JP5397822B2 - Micelle and its use - Google Patents

Micelle and its use Download PDF

Info

Publication number
JP5397822B2
JP5397822B2 JP2011553642A JP2011553642A JP5397822B2 JP 5397822 B2 JP5397822 B2 JP 5397822B2 JP 2011553642 A JP2011553642 A JP 2011553642A JP 2011553642 A JP2011553642 A JP 2011553642A JP 5397822 B2 JP5397822 B2 JP 5397822B2
Authority
JP
Japan
Prior art keywords
group
micelle
liquid crystal
compound
crystal phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011553642A
Other languages
Japanese (ja)
Other versions
JPWO2012063509A1 (en
Inventor
隆志 宮田
忠 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2011553642A priority Critical patent/JP5397822B2/en
Application granted granted Critical
Publication of JP5397822B2 publication Critical patent/JP5397822B2/en
Publication of JPWO2012063509A1 publication Critical patent/JPWO2012063509A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/40Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen or sulfur, e.g. silicon, metals
    • C09K19/406Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen or sulfur, e.g. silicon, metals containing silicon
    • C09K19/408Polysiloxanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Liquid Crystal Substances (AREA)
  • Medicinal Preparation (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、例えば、薬物放出キャリア、水性塗料、コーティング剤、接着剤、吸着剤等として有用な化合物を含むミセル、およびその利用に関するものである。
The present invention relates to micelles containing compounds useful as, for example, drug release carriers, aqueous paints, coating agents, adhesives, adsorbents, and the like, and uses thereof .

親水鎖と疎水鎖とからなる両親媒性分子は水中でミセルを形成することが知られており、様々な分野で利用されている。   Amphiphilic molecules consisting of hydrophilic and hydrophobic chains are known to form micelles in water and are used in various fields.

例えば、このようなミセルはその内部に疎水性薬物等を保持させることができ、様々な薬物を放出制御するための薬物キャリアとしてドラッグデリバリーシステム(DDS)等への応用研究が精力的に行われている。最近では、pHや温度変化によってミセルの安定性が変化して薬物放出を制御できるシステムも報告されており、自律応答型DDSや標的指向型DDS等への応用が期待されている(例えば、非特許文献1参照)。   For example, such micelles can hold hydrophobic drugs and the like in the inside, and application research to drug delivery systems (DDS) and the like has been vigorously conducted as drug carriers for controlling the release of various drugs. ing. Recently, a system that can control drug release by changing the stability of micelles due to changes in pH and temperature has been reported, and is expected to be applied to autonomous response type DDS, target-oriented type DDS, etc. Patent Document 1).

Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, K. Kataoka, Bioconjugate Chem. 2005, 16, 122-130Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, K. Kataoka, Bioconjugate Chem. 2005, 16, 122-130

しかしながら、これまでに、水中においてミセルを形成する化合物であって、当該ミセル内部において、液晶相を形成する化合物は全く報告されていない。   However, so far, no compound that forms micelles in water and forms a liquid crystal phase inside the micelle has been reported.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、水中においてミセルを形成する化合物であって、当該ミセル内部において、液晶相を形成する化合物を実現することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to realize a compound that forms a micelle in water and that forms a liquid crystal phase inside the micelle.

本発明者は、上記化合物を実現することによって、物質を内包することが可能で、特定の刺激に応答して当該物質を放出する際に、ある一定時間徐放することが可能なミセルを形成し得る化合物を実現できるのではないかと考えた。   By realizing the above-mentioned compound, the present inventor forms a micelle that can encapsulate a substance and that can be released slowly for a certain period of time when the substance is released in response to a specific stimulus. I thought that a possible compound could be realized.

具体的には、温度等の特定の刺激に応答して薬物放出する際に、瞬時の放出よりもある一定時間徐放することが有効な場合もある。従来から、pHや温度等の物理化学的な環境変化に応答するミセルは既に報告されているが、そのほとんどが外部刺激によってミセルが崩壊する等の劇的な構造変化を伴う。このため、このような従来のミセルを薬物放出等に利用する場合には瞬時に薬物の放出が完了される場合が多い。つまり、従来のミセルを利用した場合では、刺激に応答したミセル崩壊に基づいて放出を制御しているため、刺激応答後に薬物を一定時間徐放することは困難である。   Specifically, when releasing a drug in response to a specific stimulus such as temperature, it may be effective to release the drug for a certain period of time rather than instantaneous release. Conventionally, micelles that respond to changes in physicochemical environment such as pH and temperature have already been reported, but most of them are accompanied by dramatic structural changes such as the collapse of micelles by external stimuli. For this reason, when such conventional micelles are used for drug release, drug release is often completed instantly. That is, in the case of using conventional micelles, since the release is controlled based on the micelle collapse in response to the stimulus, it is difficult to release the drug for a certain period of time after the stimulus response.

そこで、本発明者は、上記課題を解決するためには、薬物放出等に利用するためのミセルとして、コア部分の分子鎖が配向し、外部刺激によってその配向構造が変化するが、ミセルそのものの崩壊は誘起しないような新規なミセルが有効であると考えた。しかしながら、一般的なミセルは水中において疎水鎖が集合してコアを形成し、親水鎖はシェル層としてミセルの安定化に寄与しており、これらの分子鎖はランダム構造を有している。このため、コアにおいて分子鎖が分子配向性を有するミセルは皆無である。   Therefore, in order to solve the above problems, the present inventor, as a micelle for use in drug release or the like, the molecular chain of the core portion is oriented and its orientation structure is changed by an external stimulus. A novel micelle that does not induce collapse is considered effective. However, in general micelles, hydrophobic chains aggregate in water to form a core, and hydrophilic chains contribute to stabilization of the micelle as a shell layer, and these molecular chains have a random structure. For this reason, there are no micelles in which molecular chains have molecular orientation in the core.

一方、一般に、液晶分子は温度変化等によって、分子が配向した液晶状態から等方相状態へと変化し、その液晶−等方相転移点で分子配向状態が大きく変化する。従って、ミセルのコア部分が液晶状態を示すミセルを形成させることができれば、温度変化によってミセル構造を崩壊させず、分子配向状態等の内部構造を変化させる温度応答性ミセルが得られると本発明者は考えた。   On the other hand, in general, liquid crystal molecules change from a liquid crystal state in which the molecules are aligned to an isotropic phase state due to a temperature change or the like, and the molecular alignment state greatly changes at the liquid crystal-isotropic phase transition point. Therefore, if the micelle core portion can form a micelle exhibiting a liquid crystal state, the present inventors will obtain a temperature-responsive micelle that changes the internal structure such as the molecular orientation state without destroying the micelle structure due to temperature change. Thought.

更には、本発明者は、上記新規化合物はミセル内部において液晶相を形成するため、従来のフィルム型液晶や溶媒溶解型液晶とは異なり、水分散型液晶として水性塗料、コーティング剤、接着剤、吸着剤等の幅広い分野での応用が可能になると考えた。   Furthermore, the present inventor has found that the above-mentioned novel compound forms a liquid crystal phase inside the micelle, so that it differs from conventional film-type liquid crystals and solvent-soluble liquid crystals as water-dispersed liquid crystals as water-based paints, coating agents, adhesives, We thought that it could be applied in a wide range of fields such as adsorbents.

そこで、本発明者は、表示素子等に既に幅広く利用されているが、医用材料に関する研究は報告されていない液晶性分子に注目し、鋭意検討を行った。その結果、水中においてミセルを形成する化合物であって、当該ミセル内部において、液晶相を形成する化合物を見出し、本発明を完成するに至った。   Therefore, the present inventor has intensively studied paying attention to liquid crystal molecules that have already been widely used for display elements and the like but have not been reported on medical materials. As a result, a compound that forms micelles in water and that forms a liquid crystal phase inside the micelle has been found, and the present invention has been completed.

即ち、本発明に係る化合物は、上記課題を解決するために、水中においてミセルを形成する化合物であって、当該ミセル内部において、液晶相を形成することを特徴としている。   That is, the compound according to the present invention is a compound that forms micelles in water in order to solve the above problems, and is characterized by forming a liquid crystal phase inside the micelle.

上記構成によれば、ミセル内部において、液晶相と等方相とを温度等の外部刺激によって制御することができるため、例えば、ミセル内部に、薬物等の物質を含有させれば、温度変化等の外部刺激によって、当該物質を少しずつ放出させることができると考えられる。よって、薬物等の物質を内包することが可能で、特定の刺激に応答して物質放出する際に、ある一定時間徐放することが可能なミセルを形成し得る化合物を提供することが期待できる。   According to the above configuration, the liquid crystal phase and the isotropic phase can be controlled inside the micelle by an external stimulus such as temperature. For example, if a substance such as a drug is contained inside the micelle, the temperature change etc. It is considered that the substance can be released little by little by external stimulation. Therefore, it is possible to provide a compound that can encapsulate a substance such as a drug and can form a micelle that can be sustainedly released for a certain time when releasing the substance in response to a specific stimulus. .

更には、従来の液晶が利用されている分野とは全く異なった、環境やエネルギー関係等の新分野、例えば、水性塗料、コーティング剤、接着剤、吸着剤等への利用も期待できる。   Furthermore, it can be expected to be used in new fields such as environment and energy, which are completely different from the fields where conventional liquid crystals are used, such as water-based paints, coating agents, adhesives, adsorbents and the like.

本発明に係る化合物は、以上のように、水中においてミセルを形成する化合物であって、当該ミセル内部において、液晶相を形成することを特徴としている。   As described above, the compound according to the present invention is a compound that forms micelles in water, and is characterized by forming a liquid crystal phase inside the micelle.

このため、水中においてミセルを形成する化合物であって、当該ミセル内部において、液晶相を形成する化合物を提供することができる。   For this reason, it is a compound which forms a micelle in water, Comprising: The compound which forms a liquid crystal phase inside the said micelle can be provided.

各温度におけるPEG−g−LCPフィルムの偏光顕微鏡写真を示す図である。It is a figure which shows the polarizing microscope photograph of the PEG-g-LCP film in each temperature. PEG−g−LCP濃度とピレンの蛍光強度との関係を示すグラフである。It is a graph which shows the relationship between the PEG-g-LCP density | concentration and the fluorescence intensity of pyrene. 水中におけるPEG−g−LCP高分子ミセルについての、(a)SEM写真、(b)TEM写真、(c)AFM写真を示す図である。It is a figure which shows (a) SEM photograph, (b) TEM photograph, and (c) AFM photograph about the PEG-g-LCP polymer micelle in water. PEG−g−LCP高分子ミセルを模式的に示す図である。It is a figure which shows typically a PEG-g-LCP polymeric micelle. 光散乱によって決定された液晶高分子ミセルの粒径の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the particle size of the liquid crystal polymer micelle determined by light scattering.

以下、本発明について詳しく説明する。尚、本明細書で挙げられている各種物性は、特に断りの無い限り後述する実施例に記載の方法により測定した値を意味する。   The present invention will be described in detail below. In addition, unless otherwise indicated, the various physical properties mentioned in this specification mean values measured by the methods described in Examples described later.

(I)化合物
本発明に係る化合物は、水中においてミセルを形成する化合物であって、当該ミセル内部において、液晶相を形成する。また、本発明に係る化合物は、両親媒性化合物であって、通常の使用温度(100℃以下)で液晶相を示し、分子量が500〜5,000,000の範囲内である化合物とも言い換えることができる。
(I) Compound The compound according to the present invention is a compound that forms a micelle in water, and forms a liquid crystal phase inside the micelle. In addition, the compound according to the present invention is an amphiphilic compound, exhibits a liquid crystal phase at a normal use temperature (100 ° C. or less), and can be rephrased as a compound having a molecular weight in the range of 500 to 5,000,000. Can do.

尚、本明細書において、「両親媒性化合物」とは、分子内に親水基と疎水基とを有する化合物であって、具体的には、水溶液とした際に、任意の濃度範囲においてミセルを形成する化合物を意味する。   In the present specification, an “amphiphilic compound” is a compound having a hydrophilic group and a hydrophobic group in a molecule. Specifically, when an aqueous solution is used, micelles are added in an arbitrary concentration range. It means the compound that forms.

また、本明細書において「ミセル」とは、水中において両親媒性化合物が形成する集合体を意味し、球状ミセル、ベシクル等の層状ミセル、棒状ミセル等の各種形状の集合体を含む。   In the present specification, “micelle” means an aggregate formed by an amphiphilic compound in water, and includes aggregates of various shapes such as spherical micelles, layered micelles such as vesicles, and rod-like micelles.

これまで、親水鎖と疎水鎖とからなる様々な両親媒性高分子が合成されており、そのミセル形成を利用した薬物放出等が報告されている。しかしながら、その薬物保持部位となる疎水鎖が集合したコア部分は分子鎖がランダム状態にあり、液晶のような高い運動性と規則性とを兼ね備えた状態のミセルは全く報告されていない。   So far, various amphiphilic polymers composed of hydrophilic and hydrophobic chains have been synthesized, and drug release utilizing their micelle formation has been reported. However, the core portion in which the hydrophobic chains serving as the drug holding sites are assembled has a random molecular chain, and no micelle having a high mobility and regularity like liquid crystal has been reported.

一方で、世界中で様々な液晶分子が合成されているが、室温付近で液晶性を示す両親媒性液晶高分子を合成し、水中におけるその自己集合による液晶高分子ミセルの形成は全く報告されていない。尚、溶媒との共存で形成されるリオトロピック液晶は、その溶液全体が液晶性を示しているため、本発明に係る上記化合物が形成するミセルの状態とは全く異なる状態である。   On the other hand, various liquid crystal molecules have been synthesized all over the world, but amphiphilic liquid crystal polymers exhibiting liquid crystallinity near room temperature were synthesized, and the formation of liquid crystal polymer micelles due to their self-assembly in water was completely reported. Not. The lyotropic liquid crystal formed in the coexistence with the solvent is completely different from the micelle state formed by the compound according to the present invention because the whole solution exhibits liquid crystallinity.

よって、コア部分が液晶状態となっているミセルを調製することができれば、これまでにない刺激応答性を示す可能性があり、DDS等の医療分野や環境分野に利用できるミセルとして幅広い応用展開が期待される。一方で、水に分散できる液晶という点でも全く新しい液晶材料であり、液晶の新しい分野展開につながることが予想される。つまり、本発明に係る上記化合物は、従来のミセル及び液晶分子の両方の特徴を併せ持った新規材料として様々な応用展開が期待される材料である。   Therefore, if micelles whose core part is in a liquid crystal state can be prepared, there is a possibility of exhibiting unprecedented stimulus responsiveness, and wide application development as micelles that can be used in the medical field and environmental field such as DDS. Be expected. On the other hand, it is a completely new liquid crystal material in terms of liquid crystal that can be dispersed in water, and is expected to lead to the development of new fields of liquid crystal. That is, the compound according to the present invention is a material that is expected to be applied in various ways as a novel material having the characteristics of both conventional micelles and liquid crystal molecules.

上記化合物における液晶相を示す温度範囲は、0〜100℃の範囲内であることが好ましく、15〜60℃の範囲内であることがより好ましく、25〜45℃の範囲内であることが特に好ましい。   The temperature range showing the liquid crystal phase in the compound is preferably in the range of 0 to 100 ° C, more preferably in the range of 15 to 60 ° C, and particularly preferably in the range of 25 to 45 ° C. preferable.

また同様に、上記ミセル内部における液晶相を示す温度範囲は、0〜100℃の範囲内であることが好ましく、15〜60℃の範囲内であることがより好ましく、25〜45℃の範囲内であることが特に好ましい。   Similarly, the temperature range showing the liquid crystal phase inside the micelle is preferably in the range of 0 to 100 ° C, more preferably in the range of 15 to 60 ° C, and in the range of 25 to 45 ° C. It is particularly preferred that

上記ミセル内部の液晶相における、液晶相から等方相への転移温度は20〜60℃の範囲内であることが好ましく、30〜50℃の範囲内であることがより好ましく、35〜45℃の範囲内であることが特に好ましい。このような、ミセル内部において、室温付近で液晶状態となり、適当な条件で等方相へと変化する液晶−等方相転移点を有する化合物であれば、DDS等の医療分野に好適に用いることができる。   The transition temperature from the liquid crystal phase to the isotropic phase in the liquid crystal phase inside the micelle is preferably in the range of 20 to 60 ° C, more preferably in the range of 30 to 50 ° C, and 35 to 45 ° C. It is particularly preferable that the value falls within the range. Such a compound having a liquid crystal-isotropic phase transition point that becomes a liquid crystal state near room temperature and changes to an isotropic phase under appropriate conditions should be suitably used in the medical field such as DDS. Can do.

上記化合物の分子量は、500〜5,000,000の範囲内であることが好ましく、1,000〜3,000,000の範囲内であることがより好ましく、10,000〜1,000,000の範囲内であることが特に好ましい。   The molecular weight of the above compound is preferably in the range of 500 to 5,000,000, more preferably in the range of 1,000 to 3,000,000, and 10,000 to 1,000,000. It is particularly preferable that the value falls within the range.

上記化合物は、親水基とメソゲン基とを含むことが好ましく、鎖状化合物に、側鎖として、親水基と、メソゲン基とを含む構造を有することが好ましい。   The compound preferably includes a hydrophilic group and a mesogenic group, and the chain compound preferably has a structure including a hydrophilic group and a mesogenic group as side chains.

上記化合物の主鎖としては、メソゲン基が互いに配向して液晶相を形成し易くする観点から、柔軟な構造を有するものが好ましい。具体的には、主鎖中に、エーテル結合等の酸素原子を含む構造が挙げられ、例えば、ポリシロキサン及びこの誘導体が挙げられる。
As the main chain of the above compound, those having a flexible structure are preferable from the viewpoint of easily aligning mesogenic groups with each other to form a liquid crystal phase. Specific examples include a structure containing an oxygen atom such as an ether bond in the main chain, and examples thereof include polysiloxane and derivatives thereof.

尚、上記ポリシロキサンとしては、シロキサン結合を繰り返し単位に含むポリマーであれば特には限定されないが、親水基及びメソゲン基を導入し易くする観点から、下記式   The polysiloxane is not particularly limited as long as it is a polymer containing a siloxane bond in a repeating unit, but from the viewpoint of facilitating introduction of a hydrophilic group and a mesogenic group, the following formula

(式中、Rは、それぞれ独立して、有機基であり、好ましくは炭化水素基、より好ましく炭素数1〜5の炭化水素基である。nは1〜10,000の整数である。)
に示すシロキサンのように、繰り返し単位中に活性水素を有するポリシロキサンが好ましい。
(In the formula, each R is independently an organic group, preferably a hydrocarbon group, more preferably a hydrocarbon group having 1 to 5 carbon atoms. N is an integer of 1 to 10,000.)
A polysiloxane having active hydrogen in the repeating unit is preferable, such as siloxane shown in FIG.

上記親水基としては、メソゲン基よりも親水性が高い置換基であれば特には限定されず、例えば、−OH、下記式
−(OR−OH
(式中、Rは2価の炭化水素基、nは1〜50の整数である。)
で表されるポリアルキレングリコール基等の非イオン性基や、−COOH、−SOH、及びこれらのアルカリ金属塩等のアニオン性基や、
−NR
(式中、Rは、水素若しくは1価の炭化水素基である。)
及びその4級アンモニウム塩等のカチオン性基及びそれらを含む高分子鎖が挙げられる。
The hydrophilic group is not particularly limited as long as it is a substituent having higher hydrophilicity than the mesogenic group. For example, —OH, the following formula — (OR 2 ) n —OH
(In the formula, R 2 is a divalent hydrocarbon group, and n is an integer of 1 to 50.)
A nonionic group such as a polyalkylene glycol group represented by: an anionic group such as —COOH, —SO 3 H, and an alkali metal salt thereof;
-NR 3 2
(In the formula, R 3 is hydrogen or a monovalent hydrocarbon group.)
And cationic groups such as quaternary ammonium salts thereof and polymer chains containing them.

生体親和性の観点からは、−(OR−OHで表されるポリアルキレングリコール基が好ましく、ポリエチレングリコール基が特に好ましい。From the viewpoint of biocompatibility, a polyalkylene glycol group represented by — (OR 2 ) n —OH is preferred, and a polyethylene glycol group is particularly preferred.

尚、上記ポリアルキレングリコール基は、ポリエチレングリコールのようなホモポリマーからなる基であってもよいし、ポリエチレングリコール/プロピレングリコールのようなコポリマーからなる基であってもよい。また、コポリマーからなる基である場合には、その重合形態は、ブロックコポリマーであってもよいし、ランダムコポリマーであってもよい。   The polyalkylene glycol group may be a group made of a homopolymer such as polyethylene glycol or a group made of a copolymer such as polyethylene glycol / propylene glycol. In the case of a group comprising a copolymer, the polymerization form may be a block copolymer or a random copolymer.

上記メソゲン基としては、従来公知の液晶分子の基本骨格であるメソゲン構造を有する基を用いることができる。液晶分子は、通常、硬い部分構造と1以上の柔軟な部分構造とからなり、この硬い部分構造であって、一般的に、棒状又は板状の剛直な部分構造を「メソゲン」という。   As the mesogenic group, a group having a mesogenic structure that is a basic skeleton of a conventionally known liquid crystal molecule can be used. The liquid crystal molecules are usually composed of a hard partial structure and one or more flexible partial structures, and this hard partial structure is generally called a rod-like or plate-like rigid partial structure as a “mesogen”.

このようなメソゲン基としては、例えば、下記一般式
−(A−B)−A−C
(式中、A及びAは、それぞれ独立して、1,4−フェニレン基、1,4−フェニレン基の1個若しくは2個以上のCH基がNにより置き換えられたヘテロ環基、1,4−シクロヘキシレン基、1,4−シクロヘキシレン基の1個のCH基若しくは隣接していない2個のCH基がO及び/又はSにより置き換えられていてもよいへテロ環基、1,4−シクロヘキセニレン基、又はナフタレン−2,6−ジイル基であり、これらの基は置換基を有していてもよい。Bは、−COO−、−OCO−、−CHCH−、−OCH−、−CHO−、−CH=CH−、−C≡C−、−CH=CH−COO−、−OCO−CH=CH−、又は単結合である。Cは、一価の有機基であり、mは1〜10の整数である。)
尚、鎖状化合物として、ポリアルキレングリコールのような親水基を用いる場合には、側鎖として、別途親水基を備えていてもよいし、備えていなくてもよい。
As such a mesogenic group, for example, the following general formula-(A 1 -B) m -A 2 -C
(In the formula, A 1 and A 2 are each independently a 1,4-phenylene group, a heterocyclic group in which one or two or more CH groups in the 1,4-phenylene group are replaced by N; , 4-cyclohexylene group, 1,4-cyclohexylene one CH 2 group or non-adjacent two heterocyclic group CH 2 group to which may be replaced by O and / or S groups, 1, 4-cyclohexenylene group or naphthalene-2,6-diyl group, and these groups may have a substituent, and B represents —COO—, —OCO—, —CH 2 CH. 2 —, —OCH 2 —, —CH 2 O—, —CH═CH—, —C≡C—, —CH═CH—COO—, —OCO—CH═CH—, or a single bond. A monovalent organic group, and m is an integer of 1 to 10.)
When a hydrophilic group such as polyalkylene glycol is used as the chain compound, a hydrophilic group may or may not be separately provided as a side chain.

上述した化合物は、従来公知の方法によって合成することができる。例えば、(i)鎖状化合物の主鎖に対して、当該主鎖と反応し得る基を有する親水基と、当該主鎖と反応し得る基を有するメソゲン基とを反応させる方法や、(ii)重合性基を有する親水基と、重合性基を有するメソゲン基と、高分子主鎖となり得る単量体とを重合させる方法等が挙げられる。   The above-mentioned compound can be synthesized by a conventionally known method. For example, (i) a method in which a main group of a chain compound is reacted with a hydrophilic group having a group capable of reacting with the main chain and a mesogenic group having a group capable of reacting with the main chain; And a method of polymerizing a hydrophilic group having a polymerizable group, a mesogenic group having a polymerizable group, and a monomer capable of forming a polymer main chain.

より具体的には、(i)の方法としては、後述する実施例に示すように、活性水素を有するポリシロキサンに、ビニル基を有する親水基と、ビニル基を有するメソゲン基とを反応させる方法が挙げられる。   More specifically, as the method of (i), as shown in the examples described later, a polysiloxane having active hydrogen is reacted with a hydrophilic group having a vinyl group and a mesogenic group having a vinyl group. Is mentioned.

また、(ii)の方法としては、グリシジル基を有する親水基と、グリシジル基を有するメソゲン基との存在下、エチレンオキシド等のアルキレンオキシドを単量体として重合する方法が挙げられる。   In addition, as the method (ii), there is a method in which an alkylene oxide such as ethylene oxide is polymerized as a monomer in the presence of a hydrophilic group having a glycidyl group and a mesogenic group having a glycidyl group.

(II)ミセル
本発明に係るミセルは、本発明に係る上記化合物を含む。
(II) Micelle The micelle according to the present invention contains the above compound according to the present invention.

本発明に係る上記化合物は、上述したように、ミセル内部において、液晶相と等方相とを温度変化等の外部刺激によって制御することができるため、ミセル内部に、薬物等の物質を含有させれば、温度変化等の外部刺激によって、当該物質を少しずつ放出させることができる。   As described above, the compound according to the present invention can control the liquid crystal phase and the isotropic phase inside the micelle by an external stimulus such as a temperature change. Therefore, the micelle contains a substance such as a drug. Then, the substance can be released little by little by an external stimulus such as a temperature change.

上記ミセルは、水系溶媒中において形成され、本発明に係る上記化合物のみから構成されていてもよいが、液晶相の形成を妨げない範囲内で、他の界面活性剤や、溶剤、溶質等を含有させてもよい。また、ミセルを形成する、本発明に係る上記化合物は、1種類のみを用いてもよいし、2種以上を併用してもよい。   The micelles are formed in an aqueous solvent and may be composed only of the compound according to the present invention, but other surfactants, solvents, solutes, etc. may be used as long as they do not interfere with the formation of the liquid crystal phase. You may make it contain. Moreover, the said compound based on this invention which forms a micelle may use only 1 type, and may use 2 or more types together.

ミセルの形状及び大きさは、用途によって適宜変更すればよく、例えば、薬物放出キャリアとして用いる場合には、内包させる薬物の種類に応じて適宜変更すればよい。   The shape and size of the micelle may be appropriately changed depending on the application. For example, when used as a drug release carrier, it may be appropriately changed according to the type of drug to be included.

ミセルの形成は、本発明に係る上記化合物を、単に水系溶媒中に分散させることによって行ってもよいし、透析によって行ってもよい。   The micelles may be formed by simply dispersing the compound according to the present invention in an aqueous solvent or by dialysis.

(III)薬物の放出を制御する方法
本発明に係る薬物の放出を制御する方法は、上記薬物放出キャリアを水中でミセル形成させ、当該ミセル内部に薬物を保持させ、外部刺激によって当該薬物の放出を制御する方法である。
(III) Method for controlling drug release The method for controlling drug release according to the present invention comprises forming the drug release carrier in micelles in water, holding the drug inside the micelle, and releasing the drug by external stimulation. It is a method to control.

上記外部刺激としては、薬物放出キャリア内部の液晶相を等方相へ転移させることができれば特には限定されないが、例えば、温度変化、電流等が挙げられる。   The external stimulus is not particularly limited as long as the liquid crystal phase inside the drug release carrier can be transferred to the isotropic phase, and examples thereof include temperature change and current.

薬物放出キャリアが保持及び放出し得る薬剤としては、例えば、可塑剤や抗ガン剤が挙げられる。   Examples of drugs that can be held and released by the drug release carrier include plasticizers and anticancer agents.

(IV)組成物
本発明に係る組成物は、水性塗料、コーティング剤、接着剤又は吸着剤に用いられ、本発明に係る上記化合物を含む。
(IV) Composition The composition according to the present invention is used for water-based paints, coating agents, adhesives or adsorbents, and contains the above-mentioned compound according to the present invention.

上記組成物は、本発明に係る上記化合物を含むため、通常の使用温度(100℃以下)で液晶相を示す。このため、上記組成物は、各種用途において、高い運動性と規則性を併せ持った液晶構造の特性を利用することができ、あるいは相転移によって物性を制御することが可能となる。   Since the said composition contains the said compound based on this invention, it shows a liquid crystal phase at normal use temperature (100 degrees C or less). For this reason, the composition can utilize the characteristics of a liquid crystal structure having both high mobility and regularity in various applications, or the physical properties can be controlled by phase transition.

上記組成物には、本発明に係る上記両親媒性化合物以外に、その用途に合わせて、水性塗料、コーティング剤、接着剤又は吸着剤等に一般的に用いられている各種成分を含有させることができる。   In addition to the amphiphilic compound according to the present invention, the composition contains various components generally used in water-based paints, coating agents, adhesives, adsorbents, etc., in accordance with the intended use. Can do.

すなわち、本願には以下の発明が含まれる。   That is, the present invention includes the following inventions.

本発明に係る化合物は、上記課題を解決するために、水中においてミセルを形成する化合物であって、当該ミセル内部において、液晶相を形成することを特徴としている。   In order to solve the above-mentioned problems, the compound according to the present invention is a compound that forms micelles in water, and is characterized by forming a liquid crystal phase inside the micelle.

また、本発明に係る化合物は、上記課題を解決するために、両親媒性化合物であって、100℃以下で液晶相を示し、分子量が500〜5,000,000の範囲内であることを特徴としている。   Further, in order to solve the above problems, the compound according to the present invention is an amphiphilic compound, exhibits a liquid crystal phase at 100 ° C. or less, and has a molecular weight in the range of 500 to 5,000,000. It is a feature.

上記構成によれば、上記両親媒性化合物は、水中においてミセルを形成し、当該ミセル内部において液晶相を形成することができる。そして、ミセル内部において、液晶相と等方相とを温度等の外部刺激によって制御することができるため、例えば、ミセル内部に、薬物等の物質を含有させれば、温度変化等の外部刺激によって、当該物質を少しずつ放出させることができると考えられる。よって、薬物等の物質を内包することが可能で、特定の刺激に応答して物質放出する際に、ある一定時間徐放することが可能なミセルを形成し得る化合物を提供することが期待できる。   According to the said structure, the said amphiphilic compound can form a micelle in water and can form a liquid crystal phase inside the said micelle. In addition, since the liquid crystal phase and the isotropic phase can be controlled by an external stimulus such as temperature inside the micelle, for example, if a substance such as a drug is contained inside the micelle, It is considered that the substance can be released little by little. Therefore, it is possible to provide a compound that can encapsulate a substance such as a drug and can form a micelle that can be sustainedly released for a certain time when releasing the substance in response to a specific stimulus. .

更には、従来の液晶が利用されている分野とは全く異なった、環境やエネルギー関係等の新分野、例えば、水性塗料、コーティング剤、接着剤、吸着剤等への利用も期待できる。   Furthermore, it can be expected to be used in new fields such as environment and energy, which are completely different from the fields where conventional liquid crystals are used, such as water-based paints, coating agents, adhesives, adsorbents and the like.

本発明に係る化合物は、水中においてミセルを形成し、当該ミセル内部において液晶相を形成することが好ましい。   The compound according to the present invention preferably forms micelles in water and forms a liquid crystal phase inside the micelle.

本発明に係る化合物は、上記ミセル内部が100℃以下で液晶相を示し、液晶相から等方相への転移温度が20〜60℃の範囲内であることが好ましい。   In the compound according to the present invention, the inside of the micelle exhibits a liquid crystal phase at 100 ° C. or less, and the transition temperature from the liquid crystal phase to the isotropic phase is preferably in the range of 20 to 60 ° C.

上記構成によれば、体温に近い温度でミセルの粒子径を制御することができるため、ドラッグデリバリーシステム(DDS)等の薬物キャリアとしてより有用な化合物を提供することができる。また、水性塗料、コーティング剤、接着剤、吸着剤等に使用する温度範囲でミセル内部が液晶状態となり、その高い運動性と規則性とをより容易に利用することが可能になる。   According to the above configuration, since the particle size of micelles can be controlled at a temperature close to body temperature, a compound more useful as a drug carrier for a drug delivery system (DDS) or the like can be provided. In addition, the micelles are in a liquid crystal state in the temperature range used for water-based paints, coating agents, adhesives, adsorbents, etc., and the high mobility and regularity can be used more easily.

本発明に係る化合物は、親水基と、メソゲン基とを含むことが好ましい。   The compound according to the present invention preferably contains a hydrophilic group and a mesogenic group.

本発明に係る化合物は、酸素原子を含む主鎖に、親水基とメソゲン基とを側鎖として含むことが好ましい。   The compound according to the present invention preferably contains a hydrophilic group and a mesogenic group as side chains in the main chain containing an oxygen atom.

本発明に係る化合物は、上記主鎖がポリシロキサンであることが好ましい。   In the compound according to the present invention, the main chain is preferably polysiloxane.

本発明に係る化合物は、上記親水基がポリアルキレングリコール基であることが好ましい。   In the compound according to the present invention, the hydrophilic group is preferably a polyalkylene glycol group.

上記構成によれば、ポリアルキレングリコール基は生体親和性が高いため、ドラッグデリバリーシステム(DDS)等の薬物キャリアとしてより有用な化合物を提供することができる。   According to the said structure, since a polyalkylene glycol group has high bioaffinity, a more useful compound as drug carriers, such as a drug delivery system (DDS), can be provided.

本発明に係るミセルは、本発明に係る上記化合物を含むことを特徴としている。   The micelle according to the present invention is characterized by including the above-mentioned compound according to the present invention.

上記構成によれば、ミセル内部において、液晶相と等方相とを温度変化等の外部刺激によって制御することができるため、例えば、ミセル内部に、薬物等の物質を含有させれば、温度変化等の外部刺激によって、当該物質を少しずつ放出させることができると考えられる。よって、薬物等の物質を内包することが可能で、特定の刺激に応答して物質放出する際に、ある一定時間徐放することが可能なミセルを形成し得る薬物放出キャリアを提供することができる。   According to the above configuration, the liquid crystal phase and the isotropic phase can be controlled inside the micelle by an external stimulus such as a temperature change. For example, if a substance such as a drug is contained inside the micelle, the temperature change It is considered that the substance can be released little by little by external stimulation such as. Accordingly, it is possible to provide a drug release carrier capable of enclosing a substance such as a drug and capable of forming a micelle capable of sustained release for a certain period of time when releasing the substance in response to a specific stimulus. it can.

本発明に係る、薬物の放出を制御する方法は、本発明に係る上記ミセル内部に薬物を保持させ、外部刺激によって当該薬物の放出を制御することを特徴としている。   The method for controlling the release of a drug according to the present invention is characterized in that the drug is held inside the micelle according to the present invention, and the release of the drug is controlled by an external stimulus.

上記方法によれば、本発明に係るミセルを用いるため、特定の刺激に応答して薬物放出する際に、ある一定時間徐放することができるという効果を奏する。   According to the above method, since the micelle according to the present invention is used, there is an effect that the drug can be gradually released for a certain period of time when the drug is released in response to a specific stimulus.

本発明に係る組成物は、水性塗料、コーティング剤、接着剤又は吸着剤に用いられ、本発明に係る上記化合物を含むことを特徴としている。   The composition according to the present invention is used for water-based paints, coating agents, adhesives or adsorbents, and is characterized by containing the above-mentioned compound according to the present invention.

上記構成によれば、従来の比較的高温領域に相転移温度を有する液晶性高分子にはない特性を本化合物は有するため、通常の使用温度(100℃以下)で液晶状態であり、その特性を生かすことができるシステム、例えば、室温付近で相転移に伴う物性変化を制御できるシステムを提供することができる。   According to the above configuration, since the present compound has characteristics that the liquid crystal polymer having a phase transition temperature in a relatively high temperature region does not have, the liquid crystal state is obtained at a normal use temperature (100 ° C. or lower). For example, a system capable of controlling physical property changes accompanying phase transition near room temperature can be provided.

尚、液晶は表示素子や高強度繊維等の分野において幅広く実用化されており、様々な構造の液晶分子が合成されている。これまでの液晶は、そのフィルムそのものが液晶状態を形成しているものやある種の溶媒に溶解して溶液として液晶を示すものがほとんどである。しかし、液晶を上記のようにDDS等に利用する場合、更には水性塗料、コーティング剤、吸着剤等に利用する場合には、従来のようなフィルム型液晶や溶媒溶解型液晶ではなく、ミセルのように水溶液中で微細な液晶の集合体が分散した液晶ミセルが有用である。   Liquid crystals are widely put into practical use in fields such as display elements and high-strength fibers, and liquid crystal molecules having various structures are synthesized. Most of the liquid crystals so far are those in which the film itself forms a liquid crystal state or those that are dissolved in a certain solvent to show liquid crystals as a solution. However, when liquid crystal is used for DDS as described above, and further when used for water-based paints, coating agents, adsorbents, etc., it is not a film type liquid crystal or a solvent-soluble type liquid crystal as in the prior art, but a micelle. Thus, liquid crystal micelles in which fine liquid crystal aggregates are dispersed in an aqueous solution are useful.

また、従来のフィルム型液晶や溶媒溶解型液晶の場合には、上記のようにDDS等に利用することは困難である。更には水性塗料、コーティング剤、接着剤、吸着剤等に利用する場合にも、従来のようなフィルム型液晶ではフィルム状であるために成形性が低いといった欠点を有しており、溶媒溶解型液晶の場合には溶媒存在下でのみ液晶状態を示すので溶媒を使用する必要がある。加えて、低分子液晶とは異なり、高分子液晶は室温よりもかなり高い温度でのみ液晶状態になるものが多い。室温付近で液晶の規則性と運動性を利用できる液晶高分子は側鎖メソゲン基を導入した液晶性ポリシロキサンのみであるが、これまで報告されている液晶性ポリシロキサンは両親媒性でないためにミセルを形成することは困難であった。   In addition, in the case of a conventional film type liquid crystal or solvent-soluble type liquid crystal, it is difficult to use it for DDS or the like as described above. Furthermore, even when used in water-based paints, coating agents, adhesives, adsorbents, etc., conventional film-type liquid crystals have the disadvantage of low formability because they are film-like, and are solvent-soluble. In the case of liquid crystals, a liquid crystal state is exhibited only in the presence of a solvent, so that it is necessary to use a solvent. In addition, unlike low-molecular liquid crystals, high-molecular liquid crystals often enter a liquid crystal state only at a temperature considerably higher than room temperature. The only liquid crystal polymer that can utilize the regularity and mobility of liquid crystal near room temperature is the liquid crystalline polysiloxane with side chain mesogenic groups introduced, but the liquid crystalline polysiloxanes reported so far are not amphiphilic. It was difficult to form micelles.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example.

〔合成例1:メソゲン基含有単量体の合成〕
メソゲン基含有単量体を下記合成経路に従って合成した。
[Synthesis Example 1: Synthesis of mesogenic group-containing monomer]
A mesogenic group-containing monomer was synthesized according to the following synthesis route.

具体的には、まず、27.6g(0.20mol)のp−ヒドロキシ安息香酸をメタノール70mlに溶解させ、その溶液に対して33.7g(0.60mol)の水酸化カリウムのメタノール溶液130mlを1時間かけて滴下した。得られた溶液に対し、18ml(0.22mol)の塩化アリルを加え、還流条件(70℃)で6時間反応させた。   Specifically, first, 27.6 g (0.20 mol) of p-hydroxybenzoic acid was dissolved in 70 ml of methanol, and 130 ml of a methanol solution of 33.7 g (0.60 mol) of potassium hydroxide was added to the solution. The solution was added dropwise over 1 hour. To the resulting solution, 18 ml (0.22 mol) of allyl chloride was added and reacted for 6 hours under reflux conditions (70 ° C.).

反応終了後、エバポレーターでメタノール溶媒及び未反応の塩化アリルを除去し、 水/ジエチルエーテルで数回抽出した。未反応のp−ヒドロキシ安息香酸はエーテル相に、また目的生成物であるp−アリロキシ安息香酸はカリウム塩として水相に存在しているため、水相を塩酸で中和し、p−アリロキシ安息香酸を析出させ、当該沈殿物を吸引濾過により濾別させた。得られた沈殿物をイソプロパノールで数回再結晶させることで白色結晶のp−アリロキシ安息香酸を得た。   After completion of the reaction, the methanol solvent and unreacted allyl chloride were removed with an evaporator and extracted several times with water / diethyl ether. Since unreacted p-hydroxybenzoic acid is present in the ether phase and the target product p-allyloxybenzoic acid is present in the aqueous phase as a potassium salt, the aqueous phase is neutralized with hydrochloric acid to obtain p-allyloxybenzoic acid. The acid was precipitated and the precipitate was separated by suction filtration. The resulting precipitate was recrystallized several times with isopropanol to obtain white crystalline p-allyloxybenzoic acid.

得られたp−アリロキシ安息香酸11.2g(62.9mmol)に対して約330mlの塩化チオニルを加え、室温で2時間撹拌させた後、エバポレーターで未反応の塩化チオニルを除去した。得られた酸塩化物(淡黄色液体)をジクロロメタンで希釈させ、氷浴中で7.8g(62.9mmol)のp−メトキシフェノールのジクロロメタン溶液に1時間かけて滴下し、室温で6時間反応させた。反応終了後、エバポレーターでジクロロメタンを除去し、白色固体を得た。これを酢酸エチル/水酸化ナトリウム水溶液で数回抽出させた。   About 330 ml of thionyl chloride was added to 11.2 g (62.9 mmol) of the obtained p-allyloxybenzoic acid and stirred at room temperature for 2 hours, and then unreacted thionyl chloride was removed by an evaporator. The obtained acid chloride (light yellow liquid) was diluted with dichloromethane, dropped into a dichloromethane solution of 7.8 g (62.9 mmol) of p-methoxyphenol in an ice bath over 1 hour, and reacted at room temperature for 6 hours. I let you. After completion of the reaction, dichloromethane was removed with an evaporator to obtain a white solid. This was extracted several times with ethyl acetate / sodium hydroxide aqueous solution.

未反応のp−アリロキシ安息香酸及びp−メトキシフェノールはNa塩となり水相中に存在しているため、酢酸エチル相を分離し、無水硫酸ナトリウムを加えて脱水させた後、エバポレーターで溶媒を除去した。最後にエタノールで数回再結晶させることで、白色結晶のメソゲン基含有単量体を得た。   Since unreacted p-allyloxybenzoic acid and p-methoxyphenol are present in the aqueous phase as Na salts, the ethyl acetate phase is separated, dehydrated with anhydrous sodium sulfate, and then the solvent is removed with an evaporator. did. Finally, it was recrystallized several times with ethanol to obtain white crystal mesogen group-containing monomers.

〔実施例1〕
下記合成経路に従って、PEG−g−LCPを合成した。
[Example 1]
PEG-g-LCP was synthesized according to the following synthesis route.

まず、1.3g(4.57mmol)の、合成例1で得られたメソゲン基含有単量体と、0.253g(0.81mmol)のポリエチレングリコールメタクリレート(PEGMA)(商品名:ポリエチレングリコールメタクリレート、SIGMA−ALDRICH社製)と、0.339g(97.8μmol)のポリメチルシロキサン(PMS)(商品名:SH1107、東レ・ダウコーニング社製)とをトルエン20mlに溶解させ、Speier触媒(HPtCl)3mgを用いて窒素雰囲気下で110℃、24時間反応させ、PEG−g−LCPを合成した。用いたPMSは、H−NMRより平均重合度nが55であると算出した。First, 1.3 g (4.57 mmol) of the mesogenic group-containing monomer obtained in Synthesis Example 1 and 0.253 g (0.81 mmol) of polyethylene glycol methacrylate (PEGMA) (trade name: polyethylene glycol methacrylate, SIGMA-ALDRICH) and 0.339 g (97.8 μmol) of polymethylsiloxane (PMS) (trade name: SH1107, manufactured by Toray Dow Corning) were dissolved in 20 ml of toluene, and Speier catalyst (H 2 PtCl). 6 ) 3 mg was reacted under nitrogen atmosphere at 110 ° C. for 24 hours to synthesize PEG-g-LCP. The PMS used was calculated by 1 H-NMR to have an average polymerization degree n of 55.

反応終了後、得られた黄色溶液を遠心分離にかけ、さらにガラスフィルターを用いて濾過することにより、Speier触媒を除去した。   After completion of the reaction, the resulting yellow solution was centrifuged and further filtered using a glass filter to remove the Speier catalyst.

Speier触媒を除去した溶液を、約100mlのメタノールに対して滴下することで、PEG−g−LCPを沈殿させた。これは、ポリマーのトルエン、メタノールに対する溶解度の差を利用したもので、これを数回繰り返すことでPEG−g−LCPを精製し、十分に減圧乾燥させた。   The solution from which the Speier catalyst was removed was dropped into about 100 ml of methanol to precipitate PEG-g-LCP. This is based on the difference in solubility of the polymer in toluene and methanol. By repeating this several times, PEG-g-LCP was purified and sufficiently dried under reduced pressure.

得られたPEG−g−LCPの組成をH−NMRによって決定し、さらに熱的性質を示差走査熱量計(DSC)によって調べた。The composition of the obtained PEG-g-LCP was determined by 1 H-NMR, and the thermal properties were further examined by a differential scanning calorimeter (DSC).

尚、用いたPMSは、MALDI−MSスペクトルより分子量分布がおよそ500〜5,500であることがわかった。平均重合度nが55であるとき、PMSの数平均分子量は3,500である。このPMSに対して分子量284であるメソゲン基が82mol%、さらに数平均分子量360であるPEGMAが10mol%付加しているため、得られたPEG−g−LCPの分子量の合計はおよそ18,300と算出された。   The PMS used was found to have a molecular weight distribution of about 500 to 5,500 from the MALDI-MS spectrum. When the average degree of polymerization n is 55, the number average molecular weight of PMS is 3,500. Since 82 mol% of mesogenic groups having a molecular weight of 284 and 10 mol% of PEGMA having a number average molecular weight of 360 are added to this PMS, the total molecular weight of the obtained PEG-g-LCP is about 18,300. Calculated.

表1に、合成したPEG−g−LCPのPEG鎖及びメソゲン基の導入量、そのガラス転移温度(T)、並びに液晶(ネマチック)−等方性相転移温度(TNI)を示す。尚、参考として、原料として用いたポリメチルシロキサンの値も表1に示す。Table 1 shows the amount of PEG chain and mesogenic group introduced into the synthesized PEG-g-LCP, its glass transition temperature (T g ), and liquid crystal (nematic) -isotropic phase transition temperature (T NI ). For reference, the value of polymethylsiloxane used as a raw material is also shown in Table 1.

〔比較例1〕
PEGMAを用いないで、メソゲン基含有単量体の添加量を0.92gに変更したこと以外は実施例と同様の操作を行い、重合体を得た。表1に、実施例1と同様にして求めた、合成した重合体のPEG鎖及びメソゲン基の導入量、そのガラス転移温度(T)並びに液晶(ネマチック)−等方性相転移温度(TNI)を示す。
[Comparative Example 1]
A polymer was obtained in the same manner as in Example except that PEGMA was not used and the addition amount of the mesogen group-containing monomer was changed to 0.92 g. Table 1 shows the amounts of introduced PEG chains and mesogenic groups, the glass transition temperature (T g ), and the liquid crystal (nematic) -isotropic phase transition temperature (T NI ).

〔比較例2〕
PEGMAを用いないで、メソゲン基含有単量体の添加量を1.25gに変更したこと以外は実施例と同様の操作を行い、重合体を得た。表1に、実施例1と同様にして求めた、合成した重合体のPEG鎖及びメソゲン基の導入量、そのガラス転移温度(T)並びに液晶(ネマチック)−等方性相転移温度(TNI)を示す。
[Comparative Example 2]
A polymer was obtained in the same manner as in Example except that PEGMA was not used and the addition amount of the mesogenic group-containing monomer was changed to 1.25 g. Table 1 shows the amounts of introduced PEG chains and mesogenic groups, the glass transition temperature (T g ), and the liquid crystal (nematic) -isotropic phase transition temperature (T NI ).

〔比較例3〕
PEGMAを用いないで、メソゲン基含有単量体の添加量を1.53gに変更したこと以外は実施例と同様の操作を行い、重合体を得た。表1に、実施例1と同様にして求めた、合成した重合体のPEG鎖及びメソゲン基の導入量、そのガラス転移温度(T)並びに液晶(ネマチック)−等方性相転移温度(TNI)を示す。
[Comparative Example 3]
A polymer was obtained in the same manner as in Example except that PEGMA was not used and the addition amount of the mesogen group-containing monomer was changed to 1.53 g. Table 1 shows the amounts of introduced PEG chains and mesogenic groups, the glass transition temperature (T g ), and the liquid crystal (nematic) -isotropic phase transition temperature (T NI ).

尚、表1中の「メソゲン基含有量」は、PMSにおける活性水素の合計数に対するメソゲン基が導入された割合を意味し、「PEG基含有量」は、PMSにおける活性水素の合計数に対するPEG基が導入された割合を意味する。   In Table 1, “mesogen group content” means the ratio of introduced mesogen groups to the total number of active hydrogens in PMS, and “PEG group content” means PEG relative to the total number of active hydrogens in PMS. It means the rate at which groups are introduced.

表1に示すように、実施例1の方法でPMSにメソゲン基及びPEG鎖を導入できることがわかった。また、DSC測定により、実施例1で得られたPEG−g−LCPは、TとTNIに起因するピークが観測された。As shown in Table 1, it was found that mesogenic groups and PEG chains could be introduced into PMS by the method of Example 1. Moreover, the DSC measurement, PEG-g-LCP obtained in Example 1, the peak due to T g and T NI was observed.

更には、比較例1〜3の結果から、PMSへのメソゲン基の導入率が増加すると、LCPのTとTNIは次第に増加することが確認された。一方、実施例1と比較例2との結果から、メソゲン基を有するPMSに親水鎖としてPEGを導入してもT及びTNIはほとんど変化しなかった。Furthermore, from the results of Comparative Examples 1 to 3, the introduction rate of the mesogenic groups of the PMS is increased, T g and T NI of LCP it was confirmed to be increased gradually. On the other hand, from the results of Comparative Example 2 and Example 1, T g and T NI be introduced PEG as a hydrophilic chain PMS having a mesogenic group hardly changed.

また、比較例1、2、3で得られた重合体を用いて後述する高分子ミセル水溶液の作製に従い高分子ミセル水溶液を作製したところいずれの重合体においても沈殿が見られた。この高分子ミセル水溶液の上澄みを、動的光散乱法によって測定したが、上澄みにミセルは存在しなかった。このことから、比較例1、2、3で得られた重合体では、ミセルが形成されないことが判った。   Moreover, when the polymeric micelle aqueous solution was produced according to preparation of the polymeric micelle aqueous solution mentioned later using the polymer obtained in Comparative Examples 1, 2, and 3, precipitation was observed in any polymer. The supernatant of this aqueous polymer micelle solution was measured by dynamic light scattering, but no micelles were present in the supernatant. From this, it was found that micelles were not formed in the polymers obtained in Comparative Examples 1, 2, and 3.

<フィルム状態の偏光顕微鏡での観察>
様々な温度でのPEG−g−LCPの液晶構造を偏光顕微鏡で観察した結果を図1に示す。
<Observation with a polarizing microscope in film state>
The result of observing the liquid crystal structure of PEG-g-LCP at various temperatures with a polarizing microscope is shown in FIG.

図1から明らかなように、DSC測定によって決定された、PEG−g−LCPのTとTNIとの間の温度範囲において偏光顕微鏡における複屈折パターンが観察され、ネマチック相を形成していることが確認された。この結果からも、PEG−g−LCPは43℃で液晶転移(ネマチック液晶−等方相転移)を示す両親媒性液晶高分子であることが明らかとなった。As is clear from FIG. 1, a birefringence pattern in a polarizing microscope is observed in the temperature range between T g and T NI of PEG-g-LCP determined by DSC measurement, forming a nematic phase. It was confirmed. This result also revealed that PEG-g-LCP is an amphiphilic liquid crystal polymer exhibiting a liquid crystal transition (nematic liquid crystal-isotropic phase transition) at 43 ° C.

<臨界ミセル濃度(CMC)>
一般的に、高分子ミセルが形成されると、疎水鎖が集合したコア部分にピレン等の疎水性分子が取り込まれる。ピレンのような蛍光発光する疎水性分子の場合には、ピレン分子の周りの環境によって蛍光強度が大きく変化するため、その蛍光強度を測定することによって高分子ミセル形成の有無を調べることができる。このような原理を利用して臨界ミセル濃度(CMC)測定を行なった。
<Critical micelle concentration (CMC)>
Generally, when a polymer micelle is formed, a hydrophobic molecule such as pyrene is incorporated into a core portion where hydrophobic chains are assembled. In the case of a hydrophobic molecule that emits fluorescence, such as pyrene, the fluorescence intensity varies greatly depending on the environment around the pyrene molecule. Therefore, the presence or absence of polymer micelles can be examined by measuring the fluorescence intensity. Using this principle, critical micelle concentration (CMC) measurement was performed.

図2に、PEG−g−LCP濃度を変化させたときのピレンの385nmに対する374nmの蛍光強度比(I374/I385)の変化を示す。図2より、PEG−g−LCP濃度の増加に伴って蛍光強度比も次第に低下し、その変化からCMCが5.0×10−4mg/mlであることがわかった。尚、蛍光強度比I374/I385は溶媒の双極子モーメントとピレンの励起一重項との相互作用に依存するため、臨界ミセル濃度付近で蛍光強度比に鋭い変化が見られたと考えられる。FIG. 2 shows changes in the fluorescence intensity ratio (I 374 / I 385 ) of 374 nm to 385 nm of pyrene when the PEG-g-LCP concentration is changed. From FIG. 2, it was found that the fluorescence intensity ratio gradually decreased with an increase in the PEG-g-LCP concentration, and the change showed that CMC was 5.0 × 10 −4 mg / ml. In addition, since the fluorescence intensity ratio I 374 / I 385 depends on the interaction between the dipole moment of the solvent and the excited singlet of pyrene, it is considered that there was a sharp change in the fluorescence intensity ratio near the critical micelle concentration.

尚、CMCの具体的な測定方法は以下の通りである。   The specific method for measuring CMC is as follows.

〔高分子ミセル水溶液の作製〕
1mgのPEG−g−LCPを4mlのジメチルスルホキシド(DMSO)に溶解させ、さらに超純水を0.2ml加え、透析チューブ内に封入させた。DMSOと超純水の溶媒交換速度は非常に速く、急激な親疎水性変化によって自己集合体の形成に異常をきたすのを防ぐため、予めDMSOに対して数%程度水に置換した状態で透析を開始した。超純水中で48時間透析させることにより、PEG−g−LCPの自己集合体が形成された、高分子ミセル水溶液を作製した。
[Preparation of polymeric micelle aqueous solution]
1 mg of PEG-g-LCP was dissolved in 4 ml of dimethyl sulfoxide (DMSO), and 0.2 ml of ultrapure water was further added and sealed in a dialysis tube. The solvent exchange rate of DMSO and ultrapure water is very fast, and in order to prevent abnormal formation of self-assemblies due to abrupt changes in hydrophilicity / hydrophobicity, dialysis is carried out in a state where water is replaced with about several percent of DMSO in advance. Started. By dialysis for 48 hours in ultrapure water, an aqueous polymer micelle solution in which a self-assembly of PEG-g-LCP was formed was prepared.

尚、本実施例で作製した両親媒性化合物は、疎水性基であるメソゲン基の導入比率から考えて非常に疎水性の強い化合物で、単に超純水中に入れるだけでは殆ど溶解せずに沈殿や凝集を引き起こしてしまう。このため、本化合物を分子レベルでミセルを形成させるためには、本化合物に対して良溶媒であるDMSOを用いて一旦溶解させ、貧溶媒である超純水を系内に均一に拡散させることができる透析法を用いた。   The amphiphilic compound prepared in this example is a very hydrophobic compound in view of the introduction ratio of the mesogenic group, which is a hydrophobic group, and hardly dissolves simply by placing it in ultrapure water. It will cause precipitation and aggregation. For this reason, in order to form micelles at the molecular level, this compound is once dissolved in DMSO, which is a good solvent, and ultrapure water, which is a poor solvent, is uniformly diffused in the system. A dialysis method was used.

〔臨界ミセル濃度(CMC)測定〕
3.6mg/100mlのピレンのアセトン溶液を調製し、このピレン溶液を、作製した上記高分子ミセル水溶液を種々の濃度に調製した各溶液に対して、それぞれ4μl滴下し、常温及び暗所にて一晩静置させた。その後、各溶液について蛍光強度を測定し、蛍光強度の変化によってPEG−g−LCPの臨界ミセル濃度(CMC)を決定した。
[Critical micelle concentration (CMC) measurement]
An acetone solution of 3.6 mg / 100 ml of pyrene was prepared, and 4 μl of this pyrene solution was dropped into each of the prepared polymer micelle aqueous solutions at various concentrations, at room temperature and in a dark place. Allowed to stand overnight. Thereafter, the fluorescence intensity was measured for each solution, and the critical micelle concentration (CMC) of PEG-g-LCP was determined by the change in fluorescence intensity.

<ミセルの粒径>
上述した〔高分子ミセル水溶液の作製〕に従って作製した高分子ミセル水溶液を凍結乾燥し、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)及び原子間力顕微鏡(AFM)によってその高分子ミセルの構造観察を行った。その結果、図3に示すように、100nm〜200nm程度の球状の高分子ミセルが観察された。尚、図3中のスケールバーは200nmである。
<Micelle particle size>
The polymer micelle aqueous solution prepared according to [Preparation of polymer micelle aqueous solution] described above was freeze-dried, and the polymer micelle was analyzed by a scanning electron microscope (SEM), a transmission electron microscope (TEM), and an atomic force microscope (AFM). The structure was observed. As a result, as shown in FIG. 3, spherical polymer micelles of about 100 nm to 200 nm were observed. Incidentally, the scale bar in FIG. 3 is 200 nm.

また、動的光散乱法(DLS)によって水中における高分子ミセルの粒径を測定した結果、直径270nm程度の粒子の存在が確認された。   Moreover, as a result of measuring the particle size of the polymer micelle in water by dynamic light scattering (DLS), the presence of particles having a diameter of about 270 nm was confirmed.

光散乱で測定した粒径がSEMやTEM、AFMで観測した高分子ミセルの粒径よりも大きな値を示したのは、水中において親水性のPEG鎖が大きく広がっている構造を形成しているためと考えられる。   The particle size measured by light scattering showed a larger value than the polymer micelle particle size observed by SEM, TEM, or AFM, which formed a structure in which hydrophilic PEG chains spread greatly in water. This is probably because of this.

したがって、図4に示すような、PEG−g−LCPは水中で疎水性のメソゲン基をコア部分に親水性のPEG鎖をシェル部分に有する、直径が270nm程度の高分子ミセルを形成していることがわかった。さらに、コア部分はメソゲン基が集合しており、室温付近で液晶性を示していると考えられる。   Therefore, as shown in FIG. 4, PEG-g-LCP forms a polymeric micelle having a diameter of about 270 nm having a hydrophobic mesogen group in water and a hydrophilic PEG chain in a shell portion in water. I understood it. Furthermore, it is considered that mesogenic groups are gathered in the core portion and show liquid crystallinity near room temperature.

さらに、PEG−g−LCP高分子ミセルの粒径と温度との関係をDLSによって調べ、その結果を図5に示した。   Furthermore, the relationship between the particle size of PEG-g-LCP polymer micelles and temperature was examined by DLS, and the results are shown in FIG.

図5から明らかなように、TNIである43℃付近までは温度上昇に伴ってPEG−g−LCP高分子ミセルの粒径は次第に減少し、43℃以上でほぼ一定の値になった。したがって、TNI以下ではコア部分を形成しているメソゲン基が配向した液晶構造を形成しているが、TNI以上で等方相に変化し、それらの構造変化に伴って高分子ミセルの粒径も変化していると考えられた。As is apparent from FIG. 5, the particle size of the PEG-g-LCP polymer micelles with increasing temperature up to around 43 ° C. is T NI is gradually decreased and became almost constant at 43 ° C. or higher. Accordingly, a liquid crystal structure in which the mesogen groups forming the core portion are aligned is formed below T NI , but changes to an isotropic phase above T NI , and the polymer micelle grains change with the structural change. It was thought that the diameter also changed.

これらの結果より、両親媒性液晶高分子であるPEG−g−LCPは、5.0×10−4mg/ml付近にCMCを示し、水中で高分子ミセルを形成することがわかった。さらに、そのミセルサイズは、温度変化によって次第に減少し、液晶相転移温度以上で一定になった。従って、PEG−g−LCPからなる高分子ミセルは、従来の温度応答性高分子ミセルとは異なって、転移点でミセルが崩壊することなく、ミセル内部構造の規則性が大きく変化する新規な液晶高分子ミセルであると考えられる。From these results, it was found that PEG-g-LCP, which is an amphiphilic liquid crystal polymer, exhibited CMC in the vicinity of 5.0 × 10 −4 mg / ml and formed polymer micelles in water. Furthermore, the micelle size gradually decreased with temperature change and became constant above the liquid crystal phase transition temperature. Therefore, unlike the conventional temperature-responsive polymer micelle, the polymer micelle composed of PEG-g-LCP is a novel liquid crystal in which the micelles do not collapse at the transition point and the regularity of the micelle internal structure changes greatly. It is considered to be a polymer micelle.

以上のように、実施例1で得られた両親媒性液晶高分子は室温付近で液晶性を示し、所定温度で液晶−等方相転移することによって規則構造が大きく変化する。また、疎水性のメソゲン基と親水性のポリエチレングリンコール(PEG)鎖とを有するため、水中で安定な高分子ミセルを形成することができる。   As described above, the amphiphilic liquid crystal polymer obtained in Example 1 exhibits liquid crystallinity near room temperature, and the regular structure is greatly changed by the liquid crystal-isotropic phase transition at a predetermined temperature. In addition, since it has a hydrophobic mesogenic group and a hydrophilic polyethylene glycol (PEG) chain, it can form a polymer micelle that is stable in water.

このような高分子ミセルは温度変化等によって液晶構造の配向制御が可能であり、それによる内包薬物の放出を制御できる新しい薬物放出キャリアとして用いることができる。また、これまでの液晶高分子と異なって、本発明の内容は内部が液晶状態の高分子ミセルが水に分散した水分散型液晶に関するものであり、従来の液晶が利用されている分野とは全く異なった新分野への利用も期待できる。   Such polymer micelles can control the orientation of the liquid crystal structure by temperature change or the like, and can be used as a new drug release carrier that can control the release of the encapsulated drug. Further, unlike the conventional liquid crystal polymer, the present invention relates to a water-dispersed liquid crystal in which polymer micelles having an internal liquid crystal state are dispersed in water. Use in completely different new fields can also be expected.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明の化合物は、ドラッグデリバリーシステム(DDS)における薬物放出キャリアのような医療分野だけでなく、従来の液晶が利用されている分野とは全く異なった、環境やエネルギー関係等の新分野、例えば、水性塗料、コーティング剤、接着剤、吸着剤等への利用も期待できる。   The compounds of the present invention are not only in the medical field such as drug-release carriers in drug delivery systems (DDS), but also in new fields such as the environment and energy, which are completely different from fields where conventional liquid crystals are used, such as It can also be used for water-based paints, coating agents, adhesives, adsorbents and the like.

Claims (8)

水中においてミセルを形成する化合物であって、
酸素原子を含む主鎖に、親水基とメソゲン基とが、側鎖として結合されてなり、
ビニル基、アリル基またはメタクリロイル基を有する上記親水基およびビニル基、アリル基またはメタクリロイル基を有する上記メソゲン基が、当該ビニル基、アリル基またはメタクリロイル基を介してポリシロキサン主鎖中のケイ素原子に結合しており、
上記親水基がポリアルキレングリコール基であり、
上記主鎖が下記式
(式中、Rは、それぞれ独立して、炭化水素基である。nは1〜10,000の整数である。)
で示されるポリシロキサンであり、
分子量が500〜5,000,000の範囲内であり、
当該ミセル内部において、液晶相を形成する化合物により形成されるミセル。
A compound that forms micelles in water,
A hydrophilic group and a mesogenic group are bonded as side chains to the main chain containing an oxygen atom,
Vinyl group, the hydrophilic group and a vinyl group having an allyl group or a methacryloyl group, the mesogenic group having an allyl group or a methacryloyl group, the silicon atom in the polysiloxane main chain via the vinyl group, an allyl group or a methacryloyl group Combined,
The hydrophilic group is a polyalkylene glycol group;
The main chain is
(In the formula, each R is independently a hydrocarbon group. N is an integer of 1 to 10,000.)
Is a polysiloxane represented by
The molecular weight is in the range of 500 to 5,000,000,
A micelle formed by a compound that forms a liquid crystal phase inside the micelle.
両親媒性化合物であって、
酸素原子を含む主鎖に、親水基とメソゲン基とが、側鎖として結合されてなり、
ビニル基、アリル基またはメタクリロイル基を有する上記親水基およびビニル基、アリル基またはメタクリロイル基を有する上記メソゲン基が、当該ビニル基、アリル基またはメタクリロイル基を介してポリシロキサン主鎖中のケイ素原子に結合しており、
上記親水基がポリアルキレングリコール基であり、
上記主鎖が下記式
(式中、Rは、それぞれ独立して、炭化水素基である。nは1〜10,000の整数である。)
で示されるポリシロキサンであり、
100℃以下で液晶相を示し、
分子量が500〜5,000,000の範囲内である化合物により水中において形成されるミセル。
An amphiphilic compound,
A hydrophilic group and a mesogenic group are bonded as side chains to the main chain containing an oxygen atom,
Vinyl group, the hydrophilic group and a vinyl group having an allyl group or a methacryloyl group, the mesogenic group having an allyl group or a methacryloyl group, the silicon atom in the polysiloxane main chain via the vinyl group, an allyl group or a methacryloyl group Combined,
The hydrophilic group is a polyalkylene glycol group;
The main chain is
(In the formula, each R is independently a hydrocarbon group. N is an integer of 1 to 10,000.)
Is a polysiloxane represented by
Showing liquid crystal phase below 100 ° C,
A micelle formed in water by a compound having a molecular weight in the range of 500 to 5,000,000.
上記ミセル内部において液晶相を形成する、請求項2に記載のミセル。   The micelle according to claim 2, wherein a liquid crystal phase is formed inside the micelle. 上記ミセル内部が100℃以下で液晶相を示し、
上記ミセル内部の液晶相における、液晶相から等方相への転移温度が20〜60℃の範囲内である、請求項1または3に記載のミセル。
The inside of the micelle shows a liquid crystal phase at 100 ° C. or lower,
The micelle according to claim 1 or 3, wherein a transition temperature from a liquid crystal phase to an isotropic phase in the liquid crystal phase inside the micelle is in a range of 20 to 60 ° C.
請求項1〜4の何れか1項に記載のミセル内部に薬物を保持させ、外部刺激によって当該薬物の放出を制御する方法。   The method to hold | maintain a drug inside the micelle of any one of Claims 1-4, and to control the release | release of the said drug by external stimulation. 水性塗料、又はコーティング剤に用いられる、請求項1〜4の何れか1項に記載のミセル。   The micelle according to any one of claims 1 to 4, which is used for an aqueous paint or a coating agent. 接着剤に用いられる、請求項1〜4の何れか1項に記載のミセル。   The micelle according to any one of claims 1 to 4, which is used for an adhesive. 吸着剤に用いられる、請求項1〜4の何れか1項に記載のミセル。   The micelle according to any one of claims 1 to 4, which is used for an adsorbent.
JP2011553642A 2010-11-11 2011-05-10 Micelle and its use Active JP5397822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011553642A JP5397822B2 (en) 2010-11-11 2011-05-10 Micelle and its use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010252923 2010-11-11
JP2010252923 2010-11-11
JP2011553642A JP5397822B2 (en) 2010-11-11 2011-05-10 Micelle and its use
PCT/JP2011/060748 WO2012063509A1 (en) 2010-11-11 2011-05-10 Amphipathic liquid crystal compound, micelle, and use of the compound or the micelle

Publications (2)

Publication Number Publication Date
JP5397822B2 true JP5397822B2 (en) 2014-01-22
JPWO2012063509A1 JPWO2012063509A1 (en) 2014-05-12

Family

ID=46050669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011553642A Active JP5397822B2 (en) 2010-11-11 2011-05-10 Micelle and its use

Country Status (2)

Country Link
JP (1) JP5397822B2 (en)
WO (1) WO2012063509A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5908795B2 (en) * 2012-05-31 2016-04-26 日立オムロンターミナルソリューションズ株式会社 Easy-release adhesive, adhesive material using the same, and processing apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619923B2 (en) * 1990-05-02 1994-03-16 ナショナル サイエンス カウンシル Ionic conductive side chain liquid crystal polymer electrolyte
JP3134947B2 (en) * 1990-06-29 2001-02-13 キヤノン株式会社 Polymer copolymer liquid crystal compound, composition thereof, and polymer liquid crystal device using the same
JPH07109455A (en) * 1993-10-15 1995-04-25 Asahi Chem Ind Co Ltd Liquid crystalline compound and electroviscous fluid prepared using hte same
DE19750628A1 (en) * 1997-11-14 1999-05-20 Heino Prof Dr Finkelmann Preparation of a liquid crystal hydrogel
JP2002011338A (en) * 2000-06-30 2002-01-15 Lion Corp Emulsifier and emulsifying composition
FR2816503B1 (en) * 2000-11-10 2003-03-28 Oreal COSMETIC COMPOSITION STRUCTURED BY A THERMOTROPIC LIQUID CRYSTAL POLYMER

Also Published As

Publication number Publication date
WO2012063509A1 (en) 2012-05-18
JPWO2012063509A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
Zhang et al. Fluorescent polymersomes with aggregation-induced emission
Wu et al. Zwitterionic amphiphiles: their aggregation behavior and applications
Li et al. Integrated POSS-dendrimer nanohybrid materials: current status and future perspective
JP2009506194A (en) Stabilization of organogels and hydrogels by azido-alkyne [3 + 2] cycloaddition
Shkilnyy et al. Poly (ethylene imine)-controlled calcium phosphate mineralization
John et al. First step towards a model system of the drug delivery network based on amide-POSS nanocarriers
Chang et al. Fabrication of novel coumarin derivative functionalized polypseudorotaxane micelles for drug delivery
Kang et al. pH-responsive polymer–drug conjugates as multifunctional micelles for cancer-drug delivery
Lancelot et al. Nanostructures based on ammonium-terminated amphiphilic Janus dendrimers as camptothecin carriers with antiviral activity
Tao et al. Cross-linked micelles of graftlike block copolymer bearing biodegradable ε-caprolactone branches: a novel delivery carrier for paclitaxel
Shikinaka et al. Structural and mechanical properties of Laponite–PEG hybrid films
Amgoth et al. Nanoporous capsules of block co-polymers of [(MeO-PEG-NH)-b-(L-GluA)]-PCL for the controlled release of anticancer drugs for therapeutic applications
Hernández-Ainsa et al. Nanoobjects coming from mesomorphic ionic PAMAM dendrimers
Li et al. Synthesis and self-assembly behavior of pH-responsive star-shaped POSS-(PCL-P (DMAEMA-co-PEGMA)) 16 inorganic/organic hybrid block copolymer for the controlled intracellular delivery of doxorubicin
Yan et al. Self-assembling nonconjugated poly (amide-imide) into thermoresponsive nanovesicles with unexpected red fluorescence for bioimaging
Li et al. Diblock brush-arm star copolymers via a core-first/graft-from approach using γ-cyclodextrin and ROMP: a modular platform for drug delivery
Yan et al. Self-assembly of upconversion nanoclusters with an amphiphilic copolymer for near-infrared-and temperature-triggered drug release
Zadoina et al. In situ synthesis of cobalt nanoparticles in functionalized liquid crystalline polymers
JP5397822B2 (en) Micelle and its use
Guo et al. Well-defined podophyllotoxin polyprodrug brushes: preparation via RAFT polymerization and evaluation as drug carriers
CN105796529B (en) A kind of preparation method and applications of gambogicacid self-assembling polymers nanoparticle
Zhang et al. Stable stereocomplex micelles from Y-shaped amphiphilic copolymers MPEG–(scPLA) 2: Preparation and characteristics
Liu et al. Physiochemical properties and paclitaxel release behaviors of dual-stimuli responsive copolymer-magnetite superparamagnetic nanocomposites
KR101086055B1 (en) A thermosensitive pullulan-lactide copolymer, a nanoparticle formed from the same, and a process for the preparation thereof
Ni et al. Studies on core–shell structural nano-micelles based on star block copolymer of poly (lactide) and poly (2-(dimethylamino) ethyl methacrylate)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5397822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250