiched and each layer is interlayer exchange coupled, there is an effect that very high thermal stability can be realized according to the coupling strength.
- 1 is a first diagram illustrating a structure of an oscillation element according to a first embodiment. It is a 2nd figure which shows the structure of the oscillation element which concerns on 1st Embodiment. It is a figure which shows operation
- FIG. 1 is a first diagram illustrating the structure of an oscillation element according to the present embodiment
- FIG. 2 is a second diagram illustrating the structure of the oscillation element according to the present embodiment
- FIG. 3 is an oscillation according to the present embodiment. It is a figure which shows operation
- the oscillation element includes a fixed layer 11 made of a disk-shaped ferromagnetic material whose magnetization is fixed, and a disk provided by being laminated on the fixed layer 11.
- a non-magnetic layer 12 made of a non-magnetic material and a free layer 13 made of a disk-like ferromagnetic material.
- the free layer 13 has a magnetic vortex structure in which perpendicular magnetization (magnetization in a direction perpendicular to the plane direction of the free layer 13) is formed at the center portion. That is, the magnetization vortexes along the circumferential direction of the free layer 13 and rises in the vertical direction near the center of the disk.
- the position of the perpendicular magnetization can be changed.
- the perpendicular magnetization is brought to the center position while performing a spiral motion. Return.
- Such control can also be performed by supplying a current.
- the current is supplied by the current supply unit 16 through the electrodes 14 and 15 provided in the free layer 13 and the fixed layer 11, so that the vertical in the free layer 13 is obtained. Change the position of magnetization. That is, the perpendicular magnetization is rotationally moved in the plane direction of the free layer while maintaining the perpendicularity of the perpendicular magnetization.
- a magnetic vortex structure is formed depends on the ratio between the diameter and thickness of the magnetic material. That is, for example, in the techniques described in Non-Patent Documents 5 and 6, in order for the free layer 13 to have a magnetic vortex structure, restrictions on the diameter and thickness of the magnetic material are imposed, and the size and shape are free. The degree was low.
- the nonmagnetic layer 12 may be a conductive nonmagnetic material instead of an insulating material. That is, for example, in the techniques described in Non-Patent Documents 5 and 6, an MgO-based tunnel barrier is used for the nonmagnetic layer 12, whereas in the oscillation element according to the present embodiment, the nonmagnetic layer 12 is used.
- a conductive non-magnetic material By forming a conductive non-magnetic material, a magnetic vortex structure is formed in the free layer with a magnetic field generated by applying a current from the current supply unit 16 regardless of the diameter, thickness, shape, etc. of the magnetic material. be able to. That is, the oscillation element 1 shown in FIG. 1A can freely set the size and shape of the element (see examples described later).
- the pinned layer 11 has a fixed magnetization.
- the pinned layer 11 is pinned in the plane direction (a direction parallel to the plane of the pinned layer 11), and in the case of FIG.
- the magnetic vortex structure is fixed at the center position in the vertical direction (direction perpendicular to the surface of the fixed layer 11). Since the magnetization of the fixed layer 11 is fixed, it does not change even when a current is applied, and only the magnetization of the free layer 13 changes.
- FIG. 1A when the magnetization of the fixed layer 11 is fixed in the horizontal direction, the perpendicular magnetization of the free layer 13 can be moved efficiently, whereas in FIG. As shown, when the magnetization of the fixed layer 11 is fixed in the vertical direction, the magnetization is stabilized by the magnetic vortex structure, and excellent frequency characteristics can be realized.
- the perpendicular magnetization of the free layer 13 rotates and moves in the plane direction, thereby oscillating by the relative angle difference between the magnetization of the free layer 13 and the fixed magnetization of the fixed layer 11.
- the fixed layer 11 has a magnetic vortex structure, and is fixed by forming perpendicular magnetization at the central portion.
- the free layer 13 is also perpendicularly magnetized at the center portion by the magnetic vortex structure, but the magnetization is not fixed, and the current layer 16 rotates and moves in the plane direction when the current is supplied by the current supply unit 16. At this time, it rotates and moves while maintaining the perpendicularity of the perpendicular magnetization.
- FIG. 3A shows the state of the oscillation element 1 when the rotation angle of perpendicular magnetization is 0 degrees (or 360 degrees), and FIG. 3B shows the oscillation when the rotation angle of perpendicular magnetization is 90 degrees.
- FIG. 3C shows the state of the element 1
- FIG. 3C shows the state of the oscillation element 1 when the rotation angle of perpendicular magnetization is 180 degrees
- FIG. 3D shows the case where the rotation angle of perpendicular magnetization is 270 degrees.
- the state of the oscillation element 1 is shown.
- the vertical magnetization rotates and moves in the plane direction, so that the position of the free layer 13 corresponding to the perpendicular magnetization of the fixed layer 11 (that is, according to the rotation angle (ie, The direction of the magnetic vortex of the free layer 13 in the central portion of the free layer 13 changes periodically.
- Oscillation can be performed by the difference in relative angle between the magnetization of the fixed layer 11 and the magnetization of the free layer 13.
- the shape of each layer is formed in a disk shape, but may be any shape as long as one perpendicular magnetization is stably formed by the magnetic vortex structure.
- the shape formed by a square, an ellipse, and several other closed line segments may be sufficient.
- a single perpendicular magnetization can be stably formed, and control becomes easy.
- the shape has an edge, the potential of the magnetic vortex increases at the edge portion, and the frequency can be increased.
- a plurality of magnetic vortex structures can be formed, and oscillation at various frequencies and intensities can be performed.
- the nonmagnetic layer 12 is made of a conductive nonmagnetic material and a magnetic vortex is generated by a magnetic field caused by energization, there is no need to consider the direct system or thickness limitation at all. Can be set freely.
- direction of rotation of the magnetic vortex may be either clockwise or counterclockwise.
- the oscillation element according to the present embodiment it is possible to realize an oscillation element having excellent frequency characteristics due to the magnetic vortex structure and to form stable magnetization without depending on the material. Therefore, by selecting a material capable of high output (for example, a material called a half metal such as Co 2 FeSi or Co 2 MnSi having a high spin polarization rate), a high output oscillation element can be realized.
- a high Q value can be realized by the magnetic vortex structure, and thermal stability can be enhanced by stable perpendicular magnetization.
- FIGS. 4 is a diagram illustrating the structure of the oscillation element according to the present embodiment
- FIG. 5 is a first diagram illustrating interlayer exchange coupling in the oscillation element according to the present embodiment
- FIG. 6 is an oscillation element according to the present embodiment
- FIG. 7 is a diagram illustrating the operation of the oscillation element according to the present embodiment
- FIG. 8 is a diagram illustrating the frequency mode of the oscillation element according to the present embodiment.
- the description which overlaps with the said 1st Embodiment is abbreviate
- the oscillation element according to the present embodiment achieves very high thermal stability by using interlayer exchange coupling for the free layer 13 of the oscillation element according to the first embodiment. Further, by controlling the frequency mode using the structure of the interlayer exchange coupling of the free layer 13, oscillation at a very high frequency is realized.
- the oscillation element 1 includes a first ferromagnetic free layer in which the free layer 13 of the oscillation element 1 according to the first embodiment is made of a ferromagnetic material having a magnetic vortex structure. 13a, a nonmagnetic free layer 13b made of a conductive nonmagnetic material (for example, Ru, Cu, Cr, etc.) provided to be stacked on the first ferromagnetic free layer, and a nonmagnetic free layer 13b.
- the second ferromagnetic free layer 13c is provided and is made of a ferromagnetic material having a magnetic vortex structure, and has a first ferromagnetic free layer 13a and an interlayer exchange coupling.
- FIG. 5 shows the relationship between the film thickness of the nonmagnetic free layer 13b and the coupling strength and coupling direction of the first ferromagnetic free layer 13a and the second ferromagnetic free layer 13c.
- the coupling strength between the first ferromagnetic free layer 13a and the second ferromagnetic free layer 13c decreases.
- the frequency mode is specified according to the magnitude of the coupling strength.
- the coupling direction (parallel / antiparallel) is specified by the film thickness of the nonmagnetic free layer 13b.
- the direction of coupling does not contribute to the frequency characteristics of oscillation and can be ignored, and the magnitude of coupling strength is an important factor.
- FIG. 6 shows the thermal stability according to the film thickness of the nonmagnetic free layer 13b and the second ferromagnetic free layer 13c by interlayer exchange coupling.
- the value of d in the figure indicates the film thickness of the second ferromagnetic free layer 13c
- ⁇ 0 indicates the thermal stability.
- the values shown in the table of FIG. 6 are reference values and are data when the in-plane magnetization is horizontal.
- ⁇ 0 indicating thermal stability increases as the thickness of the second ferromagnetic free layer 13c increases.
- ⁇ 0 increases as the thickness of the nonmagnetic free layer 13b increases.
- the oscillation element according to the present embodiment realizes a high frequency by adjusting the coupling strength of the interlayer exchange coupling to an arbitrary value by using the free layer 13 having a plurality of ferromagnetic free layers.
- a low frequency mode referred to as acoustic mode
- oscillation in a high frequency mode referred to as an optical mode
- FIG. 1 An image of perpendicular magnetization in the optical mode is shown in FIG. FIG.
- FIG. 7 shows a state in which the perpendicular magnetization of the first ferromagnetic free layer 13a and the perpendicular magnetization of the second ferromagnetic free layer 13c are rotationally moved in opposite phases.
- FIG. 7A shows the state of perpendicular magnetization when the first ferromagnetic free layer 13a is 0 degrees (or 360 degrees) and the second ferromagnetic free layer 13c is 180 degrees
- FIG. 7C shows the state of perpendicular magnetization when the first ferromagnetic free layer 13a is 90 degrees and the second ferromagnetic free layer 13c is 270 degrees.
- FIG. 7C shows the first ferromagnetic free layer 13a at 180 degrees.
- FIG. 7D shows the state of perpendicular magnetization when the second ferromagnetic free layer 13c is 0 degrees (or 360 degrees).
- FIG. 7D shows the second ferromagnetic free layer when the first ferromagnetic free layer 13a is 270 degrees.
- the state of perpendicular magnetization when 13c is 90 degrees is shown. In each state, the perpendicular magnetization of the first ferromagnetic free layer 13a and the perpendicular magnetization of the second ferromagnetic free layer 13c are in opposite phases, realizing high frequency oscillation.
- FIG. 8 shows an optical mode and an acoustic mode.
- a low frequency is realized.
- the perpendicular magnetization of the first ferromagnetic free layer 13a and the perpendicular magnetization of the second ferromagnetic free layer 13c rotate and move in opposite phases, a high frequency is realized.
- the difference between these frequencies is proportional to the coupling strength of the interlayer exchange coupling, and by adjusting the effective magnetic field between the layers, it becomes possible to realize oscillation at a higher frequency.
- each layer in the free layer is interlayer exchange coupled, very high thermal stability can be realized depending on the coupling strength.
- the coupling strength of the interlayer exchange coupling in the free layer is a predetermined value, the rotation phase of the perpendicular magnetization in the first ferromagnetic free layer 13a and the rotation of the perpendicular magnetization in the second ferromagnetic free layer 13c. Therefore, the effective magnetic field between the layers increases, and oscillation at a high frequency can be realized.
- the magnetization direction of the fixed layer 11 may be fixed in the plane direction of the fixed layer 11 as in the case of the first embodiment.
- the free layer 13 may be three or more layers.
- the nonmagnetic layer 12 by making the nonmagnetic layer 12 conductive, it is possible to increase the degree of freedom of the element size and shape.
- FIG. 9A shows a schematic diagram of this experimental system
- FIG. 9B shows a planar shape of the magnetic vortex element used in this experiment
- FIG. 10A shows the resonance spectrum of the magnetic vortex in each planar shape
- FIG. 10B shows the resonance frequency for each planar shape.
- an alternating current was applied to the magnetic vortex element, and the magnetic vortex (vertical magnetization) was rotated by applying the magnetic field shown in FIG. 9A, and the resonance spectrum of the magnetic vortex element was observed.
- the signal was extracted using homodyne detection.
- FIG. 9B a magnetic vortex element having a regular pentagonal shape, a square shape, a regular triangle shape, and a circular shape was used.
- a frequency peak is detected in each planar magnetic vortex element, and it can be confirmed that resonance due to the magnetic vortex occurs. That is, it can be understood that oscillation is possible not only with a magnetic vortex element having a circular planar shape but also with a regular polygonal shape due to a magnetic vortex.
- FIG. 11A shows a free layer used in this simulation
- FIG. 11B shows a simulation result.
- a high-frequency magnetic field was applied in-plane to a sample in which two magnetic layers having a magnetic vortex structure were interlayer-exchange coupled, and the resonance of the magnetic vortex was simulated. That is, since the frequency in the resonance state substantially coincides with the frequency in the oscillation state, the frequency during oscillation can be estimated by simulating the resonance state.
- a permalloy thin film having a length of 150 nm and a width of 150 nm provided with a 10 nm gap (vacuum layer) facing each other was used.
- the magnetic field (demagnetizing field) produced by the upper layer (or lower layer) does not affect the lower layer (or upper layer), and the exchange constant between the layers of the permalloy thin film is set to permalloy parameter ⁇ 0.05.
- the magnetization change was simulated by increasing the frequency by 0.1 GHz every 10 ns. From FIG. 11B, it was confirmed that resonance occurred at 0.7 GHz to 0.8 GHz and 1.3 GHz to 1.4 GHz. That is, it is shown that two modes (acoustic mode and optical mode) due to interlayer exchange coupling are excited.
- FIG. 12A shows a free layer used in the simulation
- FIG. 12B shows a simulation result.
- a permalloy thin film having a length of 150 nm ⁇ width 150 nm provided with a 10 nm gap (vacuum layer) facing each other is used, and the exchange magnetic field at that time is defined as an exchange magnetic field ⁇ Km /
- the acoustic mode is set, and the distance between the cores is large.
- the mode is the optical mode, and the resonance frequency in the optical mode changes according to the exchange energy between the two layers.
- FIG. 12B it is confirmed that the smaller the exchange energy between the two layers, the smaller the resonance frequency in the optical mode.
- the two-layer permalloy thin film having a magnetic vortex structure and coupled by interlayer exchange coupling resonates. That is, it is possible to realize an oscillation element that performs self-excited oscillation using these. Further, the smaller the exchange energy between the two layers (the longer the distance between the two layers), the closer the resonance frequency of the optical mode approaches the resonance frequency of the acoustic mode, and the greater the resonance. Further, the smaller the effective magnetic field between the two layers (the longer the distance between the two layers), the closer the resonance frequency of the optical mode approaches that of the acoustic mode, and the resonance increases. However, there is little influence compared with exchange energy, and adjustment of exchange energy is particularly important.
- FIG. 13A is a schematic diagram of this experimental system
- FIG. 13B is a graph showing the dependence of the frequency on the current to be applied
- FIG. 13C is at 140 mA. It is a graph which shows the characteristic of a frequency.
- the free layer of the oscillation element used in this experiment is configured as a rectangular parallelepiped having a length of 225 nm, a width of 500 nm, and a thickness of 5 nm, and no magnetic vortex is formed in a normal state where no current flows. A direct current was passed through this element, and an alternating current output was observed with a spectrum analyzer.
- the oscillation frequency changes according to the current, and the frequency increases as the current increases. This is a characteristic obtained at the time of oscillation due to the rotational movement of the magnetic vortex.
- FIG. 13C for example, when a current of 140 mA is applied, a peak is detected at 2.87 GHz.
- the oscillation element according to the present invention, high thermal stability and excellent frequency characteristics (high Q value) are realized by stable magnetization by the magnetic vortex structure, and higher thermal stability is achieved by interlayer exchange coupling. High-frequency oscillation in the optical mode can be realized.
- stable perpendicular magnetization can be realized without depending on the material. Therefore, by selecting a material that can obtain a high output, a high output can be achieved.
Landscapes
- Hall/Mr Elements (AREA)
Abstract
Provided is an oscillator provided with a function enabling high frequency oscillation, a high Q value, and high heat stability through the use of a magnetic-vortex structure and interlayer exchange coupling. The present invention is provided with: a fixed layer (11) comprising a magnetic body of fixed magnetization having a magnetic-vortex structure vertically magnetized in the center portion; a non-magnetic layer (12) comprising a non-magnetic body laminated on the fixed layer (11); a free layer (13) laminated on the nonmagnetic layer (12) and having vertical magnetization rotatably moving in the planar direction, the free layer (13) comprising a strongly magnetic body having a magnetic-vortex structure of circular or regularly polygonal planar configuration that is vertically magnetized in the center portion; and a current-supply unit (16) for sending a current through the layers. The oscillator oscillates using the relative difference in angle between the magnetization in the fixed layer (11) and the central magnetization of the free layer (13). The free layer (13) is composed of a plurality of strongly magnetic free layers coupled using interlayer exchange coupling.
Description
本発明は、磁気渦構造の周波数特性を利用した発振素子に関する。
The present invention relates to an oscillation element using the frequency characteristics of a magnetic vortex structure.
エレクトロニクスデバイスの更なる高集積化を実現する技術として3次元的に半導体チップを積層する3次元実装技術が提案されている。そこでは、積層された半導体チップ間は無線通信によってデータの受け渡しを行うため、集積回路に積載可能なナノサイズの高周波発振素子の開発が、3次元実装を実現するための鍵となる。その最有力候補として、非磁性体からなる非磁性層を強磁性体からなる2つの強磁性層(固定層と自由層)で狭持し、強磁性層間に直流電流を通電すると同時に磁場を加えることで、自由層の磁化を回転させて自励でマイクロ波を発振するスピントルク発振器(STO:Spin-Torque-Oscillator)が提案されている(図14を参照)。このSTOは、非常に微小(<1μm)で単純な構造であるが、高出力ができず熱安定性がよくないため、高出力で熱安定性が高い発振素子の開発が望まれている。
A three-dimensional mounting technique in which semiconductor chips are stacked three-dimensionally has been proposed as a technique for realizing further high integration of electronic devices. In this case, since data is transferred between the stacked semiconductor chips by wireless communication, the development of a nano-sized high-frequency oscillation element that can be loaded on an integrated circuit is the key to realizing three-dimensional mounting. As the most promising candidate, a nonmagnetic layer made of a nonmagnetic material is sandwiched between two ferromagnetic layers made of a ferromagnetic material (a fixed layer and a free layer), and a direct current is applied between the ferromagnetic layers and a magnetic field is applied simultaneously. Thus, a spin torque generator (STO: Spin-Torque-Oscillator) that oscillates microwaves by self-excitation by rotating the magnetization of the free layer has been proposed (see FIG. 14). This STO is very small (<1 μm) and has a simple structure. However, since it cannot produce a high output and its thermal stability is not good, it is desired to develop an oscillation element having high output and high thermal stability.
また、強磁性体を微小な円板形状にすることで、円板の周方向に磁気渦を形成すると共に、その中心部分で円板の垂直方向に垂直磁化(コア)を形成する磁気渦構造が知られている。このコアは、外部から印加される磁場や電流により、位置を変化させて回転運動する技術が開示されている(例えば、特許文献1を参照)。この磁気渦構造は、材料に依らず安定的な磁化により優れた周波数特性を有している。また、磁気渦のシミュレーションに関する技術として、非特許文献1に示す技術が知られている。
Magnetic vortex structure that forms a magnetic vortex in the circumferential direction of the disk by forming the ferromagnetic material into a minute disk shape and forms a perpendicular magnetization (core) in the vertical direction of the disk at the center. It has been known. A technique is disclosed in which the core rotates by changing its position by a magnetic field or current applied from the outside (see, for example, Patent Document 1). This magnetic vortex structure has excellent frequency characteristics due to stable magnetization regardless of the material. As a technique related to the simulation of magnetic vortices, a technique shown in Non-Patent Document 1 is known.
さらに、強磁性体からなる2つの強磁性層で非磁性体からなる非磁性層を狭持し、非磁性層の膜厚により強磁性層の結合の向きや強度が変化する層間交換結合が知られている(例えば、非特許文献2-4を参照)。この層間交換結合により、非常に高い熱安定性を実現することができる。また、層間交換結合を用いたトンネル磁気抵抗素子が開示されている(例えば、特許文献2を参照)。
In addition, the non-magnetic layer made of a non-magnetic material is sandwiched between two ferromagnetic layers made of a ferromagnetic material, and interlayer exchange coupling in which the direction and strength of the ferromagnetic layer change depending on the film thickness of the non-magnetic material is known. (For example, see Non-Patent Documents 2-4). By this interlayer exchange coupling, very high thermal stability can be realized. Moreover, a tunnel magnetoresistive element using interlayer exchange coupling is disclosed (see, for example, Patent Document 2).
さらにまた、磁気渦構造を用いた発振素子に関する技術が開示されている(例えば、非特許文献5及び6を参照)。これらの技術は、トンネルバリアを利用することで出力を優位にしている。
Furthermore, a technique relating to an oscillation element using a magnetic vortex structure is disclosed (for example, see Non-Patent Documents 5 and 6). These technologies have an advantage in output by using a tunnel barrier.
上記に示したように、現在知られているSTOは、極微細化した際の強磁性体の熱安定性が悪いため、これに起因したQ値の低下、発振出力の低下、S/N比の低下等が問題となる。
As shown above, the currently known STO has poor thermal stability of the ferromagnetic material when it is miniaturized, so that the Q value, the oscillation output, and the S / N ratio due to this decrease. This is a problem.
また、非特許文献5、6には、磁気渦を利用した発振素子に関する技術が開示されているものの、外部磁界がかなり大きいものとなり実用的ではないという課題を有する。また、自由層に磁気渦を生じる必要があるが、磁気渦を生じるには、自由層の直径及び厚さを適切に調整しなければならず、サイズが限定されて形状に自由度がなくなってしまうという課題を有する。
Further, although Non-Patent Documents 5 and 6 disclose a technique related to an oscillation element using a magnetic vortex, there is a problem that an external magnetic field is considerably large and is not practical. In addition, it is necessary to generate a magnetic vortex in the free layer, but in order to generate a magnetic vortex, the diameter and thickness of the free layer must be adjusted appropriately, the size is limited and the degree of freedom in the shape is lost. It has the problem that it ends up.
本発明は、磁気渦構造を利用して周波数特性に優れた高いQ値を有し、熱安定性の高い発振素子を提供する。また、層間交換結合を利用して、高い熱安定性、高い周波数発振ができる機能を兼ね備える発振素子を提供する。
The present invention provides an oscillation element having a high Q value with excellent frequency characteristics and high thermal stability using a magnetic vortex structure. In addition, an oscillation element having a function capable of high thermal stability and high frequency oscillation using interlayer exchange coupling is provided.
本発明に係る発振素子は、磁化が固定され、磁気渦により第1の垂直磁化が形成される磁気渦構造を有する強磁性体からなる固定層と、前記固定層に積層されて設けられる非磁性体からなる非磁性層と、前記非磁性層に積層されて設けられ、磁気渦により第2の垂直磁化が形成される磁気渦構造を有する強磁性体からなり、前記第2の垂直磁化が面方向に回転移動する自由層と、前記各層に亘って電流を通電する電流供給手段とを備え、前記固定層における前記第1の垂直磁化と、前記自由層において前記第1の垂直磁化の位置に対応する対応位置における磁化との相対的な角度の差を用いて発振を行うものである。
An oscillation element according to the present invention includes a fixed layer made of a ferromagnetic material having a magnetic vortex structure in which magnetization is fixed and first perpendicular magnetization is formed by a magnetic vortex, and a nonmagnetic layer provided on the fixed layer. A nonmagnetic layer made of a body, and a ferromagnetic material having a magnetic vortex structure formed by being stacked on the nonmagnetic layer and having a second perpendicular magnetization formed by a magnetic vortex, wherein the second perpendicular magnetization is a surface A free layer that rotates and moves in a direction, and current supply means that conducts current across each of the layers, and the first perpendicular magnetization in the fixed layer and the position of the first perpendicular magnetization in the free layer Oscillation is performed using a relative angle difference from the magnetization at the corresponding position.
このように、本発明に係る発振素子においては、磁化が固定され、磁気渦により垂直磁化が形成される磁気渦構造を有する強磁性体からなる固定層と、非磁性体からなる非磁性層と、磁気渦により垂直磁化が形成される磁気渦構造を有する強磁性体からなり、垂直磁化が面方向に回転移動する自由層とを有し、各層に電流を通電することで自由層の垂直磁化を動かし、固定層における垂直磁化と、当該固定層における垂直磁化の位置に対応する自由層における対応位置の磁化との角度差により発振を行うため、磁気渦構造により優れた周波数特性を持った発振素子を実現することができるという効果を奏する。
Thus, in the oscillation element according to the present invention, a fixed layer made of a ferromagnetic material having a magnetic vortex structure in which magnetization is fixed and perpendicular magnetization is formed by a magnetic vortex, and a nonmagnetic layer made of a nonmagnetic material, And a free layer in which perpendicular magnetization is rotated and moved in the plane direction. The perpendicular magnetization of the free layer is conducted by passing a current through each layer. Oscillates with an angular difference between the perpendicular magnetization in the fixed layer and the magnetization at the corresponding position in the free layer corresponding to the position of the perpendicular magnetization in the fixed layer. There exists an effect that an element is realizable.
また、固定層及び自由層が磁気渦構造を有するものであるため、材料に依存することなく安定的な磁化を形成することができ、高出力が可能な材料を選択することで、高出力の発振素子を実現することが可能になるという効果を奏する。さらに、磁気渦構造により高いQ値を実現することができると共に、安定した磁化により熱安定性を高めることができるという効果を奏する。
In addition, since the fixed layer and the free layer have a magnetic vortex structure, stable magnetization can be formed without depending on the material, and by selecting a material capable of high output, high output can be achieved. There is an effect that an oscillation element can be realized. In addition, the magnetic vortex structure can achieve a high Q value, and the thermal stability can be enhanced by stable magnetization.
さらに、固定層及び自由層において、磁気渦による垂直磁化が形成されるため、各層における外側方向(外周方向)への漏れ磁界によるQ値への影響をなくして、高性能な発振素子を実現することができるという効果を奏する。
Furthermore, since the perpendicular magnetization due to the magnetic vortex is formed in the fixed layer and the free layer, the influence of the leakage magnetic field in the outer direction (outer peripheral direction) on each layer is not affected on the Q value, and a high-performance oscillation element is realized. There is an effect that can be.
本発明に係る発振素子は、前記自由層の平面形状が円形又は正多角形であるものである。
このように、本発明に係る発振素子においては、自由層の平面形状が円形又は正多角形であるため、安定した構造で単一の垂直磁化を形成し、制御しやすい構成の発振素子を実現することができるという効果を奏する。 In the oscillation element according to the present invention, the planar shape of the free layer is a circle or a regular polygon.
As described above, in the oscillation element according to the present invention, since the planar shape of the free layer is a circle or a regular polygon, a single perpendicular magnetization is formed with a stable structure, and an oscillation element having a configuration easy to control is realized. There is an effect that can be done.
このように、本発明に係る発振素子においては、自由層の平面形状が円形又は正多角形であるため、安定した構造で単一の垂直磁化を形成し、制御しやすい構成の発振素子を実現することができるという効果を奏する。 In the oscillation element according to the present invention, the planar shape of the free layer is a circle or a regular polygon.
As described above, in the oscillation element according to the present invention, since the planar shape of the free layer is a circle or a regular polygon, a single perpendicular magnetization is formed with a stable structure, and an oscillation element having a configuration easy to control is realized. There is an effect that can be done.
本発明に係る発振素子は、前記自由層が、前記磁気渦構造を有する導電性を有する強磁性体からなる複数の強磁性自由層と、複数の前記各強磁性自由層の間に狭持されて設けられる非磁性体からなる複数の非磁性自由層とを備え、前記各層が層間交換結合しているものである。
In the oscillation element according to the present invention, the free layer is sandwiched between a plurality of ferromagnetic free layers made of a conductive ferromagnetic material having the magnetic vortex structure and the plurality of ferromagnetic free layers. And a plurality of nonmagnetic free layers made of a nonmagnetic material, and each of the layers is interlayer exchange coupled.
このように、本発明に係る発振素子においては、自由層が、磁気渦構造を有する強磁性体からなる複数の強磁性自由層で、導電性の非磁性体からなる複数の非磁性自由層を狭持し、各層が層間交換結合しているため、結合強度に応じて非常に高い熱安定性を実現することができるという効果を奏する。
Thus, in the oscillation element according to the present invention, the free layer is a plurality of ferromagnetic free layers made of a ferromagnetic material having a magnetic vortex structure, and a plurality of nonmagnetic free layers made of a conductive nonmagnetic material are provided. Since the layers are sandwiched and the layers are exchange-exchange coupled, there is an effect that very high thermal stability can be realized according to the coupling strength.
本発明に係る発振素子は、前記自由層が、前記磁気渦構造を有する強磁性体からなる第1強磁性自由層と、前記第1強磁性自由層に積層されて設けられる導電性を有する非磁性体からなる非磁性自由層と、前記非磁性自由層に積層されて設けられ、前記磁気渦構造を有する強磁性体からなり、前記各層と層間交換結合している第2強磁性自由層とを有しているものである。
In the oscillation element according to the present invention, the free layer has a first ferromagnetic free layer made of a ferromagnetic material having the magnetic vortex structure, and a non-conductive conductive layer provided on the first ferromagnetic free layer. A non-magnetic free layer made of a magnetic material, a second ferromagnetic free layer provided on the non-magnetic free layer by being laminated, and made of a ferromagnetic material having the magnetic vortex structure, and being interlayer-exchange coupled with each of the layers It is what has.
このように、本発明に係る発振素子においては、自由層が、磁気渦構造を有する強磁性体からなる第1強磁性自由層と第2強磁性自由層で、導電性の非磁性体からなる非磁性自由層を狭持し、各層が層間交換結合しているため、結合強度に応じて非常に高い熱安定性を実現することができるという効果を奏する。
As described above, in the oscillation element according to the present invention, the free layer includes the first ferromagnetic free layer and the second ferromagnetic free layer made of a ferromagnetic material having a magnetic vortex structure, and is made of a conductive nonmagnetic material. Since the nonmagnetic free layer is sandwiched and the layers are interlayer exchange coupled, an extremely high thermal stability can be achieved according to the coupling strength.
本発明に係る発振素子は、前記自由層における層間交換結合の結合強度に応じて、前記第1強磁性自由層における垂直磁化の回転の位相と、前記第2強磁性自由層における垂直磁化の回転の位相とが同位相となる低周波数の発振モード、又は、前記第1強磁性自由層における垂直磁化の回転の位相と、前記第2強磁性自由層における垂直磁化の回転の位相とが互いに異なる位相となる高周波数発振モードとなるものである。
The oscillation element according to the present invention includes a rotation phase of perpendicular magnetization in the first ferromagnetic free layer and rotation of perpendicular magnetization in the second ferromagnetic free layer according to the coupling strength of interlayer exchange coupling in the free layer. The phase of rotation of the perpendicular magnetization in the first ferromagnetic free layer and the phase of rotation of the perpendicular magnetization in the second ferromagnetic free layer are different from each other. This is a high frequency oscillation mode that is a phase.
このように、本発明に係る発振素子においては、自由層における層間交換結合の結合強度に応じて、第1強磁性自由層における垂直磁化の回転の位相と、第2強磁性自由層における垂直磁化の回転の位相とが同位相である低周波モードか異なる位相である高周波モードとなるため、二つのモードでの発振を実現することができるという効果を奏する。
As described above, in the oscillation element according to the present invention, the rotation direction of the perpendicular magnetization in the first ferromagnetic free layer and the perpendicular magnetization in the second ferromagnetic free layer according to the coupling strength of the interlayer exchange coupling in the free layer. Since the phase of the rotation is the same as the low frequency mode or the different high frequency mode, the oscillation in the two modes can be realized.
本発明に係る発振素子は、磁化が固定されている強磁性体からなる固定層と、前記固定層に積層されて設けられる導電性の非磁性体からなる非磁性層と、前記非磁性層に積層されて設けられ、通電により生じる磁気渦で垂直磁化が形成される強磁性体からなり、形成された前記垂直磁化が面方向に回転移動する自由層と、前記各層に亘って電流を通電する電流供給手段とを備え、前記固定層における予め定められた位置の磁化と前記自由層における前記位置に対応する対応位置の磁化との相対的な角度の差を用いて発振を行うものである。
An oscillation element according to the present invention includes a fixed layer made of a ferromagnetic material whose magnetization is fixed, a nonmagnetic layer made of a conductive nonmagnetic material provided on the fixed layer, and a nonmagnetic layer. It is made of a ferromagnetic material that is provided in a stacked manner and has perpendicular magnetization formed by magnetic vortices generated by energization. The formed perpendicular magnetization rotates and moves in the plane direction, and current is passed through each layer. Current supply means, and oscillates using a relative angle difference between magnetization at a predetermined position in the fixed layer and magnetization at a corresponding position corresponding to the position in the free layer.
このように、本発明に係る発振素子においては、非磁性層が導電性の非磁性体からなるため、電流供給手段からの通電により自由層の磁気渦の形成及び垂直磁化の回転移動を行うことができ、層の直径や厚みの制限を受けることなく、自由度が高い形状の発振素子を実現することができるという効果を奏する。
Thus, in the oscillation element according to the present invention, since the nonmagnetic layer is made of a conductive nonmagnetic material, the magnetic vortex is formed in the free layer and the perpendicular magnetization is rotated by energization from the current supply means. Thus, there is an effect that an oscillating element having a high degree of freedom can be realized without being limited by the diameter and thickness of the layer.
本発明に係る発振素子は、前記固定層が、通電により生じる磁気渦で垂直磁化が形成される強磁性体からなり、前記固定層における垂直磁化と、当該垂直磁化に対応する前記自由層における対応位置の磁化と、の相対的な角度の差を用いて発振を行うものである。
In the oscillation element according to the present invention, the fixed layer is made of a ferromagnetic material in which perpendicular magnetization is formed by a magnetic vortex generated by energization, and the perpendicular magnetization in the fixed layer and the correspondence in the free layer corresponding to the perpendicular magnetization Oscillation is performed using a relative angle difference between the position magnetization and the position magnetization.
このように、本発明に係る発振素子においては、固定層が自由層と同様に通電により磁気渦構造となるため、磁気渦構造により優れた周波数特性を持った発振素子を実現することができるという効果を奏する。
As described above, in the oscillation element according to the present invention, since the fixed layer has a magnetic vortex structure when energized in the same manner as the free layer, an oscillation element having excellent frequency characteristics can be realized by the magnetic vortex structure. There is an effect.
また、固定層及び自由層が磁気渦構造を有するものであるため、材料に依存することなく安定的な磁化を形成することができ、高出力が可能な材料を選択することで、高出力の発振素子を実現することが可能になるという効果を奏する。さらに、磁気渦構造により高いQ値を実現することができると共に、安定した磁化により熱安定性を高めることができるという効果を奏する。
In addition, since the fixed layer and the free layer have a magnetic vortex structure, stable magnetization can be formed without depending on the material, and by selecting a material capable of high output, high output can be achieved. There is an effect that an oscillation element can be realized. In addition, the magnetic vortex structure can achieve a high Q value, and the thermal stability can be enhanced by stable magnetization.
さらに、固定層及び自由層において、磁気渦による垂直磁化が形成されるため、各層における外側方向(外周方向)への漏れ磁界によるQ値への影響をなくして、高性能な発振素子を実現することができるという効果を奏する。
Furthermore, since the perpendicular magnetization due to the magnetic vortex is formed in the fixed layer and the free layer, the influence of the leakage magnetic field in the outer direction (outer peripheral direction) on each layer is not affected on the Q value, and a high-performance oscillation element is realized. There is an effect that can be.
本発明に係る発振素子は、前記自由層が、通電により生じる磁気渦で垂直磁化が形成される強磁性体からなる複数の強磁性自由層と、複数の前記各強磁性自由層の間に狭持されて設けられる導電性の非磁性体からなる複数の非磁性自由層とを備え、前記各層が層間交換結合しているものである。
In the oscillating device according to the present invention, the free layer is sandwiched between a plurality of ferromagnetic free layers made of a ferromagnetic material in which perpendicular magnetization is formed by a magnetic vortex generated by energization, and the plurality of ferromagnetic free layers. And a plurality of nonmagnetic free layers made of a conductive nonmagnetic material, and each of the layers is interlayer exchange coupled.
このように、本発明に係る発振素子においては、自由層が、通電により生じる磁気渦で垂直磁化が形成される強磁性体からなる複数の強磁性自由層で、非磁性体からなる複数の非磁性自由層を狭持し、各層が層間交換結合しているため、結合強度に応じて非常に高い熱安定性を実現することができるという効果を奏する。
Thus, in the oscillation element according to the present invention, the free layer is a plurality of ferromagnetic free layers made of a ferromagnetic material in which perpendicular magnetization is formed by magnetic vortices generated by energization, and a plurality of non-magnetic materials made of non-magnetic material. Since the magnetic free layer is sandwiched and each layer is interlayer exchange coupled, there is an effect that very high thermal stability can be realized according to the coupling strength.
Thus, in the oscillation element according to the present invention, the free layer is a plurality of ferromagnetic free layers made of a ferromagnetic material in which perpendicular magnetization is formed by magnetic vortices generated by energization, and a plurality of non-magnetic materials made of non-magnetic material. Since the magnetic free layer is sandwiched and each layer is interlayer exchange coupled, there is an effect that very high thermal stability can be realized according to the coupling strength.
以下、本発明の実施の形態を説明する。本発明は多くの異なる形態で実施可能である。また、本実施形態の全体を通して同じ要素には同じ符号を付けている。
Hereinafter, embodiments of the present invention will be described. The present invention can be implemented in many different forms. Also, the same reference numerals are given to the same elements throughout the present embodiment.
(本発明の第1の実施形態)
本実施形態に係る発振素子について、図1ないし図3を用いて説明する。図1は、本実施形態に係る発振素子の構造を示す第1の図、図2は、本実施形態に係る発振素子の構造を示す第2の図、図3は、本実施形態に係る発振素子の動作を示す図である。 (First embodiment of the present invention)
The oscillation element according to this embodiment will be described with reference to FIGS. FIG. 1 is a first diagram illustrating the structure of an oscillation element according to the present embodiment, FIG. 2 is a second diagram illustrating the structure of the oscillation element according to the present embodiment, and FIG. 3 is an oscillation according to the present embodiment. It is a figure which shows operation | movement of an element.
本実施形態に係る発振素子について、図1ないし図3を用いて説明する。図1は、本実施形態に係る発振素子の構造を示す第1の図、図2は、本実施形態に係る発振素子の構造を示す第2の図、図3は、本実施形態に係る発振素子の動作を示す図である。 (First embodiment of the present invention)
The oscillation element according to this embodiment will be described with reference to FIGS. FIG. 1 is a first diagram illustrating the structure of an oscillation element according to the present embodiment, FIG. 2 is a second diagram illustrating the structure of the oscillation element according to the present embodiment, and FIG. 3 is an oscillation according to the present embodiment. It is a figure which shows operation | movement of an element.
本実施形態に係る発振素子は、図1(A)に示すように、磁化が固定されている円板状の強磁性体からなる固定層11と、固定層11に積層されて設けられる円板状の非磁性体からなる非磁性層12と、非磁性層12に積層されて設けられ、円板状の強磁性体からなる自由層13を備える。この自由層13は、中心部分に垂直磁化(自由層13の面方向に対して垂直な方向の磁化)が形成される磁気渦構造を有している。すなわち、磁化が自由層13の周方向に沿って渦を巻くと共に、円板の中心付近で垂直方向に立ち上がっている。
As shown in FIG. 1A, the oscillation element according to this embodiment includes a fixed layer 11 made of a disk-shaped ferromagnetic material whose magnetization is fixed, and a disk provided by being laminated on the fixed layer 11. A non-magnetic layer 12 made of a non-magnetic material and a free layer 13 made of a disk-like ferromagnetic material. The free layer 13 has a magnetic vortex structure in which perpendicular magnetization (magnetization in a direction perpendicular to the plane direction of the free layer 13) is formed at the center portion. That is, the magnetization vortexes along the circumferential direction of the free layer 13 and rises in the vertical direction near the center of the disk.
このような磁気渦構造を有する自由層13に対して径方向に磁場を印加すると、垂直磁化の位置を変化させることができ、磁場の印加を止めるとスパイラル運動をしながら垂直磁化が中心位置に戻る。また、電流を通電することでもこのような制御ができる。本実施形態においては、図1(B)に示すように、自由層13及び固定層11に備えられる電極14,15を介して電流供給部16により電流を通電することで、自由層13における垂直磁化の位置を変化させる。すなわち、垂直磁化の垂直性を維持したまま、自由層の面方向に垂直磁化を回転移動させる。
When a magnetic field is applied in the radial direction to the free layer 13 having such a magnetic vortex structure, the position of the perpendicular magnetization can be changed. When the application of the magnetic field is stopped, the perpendicular magnetization is brought to the center position while performing a spiral motion. Return. Such control can also be performed by supplying a current. In the present embodiment, as shown in FIG. 1B, the current is supplied by the current supply unit 16 through the electrodes 14 and 15 provided in the free layer 13 and the fixed layer 11, so that the vertical in the free layer 13 is obtained. Change the position of magnetization. That is, the perpendicular magnetization is rotationally moved in the plane direction of the free layer while maintaining the perpendicularity of the perpendicular magnetization.
なお、一般的に、磁気渦構造が形成されるかどうかは、磁性体の直径と厚さとの比率によって決まる。すなわち、例えば、非特許文献5、6に記載された技術において、自由層13が磁気渦構造を有するためには、磁性体の直径と厚さの制限が課せられることとなり、サイズや形状の自由度が低いものとなっていた。
In general, whether or not a magnetic vortex structure is formed depends on the ratio between the diameter and thickness of the magnetic material. That is, for example, in the techniques described in Non-Patent Documents 5 and 6, in order for the free layer 13 to have a magnetic vortex structure, restrictions on the diameter and thickness of the magnetic material are imposed, and the size and shape are free. The degree was low.
これに対して、図1(A)に示す発振素子1は、非磁性層12を絶縁性ではなく導電性の非磁性体としてもよい。すなわち、例えば、非特許文献5、6に記載された技術では、非磁性層12にMgO-basedトンネルバリアを用いているのに対して、本実施形態に係る発振素子においては、非磁性層12を導電性の非磁性体とすることで、磁性体の直径、厚さ、形状等に関係なく、電流供給部16からの電流を通電することにより生じる磁界で自由層に磁気渦構造を形成することができる。つまり、図1(A)に示す発振素子1は、素子のサイズや形状を自由に設定することが可能となる(後述の実施例を参照)。
On the other hand, in the oscillation element 1 shown in FIG. 1A, the nonmagnetic layer 12 may be a conductive nonmagnetic material instead of an insulating material. That is, for example, in the techniques described in Non-Patent Documents 5 and 6, an MgO-based tunnel barrier is used for the nonmagnetic layer 12, whereas in the oscillation element according to the present embodiment, the nonmagnetic layer 12 is used. By forming a conductive non-magnetic material, a magnetic vortex structure is formed in the free layer with a magnetic field generated by applying a current from the current supply unit 16 regardless of the diameter, thickness, shape, etc. of the magnetic material. be able to. That is, the oscillation element 1 shown in FIG. 1A can freely set the size and shape of the element (see examples described later).
固定層11は、磁化が固定されており、図1(A)の場合は面方向(固定層11の面に対して水平な方向)に固定され、図2(A)の場合は自由層13と同様に、磁気渦構造により垂直方向(固定層11の面に対して垂直な方向)に中心位置で固定されている。固定層11の磁化は固定されているため、電流を通電しても変化することがなく、自由層13の磁化のみが変化する。図1(A)に示すように、固定層11の磁化が水平方向に固定されている場合は、自由層13の垂直磁化を効率よく動かすことができるのに対して、図2(A)に示すように、固定層11の磁化が垂直方向に固定されている場合は、磁気渦構造により磁化が安定して、優れた周波数特性を実現することが可能となる。
The pinned layer 11 has a fixed magnetization. In the case of FIG. 1A, the pinned layer 11 is pinned in the plane direction (a direction parallel to the plane of the pinned layer 11), and in the case of FIG. In the same manner as above, the magnetic vortex structure is fixed at the center position in the vertical direction (direction perpendicular to the surface of the fixed layer 11). Since the magnetization of the fixed layer 11 is fixed, it does not change even when a current is applied, and only the magnetization of the free layer 13 changes. As shown in FIG. 1A, when the magnetization of the fixed layer 11 is fixed in the horizontal direction, the perpendicular magnetization of the free layer 13 can be moved efficiently, whereas in FIG. As shown, when the magnetization of the fixed layer 11 is fixed in the vertical direction, the magnetization is stabilized by the magnetic vortex structure, and excellent frequency characteristics can be realized.
なお、図2(B)に示すように、電流の供給については図1(B)の場合と同様である。また、図2の発振素子1においても、図1の場合と同様に非磁性層を導電性にすることで、素子のサイズや形状の自由度を上げることが可能となる。
Note that, as shown in FIG. 2B, the supply of current is the same as in FIG. 1B. Also in the oscillation element 1 of FIG. 2, it is possible to increase the degree of freedom of the element size and shape by making the nonmagnetic layer conductive as in the case of FIG.
本実施形態においては、自由層13の垂直磁化が面方向に回転移動することで、自由層13の磁化と、固定層11における固定された磁化との相対的な角度の差により発振を行う。例えば、自由層13の中心部分の磁化と、固定層11における固定された磁化(図1の場合は水平方向の磁化、図2の場合は垂直磁化)との相対的な角度の差を用いて発振を実現する。図3に、発振動作の一例を示す。図3において、固定層11は磁気渦構造を有しており、中心部分に垂直磁化が形成されて固定されている。自由層13も同様に、磁気渦構造により中心部分に垂直磁化が形成されているが、磁化は固定されておらず、電流供給部16により電流が通電されることで面方向に回転移動する。このとき、垂直磁化の垂直性を保ったまま回転移動する。
In the present embodiment, the perpendicular magnetization of the free layer 13 rotates and moves in the plane direction, thereby oscillating by the relative angle difference between the magnetization of the free layer 13 and the fixed magnetization of the fixed layer 11. For example, by using a relative angular difference between the magnetization of the center portion of the free layer 13 and the fixed magnetization (horizontal magnetization in the case of FIG. 1 and vertical magnetization in the case of FIG. 2) in the fixed layer 11. Realize oscillation. FIG. 3 shows an example of the oscillation operation. In FIG. 3, the fixed layer 11 has a magnetic vortex structure, and is fixed by forming perpendicular magnetization at the central portion. Similarly, the free layer 13 is also perpendicularly magnetized at the center portion by the magnetic vortex structure, but the magnetization is not fixed, and the current layer 16 rotates and moves in the plane direction when the current is supplied by the current supply unit 16. At this time, it rotates and moves while maintaining the perpendicularity of the perpendicular magnetization.
図3(A)は、垂直磁化の回転角が0度(又は360度)の場合の発振素子1の状態を示し、図3(B)は、垂直磁化の回転角が90度の場合の発振素子1の状態を示し、図3(C)は、垂直磁化の回転角が180度の場合の発振素子1の状態を示し、図3(D)は、垂直磁化の回転角が270度の場合の発振素子1の状態を示している。
3A shows the state of the oscillation element 1 when the rotation angle of perpendicular magnetization is 0 degrees (or 360 degrees), and FIG. 3B shows the oscillation when the rotation angle of perpendicular magnetization is 90 degrees. FIG. 3C shows the state of the element 1, FIG. 3C shows the state of the oscillation element 1 when the rotation angle of perpendicular magnetization is 180 degrees, and FIG. 3D shows the case where the rotation angle of perpendicular magnetization is 270 degrees. The state of the oscillation element 1 is shown.
図3(A)~(D)に示すように、垂直磁化が面方向に回転移動することで、その回転角に応じて、固定層11の垂直磁化に対応する自由層13の位置(すなわち、自由層13の中心部分)における自由層13の磁気渦の方向が周期的に変化する。この固定層11の磁化と自由層13の磁化との相対角の差により発振を行うことができる。
As shown in FIGS. 3A to 3D, the vertical magnetization rotates and moves in the plane direction, so that the position of the free layer 13 corresponding to the perpendicular magnetization of the fixed layer 11 (that is, according to the rotation angle (ie, The direction of the magnetic vortex of the free layer 13 in the central portion of the free layer 13 changes periodically. Oscillation can be performed by the difference in relative angle between the magnetization of the fixed layer 11 and the magnetization of the free layer 13.
なお、上記発振素子1においては、各層の形状が円板状に形成されているが、磁気渦構造により1つの垂直磁化が安定的に形成される形状であればよく、例えば多角形、正多角形、楕円、その他複数の閉じた線分により形成される形状であってもよい。円板状、正多角形状とした場合には、単一の垂直磁化を安定して形成することができ、制御が容易になる。また、エッジを有する形状とした場合には、エッジの部分で磁気渦のポテンシャルが大きくなり、周波数を高くすることが可能となる。さらに、その他複雑な形状や長尺形状である場合には、磁気渦構造を複数形成することができ、様々な周波数や強度での発振を行うことが可能となる。
In the oscillation element 1, the shape of each layer is formed in a disk shape, but may be any shape as long as one perpendicular magnetization is stably formed by the magnetic vortex structure. The shape formed by a square, an ellipse, and several other closed line segments may be sufficient. In the case of a disc shape or a regular polygon shape, a single perpendicular magnetization can be stably formed, and control becomes easy. Further, when the shape has an edge, the potential of the magnetic vortex increases at the edge portion, and the frequency can be increased. Furthermore, in the case of other complicated shapes or long shapes, a plurality of magnetic vortex structures can be formed, and oscillation at various frequencies and intensities can be performed.
特に、上述したように、非磁性層12を導電性の非磁性体とし、通電による磁界により磁気渦を生じさせる場合には、直系や厚さの制限を全く考慮する必要がなく、サイズや形状を自由に設定することが可能となる。
In particular, as described above, when the nonmagnetic layer 12 is made of a conductive nonmagnetic material and a magnetic vortex is generated by a magnetic field caused by energization, there is no need to consider the direct system or thickness limitation at all. Can be set freely.
さらに、磁気渦の回転方向は右回りであっても左回りであってもどちらでもよい。
Furthermore, the direction of rotation of the magnetic vortex may be either clockwise or counterclockwise.
このように、本実施形態に係る発振素子によれば、磁気渦構造により優れた周波数特性を持った発振素子を実現することができると共に、材料に依存することなく安定的な磁化を形成することができ、高出力が可能な材料(例えば、スピン偏極率の高いCo2FeSiやCo2MnSiなどハーフメタルと呼ばれる材料)を選択することで、高出力の発振素子を実現することが可能になる。また、磁気渦構造により高いQ値を実現することができると共に、安定的な垂直磁化により熱安定性を高めることが可能となる。
Thus, according to the oscillation element according to the present embodiment, it is possible to realize an oscillation element having excellent frequency characteristics due to the magnetic vortex structure and to form stable magnetization without depending on the material. Therefore, by selecting a material capable of high output (for example, a material called a half metal such as Co 2 FeSi or Co 2 MnSi having a high spin polarization rate), a high output oscillation element can be realized. In addition, a high Q value can be realized by the magnetic vortex structure, and thermal stability can be enhanced by stable perpendicular magnetization.
(本発明の第2の実施形態)
本実施形態に係る発振素子について、図4ないし図8を用いて説明する。図4は、本実施形態に係る発振素子の構造を示す図、図5は、本実施形態に係る発振素子における層間交換結合を示す第1の図、図6は、本実施形態に係る発振素子における層間交換結合を示す第2の図、図7は、本実施形態に係る発振素子の動作を示す図、図8は、本実施形態に係る発振素子の周波数モードを示す図である。
なお、本実施形態において前記第1の実施形態と重複する説明は省略する。 (Second embodiment of the present invention)
The oscillation element according to this embodiment will be described with reference to FIGS. 4 is a diagram illustrating the structure of the oscillation element according to the present embodiment, FIG. 5 is a first diagram illustrating interlayer exchange coupling in the oscillation element according to the present embodiment, and FIG. 6 is an oscillation element according to the present embodiment. FIG. 7 is a diagram illustrating the operation of the oscillation element according to the present embodiment, and FIG. 8 is a diagram illustrating the frequency mode of the oscillation element according to the present embodiment.
In addition, in this embodiment, the description which overlaps with the said 1st Embodiment is abbreviate | omitted.
本実施形態に係る発振素子について、図4ないし図8を用いて説明する。図4は、本実施形態に係る発振素子の構造を示す図、図5は、本実施形態に係る発振素子における層間交換結合を示す第1の図、図6は、本実施形態に係る発振素子における層間交換結合を示す第2の図、図7は、本実施形態に係る発振素子の動作を示す図、図8は、本実施形態に係る発振素子の周波数モードを示す図である。
なお、本実施形態において前記第1の実施形態と重複する説明は省略する。 (Second embodiment of the present invention)
The oscillation element according to this embodiment will be described with reference to FIGS. 4 is a diagram illustrating the structure of the oscillation element according to the present embodiment, FIG. 5 is a first diagram illustrating interlayer exchange coupling in the oscillation element according to the present embodiment, and FIG. 6 is an oscillation element according to the present embodiment. FIG. 7 is a diagram illustrating the operation of the oscillation element according to the present embodiment, and FIG. 8 is a diagram illustrating the frequency mode of the oscillation element according to the present embodiment.
In addition, in this embodiment, the description which overlaps with the said 1st Embodiment is abbreviate | omitted.
本実施形態に係る発振素子は、前記第1の実施形態に係る発振素子の自由層13に層間交換結合を用いることで、非常に高い熱安定性を実現する。また、自由層13の層間交換結合の構造を利用して周波数モードを制御することで、非常に高い周波数での発振を実現する。
The oscillation element according to the present embodiment achieves very high thermal stability by using interlayer exchange coupling for the free layer 13 of the oscillation element according to the first embodiment. Further, by controlling the frequency mode using the structure of the interlayer exchange coupling of the free layer 13, oscillation at a very high frequency is realized.
図4に示すように、本実施形態に係る発振素子1は、第1の実施形態に係る発振素子1の自由層13が、磁気渦構造を有する強磁性体からなる第1の強磁性自由層13aと、第1の強磁性自由層に積層されて設けられる導電性の非磁性体(例えば、Ru、Cu、Cr等)からなる非磁性自由層13bと、非磁性自由層13bに積層されて設けられ、磁気渦構造を有する強磁性体からなり、第1の強磁性自由層13aと層間交換結合している第2の強磁性自由層13cとを有する。
As shown in FIG. 4, the oscillation element 1 according to this embodiment includes a first ferromagnetic free layer in which the free layer 13 of the oscillation element 1 according to the first embodiment is made of a ferromagnetic material having a magnetic vortex structure. 13a, a nonmagnetic free layer 13b made of a conductive nonmagnetic material (for example, Ru, Cu, Cr, etc.) provided to be stacked on the first ferromagnetic free layer, and a nonmagnetic free layer 13b. The second ferromagnetic free layer 13c is provided and is made of a ferromagnetic material having a magnetic vortex structure, and has a first ferromagnetic free layer 13a and an interlayer exchange coupling.
第1の強磁性自由層13aと第2の強磁性自由層13cとの層間交換結合について、詳細に説明する。図5は、非磁性自由層13bの膜厚と、第1の強磁性自由層13a及び第2の強磁性自由層13cの結合強度、結合の向きとの関係を示している。図5に示すように、非磁性自由層13bの膜厚が厚くなるにしたがって、第1の強磁性自由層13a及び第2の強磁性自由層13cの結合強度が弱くなる。なお、詳細は後述するが、この結合強度の大きさに応じて、周波数モードが特定される。
The interlayer exchange coupling between the first ferromagnetic free layer 13a and the second ferromagnetic free layer 13c will be described in detail. FIG. 5 shows the relationship between the film thickness of the nonmagnetic free layer 13b and the coupling strength and coupling direction of the first ferromagnetic free layer 13a and the second ferromagnetic free layer 13c. As shown in FIG. 5, as the film thickness of the nonmagnetic free layer 13b increases, the coupling strength between the first ferromagnetic free layer 13a and the second ferromagnetic free layer 13c decreases. Although details will be described later, the frequency mode is specified according to the magnitude of the coupling strength.
また、図5に示すように、非磁性自由層13bの膜厚により、結合の向き(平行/反平行)が特定される。本実施形態に係る発振素子においては、結合の向きは発振の周波数特性に寄与しないため無視することができ、結合強度の大きさが重要な要素となる。
As shown in FIG. 5, the coupling direction (parallel / antiparallel) is specified by the film thickness of the nonmagnetic free layer 13b. In the oscillation element according to the present embodiment, the direction of coupling does not contribute to the frequency characteristics of oscillation and can be ignored, and the magnitude of coupling strength is an important factor.
図6に、層間交換結合による非磁性自由層13b及び第2の強磁性自由層13cの膜厚に応じた熱安定性を示す。図中のdの値が、第2の強磁性自由層13cの膜厚を示し、Δ0が熱安定性を示している。なお、図6の表に示す値は参考値であり、面内の磁化が水平である場合のデータである。図から明らかなように、第2の強磁性自由層13cの膜厚が厚いほど熱安定性を示すΔ0が大きくなっている。また、第2の強磁性自由層13cの膜厚が同じである場合は、非磁性自由層13bの膜厚が厚いほどΔ0が大きくなっていることがわかる。このように、図5、図6に示すような層間交換結合を利用することで、熱安定性を格段に向上させることが可能となる。
FIG. 6 shows the thermal stability according to the film thickness of the nonmagnetic free layer 13b and the second ferromagnetic free layer 13c by interlayer exchange coupling. The value of d in the figure indicates the film thickness of the second ferromagnetic free layer 13c, and Δ0 indicates the thermal stability. The values shown in the table of FIG. 6 are reference values and are data when the in-plane magnetization is horizontal. As is apparent from the figure, Δ0 indicating thermal stability increases as the thickness of the second ferromagnetic free layer 13c increases. It can also be seen that when the thickness of the second ferromagnetic free layer 13c is the same, Δ0 increases as the thickness of the nonmagnetic free layer 13b increases. As described above, by using the interlayer exchange coupling as shown in FIGS. 5 and 6, it is possible to significantly improve the thermal stability.
また、本実施形態に係る発振素子は、自由層13に複数の強磁性自由層を有することを利用し、層間交換結合の結合強度を任意の値に調整することで、高い周波数を実現することができる。すなわち、第1の強磁性自由層13aの垂直磁化と第2の強磁性自由層13cの垂直磁化とが同位相で回転移動する場合は、低い周波数モード(音響モードという)での発振となり、逆位相で回転移動する場合は、高い周波数モード(光学モードという)での発振が可能となる。光学モードでの垂直磁化のイメージ図を図7に示す。図7は、第1の強磁性自由層13aの垂直磁化と第2の強磁性自由層13cの垂直磁化とが逆位相で回転移動している様子を示している。図7(A)は、第1の強磁性自由層13aが0度(又は360度)で第2の強磁性自由層13cが180度の場合の垂直磁化の状態、図7(B)は、第1の強磁性自由層13aが90度で第2の強磁性自由層13cが270度の場合の垂直磁化の状態、図7(C)は、第1の強磁性自由層13aが180度で第2の強磁性自由層13cが0度(又は360度)の場合の垂直磁化の状態、図7(D)は、第1の強磁性自由層13aが270度で第2の強磁性自由層13cが90度の場合の垂直磁化の状態を示している。各状態において、第1の強磁性自由層13aの垂直磁化と第2の強磁性自由層13cの垂直磁化とは逆位相になっており、高い周波数の発振を実現する。
In addition, the oscillation element according to the present embodiment realizes a high frequency by adjusting the coupling strength of the interlayer exchange coupling to an arbitrary value by using the free layer 13 having a plurality of ferromagnetic free layers. Can do. That is, when the perpendicular magnetization of the first ferromagnetic free layer 13a and the perpendicular magnetization of the second ferromagnetic free layer 13c rotate and move in the same phase, oscillation occurs in a low frequency mode (referred to as acoustic mode), and vice versa. When rotating and moving in phase, oscillation in a high frequency mode (referred to as an optical mode) is possible. An image of perpendicular magnetization in the optical mode is shown in FIG. FIG. 7 shows a state in which the perpendicular magnetization of the first ferromagnetic free layer 13a and the perpendicular magnetization of the second ferromagnetic free layer 13c are rotationally moved in opposite phases. FIG. 7A shows the state of perpendicular magnetization when the first ferromagnetic free layer 13a is 0 degrees (or 360 degrees) and the second ferromagnetic free layer 13c is 180 degrees, and FIG. FIG. 7C shows the state of perpendicular magnetization when the first ferromagnetic free layer 13a is 90 degrees and the second ferromagnetic free layer 13c is 270 degrees. FIG. 7C shows the first ferromagnetic free layer 13a at 180 degrees. FIG. 7D shows the state of perpendicular magnetization when the second ferromagnetic free layer 13c is 0 degrees (or 360 degrees). FIG. 7D shows the second ferromagnetic free layer when the first ferromagnetic free layer 13a is 270 degrees. The state of perpendicular magnetization when 13c is 90 degrees is shown. In each state, the perpendicular magnetization of the first ferromagnetic free layer 13a and the perpendicular magnetization of the second ferromagnetic free layer 13c are in opposite phases, realizing high frequency oscillation.
図8は光学モードと音響モードを示しており、第1の強磁性自由層13aの垂直磁化と第2の強磁性自由層13cの垂直磁化とが同位相で回転移動する場合は低い周波数を実現し、第1の強磁性自由層13aの垂直磁化と第2の強磁性自由層13cの垂直磁化とが逆位相で回転移動する場合は高い周波数を実現している。それらの周波数の差は層間交換結合の結合強度に比例しており、層間の有効磁界を調整することで、より高い周波数の発振を実現することが可能となる。
FIG. 8 shows an optical mode and an acoustic mode. When the perpendicular magnetization of the first ferromagnetic free layer 13a and the perpendicular magnetization of the second ferromagnetic free layer 13c rotate and move in the same phase, a low frequency is realized. When the perpendicular magnetization of the first ferromagnetic free layer 13a and the perpendicular magnetization of the second ferromagnetic free layer 13c rotate and move in opposite phases, a high frequency is realized. The difference between these frequencies is proportional to the coupling strength of the interlayer exchange coupling, and by adjusting the effective magnetic field between the layers, it becomes possible to realize oscillation at a higher frequency.
このように、本実施形態に係る発振素子によれば、自由層における各層が層間交換結合しているため、結合強度に応じて非常に高い熱安定性を実現することができる。また、自由層における層間交換結合の結合強度が所定の値である場合に、第1の強磁性自由層13aにおける垂直磁化の回転の位相と、第2の強磁性自由層13cにおける垂直磁化の回転の位相とが互いに異なる位相であるため、層間の有効磁界が増大し、高い周波数での発振を実現することができる。
Thus, according to the oscillation element according to the present embodiment, since each layer in the free layer is interlayer exchange coupled, very high thermal stability can be realized depending on the coupling strength. Further, when the coupling strength of the interlayer exchange coupling in the free layer is a predetermined value, the rotation phase of the perpendicular magnetization in the first ferromagnetic free layer 13a and the rotation of the perpendicular magnetization in the second ferromagnetic free layer 13c. Therefore, the effective magnetic field between the layers increases, and oscillation at a high frequency can be realized.
なお、本実施形態において、前記第1の実施形態の場合と同様に、固定層11の磁化方向は固定層11の面方向に固定されていてもよい。また、自由層13は3層以上であってもよい。
In the present embodiment, the magnetization direction of the fixed layer 11 may be fixed in the plane direction of the fixed layer 11 as in the case of the first embodiment. Further, the free layer 13 may be three or more layers.
また、本実施形態において、前記第1の実施形態の場合と同様に、非磁性層12を導電性にすることで、素子のサイズや形状の自由度を上げることが可能となる。
Further, in the present embodiment, as in the case of the first embodiment, by making the nonmagnetic layer 12 conductive, it is possible to increase the degree of freedom of the element size and shape.
本発明に係る発振素子について、以下の実験及びシミュレーションを行った。
The following experiment and simulation were performed on the oscillation element according to the present invention.
(1)磁気渦における共鳴の観測
図9(A)に本実験系の模式図、図9(B)に本実験に用いた磁気渦素子の平面形状を示す。また、図10(A)に各平面形状における磁気渦の共鳴スペクトル、図10(B)各平面形状ごとの共鳴周波数を示す。本実験では、磁気渦素子に交流電流を通電すると共に図9(A)に示す磁場を印加して磁気渦(垂直磁化)を回転させ、磁気渦素子の共鳴スペクトルを観測した。信号はホモダイン検波を用いて取り出した。実験には、図9(B)に示すように、表面形状が正五角形、正方形、正三角形及び円形の磁気渦素子を用いて行った。 (1) Observation of resonance in magnetic vortex FIG. 9A shows a schematic diagram of this experimental system, and FIG. 9B shows a planar shape of the magnetic vortex element used in this experiment. FIG. 10A shows the resonance spectrum of the magnetic vortex in each planar shape, and FIG. 10B shows the resonance frequency for each planar shape. In this experiment, an alternating current was applied to the magnetic vortex element, and the magnetic vortex (vertical magnetization) was rotated by applying the magnetic field shown in FIG. 9A, and the resonance spectrum of the magnetic vortex element was observed. The signal was extracted using homodyne detection. In the experiment, as shown in FIG. 9B, a magnetic vortex element having a regular pentagonal shape, a square shape, a regular triangle shape, and a circular shape was used.
図9(A)に本実験系の模式図、図9(B)に本実験に用いた磁気渦素子の平面形状を示す。また、図10(A)に各平面形状における磁気渦の共鳴スペクトル、図10(B)各平面形状ごとの共鳴周波数を示す。本実験では、磁気渦素子に交流電流を通電すると共に図9(A)に示す磁場を印加して磁気渦(垂直磁化)を回転させ、磁気渦素子の共鳴スペクトルを観測した。信号はホモダイン検波を用いて取り出した。実験には、図9(B)に示すように、表面形状が正五角形、正方形、正三角形及び円形の磁気渦素子を用いて行った。 (1) Observation of resonance in magnetic vortex FIG. 9A shows a schematic diagram of this experimental system, and FIG. 9B shows a planar shape of the magnetic vortex element used in this experiment. FIG. 10A shows the resonance spectrum of the magnetic vortex in each planar shape, and FIG. 10B shows the resonance frequency for each planar shape. In this experiment, an alternating current was applied to the magnetic vortex element, and the magnetic vortex (vertical magnetization) was rotated by applying the magnetic field shown in FIG. 9A, and the resonance spectrum of the magnetic vortex element was observed. The signal was extracted using homodyne detection. In the experiment, as shown in FIG. 9B, a magnetic vortex element having a regular pentagonal shape, a square shape, a regular triangle shape, and a circular shape was used.
図10(A)、(B)に示すように、各平面形状の磁気渦素子において周波数のピークが検出され、磁気渦による共鳴が起きることを確認することができる。すなわち、平面形状が円形の磁気渦素子だけではなく、正多角形のものであっても磁気渦による発振が可能であることがわかる。
As shown in FIGS. 10A and 10B, a frequency peak is detected in each planar magnetic vortex element, and it can be confirmed that resonance due to the magnetic vortex occurs. That is, it can be understood that oscillation is possible not only with a magnetic vortex element having a circular planar shape but also with a regular polygonal shape due to a magnetic vortex.
(2)層間交換結合による磁気渦の共鳴シミュレーション
図11(A)に本シミュレーションに用いた自由層を示す図、図11(B)にシミュレーション結果を示す。ここでは、磁気渦構造を有する磁性層2枚が層間交換結合をした試料に高周波磁界を面内に印加し、磁気渦の共鳴をシミュレーションした。すなわち、共鳴状態の周波数は、発振状態の周波数とほぼ一致するため、共鳴状態をシミュレートすることで発振時の周波数を推し量ることができる。 (2) Resonance simulation of magnetic vortex by interlayer exchange coupling FIG. 11A shows a free layer used in this simulation, and FIG. 11B shows a simulation result. Here, a high-frequency magnetic field was applied in-plane to a sample in which two magnetic layers having a magnetic vortex structure were interlayer-exchange coupled, and the resonance of the magnetic vortex was simulated. That is, since the frequency in the resonance state substantially coincides with the frequency in the oscillation state, the frequency during oscillation can be estimated by simulating the resonance state.
図11(A)に本シミュレーションに用いた自由層を示す図、図11(B)にシミュレーション結果を示す。ここでは、磁気渦構造を有する磁性層2枚が層間交換結合をした試料に高周波磁界を面内に印加し、磁気渦の共鳴をシミュレーションした。すなわち、共鳴状態の周波数は、発振状態の周波数とほぼ一致するため、共鳴状態をシミュレートすることで発振時の周波数を推し量ることができる。 (2) Resonance simulation of magnetic vortex by interlayer exchange coupling FIG. 11A shows a free layer used in this simulation, and FIG. 11B shows a simulation result. Here, a high-frequency magnetic field was applied in-plane to a sample in which two magnetic layers having a magnetic vortex structure were interlayer-exchange coupled, and the resonance of the magnetic vortex was simulated. That is, since the frequency in the resonance state substantially coincides with the frequency in the oscillation state, the frequency during oscillation can be estimated by simulating the resonance state.
図11(A)に示すように、縦150nm×横150nmのパーマロイ薄膜を10nmの隙間(真空層)を設けて対向して配設したものを用いた。ここでは、上層(又は下層)が作る磁場(反磁場)は下層(又は上層)に影響を与えないものとし、パーマロイ薄膜の層間の交換定数をパーマロイのパラメータ×0.05とした。
As shown in FIG. 11 (A), a permalloy thin film having a length of 150 nm and a width of 150 nm provided with a 10 nm gap (vacuum layer) facing each other was used. Here, the magnetic field (demagnetizing field) produced by the upper layer (or lower layer) does not affect the lower layer (or upper layer), and the exchange constant between the layers of the permalloy thin film is set to permalloy parameter × 0.05.
図11(B)(上のグラフ)に示すように、10nsごとに0.1GHzずつ周波数を増加させて磁化変化をシミュレーションした。図11(B)から、0.7GHz~0.8GHzと1.3GHz~1.4GHzで共鳴が起こっていることが確認された。つまり、層間交換結合による2つのモード(音響モード及び光学モード)が励起されていることが示されている。
As shown in FIG. 11B (upper graph), the magnetization change was simulated by increasing the frequency by 0.1 GHz every 10 ns. From FIG. 11B, it was confirmed that resonance occurred at 0.7 GHz to 0.8 GHz and 1.3 GHz to 1.4 GHz. That is, it is shown that two modes (acoustic mode and optical mode) due to interlayer exchange coupling are excited.
次に、2層間の交換磁場を変えて共鳴周波数をシミュレーションした。図12(A)に本シミュレーションに用いた自由層を示す図、図12(B)にシミュレーション結果を示す。図12(A)に示すように、縦150nm×横150nmのパーマロイ薄膜を10nmの隙間(真空層)を設けて対向して配設したものを用い、そのときの交換磁場を交換磁場∝αKm/l2(真空層を無視した場合l=10nm、真空層を考慮した場合l=20nm:α~0.25に相当する)としてシミュレーションを行った。
Next, the resonance frequency was simulated by changing the exchange magnetic field between the two layers. FIG. 12A shows a free layer used in the simulation, and FIG. 12B shows a simulation result. As shown in FIG. 12A, a permalloy thin film having a length of 150 nm × width 150 nm provided with a 10 nm gap (vacuum layer) facing each other is used, and the exchange magnetic field at that time is defined as an exchange magnetic field ∝αKm / The simulation was performed as l2 (l = 10 nm when the vacuum layer was ignored, and l = 20 nm when the vacuum layer was considered: corresponding to α˜0.25).
図12(B)に示すように、コア間の距離(□で示す)が小さく、各コアの振動半径(○,●で示す)が大きいときは音響モードとなり、コア間の距離が大きく、各コアの振動半径が小さいときは光学モードとなっており、2層間の交換エネルギーに応じて光学モードでの共鳴周波数が変化している。図12(B)においては、2層間の交換エネルギーが小さいほど、光学モードでの共鳴周波数が小さくなっていることが確認される。
As shown in FIG. 12B, when the distance between the cores (indicated by □) is small and the vibration radius of each core (indicated by ◯, ●) is large, the acoustic mode is set, and the distance between the cores is large. When the vibration radius of the core is small, the mode is the optical mode, and the resonance frequency in the optical mode changes according to the exchange energy between the two layers. In FIG. 12B, it is confirmed that the smaller the exchange energy between the two layers, the smaller the resonance frequency in the optical mode.
以上のことから、磁気渦構造を有し、層間交換結合で結合された2層のパーマロイ薄膜により共鳴することが確認された。すなわち、これらを用いて自励発振を行う発振素子を実現することができる。また、2層間の交換エネルギーが小さいほど(2層間の距離が離れるほど)光学モードの共鳴周波数が音響モードの共鳴周波数に近づき、共鳴が大きくなる。さらに、2層間の有効磁界が小さいほど(2層間の距離が離れるほど)光学モードの共鳴周波数が音響モードの共鳴周波数に近づき、共鳴が大きくなる。ただし、交換エネルギーと比較すると影響が少なく、交換エネルギーの調整が特に重要となる。
From the above, it was confirmed that the two-layer permalloy thin film having a magnetic vortex structure and coupled by interlayer exchange coupling resonates. That is, it is possible to realize an oscillation element that performs self-excited oscillation using these. Further, the smaller the exchange energy between the two layers (the longer the distance between the two layers), the closer the resonance frequency of the optical mode approaches the resonance frequency of the acoustic mode, and the greater the resonance. Further, the smaller the effective magnetic field between the two layers (the longer the distance between the two layers), the closer the resonance frequency of the optical mode approaches that of the acoustic mode, and the resonance increases. However, there is little influence compared with exchange energy, and adjustment of exchange energy is particularly important.
(3)225nm×500nmサイズの素子による実測
図13(A)に本実験系の模式図、図13(B)は通電する電流に対する周波数の依存性を示すグラフ、図13(C)は140mAにおける周波数の特性を示すグラフである。本実験で用いた発振素子の自由層は、縦225nm×横500nm×厚さ5nmの直方体として構成されており、電流が流れていない通常の状態では磁気渦が形成されていない。この素子に直流電流を流し、交流の出力をスペクトラム・アナライザで観察した。 (3) Measured with 225 nm × 500 nm element FIG. 13A is a schematic diagram of this experimental system, FIG. 13B is a graph showing the dependence of the frequency on the current to be applied, and FIG. 13C is at 140 mA. It is a graph which shows the characteristic of a frequency. The free layer of the oscillation element used in this experiment is configured as a rectangular parallelepiped having a length of 225 nm, a width of 500 nm, and a thickness of 5 nm, and no magnetic vortex is formed in a normal state where no current flows. A direct current was passed through this element, and an alternating current output was observed with a spectrum analyzer.
図13(A)に本実験系の模式図、図13(B)は通電する電流に対する周波数の依存性を示すグラフ、図13(C)は140mAにおける周波数の特性を示すグラフである。本実験で用いた発振素子の自由層は、縦225nm×横500nm×厚さ5nmの直方体として構成されており、電流が流れていない通常の状態では磁気渦が形成されていない。この素子に直流電流を流し、交流の出力をスペクトラム・アナライザで観察した。 (3) Measured with 225 nm × 500 nm element FIG. 13A is a schematic diagram of this experimental system, FIG. 13B is a graph showing the dependence of the frequency on the current to be applied, and FIG. 13C is at 140 mA. It is a graph which shows the characteristic of a frequency. The free layer of the oscillation element used in this experiment is configured as a rectangular parallelepiped having a length of 225 nm, a width of 500 nm, and a thickness of 5 nm, and no magnetic vortex is formed in a normal state where no current flows. A direct current was passed through this element, and an alternating current output was observed with a spectrum analyzer.
図13(B)に示すように、電流に応じて発振周波数が変化しており、電流が大きくなるにしたがって周波数が大きくなっている。これは、磁気渦の回転移動による発振の際に得られる特性である。また、図13(C)に示すように、例えば、140mAの電流を通電した場合には、2.87GHzでピークが検出されている。
As shown in FIG. 13B, the oscillation frequency changes according to the current, and the frequency increases as the current increases. This is a characteristic obtained at the time of oscillation due to the rotational movement of the magnetic vortex. As shown in FIG. 13C, for example, when a current of 140 mA is applied, a peak is detected at 2.87 GHz.
すなわち、図13(B)及び図13(C)の結果から、本発明に係る発振素子においては、本来であれば到底磁気渦が形成されないようなサイズ及び形状の磁性体に電流を通電することで磁気渦が形成され、発振素子として機能することができることが明らかである。また、通電する電流に応じて周波数を調整することが可能であることが明らかである。
That is, from the results shown in FIGS. 13B and 13C, in the oscillation element according to the present invention, current is passed through a magnetic body having a size and shape that would normally prevent formation of a magnetic vortex. It is clear that a magnetic vortex is formed and can function as an oscillation element. Further, it is apparent that the frequency can be adjusted according to the current to be energized.
このように、本発明に係る発振素子によれば、磁気渦構造による安定した磁化により高い熱安定性と優れた周波数特性(高いQ値)を実現すると共に、層間交換結合によりさらに高い熱安定性と光学モードによる高周波数の発振を実現することができる。また、磁気渦構造を用いることで、材料に依存することなく安定的な垂直磁化を実現できるため、高出力が得られる材料を選択することで、高出力化が可能となる。
Thus, according to the oscillation element according to the present invention, high thermal stability and excellent frequency characteristics (high Q value) are realized by stable magnetization by the magnetic vortex structure, and higher thermal stability is achieved by interlayer exchange coupling. High-frequency oscillation in the optical mode can be realized. In addition, by using the magnetic vortex structure, stable perpendicular magnetization can be realized without depending on the material. Therefore, by selecting a material that can obtain a high output, a high output can be achieved.
Thus, according to the oscillation element according to the present invention, high thermal stability and excellent frequency characteristics (high Q value) are realized by stable magnetization by the magnetic vortex structure, and higher thermal stability is achieved by interlayer exchange coupling. High-frequency oscillation in the optical mode can be realized. In addition, by using the magnetic vortex structure, stable perpendicular magnetization can be realized without depending on the material. Therefore, by selecting a material that can obtain a high output, a high output can be achieved.
1 発振素子
11 固定層
12 非磁性層
13 自由層
13a 第1の強磁性自由層
13b 非磁性自由層
13c 第2の強磁性自由層
14,15 電極
16 電流供給部 DESCRIPTION OFSYMBOLS 1 Oscillator 11 Fixed layer 12 Nonmagnetic layer 13 Free layer 13a 1st ferromagnetic free layer 13b Nonmagnetic free layer 13c 2nd ferromagnetic free layer 14,15 Electrode 16 Current supply part
11 固定層
12 非磁性層
13 自由層
13a 第1の強磁性自由層
13b 非磁性自由層
13c 第2の強磁性自由層
14,15 電極
16 電流供給部 DESCRIPTION OF
Claims (8)
- 磁化が固定され、磁気渦により第1の垂直磁化が形成される磁気渦構造を有する強磁性体からなる固定層と、
前記固定層に積層されて設けられる非磁性体からなる非磁性層と、
前記非磁性層に積層されて設けられ、磁気渦により第2の垂直磁化が形成される磁気渦構造を有する強磁性体からなり、前記第2の垂直磁化が面方向に回転移動する自由層と、
前記各層に亘って電流を通電する電流供給手段とを備え、
前記固定層における前記第1の垂直磁化と、前記自由層において前記第1の垂直磁化の位置に対応する対応位置における磁化との相対的な角度の差を用いて発振を行うことを特徴とする発振素子。 A fixed layer made of a ferromagnetic material having a magnetic vortex structure in which the magnetization is fixed and the first perpendicular magnetization is formed by the magnetic vortex;
A nonmagnetic layer made of a nonmagnetic material provided to be laminated on the fixed layer;
A free layer that is provided by being laminated on the nonmagnetic layer and has a magnetic vortex structure in which second perpendicular magnetization is formed by a magnetic vortex, and wherein the second perpendicular magnetization rotates and moves in a plane direction; ,
Current supply means for energizing current over each of the layers,
Oscillation is performed using a relative angular difference between the first perpendicular magnetization in the fixed layer and the magnetization at a corresponding position corresponding to the position of the first perpendicular magnetization in the free layer. Oscillating element. - 請求項1に記載の発振素子において、
前記自由層の平面形状が円形又は正多角形であることを特徴とする発振素子。 The oscillating device according to claim 1,
An oscillation element, wherein the planar shape of the free layer is a circle or a regular polygon. - 請求項1又は2に記載の発振素子において、
前記自由層が、
前記磁気渦構造を有する強磁性体からなる複数の強磁性自由層と、
複数の前記各強磁性自由層の間に狭持されて設けられる導電性の非磁性体からなる複数の非磁性自由層とを備え、
前記各層が層間交換結合していることを特徴とする発振素子。 In the oscillation element according to claim 1 or 2,
The free layer is
A plurality of ferromagnetic free layers made of a ferromagnetic material having the magnetic vortex structure;
A plurality of nonmagnetic free layers made of a conductive nonmagnetic material sandwiched between the plurality of ferromagnetic free layers,
An oscillation element, wherein each of the layers is interlayer exchange coupled. - 請求項3に記載の発振素子において、
前記自由層が、
前記磁気渦構造を有する強磁性体からなる第1強磁性自由層と、
前記第1強磁性自由層に積層されて設けられる導電性の非磁性体からなる非磁性自由層と、
前記非磁性自由層に積層されて設けられ、前記磁気渦構造を有する強磁性体からなり、前記各層と層間交換結合している第2強磁性自由層とを有していることを特徴とする発振素子。 The oscillation element according to claim 3,
The free layer is
A first ferromagnetic free layer made of a ferromagnetic material having the magnetic vortex structure;
A nonmagnetic free layer made of a conductive nonmagnetic material provided on the first ferromagnetic free layer;
The second magnetic free layer is provided by being laminated on the nonmagnetic free layer, is made of a ferromagnetic material having the magnetic vortex structure, and has a second ferromagnetic free layer that is exchange-coupled with each of the layers. Oscillating element. - 請求項4に記載の発振素子において、
前記自由層における層間交換結合の結合強度の値に応じて、前記第1強磁性自由層における垂直磁化の回転の位相と、前記第2強磁性自由層における垂直磁化の回転の位相とが同位相となる低周波数の発振モード、又は、前記第1強磁性自由層における垂直磁化の回転の位相と、前記第2強磁性自由層における垂直磁化の回転の位相とが互いに異なる位相となる高周波数発振モードとなることを特徴とする発振素子。 In the oscillation element according to claim 4,
Depending on the value of the coupling strength of the interlayer exchange coupling in the free layer, the phase of the perpendicular magnetization rotation in the first ferromagnetic free layer and the phase of the perpendicular magnetization rotation in the second ferromagnetic free layer are in phase. Low-frequency oscillation mode, or high-frequency oscillation in which the phase of rotation of perpendicular magnetization in the first ferromagnetic free layer is different from the phase of rotation of perpendicular magnetization in the second ferromagnetic free layer An oscillation element characterized by being in a mode. - 磁化が固定されている強磁性体からなる固定層と、
前記固定層に積層されて設けられる導電性の非磁性体からなる非磁性層と、
前記非磁性層に積層されて設けられ、通電により生じる磁気渦で垂直磁化が形成される強磁性体からなり、形成された前記垂直磁化が面方向に回転移動する自由層と、
前記各層に亘って電流を通電する電流供給手段とを備え、
前記固定層における予め定められた位置の磁化と前記自由層における前記位置に対応する対応位置の磁化との相対的な角度の差を用いて発振を行うことを特徴とする発振素子。 A fixed layer made of a ferromagnetic material whose magnetization is fixed;
A nonmagnetic layer made of a conductive nonmagnetic material provided to be laminated on the fixed layer;
A free layer provided by being laminated on the non-magnetic layer and made of a ferromagnetic material in which perpendicular magnetization is formed by a magnetic vortex generated by energization, and the formed perpendicular magnetization rotates and moves in a plane direction;
Current supply means for energizing current over each of the layers,
An oscillation element characterized in that oscillation is performed using a relative angle difference between magnetization at a predetermined position in the fixed layer and magnetization at a corresponding position corresponding to the position in the free layer. - 請求項6に記載の発振素子において、
前記固定層が、通電により生じる磁気渦で垂直磁化が形成される強磁性体からなり、
前記固定層における垂直磁化と、当該垂直磁化に対応する前記自由層における対応位置の磁化と、の相対的な角度の差を用いて発振を行うことを特徴とする発振素子。 The oscillation element according to claim 6,
The fixed layer is made of a ferromagnetic material in which perpendicular magnetization is formed by a magnetic vortex generated by energization,
An oscillation element that oscillates using a difference in relative angle between perpendicular magnetization in the fixed layer and magnetization at a corresponding position in the free layer corresponding to the perpendicular magnetization. - 請求項6又は7に記載の発振素子において、
前記自由層が、
通電により生じる磁気渦で垂直磁化が形成される強磁性体からなる複数の強磁性自由層と、
複数の前記各強磁性自由層の間に狭持されて設けられる導電性の非磁性体からなる複数の非磁性自由層とを備え、
前記各層が層間交換結合していることを特徴とする発振素子。 The oscillation element according to claim 6 or 7,
The free layer is
A plurality of ferromagnetic free layers made of a ferromagnetic material whose perpendicular magnetization is formed by magnetic vortices generated by energization;
A plurality of nonmagnetic free layers made of a conductive nonmagnetic material sandwiched between the plurality of ferromagnetic free layers,
An oscillation element, wherein each of the layers is interlayer exchange coupled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014518756A JPWO2013180277A1 (en) | 2012-05-31 | 2013-05-31 | Oscillating element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012124054 | 2012-05-31 | ||
JP2012-124054 | 2012-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013180277A1 true WO2013180277A1 (en) | 2013-12-05 |
Family
ID=49673460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/065217 WO2013180277A1 (en) | 2012-05-31 | 2013-05-31 | Oscillator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013180277A1 (en) |
WO (1) | WO2013180277A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4012431A1 (en) * | 2020-12-11 | 2022-06-15 | Crocus Technology S.A. | Magnetoresistive element for sensing a magnetic field in a z-axis |
EP4130772A1 (en) * | 2021-08-05 | 2023-02-08 | Crocus Technology S.A. | Magnetoresistive element having compensated temperature coefficient of tmr |
EP4198541A1 (en) * | 2021-12-17 | 2023-06-21 | Crocus Technology S.A. | Magnetoresistive element having high out-of-plane sensitivity |
CN117794347A (en) * | 2023-11-23 | 2024-03-29 | 珠海多创科技有限公司 | Magnetoresistive element, magnetic sensing device and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008064499A (en) * | 2006-09-05 | 2008-03-21 | Toshiba Corp | Magnetic sensor |
US20090117370A1 (en) * | 2007-11-01 | 2009-05-07 | Nve Corporation | Vortex spin momentum transfer magnetoresistive device |
JP2011101015A (en) * | 2009-11-06 | 2011-05-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Radio frequency oscillator |
JP2012060033A (en) * | 2010-09-10 | 2012-03-22 | Toshiba Corp | Spin wave element |
-
2013
- 2013-05-31 WO PCT/JP2013/065217 patent/WO2013180277A1/en active Application Filing
- 2013-05-31 JP JP2014518756A patent/JPWO2013180277A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008064499A (en) * | 2006-09-05 | 2008-03-21 | Toshiba Corp | Magnetic sensor |
US20090117370A1 (en) * | 2007-11-01 | 2009-05-07 | Nve Corporation | Vortex spin momentum transfer magnetoresistive device |
JP2011101015A (en) * | 2009-11-06 | 2011-05-19 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Radio frequency oscillator |
JP2012060033A (en) * | 2010-09-10 | 2012-03-22 | Toshiba Corp | Spin wave element |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4012431A1 (en) * | 2020-12-11 | 2022-06-15 | Crocus Technology S.A. | Magnetoresistive element for sensing a magnetic field in a z-axis |
WO2022123472A1 (en) * | 2020-12-11 | 2022-06-16 | Crocus Technology Sa | Magnetoresistive element for sensing a magnetic field in a z-axis |
EP4130772A1 (en) * | 2021-08-05 | 2023-02-08 | Crocus Technology S.A. | Magnetoresistive element having compensated temperature coefficient of tmr |
WO2023012612A1 (en) * | 2021-08-05 | 2023-02-09 | Crocus Technology Sa | Magnetoresistive element having compensated temperature coefficient of tmr |
EP4198541A1 (en) * | 2021-12-17 | 2023-06-21 | Crocus Technology S.A. | Magnetoresistive element having high out-of-plane sensitivity |
WO2023111757A1 (en) | 2021-12-17 | 2023-06-22 | Crocus Technology Sa | Magnetoresistive element having high out-of-plane sensitivity |
CN117794347A (en) * | 2023-11-23 | 2024-03-29 | 珠海多创科技有限公司 | Magnetoresistive element, magnetic sensing device and manufacturing method thereof |
CN117794347B (en) * | 2023-11-23 | 2024-05-31 | 珠海多创科技有限公司 | Magnetoresistive element, magnetic sensing device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013180277A1 (en) | 2016-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108011037B (en) | Spin orbit torque type magnetization reversal element, magnetic memory, and high-frequency magnetic device | |
CN109427965B (en) | Spin current magnetization rotating element, spin orbit torque type magnetoresistance effect element | |
JP5673951B2 (en) | Field ferromagnetic resonance excitation method and magnetic functional element using the same | |
JP5036585B2 (en) | Magnetic oscillation element, magnetic head having the magnetic oscillation element, and magnetic recording / reproducing apparatus | |
JP6926760B2 (en) | Spin-orbit torque type magnetization reversing element, magnetic memory and high frequency magnetic device | |
JP2017216286A (en) | Spintronics device and memory device using the same | |
JP6721902B2 (en) | Magnetic element, skyrmion memory, solid-state electronic device with skyrmion memory, data recording device, data processing device, and communication device | |
Marcham et al. | Phase-resolved x-ray ferromagnetic resonance measurements of spin pumping in spin valve structures | |
Miura et al. | Voltage-induced magnetization dynamics in CoFeB/MgO/CoFeB magnetic tunnel junctions | |
JP2008053915A (en) | Microwave oscillation element and manufacturing method therefor, and microwave oscillator provided with the microwave oscillation element | |
WO2013180277A1 (en) | Oscillator | |
JP7139701B2 (en) | Spin-current magnetization reversal device, spin-orbit torque-type magnetoresistive device, magnetic memory, and high-frequency magnetic device | |
Kwak et al. | Current-induced magnetic switching with spin-orbit torque in an interlayer-coupled junction with a Ta spacer layer | |
JP2014229660A (en) | Thin film magnetic element | |
JP5443783B2 (en) | Magnetic oscillation element | |
JP5680903B2 (en) | Oscillator and operation method thereof | |
JP5534408B2 (en) | Spin valve element driving method and spin valve element | |
JP2018074139A (en) | Current magnetic field assist spin current magnetization reversal element, magnetoresistance effect element, magnetic memory and high frequency filter | |
JP2017191841A (en) | Magnetic sensor element and magnetic sensor | |
JP5228015B2 (en) | Spin wave device | |
US10522172B2 (en) | Oscillator and calculating device | |
JP2015167224A (en) | magnetic element | |
KR101375871B1 (en) | Spin-transfer-torque magnetic random access memory using resonant and dual-spin-filter effects | |
KR101368298B1 (en) | a device for generating high frequency microwave and high frequency magnetic field using spin transfer torque | |
JPWO2020090719A1 (en) | Spin torque generator, its manufacturing method, and magnetization control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13796407 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014518756 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13796407 Country of ref document: EP Kind code of ref document: A1 |