WO2013180196A1 - Peelable adhesive, adhesive material using same, and processing device - Google Patents

Peelable adhesive, adhesive material using same, and processing device Download PDF

Info

Publication number
WO2013180196A1
WO2013180196A1 PCT/JP2013/064970 JP2013064970W WO2013180196A1 WO 2013180196 A1 WO2013180196 A1 WO 2013180196A1 JP 2013064970 W JP2013064970 W JP 2013064970W WO 2013180196 A1 WO2013180196 A1 WO 2013180196A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
liquid crystal
easily peelable
sensitive adhesive
side chain
Prior art date
Application number
PCT/JP2013/064970
Other languages
French (fr)
Japanese (ja)
Inventor
康太郎 荒谷
博之 香川
Original Assignee
日立オムロンターミナルソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オムロンターミナルソリューションズ株式会社 filed Critical 日立オムロンターミナルソリューションズ株式会社
Publication of WO2013180196A1 publication Critical patent/WO2013180196A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/40Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen or sulfur, e.g. silicon, metals
    • C09K19/406Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen or sulfur, e.g. silicon, metals containing silicon
    • C09K19/408Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/414Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of a copolymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate

Definitions

  • the present invention relates to an easily peelable pressure-sensitive adhesive, a pressure-sensitive adhesive material using the same, and a processing apparatus.
  • Adhesive materials such as adhesive tapes and adhesive sheets are widely used for packaging, pasting, construction equipment, medical, and surface protection of various products including electrical products.
  • adhesives with adhesive strength suitable for various applications have been developed, and rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, etc. have been developed. Yes.
  • adhesives for fixing electronic devices have also appeared as a flow different from these application examples.
  • peelability is particularly required for adhesives.
  • a dicing tape is a typical example of this. That is, an easily peelable pressure-sensitive adhesive material that is sticky at the time of fixing (processing step) and non-sticky at the time of picking up (peeling step) is required.
  • Patent Document 1 an easily peelable adhesive material that becomes non-adhesive by irradiation with ultraviolet rays or the like has been developed.
  • Patent Document 2 an easily peelable adhesive material that has become non-adhesive using a foaming phenomenon has also been developed. In the case of these two adhesive materials, irreversible control is achieved with only one adhesion control.
  • Patent Document 3 an easily peelable adhesive material that becomes non-tacky by utilizing the crystallization phenomenon of a side chain crystalline polymer is disclosed.
  • This side chain crystalline polymer is not a liquid crystalline polymer.
  • This adhesive material can be reversibly controlled.
  • Non-Patent Document 1 describes using a liquid crystal polymer to apply to various uses, but the uses include an optical functional element as a display or light control material, application to an optical recording material, electrorheology. An electrodynamic functional element and a separation transmission functional element as a fluid or a piezoelastomer are described.
  • the liquid crystal polymers described in this document are those in which a mesogen group is present in the main chain of the liquid crystal polymer, a hybrid liquid crystal polymer in which a mesogen group is added to the main chain, and a mesogen in the main chain of the liquid crystal polymer.
  • Non-Patent Document 1 does not describe the use of a change in adhesive force of a liquid crystal polymer and the crosslinking of the liquid crystal polymer.
  • JP-A-3-12468 Japanese Patent Publication No. 6-79812 Japanese Patent Laid-Open No. 9-249858
  • the adhesive force can be reversibly controlled between two or more states, it can be understood that a new application field of adhesive materials will be developed and various uses will be developed.
  • the adhesive force is controlled between two or more states, that is, between the processing step and the peeling step.
  • the adhesive force is reversibly between two or more states. Preferably it can be controlled.
  • the adhesive force can be reversibly controlled between two or more states and sorted according to the weight of the electronic component during transportation, a new application development can be expected for the adhesive material. Further, if the adhesive force can be controlled reversibly not by heating but by an electric field or light, the processing step, the conveying step, the peeling step, and the like become very simple steps.
  • the liquid crystal polymer is characterized in that physical properties related to a plurality of viscosities can be changed under various conditions, and an adhesive or an adhesive tape can be provided by appropriately combining them. In addition, it is necessary to crosslink the liquid crystal polymer in order to prevent the pressure sensitive adhesive from moving to an object where it is not preferable to adhere to the product or the like.
  • An object of the present invention is to provide an easily peelable adhesive capable of reversibly controlling the adhesive force between two or more states, and to provide an adhesive material and a processing apparatus using the easily peelable adhesive. There is.
  • the easily peelable pressure-sensitive adhesive of the present invention includes a main chain of a liquid crystal polymer having a plurality of liquid crystalline mesogen groups in the side chain and a cross-linking group that cross-links between the main chains, and the mesogen group receives energy. It causes a change between two or more states and exhibits different adhesive strength in each state. The above change can be reversibly controlled by energy.
  • the present invention it is possible to reversibly control the adhesive force of an easily peelable adhesive. Moreover, the adhesive material using this easily peelable adhesive can be provided. Furthermore, a processing apparatus capable of reversibly controlling the adhesive force can be provided.
  • a general formula of a side chain type liquid crystalline polymer having a liquid crystalline mesogen in the side chain and a crosslinking group in the main chain is shown.
  • a general formula of a copolymer liquid crystal polymer having a liquid crystalline mesogen in the side chain and a crosslinking group in the main chain is shown.
  • the general formula of a side chain type mesogen group is shown.
  • the specific example of the molecular structure of the side chain type liquid crystalline polymer used for this invention is shown.
  • the specific example of the molecular structure of the side chain type liquid crystalline polymer used for this invention is shown.
  • Specific examples of the crosslinking group of the side chain type liquid crystalline polymer used in the present invention are shown below.
  • crosslinkable side chain type liquid crystalline polymer used in the present invention. It is a structural formula of another crosslinkable side chain type liquid crystalline polymer used in the present invention. It is a structural formula of another crosslinkable side chain type liquid crystalline polymer used in the present invention. It is a structural formula of another crosslinkable side chain type liquid crystalline polymer used in the present invention. It is a structural formula of another crosslinkable side chain type liquid crystalline polymer used in the present invention. It is a structural formula of the other crosslinkable side chain type liquid crystalline polymer (adhesive precursor) used for this invention. It is a structural formula of the other crosslinkable side chain type liquid crystalline polymer (adhesive precursor) used for this invention.
  • 17 is a cross-sectional view taken along line AA in FIG. It is explanatory drawing which shows the state which fixed the semiconductor wafer to the base with the easily peelable adhesive material in the dicing apparatus which concerns on this invention. It is explanatory drawing of the state which cut
  • the main chain of the liquid crystal polymer has a plurality of liquid crystalline mesogen groups in the side chain, and the main chain is cross-linked, and the mesogen group undergoes two or more state changes upon receiving external energy.
  • An easily peelable pressure-sensitive adhesive capable of exhibiting different adhesive strength under each condition and capable of reversibly controlling the change in the state by external energy, and a pressure-sensitive adhesive material and a processing apparatus using the pressure-sensitive adhesive Is to provide.
  • the processing apparatus is an apparatus that performs cutting, polishing, molding, and the like while the article to be processed is adhesively fixed.
  • an easily peelable pressure-sensitive adhesive it is an easily peelable pressure-sensitive adhesive whose adhesive strength can be reversibly controlled between two or more states, and the main chain is composed of a crosslinking group as a main component.
  • the liquid crystalline side chain (mezzogen group) can express two or more different states depending on temperature, electric field, and the like, and exhibits a specific adhesive force depending on each state. The different states can be reversibly controlled.
  • a pressure-sensitive adhesive material comprising a pressure-sensitive adhesive containing the above side-chain liquid crystal polymer and a support.
  • an easily peelable pressure-sensitive adhesive containing a cross-linked side chain liquid crystal polymer capable of reversibly causing two or more state changes and reversibly controlling adhesiveness and the easily peelable pressure-sensitive adhesive
  • a means for changing the state of the easily peelable adhesive material by applying energy from the outside to the easily peelable adhesive material, and a means for transporting the article to be treated to the easily peelable adhesive material Is a processing apparatus.
  • the state for controlling the adhesive force of the easily peelable pressure-sensitive adhesive means the thermodynamic phase state of the crystal phase, liquid crystal phase, and isotropic liquid phase of the easily peelable pressure-sensitive adhesive material.
  • the “state change” refers to the state change exemplified above.
  • the “state” herein includes a glassy state of a polymer, and also includes a smectic liquid crystal phase, a nematic liquid crystal phase, a cholesteric liquid crystal phase, a discotic liquid crystal phase, and the like that are polymorphs of a liquid crystal phase.
  • an on state and an off state which are electrically controlled like a nematic liquid crystal phase, are included.
  • the energy includes heat, an electric field, a magnetic field, light (including ultraviolet rays and infrared rays), sound waves, and the like.
  • heat, electric field, and light are suitable as energy because they can easily cause a change in the state of the mesogenic group of the liquid crystalline polymer.
  • Formula 1 is a general formula of the side chain type liquid crystal polymer according to the present invention, and Ln has a crosslinking group in the main chain.
  • Formula 2 in FIG. 2 is a side-chain copolymer liquid crystalline polymer, and has a crosslinking group Ln in the main chain.
  • L C represents a mesogen group (mesogenic group)
  • S P is a spacer linking the P and L C
  • R is an alkyl side chain and is a crosslinking site for L N to crosslink the polymer chains.
  • Ln may be bonded to P ′.
  • the liquid crystalline polymer has a mesogenic group as a side chain and has a crosslinking group in the main chain of the liquid crystalline polymer.
  • the main chain of the liquid crystal polymer is crosslinked except for the mesogenic group. It is necessary to do.
  • the unit P of the polymer main chain of the side chain type liquid crystal polymer according to the present invention is selected from siloxane, acrylate, and methacrylate.
  • the unit P of the polymer main chain is siloxane and methacrylate.
  • R 1 is selected from F, CN, an alkyl group having 1 to 30 carbon atoms or an alkoxyl group
  • a 1 and A 2 are each independently selected from a cyclohexane ring or a phenyl ring
  • a 3 is a cyclohexane ring.
  • the above cyclohexane ring or phenyl ring may have a substituent in addition to the linking group other than R 1 , Z 1 and Z 2 .
  • Z 1 and Z 2 are —CH ⁇ CH— and —N ⁇ N—, they become a stilbene mesogen group and an azobenzene mesogen group, respectively, which can change phase from a liquid crystal state to a liquid state by light.
  • the force can be controlled.
  • Spacer S P output side chain type liquid crystal polymer according to the present invention is an alkyl group having from 1 to 30 carbon atoms, the methylene group may be substituted oxygen, sulfur, an amine.
  • alkyl side chain R As the alkyl side chain R according to the present invention, an aliphatic acrylate having an alkyl group having 1 to 30 carbon atoms can be used. Further, it may be a side chain of another spacer S P and another mesogen group L C.
  • a cross-linked side chain type liquid crystal polymer can be obtained by using a polyfunctional acrylate instead of a monofunctional aliphatic acrylate.
  • a polyfunctional acrylate used in this case, aliphatic diacrylates such as 1,6-hexanediol diacrylate, 1,8-octanediol diacrylate, and 1,10-decanediol diacrylate can be used.
  • aliphatic dimethacrylates such as ethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,8-octanediol dimethacrylate, and 1,10-decanediol dimethacrylate can be used.
  • a crosslinked side chain type liquid crystal polymer can be obtained by using modified siloxane instead of monofunctional aliphatic acrylate.
  • acrylic acid methacrylic acid, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylamide, or glycidyl methacrylate is used.
  • crosslinking agent polyisocyanate and epoxy resin are used when the crosslinking site is acrylic acid or methacrylic acid.
  • crosslinking site is 2-hydroxyethyl acrylate or hydroxyethyl methacrylate
  • polyisocyanate or urea resin is used.
  • crosslinking site is glycidyl methacrylate
  • an acid anhydride is used.
  • FIG. 4A shows an example of the molecular structure formula (formula 4) of the side chain type liquid crystal polymer.
  • FIG. 4B shows an example of the molecular structural formula (formula 5) of the side chain type liquid crystal polymer.
  • FIG. 5 shows an example of a crosslinking group (formula 6).
  • the OH group of formula 6 contributes to crosslinking.
  • N in the formula is an integer.
  • Formula 7 in FIG. 6 and Formula 8 in FIG. 7 are cross-linkable side chains in which the polymer main chain is an acrylate in the general formula 2 and the alkyl side chain R is a polyfunctional acrylate. It is a specific example of a liquid crystal polymer.
  • Formula 9 in FIG. 8 and Formula 10 in FIG. 9 are side chain type liquid crystal polymers in which the polymer main chain is siloxane in Formula 2, which is a general formula, and a crosslinked side chain type liquid crystal in which the alkyl side chain R is a modified siloxane. It is a specific example of a polymer.
  • Formula 11 in FIG. 10A and Formula 12 in FIG. 10B are specific examples of a crosslinkable side chain type liquid crystal polymer in which the polymer main chain is an acrylate in Formula 1, which is a general formula.
  • FIG. 11 to FIG. 13 are specific examples of a crosslinkable side chain type liquid crystal polymer in which the polymer main chain is an acrylate in the general formula (2). That is, Formulas 13 to 15 show the precursor structure of the pressure-sensitive adhesive of the present invention.
  • the support 1 constituting the adhesive material shown in FIG. 14 As the support 1 constituting the adhesive material shown in FIG. 14 according to the present invention, paper, cloth, plastic film, non-woven fabric, glass, metal foil or the like is used. Further, an undercoat layer may be provided between the pressure-sensitive adhesive 2 constituting the pressure-sensitive adhesive material shown in FIG.
  • the adhesive material here means an adhesive sheet or an adhesive tape.
  • an electrode structure for switching the adhesive force of the side chain type liquid crystal polymer constituting the adhesive material according to the present invention there are two types, a lateral electric field method shown in FIG. 15 and a fringe field method shown in FIG. Can be used.
  • the pressure-sensitive adhesive is 2, the support is 1, and 3 is an electrode.
  • the pressure-sensitive adhesive is 2, the support is 1, 3 is an upper electrode, 4 is an upper electrode, 5 is a lower electrode, and 6 is an insulating coating.
  • FIG. 17 is a cross-sectional view taken along the line AA in FIG. 16, wherein 31 is a first comb electrode, and 32 is a second comb electrode. Reference numeral 7 denotes an electrode interval.
  • the comb electrode is a means for applying energy to the adhesive layer.
  • Examples of the processing apparatus using the adhesive material according to the present invention include a semiconductor dicing apparatus and an electronic component conveying apparatus.
  • the flask was heated to 80 ° C., and the monomer and initiator were dissolved, followed by stirring for 6 hours. After returning to room temperature and reprecipitation with methanol, the product was filtered off and dried at room temperature. From the measurement by GPC, the obtained liquid crystal polymer (crosslinkable adhesive material) had a weight average molecular weight of 42,000. From the thermal analysis and polarization microscope observation, a glass transition point was observed at 20 ° C., a smectic liquid crystal phase-nematic liquid crystal phase transition point at 75 ° C., and a clearing point at 125 ° C.
  • the structure of the obtained pressure-sensitive adhesive precursor is Formula 12.
  • the obtained liquid crystal polymer (crosslinkable adhesive material) had a weight average molecular weight of 28,000. From the thermal analysis and polarization microscope observation, a glass transition point was observed at 0 ° C., a smectic liquid crystal phase-nematic liquid crystal phase transition point at 75 ° C., and a clearing point at 125 ° C.
  • the obtained pressure-sensitive adhesive precursor is represented by Formula 14.
  • the product After returning to room temperature and reprecipitation with methanol, the product was filtered off and dried at room temperature. From the measurement by GPC, the obtained liquid crystal polymer had a weight average molecular weight of 31,000. From the thermal analysis and polarization microscope observation, a glass transition point was observed at 20 ° C., a smectic liquid crystal phase-nematic liquid crystal phase transition point at 120 ° C., and a clearing point at 125 ° C.
  • the obtained pressure-sensitive adhesive precursor is represented by Formula 11.
  • the flask was heated to 80 ° C., and the monomer and initiator were dissolved, followed by stirring for 6 hours. It returned to room temperature and produced the cast film
  • Example 1 0.9 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.1 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) were dissolved in 10 cc of tetrahydrofuran (Wako Pure Chemical Industries). This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm ⁇ 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metallic attachment was attached to the force gauge side for evaluation.
  • Tokyo Kasei diphenylmethane-4,4′-diisocyanate
  • the pressure-sensitive adhesive force at the time of pulling was changed from 0.000 N to 0.004 N by heating from 10 ° C. to 30 ° C., and it was confirmed that the pressure-sensitive adhesive sheet can control the pressure-sensitive adhesive force by a heating operation. Moreover, it became 0.004N to 0.000N by cooling from 30 degreeC to 10 degreeC, and has confirmed that it was an adhesive sheet which can control adhesive force by cooling operation.
  • control is based on thermal energy.
  • Example 2 0.9 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.1 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) were dissolved in 10 cc of tetrahydrofuran (Wako Pure Chemical Industries). This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm ⁇ 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metallic attachment was attached to the force gauge side for evaluation. Adhesive strength at the time of pulling up at 70 ° C. and 90 ° C.
  • Example 3 0.9 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.1 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) were dissolved in 10 cc of tetrahydrofuran (Wako Pure Chemical Industries). This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm ⁇ 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metal attachment was attached to the force gauge side for evaluation. Adhesive strength at the time of pulling up at 120 ° C.
  • Example 4 0.9 g of the side chain type liquid crystal polymer obtained in Synthesis Example 2 and 0.1 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) were dissolved in 10 cc of tetrahydrofuran (Wako Pure Chemical Industries). This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm ⁇ 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a cool plate, and a round metal attachment was attached to the force gauge side for evaluation. The adhesive strengths when pulled up at ⁇ 10 ° C. and 10 ° C.
  • Example 5 The side chain type liquid crystal polymer solution obtained in Synthesis Example 4 was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm ⁇ 1 cm, and heated to 100 ° C. to obtain an adhesive sheet.
  • the adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metal attachment was attached to the force gauge side for evaluation.
  • the adhesive strength at the time of pulling up at 40 ° C. and 60 ° C. was 0.04 N and 0.2 N, respectively, and it was confirmed that the adhesive sheet can control the adhesive strength by a heating operation. Moreover, it became 0.24 to 0.04N by cooling from 60 degreeC to 40 degreeC, and has confirmed that it was an adhesive sheet which can control adhesive force by cooling operation. This embodiment is also control by heat energy.
  • Example 6 The side chain type liquid crystal polymer obtained in Synthesis Example 4 was placed on a glass substrate having a thickness of 1 mm and a size of 1 cm ⁇ 1 cm, and heated to 100 ° C. to obtain an adhesive sheet.
  • the adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metal attachment was attached to the force gauge side for evaluation.
  • the adhesive strength at the time of pulling up at 110 ° C. and 130 ° C. was 0.2 N and 0.35 N, respectively, and it was confirmed that the adhesive sheet can control the adhesive strength by a heating operation. Moreover, it became 0.3N from 0.25 by cooling from 130 degreeC to 110 degreeC, and it has confirmed that it was an adhesive sheet which can control adhesive force by cooling operation. This embodiment is also control by heat energy.
  • Example 7 4.5 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.5 g of the side chain type liquid crystal polymer obtained in Example 3 were mixed with 0.05 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) and tetrahydrofuran. (Wako Pure Chemicals) 10 cc was dissolved. This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm ⁇ 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. As shown in FIG. 17, the electrode interval between the first comb electrode and the second comb electrode was 10 ⁇ m. The adhesive strength of this adhesive sheet was evaluated using a force gauge.
  • a sample of the adhesive sheet was placed on a hot plate, and a round metallic attachment was attached to the force gauge side for evaluation. While the adhesive strength at the time of pulling up at 90 ° C. was 0.04 N, it was 0.001 N or less by operation when an electric field of 20 V was applied, and it was confirmed that the adhesive sheet can control the adhesive strength by the electric field. It was also confirmed that when the electric field was cut, the adhesive strength recovered to 0.04N. In this embodiment, the control is based on the energy of the electric field.
  • Example 8 4.5 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.5 g of the side chain type liquid crystal polymer obtained in Example 3 were mixed with 0.05 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) and tetrahydrofuran. (Wako Pure Chemicals) 10 cc was dissolved. This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm ⁇ 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. As shown in FIG. 17, the electrode interval between the first comb electrode and the second comb electrode was 10 ⁇ m. The adhesive strength of this adhesive sheet was evaluated using a force gauge.
  • a sample of the adhesive sheet was placed on a hot plate, and a round metallic attachment was attached to the force gauge side for evaluation. While the adhesive strength at the time of pulling up at 50 ° C. was 0.01 N, it was 0.001 N or less by operation when an electric field of 100 V was applied, and it was confirmed that the adhesive sheet can control the adhesive strength by the electric field. Further, it was confirmed that the adhesive strength recovered to 0.01 N when the electric field was cut. This embodiment is also control by electric field energy.
  • Example 9 A dicing apparatus is shown below as an example of an adhesive apparatus (processing apparatus) using an easily peelable adhesive.
  • the control is based on thermal energy.
  • the pressure-sensitive adhesive sheet 8 produced using the copolymerizable side chain type liquid crystal polymer obtained in Example 1 was placed on a pedestal 9 of a dicing apparatus as shown in FIG. 18A, and a conveying unit (not shown). ), The wafer 10 is adhesively fixed by being heated to 90 ° C. by the heating means 14.
  • the wafer 10 is cut using the diamond wheel 11 while the wafer 10 is fixed. Due to the adhesive force of the adhesive sheet, the fixed wafer 10 is not displaced by cutting, and the cut pieces are not scattered.
  • the pedestal 9 is cooled to 30 ° C. by the cooling means 15 and transferred to the place where the die bond collet 12 (separation part) shown in FIG. 18C is installed.
  • the adhesive strength was lowered by lowering to 30 ° C., sufficient adhesive strength was secured for fixing the wafer chip 13 during the transfer operation.
  • the base 9 and the adhesive sheet 8 are cooled to 15 ° C. by the cooling means 15 and the wafer chip 13 cut by the die bond collet 12 is taken out.
  • heating means 14 and the cooling means 15 can be collectively referred to as an “energy applying unit”.
  • Examples of the adhesive device using the adhesive material according to the present invention include a semiconductor dicing device and an electronic component conveying device, but if electric field control can be performed instead of heating control, not only the manufacturing cost of the manufacturing device but also the running cost can be reduced. Reduction can also be achieved. Moreover, since the adhesive force can be controlled between two or more states, various application developments can be expected for the adhesive or adhesive material of the present invention.
  • the liquid crystal polymer generally has heat resistance, and its state change is possible up to a temperature range of about 300 ° C., so the selection range of conditions is wide. In the case of a liquid crystal polymer, not only a change in state due to heat but also control by an electric field is possible, so that a wider range of applications can be developed.
  • the main chain of the liquid crystal polymer is not cross-linked to change the state, but a plurality of mesogen group groups bonded to the main chain are crystallized by receiving external energy such as heat and electric field. Or from a nematic liquid crystal state to an isotropic liquid state. Therefore, the adhesive force varies depending on the state of the mesogen group, but the liquid crystal polymer itself does not move to the object to be treated. Therefore, the object to be processed and the surroundings are not contaminated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

A peelable adhesive comprising a main chain of liquid crystal polymer having a plurality of liquid crystal mesogenic groups on a side chain, and a cross-linking group for cross-linking main chains, wherein the mesogenic groups receive energy and experience changes between two or more states, exhibiting different adhesive powers in each of the states. These changes in state can be reversibly controlled using the energy. This makes it possible to reversibly control the adhesive power of the peelable adhesive.

Description

易剥離性粘着剤およびそれを用いた粘着材料ならびに処理装置Easy-release adhesive, adhesive material using the same, and processing apparatus
 本発明は、易剥離性粘着剤、それを用いた粘着材料並びに処理装置に関するものである。 The present invention relates to an easily peelable pressure-sensitive adhesive, a pressure-sensitive adhesive material using the same, and a processing apparatus.
 粘着テープや粘着シートなどの粘着材料は、包装用、貼付け用、建設機材用、医療用、電気製品を含む各種製品の表面保護用など幅広く用途展開される。これらの応用に向けては、各種用途に適した粘着力を有する粘着剤が開発されており、ゴム系粘着剤、アクリル系粘剤、シリコン系粘着剤、ウレタン系粘着剤などが開発されてきている。また、これらの適用例とは異なる流れとして電子機器の固定用粘着剤も登場しており、この用途では粘着剤に対して剥離性がとくに要求されている。ダイシングテープなどは正にこの代表例である。すなわち、固定時(加工工程)には粘着性があり、ピックアップ時(剥離工程)は非粘着性になる易剥離性粘着材料が必要である。このことから、特許文献1に見られるように紫外線などの照射により非粘着性になる易剥離性粘着材料が開発されている。また、特許文献2に見られるように発泡現象を利用して非粘着性になる易剥離性粘着材料も開発されている。これら二つの粘着材料の場合、1回だけの粘着制御で不可逆的制御となる。 Adhesive materials such as adhesive tapes and adhesive sheets are widely used for packaging, pasting, construction equipment, medical, and surface protection of various products including electrical products. For these applications, adhesives with adhesive strength suitable for various applications have been developed, and rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, etc. have been developed. Yes. In addition, adhesives for fixing electronic devices have also appeared as a flow different from these application examples. In this application, peelability is particularly required for adhesives. A dicing tape is a typical example of this. That is, an easily peelable pressure-sensitive adhesive material that is sticky at the time of fixing (processing step) and non-sticky at the time of picking up (peeling step) is required. For this reason, as can be seen in Patent Document 1, an easily peelable adhesive material that becomes non-adhesive by irradiation with ultraviolet rays or the like has been developed. In addition, as can be seen in Patent Document 2, an easily peelable adhesive material that has become non-adhesive using a foaming phenomenon has also been developed. In the case of these two adhesive materials, irreversible control is achieved with only one adhesion control.
 さらに、特許文献3に見られるように側鎖結晶性ポリマーの結晶化現象を利用して非粘着性になる易剥離性粘着材料が開示されている。この側鎖結晶性ポリマーは液晶性ポリマーではない。なお、この粘着材料では可逆的制御が可能である。 Furthermore, as can be seen in Patent Document 3, an easily peelable adhesive material that becomes non-tacky by utilizing the crystallization phenomenon of a side chain crystalline polymer is disclosed. This side chain crystalline polymer is not a liquid crystalline polymer. This adhesive material can be reversibly controlled.
 非特許文献1においては液晶高分子を用いて種々の用途に適用することが記載されているが、その用途としては表示や調光材料としての光機能素子、光記録材料への応用、電気粘性流体やピエゾエラストマーとしての電気力学機能素子、分離透過機能素子が記載されている。この文献に記載されている液晶高分子は、メソゲン基が液晶高分子の主鎖中に存在するもの、その主鎖にメソゲン基が付加したハイブリッド型液晶高分子、液晶高分子の主鎖にメソゲン基が側鎖として結合した側鎖型液晶高分子である。非特許文献1には、液晶高分子の粘着力変化を利用すること、並びに液晶高分子を架橋することは記載されていない。 Non-Patent Document 1 describes using a liquid crystal polymer to apply to various uses, but the uses include an optical functional element as a display or light control material, application to an optical recording material, electrorheology. An electrodynamic functional element and a separation transmission functional element as a fluid or a piezoelastomer are described. The liquid crystal polymers described in this document are those in which a mesogen group is present in the main chain of the liquid crystal polymer, a hybrid liquid crystal polymer in which a mesogen group is added to the main chain, and a mesogen in the main chain of the liquid crystal polymer. A side chain type liquid crystal polymer in which groups are bonded as side chains. Non-Patent Document 1 does not describe the use of a change in adhesive force of a liquid crystal polymer and the crosslinking of the liquid crystal polymer.
特開平3-12468号公報JP-A-3-12468 特公平6-79812号公報Japanese Patent Publication No. 6-79812 特開平9-249858号公報Japanese Patent Laid-Open No. 9-249858
 以上のように、二つ又はそれ以上の状態間で粘着力を可逆的に制御できれば粘着材料の新たな応用分野が開発され、さまざまな用途展開がなされていくことが理解できる。この場合の二つ以上の状態間、すなわち、加工工程と剥離工程の間の粘着力制御であるが、搬送時など他の工程がある場合、二つ以上の状態間で粘着力を可逆的に制御できることが好ましい。 As described above, if the adhesive force can be reversibly controlled between two or more states, it can be understood that a new application field of adhesive materials will be developed and various uses will be developed. In this case, the adhesive force is controlled between two or more states, that is, between the processing step and the peeling step. However, when there are other steps such as conveyance, the adhesive force is reversibly between two or more states. Preferably it can be controlled.
 もし、二つ以上の状態間で粘着力を可逆的に制御でき、搬送時に電子部品の重量毎に仕分けできたならば、粘着材料に対して新しい応用展開が期待できる。また、加熱でなく電界や光によって可逆的に粘着力が制御できれば、加工工程、搬送工程、剥離工程などは、非常に簡便な工程になる。液晶高分子は前述のように様々な条件下で複数の粘性に係る物理的性質が変化し得ると言う特徴があり、それらを適宜組み合わせて粘着剤や粘着テープを提供することができる。また、粘着剤が製品その他に付着することが好ましくない対象物に移行するのを防止するため、液晶高分子を架橋することが必要である。 If the adhesive force can be reversibly controlled between two or more states and sorted according to the weight of the electronic component during transportation, a new application development can be expected for the adhesive material. Further, if the adhesive force can be controlled reversibly not by heating but by an electric field or light, the processing step, the conveying step, the peeling step, and the like become very simple steps. As described above, the liquid crystal polymer is characterized in that physical properties related to a plurality of viscosities can be changed under various conditions, and an adhesive or an adhesive tape can be provided by appropriately combining them. In addition, it is necessary to crosslink the liquid crystal polymer in order to prevent the pressure sensitive adhesive from moving to an object where it is not preferable to adhere to the product or the like.
 本発明の目的は、二つ以上の状態間で粘着力を可逆的に制御できる易剥離性粘着剤を提供することであり、この易剥離性粘着剤を用いた粘着材料及び処理装置を提供することにある。 An object of the present invention is to provide an easily peelable adhesive capable of reversibly controlling the adhesive force between two or more states, and to provide an adhesive material and a processing apparatus using the easily peelable adhesive. There is.
 本発明の新規な特徴は、本明細書の記述および添付図面によって明らかになるであろう。 The novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
 本発明の易剥離性粘着剤は、側鎖に複数の液晶性メゾゲン基を有する液晶高分子の主鎖と、主鎖間を架橋する架橋基と、を含み、メゾゲン基は、エネルギーを受けて二つ以上の状態の間で変化を引き起こし、それぞれの状態で異なる粘着力を示すものであり、上記の変化は、エネルギーにより可逆的に制御することが可能であることを特徴とする。 The easily peelable pressure-sensitive adhesive of the present invention includes a main chain of a liquid crystal polymer having a plurality of liquid crystalline mesogen groups in the side chain and a cross-linking group that cross-links between the main chains, and the mesogen group receives energy. It causes a change between two or more states and exhibits different adhesive strength in each state. The above change can be reversibly controlled by energy.
 本発明によれば、易剥離性粘着剤の粘着力を可逆的に制御することができる。また、この易剥離性粘着剤を用いた粘着材料を提供することができる。さらに、粘着力を可逆的に制御することができる処理装置を提供することができる。 According to the present invention, it is possible to reversibly control the adhesive force of an easily peelable adhesive. Moreover, the adhesive material using this easily peelable adhesive can be provided. Furthermore, a processing apparatus capable of reversibly controlling the adhesive force can be provided.
液晶性メゾゲンを側鎖に、主鎖に架橋基を有する側鎖型液晶性ポリマーの一般式を示す。A general formula of a side chain type liquid crystalline polymer having a liquid crystalline mesogen in the side chain and a crosslinking group in the main chain is shown. 液晶性メゾゲンを側鎖に有し、主鎖に架橋基を有する共重合型液晶性ポリマーの一般式を示す。A general formula of a copolymer liquid crystal polymer having a liquid crystalline mesogen in the side chain and a crosslinking group in the main chain is shown. 側鎖型メゾゲン基の一般式を示す。The general formula of a side chain type mesogen group is shown. 本発明に用いる側鎖型液晶性ポリマーの分子構造の具体例を示す。The specific example of the molecular structure of the side chain type liquid crystalline polymer used for this invention is shown. 本発明に用いる側鎖型液晶性ポリマーの分子構造の具体例を示す。The specific example of the molecular structure of the side chain type liquid crystalline polymer used for this invention is shown. 本発明に用いる側鎖型液晶性ポリマーの架橋基の具体例を示す。Specific examples of the crosslinking group of the side chain type liquid crystalline polymer used in the present invention are shown below. 本発明に用いる架橋性側鎖型液晶性ポリマーの構造式である。It is a structural formula of the crosslinkable side chain type liquid crystalline polymer used in the present invention. 本発明に用いる他の架橋性側鎖型液晶性ポリマーの構造式である。It is a structural formula of another crosslinkable side chain type liquid crystalline polymer used in the present invention. 本発明に用いる他の架橋性側鎖型液晶性ポリマーの構造式である。It is a structural formula of another crosslinkable side chain type liquid crystalline polymer used in the present invention. 本発明に用いる他の架橋性側鎖型液晶性ポリマーの構造式である。It is a structural formula of another crosslinkable side chain type liquid crystalline polymer used in the present invention. 本発明に用いる他の架橋性側鎖型液晶性ポリマー(粘着剤前駆体)の構造式である。It is a structural formula of the other crosslinkable side chain type liquid crystalline polymer (adhesive precursor) used for this invention. 本発明に用いる他の架橋性側鎖型液晶性ポリマー(粘着剤前駆体)の構造式である。It is a structural formula of the other crosslinkable side chain type liquid crystalline polymer (adhesive precursor) used for this invention. 本発明に用いる他の架橋性側鎖型液晶性ポリマー(粘着剤前駆体)の構造式である。It is a structural formula of the other crosslinkable side chain type liquid crystalline polymer (adhesive precursor) used for this invention. 本発明に用いる他の架橋性側鎖型液晶性ポリマー(粘着剤前駆体)の構造式である。It is a structural formula of the other crosslinkable side chain type liquid crystalline polymer (adhesive precursor) used for this invention. 本発明に用いる他の架橋性側鎖型液晶性ポリマー(粘着剤前駆体)の構造式である。It is a structural formula of the other crosslinkable side chain type liquid crystalline polymer (adhesive precursor) used for this invention. 本発明に係る易剥離性粘着材料の一例を示す説明図である。It is explanatory drawing which shows an example of the easily peelable adhesive material which concerns on this invention. 本発明に係る易剥離性粘着材料の電極構造の断面を示す説明図である。It is explanatory drawing which shows the cross section of the electrode structure of the easily peelable adhesive material which concerns on this invention. 本発明に係る易剥離性粘着材料の電極構造の断面を示す断面図である。It is sectional drawing which shows the cross section of the electrode structure of the easily peelable adhesive material which concerns on this invention. 図16のA-A線に沿った断面図である。FIG. 17 is a cross-sectional view taken along line AA in FIG. 本発明に係るダイシング装置における易剥離性粘着材料により半導体ウエハを台座に固定した状態を示す説明図である。It is explanatory drawing which shows the state which fixed the semiconductor wafer to the base with the easily peelable adhesive material in the dicing apparatus which concerns on this invention. 本発明に係るダイシング装置におけるウエハをダイヤモンドホイールで切断する状態の説明図である。It is explanatory drawing of the state which cut | disconnects the wafer in the dicing apparatus which concerns on this invention with a diamond wheel. 本発明に係るダイシング装置におけるウエハチップとダイボンドコレッタの関係の説明図である。It is explanatory drawing of the relationship between the wafer chip and the die bond collector in the dicing apparatus which concerns on this invention. 本発明に係るダイシング装置におけるウエハチップをダイボンドコレッタにより移動する説明図である。It is explanatory drawing which moves the wafer chip in the dicing apparatus which concerns on this invention with a die-bond collector.
 以下、本発明について、図面を参照して実施の形態(実施例)とともに詳細に説明する。 Hereinafter, the present invention will be described in detail together with embodiments (examples) with reference to the drawings.
 本発明は、液晶高分子の主鎖が側鎖に複数の液晶性メゾゲン基を有し、主鎖間が架橋されており、メゾゲン基は、外部からのエネルギーを受けて二つ以上の状態変化を引き起こし、それぞれの状態下の異なった粘着力を示し、かつ、その状態変化を外部エネルギーにより可逆的に制御することが可能である易剥離性粘着剤、並びにそれを用いた粘着材料及び処理装置を提供するものである。ここで、処理装置とは、被処理物品を粘着固定した状態で切断、研磨、成形等を行う装置である。 In the present invention, the main chain of the liquid crystal polymer has a plurality of liquid crystalline mesogen groups in the side chain, and the main chain is cross-linked, and the mesogen group undergoes two or more state changes upon receiving external energy. , An easily peelable pressure-sensitive adhesive capable of exhibiting different adhesive strength under each condition and capable of reversibly controlling the change in the state by external energy, and a pressure-sensitive adhesive material and a processing apparatus using the pressure-sensitive adhesive Is to provide. Here, the processing apparatus is an apparatus that performs cutting, polishing, molding, and the like while the article to be processed is adhesively fixed.
 本願において開示される発明のうち、代表的なものの概略を説明すれば、次の通りである。 Of the inventions disclosed in this application, the outline of typical ones will be described as follows.
 (1)易剥離性粘着剤において、その粘着力が二つ以上の状態間で可逆的に制御可能である易剥離性粘着剤であって、その主成分として、ポリマー主鎖間が架橋基によって架橋されている側鎖型液晶ポリマーが含有されている易剥離性粘着剤及びそれを用いた粘着材料。前記液晶性側鎖(メゾゲン基群)は温度、電界などによって、二つ以上の異なった状態を発現し得、且つそれぞれの状態によって特定の粘着力を示す。また、上記異なった状態は可逆的に制御可能である。 (1) In an easily peelable pressure-sensitive adhesive, it is an easily peelable pressure-sensitive adhesive whose adhesive strength can be reversibly controlled between two or more states, and the main chain is composed of a crosslinking group as a main component. An easily peelable pressure-sensitive adhesive containing a cross-linked side chain liquid crystal polymer and a pressure-sensitive adhesive material using the same. The liquid crystalline side chain (mezzogen group) can express two or more different states depending on temperature, electric field, and the like, and exhibits a specific adhesive force depending on each state. The different states can be reversibly controlled.
 (2)上記側鎖型液晶ポリマーを含有する粘着剤と支持体から構成される粘着材料。 (2) A pressure-sensitive adhesive material comprising a pressure-sensitive adhesive containing the above side-chain liquid crystal polymer and a support.
 (3)前記易剥離性粘着材料を適用した粘着装置であって、前記粘着剤の主成分として架橋化側鎖型液晶ポリマーが含まれている易剥離性粘着材料を用いた物品の処理装置。具体的には、可逆的に二つ以上の状態変化を起こし粘着性を可逆的に制御し得る架橋化側鎖型液晶ポリマーが含まれている易剥離性粘着材と、該易剥離性粘着材を担持する部材と、前記易剥離性粘着材剤に対して外部からエネルギーを与えて前記易剥離性粘着材の状態を変化させる手段と、前記易剥離性粘着剤に被処理物品を搬送する手段を有する処理装置である。 (3) An apparatus for processing an article using an easily peelable adhesive material to which the easily peelable adhesive material is applied, wherein the easily peelable adhesive material contains a cross-linked side chain liquid crystal polymer as a main component of the adhesive. Specifically, an easily peelable pressure-sensitive adhesive containing a cross-linked side chain liquid crystal polymer capable of reversibly causing two or more state changes and reversibly controlling adhesiveness, and the easily peelable pressure-sensitive adhesive , A means for changing the state of the easily peelable adhesive material by applying energy from the outside to the easily peelable adhesive material, and a means for transporting the article to be treated to the easily peelable adhesive material Is a processing apparatus.
 本発明に係る易剥離性粘着剤の粘着力を制御するための状態とは、前記易剥離性粘着材の結晶相、液晶相、等方性液体相の熱力学相状態を意味する。本明細書において「状態変化」とは、上で例示した状態の変化をいう。なお、ここでいう「状態」には、ポリマーのガラス状態も含まれ、液晶相の多形であるスメクチック液晶相、ネマチック液晶相、コレステリック液晶相、ディスコチック液晶相なども含まれる。また、これらの熱力学相状態以外に、例えばネマチック液晶相のように電気的に制御するオン状態やオフ状態も含まれる。光構造変化するメゾゲン基を用いれば、光照射によっても状態変化を発現させて粘着力を制御可能となる。従って上記エネルギーとは、熱、電界、磁界、光(紫外線、赤外線を含む。)、音波などを含む。そのうち、熱、電界、光は液晶性ポリマーのメゾゲン基の状態変化を容易に起こし得るのでエネルギーとして好適である。 The state for controlling the adhesive force of the easily peelable pressure-sensitive adhesive according to the present invention means the thermodynamic phase state of the crystal phase, liquid crystal phase, and isotropic liquid phase of the easily peelable pressure-sensitive adhesive material. In the present specification, the “state change” refers to the state change exemplified above. The “state” herein includes a glassy state of a polymer, and also includes a smectic liquid crystal phase, a nematic liquid crystal phase, a cholesteric liquid crystal phase, a discotic liquid crystal phase, and the like that are polymorphs of a liquid crystal phase. In addition to these thermodynamic phase states, for example, an on state and an off state, which are electrically controlled like a nematic liquid crystal phase, are included. If a mesogenic group that changes its optical structure is used, it is possible to control the adhesive force by expressing a state change even by light irradiation. Therefore, the energy includes heat, an electric field, a magnetic field, light (including ultraviolet rays and infrared rays), sound waves, and the like. Among them, heat, electric field, and light are suitable as energy because they can easily cause a change in the state of the mesogenic group of the liquid crystalline polymer.
 上記の状態変化においては、易剥離性粘着剤のエネルギー状態が変化するため、結果として粘着力が変化する。 In the above state change, since the energy state of the easily peelable adhesive changes, the adhesive force changes as a result.
 本発明において用いられる各種液晶性ポリマーについて説明する。 Various liquid crystalline polymers used in the present invention will be described.
 図1の式1は、本発明に係る側鎖型液晶ポリマーの一般式であり、主鎖にはLnは架橋基を有する。図2の式2は側鎖型共重合液晶性ポリマーであり、その主鎖に架橋基Lnを有する。 1 is a general formula of the side chain type liquid crystal polymer according to the present invention, and Ln has a crosslinking group in the main chain. Formula 2 in FIG. 2 is a side-chain copolymer liquid crystalline polymer, and has a crosslinking group Ln in the main chain.
 上記の一般式において、P及びP’はポリマー主鎖の単位を表し、Lはメゾゲン基(mesogenic group)を表し、SはPとLを連結するスペーサーであり、Rはアルキル側鎖であり、Lがポリマー鎖間を架橋するための架橋部位である。なお、LnはP’に結合していてもよい。 In the above general formula represents a P and P 'is a unit of the polymer backbone, L C represents a mesogen group (mesogenic group), S P is a spacer linking the P and L C, R is an alkyl side chain and is a crosslinking site for L N to crosslink the polymer chains. Ln may be bonded to P ′.
 本発明において、液晶性ポリマーは、メゾゲン基を側鎖とすること及び液晶性ポリマーの主鎖に架橋基を有し、粘着剤として機能するときはメゾゲン基を除いて液晶ポリマーの主鎖が架橋していることが必要である。 In the present invention, the liquid crystalline polymer has a mesogenic group as a side chain and has a crosslinking group in the main chain of the liquid crystalline polymer. When functioning as an adhesive, the main chain of the liquid crystal polymer is crosslinked except for the mesogenic group. It is necessary to do.
 本発明に係る側鎖型液晶ポリマーのポリマー主鎖の単位Pはシロキサン、アクリレート、メタクリレートから選ばれる。この場合、ポリマー主鎖の単位Pがシロキサンとメタクリレートである。 The unit P of the polymer main chain of the side chain type liquid crystal polymer according to the present invention is selected from siloxane, acrylate, and methacrylate. In this case, the unit P of the polymer main chain is siloxane and methacrylate.
 本発明に係る側鎖型液晶ポリマーのメゾゲン基は、図3の式3で例示される。式3において、RはF、CN,炭素数1から30までのアルキル基またはアルコキシル基から選ばれ、A,Aはそれぞれ独立にシクロヘキサン環またはフェニル環から選ばれ、Aはシクロヘキサン環、フェニル環または単結合から選ばれ、Z,Zがそれぞれ独立に、-O-CO-,-COO-,-CH-CH-、-CH=CH-、-N=N-、または単結合から選ばれる。上記のシクロヘキサン環またはフェニル環はRやZ,Z以外の連結基以外に置換基を有しても良い。Z,Zが-CH=CH-、-N=N-の場合、それぞれスチルベンメゾゲン基、アゾベンゼンメゾゲン基となり、光によって液晶状態から液体状態に相変化できるので、この光照射により粘着力を制御することが可能となる。 The mesogenic group of the side chain type liquid crystal polymer according to the present invention is exemplified by Formula 3 in FIG. In Formula 3, R 1 is selected from F, CN, an alkyl group having 1 to 30 carbon atoms or an alkoxyl group, A 1 and A 2 are each independently selected from a cyclohexane ring or a phenyl ring, and A 3 is a cyclohexane ring. is selected from phenyl ring or a single bond, a Z 1, Z 2 are each independently, -O-CO -, - COO -, - CH 2 -CH 2 -, - CH = CH -, - N = N-, Or it is chosen from a single bond. The above cyclohexane ring or phenyl ring may have a substituent in addition to the linking group other than R 1 , Z 1 and Z 2 . When Z 1 and Z 2 are —CH═CH— and —N═N—, they become a stilbene mesogen group and an azobenzene mesogen group, respectively, which can change phase from a liquid crystal state to a liquid state by light. The force can be controlled.
 本発明に係る側鎖型液晶ポリマーのスペーサーSは炭素数1から30までのアルキル基であり、このメチレン基が酸素や硫黄、アミンに置き換わっても良い。 Spacer S P output side chain type liquid crystal polymer according to the present invention is an alkyl group having from 1 to 30 carbon atoms, the methylene group may be substituted oxygen, sulfur, an amine.
 本発明に係るアルキル側鎖Rとしては、炭素数1から30までのアルキル基をもつ脂肪族アクリレートを使用することができる。また、別のスペーサーSと別のメゾゲン基Lからなる側鎖でも良い。 As the alkyl side chain R according to the present invention, an aliphatic acrylate having an alkyl group having 1 to 30 carbon atoms can be used. Further, it may be a side chain of another spacer S P and another mesogen group L C.
 このアルキル側鎖Rにおいて、ポリマー主鎖がアクリレートやメタクリレートの場合、単官能の脂肪族アクリレートでなく、多官能のアクリレートを用いれば、架橋した側鎖型液晶ポリマーが得られる。この場合に用いられる多官能のアクリレートとしては、1、6-ヘキサンジオールジアクリレートや1、8-オクタンジオールジアクリレート、1、10-デカンジオールジアクリレートなどの脂肪族ジアクリレートが使用できる。また、エチレングリコールジメタクリレート、1、6-ヘキサンジオールジメタクリレートや1、8-オクタンジオールジメタクリレート、1、10-デカンジオールジメタクリレートなど脂肪族ジメタクリレートが使用できる。 In this alkyl side chain R, when the polymer main chain is an acrylate or methacrylate, a cross-linked side chain type liquid crystal polymer can be obtained by using a polyfunctional acrylate instead of a monofunctional aliphatic acrylate. As the polyfunctional acrylate used in this case, aliphatic diacrylates such as 1,6-hexanediol diacrylate, 1,8-octanediol diacrylate, and 1,10-decanediol diacrylate can be used. Further, aliphatic dimethacrylates such as ethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,8-octanediol dimethacrylate, and 1,10-decanediol dimethacrylate can be used.
 他方、ポリマー主鎖がシロキサンの場合、単官能の脂肪族アクリレートでなく、変性シロキサンを用いれば、架橋した側鎖型液晶ポリマーが得られる。 On the other hand, when the polymer main chain is siloxane, a crosslinked side chain type liquid crystal polymer can be obtained by using modified siloxane instead of monofunctional aliphatic acrylate.
 本発明に係る架橋部位はアクリル酸、メタクリル酸、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、アクリルアミド、グリシジルメタクリレートが用いられる。 As the crosslinking site according to the present invention, acrylic acid, methacrylic acid, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylamide, or glycidyl methacrylate is used.
 本発明に係る架橋剤としては、架橋部位がアクリル酸、メタクリル酸の場合、ポリイソシアネート、エポキシ樹脂が用いられる。架橋部位が2-ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレートの場合、ポリイソシアネート、尿素樹脂が用いられる。架橋部位がグリシジルメタクリレートの場合、酸無水物が用いられる。 As the crosslinking agent according to the present invention, polyisocyanate and epoxy resin are used when the crosslinking site is acrylic acid or methacrylic acid. When the crosslinking site is 2-hydroxyethyl acrylate or hydroxyethyl methacrylate, polyisocyanate or urea resin is used. When the crosslinking site is glycidyl methacrylate, an acid anhydride is used.
 図4Aは、側鎖型液晶ポリマーの分子構造式(式4)の例を示したものである。また、図4Bは、側鎖型液晶ポリマーの分子構造式(式5)の例を示したものである。 FIG. 4A shows an example of the molecular structure formula (formula 4) of the side chain type liquid crystal polymer. FIG. 4B shows an example of the molecular structural formula (formula 5) of the side chain type liquid crystal polymer.
 図5は、架橋基(式6)の例を示したものである。式6のOH基が架橋に寄与する。式中のnは整数である。 FIG. 5 shows an example of a crosslinking group (formula 6). The OH group of formula 6 contributes to crosslinking. N in the formula is an integer.
 図6~図13の式7~式15は架橋した側鎖型液晶ポリマーの分子構造を示す。 6 to 13 show the molecular structure of the cross-linked side chain liquid crystal polymer.
 図6の式7及び図7の式8は、一般式である式2においてポリマー主鎖がアクリレートである側鎖型液晶ポリマーであり、アルキル側鎖Rが多官能のアクリレートである架橋性側鎖型液晶ポリマーの具体例である。 Formula 7 in FIG. 6 and Formula 8 in FIG. 7 are cross-linkable side chains in which the polymer main chain is an acrylate in the general formula 2 and the alkyl side chain R is a polyfunctional acrylate. It is a specific example of a liquid crystal polymer.
 図8の式9および図9の式10は、一般式である式2においてポリマー主鎖がシロキサンである側鎖型液晶ポリマーであり、アルキル側鎖Rが変性シロキサンである架橋した側鎖型液晶ポリマーの具体例である。 Formula 9 in FIG. 8 and Formula 10 in FIG. 9 are side chain type liquid crystal polymers in which the polymer main chain is siloxane in Formula 2, which is a general formula, and a crosslinked side chain type liquid crystal in which the alkyl side chain R is a modified siloxane. It is a specific example of a polymer.
 図10Aの式11及び図10Bの式12は、一般式である式1においてポリマー主鎖がアクリレートである架橋可能な側鎖型液晶ポリマーの具体例である。 Formula 11 in FIG. 10A and Formula 12 in FIG. 10B are specific examples of a crosslinkable side chain type liquid crystal polymer in which the polymer main chain is an acrylate in Formula 1, which is a general formula.
 図11~図13は、一般式である式2においてポリマー主鎖がアクリレートである架橋可能な側鎖型液晶ポリマーの具体例である。すなわち、式13~式15は、本発明の粘着剤の前駆体構造を示す。 FIG. 11 to FIG. 13 are specific examples of a crosslinkable side chain type liquid crystal polymer in which the polymer main chain is an acrylate in the general formula (2). That is, Formulas 13 to 15 show the precursor structure of the pressure-sensitive adhesive of the present invention.
 本発明に係る図14に示す粘着材料を構成する支持体1として、紙、布、プラスチックフィルム、不織布、ガラス、金属箔などが用いられる。また、図14に示す粘着材料を構成する粘着剤2と支持体1との間に下塗層があっても良い。ここでいうところの粘着材料とは、粘着シートや粘着テープを意味する。 As the support 1 constituting the adhesive material shown in FIG. 14 according to the present invention, paper, cloth, plastic film, non-woven fabric, glass, metal foil or the like is used. Further, an undercoat layer may be provided between the pressure-sensitive adhesive 2 constituting the pressure-sensitive adhesive material shown in FIG. The adhesive material here means an adhesive sheet or an adhesive tape.
 本発明に係る粘着材料を構成する側鎖型液晶ポリマーの粘着力をスイッチングするための電極構造としては、図15に表される横電界方式と、図16で表されるフリンジフィールド方式の2種類を用いることができる。 As an electrode structure for switching the adhesive force of the side chain type liquid crystal polymer constituting the adhesive material according to the present invention, there are two types, a lateral electric field method shown in FIG. 15 and a fringe field method shown in FIG. Can be used.
 図15において粘着剤は2、支持体は1であり、3は電極である。また、図16において、粘着剤は2、支持体は1であり、3は上部電極、4は上部電極、5は下部電極、6は絶縁被膜である。 In FIG. 15, the pressure-sensitive adhesive is 2, the support is 1, and 3 is an electrode. In FIG. 16, the pressure-sensitive adhesive is 2, the support is 1, 3 is an upper electrode, 4 is an upper electrode, 5 is a lower electrode, and 6 is an insulating coating.
 図17は、図16のA-A線に沿った断面図であり、31は第一櫛歯電極、32は第二櫛歯電極である。また、7は電極間隔である。櫛歯電極は粘着剤層にエネルギーを与える手段である。 FIG. 17 is a cross-sectional view taken along the line AA in FIG. 16, wherein 31 is a first comb electrode, and 32 is a second comb electrode. Reference numeral 7 denotes an electrode interval. The comb electrode is a means for applying energy to the adhesive layer.
 本発明に係る粘着材料を用いた処理装置としては、半導体のダイシング装置や、電子部品の搬送装置などが挙げられる。 Examples of the processing apparatus using the adhesive material according to the present invention include a semiconductor dicing apparatus and an electronic component conveying apparatus.
 以下に易剥離性粘着剤に用いる架橋性粘着材料(粘着剤の前駆体)の合成例及び易剥離性粘着の実施例並びに前記粘着剤を用いた処理装置の実施例を示す。 Hereinafter, a synthesis example of a crosslinkable adhesive material (adhesive precursor) used for an easily peelable adhesive, an example of easily peelable adhesive, and an example of a processing apparatus using the above adhesive will be described.
 (合成例1)
 側鎖型液晶ポリマーのモノマーである4-(6-アクロキシヘキサイルオキシ)フェニル-4-(ヘキシロキシ)ベンゾエート4.9g(シントン化学)、架橋部モノマーとしてヒドロキシルエチルアクリレート0.1g(関東化学)、および熱光重合開始剤である2、2-アゾビスイソブチロニトリル0.05g(東京化成製)を50ccの丸底フラスコに入れ、トルエンを20cc入れた。フラスコを80℃にしてモノマーや開始剤が溶解したあと、6時間撹拌した。室温に戻しメタノールで再沈殿させたのち、生成物を濾別した後、室温にて乾燥させた。GPCによる測定から、得られた液晶ポリマー(架橋性粘着材料)の重量平均分子量42,000であった。熱分析および偏光顕微鏡観察から、20℃にガラス転移点が、75℃にスメクチック液晶相-ネマチック液晶相転移点、125℃に透明点が観察された。得られた粘着剤前駆体の構造は式12である。
(Synthesis Example 1)
4.9 g of 4- (6-acryloxyhexyloxy) phenyl-4- (hexyloxy) benzoate, a monomer of side chain type liquid crystal polymer (Synton Chemical), 0.1 g of hydroxylethyl acrylate as a crosslinking monomer (Kanto Chemical) , And 0.05 g (manufactured by Tokyo Chemical Industry Co., Ltd.) of 2,2-azobisisobutyronitrile, a thermal photopolymerization initiator, were placed in a 50 cc round bottom flask, and 20 cc of toluene was added. The flask was heated to 80 ° C., and the monomer and initiator were dissolved, followed by stirring for 6 hours. After returning to room temperature and reprecipitation with methanol, the product was filtered off and dried at room temperature. From the measurement by GPC, the obtained liquid crystal polymer (crosslinkable adhesive material) had a weight average molecular weight of 42,000. From the thermal analysis and polarization microscope observation, a glass transition point was observed at 20 ° C., a smectic liquid crystal phase-nematic liquid crystal phase transition point at 75 ° C., and a clearing point at 125 ° C. The structure of the obtained pressure-sensitive adhesive precursor is Formula 12.
 (合成例2)
 側鎖型液晶ポリマーのモノマーである4-(6-アクロキシヘキサイルオキシ)フェニル-4-(ヘキシロキシ)ベンゾエート4.0g(シントン化学)、アクリル鎖モノマーとしてメチルアクリレート0.5g(関東化学)、架橋部モノマーとしてヒドロキシルエチルアクリレート0.1g(関東化学)、および熱光重合開始剤である2、2-アゾビスイソブチロニトリル0.05g(東京化成製)を50ccの丸底フラスコに入れ、トルエンを20cc入れた。フラスコを80℃にしてモノマーや開始剤が溶解したあと、6時間撹拌した。室温に戻しメタノールで再沈殿させたのち、生成物を濾別した後、室温にて乾燥させた。GPCによる測定から、得られた液晶ポリマー(架橋性粘着材料)の重量平均分子量28,000であった。熱分析および偏光顕微鏡観察から、0℃にガラス転移点が、75℃にスメクチック液晶相-ネマチック液晶相転移点、125℃に透明点が観察された。得られた粘着剤前駆体は式14で示される。
(Synthesis Example 2)
4.0 g of 4- (6-acryloxyhexyloxy) phenyl-4- (hexyloxy) benzoate as a monomer of a side chain type liquid crystal polymer (Synton Chemical), 0.5 g of methyl acrylate (Kanto Chemical) as an acrylic chain monomer, Hydroxyethyl acrylate 0.1 g (Kanto Chemical) as a cross-linking part monomer and thermal photopolymerization initiator 2,2-azobisisobutyronitrile 0.05 g (manufactured by Tokyo Chemical Industry) were placed in a 50 cc round bottom flask, 20 cc of toluene was added. The flask was heated to 80 ° C., and the monomer and initiator were dissolved, followed by stirring for 6 hours. After returning to room temperature and reprecipitation with methanol, the product was filtered off and dried at room temperature. From the measurement by GPC, the obtained liquid crystal polymer (crosslinkable adhesive material) had a weight average molecular weight of 28,000. From the thermal analysis and polarization microscope observation, a glass transition point was observed at 0 ° C., a smectic liquid crystal phase-nematic liquid crystal phase transition point at 75 ° C., and a clearing point at 125 ° C. The obtained pressure-sensitive adhesive precursor is represented by Formula 14.
 (合成例3)
 側鎖型液晶ポリマーのモノマーとして6-(4-シアノビフェニロイロキシ)ヘキシルアクリレートを4.9g(シントン化学)、架橋部モノマーとしてヒドロキシルエチルアクリレート0.1g(関東化学)、および熱光重合開始剤である2、2-アゾビスイソブチロニトリル0.05g(東京化成製)を50ccの丸底フラスコに入れ、トルエンを20cc入れた。フラスコを80℃にしてモノマーや開始剤が溶解したあと、6時間撹拌した。室温に戻しメタノールで再沈殿させたのち、生成物を濾別した後、室温にて乾燥させた。GPCによる測定から、得られた液晶ポリマーの重量平均分子量31,000であった。熱分析および偏光顕微鏡観察から、20℃にガラス転移点が、120℃にスメクチック液晶相-ネマチック液晶相転移点、125℃に透明点が観察された。得られた粘着剤前駆体は式11で示される。
(Synthesis Example 3)
4.9 g of 6- (4-cyanobiphenyliloyloxy) hexyl acrylate as a monomer of a side chain type liquid crystal polymer (Synthon Chemical), 0.1 g of hydroxylethyl acrylate as a cross-linking monomer (Kanto Chemical), and a thermal photopolymerization initiator 2,2-azobisisobutyronitrile (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a 50 cc round bottom flask, and 20 cc of toluene was added. The flask was heated to 80 ° C., and the monomer and initiator were dissolved, followed by stirring for 6 hours. After returning to room temperature and reprecipitation with methanol, the product was filtered off and dried at room temperature. From the measurement by GPC, the obtained liquid crystal polymer had a weight average molecular weight of 31,000. From the thermal analysis and polarization microscope observation, a glass transition point was observed at 20 ° C., a smectic liquid crystal phase-nematic liquid crystal phase transition point at 120 ° C., and a clearing point at 125 ° C. The obtained pressure-sensitive adhesive precursor is represented by Formula 11.
 (合成例4)
 側鎖型液晶ポリマーのモノマーである4-(6-アクロキシヘキサイルオキシ)フェニル-4-(ヘキシロキシ)ベンゾエート4.95g(シントン化学)、多官能のアクリレートである1、6-ヘキサンジオールジアクリレートを0.05g(東京化成製)および熱光重合開始剤である2、2-アゾビスイソブチロニトリル0.05g(東京化成製)を50ccの丸底フラスコに入れ、トルエンを5cc入れた。フラスコを80℃にしてモノマーや開始剤が溶解したあと、6時間撹拌した。室温に戻しテフロン(登録商標)でキャスト膜を作製した。熱分析および偏光顕微鏡観察から、10℃にガラス転移点が、50℃にスメクチック液晶相-ネマチック液晶相転移点、125℃に透明点が観察された。また、このキャスト膜をトルエンに浸漬し乾燥あと、残渣フィルムの重量測定から、この共重合体のゲル化率は50%であった。
(Synthesis Example 4)
4.95 g of 4- (6-acryloxyhexyloxy) phenyl-4- (hexyloxy) benzoate (Synthon Chemical) which is a monomer of side chain type liquid crystal polymer, 1,6-hexanediol diacrylate which is a polyfunctional acrylate Was added to a 50 cc round bottom flask, and 5 cc of toluene was added to 0.05 g (manufactured by Tokyo Chemical Industry) and 0.05 g of 2,2-azobisisobutyronitrile (manufactured by Tokyo Chemical Industry) as a thermal photopolymerization initiator. The flask was heated to 80 ° C., and the monomer and initiator were dissolved, followed by stirring for 6 hours. It returned to room temperature and produced the cast film | membrane with Teflon (trademark). From the thermal analysis and polarization microscope observation, a glass transition point was observed at 10 ° C., a smectic liquid crystal phase-nematic liquid crystal phase transition point at 50 ° C., and a clearing point at 125 ° C. The cast membrane was immersed in toluene and dried, and the gelation rate of the copolymer was 50% from the weight measurement of the residual film.
 (実施例1)
 合成例1で得られた側鎖型液晶ポリマー0.9gとジフェニルメタン-4,4´-ジイソシアネート0.1g(東京化成)をテトラヒドロフラン(和光純薬)10ccに溶解させた。この溶液を厚さ1mm、大きさ1cm×1cmのガラス基板上に塗布し、100℃に加熱して粘着シートを得た。この粘着シートの粘着力はフォースゲージを用いて評価した。粘着シートのサンプルをホットプレート上に置き、フォースゲージ側には丸型の金属性のアタッチメントを取りつけ評価した。引き上げ時の粘着力は、10℃から30℃に加熱することにより0.000Nから0.004Nとなり、加熱操作により粘着力を制御できる粘着シートであることが確認できた。また、30℃から10℃に冷却することにより0.004Nから0.000Nとなり、冷却操作により粘着力を制御できる粘着シートであることが確認できた。
Example 1
0.9 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.1 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) were dissolved in 10 cc of tetrahydrofuran (Wako Pure Chemical Industries). This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm × 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metallic attachment was attached to the force gauge side for evaluation. The pressure-sensitive adhesive force at the time of pulling was changed from 0.000 N to 0.004 N by heating from 10 ° C. to 30 ° C., and it was confirmed that the pressure-sensitive adhesive sheet can control the pressure-sensitive adhesive force by a heating operation. Moreover, it became 0.004N to 0.000N by cooling from 30 degreeC to 10 degreeC, and has confirmed that it was an adhesive sheet which can control adhesive force by cooling operation.
 言い換えると、加熱操作により粘着可能な状態とし、冷却操作により脱着可能な状態とすることができる。すなわち、加熱操作及び冷却操作により二つの状態(二つの温度)の間で可逆的な変化(状態変化)を生じさせることができる。本実施例は、熱エネルギーによる制御である。 In other words, it can be in a state where it can be adhered by a heating operation and can be detached by a cooling operation. That is, a reversible change (state change) can be caused between two states (two temperatures) by a heating operation and a cooling operation. In this embodiment, the control is based on thermal energy.
 (実施例2)
 合成例1で得られた側鎖型液晶ポリマー0.9gとジフェニルメタン-4,4´-ジイソシアネート0.1g(東京化成)をテトラヒドロフラン(和光純薬)10ccに溶解させた。この溶液を厚さ1mm、大きさ1cm×1cmのガラス基板上に塗布し、100℃に加熱して粘着シートを得た。この粘着シートの粘着力はフォースゲージを用いて評価した。粘着シートのサンプルをホットプレート上に置き、フォースゲージ側には丸型の金属性のアタッチメントを取りつけ評価した。70℃、90℃における引き上げ時の粘着力は、それぞれ、0.04N、0.2Nとなり、加熱操作により粘着力を制御できる粘着シートであることが確認できた。また、90℃から70℃に冷却することにより0.2Nから0.04Nとなり、冷却操作により粘着力を制御できる粘着シートであることが確認できた。本実施例も、熱エネルギーによる制御である。
(Example 2)
0.9 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.1 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) were dissolved in 10 cc of tetrahydrofuran (Wako Pure Chemical Industries). This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm × 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metallic attachment was attached to the force gauge side for evaluation. Adhesive strength at the time of pulling up at 70 ° C. and 90 ° C. was 0.04 N and 0.2 N, respectively, and it was confirmed that the adhesive sheet was able to control the adhesive strength by heating operation. Moreover, it became 0.24 to 0.04N by cooling from 90 degreeC to 70 degreeC, and has confirmed that it was an adhesive sheet which can control adhesive force by cooling operation. This embodiment is also control by heat energy.
 (実施例3)
 合成例1で得られた側鎖型液晶ポリマー0.9gとジフェニルメタン-4,4´-ジイソシアネート0.1g(東京化成)をテトラヒドロフラン(和光純薬)10ccに溶解させた。この溶液を厚さ1mm、大きさ1cm×1cmのガラス基板上に塗布し、100℃に加熱して粘着シートを得た。この粘着シートの粘着力はフォースゲージを用いて評価した。粘着シートのサンプルをホットプレート上に置き、フォースゲージ側には丸型の金属性のアタッチメントを取りつけ評価した。120℃、140℃における引き上げ時の粘着力は、それぞれ、0.2N、0.4Nとなり、加熱操作により粘着力を制御できる粘着シートであることが確認できた。また、140℃から120℃に冷却することにより0.4Nから0.2Nとなり、冷却操作により粘着力を制御できる粘着シートであることが確認できた。本実施例も、熱エネルギーによる制御である。
(Example 3)
0.9 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.1 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) were dissolved in 10 cc of tetrahydrofuran (Wako Pure Chemical Industries). This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm × 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metal attachment was attached to the force gauge side for evaluation. Adhesive strength at the time of pulling up at 120 ° C. and 140 ° C. was 0.2 N and 0.4 N, respectively, and it was confirmed that the adhesive sheet can control the adhesive strength by a heating operation. Moreover, it became 0.4N to 0.2N by cooling from 140 degreeC to 120 degreeC, and has confirmed that it was an adhesive sheet which can control adhesive force by cooling operation. This embodiment is also control by heat energy.
 (実施例4)
 合成例2で得られた側鎖型液晶ポリマー0.9gとジフェニルメタン-4,4´-ジイソシアネート0.1g(東京化成)をテトラヒドロフラン(和光純薬)10ccに溶解させた。この溶液を厚さ1mm、大きさ1cm×1cmのガラス基板上に塗布し、100℃に加熱して粘着シートを得た。この粘着シートの粘着力はフォースゲージを用いて評価した。粘着シートのサンプルをクールプレート上に置き、フォースゲージ側には丸型の金属性のアタッチメントを取りつけ評価した。-10℃、10℃における引き上げ時の粘着力は、それぞれ、0.00N、0.04Nとなり、加熱操作により粘着力を制御できる粘着シートであることが確認できた。また、10℃から-10℃に冷却することにより0.04Nから0.00Nとなり、冷却操作により粘着力を制御できる粘着シートであることが確認できた。本実施例も、熱エネルギーによる制御である。
(Example 4)
0.9 g of the side chain type liquid crystal polymer obtained in Synthesis Example 2 and 0.1 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) were dissolved in 10 cc of tetrahydrofuran (Wako Pure Chemical Industries). This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm × 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a cool plate, and a round metal attachment was attached to the force gauge side for evaluation. The adhesive strengths when pulled up at −10 ° C. and 10 ° C. were 0.00N and 0.04 N, respectively, and it was confirmed that the adhesive sheet was able to control the adhesive strength by a heating operation. Further, the pressure was changed from 0.04 N to 0.00 N by cooling from 10 ° C. to −10 ° C., and it was confirmed that the pressure-sensitive adhesive sheet can control the adhesive force by the cooling operation. This embodiment is also control by heat energy.
 (実施例5)
 合成例4で得られた側鎖型液晶ポリマー溶液を厚さ1mm、大きさ1cm×1cmのガラス基板上に塗布し、100℃に加熱して粘着シートを得た。この粘着シートの粘着力はフォースゲージを用いて評価した。粘着シートのサンプルをホットプレート上に置き、フォースゲージ側には丸型の金属性のアタッチメントを取りつけ評価した。40℃、60℃における引き上げ時の粘着力は、それぞれ、0.04N、0.2Nとなり、加熱操作により粘着力を制御できる粘着シートであることが確認できた。また、60℃から40℃に冷却することにより0.2Nから0.04Nとなり、冷却操作により粘着力を制御できる粘着シートであることが確認できた。本実施例も、熱エネルギーによる制御である。
(Example 5)
The side chain type liquid crystal polymer solution obtained in Synthesis Example 4 was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm × 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metal attachment was attached to the force gauge side for evaluation. The adhesive strength at the time of pulling up at 40 ° C. and 60 ° C. was 0.04 N and 0.2 N, respectively, and it was confirmed that the adhesive sheet can control the adhesive strength by a heating operation. Moreover, it became 0.24 to 0.04N by cooling from 60 degreeC to 40 degreeC, and has confirmed that it was an adhesive sheet which can control adhesive force by cooling operation. This embodiment is also control by heat energy.
 (実施例6)
 合成例4で得られた側鎖型液晶ポリマーを厚さ1mm、大きさ1cm×1cmのガラス基板上にのせ、100℃に加熱して粘着シートを得た。この粘着シートの粘着力はフォースゲージを用いて評価した。粘着シートのサンプルをホットプレート上に置き、フォースゲージ側には丸型の金属性のアタッチメントを取りつけ評価した。110℃、130℃における引き上げ時の粘着力は、それぞれ、0.2N、0.35Nとなり、加熱操作により粘着力を制御できる粘着シートであることが確認できた。また、130℃から110℃に冷却することにより0.35Nから0.2Nとなり、冷却操作により粘着力を制御できる粘着シートであることが確認できた。本実施例も、熱エネルギーによる制御である。
(Example 6)
The side chain type liquid crystal polymer obtained in Synthesis Example 4 was placed on a glass substrate having a thickness of 1 mm and a size of 1 cm × 1 cm, and heated to 100 ° C. to obtain an adhesive sheet. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metal attachment was attached to the force gauge side for evaluation. The adhesive strength at the time of pulling up at 110 ° C. and 130 ° C. was 0.2 N and 0.35 N, respectively, and it was confirmed that the adhesive sheet can control the adhesive strength by a heating operation. Moreover, it became 0.3N from 0.25 by cooling from 130 degreeC to 110 degreeC, and it has confirmed that it was an adhesive sheet which can control adhesive force by cooling operation. This embodiment is also control by heat energy.
 (実施例7)
 合成例1で得られた側鎖型液晶ポリマー4.5gと、実施例3で得られた側鎖型液晶ポリマー0.5gをジフェニルメタン-4,4´-ジイソシアネート0.05g(東京化成)をテトラヒドロフラン(和光純薬)10ccに溶解させた。この溶液を厚さ1mm、大きさ1cm×1cmのガラス基板上に塗布し、100℃に加熱して粘着シートを得た。
図17に示すように第一櫛歯電極と第2櫛歯電極との間の電極間隔は10μmにした。この粘着シートの粘着力はフォースゲージを用いて評価した。粘着シートのサンプルをホットプレート上に置き、フォースゲージ側には丸型の金属性のアタッチメントを取りつけ評価した。90℃における引き上げ時の粘着力は0.04Nであるのに対して、20Vの電界印加時には操作により0.001N以下となり、粘着力を電界によって制御できる粘着シートであることが確認できた。また、電界を切断すると、粘着力は0.04Nに回復することが確認できた。本実施例は、電界のエネルギーによる制御である。
(Example 7)
4.5 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.5 g of the side chain type liquid crystal polymer obtained in Example 3 were mixed with 0.05 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) and tetrahydrofuran. (Wako Pure Chemicals) 10 cc was dissolved. This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm × 1 cm, and heated to 100 ° C. to obtain an adhesive sheet.
As shown in FIG. 17, the electrode interval between the first comb electrode and the second comb electrode was 10 μm. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metallic attachment was attached to the force gauge side for evaluation. While the adhesive strength at the time of pulling up at 90 ° C. was 0.04 N, it was 0.001 N or less by operation when an electric field of 20 V was applied, and it was confirmed that the adhesive sheet can control the adhesive strength by the electric field. It was also confirmed that when the electric field was cut, the adhesive strength recovered to 0.04N. In this embodiment, the control is based on the energy of the electric field.
 (実施例8)
 合成例1で得られた側鎖型液晶ポリマー4.5gと、実施例3で得られた側鎖型液晶ポリマー0.5gをジフェニルメタン-4,4´-ジイソシアネート0.05g(東京化成)をテトラヒドロフラン(和光純薬)10ccに溶解させた。この溶液を厚さ1mm、大きさ1cm×1cmのガラス基板上に塗布し、100℃に加熱して粘着シートを得た。
図17に示すように第一櫛歯電極と第2櫛歯電極との間の電極間隔は10μmにした。この粘着シートの粘着力はフォースゲージを用いて評価した。粘着シートのサンプルをホットプレート上に置き、フォースゲージ側には丸型の金属性のアタッチメントを取りつけ評価した。50℃における引き上げ時の粘着力は0.01Nであるのに対して、100Vの電界印加時には操作により0.001N以下となり、粘着力を電界によって制御できる粘着シートであることが確認できた。また、電界を切断すると、粘着力は0.01Nに回復することが確認できた。本実施例も、電界のエネルギーによる制御である。
(Example 8)
4.5 g of the side chain type liquid crystal polymer obtained in Synthesis Example 1 and 0.5 g of the side chain type liquid crystal polymer obtained in Example 3 were mixed with 0.05 g of diphenylmethane-4,4′-diisocyanate (Tokyo Kasei) and tetrahydrofuran. (Wako Pure Chemicals) 10 cc was dissolved. This solution was applied onto a glass substrate having a thickness of 1 mm and a size of 1 cm × 1 cm, and heated to 100 ° C. to obtain an adhesive sheet.
As shown in FIG. 17, the electrode interval between the first comb electrode and the second comb electrode was 10 μm. The adhesive strength of this adhesive sheet was evaluated using a force gauge. A sample of the adhesive sheet was placed on a hot plate, and a round metallic attachment was attached to the force gauge side for evaluation. While the adhesive strength at the time of pulling up at 50 ° C. was 0.01 N, it was 0.001 N or less by operation when an electric field of 100 V was applied, and it was confirmed that the adhesive sheet can control the adhesive strength by the electric field. Further, it was confirmed that the adhesive strength recovered to 0.01 N when the electric field was cut. This embodiment is also control by electric field energy.
 (実施例9)
 以下に易剥離性粘着剤を用いた粘着装置(処理装置)の例としてダイシング装置を示す。本実施例は、熱エネルギーによる制御である。
Example 9
A dicing apparatus is shown below as an example of an adhesive apparatus (processing apparatus) using an easily peelable adhesive. In this embodiment, the control is based on thermal energy.
 実施例1で得られた共重合性の側鎖型液晶ポリマーを用いて作製した粘着シート8を、図18Aに示すようにダイシング装置の台座9上に設置し、搬送部(図示していない。)によりウエハ10をのせた後に加熱手段14により90℃に加熱してウエハ10を粘着固定する。 The pressure-sensitive adhesive sheet 8 produced using the copolymerizable side chain type liquid crystal polymer obtained in Example 1 was placed on a pedestal 9 of a dicing apparatus as shown in FIG. 18A, and a conveying unit (not shown). ), The wafer 10 is adhesively fixed by being heated to 90 ° C. by the heating means 14.
 図18Bに示すように、ウエハ10を固定した状態でダイヤモンドホイール11を用いてウエハ10を切断する。粘着シートの粘着力により、固定されたウエハ10は切断によりずれることもなく、また、切断破片が飛散することもない。 As shown in FIG. 18B, the wafer 10 is cut using the diamond wheel 11 while the wafer 10 is fixed. Due to the adhesive force of the adhesive sheet, the fixed wafer 10 is not displaced by cutting, and the cut pieces are not scattered.
 そのあと、冷却手段15により台座9を30℃に冷却して図18Cに示すダイボンドコレット12(分離部)が設置されている場所に移送する。30℃に下げたことにより、粘着力は下がるものの移送操作中のウエハチップ13の固定には充分な粘着力が確保されていた。 Thereafter, the pedestal 9 is cooled to 30 ° C. by the cooling means 15 and transferred to the place where the die bond collet 12 (separation part) shown in FIG. 18C is installed. Although the adhesive strength was lowered by lowering to 30 ° C., sufficient adhesive strength was secured for fixing the wafer chip 13 during the transfer operation.
 最後に、図18Dに示すように、台座9及び粘着シート8を冷却手段15により15℃に冷却して、ダイボンドコレット12により切断されたウエハチップ13を取り出す。 Finally, as shown in FIG. 18D, the base 9 and the adhesive sheet 8 are cooled to 15 ° C. by the cooling means 15 and the wafer chip 13 cut by the die bond collet 12 is taken out.
 この温度では粘着シートの粘着力はほとんどなく、ダイボンドコレット12による吸引操作で、充分ウエハチップ13を取り上げることができた。また、粘着シート8の粘着剤は液晶性メゾゲンを除いて架橋されているため、台座、コレット、ウエハなどに付着することが無かった。 At this temperature, there was almost no adhesive force of the adhesive sheet, and the wafer chip 13 could be taken up sufficiently by the suction operation with the die bond collet 12. Moreover, since the adhesive of the adhesive sheet 8 was crosslinked except for the liquid crystalline mesogen, it did not adhere to a pedestal, collet, wafer or the like.
 なお、加熱手段14及び冷却手段15は、まとめて「エネルギー付与部」と呼ぶことができる。 Note that the heating means 14 and the cooling means 15 can be collectively referred to as an “energy applying unit”.
 本発明に係る粘着材料を用いられた粘着装置としては半導体のダイシング装置や電子部品の搬送装置などを挙げたが、加熱制御でなく電界制御ができれば製造装置の製造コストだけでなく、ランニングコストの低減も達成できる。また、その粘着力が二つ以上の状態間で制御できることから、本発明の粘着剤又は粘着材料について各種の応用展開が期待できる。 Examples of the adhesive device using the adhesive material according to the present invention include a semiconductor dicing device and an electronic component conveying device, but if electric field control can be performed instead of heating control, not only the manufacturing cost of the manufacturing device but also the running cost can be reduced. Reduction can also be achieved. Moreover, since the adhesive force can be controlled between two or more states, various application developments can be expected for the adhesive or adhesive material of the present invention.
 以上、本発明を、上述の実施例に基づき具体的に説明したが、本発明は、上述の実施例に限定されるものではなく、その要旨を逸脱しない範囲において、種々変更可能であることはもちろんである。 The present invention has been specifically described above based on the above-described embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. Of course.
 以下、本発明の効果について更に説明する。 Hereinafter, the effects of the present invention will be further described.
 液晶ポリマーは、一般に耐熱性があり、その状態変化も300℃程度の温度範囲まで可能であるので、条件の選択幅が広い。また、液晶ポリマーの場合は、熱による状態変化だけでなく、電界による制御も可能であるので、より広範な応用が展開できる。 The liquid crystal polymer generally has heat resistance, and its state change is possible up to a temperature range of about 300 ° C., so the selection range of conditions is wide. In the case of a liquid crystal polymer, not only a change in state due to heat but also control by an electric field is possible, so that a wider range of applications can be developed.
 本発明において、液晶ポリマーの主鎖は、相互に架橋して状態変化はしないが、その主鎖に結合している複数個のメゾゲン基群は、熱、電界などの外部エネルギーを受けて結晶化したり、ネマチック液晶状態から等方性液体状態に変化したりする。従って、メゾゲン基群の状態によってその粘着力が変化するが、液晶ポリマー自体は被処理対象物に移行したりしない。従って、被処理対象物や周囲を汚染しない。 In the present invention, the main chain of the liquid crystal polymer is not cross-linked to change the state, but a plurality of mesogen group groups bonded to the main chain are crystallized by receiving external energy such as heat and electric field. Or from a nematic liquid crystal state to an isotropic liquid state. Therefore, the adhesive force varies depending on the state of the mesogen group, but the liquid crystal polymer itself does not move to the object to be treated. Therefore, the object to be processed and the surroundings are not contaminated.
 1…支持体、2…粘着剤、3…櫛歯電極、31…第一櫛歯電極、32…第二櫛歯電極、4…上部電極、5…下部電極、6…絶縁被膜、7…電極間隔、8…粘着シート、9…台座、10…ウエハ、11…ダイヤモンドホイール、12…ダイボンドコレット、13…ウエハチップ、14…加熱手段、15…冷却手段。 DESCRIPTION OF SYMBOLS 1 ... Support body, 2 ... Adhesive agent, 3 ... Comb electrode, 31 ... First comb electrode, 32 ... Second comb electrode, 4 ... Upper electrode, 5 ... Lower electrode, 6 ... Insulating film, 7 ... Electrode Interval: 8 ... Adhesive sheet 9 ... Pedestal 10 ... Wafer 11 ... Diamond wheel 12 ... Die bond collet 13 ... Wafer chip 14 ... Heating means 15 ... Cooling means

Claims (10)

  1.  側鎖に複数の液晶性メゾゲン基を有する液晶高分子の主鎖と、前記主鎖間を架橋する架橋基と、を含み、前記メゾゲン基は、エネルギーを受けて二つ以上の状態の間で変化を引き起こし、それぞれの状態で異なる粘着力を示すものであり、前記変化は、前記エネルギーにより可逆的に制御することが可能であることを特徴とする易剥離性粘着剤。 A main chain of a liquid crystal polymer having a plurality of liquid crystalline mesogen groups in a side chain, and a cross-linking group that cross-links between the main chains, wherein the mesogen group receives energy between two or more states. An easily peelable pressure-sensitive adhesive that causes a change and exhibits different adhesive strength in each state, and the change can be reversibly controlled by the energy.
  2.  前記エネルギーは、熱エネルギー、電界のエネルギー又は光のエネルギーであることを特徴とする請求項1に記載の易剥離性粘着剤。 The easily peelable pressure-sensitive adhesive according to claim 1, wherein the energy is thermal energy, electric field energy or light energy.
  3.  下記一般式1のモノマー単位で表される側鎖型液晶ポリマーを1種類以上含有することを特徴とする請求項1に記載の易剥離性粘着剤。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式1において、Pはポリマー主鎖の単位を表し、Lはメゾゲン基を表し、SはPとLとを連結するスペーサーを表し、Lnは架橋基であり主鎖間を架橋する。)
    The easily peelable pressure-sensitive adhesive according to claim 1, comprising one or more side chain type liquid crystal polymers represented by monomer units of the following general formula 1.
    Figure JPOXMLDOC01-appb-C000001
    (In the above general formula 1, P represents a unit of the polymer backbone, L C represents a mesogen group, S P represents the spacer connecting the P and L C, Ln is a linking group between the main chain Crosslink.)
  4.  下記式2のモノマー単位で表される側鎖型共重合性液晶ポリマーを1種類以上含有することを特徴とする請求項1に記載の易剥離性粘着剤。
    Figure JPOXMLDOC01-appb-C000002
    (上記式2において、P及びP’はポリマー主鎖の単位を表し、Lはメゾゲン基を表し、SはPとLを連結するスペーサーであり、Rは炭素数1から30までのアルキル側鎖であり、Lnは架橋基であり主鎖間を架橋する。なお、LnはP’に結合していてもよい。)
    The easily peelable pressure-sensitive adhesive according to claim 1, comprising at least one type of side-chain copolymerizable liquid crystal polymer represented by a monomer unit of the following formula 2.
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula 2 represents P and P 'is a unit of the polymer backbone, L C represents a mesogen group, S P is a spacer linking the P and L C, R is from 1 to 30 carbon atoms (It is an alkyl side chain, Ln is a bridging group and bridges between main chains, and Ln may be bonded to P ′.)
  5.  側鎖型液晶ポリマーのポリマー主鎖の繰り返し単位Pは、シロキサン、アクリレート及びメタクリレートからなる群から選ばれる1つ以上であることを特徴とする請求項1~4のいずれかに記載の易剥離性粘着剤。 5. The easy peelability according to claim 1, wherein the repeating unit P of the polymer main chain of the side chain type liquid crystal polymer is one or more selected from the group consisting of siloxane, acrylate and methacrylate. Adhesive.
  6.  側鎖型液晶ポリマーのスペーサーSは、炭素数1から30までのアルキル基であることを特徴とする請求項1~4のいずれかに記載の易剥離性粘着剤。 Spacer S P output side chain type liquid crystal polymer is easily removable pressure sensitive adhesive according to any one of claims 1 to 4, characterized in that an alkyl group having 1 to 30 carbon atoms.
  7.  側鎖型液晶ポリマーのメゾゲン基は、下記式3で表されることを特徴とする請求項1~4のいずれかに記載の易剥離性粘着剤。
    Figure JPOXMLDOC01-appb-C000003
    (上記式3において、RはF、CN、及び炭素数1から30までのアルキル基またはアルコキシル基から選ばれ、A,Aはそれぞれ独立にシクロヘキサン環及びフェニル環から選ばれ、Aは、シクロヘキサン環、フェニル環及び単結合から選ばれ、Z,Zがそれぞれ独立に、-O-CO-,-COO-,-CH-CH-、-CH=CH-、-N=N-及び単結合から選ばれる。)
    5. The easily peelable pressure-sensitive adhesive according to claim 1, wherein the mesogenic group of the side chain type liquid crystal polymer is represented by the following formula 3.
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula 3, R 1 is selected from F, CN, and an alkyl group or alkoxyl group having 1 to 30 carbon atoms, A 1 and A 2 are each independently selected from a cyclohexane ring and a phenyl ring, and A 3 is cyclohexane ring is selected from phenyl ring and single bonds, the Z 1, Z 2 are each independently, -O-CO -, - COO -, - CH 2 -CH 2 -, - CH = CH -, - N = N- and a single bond.)
  8.  支持体と、該支持体に担持された易剥離性粘着剤と、を有する粘着材料において、前記易剥離性粘着剤が請求項1~7のいずれかに記載されたものであることを特徴とする粘着材料。 A pressure-sensitive adhesive material having a support and an easily peelable pressure-sensitive adhesive carried on the support, wherein the easily peelable pressure-sensitive adhesive is the one described in any one of claims 1 to 7. Adhesive material to do.
  9.  前記易剥離性粘着剤は、側鎖型液晶ポリマーを含み、前記側鎖型液晶ポリマーをスイッチングするための電極が設けられていることを特徴とする請求項8に記載の粘着材料。 The pressure-sensitive adhesive material according to claim 8, wherein the easily peelable pressure-sensitive adhesive contains a side-chain liquid crystal polymer, and an electrode for switching the side-chain liquid crystal polymer is provided.
  10.  側鎖に複数の液晶性メゾゲン基を有する液晶高分子の主鎖、及び前記主鎖間を架橋する架橋基を含む易剥離性粘着剤と、該易剥離性粘着剤を担持する部材と、前記易剥離性粘着剤に対してエネルギーを与えて前記易剥離性粘着剤の状態を変化させるエネルギー付与部と、前記易剥離性粘着剤に接触するように被処理物品を搬送する搬送部と、前記被処理物品を前記易剥離性粘着剤から分離する分離部と、を有し、前記メゾゲン基は、エネルギーを受けて二つ以上の状態の間で変化を引き起こし、それぞれの状態で異なる粘着力を示すものであり、前記変化は、前記エネルギーにより可逆的に制御することが可能であることを特徴とする処理装置。 A main chain of a liquid crystal polymer having a plurality of liquid crystalline mesogen groups in the side chain, an easily peelable pressure-sensitive adhesive containing a cross-linking group that crosslinks between the main chains, and a member carrying the easily peelable adhesive, An energy applying unit that applies energy to the easily peelable adhesive to change the state of the easily peelable adhesive, a transport unit that transports an article to be processed so as to contact the easily peelable adhesive, and A separation part for separating the article to be treated from the easily peelable adhesive, and the mesogen group receives energy to cause a change between two or more states, and has a different adhesive force in each state. The processing apparatus is characterized in that the change can be reversibly controlled by the energy.
PCT/JP2013/064970 2012-05-31 2013-05-30 Peelable adhesive, adhesive material using same, and processing device WO2013180196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012124000A JP5908795B2 (en) 2012-05-31 2012-05-31 Easy-release adhesive, adhesive material using the same, and processing apparatus
JP2012-124000 2012-05-31

Publications (1)

Publication Number Publication Date
WO2013180196A1 true WO2013180196A1 (en) 2013-12-05

Family

ID=49673383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064970 WO2013180196A1 (en) 2012-05-31 2013-05-30 Peelable adhesive, adhesive material using same, and processing device

Country Status (2)

Country Link
JP (1) JP5908795B2 (en)
WO (1) WO2013180196A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044068A (en) * 2017-09-01 2019-03-22 ニッタ株式会社 Temperature-sensitive resin and temperature-sensitive pressure-sensitive adhesive
WO2020255579A1 (en) * 2019-06-21 2020-12-24 国立研究開発法人産業技術総合研究所 Release agent for polymer compounds, adhesive material, and method for using adhesive material
WO2021200054A1 (en) * 2020-03-30 2021-10-07 日東電工株式会社 Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and bonded object

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6558074B2 (en) * 2015-05-25 2019-08-14 日産化学株式会社 Thermosetting resin composition and retardation film
JP6334072B2 (en) * 2016-01-07 2018-05-30 国立研究開発法人産業技術総合研究所 Photoreversible adhesive
JP7007550B2 (en) * 2016-06-23 2022-01-24 ニッタ株式会社 Temperature Sensitive Resin, Temperature Sensitive Adhesive and Thermosensitive Adhesive Composition
JP6961226B2 (en) * 2017-01-23 2021-11-05 国立研究開発法人産業技術総合研究所 Hardness modifiers for polymer compounds and photosensitive composite materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507932A (en) * 1996-03-19 2000-06-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Reactive liquid crystal compound
JP2001509128A (en) * 1995-10-17 2001-07-10 デンツプライ インターナショナル インコーポレーテッド Liquid crystal (meth) acrylate compounds, compositions and methods
JP2007506813A (en) * 2003-07-12 2007-03-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Polymerized liquid crystal film with improved adhesion
WO2011003846A1 (en) * 2009-07-09 2011-01-13 Rolic Ag Ester group containing liquid crystals for optical or electro optical devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525941C2 (en) * 1995-07-18 1999-11-25 Ivoclar Ag Schaan Polymerizable liquid-crystalline monomer, dental materials based on liquid-crystalline monomers and use of a polymerizable monomer with liquid-crystalline properties for the production of a dental material
JP4172064B2 (en) * 1997-06-30 2008-10-29 東レ株式会社 Method for producing welding resin composition
JP2001089420A (en) * 1999-09-16 2001-04-03 Idemitsu Kosan Co Ltd Acrylate compound and adhesive and liquid crystal element using the same
JP2004115682A (en) * 2002-09-27 2004-04-15 Jsr Corp Fixing agent for solid material and method for fixing and separating solid material
JP2003347254A (en) * 2002-05-30 2003-12-05 Jsr Corp Wafer fixing composition and wafer processing method using the same
JP2005204352A (en) * 2004-01-13 2005-07-28 Nissan Motor Co Ltd Adhesive and securing method of permanent magnet to motor and permanent magnet motor
JP2006002144A (en) * 2004-05-18 2006-01-05 Nissan Motor Co Ltd Adhesive, method for fixing permanent magnet to motor, and permanent magnet-type motor
JP5397822B2 (en) * 2010-11-11 2014-01-22 独立行政法人科学技術振興機構 Micelle and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509128A (en) * 1995-10-17 2001-07-10 デンツプライ インターナショナル インコーポレーテッド Liquid crystal (meth) acrylate compounds, compositions and methods
JP2000507932A (en) * 1996-03-19 2000-06-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Reactive liquid crystal compound
JP2007506813A (en) * 2003-07-12 2007-03-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Polymerized liquid crystal film with improved adhesion
WO2011003846A1 (en) * 2009-07-09 2011-01-13 Rolic Ag Ester group containing liquid crystals for optical or electro optical devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019044068A (en) * 2017-09-01 2019-03-22 ニッタ株式会社 Temperature-sensitive resin and temperature-sensitive pressure-sensitive adhesive
JP7045006B2 (en) 2017-09-01 2022-03-31 ニッタ株式会社 Temperature-sensitive resin and temperature-sensitive adhesive
WO2020255579A1 (en) * 2019-06-21 2020-12-24 国立研究開発法人産業技術総合研究所 Release agent for polymer compounds, adhesive material, and method for using adhesive material
JP2021001262A (en) * 2019-06-21 2021-01-07 国立研究開発法人産業技術総合研究所 Release agent for polymer compound, adhesive material, and method for using adhesive material
CN112469388A (en) * 2019-06-21 2021-03-09 国立研究开发法人产业技术综合研究所 Release agent for polymer compound, adhesive material, and method for using adhesive material
CN112469388B (en) * 2019-06-21 2023-03-14 国立研究开发法人产业技术综合研究所 Release agent for polymer compound, adhesive material, and method for using adhesive material
WO2021200054A1 (en) * 2020-03-30 2021-10-07 日東電工株式会社 Pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and bonded object
CN115335486A (en) * 2020-03-30 2022-11-11 日东电工株式会社 Adhesive composition, adhesive sheet, and bonded body

Also Published As

Publication number Publication date
JP2013249355A (en) 2013-12-12
JP5908795B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
WO2013180196A1 (en) Peelable adhesive, adhesive material using same, and processing device
TWI651385B (en) Temperature sensitive adhesive, temperature sensitive adhesive sheet, temperature sensitive adhesive tape, manufacturing method of ceramic member, and manufacturing method of laminated ceramic capacitor
JP2020041119A5 (en) Manufacturing method of reinforcing film and device with reinforcing film
TWI427134B (en) Pressure-sensitive adhesive sheet for dicing and dicing method
JP5700466B2 (en) Re-peeling adhesive composition, adhesive sheet and tape
JP5231775B2 (en) Temperature-sensitive resin, temperature-sensitive adhesive, and temperature-sensitive adhesive tape
WO2008053840A1 (en) Thermally strippable double faced adhesive sheet and method of working work piece
WO2004065510A1 (en) Pressure sensitive adhesive sheet, method of protecting semiconductor wafer surface and method of processing work
JP5551959B2 (en) Easy peelable adhesive sheet and easy peelable adhesive tape
TW200914573A (en) Dicing/die bonding tape and method for manufacturing semiconductor chip
JP6337480B2 (en) Adhesive tape, articles and electronic equipment
JP5235904B2 (en) Adhesive resin for foamed sheet using interreactive copolymer and foamed sheet using the same
TW201900808A (en) Multi-layer adhesive tape
JP5486900B2 (en) Temperature sensitive adhesive
JP6754609B2 (en) Temperature sensitive adhesive
JP2012149200A (en) Adhesive tape
TW202229497A (en) Thermally conductive adhesive agent composition, adhesive sheet, and production method therefor
JP6479540B2 (en) Temperature sensitive adhesive
JP6898226B2 (en) Temperature sensitive adhesive composition
JP2011001520A (en) Adhesive sheet and tape for fixing mold
KR20170113269A (en) Temperature-sensitive adhesive
JP6792509B2 (en) Temperature sensitive adhesive
TWI593777B (en) Thermosensitiveadhesive sheet for dicing ceramic electronic components and method for manufacturing ceramic electronic components
JP2015034302A (en) Re-releasable adhesive composition, adhesive sheet and tape
KR20180114101A (en) Adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13796374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13796374

Country of ref document: EP

Kind code of ref document: A1