WO2013180075A1 - 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム - Google Patents

放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム Download PDF

Info

Publication number
WO2013180075A1
WO2013180075A1 PCT/JP2013/064671 JP2013064671W WO2013180075A1 WO 2013180075 A1 WO2013180075 A1 WO 2013180075A1 JP 2013064671 W JP2013064671 W JP 2013064671W WO 2013180075 A1 WO2013180075 A1 WO 2013180075A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
charge
radiation
pixels
gate
Prior art date
Application number
PCT/JP2013/064671
Other languages
English (en)
French (fr)
Inventor
美広 岡田
北野 浩一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013180075A1 publication Critical patent/WO2013180075A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays

Definitions

  • the present invention relates to a radiographic imaging apparatus, a radiographic imaging system, a radiographic imaging apparatus control method, and a radiographic imaging apparatus control program.
  • the present invention relates to a radiographic image capturing apparatus, a radiographic image capturing system, a radiographic image capturing apparatus control method, and a radiographic image capturing apparatus control program capable of capturing radiographic images having different resolutions.
  • Such a radiographic imaging apparatus includes a radiation detector for detecting radiation.
  • the radiographic imaging apparatus includes a photoelectric conversion element and a panel (radiation detector).
  • a photoelectric conversion element generates an electric charge when irradiated with radiation or light converted from radiation.
  • the radiation detector includes a pixel having a storage capacitor for holding and storing the charge generated by the photoelectric conversion element, and a switching element for reading the charge from the storage capacitor and outputting an electric signal corresponding to the charge.
  • a technique described in Japanese Patent Application Laid-Open No. 2009-63514 is known as a radiographic image capturing apparatus capable of capturing radiographic images having different resolutions.
  • a radiographic imaging device high-resolution imaging that generates a radiographic image based on an electrical signal corresponding to the electric charge read out for each pixel, and an electric charge corresponding to the electric charge read out for each pixel group of a plurality of pixels.
  • Low-resolution imaging for generating a radiation image based on the signal is performed.
  • a moving image is photographed in which a plurality of radiation images (still images) are continuously taken.
  • moving images are taken by continuously observing a radiographic image, which is a still image of a plurality of frames (a plurality of frames), so that the subject is dynamically observed. It becomes possible.
  • the radiographic image moving image capturing methods there is a method of limiting a detection region (a pixel region for reading out electric charges and generating a radiographic image).
  • the frame rate can be increased by performing a collective reset operation on the charges of the pixels in the non-detection region that are not used for generating the radiation image.
  • a collective reset operation can be efficiently performed if the gate line driving IC (gate driver) can perform collective reset.
  • the gate line driving IC gate driver
  • the present invention can improve the frame rate even when the detection area is arranged in the middle of the driving means regardless of the arrangement of the detection area, the radiographic imaging apparatus, the radiographic imaging system, and the radiographic imaging
  • An object of the present invention is to provide an apparatus control method and a radiographic imaging apparatus control program.
  • the 1st aspect of this invention is a radiographic imaging apparatus, Comprising:
  • the output terminals of the first switching elements of the plurality of pixels that are connected to the plurality of second control lines and the signal lines in each second direction of the pixels and that are adjacent to each other in the second direction are connected to the signal lines.
  • a plurality of first drive means connected to a predetermined number of first control lines and outputting a first drive signal for driving the first switching element to the first control lines;
  • a plurality of second control lines are connected, and a plurality of second drive means for outputting a second drive signal for driving the second switching element to the second control line, and a detection area as a partial area
  • control unit is configured such that the number of charge discharging operations in the non-detection region is more likely to be performed by the first driving unit than by the second driving unit alone. When it is determined that the number of discharging operations is small, control is performed to perform the charge discharging operation using the first driving means.
  • control means is controlled by either the first driving means or the second driving means according to the position of the detection region in the signal line direction. Control to perform the charge discharging operation is performed.
  • the control unit causes the first driving unit to sequentially perform a charge discharging operation for each first control line.
  • the collective charge discharging operation for discharging the battery is performed.
  • control means controls the first driving means and the second driving means to sequentially charge when the setting is made so that the image quality of the radiation image is emphasized. causess the eject operation to be performed.
  • control means is configured to change the first drive means and the second drive means when the setting is made to place importance on high-speed shooting. Control the collective charge discharging operation.
  • the control means when performing a charge discharging operation for discharging charges of all the plurality of pixels, is the second driving means. To control the charge discharging operation.
  • the charge discharging operation is an operation of discharging offset charges from a plurality of pixels during a period in which no radiographic image is taken.
  • a ninth aspect of the present invention is a radiographic image capturing apparatus including a power source that supplies electric power for operating the first driving unit, the second driving unit, and the control unit.
  • a tenth aspect of the present invention is a radiographic image capturing system including a radiation irradiating apparatus and the radiographic image capturing apparatus of the present invention that detects radiation irradiated from the radiation irradiating apparatus.
  • An eleventh aspect of the present invention is a method for controlling a radiographic image capturing apparatus, which includes a sensor unit that generates electric charge according to irradiated radiation, a first switching element that reads electric charge from the sensor unit and outputs electric charge, And a second switching element for reading out charges from the sensor unit and outputting the charges, and a plurality of pixels arranged two-dimensionally, and a control terminal of the first switching elements of the plurality of pixels adjacent in the first direction A plurality of first control lines connected to each other, a control end of a second switching element of a plurality of pixels adjacent in the first direction, and a second switching element of a pixel adjacent in the second direction intersecting the first direction.
  • a plurality of second control lines connected to the control end and a signal line for each second direction of the pixel, and the output ends of the first switching elements of the plurality of pixels adjacent to the second direction for each signal line are connected
  • a signal in which the output ends of the second switching elements of a plurality of pixels adjacent in the second direction and the output ends of the second switching elements of the plurality of pixels adjacent in the first direction are connected to some signal lines.
  • a plurality of first drive means for connecting a line group and a predetermined number of first control lines, and outputting a first drive signal for driving the first switching element to the first control line; And a plurality of second drive means for outputting a second drive signal for driving the second switching element to the second control line.
  • control performed by 2 drive means Comprising the step.
  • the control program for the radiographic imaging apparatus of the present invention reads a charge from a sensor unit that generates a charge corresponding to the irradiated radiation, a first switching element that reads the charge from the sensor unit and outputs the charge, and a sensor unit.
  • a plurality of pixels each having a second switching element that outputs electric charge and arranged in a two-dimensional manner, and a plurality of first elements connected to the control ends of the first switching elements of the plurality of pixels adjacent in the first direction.
  • a plurality of control lines connected to a control end of a second switching element of a plurality of pixels adjacent in the first direction and a control end of a second switching element of a pixel adjacent to the second direction intersecting the first direction;
  • the second control line is provided with a signal line for each second direction of the pixel, and the output ends of the first switching elements of a plurality of pixels adjacent to the second direction are connected for each signal line, and the second control line is connected in the second direction.
  • a control program for a radiographic imaging apparatus comprising: a plurality of second driving means for outputting a second drive signal for driving a second switching element to a second control line, Control means for performing control to cause the second drive means to perform a charge discharging operation for discharging the charges of the pixels in the non-detection area when the radiation image is generated by the charges read from the pixels in the detection area, which is the area of the portion As It is for the functioning of the data.
  • the frame rate can be improved even when the detection area is arranged in the middle of the driving means regardless of the arrangement of the detection area.
  • 1 is an overall schematic configuration diagram of an example of a radiographic image capturing system according to a first embodiment. It is a block diagram of the whole structure of an example of the radiographic imaging system which concerns on 1st Embodiment. It is the schematic which shows the outline of the cross section of an example of the indirect conversion type radiation detector which concerns on 1st Embodiment. It is the schematic which shows the outline of the cross section of an example of the direct conversion type radiation detector which concerns on 1st Embodiment. It is the schematic block diagram which showed schematic structure of an example of the pixel of the state which planarly viewed the radiation detector which concerns on 1st Embodiment from the irradiation side of the radiation X.
  • FIG. 1 the schematic block diagram of the whole radiographic imaging system of this Embodiment is shown.
  • FIG. 2 is a configuration diagram showing the overall configuration of the radiographic imaging system 10 of the present embodiment in more detail than FIG.
  • the radiographic image capturing system 10 of the present embodiment can capture radiographic images with different resolutions.
  • the radiographic image capturing system 10 of the present embodiment can capture still images in addition to moving images.
  • “radiation image” refers to both a moving image and a still image unless otherwise specified.
  • a moving image refers to displaying still images one after another at a high speed and recognizing them as moving images.
  • the still image is shot, converted into an electric signal, transmitted, and the still image is transferred from the electric signal.
  • the process of replaying is repeated at high speed. Therefore, the moving image includes so-called “frame advance” in which the same area (part or all) is shot a plurality of times within a predetermined time and continuously reproduced according to the degree of “high speed”. Shall be.
  • the radiographic imaging system 10 of the present exemplary embodiment is based on an instruction (imaging menu) input from an external system (for example, RIS: Radiology Information System: radiation information system) via the console 16. It has a function of taking a radiographic image by an operation such as the above.
  • an instruction for example, RIS: Radiology Information System: radiation information system
  • the radiographic image capturing system 10 of the present embodiment has a function of causing a doctor, a radiographer, or the like to interpret a radiographic image by displaying the captured radiographic image on the display 50 of the console 16 or the radiographic image interpretation device 18. Have.
  • the radiographic imaging system 10 of the present exemplary embodiment includes a radiation generation device 12, a radiographic image processing device 14, a console 16, a storage unit 17, a radiographic image interpretation device 18, and a radiation panel unit 20.
  • the radiation generator 12 includes a radiation irradiation control unit 22.
  • the radiation irradiation control unit 22 has a function of irradiating the imaging target region of the subject subject 30 on the imaging table 32 with the radiation X based on the control of the radiation control unit 62 of the radiation image processing apparatus 14. is doing.
  • the radiation X transmitted through the subject 30 is applied to the radiation panel unit 20 held by the holding unit 34 inside the imaging table 32.
  • the radiation panel unit 20 has a function of generating charges according to the dose of the radiation X transmitted through the subject 30, and generating and outputting image information indicating a radiation image based on the generated charge amount.
  • the radiation panel unit 20 of the present embodiment includes a radiation detector 26 and a panel control unit 130.
  • the panel control unit 130 has a function of controlling the entire radiation panel unit 20 by an FPGA (Field Programmable Gate Array) 131.
  • the radiation detector 26 of the present embodiment can capture radiographic images with different resolutions.
  • image information indicating a radiation image output by the radiation panel unit 20 is input to the radiation image processing device 14 via an optical fiber, a camera link standard, or the like, and the console is connected via the radiation image processing device 14. 16 is input.
  • the console 16 according to the present embodiment uses the radiation menu 12 and the radiation panel unit 20 using an imaging menu and various information acquired from an external system (RIS) or the like via wireless communication (LAN: Local Area Network). It has a function to control.
  • the console 16 according to the present embodiment transmits / receives various information to / from the radiation panel unit 20 together with a function to transmit / receive various information including image information of the radiation image to / from the radiation image processing apparatus 14. It has a function.
  • the console 16 in the present embodiment is a server computer.
  • the console 16 includes a control unit 40, a display driver 48, a display 50, an operation input detection unit 52, an operation panel 54, an I / O unit 56, and an I / F unit 58.
  • the control unit 40 has a function of controlling the operation of the entire console 16, and includes a CPU, a ROM, a RAM, and an HDD.
  • the CPU has a function of controlling the operation of the entire console 16.
  • Various programs including a control program used by the CPU are stored in advance in the ROM.
  • the RAM has a function of temporarily storing various data.
  • An HDD Hard Disk Drive
  • the display driver 48 has a function of controlling display of various information on the display 50.
  • the display 50 according to the present embodiment has a function of displaying an imaging menu, a captured radiographic image, and the like.
  • the operation input detection unit 52 has a function of detecting an operation state with respect to the operation panel 54.
  • the operation panel 54 is used by a doctor, a radiographer, or the like to input operation instructions related to radiographic image capturing.
  • the operation panel 54 includes, for example, a touch panel, a touch pen, a plurality of keys, a mouse, and the like. In the case of a touch panel, the display 50 may be the same.
  • the I / O unit 56 and the I / F unit 58 transmit and receive various types of information to and from the radiation image processing device 14 and the radiation generation device 12 through wireless communication, and perform image transmission to the radiation panel unit 20. It has a function of transmitting and receiving various information such as information.
  • the control unit 40, the display driver 48, the operation input detection unit 52, and the I / O unit 56 are connected to each other through a bus 59 such as a system bus or a control bus so that information can be exchanged. Therefore, the control unit 40 controls the display of various information on the display 50 via the display driver 48, and controls the transmission / reception of various information with the radiation generator 12 and the radiation panel unit 20 via the I / F unit 58. Can be performed respectively.
  • the radiation image processing apparatus 14 has a function of controlling the radiation generating apparatus 12 and the radiation panel unit 20 based on an instruction from the console 16.
  • the radiation image processing device 14 has a function of controlling storage of the radiation image received from the radiation panel unit 20 in the storage unit 17 and display on the display 50 of the console 16 and the radiation image interpretation device 18.
  • the radiation image processing apparatus 14 includes a system control unit 60, a radiation control unit 62, a panel control unit 64, an image processing control unit 66, and an I / F unit 68.
  • the system control unit 60 has a function of controlling the entire radiographic image processing apparatus 14 and a function of controlling the radiographic image capturing system 10.
  • the system control unit 60 includes a CPU, ROM, RAM, and HDD.
  • the CPU has a function of controlling operations of the entire radiographic image processing apparatus 14 and the radiographic image capturing system 10.
  • Various programs including a control program used by the CPU are stored in advance in the ROM.
  • the RAM has a function of temporarily storing various data.
  • the HDD has a function of storing and holding various data.
  • the radiation control unit 62 has a function of controlling the radiation irradiation control unit 22 of the radiation generator 12 based on an instruction from the console 16.
  • the panel control unit 64 has a function of receiving information from the radiation panel unit 20 wirelessly or by wire.
  • the image processing control unit 66 has a function of performing various image processing on the radiation image.
  • the system control unit 60, the radiation control unit 62, the panel control unit 64, and the image processing control unit 66 are connected to each other through a bus 69 such as a system bus or a control bus so as to be able to exchange information.
  • the storage unit 17 of the present embodiment has a function of storing a captured radiographic image and information related to the radiographic image.
  • An example of the storage unit 17 is an HDD.
  • the radiological image interpretation device 18 of the present embodiment is a device having a function for the radiogram interpreter to interpret the radiographic image taken.
  • the radiographic image interpretation apparatus 18 is not specifically limited, What is called an image interpretation viewer, a console, a tablet terminal, etc. are mentioned.
  • the radiographic image interpretation apparatus 18 of the present embodiment is a personal computer. Similar to the console 16 and the radiographic image processing apparatus 14, the radiographic image interpretation apparatus 18 includes a CPU, ROM, RAM, HDD, display driver, display 23, operation input detection unit, operation panel 24, I / O unit, and I / O unit. F section is provided. In FIG. 2, in order to avoid complicated description, only the display 23 and the operation panel 24 are shown, and other descriptions are omitted.
  • the radiation detector 26 includes a TFT substrate having two TFTs for each pixel.
  • FIG. 3 shows a schematic cross-sectional view of an example of the indirect conversion type radiation detector 26 as an example of the radiation detector 26.
  • the radiation detector 26 shown in FIG. 3 includes a TFT substrate 70 and a radiation conversion layer 74.
  • the bias electrode 72 has a function of applying a bias voltage to the radiation conversion layer 74.
  • a positive bias voltage is supplied to the bias electrode 72 from a high voltage power supply (not shown).
  • a negative bias voltage is supplied to the bias electrode 72.
  • the radiation conversion layer 74 is a scintillator, and is formed so as to be laminated between the bias electrode 72 and the upper electrode 82 via the transparent insulating film 80 in the radiation detector 26 of the present embodiment.
  • the radiation conversion layer 74 is formed by forming a phosphor that emits light by converting the radiation X incident from above or below into light. Providing such a radiation conversion layer 74 absorbs the radiation X and emits light.
  • the wavelength range of light emitted from the radiation conversion layer 74 is preferably a visible light range (wavelength 360 nm to 830 nm). In order to enable monochrome imaging by the radiation detector 26, it is more preferable to include a green wavelength region.
  • a scintillator that generates fluorescence having a relatively wide wavelength region that can generate light in a wavelength region that can be absorbed by the TFT substrate 70 is desirable.
  • Examples of such a scintillator include CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), LaOBr: Tm, and GOS.
  • CsI cesium iodide
  • CsI Tl (cesium iodide to which thallium is added) or CsI: Na having an emission spectrum at the time of X-ray irradiation of 400 to 700 nm.
  • the emission peak wavelength in the visible light region of CsI: Tl is 565 nm.
  • the scintillator containing CsI it is preferable to use what was formed as a strip-like columnar crystal structure by the vacuum evaporation method.
  • the upper electrode 82 is preferably made of a conductive material that is transparent at least with respect to the emission wavelength of the radiation conversion layer 74 because light generated by the radiation conversion layer 74 needs to enter the photoelectric conversion film 86. Specifically, it is preferable to use a transparent conductive oxide (TCO) having a high transmittance for visible light and a small resistance value. Although a metal thin film such as Au can be used as the upper electrode 82, the TCO is preferable because the resistance value tends to increase when the transmittance of 90% or more is obtained.
  • ITO, IZO, AZO, FTO are preferably used SnO 2, TiO 2, and ZnO 2 and the like can. From the viewpoints of process simplicity, low resistance, and transparency, the upper electrode 82 is most preferably ITO. Note that the upper electrode 82 may have a single configuration common to all pixels, or may be divided for each pixel.
  • the photoelectric conversion film 86 includes an organic photoelectric conversion material that absorbs light emitted from the radiation conversion layer 74 and generates charges.
  • the photoelectric conversion film 86 includes an organic photoelectric conversion material, absorbs light emitted from the radiation conversion layer 74, and generates electric charges according to the absorbed light.
  • the photoelectric conversion film 86 containing an organic photoelectric conversion material has a sharp absorption spectrum in the visible range. Therefore, electromagnetic waves other than light emission by the radiation conversion layer 74 are hardly absorbed by the photoelectric conversion film 86, and noise generated when the radiation X such as X-rays is absorbed by the photoelectric conversion film 86 is effectively suppressed. can do.
  • the organic photoelectric conversion material of the photoelectric conversion film 86 is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the radiation conversion layer 74 in order to absorb the light emitted from the radiation conversion layer 74 most efficiently.
  • the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the radiation conversion layer 74, but if the difference between the two is small, the light emitted from the radiation conversion layer 74 is sufficiently absorbed. Is possible.
  • the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength with respect to the radiation X of the radiation conversion layer 74 is preferably within 10 nm, and more preferably within 5 nm.
  • organic photoelectric conversion materials that can satisfy such conditions include quinacridone-based organic compounds and phthalocyanine-based organic compounds.
  • quinacridone-based organic compounds since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI: Tl is used as the material of the radiation conversion layer 74, the difference in the peak wavelength may be within 5 nm. It becomes possible. As a result, the amount of charge generated in the photoelectric conversion film 86 is substantially maximized.
  • the electron blocking film 88 can be provided between the lower electrode 90 and the photoelectric conversion film 86.
  • the electron blocking film 88 suppresses an increase in dark current caused by injection of electrons from the lower electrode 90 to the photoelectric conversion film 86 when a bias voltage is applied between the lower electrode 90 and the upper electrode 82. it can.
  • An electron donating organic material can be used for the electron blocking film 88.
  • the hole blocking film 84 can be provided between the photoelectric conversion film 86 and the upper electrode 82.
  • the hole blocking film 84 suppresses increase in dark current due to injection of holes from the upper electrode 82 to the photoelectric conversion film 86 when a bias voltage is applied between the lower electrode 90 and the upper electrode 82. be able to.
  • An electron-accepting organic material can be used for the hole blocking film 84.
  • a plurality of lower electrodes 90 are formed in a lattice shape (matrix shape) at intervals, and one lower electrode 90 corresponds to one pixel.
  • Each lower electrode 90 is connected to a first field effect thin film transistor (Thin Film Transistor, hereinafter simply referred to as TFT) 98, a second TFT 99, and a storage capacitor 96 of the signal output unit 94.
  • TFT Thin Film Transistor
  • An insulating film 92 is interposed between the signal output unit 94 and the lower electrode 90, and the signal output unit 94 is formed on the insulating substrate 93.
  • the insulating substrate 93 absorbs the radiation X in the radiation conversion layer 74, the insulating substrate 93 has a low X radiation absorbability and is a flexible electrically insulating thin substrate (a substrate having a thickness of about several tens of ⁇ m). ) Is preferred.
  • the insulating substrate 93 is preferably a synthetic resin, aramid, bionanofiber, or film glass (ultra thin glass) that can be wound into a roll.
  • a storage capacitor 96 In the signal output section 94, a storage capacitor 96, a first TFT 98 and a second TFT 99 are formed corresponding to the lower electrode 90.
  • the storage capacitor 96 stores the electric charge that has moved to the lower electrode 90.
  • the first TFT 98 and the second TFT 88 are switching elements that convert the charges accumulated in the storage capacitor 96 into electric signals and output them.
  • the first TFT 98 is a TFT that is driven when a high-resolution radiation image is captured.
  • the second TFT 99 is a TFT that is driven when taking a low-resolution radiation image.
  • the region where the storage capacitor 96, the first TFT 98, and the second TFT 99 are formed has a portion overlapping the lower electrode 90 in plan view. In order to minimize the plane area of the radiation detector 26 (pixel), it is desirable that the region where the storage capacitor 96, the first TFT 98, and the second TFT 99 are formed is completely covered by the lower electrode 90.
  • the radiation detector 26 includes a so-called back surface reading method (PSS (Pentration Side Sampling) method) and a so-called front surface reading method (ISS (Irradiation Side Sampling) method).
  • PSS Purration Side Sampling
  • ISS Immunation Side Sampling
  • the back side scanning method irradiates the radiation X from the side where the radiation conversion layer 74 is formed, and reads the radiation image by the TFT substrate 70 provided on the back side of the incident surface of the radiation X. It is a method.
  • the radiation detector 26 emits light more strongly on the upper surface side of the radiation conversion layer 74 when the back surface reading method is adopted.
  • the surface reading method is a method in which radiation X is irradiated from the TFT substrate 70 side and a radiation image is read by the TFT substrate 70 provided on the surface side of the incident surface of the radiation X.
  • the radiation detector 26 is of the surface reading type, the radiation X transmitted through the TFT substrate 70 enters the radiation conversion layer 74 and the TFT substrate 70 side of the radiation conversion layer 74 emits light more strongly. Electric charges are generated in the photoelectric conversion portion 87 of each pixel 100 provided on the TFT substrate 70 by the light generated in the radiation conversion layer 74. For this reason, the radiation detector 26 is closer to the emission position of the radiation conversion layer 74 with respect to the TFT substrate 70 when the front surface reading method is used than when the rear surface reading method is used. High resolution.
  • the radiation detector 26 may be a direct conversion type radiation detector 26 as shown in a schematic cross-sectional view of an example in FIG.
  • the radiation detector 26 shown in FIG. 4 also includes a TFT substrate 110 and a radiation conversion layer 118 as in the indirect conversion type described above.
  • the insulating substrate 122 absorbs the radiation X in the radiation conversion layer 118, the insulating substrate 122 has a low X radiation absorbability and is a flexible electrically insulating thin substrate (a substrate having a thickness of about several tens of ⁇ m). ) Is preferred.
  • the insulating substrate 122 is preferably made of synthetic resin, aramid, bionanofiber, or film glass (ultra thin glass) that can be wound into a roll.
  • the signal detection unit 85 includes a storage capacitor 126, a first TFT 128 and a second TFT 129, and a charge collection electrode 121.
  • the storage capacitor 126 is a charge storage capacitor.
  • the first TFT 128 and the second TFT 129 are switching elements that convert the charges accumulated in the storage capacitor 126 into electric signals and output them.
  • the first TFT 128 is a TFT that is driven when a high-resolution radiation image is captured.
  • the second TFT 129 is a TFT that is driven when a low-resolution radiation image is captured.
  • a plurality of charge collection electrodes 121 are formed in a lattice shape (matrix shape) at intervals, and one charge collection electrode 121 corresponds to one pixel. Each charge collection electrode 121 is connected to the first TFT 128, the second TFT 129, and the storage capacitor 126.
  • the storage capacitor 126 has a function of storing charges (holes) collected by the charge collection electrodes 121.
  • the charges accumulated in the respective storage capacitors 126 are read out by the first TFT 128 or the second TFT 129. As a result, a radiographic image is taken by the TFT substrate 110.
  • the undercoat layer 120 is formed between the radiation conversion layer 118 and the TFT substrate 110.
  • the undercoat layer 120 preferably has rectification characteristics from the viewpoint of reducing dark current and leakage current. Therefore, the resistivity of the undercoat layer 120 is preferably 10 8 ⁇ cm or more, and the film thickness is preferably 0.01 ⁇ m to 10 ⁇ m.
  • the radiation conversion layer 118 is a photoelectric conversion layer that is a photoconductive material that absorbs the irradiated radiation X and generates positive and negative charges (electron-hole carrier pairs) according to the radiation X.
  • the radiation conversion layer 118 is preferably composed mainly of amorphous Se (a-Se).
  • the radiation conversion layer 118 includes Bi 2 MO 20 (M: Ti, Si, Ge), Bi 4 M 3 O 12 (M: Ti, Si, Ge), Bi 2 O 3 , BiMO 4 (M: Nb).
  • the radiation conversion layer 118 is preferably an amorphous material having high dark resistance, good photoconductivity against radiation irradiation, and capable of forming a large area film at a low temperature by a vacuum deposition method.
  • the thickness of the radiation conversion layer 118 is preferably in the range of 100 ⁇ m or more and 2000 ⁇ m or less in the case of a photoconductive substance containing a-Se as a main component as in the present embodiment, for example.
  • the range is preferably 100 ⁇ m or more and 250 ⁇ m or less.
  • it is preferably in the range of 500 ⁇ m or more and 1200 ⁇ m or less.
  • the electrode interface layer 116 has a function of blocking hole injection and a function of preventing crystallization.
  • the electrode interface layer 116 is formed between the radiation conversion layer 118 and the overcoat layer 114.
  • the electrode interface layer 116 is preferably an inorganic material such as CdS, CeO 2 , Ta 2 O 5 , and SiO, or an organic polymer.
  • the layer made of an inorganic material is preferably used by adjusting the carrier selectivity by changing the composition from the stoichiometric composition or by using a multi-component composition with two or more kinds of homologous elements.
  • an insulating polymer such as polycarbonate, polystyrene, polyimide, and polycycloolefin can be mixed with a low molecular weight electron transport material at a weight ratio of 5% to 80%.
  • electron transporting materials trinitrofluorene and derivatives thereof, diphenoquinone derivatives, bisnaphthyl quinone derivatives, oxazole derivatives, triazole derivatives, C 60 (fullerene), and those that have been mixed with carbon clusters C 70 etc. are preferred. Specific examples include TNF, DMDB, PBD, and TAZ.
  • a thin insulating polymer layer can also be preferably used.
  • the insulating polymer layer is preferably an acrylic resin such as parylene, polycarbonate, PVA, PVP, PVB, polyester resin, and polymethyl methacrylate.
  • the film thickness is preferably 2 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the overcoat layer 114 is formed between the electrode interface layer 116 and the bias electrode 112.
  • the overcoat layer 114 preferably has a rectifying characteristic from the viewpoint of reducing dark current and leakage current. Therefore, the resistivity of the overcoat layer 114 is preferably 10 8 ⁇ cm or more, and the film thickness is preferably 0.01 ⁇ m to 10 ⁇ m.
  • the bias electrode 112 is substantially the same as the bias electrode 72 in the direct conversion type described above, and has a function of applying a bias voltage to the radiation conversion layer 118.
  • the radiation detector 26 is not limited to that shown in FIGS. 3 and 4 and can be variously modified.
  • the signal output units (94, 124) that are unlikely to reach the radiation X have a low resistance to the radiation X instead of the above-described CMOS (Complementary Metal-Oxide Semiconductor). You may combine TFT with other imaging elements, such as an image sensor. Further, the signal output unit (94, 124) may be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting charges by a shift pulse corresponding to the gate signal of the TFT.
  • CCD Charge-Coupled Device
  • the radiation detector 26 may be one using a flexible substrate.
  • the ultra-thin glass by the float method developed recently as a base material as a flexible substrate.
  • the ultra-thin glass that can be applied at this time, for example, “Asahi Glass Co., Ltd.,“ Successfully developed the world's thinnest 0.1 mm thick ultra-thin glass by the float method ”, [online], [2011 Aug. 20 search], Internet ⁇ URL: http://www.agc.com/news/2011/0516.pdf> ”.
  • FIG. 5 is a schematic configuration diagram showing a schematic configuration of the pixel 100 in a plan view from the radiation X irradiation side.
  • a plurality of pixels 100 including m first TFTs 98 and second TFTs 99 are arranged in a two-dimensional form (matrix form).
  • the arrangement of the pixels 100 is shown in a simplified manner, but, for example, 1024 pixels ⁇ 1024 pixels 100 are arranged.
  • the radiation detector 26 includes a plurality of first gate lines 136 (G1 to G16 in FIG. 5) for controlling on / off of the first TFT 98, and a plurality of first gate lines for controlling on / off of the second TFT 99.
  • Two gate lines 137 (M1 to M4 in FIG. 5) are provided.
  • a plurality of signal lines 138 (D1 to D9 in FIG. 5) arranged in the direction intersecting with the first gate line 136 and the second gate line 137 and provided for each column of the pixels 100 are provided. .
  • the signal line 138 On the signal line 138, the charge generated in the photoelectric conversion unit 87 and accumulated in the storage capacitor 96 is read out by the first TFT 98 or the second TFT 99.
  • 1024 first gate lines 136 and 1024 signal lines are provided.
  • the number of second gate lines 137 is 1 ⁇ 4 the number of first gate lines 136, that is, 256.
  • the charge is read for each pixel 100 and output to the signal line 138.
  • high-resolution imaging a first gate signal for turning on the first TFT 98 of the pixel 100 flows through the first gate line 136.
  • an electric signal corresponding to the electric charge read from each pixel 100 by the first TFT 98 flows to each signal line 138.
  • low-resolution imaging a pixel including 2 ⁇ 2 pixels 100 adjacent in the second gate line 137 direction and the first gate line 136 direction.
  • the charge is read and output to the signal line 138.
  • the pixel group 102 adjacent in the direction of the signal line 138 outputs charges to different signal lines 138. That is, in the radiation detector 26 of the present embodiment, the pixel groups 102 are arranged in a staggered manner as shown in FIG.
  • a second gate signal for turning on the second TFT 99 of the pixel 100 flows through the second gate line 137.
  • an electric signal corresponding to the electric charge read out from each pixel 100 (pixel group 102) by the second TFT 99 flows to each signal line 138.
  • a first gate signal is output from the first gate circuit 132 to the first gate line 136 under the control of the panel control unit 130.
  • the first gate circuit 132 includes a first gate driver 150 for each predetermined number of first gate lines 136. Therefore, in the present embodiment, as shown in FIG. 6C, the region of the pixel 100 that outputs the first gate signal is determined for each first gate driver 150.
  • the first gate circuit 132 of this embodiment sequentially drives the first gate driver 150 to output the first gate signal to each first gate line 136.
  • Each first gate driver 150 outputs a first gate signal to a plurality of connected first gate lines 136 sequentially or collectively.
  • a second gate signal is output from the second gate circuit 133 to the second gate line 137 in accordance with the control of the panel control unit 130.
  • the second gate circuit 133 includes a second gate driver 151 for each predetermined number of second gate lines 137. Therefore, in the present embodiment, as shown in FIG. 6B, the region of the pixel group 102 that outputs the second gate signal is determined for each second gate driver 151.
  • the second gate circuit 133 according to the present embodiment sequentially drives the second gate driver 151 to output the second gate signal to each second gate line 137.
  • Each second gate driver 151 outputs a second gate signal to the plurality of connected second gate lines 137 sequentially or collectively.
  • FIG. 7 shows a schematic configuration diagram of an example of the signal processing unit 134.
  • the signal processing unit 134 amplifies the inflowed electric charge (analog electric signal) by the amplifier circuit 140 and then performs A / D conversion by the ADC (AD converter) 144, and the electric signal converted into a digital signal is converted to the panel control unit 130. Output to.
  • the amplifier circuit 140 is provided for each signal line 138. That is, the signal processing unit 134 includes a plurality of amplifier circuits 140 that are the same number as the signal lines 138 of the radiation detector 26.
  • the amplification circuit 140 uses a charge amplifier circuit.
  • the amplifier circuit 140 includes an amplifier 142 such as an operational amplifier, a capacitor C connected in parallel to the amplifier 142, and a charge reset switch SW1 connected in parallel to the amplifier 142.
  • the charge is read out by the first TFT 98 or the second TFT 99 of the pixel 100 (pixel group 102) in a state in which the charge reset switch SW1 is off.
  • the capacitor C is integrated with the charge read out by the first TFT 98 or the second TFT 99, and the voltage value output from the amplifier 142 is increased in accordance with the integrated charge amount.
  • the panel control unit 130 applies a charge reset signal to the charge reset switch SW1 to control on / off of the charge reset switch SW1.
  • the charge reset switch SW1 When the charge reset switch SW1 is turned on, the input side and output side of the amplifier 142 are short-circuited, and the capacitor C is discharged.
  • the ADC 144 has a function of converting an electrical signal, which is an analog signal input from the amplifier circuit 140, into a digital signal when the S / H (sample hold) switch SW is on.
  • the ADC 144 sequentially outputs the electrical signal converted into the digital signal to the panel control unit 130.
  • the ADC 144 of this embodiment receives the electrical signals output from all the amplifier circuits 140 provided in the signal processing unit 134. That is, the signal processing unit 134 of the present embodiment includes one ADC 144 regardless of the number of amplifier circuits 140 (signal lines 138).
  • the panel control unit 130 of the present embodiment includes the FPGA 131, and performs radiographic image capturing based on an imaging menu (order) including imaging conditions and the like when imaging radiographic images. In addition, it has a function of controlling the overall operation of the radiation panel unit 20. In addition, the panel control unit 130 of the present embodiment has a function of controlling the timing when the gates of the first TFT 98 and the second TFT 99 are turned on and off when radiographic images are taken. Further, the panel control unit 130 has a function for resetting the electric charge accumulated in the pixels 100 (pixel group 102) in the non-detection area when the detection area is set.
  • the detection area for example, the detection area 154 in FIG. 9
  • a radiographic image of the detection area is generated and output.
  • the detection area include an area according to ROI (Region Of Interest).
  • ROI Region Of Interest
  • the exposure dose of the subject 30 can be reduced by setting the detection region.
  • the radiation panel unit 20 reads out a part of the area compared with the case of reading out the entire surface irradiated with the radiation X, the charge readout time can be shortened and the frame rate can be improved.
  • the detection area setting method is not particularly limited. For example, a doctor or the like may instruct the console 16 or the like, or may be automatically set according to the imaging menu.
  • the charge accumulated in the pixels 100 (pixel group 102) in the non-detection area is reset or discarded by the control of the panel control unit 130.
  • “reset” means that the charge reset switch SW1 of the amplifier circuit 140 of the signal processing unit 134 is turned on to read out the charge and discharge the charge accumulated in the pixel 100 (pixel group 102).
  • “reading out” means that the charge reset switch SW1 of the amplifier circuit 140 is turned off and the charge is read out in the same manner as when reading out the charge from the pixel 100 (pixel group 102) in order to generate a radiation image. It is not used to generate radiographic images, but to be discarded.
  • a high frame rate may be required for video shooting.
  • 15 fps for digestive system photography, 30 fps for circulatory system photography, and 60 fps for child photography are sufficient for movie photography.
  • the speed is increased, for example, when the frame rate is increased to 120 fps or the like, the motion of the heart or the like appears to be smooth.
  • a frame rate of about 120 fps is preferred for cardiac imaging of children.
  • a contrast agent may be accompanied by a side effect, it is preferable to reduce dosage.
  • the panel control unit 130 controls the non-detection region resetting operation or reading-out operation (hereinafter, collectively referred to as charge discharging operation). By doing so, the frame rate is improved.
  • FIG. 8 shows a flowchart of an example of the charge discharging operation in this embodiment.
  • FIG. 9 shows an example of detection area settings according to the present embodiment.
  • the operation shown in FIG. 8 is performed by executing a program in the FPGA 131 of the panel control unit 130.
  • the program writing to the FPGA 131 may be stored in advance, or may be downloaded from an external system (RIS), CD-ROM, USB, or the like.
  • step S100 it is determined whether or not a detection area is set from the acquired order. If the detection area 154 is not set, the determination is negative and the process proceeds to step S102, and after performing normal photographing processing, this processing is terminated.
  • normal imaging processing refers to reading out charges from all pixels of the radiation detector 26, generating a radiation image based on the charges, and outputting the radiation image.
  • the first TFT 98 is turned on to each first gate line 136 by the first gate driver 150 of the first gate circuit 132.
  • the first gate signal is output.
  • the first TFT 98 reads out the charge for each pixel 100 and causes an electric signal corresponding to the charge to flow through the signal line 138.
  • the second gate driver 151 of the second gate circuit 133 outputs a second gate signal for turning off the second TFT 99 to the second gate line 137.
  • the second gate driver 151 of the second gate circuit 133 causes each second gate line 137 to output a second gate signal for turning on the second TFT 99.
  • the second TFT 99 reads the charge for each pixel group 102 and causes an electric signal corresponding to the charge to flow through the signal line 138.
  • the first gate driver 150 of the first gate circuit 132 outputs a first gate signal for turning off the first TFT 98 to the first gate line 136.
  • step S104 the position of the set detection area 154 is acquired from the order. By acquiring the position of the detection area 154, the position of the non-detection area is determined, and the range in which the reset operation is performed is determined.
  • k first gate lines 136 are provided, and four first gate lines 136 (G) are connected to each of the first gate drivers 150.
  • a first gate line 136 (G1 to G4) is connected to the first gate driver 150A.
  • a first gate line 136 (G5 to G8) is connected to the first gate driver 150B.
  • the first gate circuit 132 sequentially drives the first gate driver 150A. Further, n second gate lines 137 are provided, and the second gate driver 151 is connected to the second gate line 137 (M) one by one. A second gate line 137 (M1) is connected to the second gate driver 151A. A second gate line 137 (M2) is connected to the second gate driver 151B. The second gate circuit 133 sequentially drives the second gate driver 151A. Further, the detection region 154 is provided in the central portion of the radiation detector 26. In the detection region 154, in the direction of the signal line 138, the first gate driver 150 (150C) to the first gate line 136 (Gk-11 to Gk-8) to which the first gate lines 136 (G9 to G12) are connected are provided.
  • the detection region 154 includes the second gate driver 151 (151B) to the second gate line 137 (Mn-3 to Mn-2) connected to the second gate line 137 (M3, M4). It is provided in a region up to the gate driver 151. Note that description of the size of the detection region 154 in the first gate line 136 (second gate line 137) direction is omitted.
  • the imaging resolution is acquired from the order.
  • the order may include an instruction as to whether the resolution is low or high, or may be determined according to the type of shooting.
  • step S108 the radiation X is irradiated from the radiation generator 12 to the subject 30, and charges corresponding to the radiation X irradiated at each pixel 100 (pixel group 102) are accumulated. After the accumulation period has elapsed, the processing from step S108 onward is executed.
  • step S108 the non-detection region is reset by the second gate driver 151 of the second gate circuit 133. At this time, a second gate signal for turning on the second TFT 99 is output from the second gate driver 151 to the second gate line 137, and all the first gate lines 136 (G 1 To Gk), the first gate signal for turning off the first TFT 98 is output.
  • the second gate circuit 133 causes the second gate driver 151A to output the second gate signal for turning on the second TFT 99 of the pixel group 102 to the second gate line 137 (M1, M2). The charge accumulated in the pixel group 102 is reset.
  • the charge is read out from each pixel group 102 in the detection region 154 by the second gate driver 151 of the second gate circuit 133.
  • a second gate signal for turning on the second TFT 99 is sequentially output from each second gate driver 151 to the second gate line 137 (M3 to Mn-2).
  • a first gate signal for turning off the first TFT 98 is output from the first gate driver 150 to all the first gate lines 136 (G1 to Gk).
  • the non-detection regions are also provided on both sides of the detection region 154 (the side where the first gate circuit 132 and the second gate circuit 133 are provided).
  • the charge read from the non-detection area is the panel control unit.
  • the panel control unit 130 generates and outputs a radiographic image based on the charge (electric signal) of the pixel group 102 in the detection region 154 read out by the processing in step S110.
  • the second gate signal for turning on the second TFT 99 of the pixel group 102 is output from the second gate driver 151 to the second gate lines 137 (Mn-1 to Mn) in the same manner as in step S108.
  • the charge of the pixel group 102 in the non-detection area is reset.
  • next step S120 it is determined whether or not the shooting of all frames has been completed. In the case of shooting a moving image, shooting of a plurality of frames may be performed. If the shooting of all the frames has not been completed, the determination is negative, the process returns to step S108, and the above processing is repeated. On the other hand, when the shooting of all the frames has been completed, this process ends.
  • FIG. 10A shows an example of a time chart of the specific example described above in this case. In FIG. 10A, the accumulation period is not shown.
  • step S114 the process proceeds to step S114 after step S106.
  • the second gate driver 151 of the second gate circuit 133 resets the non-detection region.
  • a second gate signal for turning on the second TFT 99 is output from the second gate driver 151 to the second gate line 137.
  • a first gate signal for turning off the first TFT 98 is output from the first gate driver 150 to all the first gate lines 136 (G1 to Gk).
  • the second gate circuit 133 turns on the second TFT 99 of the pixel group 102 from the second gate driver 151A to the second gate line 137 (M1, M2).
  • the second gate signal is sequentially output, and the charge accumulated in the pixel group 102 is reset.
  • the charge is read from each pixel 100 in the detection region 154 by the first gate driver 150 of the first gate circuit 132.
  • a first gate signal for turning on the first TFT 98 is sequentially output from each first gate driver 150 to the first gate line 136 (G9 to Gk-8).
  • a second gate signal for turning off the second TFT 99 is output from the second gate driver 151 to all the second gate lines 137 (M1 to Mn).
  • the charges read from the pixels 100 in the non-detection area on both sides of the detection area 154 are the same as in step S110 described above. It is discarded by the unit 130.
  • the panel control unit 130 generates and outputs a radiation image based on the charge (electric signal) of the pixel 100 in the detection region 154 read out by the processing in step S110.
  • step S118 as in step S114, a second gate signal for turning on the second TFT 99 of the pixel group 102 is output from the second gate driver 151 to the second gate lines 137 (Mn-1 to Mn).
  • the charge of the pixel group 102 in the non-detection area is reset.
  • step S120 it is determined whether or not the shooting of all the frames has been completed. If the shooting of all the frames has not been completed, the determination is negative, the process returns to step S108, and the above processing is repeated. On the other hand, when the shooting of all the frames has been completed, this process ends.
  • the reset operation of the non-detection area is performed by the second gate driver 151 in both the low-resolution imaging and the high-resolution imaging.
  • the first gate driver 150 performs discarding (or resetting) of the image in the non-detection area as in the case of reading out the charges from the pixels 100 in the detection area 154 will be described as a comparative example.
  • FIG. 10B shows an example of a time chart of the comparative example. In the present embodiment, as shown in FIG.
  • the second gate signal for turning on the second TFT 99 from the second gate driver 151A of the second gate circuit 133 to the second gate line 137 (M1, M2) is applied.
  • the charge of each pixel group 102 was reset by outputting.
  • the first gate driver 150A and the first gate driver 150B of the first gate circuit 132 are connected to the second gate line 137 (G1 to G8).
  • the first gate signal for turning on the 1TFT 98 is sequentially output, and the charge of each pixel 100 is read out (or reset).
  • the pixel group 102 corresponding to the pixels 100 for four rows can be reset by outputting the second gate signal once. It can be shortened compared to the comparative example. Specifically, in the radiation panel unit 20 of the present embodiment, the reset time can be reduced to 1 ⁇ 4 compared to the comparative example. Therefore, in the radiation panel unit 20 of this Embodiment, it can be made a high frame rate compared with a comparative example.
  • the frame rate can be further improved when performing “batch reset”.
  • the batch reset is to turn on the first TFT 98 or the second TFT 99 for all the first gate lines 136 or the second gate lines 137 connected for each unit of the first gate driver 150 or the second gate driver 151.
  • the first gate signal or the second gate signal is simultaneously output and reset.
  • the first TFT 98 or the second TFT 99 is turned on all at once, so that the offset fluctuates greatly, and the offset value fluctuates when reading the detection region 154, causing artifacts in the radiation image.
  • the radiation panel unit 20 of this Embodiment mentioned above since the batch reset is not performed, it can be made high frame rate, suppressing the image quality fall of a radiographic image.
  • the number and time of reset operations (number of times and time for outputting a gate signal for resetting the charge) can be reduced, so that power consumption can be suppressed. it can.
  • FIG. 11 shows another example of detection area setting. For example, as shown in FIG. 11, even if the detection region 154 is set so that the detection region 154 and the non-detection region are included in the direction of the signal line 138 in the region corresponding to the first gate driver 150, The reset operation for the non-detection region may be performed in substantially the same manner as described above.
  • the second gate driver 151A of the second gate circuit 133 outputs a second gate signal for turning on the second TFT 99 to the second gate line 137 (M1, M2).
  • the charge of each pixel group 102 is reset.
  • the first gate driver 150C sequentially turns on the first gate signal for turning on the first TFT 98 to the first gate line 136 (corresponding gate line among G9 to G12) corresponding to the pixel 100 corresponding to the non-detection region. Is output and the charge of each pixel 100 is read and discarded.
  • the first gate driver 150 sequentially outputs the first gate signal for turning on the first TFT 98 to the second gate line 137, thereby charging the pixel 100.
  • the reset can be performed in a shorter time than the reset.
  • the radiation panel unit 20 can increase the frame rate even when the detection region 154 and the non-detection region are included in the region corresponding to the gate driver regardless of the arrangement of the detection region 154. .
  • the frame rate can normally be increased by performing a reset operation (charge discharging operation) by the second gate driver 151 of the second gate circuit 133.
  • the panel control unit 130 determines which gate driver can perform the reset operation to shorten the reset time and increase the frame rate, and performs the reset operation according to the determination result. Increase the frame rate.
  • FIG. 12 shows an example of the detection region 154 when the reset operation by the first gate driver 150 of the first gate circuit 132 can increase the frame rate.
  • FIG. 13 shows a flowchart of an example of the reset operation (charge discharging operation) in this embodiment. Since this operation is substantially the same as the charge discharging operation (see FIG. 8) in the first embodiment, the same processing is described as such and detailed description is omitted.
  • FIG. 14A shows an example of a time chart when the reset operation is performed by the first gate driver 150.
  • FIG. 14B shows an example of a time chart when the second gate driver 151 performs a reset operation.
  • Step S200 of the reset operation according to the present embodiment corresponds to step S100 of the charge discharge operation according to the first embodiment.
  • the normal shooting process in step S202 when the result is negative in step S200 corresponds to the normal shooting process in step S102 of the first embodiment.
  • step S204 when affirmed in step S200 corresponds to step S104 of the first embodiment.
  • step S206 the number of resets when the non-detection region is reset by the second gate driver 151 of the second gate circuit 133 is calculated.
  • the calculation is performed for the case of resetting only by the second gate driver 151.
  • the second gate signal for turning off the second TFT 99 is sequentially output to the second gate line 137 (M) connected to the second gate driver 151A. Therefore, here, the number of the second gate lines 137 (M) in which the pixel group 102 is included in the non-detection region is the number of resets.
  • the number of resets when the non-detection area is reset together with the first gate driver 150 of the first gate circuit 132 is calculated.
  • the calculation is performed for the case where both the first gate driver 150 and the second gate driver 151 are used together and reset.
  • the present invention is not limited to this, and the calculation may be performed for the case where the reset is performed only by the first gate driver 150 driver.
  • the number of resets can be reduced by using both.
  • the first TFT 98 is turned off collectively in the first gate line 136 (G) connected to the first gate driver 150A.
  • a gate signal can be output to perform a batch reset.
  • the number of the second gate lines 137 (M) excluding 137 (M) +1 is the number of resets.
  • Step 210 the number of resets calculated in step S206 is compared with the number of resets calculated in step S208. If the number of resets by the second gate driver 151 is smaller, the reset operation is performed by the second gate driver 151. Therefore, the process proceeds to step S212, and after performing each process from step S212 to step S226, this process is terminated. . Steps S212 to S226 correspond to the steps S106 to S120 of the first embodiment, respectively.
  • step S228 the process proceeds to step S228 to use the first gate driver 150 together.
  • step S230 the non-detection region is reset by the first gate driver 150 of the first gate circuit 132.
  • the first gate circuit 132 causes the first gate driver 150A to collectively output a first gate signal for turning on the first TFT 98 of the pixel 100 from the first gate driver 150A to the first gate line 136 (G). The charges accumulated in the pixel 100 are collectively reset.
  • the second gate driver 151 of the second gate circuit 133 reads out charges from each pixel group 102 in the area including the detection area 154.
  • a second gate signal for turning on the second TFT 99 is sequentially output from each second gate driver 151 to the second gate line 137 (M).
  • the charges in the non-detection region are discarded as shown in FIG. 14A.
  • the panel control unit 130 generates and outputs a radiation image based on the charge (electric signal) of the pixel group 102 in the detection region 154 read out by the processing in step S232.
  • step S234 as in step S230, a first gate signal for turning on the first TFT 98 of the pixel 100 is collectively output from the first gate driver 150 to the first gate line 136 (G) to thereby detect the non-detection region.
  • the charges of the pixels 100 are collectively reset.
  • step S242 it is determined whether or not the shooting of all frames has been completed. If not, the determination is negative, the process returns to step S230, and the above processing is repeated. On the other hand, when the shooting of all the frames has been completed, this process ends.
  • step S236 the non-detection region is reset by the first gate driver 150A of the first gate circuit 132.
  • the first gate circuit 132 causes the first gate driver 150A to collectively output a first gate signal for turning on the first TFT 98 of the pixel 100 from the first gate driver 150A to the first gate line 136 (G). The charges accumulated in the pixel 100 are collectively reset.
  • step S2308 charge is read from each pixel 100 in the area including the detection area 154.
  • a first gate signal for turning on the first TFT 98 is sequentially output from each first gate driver 150 to the first gate line 136 (G).
  • the panel control unit 130 generates and outputs a radiation image based on the charge (electric signal) of the pixel group 102 in the detection region 154 read out by the processing in step S232.
  • next step S240 as in step S236, a first gate signal for turning on the first TFT 98 of the pixel 100 is collectively output from the first gate driver 150 to the first gate line 136 (G) to thereby detect the non-detection region.
  • the charges of the pixels 100 are collectively reset.
  • next step S242 it is determined whether or not the shooting of all frames has been completed. If not, the determination is negative, the process returns to step S236, and the above processing is repeated. On the other hand, when the shooting of all the frames has been completed, this process ends.
  • the radiation panel unit 20 of the present embodiment by performing the reset operation using the first gate driver 150 in combination, the number of resets and time (number of times of charge discharge and time) of the non-detection region can be reduced. it can. Thereby, in the radiation panel unit 20, a frame rate can be improved. Therefore, in the radiation panel unit 20 of this Embodiment, power consumption can be suppressed.
  • the radiation panel unit 20 can reduce the number of resets and increase the frame rate by collectively resetting the non-detection area. However, there is a concern that the image quality of the radiation image is degraded by the collective reset.
  • FIG. 15 shows a flowchart of an example of the reset operation (charge discharging operation) in such a case. Since this process is substantially the same as the reset operation (see FIGS. 8 and 13) of the above-described embodiments, the same process is described as such and detailed description thereof is omitted.
  • Step S300 of the reset operation of the present embodiment corresponds to step S100 of the charge discharging operation of the first embodiment, and the normal photographing process of step S302 when negative is step S102 of the first embodiment. It corresponds to the normal shooting process. Further, step S304 in the case where the determination in step S300 is affirmative corresponds to step S104 of the first embodiment.
  • step S306 it is determined which of the frame rate and the image quality of the radiation image is important. Which of the frame rate and the image quality of the radiographic image is important may be set in advance by a user such as a doctor from the console 16 or the like, or may be determined in advance according to the type of imaging. If importance is attached to the frame rate, the process proceeds to step S308, where it is determined that there is a batch reset, and the process proceeds to step S310. Step S310 corresponds to steps S106 to S120 in the first embodiment, and after resetting the charge in the non-detection region and reading out the charge from the detection region 154, as in the first embodiment. This process is terminated.
  • Step S306 corresponds to steps S106 to S120 of the first embodiment, and after resetting the charge in the non-detection region and reading out the charge from the detection region 154, as in the first embodiment. This process is terminated.
  • the frame rate when the frame rate is important, the frame rate can be further increased by performing batch reset. Further, in the radiation panel unit 20, when importance is attached to the image quality of the radiation image, the frame rate can be improved as in the first embodiment without reducing the image quality. Therefore, in the radiation panel unit 20 of the present embodiment, it is possible to increase the frame rate as desired by the user.
  • FIG. 16 explanatory drawing for demonstrating an example of operation
  • the radiation panel unit 20 has an order as shown in FIG.
  • each frame includes an accumulation period for accumulating charges generated according to the radiation X irradiated on each pixel 100 and a readout period for reading the accumulated charges. Repeated every time.
  • the radiation panel unit 20 resets all the pixels 100 at regular intervals in order to reset the charge (offset charge) accumulated in each pixel 100 by dark current.
  • the reset operation is sequentially performed, but even if an instruction to start imaging is given during the reset operation, the storage period cannot be shifted until the reset operation of all the pixels 100 is completed.
  • FIG. 17 shows an example of a flowchart of the offset charge reset operation of the present embodiment.
  • the reset operation for discharging the offset charge is performed by the second gate driver 151 of the second gate circuit 133, so that the reset operation can be performed in a short time. . Therefore, in the radiation panel unit 20 of the present embodiment, when there is an order and an instruction to start imaging is given, imaging can be started promptly. Moreover, in the radiation panel unit 20 of this Embodiment, since the frequency
  • each circuit (panel control unit 130, first gate circuit 132, second gate circuit 133, signal processing unit 134, etc.) in the radiation panel unit 20 is provided by a power supply (battery) provided in the radiation panel unit 20.
  • a power supply battery
  • FIG. 18 is an explanatory diagram for explaining an example of each operation mode of the radiation panel unit 20 according to the present embodiment.
  • the presence / absence of an order (instruction to start imaging) is determined.
  • the mode shifts to the sleep mode. After the transition to the sleep mode, the presence / absence of an order is confirmed and the offset charge is reset as described above every predetermined period.
  • FIG. 19A shows a case where the reset operation is performed by the second gate driver 151.
  • FIG. 19B shows a case where the reset operation is performed by the first gate driver 150.
  • the reset operation is performed by the second gate driver 151, thereby shortening the reset period and extending the period of the sleep mode. Can do.
  • the sleep mode can be lengthened, so that power consumption can be suppressed and the power source can be prolonged. it can. Further, the number of the second gate drivers 151 is smaller than that of the first gate drivers 150. Therefore, the radiation panel unit 20 can suppress the power consumption and extend the power supply by performing the reset operation using the second gate driver 151.
  • the second gate driver 151 performs the reset operation to suppress power consumption.
  • the reset operation may be performed by the first gate driver 150.
  • the charge discharging operation (reset operation) is performed by the second gate driver 151 of the second gate circuit 133, the number and time of the reset operations are reduced. Can do. Therefore, in the radiation panel unit 20, the frame rate can be improved. Moreover, in the radiation panel unit 20, power consumption can be suppressed.
  • FIG. 20 is a schematic configuration diagram illustrating an example of the pixel group 102 in a state where the radiation detector 26 according to another example is viewed in plan from the radiation X irradiation side. As in the radiation detector 26 illustrated in FIG. 20, the pixel group 102 may be arranged in a grid pattern. In the above description, the case where the pixel group 102 includes the 2 ⁇ 2 pixels 100 has been described.
  • FIG. 21 is a schematic configuration diagram illustrating an example of a pixel group 102 in a plan view.
  • the pixel group 102 may include 4 ⁇ 4 pixels 100.
  • the number of the first gate drivers 150 and the second gate drivers 151 and the number of the first gate lines 136 and the second gate lines 137 connected to each of them are not particularly limited, depending on the specifications of the radiation panel unit 20 and the like. You just have to decide.
  • the radiation panel unit 20 in which the number of the first gate drivers 150 is an integral multiple of the second gate driver 151 has been described above, the present invention is not limited thereto.
  • FIG. 22 the schematic block diagram of the radiation panel unit 20 which concerns on another example is shown. Like the radiation panel unit 20 illustrated in FIG. 22, the number of one gate driver 150 may not be an integral multiple of the second gate driver 151.
  • the first TFT 98 and the second TFT 99 that read charges from the pixel 100 are TFTs that turn on when a positive gate-on voltage is applied, as shown in FIGS. Although used, it is not limited to this. For example, a TFT that turns on when a negative gate-on voltage is applied may be used.
  • the shape of the pixel 100 is not limited to the present embodiment.
  • the rectangular pixel 100 is illustrated, but the shape of the pixel 100 is not limited to the rectangular shape and may be other shapes.
  • the arrangement of the pixels 100 is not limited to this embodiment mode.
  • a form in which the pixels 100 are arranged in a matrix a case where the pixels 100 are arranged in a rectangular shape is illustrated, but in a form in which the pixels 100 are arranged in a two-dimensional manner with regularity. There is no limitation as long as there is.
  • the radiation detector 26 is not limited to the above-described embodiments as long as it can be used to capture radiographic images with different resolutions, and the one described in Japanese Patent Application Laid-Open No. 2009-267326 is available. It may be used.
  • the photoelectric conversion film 86 may contain a-Si.
  • the insulating substrates 93 and 122 may be glass substrates.
  • the configurations, processes, operations, and the like of the radiographic image capturing system 10, the radiation panel unit 20, and the radiation detector 26 described in the present embodiment are examples, and the scope of the present invention is not deviated. Needless to say, it can be changed according to the situation.
  • the radiation X described in the present embodiment is not particularly limited, and X-rays, ⁇ -rays, and the like can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 本発明は、検出領域の配置にかかわらず、駆動手段の途中に検出領域が配置された場合であってもフレームレートを向上することができる。すなわち、低解像度撮影の場合及び高解像度撮影の場合のいずれにおいても、非検出領域のリセット動作を、第2ゲートドライバにより行っている。第2ゲート回路の第2ゲートドライバから第2ゲート線(M1、M2)に第2TFTをオン状態にする第2ゲート信号を出力させて各画素群の電荷をリセットする。第2ゲート信号を1回出力させることにより、4行分の画素に対応する画素群をリセットすることができるため、リセット時間を比較例に比べて短くすることができる。

Description

放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
 本発明は、放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラムに関する。特に、解像度が異なる放射線画像を撮影することができる放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラムに関する。
 従来から放射線画像の撮影を行うために、放射線照射装置から照射され、被写体を透過した放射線を放射線検出器により検出する放射線画像撮影装置が知られている。
 このような放射線画像撮影装置は、放射線を検出する放射線検出器を備えている。当該放射線画像撮影装置は、光電変換素子、及びパネル(放射線検出器)を備える。光電変換素子は、放射線または、放射線が変換された光が照射されることにより電荷を発生する。放射線検出器は、光電変換素子で発生した電荷を保持蓄積する蓄積容量、及び蓄積容量から電荷を読み出して当該電荷に応じた電気信号を出力するスイッチング素子を有する画素を備えている。
 一般に、解像度が異なる放射線画像を撮影することができる放射線画像撮影装置として、例えば、特開2009-63514号公報に記載の技術が知られている。このような放射線画像撮影装置では、各画素毎に読み出した電荷に応じた電気信号に基づいて放射線画像を生成する高解像度の撮影と、複数の画素による画素群毎に読み出した電荷に応じた電気信号に基づいて放射線画像を生成する低解像度の撮影が行われる。
 ところで、放射線画像として静止画の撮影に加えて、例えば、複数の放射線画像(静止画)を連続して撮影する動画の撮影が行われている。一般に、動画の撮影は、複数フレーム(複数枚)の静止画である放射線画像の撮影を連続して行うことで被写体の動的な観察を実施するため、フレームレートが高い方がより良い観察が可能となる。
 放射線画像の動画撮影方法の一つとして、検出領域(電荷を読み出して放射線画像を生成するための画素の領域)を限定する手法がある。この手法では、放射線画像の生成に用いられない非検出領域の画素の電荷を一括リセット動作することでフレームレートを高くすることができる。この手法では、一括リセットが行えるゲート線駆動IC(ゲートドライバ)であれば効率よく一括リセット動作が行える。しかしながら、ゲート線駆動ICの途中に検出領域が配置される場合には効率的なフレームレートの向上ができない。
 具体的に例えば、480本のゲート線が接続されたゲート線駆動ICを4つ有しているパネルにおいて1920本(480本×4)のゲート線のうち、中央に配置された1000本が検出領域と設定された場合を考える。両端に配置された2つのゲート線駆動ICでは、検出領域に対応する20本ずつのゲート線しか駆動する必要がなく、非検出領域に対応する残り460本ずつは電荷を読み出す必要がない。しかしながら、汎用のゲート線駆動ICでは、局所的なリセット動作機能がなく、一括リセット動作しかできない。そのため結果的には、順次ゲート線を駆動して非検出領域に対応するゲート線から読み出した電荷を読み捨てることになるためフレームレートを向上できない。
 本発明は、検出領域の配置にかかわらず、駆動手段の途中に検出領域が配置された場合であってもフレームレートを向上することができる、放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラムを提供することを目的とする。
 本発明の第1の態様は、放射線画像撮影装置であって、照射された放射線に応じた電荷を発生するセンサ部、センサ部から電荷を読み出して電荷を出力する第1スイッチング素子、及びセンサ部から電荷を読み出して電荷を出力する第2スイッチング素子を各々備え、かつ2次元状に配列された複数の画素と、第1方向に隣接する複数の画素の第1スイッチング素子の制御端に接続された複数の第1制御線と、第1方向に隣接する複数の画素の第2スイッチング素子の制御端、及び第1方向と交差する第2方向に隣接する画素の第2スイッチング素子の制御端に接続された複数の第2制御線と、画素の第2方向毎に信号線を備え、かつ信号線毎に第2方向に隣接する複数の画素の第1スイッチング素子の出力端が接続されると共に、第2方向に隣接する複数の画素の第2スイッチング素子の出力端及び、第1方向に隣接する複数の画素の第2スイッチング素子の出力端が、一部の信号線に接続された信号線群と、を備えた、予め定められた本数の第1制御線が接続され、第1制御線に、第1スイッチング素子を駆動するための第1駆動信号を出力する複数の第1駆動手段と、予め定められた本数の第2制御線が接続され、第2制御線に、第2スイッチング素子を駆動するための第2駆動信号を出力する複数の第2駆動手段と、一部の領域である検出領域の画素から読み出された電荷により放射線画像を生成する場合に、非検出領域の画素の電荷を排出する電荷排出動作を第2駆動手段により行わせる制御を行う制御手段と、を備える。
 本発明の第2の態様は、上記第1の態様において、制御手段は、非検出領域の電荷排出動作の回数が、第2駆動手段のみにより行うよりも、第1駆動手段により行う方が電荷排出動作の回数が少ないと判断した場合は、第1駆動手段を用いて電荷排出動作を行わせる制御を行う。
 本発明の第3の態様は、上記第1の態様または第2の態様において、制御手段は、検出領域の信号線方向の位置に応じて、第1駆動手段及び第2駆動手段のいずれかにより電荷排出動作を行わせる制御を行う。
 本発明の第4の態様は、上記第1の態様から第3の態様のいずれかにおいて、制御手段は、第1駆動手段により、第1制御線毎に順次、電荷排出動作を行わせる順次電荷排出動作、または一括して電荷を排出させる一括電荷排出動作を行わせると共に、第2駆動手段により、第2制御線毎に順次、電荷排出動作を行わせる順次電荷排出動作、または一括して電荷を排出させる一括電荷排出動作を行わせる。
 本発明の第5の態様は、上記第4の態様において、制御手段は、放射線画像の画質を重視する設定がなされている場合は、第1駆動手段及び第2駆動手段を制御して順次電荷排出動作を行わせる。
 本発明の第6の態様は、上記第4の態様または第5の態様において、制御手段は、撮影の高速化を重視する設定がなされている場合は、第1駆動手段及び第2駆動手段を制御して一括電荷排出動作を行わせる。
 本発明の第7の態様は、上記第1の態様から第6の態様のいずれかにおいて、全部の複数の画素の電荷を排出させる電荷排出動作を行う場合は、制御手段は、第2駆動手段により電荷排出動作を行わせる制御を行う。
 本発明の第8の態様は、上記第7の態様において、電荷排出動作は、放射線画像の撮影が行われていない期間に複数の画素からオフセット電荷を排出させる動作である。
 本発明の第9の態様は、放射線画像撮影装置であって、第1駆動手段、第2駆動手段、及び制御手段を動作させるための電力を供給する電源を備える。
 本発明の第10の態様は、放射線画像撮影システムであって、放射線照射装置と、放射線照射装置から照射された放射線を検出する本発明の放射線画像撮影装置と、を備える。
 本発明の第11の態様は、放射線画像撮影装置の制御方法であって、照射された放射線に応じた電荷を発生するセンサ部、センサ部から電荷を読み出して電荷を出力する第1スイッチング素子、及びセンサ部から電荷を読み出して電荷を出力する第2スイッチング素子を各々備え、かつ2次元状に配列された複数の画素と、第1方向に隣接する複数の画素の第1スイッチング素子の制御端に接続された複数の第1制御線と、第1方向に隣接する複数の画素の第2スイッチング素子の制御端、及び第1方向と交差する第2方向に隣接する画素の第2スイッチング素子の制御端に接続された複数の第2制御線と、画素の第2方向毎に信号線を備え、かつ信号線毎に第2方向に隣接する複数の画素の第1スイッチング素子の出力端が接続されると共に、第2方向に隣接する複数の画素の第2スイッチング素子の出力端及び、第1方向に隣接する複数の画素の第2スイッチング素子の出力端が、一部の信号線に接続された信号線群と、予め定められた本数の第1制御線が接続され、第1制御線に、第1スイッチング素子を駆動するための第1駆動信号を出力する複数の第1駆動手段と、予め定められた本数の第2制御線が接続され、第2制御線に、第2スイッチング素子を駆動するための第2駆動信号を出力する複数の第2駆動手段と、を備えた放射線画像撮影装置の制御方法であって、制御手段により、一部の領域である検出領域の画素から読み出された電荷により放射線画像を生成する場合に、非検出領域の画素の電荷を排出する電荷排出動作を第2駆動手段により行わせる制御を行う工程を備える。
 本発明の放射線画像撮影装置の制御プログラムは、照射された放射線に応じた電荷を発生するセンサ部、センサ部から電荷を読み出して電荷を出力する第1スイッチング素子、及びセンサ部から電荷を読み出して電荷を出力する第2スイッチング素子を各々備え、かつ2次元状に配列された複数の画素と、第1方向に隣接する複数の画素の第1スイッチング素子の制御端に接続された複数の第1制御線と、第1方向に隣接する複数の画素の第2スイッチング素子の制御端、及び第1方向と交差する第2方向に隣接する画素の第2スイッチング素子の制御端に接続された複数の第2制御線と、画素の第2方向毎に信号線を備え、かつ信号線毎に第2方向に隣接する複数の画素の第1スイッチング素子の出力端が接続されると共に、第2方向に隣接する複数の画素の第2スイッチング素子の出力端及び、第1方向に隣接する複数の画素の第2スイッチング素子の出力端が、一部の信号線に接続された信号線群と、予め定められた本数の第1制御線が接続され、第1制御線に、第1スイッチング素子を駆動するための第1駆動信号を出力する複数の第1駆動手段と、予め定められた本数の第2制御線が接続され、第2制御線に、第2スイッチング素子を駆動するための第2駆動信号を出力する複数の第2駆動手段と、を備えた放射線画像撮影装置の制御プログラムであって、一部の領域である検出領域の画素から読み出された電荷により放射線画像を生成する場合に、非検出領域の画素の電荷を排出する電荷排出動作を第2駆動手段により行わせる制御を行う制御手段として、コンピュータを機能させるためのものである。
 本発明によれば、検出領域の配置にかかわらず、駆動手段の途中に検出領域が配置された場合であっても、フレームレートを向上することができる、という効果を有する。
第1の実施の形態に係る放射線画像撮影システムの一例の全体の概略構成図である。 第1の実施の形態に係る放射線画像撮影システムの一例の全体構成の構成図である。 第1の実施の形態に係る間接変換型の放射線検出器の一例の断面の概略を示す概略図である。 第1の実施の形態に係る直接変換型の放射線検出器の一例の断面の概略を示す概略図である。 第1の実施の形態に係る放射線検出器を、放射線Xの照射側から平面視した状態の画素の一例の概略構成を示した概略構成図である。 第1の実施の形態に係る放射線パネルユニットの一例の概略構成図である。 第1の実施の形態の放射線検出器における、各第2ゲートドライバ毎に第2ゲート信号を出力する画素群の領域の一例を説明するための概略構成図である。 第1の実施の形態の放射線検出器における、各第1ゲートドライバ毎に第1ゲート信号を出力する画素の領域の一例を説明するための概略構成図である。 第1の実施の形態に係る信号処理部の一例の概略構成図である。 第1の実施の形態に係る電荷排出動作の一例のフローチャートである。 第1の実施の形態に係る検出領域の設定の一例を示す概略図である。 第1の実施の形態に係る高解像度撮影の際のタイムチャートの一例である。 第1の実施の形態に対する比較例のタイムチャートの一例である。 その他の検出領域の設定の一例を示す概略図である。 第2の実施の形態に係る検出領域の設定の一例を示す概略図である。 第2の実施の形態に係る電荷排出動作の一例のフローチャートである。 第2の実施の形態に係る第1ゲートドライバによりリセット動作を行う場合のタイムチャートの一例である。 第2の実施の形態に係る第2ゲートドライバによりリセット動作を行う場合のタイムチャートの一例である。 第3の実施の形態に係る電荷排出動作の一例のフローチャートである。 第4の実施の形態に係る放射線パネルユニットの動作の一例を説明するための説明図である。 第4の実施の形態に係るリセット動作の一例のフローチャートである。 第4の実施の形態に係る放射線パネルユニットの各動作モードの一例を説明するための説明図である。 第4の実施の形態に係る放射線パネルユニットにおける第2ゲートドライバによりリセット動作を行わせた場合のリセット動作の一例を説明するための説明図である。 第4の実施の形態に係る放射線パネルユニットにおける第1ゲートドライバによりリセット動作を行わせた場合のリセット動作の一例を説明するための説明図である。 その他の一例に係る放射線検出器を、放射線Xの照射側から平面視した状態の画素群の一例の概略構成を示した概略構成図である。 その他の一例に係る放射線検出器を、放射線Xの照射側から平面視した状態の画素群の一例を示した概略構成図である。 その他の一例に係る放射線パネルユニットの概略構成図である。
[第1の実施の形態]
 以下、各図面を参照して本実施の形態の一例について説明する。
 まず、本実施の形態の放射線画像処理装置を備えた放射線画像撮影システム全体の概略構成について説明する。図1には、本実施の形態の放射線画像撮影システム全体の概略構成図を示す。また、図2には、本実施の形態の放射線画像撮影システム10の全体構成を図1よりも詳細に示した構成図を示す。本実施の形態の放射線画像撮影システム10は、解像度が異なる放射線画像を撮影することが可能である。また、本実施の形態の放射線画像撮影システム10は、動画に加え、静止画を撮影することが可能である。なお、本実施の形態において「放射線画像」とは、特に明記しない場合は、動画及び静止画の両者のことを言う。本実施の形態において動画とは、静止画を高速に次々と表示して、動画として認知させることをいい、静止画を撮影し、電気信号に変換し、伝送して当該電気信号から静止画を再生する、というプロセスを高速に繰り返すものである。従って、動画には、前記「高速」の度合いによって、予め定められた時間内に同一領域(一部または全部)を複数回撮影し、かつ連続的に再生する、いわゆる「コマ送り」も包含されるものとする。
 本実施の形態の放射線画像撮影システム10は、コンソール16を介して外部のシステム(例えば、RIS:Radiology Information System:放射線情報システム)から入力された指示(撮影メニュー)に基づいて、医師や放射線技師等の操作により放射線画像の撮影を行う機能を有する。
 また、本実施の形態の放射線画像撮影システム10は、撮影された放射線画像をコンソール16のディスプレイ50や放射線画像読影装置18に表示させることにより、医師や放射線技師等に放射線画像を読影させる機能を有する。
 本実施の形態の放射線画像撮影システム10は、放射線発生装置12、放射線画像処理装置14、コンソール16、記憶部17、放射線画像読影装置18、及び放射線パネルユニット20を備えている。
 放射線発生装置12は、放射線照射制御ユニット22を備えている。放射線照射制御ユニット22は、放射線画像処理装置14の放射線制御部62の制御に基づいて放射線照射源22Aから放射線Xを撮影台32上の被験者被検者30の撮影対象部位に照射させる機能を有している。
 被検者30を透過した放射線Xは、撮影台32内部の保持部34に保持された放射線パネルユニット20に照射される。放射線パネルユニット20は、被検者30を透過した放射線Xの線量に応じた電荷を発生し、発生した電荷量に基づいて放射線画像を示す画像情報を生成して出力する機能を有する。本実施の形態の放射線パネルユニット20は、放射線検出器26及びパネル制御部130を備えている。パネル制御部130は、FPGA(Field Programmable Gate Array)131により、放射線パネルユニット20全体を制御する機能を有している。また、本実施の形態の放射線検出器26は、異なる解像度の放射線画像を撮影することできる。
 本実施の形態では、放射線パネルユニット20により出力された放射線画像を示す画像情報は、光ファイバやカメラリンク規格等を介して放射線画像処理装置14に入力され、放射線画像処理装置14を介してコンソール16に入力される。本実施の形態のコンソール16は、無線通信(LAN:Local Area Network)等を介して外部システム(RIS)等から取得した撮影メニューや各種情報等を用いて、放射線発生装置12及び放射線パネルユニット20の制御を行う機能を有している。また、本実施の形態のコンソール16は、放射線画像処理装置14との間で放射線画像の画像情報を含む各種情報の送受信を行う機能と共に、放射線パネルユニット20との間で各種情報の送受信を行う機能を有している。
 本実施の形態のコンソール16は、サーバー・コンピュータである。コンソール16は、制御部40、ディスプレイドライバ48、ディスプレイ50、操作入力検出部52、操作パネル54、I/O部56、及びI/F部58を備えている。
 制御部40は、コンソール16全体の動作を制御する機能を有しており、CPU、ROM、RAM、及びHDDを備えている。CPUは、コンソール16全体の動作を制御する機能を有している。ROMには、CPUで使用される制御プログラムを含む各種プログラム等が予め記憶されている。RAMは、各種データを一時的に記憶する機能を有している。HDD(ハードディスク・ドライブ)は、各種データを記憶して保持する機能を有している。
 ディスプレイドライバ48は、ディスプレイ50への各種情報の表示を制御する機能を有している。本実施の形態のディスプレイ50は、撮影メニューや撮影された放射線画像等を表示する機能を有している。操作入力検出部52は、操作パネル54に対する操作状態を検出する機能を有している。操作パネル54は、放射線画像の撮影に関する操作指示を、医師や放射線技師等が入力するためのものである。本実施の形態では操作パネル54は、例えば、タッチパネル、タッチペン、複数のキー、及びマウス等を含んでいる。なお、タッチパネルである場合は、ディスプレイ50と同一としてもよい。
 また、I/O部56及びI/F部58は、無線通信により、放射線画像処理装置14及び放射線発生装置12との間で各種情報の送受信を行うと共に、放射線パネルユニット20との間で画像情報等の各種情報の送受信を行う機能を有している。
 制御部40、ディスプレイドライバ48、操作入力検出部52、及びI/O部56は、システムバスやコントロールバス等のバス59を介して相互に情報等の授受が可能に接続されている。従って、制御部40は、ディスプレイドライバ48を介したディスプレイ50への各種情報の表示の制御、及びI/F部58を介した放射線発生装置12及び放射線パネルユニット20との各種情報の送受信の制御を各々行うことができる。
 本実施の形態の放射線画像処理装置14は、コンソール16からの指示に基づいて、放射線発生装置12及び放射線パネルユニット20を制御する機能を有する。また、放射線画像処理装置14は、放射線パネルユニット20から受信した放射線画像の記憶部17への記憶、及びコンソール16のディスプレイ50や放射線画像読影装置18への表示を制御する機能を有する。
 本実施の形態の放射線画像処理装置14は、システム制御部60、放射線制御部62、パネル制御部64、画像処理制御部66、及びI/F部68を備えている。
 システム制御部60は、放射線画像処理装置14全体を制御する機能を有すると共に、放射線画像撮影システム10を制御する機能を有している。システム制御部60は、CPU、ROM、RAM、及びHDDを備えている。CPUは、放射線画像処理装置14全体及び放射線画像撮影システム10の動作を制御する機能を有している。ROMには、CPUで使用される制御プログラムを含む各種プログラム等が予め記憶されている。RAMは、各種データを一時的に記憶する機能を有している。HDDは、各種データを記憶して保持する機能を有している。放射線制御部62は、コンソール16の指示に基づいて、放射線発生装置12の放射線照射制御ユニット22を制御する機能を有している。パネル制御部64は、放射線パネルユニット20からの情報を、無線または有線により受け付ける機能を有している。画像処理制御部66は、放射線画像に対して各種画像処理を施す機能を有している。
 システム制御部60、放射線制御部62、パネル制御部64、及び画像処理制御部66は、システムバスやコントロールバス等のバス69を介して相互に情報等の授受が可能に接続されている。
 本実施の形態の記憶部17は、撮影された放射線画像及び当該放射線画像に関係する情報を記憶する機能を有する。記憶部17としては、例えば、HDD等が挙げられる。
 また、本実施の形態の放射線画像読影装置18は、撮影された放射線画像を読影者が読影するための機能を有する装置である。放射線画像読影装置18は、特に限定されないが、いわゆる、読影ビューワ、コンソール、及びタブレット端末等が挙げられる。本実施の形態の放射線画像読影装置18は、パーソナル・コンピュータである。放射線画像読影装置18は、コンソール16や放射線画像処理装置14と同様に、CPU、ROM、RAM、HDD、ディスプレイドライバ、ディスプレイ23、操作入力検出部、操作パネル24、I/O部、及びI/F部を備えている。なお、図2では、記載が煩雑になるのを避けるため、これらのうち、ディスプレイ23及び操作パネル24のみを示し、その他の記載を省略している。
 次に、放射線パネルユニット20について詳細に説明する。まず、放射線パネルユニット20に備えられた放射線検出器26について説明する。本実施の形態の放射線検出器26は、各画素毎に2つのTFTを有するTFT基板を備えている。
 図3には、放射線検出器26の一例として、間接変換型の放射線検出器26の一例の断面の概略図を示す。図3に示した放射線検出器26は、TFT基板70と、放射線変換層74とを備えている。
 バイアス電極72は、放射線変換層74へバイアス電圧を印加する機能を有している。本実施の形態では、放射線検出器26が正孔読取センサであるため、バイアス電極72には、図示を省略した高圧電源からプラスのバイアス電圧が供給される。なお、放射線検出器26が照射された放射線Xに応じて発生した電子を読み取る電子読取センサである場合は、バイアス電極72には、マイナスのバイアス電圧が供給される。
 放射線変換層74はシンチレータであり、本実施の形態の放射線検出器26では、バイアス電極72と上部電極82との間に、透明絶縁膜80を介して積層されるように形成されている。放射線変換層74は、上方または下方から入射してくる放射線Xを光に変換して発光する蛍光体を成膜したものである。このような放射線変換層74を設けることで放射線Xを吸収して発光することになる。
 放射線変換層74が発する光の波長域は、可視光域(波長360nm~830nm)であることが好ましい。この放射線検出器26によってモノクロ撮像を可能とするためには、緑色の波長域を含んでいることがより好ましい。
 放射線変換層74に用いるシンチレータとしては、TFT基板70で吸収可能な波長領域の光を発生できるような、比較的広範囲の波長領域を有した蛍光を発生するシンチレータが望ましい。このようなシンチレータとしては、CsI:Na、CaWO、YTaO:Nb、BaFX:Eu(XはBrまたはCl)、または、LaOBr:Tm、及びGOS等がある。具体的には、放射線XとしてX線を用いて撮像する場合は、ヨウ化セシウム(CsI)を含むものが好ましい。特に、X線照射時の発光スペクトルが400nm~700nmにあるCsI:Tl(タリウムが添加されたヨウ化セシウム)やCsI:Naを用いることが特に好ましい。なお、CsI:Tlの可視光域における発光ピーク波長は565nmである。なお、放射線変換層74としてCsIを含むシンチレータを用いる場合、真空蒸着法で短冊状の柱状結晶構造として形成したものを用いることが好ましい。
 上部電極82は、放射線変換層74により生じた光を光電変換膜86に入射させる必要があるため、少なくとも放射線変換層74の発光波長に対して透明な導電性材料が好ましい。具体的には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO)を用いることが好ましい。なお、上部電極82としてAu等の金属薄膜を用いることもできるが、透過率を90%以上得ようとすると抵抗値が増大し易いため、TCOの方が好ましい。例えば、ITO、IZO、AZO、FTO、SnO、TiO、及びZnO等を好ましく用いることができる。プロセス簡易性、低抵抗性、及び透明性の観点から上部電極82は、ITOが最も好ましい。なお、上部電極82は、全画素で共通の一枚構成としてもよく、画素毎に分割してもよい。
 光電変換膜86は、放射線変換層74が発する光を吸収して電荷が発生する有機光電変換材料を含む。光電変換膜86は、有機光電変換材料を含み、放射線変換層74から発せられた光を吸収し、吸収した光に応じた電荷を発生する。このように有機光電変換材料を含む光電変換膜86であれば、可視域にシャープな吸収スペクトルを持つ。そのため、放射線変換層74による発光以外の電磁波が光電変換膜86に吸収されることがほとんどなく、X線等の放射線Xが光電変換膜86で吸収されることによって発生するノイズを効果的に抑制することができる。
 光電変換膜86の有機光電変換材料は、放射線変換層74で発光した光を最も効率よく吸収するために、その吸収ピーク波長が、放射線変換層74の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長と放射線変換層74の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければ放射線変換層74から発された光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、放射線変換層74の放射線Xに対する発光ピーク波長との差が、10nm以内であることが好ましく、5nm以内であることがより好ましい。このような条件を満たすことが可能な有機光電変換材料としては、例えばキナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、放射線変換層74の材料としてCsI:Tlを用いれば、上記ピーク波長の差を5nm以内にすることが可能となる。これにより、光電変換膜86で発生する電荷量がほぼ最大になる。
 なお、暗電流の増加を抑制するためには、電子ブロッキング膜88及び正孔ブロッキング膜84の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。電子ブロッキング膜88は、下部電極90と光電変換膜86との間に設けることができる。電子ブロッキング膜88は、下部電極90と上部電極82間にバイアス電圧を印加したときに、下部電極90から光電変換膜86に電子が注入されて暗電流が増加してしまうのを抑制することができる。電子ブロッキング膜88には、電子供与性有機材料を用いることができる。一方、正孔ブロッキング膜84は、光電変換膜86と上部電極82との間に設けることができる。正孔ブロッキング膜84は、下部電極90と上部電極82間にバイアス電圧を印加したときに、上部電極82から光電変換膜86に正孔が注入されて暗電流が増加してしまうのを抑制することができる。正孔ブロッキング膜84には、電子受容性有機材料を用いることができる。
 下部電極90は、間隔を隔てて格子状(マトリックス状)に複数形成されており、1つの下部電極90が1画素に対応している。各々の下部電極90は、信号出力部94の第1電界効果型薄膜トランジスタ(Thin Film Transistor、以下、単にTFTという)98、第2TFT99、及び蓄積容量96に接続されている。なお、信号出力部94と下部電極90との間には、絶縁膜92が介在されており、信号出力部94は、絶縁性基板93上に形成されている。絶縁性基板93は、放射線変換層74において放射線Xを吸収させるため、放射線Xの吸収性が低く、且つ、可撓性を有する電気絶縁性の薄厚の基板(数十μm程度の厚みを有する基板)が好ましい。絶縁性基板93は、具体的には、合成樹脂、アラミド、バイオナノファイバ、あるいは、ロール状に巻き取ることが可能なフイルム状ガラス(超薄板ガラス)等であることが好ましい。
 信号出力部94は、下部電極90に対応して、蓄積容量96と、第1TFT98及び第2TFT99と、が形成されている。蓄積容量96は、下部電極90に移動した電荷を蓄積する。第1TFT98及び第2TFT88は、蓄積容量96に蓄積された電荷を電気信号に変換して出力するスイッチング素子である。詳細は後述するが、第1TFT98は、高解像度の放射線画像を撮影する際に駆動されるTFTである。第2TFT99は、低解像度の放射線画像を撮影する際に駆動されるTFTである。
 蓄積容量96、第1TFT98、及び第2TFT99の形成された領域は、平面視において下部電極90と重なる部分を有している。なお、放射線検出器26(画素)の平面積を最小にするために、蓄積容量96、第1TFT98、及び第2TFT99の形成された領域が下部電極90によって完全に覆われていることが望ましい。
 放射線検出器26には、いわゆる裏面読取方式(PSS(Pentration Side Sampling)方式)と、いわゆる表面読取方式(ISS(Irradiation Side Sampling)方式)とがある。裏面読取方式は、図3に示すように、放射線変換層74が形成された側から放射線Xが照射されて、当該放射線Xの入射面の裏面側に設けられたTFT基板70により放射線画像を読み取る方式である。放射線検出器26は、裏面読取方式とされた場合、放射線変換層74の同図上面側でより強く発光する。一方、表面読取方式は、TFT基板70側から放射線Xが照射されて、当該放射線Xの入射面の表面側に設けられたTFT基板70により放射線画像を読み取る方式である。放射線検出器26は、表面読取方式とされた場合、TFT基板70を透過した放射線Xが放射線変換層74に入射して放射線変換層74のTFT基板70側がより強く発光する。TFT基板70に設けられた各画素100の光電変換部87には、放射線変換層74で発生した光により電荷が発生する。このため、放射線検出器26は、表面読取方式とされた場合の方が裏面読取方式とされた場合よりもTFT基板70に対する放射線変換層74の発光位置が近いため、撮影によって得られる放射線画像の分解能が高い。
 なお、放射線検出器26は、図4に一例の断面の概略図を示すように直接変換型の放射線検出器26であってもよい。図4に示した放射線検出器26も、上述した間接変換型と同様に、TFT基板110と、放射線変換層118とを備えている。
 TFT基板110は、放射線変換層118で発生した電荷であるキャリア(正孔)を収集し読み出す(検出する)機能を有する。TFT基板110は、絶縁性基板122、及び信号出力部124を備えている。なお、放射線検出器26が電子読取センサである場合は、TFT基板110は、電子を収集し読み出す機能を有する。
 絶縁性基板122は、放射線変換層118において放射線Xを吸収させるため、放射線Xの吸収性が低く、且つ、可撓性を有する電気絶縁性の薄厚の基板(数十μm程度の厚みを有する基板)が好ましい。具体的に絶縁性基板122は、合成樹脂、アラミド、バイオナノファイバ、あるいは、ロール状に巻き取ることが可能なフイルム状ガラス(超薄板ガラス)等であることが好ましい。
 信号検出部85は、蓄積容量126と、第1TFT128及び第2TFT129と、電荷収集電極121と、を備えている。蓄積容量126は、電荷蓄積容量である。第1TFT128及び第2TFT129は、蓄積容量126に蓄積された電荷を電気信号に変換して出力するスイッチング素子である。詳細は後述するが、第1TFT128は、高解像度の放射線画像を撮影する際に駆動されるTFTである。第2TFT129は、低解像度の放射線画像を撮影する際に駆動されるTFTである。
 電荷収集電極121は、間隔を隔てて格子状(マトリックス状)に複数形成されており、1つの電荷収集電極121が1画素に対応している。各々の電荷収集電極121は、第1TFT128、第2TFT129、及び蓄積容量126に接続されている。
 蓄積容量126は、各電荷収集電極121で収集された電荷(正孔)を蓄積する機能を有する。この各蓄積容量126に蓄積された電荷が、第1TFT128または第2TFT129によって読み出される。これによりTFT基板110による放射線画像の撮影が行われる。
 下引層120は、放射線変換層118とTFT基板110との間に形成されている。下引層120は、暗電流、及びリーク電流低減の観点から、整流特性を有することが好ましい。そのため、下引層120の抵抗率は、10Ωcm以上であること、膜厚は、0.01μm~10μmであることが好ましい。
 放射線変換層118は、照射された放射線Xを吸収して、放射線Xに応じてプラス及びマイナスの電荷(電子-正孔キャリア対)を発生する光導電物質である光電変換層である。放射線変換層118は、アモルファスSe(a-Se)を主成分とすることが好ましい。また、放射線変換層118としては、BiMO20(M:Ti、Si、Ge)、Bi12(M:Ti、Si、Ge)、Bi、BiMO(M:Nb、Ta、V)、BiWO、Bi2439、ZnO、ZnS、ZnSe、ZnTe、MNbO(M:Li、Na、K)、PbO、HgI、PbI、CdS、CdSe、CdTe、BiI、及びGaAs等のうち、少なくとも1つを主成分とする化合物を用いてもよい。なお、放射線変換層118は、暗抵抗が高く、放射線照射に対して良好な光導電性を示し、真空蒸着法により低温で大面積成膜が可能な非晶質(アモルファス)材料が好ましい。
 放射線変換層118の厚みは、例えば本実施の形態のように、a-Seを主成分とする光導電物質の場合、100μm以上、2000μm以下の範囲であることが好ましい。特に、マンモグラフィ用途では、100μm以上、250μm以下の範囲であることが好ましい。また、一般撮影用途においては、500μm以上、1200μm以下の範囲であることが好ましい。
 電極界面層116は、正孔の注入を阻止する機能と、結晶化を防止する機能と、を有している。電極界面層116は、放射線変換層118と上引層114との間に形成されている。電極界面層116としては、CdS、CeO、Ta、及びSiO等の無機材料、または有機高分子が好ましい。無機材料からなる層としては、その組成を化学量論組成から変化させ、または2種類以上の同族元素との多元組成とすることでキャリア選択性を調節して用いることが好ましい。有機高分子からなる層としては、ポリカーボネート、ポリスチレン、ポリイミド、及びポリシクロオレフィン等の絶縁性高分子に、低分子の電子輸送材料を5%~80%の重量比で混合して用いることができる。こうした電子輸送材料としては、トリニトロフルオレンとその誘導体、ジフェノキノン誘導体、ビスナフチルキノン誘導体、オキサゾール誘導体、トリアゾール誘導体、C60(フラーレン)、及びC70等のカーボンクラスターを混合したもの等が好ましい。具体的にはTNF、DMDB、PBD、及びTAZが挙げられる。一方、薄い絶縁性高分子層も好ましく用いることができる。絶縁性高分子層は、例えば、パリレン、ポリカーボネート、PVA、PVP、PVB、ポリエステル樹脂、及びポリメチルメタクリレート等のアクリル樹脂が好ましい。この場合、膜厚は、2μm以下が好ましく、0.5μm以下がより好ましい。
 上引層114は、電極界面層116とバイアス電極112との間に形成されている。上引層114は、暗電流、及びリーク電流低減の観点から、整流特性を有することが好ましい。そのため、上引層114の抵抗率は、10Ωcm以上であること、膜厚は、0.01μm~10μmであることが好ましい。バイアス電極112は、上述の直接変換型におけるバイアス電極72と略同様であり、放射線変換層118へバイアス電圧を印加する機能を有している。
 さらに、放射線検出器26は、図3及び図4に示したものに限らず、種々の変形が可能である。例えば、裏面読取方式の場合は、放射線Xが到達する可能性が低い信号出力部(94、124)は、上述のものに代えて、放射線Xに対する耐性が低い、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の他の撮影素子とTFTとを組み合わせてもよい。また、信号出力部(94、124)は、TFTのゲート信号に相当するシフトパルスにより電荷をシフトしながら転送するCCD(Charge-Coupled Device)イメージセンサに置き換えるようにしてもよい。
 また例えば、放射線検出器26は、フレキシブル基板を用いたものでもよい。フレキシブル基板としては、近年開発されたフロート法による超薄板ガラスを基材として用いたものを適用することが、放射線Xの透過率を向上させるうえで好ましい。なお、この際に適用できる超薄板ガラスについては、例えば、「旭硝子株式会社、"フロート法による世界最薄0.1ミリ厚の超薄板ガラスの開発に成功"、[online]、[平成23年8月20日検索]、インターネット<URL:http://www.agc.com/news/2011/0516.pdf>」に開示されている。
 具体的例として図3に示した放射線検出器26を、図5には、放射線Xの照射側から平面視した状態の画素100の概略構成を示した概略構成図を示す。図5に示すように、本実施の形態の放射線検出器26ではm第1TFT98及び第2TFT99を備えた画素100が複数2次元状(マトリックス状)に配列されている。なお、図5では、画素100の配列を簡略化して示しているが、例えば、画素100は、1024個×1024個配置されている。
 放射線検出器26には、第1TFT98のオン/オフを制御するための複数の第1ゲート線136(図5では、G1~G16)、及び第2TFT99のオン/オフを制御するための複数の第2ゲート線137(図5では、M1~M4)が設けられている。また、第1ゲート線136及び第2ゲート線137と交差する方向に配列され、画素100の列毎に備えられた、複数の信号線138(図5では、D1~D9)が設けられている。信号線138には、第1TFT98または第2TFT99により、上記光電変換部87で発生し、蓄積容量96に蓄積された電荷が読み出される。本実施の形態では、例えば、画素100が1024個×1024個配置されている場合、第1ゲート線136及び信号線138は1024本ずつ設けられている。また、この場合、第2ゲート線137は、第1ゲート線136の1/4の本数、すなわち256本設けられている。
 本実施の形態の放射線検出器26では、高解像度の放射線画像を撮影(以下、「高解像度撮影」という)する場合は、各画素100毎に、電荷を読み出して信号線138に出力する。高解像度撮影の場合、第1ゲート線136には、画素100の第1TFT98をオン状態にするための第1ゲート信号が流れる。当該第1ゲート信号に応じて各画素100から第1TFT98により読み出された電荷に応じた電気信号が各信号線138に流れる。
 一方、低解像度の放射線画像を撮影(以下、「低解像度撮影」という)する場合は、第2ゲート線137方向及び第1ゲート線136方向に隣接する2個×2個の画素100を含む画素群102毎に、電荷を読み出して信号線138に出力する。また、低解像度撮影の場合、信号線138方向に隣接する画素群102は、異なる信号線138に電荷を出力する。すなわち、本実施の形態の放射線検出器26では、図5に示すように画素群102が千鳥状に配列されている。低解像度撮影の場合、第2ゲート線137には、画素100の第2TFT99をオン状態にするための第2ゲート信号が流れる。当該第2ゲート信号に応じて各画素100(画素群102)から第2TFT99により読み出された電荷に応じた電気信号が各信号線138に流れる。
 図6Aには、各第1ゲート線136及び第2ゲート線137に第1ゲート信号及び第2ゲート信号を出力するための本実施の形態の放射線パネルユニット20の概略構成図を示す。図6Bには、本実施の形態の放射線検出器26における、各第2ゲートドライバ151毎に第2ゲート信号を出力する画素群102の領域を説明するための概略構成図を示す。図6Cには、本実施の形態の放射線検出器26における、各第1ゲートドライバ150毎に第1ゲート信号を出力する画素100の領域を説明するための概略構成図を示す。なお、図6A~図6Cでは、図面が煩雑になるのを避けるため、第1ゲート線136、第2ゲート線137、及び信号線138の記載を省略している。本実施の形態の放射線パネルユニット20では、第1ゲート線136には、パネル制御部130の制御に応じて、第1ゲート回路132から第1ゲート信号が出力される。第1ゲート回路132は、所定本数の第1ゲート線136毎に、第1ゲートドライバ150を備えている。そのため、本実施の形態では、図6Cに示すように、各第1ゲートドライバ150毎に第1ゲート信号を出力する画素100の領域が定められている。本実施の形態の第1ゲート回路132は、順次、第1ゲートドライバ150を駆動させて、各第1ゲート線136に第1ゲート信号を出力させる。各第1ゲートドライバ150は、接続されている複数の第1ゲート線136に対して、順次、または一括して第1ゲート信号を出力する。
 一方、第2ゲート線137には、パネル制御部130の制御に応じて、第2ゲート回路133から第2ゲート信号が出力される。第2ゲート回路133は、所定本数の第2ゲート線137毎に、第2ゲートドライバ151を備えている。そのため、本実施の形態では、図6Bに示すように、各第2ゲートドライバ151毎に第2ゲート信号を出力する画素群102の領域が定められている。本実施の形態の第2ゲート回路133は、順次、第2ゲートドライバ151を駆動させて、各第2ゲート線137に第2ゲート信号を出力させる。各第2ゲートドライバ151は、接続されている複数の第2ゲート線137に対して、順次、または一括して第2ゲート信号を出力する。
 信号線138に流れた電荷(電気信号)は、信号処理部134に流出する。図7には、信号処理部134の一例の概略構成図を示す。信号処理部134は、流入した電荷(アナログの電気信号)を増幅回路140により増幅した後にADC(ADコンバータ)144でA/D変換を行い、デジタル信号に変換された電気信号をパネル制御部130に出力する。なお、図7では、図示を省略したが増幅回路140は、信号線138毎に設けられている。すなわち、信号処理部134は、放射線検出器26の信号線138の数と同じ数の、複数の増幅回路140を備えている。
 増幅回路140は、チャージアンプ回路を用いている。増幅回路140は、オペアンプ等のアンプ142と、アンプ142に並列に接続されたコンデンサCと、アンプ142に並列に接続された電荷リセット用のスイッチSW1と、を備えている。増幅回路140では、電荷リセット用のスイッチSW1がオフの状態で画素100(画素群102)の第1TFT98または第2TFT99により電荷が読み出される。コンデンサCには、第1TFT98または第2TFT99により読み出された電荷が積分され、積分される電荷量に応じてアンプ142から出力される電圧値が増加するようになっている。
 また、パネル制御部130は、電荷リセット用スイッチSW1に電荷リセット信号を印加して電荷リセット用のスイッチSW1のオン・オフを制御するようになっている。なお、電荷リセット用のスイッチSW1がオン状態とされると、アンプ142の入力側と出力側とが短絡され、コンデンサCの電荷が放電される。
 ADC144は、S/H(サンプルホールド)スイッチSWがオン状態において、増幅回路140から入力されたアナログ信号である電気信号をデジタル信号に変換する機能を有する。ADC144は、デジタル信号に変換した電気信号をパネル制御部130に順次出力する。
 なお、本実施の形態のADC144には、信号処理部134に備えられた全ての増幅回路140から出力された電気信号が入力される。すなわち、本実施の形態の信号処理部134は、増幅回路140(信号線138)の数にかかわらず、1つのADC144を備えている。
 本実施の形態のパネル制御部130は、上述したように、FPGA131を備えており、放射線画像を撮影する際の撮影条件等を含む撮影メニュー(オーダ)に基づいて、放射線画像の撮影を行うように、放射線パネルユニット20全体の動作を制御する機能を有している。また、本実施の形態のパネル制御部130は、放射線画像の撮影を行う際に、第1TFT98及び第2TFT99のゲートをオン状態及びオフ状態にするタイミングを制御する機能を有している。さらに、パネル制御部130は、検出領域が設定された場合に、非検出領域の画素100(画素群102)に蓄積された電荷をリセットさせるための機能を有している。
 本実施の形態では、放射線パネルユニット20(放射線検出器26)の放射線Xが照射される面の一部の領域が検出領域(例えば、図9の検出領域154参照)として設定された場合は、当該検出領域の放射線画像を生成して出力する。検出領域としては、例えば、ROI(Region Of Interest:関心領域)に応じた領域等が挙げられる。このように、放射線パネルユニット20では、検出領域を設定することにより被検者30の被曝量を低減することができる。また、放射線パネルユニット20では、放射線Xが照射される全面を読み出す場合よりも一部の領域を読み出すことになるため、電荷の読み出し時間を短くすることができ、フレームレートを向上させることができる。検出領域の設定方法は特に限定されず、例えば、コンソール16等により、医師等が指示するようにしてもよいし、撮影メニューに応じて自動的に設定されるようにしてもよい。
 また、パネル制御部130の制御により、非検出領域の画素100(画素群102)に蓄積された電荷は、リセットまたは読み捨てられる。なお、本実施の形態で「リセット」とは信号処理部134の増幅回路140の電荷リセット用スイッチSW1をオン状態として電荷を読み出して画素100(画素群102)に蓄積された電荷を排出させることをいう。また、「読み捨て」とは、放射線画像を生成するために画素100(画素群102)から電荷を読み出す際と同様に、増幅回路140の電荷リセット用スイッチSW1をオフ状態として電荷を読み出した後、放射線画像の生成に使用せず、読み捨てることをいう。
 ところで、動画撮影では、高フレームレートが要求される場合がある。例えば、一般的に動画撮影では、消化器系の撮影で15fps、循環器系の撮影で30fps、及び小児の撮影は60fpsのフレームレートで足りると言われている。しかし、より高速化、例えば120fps等まで高フレームレートにした場合、心臓等の動きが滑らかに見えるようになる。特に小児の心臓撮影には120fps程度のフレームレートが好ましいとされている。さらに、高フレームレートにすることにより、造影剤を用いた撮影においてより少ない造影剤量であっても追跡可能とすることができる。なお、造影剤は、副作用を伴う場合があるため、投与量をより少なくすることが好ましい。そのため、本実施の形態の放射線パネルユニット20では、検出領域が設定された場合、パネル制御部130が非検出領域のリセット動作または読み捨て動作(以下、総称する場合は電荷排出動作という)の制御を行うことにより、フレームレートを向上させる。
 以下、本実施の形態の放射線パネルユニット20において、検出領域が設定された場合における非検出領域の電荷排出動作について詳細に説明する。図8には、本実施の形態における電荷排出動作の一例のフローチャートを示す。図9には、本実施の形態に係る検出領域の設定の一例を示す。ここでは、具体的一例として、図9に示したように検出領域が設定された場合について説明する。なお、図8に示した動作は、パネル制御部130のFPGA131でプログラムが実行されることにより行われる。なお、FPGA131へのプログラムの書き込みは、予め記憶させておいてもよいし、外部システム(RIS)やCD-ROM、及びUSB等からダウンロードしてもよい。
 図8に示した各処理は、撮影条件を示すオーダをパネル制御部130が受け付け、放射線画像の撮影が指示されると実行される。まずステップS100では、取得したオーダから検出領域の設定が有るか否かを判断する。検出領域154が設定されていない場合は、否定されてステップS102へ進み、通常の撮影処理を行った後、本処理を終了する。ここで通常の撮影処理とは、放射線検出器26の全画素から電荷を読み出して、当該電荷に基づいて放射線画像を生成し、出力することをいう。本実施の形態の放射線パネルユニット20では、オーダにより高解像度撮影が指示されている場合は、第1ゲート回路132の第1ゲートドライバ150により各第1ゲート線136に、第1TFT98をオン状態にする第1ゲート信号を出力させる。当該ゲート信号に応じて第1TFT98は、各画素100毎に電荷を読み出して信号線138に電荷に応じた電気信号を流させる。なお、この際、第2ゲート回路133の第2ゲートドライバ151により第2ゲート線137には、第2TFT99をオフ状態にする第2ゲート信号が出力される。一方、低解像度撮影が指示されている場合は、第2ゲート回路133の第2ゲートドライバ151により各第2ゲート線137に、第2TFT99をオン状態にする第2ゲート信号を出力させる。当該ゲート信号に応じて第2TFT99は、各画素群102毎に電荷を読み出して信号線138に電荷に応じた電気信号を流させる。なお、この際、第1ゲート回路132の第1ゲートドライバ150により第1ゲート線136には、第1TFT98をオフ状態にする第1ゲート信号が出力される。
 一方、検出領域154が設定されている場合は、ステップS100で肯定されてステップS104へ進む。ステップS104では、オーダから、設定された検出領域154の位置を取得する。検出領域154の位置を取得することにより、非検出領域の位置が定まり、リセット動作を行う範囲が定まる。以下では、より具体的に説明するために、以下のように構成されている場合について説明する。k本の第1ゲート線136が設けられており、第1ゲートドライバ150には、4本ずつ第1ゲート線136(G)が接続されている。第1ゲートドライバ150Aには、第1ゲート線136(G1~G4)が接続されている。第1ゲートドライバ150Bには、第1ゲート線136(G5~G8)が接続されている。第1ゲート回路132により、第1ゲートドライバ150Aから順次、駆動される。また、n本の第2ゲート線137が設けられており、第2ゲートドライバ151には、1本ずつ第2ゲート線137(M)が接続されている。第2ゲートドライバ151Aには、第2ゲート線137(M1)が接続されている。第2ゲートドライバ151Bには、第2ゲート線137(M2)が接続されている。第2ゲート回路133により、第2ゲートドライバ151Aから順次、駆動される。さらに検出領域154は、放射線検出器26の中央部に設けられている。検出領域154は、信号線138方向については、第1ゲート線136(G9~G12)が接続された第1ゲートドライバ150(150C)~第1ゲート線136(Gk-11~Gk-8)が接続された第1ゲートドライバ150までの領域に設けられている。すなわち、検出領域154は、第2ゲート線137(M3、M4)が接続された第2ゲートドライバ151(151B)~第2ゲート線137(Mn-3~Mn-2)が接続された第2ゲートドライバ151までの領域に設けられている。なお、検出領域154の第1ゲート線136(第2ゲート線137)方向の大きさについては説明を省略する。
 次のステップS106では、オーダから、撮影における解像度を取得する。なお、解像度の設定については、オーダに、低解像度であるか高解像度であるか指示が含まれていてもよいし、撮影の種類等に応じて定めておいてもよい。
 低解像度撮影の場合は、ステップS108へ進む。なお、図8では、記載を省略したが、放射線発生装置12から被検者30に放射線Xが照射され、各画素100(画素群102)で照射された放射線Xに応じた電荷が蓄積される蓄積期間の経過後、ステップS108以降の処理が実行される。ステップS108では、第2ゲート回路133の第2ゲートドライバ151により、非検出領域のリセット動作を行う。なお、この際、第2ゲートドライバ151から第2ゲート線137へは、第2TFT99をオン状態にするための第2ゲート信号が出力され、第1ゲートドライバ150から全第1ゲート線136(G1~Gk)へは、第1TFT98をオフ状態にする第1ゲート信号が出力される。上述の具体的例では、第2ゲート回路133により、第2ゲートドライバ151Aから第2ゲート線137(M1、M2)に、画素群102の第2TFT99をオン状態にさせる第2ゲート信号を出力させ、当該画素群102に蓄積された電荷をリセットさせる。
 次のステップS110では、第2ゲート回路133の第2ゲートドライバ151により、検出領域154の各画素群102から電荷を読み出す。なお、この際、順次、各第2ゲートドライバ151から第2ゲート線137(M3~Mn-2)へは、第2TFT99をオン状態にするための第2ゲート信号が出力される。一方、第1ゲートドライバ150から全第1ゲート線136(G1~Gk)へは、第1TFT98をオフ状態にする第1ゲート信号が出力される。本実施の形態では、図9に示すように、検出領域154の両側(第1ゲート回路132及び第2ゲート回路133が設けられている側)にも非検出領域が設けられている。検出領域154の画素群102から電荷を読み出す際、これらの非検出領域の画素群102からも電荷が読み出されるが、本実施の形態では、当該非検出領域から読み出された電荷はパネル制御部130により、読み捨てられる。パネル制御部130では、当該ステップS110の処理により読み出された検出領域154の画素群102の電荷(電気信号)に基づいて、放射線画像を生成して出力する。
 次のステップS112では、ステップS108と同様にして、第2ゲートドライバ151から第2ゲート線137(Mn-1~Mn)へ画素群102の第2TFT99をオン状態にする第2ゲート信号を出力させて非検出領域の画素群102の電荷をリセットさせる。
 次のステップS120では、全フレームの撮影が終了したか否か判断する。動画の撮影の場合等では、複数フレームの撮影を行う場合がある。全フレームの撮影が終了していない場合は否定されて、ステップS108へ戻り、上述の処理を繰り返す。一方、全フレームの撮影が終了した場合は、本処理を終了する。
 次に、高解像度撮影の場合(ステップS106で高解像度と判断した場合)について説明する。なお、図10Aには、この場合における上述の具体例のタイムチャートの一例を示す。なお図10Aでは、蓄積期間の記載を省略している。
 高解像度撮影の場合は、ステップS106の後、ステップS114へ進む。蓄積期間の経過後、ステップS114では、第2ゲート回路133の第2ゲートドライバ151により、非検出領域のリセット動作を行う。なお、この際、第2ゲートドライバ151から第2ゲート線137へは、第2TFT99をオン状態にするための第2ゲート信号が出力される。第1ゲートドライバ150から全第1ゲート線136(G1~Gk)へは、第1TFT98をオフ状態にする第1ゲート信号が出力される。上述の具体的例では、図10Aに示すように、第2ゲート回路133により、第2ゲートドライバ151Aから第2ゲート線137(M1、M2)に、画素群102の第2TFT99をオン状態にさせる第2ゲート信号を順次出力させ、当該画素群102に蓄積された電荷をリセットさせる。
 次のステップS116では、第1ゲート回路132の第1ゲートドライバ150により、検出領域154の各画素100から電荷を読み出す。なお、この際、順次、各第1ゲートドライバ150から第1ゲート線136(G9~Gk-8)へは、第1TFT98をオン状態にするための第1ゲート信号が出力される。一方、第2ゲートドライバ151から全第2ゲート線137(M1~Mn)へは、第2TFT99をオフ状態にする第2ゲート信号が出力される。なお、上述のステップS110と同様に、検出領域154の両側(第1ゲート回路132及び第2ゲート回路133が設けられている側)の非検出領域の画素100から読み出された電荷はパネル制御部130により、読み捨てられる。パネル制御部130では、当該ステップS110の処理により読み出された検出領域154の画素100の電荷(電気信号)に基づいて、放射線画像を生成して出力する。
 次のステップS118では、ステップS114と同様にして、第2ゲートドライバ151から第2ゲート線137(Mn-1~Mn)へ画素群102の第2TFT99をオン状態にする第2ゲート信号を出力させて非検出領域の画素群102の電荷をリセットさせる。
 次のステップS120では、上述したように、全フレームの撮影が終了したか否か判断し、全フレームの撮影が終了していない場合は否定されて、ステップS108へ戻り、上述の処理を繰り返す。一方、全フレームの撮影が終了した場合は、本処理を終了する。
 このように、本実施の形態の放射線パネルユニット20では、低解像度撮影の場合及び高解像度撮影の場合のいずれにおいても、非検出領域のリセット動作を、第2ゲートドライバ151により行っている。ここで、高解像度撮影の場合に、検出領域154の画素100から電荷を読み出すのと同様に、非検出領域の画像の読み捨て(またはリセット)を第1ゲートドライバ150により行う場合を比較例として説明する。図10Bには、当該比較例のタイムチャートの一例を示す。本実施の形態では、上述の図10Aに示すように、第2ゲート回路133の第2ゲートドライバ151Aから第2ゲート線137(M1、M2)に第2TFT99をオン状態にする第2ゲート信号を出力させて各画素群102の電荷をリセットしていた。これに対して、比較例の場合は、図10Bに示すように、第1ゲート回路132の第1ゲートドライバ150A及び第1ゲートドライバ150Bから、第2ゲート線137(G1~G8)に、第1TFT98をオン状態にする第1ゲート信号を順次出力させて各画素100の電荷を読み捨て(またはリセット)させている。このように、本実施の形態の放射線パネルユニット20では、第2ゲート信号を1回出力させることにより、4行分の画素100に対応する画素群102をリセットすることができるため、リセット時間を比較例に比べて短くすることができる。具体的に本実施の形態の放射線パネルユニット20では、比較例に比べてリセット時間を1/4にすることができる。従って、本実施の形態の放射線パネルユニット20では、比較例に比べて高フレームレートにすることができる。
 なお、「一括リセット」を行う場合は、よりフレームレートを向上させることができる。一括リセットとは、第1ゲートドライバ150または第2ゲートドライバ151単位毎に、接続されている全ての第1ゲート線136または第2ゲート線137に、第1TFT98または第2TFT99をオン状態にさせるための第1ゲート信号または第2ゲート信号を同時に出力して、リセットすることをいう。しかしながら、一括リセットを行う場合は、第1TFT98または第2TFT99が一括してオン状態になるため、オフセットが大きく変動して検出領域154の読み出し時に、オフセット値が変動し、放射線画像にアーティファクトが発生する懸念がある。そのため、一括リセットを行う場合は、放射線画像の画質低下を招く懸念がある。これに対して、上述した本実施の形態の放射線パネルユニット20では、一括リセットを行っていないため、放射線画像の画質低下を抑制しつつ、高フレームレート化することができる。
 また、本実施の形態の放射線パネルユニット20では、リセット動作の回数及び時間(電荷をリセットさせるためにゲート信号を出力する回数及び時間)を減少させることができるため、消費電力を抑制することができる。
 なお、検出領域154の位置が上述と異なる場合についても、上述と同様にして、非検出領域のリセット動作を行えばよい。図11には、検出領域の設定のその他の一例を示す。例えば、図11に示したように、第1ゲートドライバ150に応じた領域内の信号線138方向に、検出領域154と非検出領域とが含まれるように検出領域154が設定されていても、上述と略同様にして、非検出領域のリセット動作を行えばよい。
 この場合は、上述したのと同様に、第2ゲート回路133の第2ゲートドライバ151Aにより第2ゲート線137(M1、M2)に第2TFT99をオン状態にする第2ゲート信号を出力させて、各画素群102の電荷をリセットさせる。その後、第1ゲートドライバ150Cにより、非検出領域に対応する画素100に応じた第1ゲート線136(G9~G12のうち該当するゲート線)に順次、第1TFT98をオン状態にする第1ゲート信号を出力させて、各画素100の電荷を読み捨てる。このようにリセット動作を行うことにより、放射線パネルユニット20では、第1ゲートドライバ150により順次、第2ゲート線137へ第1TFT98をオン状態にする第1ゲート信号を出力させて画素100の電荷をリセットさせるよりも、短時間でリセットを行うことができる。このように、放射線パネルユニット20では、検出領域154の配置にかかわらず、ゲートドライバに応じた領域内に、検出領域154と非検出領域とが含まれる場合でも、高フレームレート化することができる。
[第2の実施の形態]
 第1の実施の形態で上述したように、通常、第2ゲート回路133の第2ゲートドライバ151によりリセット動作(電荷排出動作)を行うことにより、高フレームレート化することができる。しかしながら、検出領域154の位置により、第1ゲート回路132の第1ゲートドライバ150を用いてリセット動作を行う方が、高フレームレート化することができる場合がある。本実施の形態では、パネル制御部130で、いずれのゲートドライバでリセット動作を行うことによりリセット時間を短くして、高フレームレート化できるか判断し、判断結果に応じてリセット動作を行うことにより、高フレームレート化する。
 図12には、第1ゲート回路132の第1ゲートドライバ150によりリセット動作を行う方が、高フレームレート化することができる場合の検出領域154の一例を示す。また、図13には、本実施の形態におけるリセット動作(電荷排出動作)の一例のフローチャートを示す。なお、当該動作は、第1の実施の形態における電荷排出動作(図8参照)と略同様であるため、同様な処理についてはその旨を記し、詳細な説明を省略する。図14Aには、第1ゲートドライバ150によりリセット動作を行う場合のタイムチャートの一例を示す。図14Bには、第2ゲートドライバ151によりリセット動作を行う場合のタイムチャートの一例を示す。
 本実施の形態のリセット動作のステップS200は第1の実施の形態の電荷排出動作のステップS100に対応している。ステップS200で、否定された場合のステップS202の通常撮影処理は、第1の実施の形態のステップS102の通常撮影処理に対応している。また、ステップS200で肯定された場合のステップS204は、第1の実施の形態のステップS104に対応している。
 ステップS204の次のステップS206では、非検出領域を第2ゲート回路133の第2ゲートドライバ151によりリセットさせた場合のリセット回数を算出する。なお、本実施の形態では、第2ゲートドライバ151のみによりリセットさせた場合について算出している。この場合は、図14Bに示すように、第2ゲートドライバ151Aに接続されている第2ゲート線137(M)に順次、第2TFT99をオフ状態にする第2ゲート信号を出力させる。従って、ここでは、非検出領域に画素群102が含まれる第2ゲート線137(M)の本数がリセット回数となる。
 次のステップS208では、非検出領域を第1ゲート回路132の第1ゲートドライバ150を併用してリセットさせた場合のリセット回数を算出する。なお、本実施の形態では、第1ゲートドライバ150と第2ゲートドライバ151との両者を併用してリセットさせた場合について算出している。これに限らず、第1ゲートドライバ150ドライバのみによりリセットさせた場合について算出するようにしてもよいが、一般に、両者を併用することにより、リセット回数を少なくすることできる。
 第1ゲートドライバ150によりリセットさせる場合は、図14Aに示すように、第1ゲートドライバ150Aに接続されている第1ゲート線136(G)に一括して、第1TFT98をオフ状態にする第1ゲート信号を出力させて一括リセットさせることができる。従って、ここでは、第2ゲートドライバ151Aに接続された第2ゲート線137(M)のうち、第1ゲートドライバ150Aに接続されている第1ゲート線136(G)に対応する第2ゲート線137(M)を除いた第2ゲート線137(M)の本数+1がリセット回数となる。
 次のステップ210では、ステップS206で算出したリセット回数と、ステップS208で算出したリセット回数とを比較する。第2ゲートドライバ151によるリセット回数の方が少ない場合は、第2ゲートドライバ151によりリセット動作を行うため、ステップS212へ進み、ステップS212~ステップS226の各処理を行った後、本処理を終了する。ステップS212~ステップS226の各処理は、第1の実施の形態のステップS106~S120の各処理にそれぞれ対応している。
 一方、第1ゲートドライバ150を併用することによるリセット回数の方が少ない場合は、第1ゲートドライバ150を併用するため、ステップS228へ進む。ステップS228では、オーダから、撮影における解像度を取得し、低解像度撮影の場合は、ステップS230へ進む。ステップS230では、第1ゲート回路132の第1ゲートドライバ150により、非検出領域のリセット動作を行う。上述の具体的例では、第1ゲート回路132により、第1ゲートドライバ150Aから第1ゲート線136(G)に、画素100の第1TFT98をオン状態にさせる第1ゲート信号を一括出力させ、当該画素100に蓄積された電荷を一括リセットさせる。
 次のステップS232では、第2ゲート回路133の第2ゲートドライバ151により、検出領域154を含む領域の各画素群102から電荷を読み出す。なお、この際、順次、各第2ゲートドライバ151から第2ゲート線137(M)へは、第2TFT99をオン状態にするための第2ゲート信号が出力される。この際、非検出領域からも電荷を読み出すため、非検出領域の電荷は、図14Aに示すように読み捨てる。パネル制御部130では、当該ステップS232の処理により読み出された検出領域154の画素群102の電荷(電気信号)に基づいて、放射線画像を生成して出力する。
 次のステップS234では、ステップS230と同様にして、第1ゲートドライバ150から第1ゲート線136(G)へ画素100の第1TFT98をオン状態にする第1ゲート信号を一括出力させて非検出領域の画素100の電荷を一括リセットさせる。次のステップS242では、全フレームの撮影が終了したか否か判断し、終了していない場合は否定されて、ステップS230へ戻り、上述の処理を繰り返す。一方、全フレームの撮影が終了した場合は、本処理を終了する。
 一方、高解像度撮影の場合は、ステップS228の後、ステップS236へ進む。ステップS236では、第1ゲート回路132の第1ゲートドライバ150Aより、非検出領域のリセット動作を行う。上述の具体的例では、第1ゲート回路132により、第1ゲートドライバ150Aから第1ゲート線136(G)に、画素100の第1TFT98をオン状態にさせる第1ゲート信号を一括出力させ、当該画素100に蓄積された電荷を一括リセットさせる。
 次のステップS238では、検出領域154を含む領域の各画素100から電荷を読み出す。なお、この際、順次、各第1ゲートドライバ150から第1ゲート線136(G)へは、第1TFT98をオン状態にするための第1ゲート信号が出力される。この際、非検出領域からも電荷を読み出すため、非検出領域の電荷は、読み捨てる。パネル制御部130では、当該ステップS232の処理により読み出された検出領域154の画素群102の電荷(電気信号)に基づいて、放射線画像を生成して出力する。次のステップS240では、ステップS236と同様にして、第1ゲートドライバ150から第1ゲート線136(G)へ画素100の第1TFT98をオン状態にする第1ゲート信号を一括出力させて非検出領域の画素100の電荷を一括リセットさせる。次のステップS242では、全フレームの撮影が終了したか否か判断し、終了していない場合は否定されて、ステップS236へ戻り、上述の処理を繰り返す。一方、全フレームの撮影が終了した場合は、本処理を終了する。
 このように本実施の形態の放射線パネルユニット20では、第1ゲートドライバ150を併用してリセット動作を行うことにより、非検出領域のリセット回数及び時間(電荷排出回数及び時間)を少なくすることができる。これにより、放射線パネルユニット20では、フレームレートを向上させることができる。従って、本実施の形態の放射線パネルユニット20では、消費電力を抑制することができる。
[第3の実施の形態]
 上記各実施の形態で上述したように、放射線パネルユニット20では、非検出領域を一括リセットすることにより、リセット回数を減少させ、高フレームレート化することができる。しかしながら、一括リセットにより、放射線画像の画質が低下する懸念がある。そのため、放射線画像の画質よりもフレームレートを重視する場合(高フレームレート化の場合)は、一括リセットを行うようにし、一方、フレームレートよりも放射線画像の画質を重視する場合は、一括リセットは行わず順次リセットを行うようにするようにしてもよい。図15には、このような場合のリセット動作(電荷排出動作)の一例のフローチャートを図15に示す。なお、本処理は、上記各実施の形態のリセット動作(図8、図13参照)と略同様であるため、同様な処理についてはその旨を記し、詳細な説明を省略する。
 本実施の形態のリセット動作のステップS300は第1の実施の形態の電荷排出動作のステップS100に対応し、否定された場合のステップS302の通常撮影処理は、第1の実施の形態のステップS102の通常撮影処理に対応している。また、ステップS300で肯定された場合のステップS304は、第1の実施の形態のステップS104に対応している。
 次のステップS306では、フレームレート及び放射線画像の画質のいずれを重視するかを判断する。フレームレート及び放射線画像の画質のいずれを重視するかは、予めコンソール16等から医師等のユーザが設定するようにしてもよいし、撮影の種類等に応じて予め定めておいてもよい。フレームレートを重視する場合は、ステップS308へ進み、一括リセット有りと決定して、ステップS310へ進む。ステップS310は、第1の実施の形態のステップS106~S120に対応し、第1の実施の形態と同様にして非検出領域の電荷のリセット、及び検出領域154からの電荷の読み出しを行った後、本処理を終了する。
 一方、放射線画像の画質を重視する場合は、ステップS306からステップS312へ進み、一括リセット無し、順次リセットのみと決定して、ステップS314へ進む。ステップS314は、第1の実施の形態のステップS106~S120に対応し、第1の実施の形態と同様にして非検出領域の電荷のリセット、及び検出領域154からの電荷の読み出しを行った後、本処理を終了する。
 このように本実施の形態の放射線パネルユニット20では、フレームレートを重視する場合は、一括リセットを行うことにより、より高フレームレート化することができる。また、放射線パネルユニット20では、放射線画像の画質を重視する場合は、画質を低下させることなく、第1の実施の形態と同様にフレームレートを向上させることができる。従って、本実施の形態の放射線パネルユニット20では、ユーザの所望に応じて高フレームレート化することができる。
[第4の実施の形態]
 図16には、本実施の形態の放射線パネルユニット20の動作の一例を説明するための説明図を示す。放射線画像撮影システム10により放射線画像の撮影を行う場合は、放射線パネルユニット20では、図16に示すように、オーダが有り、撮影の開始(放射線Xの照射開始)が指示されるまで待機期間となる。撮影が開始(放射線Xの照射が開始)されると、各画素100で照射された放射線Xに応じて発生した電荷を蓄積する蓄積期間と、蓄積された電荷を読み出す読出期間と、が各フレーム毎に繰り返される。
 待機期間では、放射線パネルユニット20は、暗電流により各画素100に蓄積される電荷(オフセット電荷)をリセットするため、一定期間毎に、全画素100のリセット動作を行う。一般に当該リセット動作は、順次リセットにより行われるが、リセット動作の最中に撮影の開始を指示されても、全画素100のリセット動作を終了するまで蓄積期間に移行することができない。
 しかしながら、上記各実施の形態で上述したように、第2ゲート回路133の第2ゲートドライバ151により、画素群102の電荷のリセット動作を行うことにより、リセット回数を少なくし、リセット時間を短縮することができる。そこで本実施の形態の放射線パネルユニット20では、待機期間におけるオフセット電荷のリセット動作を第2ゲートドライバ151により行う。図17には、本実施の形態のオフセット電荷のリセット動作のフローチャートの一例を示す。
 ステップS400では、撮影が開始されたか否か判断する。オーダがない場合は、撮影が開始されていないとして、否定されてステップS402へ進む。ステップS402では、一定期間(オフセット電荷のリセット動作の所定間隔)が経過したか否か判断する。まだ経過していない場合は、ステップS400に戻り本処理を繰り返す。一方、一定期間が経過した場合は、肯定されてステップS404へ進む。ステップS404では、第2ゲート回路133の第2ゲートドライバ151によりリセット動作を行わせて、全画素群102のオフセット電荷をリセットさせた後、ステップS400に戻り、本処理を繰り返す。なお、第2ゲートドライバ151によるリセット動作は、順次リセットでもよいし、ドライバ毎に一括リセットを行うようにしてもよい。
 一方、ステップS400でオーダが有り、撮影開始が指示されたと判断した場合は、肯定されてステップS406へ進む。ステップS404では、放射線画像の撮影動作(上記各実施の形態に対応)を行った後、本処理を終了する。
 このように、本実施の形態の放射線パネルユニット20では、オフセット電荷を排出するリセット動作を第2ゲート回路133の第2ゲートドライバ151により行っているため、リセット動作を短時間で行うことができる。従って、本実施の形態の放射線パネルユニット20では、オーダが有り撮影開始を指示された場合、速やかに撮影を開始させることができる。また、本実施の形態の放射線パネルユニット20では、リセット動作を行う回数及び時間を少なくすることができるため、消費電力を抑制することができる。
 また、消費電力を更に抑制することができる放射線パネルユニット20として、待機期間に第1ゲート回路132、第2ゲート回路133、及び信号処理部134等、駆動を要しない回路部への電源の供給を抑えて消費電力を抑制する、いわゆるスリープモードに移行するものがある。一般に、放射線パネルユニット20内に備えられた電源(バッテリ)により、放射線パネルユニット20内の各回路(パネル制御部130、第1ゲート回路132、第2ゲート回路133、及び信号処理部134等)を駆動させるものがある。この場合の放射線パネルユニット20では、一度の充電で、長時間使用可能(多くの放射線画像の撮影を可能)とするため、消費電力の抑制がより求められている。
 図18には、本実施の形態に係る放射線パネルユニット20の各動作モードの一例を説明するための説明図を示す。このような放射線パネルユニット20では、図18に示すように、オーダ(撮影開始の指示)の有無を判断し、オーダが無い場合は、スリープモードに移行する。また、撮影が終了した場合は、スリープモードに移行する。スリープモードの移行後は、所定期間毎に、オーダの有無を確認すると共に、上述したようにオフセット電荷のリセット動作を行う。
 ここでリセット動作を行う際、上述したように、第2ゲート回路133の第2ゲートドライバ151によりリセット動作を行わせる。当該動作について、図19Aには、第2ゲートドライバ151によりリセット動作を行わせた場合を示す。図19Bには、第1ゲートドライバ150によりリセット動作を行わせた場合を示す。図19A及び図19Bに示すように、本実施の形態の放射線パネルユニット20では、第2ゲートドライバ151によりリセット動作を行わせることにより、リセット期間を短くし、スリープモードである期間を長くすることができる。
 このように、本実施の形態の放射線パネルユニット20では、第2ゲートドライバ151によりリセット動作を行わせることにより、スリープモードを長くすることができるため消費電力を抑制し、電源を長持ちさせることができる。また、第2ゲートドライバ151は、第1ゲートドライバ150に比べて数が少ない。そのため、放射線パネルユニット20は、第2ゲートドライバ151を用いてリセット動作を行わせることにより、より消費電力を抑制し、電源を長持ちさせることができる。
 なお、内部に備えられた電源と、外部電源と、を共用することができる放射線パネルユニット20の場合、内部電源を用いる場合は、第2ゲートドライバ151により上記リセット動作を行って消費電力を抑制し、外部電源を用いる場合は、第1ゲートドライバ150によりリセット動作を行うようにしてもよい。
 以上各実施の形態で説明したように、放射線パネルユニット20では、第2ゲート回路133の第2ゲートドライバ151により電荷排出動作(リセット動作)を行うため、リセット動作の回数及び時間を少なくすることができる。従って、放射線パネルユニット20では、フレームレートを向上させることができる。また、放射線パネルユニット20では、消費電力を抑制することができる。
 なお、放射線パネルユニット20の放射線検出器26の画素100(画素群102)は、上記各実施の形態に限定されない。例えば、上記では、画素群102が千鳥状に配列された放射線検出器26について説明したが、これに限らない。図20には、その他の一例に係る放射線検出器26を、放射線Xの照射側から平面視した状態の画素群102の一例を表した概略構成図を示す。図20に示した放射線検出器26のように、画素群102が格子状に配列されていてもよい。また、上記では、画素群102が2×2の画素100を含む場合について説明したが、これに限らない、図21には、その他の一例に係る放射線検出器26を、放射線Xの照射側から平面視した状態の画素群102の一例を表した概略構成図を示す。図21に示した放射線検出器26のように、画素群102は、4×4の画素100を含むようにしてもよい。
 また、第1ゲートドライバ150及び第2ゲートドライバ151の数や、各々に接続されている第1ゲート線136及び第2ゲート線137の本数は特に限定されず、放射線パネルユニット20の仕様等により定めればよい。例えば、上記では、第1ゲートドライバ150の数が第2ゲートドライバ151の整数倍である放射線パネルユニット20について説明したが、これに限らない。図22には、その他の一例に係る放射線パネルユニット20の概略構成図を示す。図22に示した放射線パネルユニット20のように、1ゲートドライバ150の数が第2ゲートドライバ151の整数倍ではなくてもよい。
 また、上記各実施の形態に限定されず、例えば各実施の形態を組み合わせて用いてもよいことは言うまでもよい。
 また、本実施の形態では、画素100から電荷を読み出す第1TFT98及び第2TFT99には、図10及び図14に示したように、プラスのゲートオン電圧が印加されるとゲートがオン状態になるTFTを用いているが、これに限らない。例えば、マイナスのゲートオン電圧が印加されるとゲートがオン状態になるTFTを用いてもよい。
 また、画素100の形状は、本実施の形態に限定されない。例えば、本実施の形態では、矩形画素100を図示したが画素100の形状は、矩形状に限らずその他の形状でもよい。また、画素100の配置も本実施の形態に限定されない。例えば、画素100が行列状に配置される形態として、矩形状に規則性を有して配置された場合を図示したが、画素100が2次元状に規則性を有して配置される形態であれば限定されない。
 また、放射線検出器26は、解像度が異なる放射線画像の撮影に用いることが可能なものであれば上記各実施の形態に限定されず、特開2009-267326号公報等に記載されているものを用いてもよい。例えば、光電変換膜86は、a-Siを含んでいてもよい。また、絶縁性基板93、122は、ガラス基板であってもよい。
 また、ゲート線136及び信号線138の配置は、本実施の形態とは逆に、信号線138が行方向、ゲート線136が列方向に配置される形態としてもよい。
 その他、上記本実施の形態で説明した放射線画像撮影システム10、放射線パネルユニット20、及び放射線検出器26等の構成、各処理及び動作等は一例であり、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能であることは言うまでもない。
 また、上記本実施の形態で説明した放射線Xは、特に限定されるものではなく、X線やγ線等を適用することができる。
 日本出願2012-123625の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的且つ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 放射線画像撮影システム
20 放射線パネルユニット
26 放射線検出器
98、128 第1TFT
99、129 第2TFT
100 画素
102 画素群
130 パネル制御部
132 第1ゲート回路
133 第2ゲート回路
136 第1ゲート線(G) (第1制御線)
137 第2ゲート線(M) (第2制御線)
138 信号線
150 第1ゲートドライバ (第1駆動手段)
151 第2ゲートドライバ (第2駆動手段)

Claims (12)

  1.  照射された放射線に応じた電荷を発生するセンサ部、前記センサ部から前記電荷を読み出して前記電荷を出力する第1スイッチング素子、及び前記センサ部から前記電荷を読み出して前記電荷を出力する第2スイッチング素子を各々備え、かつ2次元状に配列された複数の画素と、
     第1方向に隣接する複数の画素の前記第1スイッチング素子の制御端に接続された複数の第1制御線と、
     前記第1方向に隣接する複数の画素の前記第2スイッチング素子の制御端、及び前記第1方向と交差する第2方向に隣接する画素の前記第2スイッチング素子の制御端に接続された複数の第2制御線と、
     前記画素の前記第2方向毎に信号線を備え、かつ前記信号線毎に前記第2方向に隣接する複数の画素の前記第1スイッチング素子の出力端が接続されると共に、前記第2方向に隣接する複数の画素の前記第2スイッチング素子の出力端及び、前記第1方向に隣接する複数の画素の前記第2スイッチング素子の出力端が、一部の前記信号線に接続された信号線群と、
     予め定められた本数の前記第1制御線が接続され、当該第1制御線に、前記第1スイッチング素子を駆動するための第1駆動信号を出力する複数の第1駆動手段と、
     予め定められた本数の前記第2制御線が接続され、当該第2制御線に、前記第2スイッチング素子を駆動するための第2駆動信号を出力する複数の第2駆動手段と、
     一部の領域である検出領域の画素から読み出された電荷により放射線画像を生成する場合に、非検出領域の画素の電荷を排出する電荷排出動作を前記第2駆動手段により行わせる制御を行う制御手段と、
      を備えた放射線画像撮影装置。
  2.  前記制御手段は、前記非検出領域の電荷排出動作の回数が、前記第2駆動手段のみにより行うよりも、第1駆動手段により行う方が電荷排出動作の回数が少ないと判断した場合は、第1駆動手段を用いて電荷排出動作を行わせる制御を行う、請求項1に記載の放射線画像撮影装置。
  3.  前記制御手段は、前記検出領域の前記信号線方向の位置に応じて、前記第1駆動手段及び前記第2駆動手段のいずれかにより電荷排出動作を行わせる制御を行う、請求項1または請求項2に記載の放射線画像撮影装置。
  4.  前記制御手段は、前記第1駆動手段により、前記第1制御線毎に順次、電荷排出動作を行わせる順次電荷排出動作、または一括して電荷を排出させる一括電荷排出動作を行わせると共に、前記第2駆動手段により、前記第2制御線毎に順次、電荷排出動作を行わせる順次電荷排出動作、または一括して電荷を排出させる一括電荷排出動作を行わせる、請求項1から請求項3のいずれか1項に記載の放射線画像撮影装置。
  5.  前記制御手段は、放射線画像の画質を重視する設定がなされている場合は、前記第1駆動手段及び前記第2駆動手段を制御して前記順次電荷排出動作を行わせる、請求項4に記載の放射線画像撮影装置。
  6.  前記制御手段は、撮影の高速化を重視する設定がなされている場合は、前記第1駆動手段及び前記第2駆動手段を制御して前記一括電荷排出動作を行わせる、請求項4または請求項5に記載の放射線画像撮影装置。
  7.  全部の前記複数の画素の電荷を排出させる電荷排出動作を行う場合は、前記制御手段は、前記第2駆動手段により電荷排出動作を行わせる制御を行う、請求項1から請求項6のいずれか1項に記載の放射線画像撮影装置。
  8.  前記電荷排出動作は、放射線画像の撮影が行われていない期間に前記複数の画素からオフセット電荷を排出させる動作である、請求項7に記載の放射線画像撮影装置。
  9.  前記第1駆動手段、前記第2駆動手段、及び前記制御手段を動作させるための電力を供給する電源を備えた、請求項1から請求項8のいずれか1項に記載の放射線画像撮影装置。
  10.   放射線照射装置と、
     前記放射線照射装置から照射された放射線を検出する前記請求項1から前記請求項9のいずれか1項に記載の放射線画像撮影装置と、
     を備えた放射線画像撮影システム。
  11.  照射された放射線に応じた電荷を発生するセンサ部、前記センサ部から前記電荷を読み出して前記電荷を出力する第1スイッチング素子、及び前記センサ部から前記電荷を読み出して前記電荷を出力する第2スイッチング素子を各々備え、かつ2次元状に配列された複数の画素と、第1方向に隣接する複数の画素の前記第1スイッチング素子の制御端に接続された複数の第1制御線と、前記第1方向に隣接する複数の画素の前記第2スイッチング素子の制御端、及び前記第1方向と交差する第2方向に隣接する画素の前記第2スイッチング素子の制御端に接続された複数の第2制御線と、前記画素の前記第2方向毎に信号線を備え、かつ前記信号線毎に前記第2方向に隣接する複数の画素の前記第1スイッチング素子の出力端が接続されると共に、前記第2方向に隣接する複数の画素の前記第2スイッチング素子の出力端及び、前記第1方向に隣接する複数の画素の前記第2スイッチング素子の出力端が、一部の前記信号線に接続された信号線群と、予め定められた本数の前記第1制御線が接続され、当該第1制御線に、前記第1スイッチング素子を駆動するための第1駆動信号を出力する複数の第1駆動手段と、予め定められた本数の前記第2制御線が接続され、当該第2制御線に、前記第2スイッチング素子を駆動するための第2駆動信号を出力する複数の第2駆動手段と、を備えた放射線画像撮影装置の制御方法であって、
     制御手段により、一部の領域である検出領域の画素から読み出された電荷により放射線画像を生成する場合に、非検出領域の画素の電荷を排出する電荷排出動作を前記第2駆動手段により行わせる制御を行う工程を備えた、放射線画像撮影装置の制御方法。
  12.  照射された放射線に応じた電荷を発生するセンサ部、前記センサ部から前記電荷を読み出して前記電荷を出力する第1スイッチング素子、及び前記センサ部から前記電荷を読み出して前記電荷を出力する第2スイッチング素子を各々備え、かつ2次元状に配列された複数の画素と、第1方向に隣接する複数の画素の前記第1スイッチング素子の制御端に接続された複数の第1制御線と、前記第1方向に隣接する複数の画素の前記第2スイッチング素子の制御端、及び前記第1方向と交差する第2方向に隣接する画素の前記第2スイッチング素子の制御端に接続された複数の第2制御線と、前記画素の前記第2方向毎に信号線を備え、かつ前記信号線毎に前記第2方向に隣接する複数の画素の前記第1スイッチング素子の出力端が接続されると共に、前記第2方向に隣接する複数の画素の前記第2スイッチング素子の出力端及び、前記第1方向に隣接する複数の画素の前記第2スイッチング素子の出力端が、一部の前記信号線に接続された信号線群と、予め定められた本数の前記第1制御線が接続され、当該第1制御線に、前記第1スイッチング素子を駆動するための第1駆動信号を出力する複数の第1駆動手段と、予め定められた本数の前記第2制御線が接続され、当該第2制御線に、前記第2スイッチング素子を駆動するための第2駆動信号を出力する複数の第2駆動手段と、を備えた放射線画像撮影装置の制御プログラムであって、
     一部の領域である検出領域の画素から読み出された電荷により放射線画像を生成する場合に、非検出領域の画素の電荷を排出する電荷排出動作を前記第2駆動手段により行わせる制御を行う制御手段として、コンピュータを機能させるための放射線画像撮影装置の制御プログラム。
PCT/JP2013/064671 2012-05-30 2013-05-27 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム WO2013180075A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-123625 2012-05-30
JP2012123625 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013180075A1 true WO2013180075A1 (ja) 2013-12-05

Family

ID=49673269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064671 WO2013180075A1 (ja) 2012-05-30 2013-05-27 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム

Country Status (1)

Country Link
WO (1) WO2013180075A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321267A (ja) * 1996-02-22 1997-12-12 Canon Inc 光電変換装置の駆動方法及び光電変換装置
JP2004046143A (ja) * 2002-05-21 2004-02-12 Canon Inc 画像形成装置及び放射線検出装置
JP2009219654A (ja) * 2008-03-17 2009-10-01 Fujifilm Corp 放射線ct装置
JP2011066514A (ja) * 2009-09-15 2011-03-31 Canon Inc 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
JP2011120101A (ja) * 2009-12-04 2011-06-16 Canon Inc 撮像装置及び撮像システム
JP2012130656A (ja) * 2010-11-30 2012-07-12 Fujifilm Corp 放射線検出素子及び放射線画像撮影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321267A (ja) * 1996-02-22 1997-12-12 Canon Inc 光電変換装置の駆動方法及び光電変換装置
JP2004046143A (ja) * 2002-05-21 2004-02-12 Canon Inc 画像形成装置及び放射線検出装置
JP2009219654A (ja) * 2008-03-17 2009-10-01 Fujifilm Corp 放射線ct装置
JP2011066514A (ja) * 2009-09-15 2011-03-31 Canon Inc 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
JP2011120101A (ja) * 2009-12-04 2011-06-16 Canon Inc 撮像装置及び撮像システム
JP2012130656A (ja) * 2010-11-30 2012-07-12 Fujifilm Corp 放射線検出素子及び放射線画像撮影装置

Similar Documents

Publication Publication Date Title
JP5714770B2 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
JP5625833B2 (ja) 放射線検出器および放射線撮影装置
US9258464B2 (en) Radiation video processing device, radiation video capturing device, radiation video capturing system, radiation video processing method and program storage medium
US9698193B1 (en) Multi-sensor pixel architecture for use in a digital imaging system
WO2013180076A1 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
WO2012034401A1 (zh) 辐射探测器及其成像装置、电极结构和获取图像的方法
US8792618B2 (en) Radiographic detector including block address pixel architecture, imaging apparatus and methods using the same
US20140023179A1 (en) Detection limit calculation device, radiation detection device, radiographic image capture system, computer-readable storage medium, and detection limit calculation method
WO2013125113A1 (ja) 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム
JP5930896B2 (ja) 放射線検出器、放射線検出器の制御プログラム、及び放射線検出器の制御方法
JP5974654B2 (ja) 撮像装置および撮像表示システム
JP2015167756A (ja) 放射線画像撮影システム、放射線画像撮影システムの制御方法、及び放射線画像撮影システムの制御プログラム
WO2013065680A1 (ja) 放射線画像撮影装置、放射線画像処理装置、放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム
JP2013096731A (ja) 放射線撮影装置
JP2006128644A (ja) 撮像装置、放射線撮像装置、及び放射線撮像システム
WO2013065681A1 (ja) 放射線画像撮影システム、放射線画像処理装置、放射線画像撮影装置、放射線動画像処理方法、及び放射線動画像処理プログラム
WO2013125325A1 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
WO2013180075A1 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
WO2013136597A1 (ja) 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム
WO2013180078A1 (ja) 放射線画撮影装置、放射線画像撮影システム、放射線画撮影方法、及び放射線画撮影プログラム
WO2013065682A1 (ja) 放射線画像撮影装置、放射線画像処理装置、放射線画像撮影システム、放射線画像撮影方法、及び放射線画像撮影プログラム
WO2013125316A1 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影装置の制御プログラム
JP6218760B2 (ja) 光電変換素子及び撮像装置
JP2014068882A (ja) 放射線画撮影制御装置、放射線動画撮影システム、放射線画撮影装置の欠陥判定方法、及び放射線画撮影制御プログラム
JP2006128645A (ja) 撮像装置、放射線撮像装置、及び放射線撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13798227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13798227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP