WO2013180063A1 - Plating device, plating method, and storage medium - Google Patents

Plating device, plating method, and storage medium Download PDF

Info

Publication number
WO2013180063A1
WO2013180063A1 PCT/JP2013/064644 JP2013064644W WO2013180063A1 WO 2013180063 A1 WO2013180063 A1 WO 2013180063A1 JP 2013064644 W JP2013064644 W JP 2013064644W WO 2013180063 A1 WO2013180063 A1 WO 2013180063A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
substrate
plating solution
recess
temperature
Prior art date
Application number
PCT/JP2013/064644
Other languages
French (fr)
Japanese (ja)
Inventor
水谷 信崇
崇 田中
岩下 光秋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US14/404,174 priority Critical patent/US20150167174A1/en
Priority to KR1020147033270A priority patent/KR102052131B1/en
Publication of WO2013180063A1 publication Critical patent/WO2013180063A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • C23C18/1616Process or apparatus coating on selected surface areas plating on one side interior or inner surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1676Heating of the solution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/168Control of temperature, e.g. temperature of bath, substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate

Definitions

  • the present invention relates to a plating method, a plating apparatus, and a storage medium that perform plating on a recess formed in a substrate.
  • wiring for forming a circuit is formed on a substrate such as a semiconductor wafer or a liquid crystal substrate for forming a semiconductor device.
  • a damascene method or the like in which a concave portion such as a via or a trench for embedding a wiring material such as copper is formed in the substrate and the wiring material is embedded in the concave portion is used.
  • a recess for example, a silicon through electrode (TSV)
  • TSV silicon through electrode
  • atoms constituting the wiring material are present in the insulating film (oxide film, PI “polyimide”, etc.) on the inner surface of the concave portion and the substrate on the back side thereof.
  • a barrier film is provided for the purpose of preventing diffusion and improving adhesion.
  • a seed film is provided between the barrier film and the wiring to facilitate embedding of the wiring material.
  • Patent Document 1 a barrier film containing ruthenium is formed on the inner surface of the recess by sputtering, then a seed film containing ruthenium and copper is formed on the barrier film by sputtering, and then copper is plated in the recess by plating.
  • a method of embedding in is proposed.
  • the height or depth of the recesses in the TSV is several tens to several hundreds of microns rather than the tens to hundreds of nanometers in the conventional pre-process. For this reason, the conventional device creation technique may be diverted, but a different method may be required.
  • a sputtering method generally used for forming a barrier film or a seed film is a method having a large directivity. For this reason, when the height or depth of the concave portion is large, it is difficult to sufficiently form a barrier film or a seed film up to the lower portion of the concave portion.
  • a plating method such as electrolytic plating or electroless plating.
  • electrolytic plating or electroless plating By the way, when the diameter of a recessed part is small and the height or depth of a recessed part is large, the fluidity
  • concentration distribution of the plating solution in the recess is non-uniform, it is considered that the thickness and density distribution of the plating layer such as the barrier film and the seed film formed on the inner surface of the recess become non-uniform.
  • the present invention has been made in consideration of such points, and provides a plating method, a plating apparatus, and a storage medium that can improve the uniformity of the thickness of the plating layer formed on the inner surface of the recess.
  • the purpose is to do.
  • a step of preparing the substrate on which the recess is formed inside a casing A plating step for forming a plating layer having a specific function on the inner surface of the recess, and the plating step supplies a plating solution to the substrate, and the plating solution is provided in the recess of the substrate.
  • a plating method using a plating solution having a temperature higher than that of the plating solution after the substrate is filled is provided.
  • a substrate holding mechanism that holds the substrate on which the recess is formed, and a plating solution for the substrate
  • a plating mechanism that forms a plating layer having a specific function on the inner surface of the recess, and the plating mechanism supplies a plating solution to the substrate and fills the plating solution in the recess of the substrate. Then, a plating apparatus using a plating solution having a temperature higher than that of the plating solution is provided.
  • the plating method includes the recess.
  • a storage medium comprising: a method of using a plating solution having a temperature higher than that of the plating solution after the plating solution is filled in the concave portion of the substrate.
  • the uniformity of the thickness and density distribution of the plating layer formed on the inner surface of the recess can be improved.
  • FIG. 1 is a side view showing a plating apparatus according to an embodiment of the present invention.
  • 2A and 2B are plan views of the plating apparatus shown in FIG.
  • FIG. 3 is a diagram showing a film-forming plating solution supply mechanism that supplies a high-temperature plating solution to the film-forming unit of the plating mechanism.
  • FIG. 4 is a diagram showing a replacement plating solution supply mechanism for supplying a low temperature plating solution to a replacement unit of the plating mechanism.
  • FIG. 5 is a flowchart showing a plating method.
  • FIG. 6A is a diagram illustrating a process of preparing a substrate having a recess.
  • FIG. 6B is a diagram illustrating a process of supplying a pretreatment liquid to the recess.
  • FIG. 6A is a diagram illustrating a process of preparing a substrate having a recess.
  • FIG. 6B is a diagram illustrating a process of supplying a pretreatment liquid to the reces
  • FIG. 6C is a diagram showing a replacement step of replacing the pretreatment liquid filled in the concave portion of the substrate with a low-temperature plating solution.
  • FIG. 6D is a diagram showing a film forming process for supplying a high-temperature plating solution to the substrate.
  • FIG. 6E is a diagram illustrating a state in which a plating layer is formed on the inner surface of the recess.
  • FIG. 6F is a diagram showing a process of embedding a wiring material in the recess.
  • FIG. 7 is a diagram illustrating a state in which the pretreatment liquid is replaced with a low-temperature plating liquid.
  • FIG. 8 is a diagram illustrating a state in which a plurality of discharge nozzles of the film forming unit supply a plating solution to the substrate.
  • FIG. 9 is a view showing a modification of the plating solution supply mechanism.
  • FIG. 10 is a diagram showing a modification of the replacement unit.
  • FIG. 11 is a diagram showing the relationship between the diffusion time and the diffusion distance when the components of the plating solution diffuse in the replacement step.
  • 12 is a diagram illustrating an example of a plating layer formed in Example 1.
  • FIG. 13 is a diagram illustrating an example of a plating layer formed in Comparative Example 1.
  • FIG. 1 is a side view showing the plating apparatus 20
  • FIG. 2 is a plan view showing the plating apparatus 20.
  • the plating apparatus 20 is a single-wafer type apparatus that performs the plating process on the substrate 2 one by one by discharging a plating solution to the substrate 2.
  • the plating processing apparatus 20 has a substrate holding mechanism 110 that holds and rotates the substrate 2 inside the casing 101, and discharges the plating solution toward the substrate 2 held by the substrate holding mechanism 110, thereby having a specific function.
  • the plating mechanism 30 directs a high-temperature plating solution having a temperature higher than the temperature of the plating solution used in the replacement unit 55 and the replacement unit 55 for discharging the low-temperature plating solution toward the substrate 2.
  • a film forming unit 35 for discharging for discharging.
  • Low temperature means that the temperature of the plating solution discharged from the replacement unit 55 is such that the plating reaction does not proceed significantly.
  • the deposition rate of the plating layer formed by the plating solution discharged from the replacement unit 55 is 10% or less compared to the deposition rate of the plating layer 15 finally obtained during the high temperature treatment.
  • high temperature means that the temperature of the plating solution discharged from the film forming unit 35 is a temperature at which the plating process can be completed within a realistic processing time.
  • the plating solution supply mechanism includes a film forming plating solution supply mechanism 71 that supplies a high temperature plating solution to the film forming unit 35 and a replacement plating solution supply mechanism 74 that supplies a low temperature plating solution to the replacement unit 55.
  • a film forming plating solution supply mechanism 71 that supplies a high temperature plating solution to the film forming unit 35
  • a replacement plating solution supply mechanism 74 that supplies a low temperature plating solution to the replacement unit 55.
  • the plating apparatus 20 further includes a pretreatment mechanism 54 that discharges a pretreatment liquid toward the substrate 2.
  • a pretreatment liquid supply mechanism 73 that supplies a pretreatment liquid to the pretreatment mechanism 54 is connected to the pretreatment mechanism 54.
  • the pretreatment liquid is a liquid discharged onto the substrate 2 before discharging the plating liquid onto the substrate 2.
  • the pretreatment liquid for example, pure water that has been subjected to deionization treatment, so-called deionized water (DIW) is used.
  • DIW deionized water
  • the plating apparatus 20 may further include a prewetting mechanism 57 that discharges a prewetting liquid toward the substrate 2.
  • a pre-wet liquid supply mechanism 76 that supplies a pre-wet liquid to the pre-wet mechanism 57 is connected to the pre-wet mechanism 57.
  • the pre-wet liquid is a liquid supplied to the substrate 2 in a dry state.
  • the pre-wet liquid for example, the affinity between the substrate 2 and the processing liquid that is subsequently supplied to the substrate 2 can be increased.
  • the pre-wet liquid for example, ion water containing CO 2 ions or the like is used.
  • the substrate holding mechanism 110 has a first opening 121 and a second opening 126 around the substrate holding mechanism 110.
  • the drainage cup 120 receives a liquid such as a plating solution or a pretreatment liquid scattered from the substrate 2, and an opening for drawing a gas.
  • An exhaust cup 105 having a portion 106 is disposed.
  • the liquid received by the first opening 121 and the second opening 126 of the drainage cup 120 is discharged by the first drainage mechanism 122 and the second drainage mechanism 127.
  • the gas drawn into the opening 106 of the exhaust cup 105 is exhausted by the exhaust mechanism 107.
  • the drainage cup 120 is connected to the lifting mechanism 164, and the lifting mechanism 164 can move the drainage cup 120 up and down. For this reason, by raising and lowering the drainage cup 120 according to the type of liquid splashed from the substrate 2, the path through which the liquid is discharged can be made different according to the type of liquid.
  • the substrate holding mechanism 110 includes a hollow cylindrical rotating shaft member 111 that extends vertically in the casing 101, a turntable 112 attached to the upper end of the rotating shaft member 111, and a turntable 112.
  • a wafer chuck 113 that supports the substrate 2 and a rotation mechanism 162 that is connected to the rotation shaft member 111 and that rotates the rotation shaft member 111.
  • the rotation mechanism 162 is controlled by the control mechanism 160 and rotates the rotation shaft member 111, whereby the substrate 2 supported by the wafer chuck 113 is rotated.
  • the control mechanism 160 can rotate or stop the rotation shaft member 111 and the wafer chuck 113 by controlling the rotation mechanism 162. Further, the control mechanism 160 can control the rotational speed of the rotating shaft member 111 and the wafer chuck 113 to be increased, decreased, or maintained at a constant value.
  • the film forming unit 35 includes a discharge nozzle 34 that discharges the plating solution toward the substrate 2 and a discharge head 33 provided with the discharge nozzle 34.
  • the discharge head 33 accommodates piping for guiding the plating solution supplied from the plating solution supply mechanism 71 to the discharge nozzle 34, piping for circulating a heat medium for keeping the plating solution warm, and the like. .
  • the discharge head 33 is configured to be movable in the vertical direction and the horizontal direction.
  • the ejection head 33 is attached to the distal end portion of the arm 32, and the arm 32 can be extended in the vertical direction and is fixed to the support shaft 31 that is rotationally driven by the rotation mechanism 165.
  • a rotating mechanism 165 and the support shaft 31 as shown in FIG. 2A, a discharge position at which the discharge head 33 is discharged when discharging the plating solution toward the substrate 2, and the plating solution It is possible to move between the standby positions that are located when the ink is not discharged.
  • the ejection head 33 may extend to correspond to the length from the center of the substrate 2 to the peripheral edge of the substrate 2, that is, the radius of the substrate 2.
  • the discharge head 33 may be provided with a plurality of discharge nozzles 34 for discharging the plating solution.
  • the plating solution can be simultaneously supplied over a wide area of the substrate 2 by positioning the discharge head 33 so that the plurality of discharge nozzles 34 are arranged along the radial direction of the substrate 2 when discharging the plating solution.
  • the discharge nozzle 34 formed in the discharge head 33 may be configured to extend along the radial direction of the substrate 2 and discharge the plating solution to the substrate 2. Also in this case, the plating solution can be supplied simultaneously over a wide area of the substrate 2.
  • the first replacement unit 55 includes a discharge nozzle 55a that discharges a plating solution toward the substrate 2, and a discharge head 53 provided with the discharge nozzle 55a.
  • the discharge head 53 is configured to be movable in the vertical direction and the horizontal direction.
  • the ejection head 53 of the replacement unit 55 is attached to the tip of the arm 52.
  • the arm 52 can be extended in the vertical direction and is fixed to a support shaft 51 that is rotationally driven by a rotation mechanism 166.
  • the ejection head 53 is horizontally arranged around the support shaft 51 between a position corresponding to the central portion of the substrate 2 and a position corresponding to the peripheral portion of the substrate 2. It is movable.
  • plating solution supply mechanism 71 and the replacement plating solution supply mechanism 74 of the plating solution supply mechanism for supplying the plating solution to the film formation unit 35 and the replacement unit 55 of the plating mechanism 30 will be described with reference to FIG. I will explain.
  • the film forming plating solution supply mechanism 71 and the replacement plating solution supply mechanism 74 differ only in whether or not a heating unit for heating the plating solution is provided, and the other configurations are the same.
  • the plating solution supply mechanism 71 for film formation will be mainly described.
  • the plating solution supply mechanism 71 has a tank 71b for storing the plating solution 71c and a supply pipe 71a for supplying the plating solution 71c in the tank 71b to the plating mechanism 30.
  • a valve 71d and a pump 71e for adjusting the flow rate of the plating solution 71c are attached to the supply pipe 71a.
  • the tank 71b is provided with a heating unit 71g for heating the plating solution 71c stored in the tank 71b.
  • plating solution used in this embodiment.
  • the plating solution supplied from the film-forming plating solution supply mechanism 71 to the film-forming unit 35 and the plating solution supplied from the replacement plating-solution supply mechanism 74 to the replacement unit 55 are substantially the same except for the temperature. is there.
  • the term “plating solution” used when describing the materials and components of the plating solution represents both the plating solution used in the film forming unit 35 and the plating solution used in the replacement unit 55.
  • the plating solution contains a material corresponding to a plating layer having a specific function formed on the surface of the substrate 2.
  • the plating solution is a barrier film that prevents the metal material constituting the wiring from penetrating into the insulating film or the inside of the substrate 2, the plating solution is a barrier film. Co (cobalt), W (tungsten), Ta (tantalum), and the like, which are materials for the above, are included.
  • the plating solution contains Cu (copper) or the like used as the wiring material. Yes.
  • the plating solution may contain complexing agents, reducing agents (compounds containing B (boron), P (phosphorus)), surfactants, etc. Good.
  • the plating solution may contain an additive capable of affecting the rate of the plating reaction.
  • the additive is appropriately selected according to the material contained in the plating solution.
  • the plating solution contains Co and W as materials for the barrier film
  • the plating solution contains bis (3-sulfopropyl) disulfide, so-called SPS, as an additive.
  • the pretreatment mechanism 54 has a discharge nozzle 54 a that discharges the pretreatment liquid toward the substrate 2.
  • the pre-wet mechanism 57 has a discharge nozzle 57 a that discharges a pre-wet liquid toward the substrate 2.
  • each discharge nozzle 54a, 57a may be attached to the above-described discharge head 53 that is movable in the vertical direction and the horizontal direction.
  • a pretreatment liquid supply mechanism 73 that supplies a pretreatment liquid to the pretreatment mechanism 54 and a prewet liquid supply mechanism 76 that supplies a prewet liquid to the prewet mechanism 57 will be described with reference to FIG. Note that the pretreatment liquid supply mechanism 73 and the pre-wet liquid supply mechanism 76 differ only in the types of stored treatment liquids, and the other configurations are substantially the same. Here, the pretreatment liquid supply mechanism 73 will be mainly described.
  • the pretreatment liquid supply mechanism 73 includes a tank 73b that stores a pretreatment liquid 73c such as DIW, a supply pipe 73a that supplies the pretreatment liquid 73c in the tank 73b to the pretreatment mechanism 54, have.
  • a valve 73d and a pump 73e for adjusting the flow rate of the pretreatment liquid 73c are attached to the supply pipe 73a.
  • the pretreatment liquid supply mechanism 73 may further include a deaeration unit 73f that removes gas such as dissolved oxygen and dissolved hydrogen in the pretreatment liquid 73c.
  • the deaeration unit 73 f may be configured as a gas supply pipe that sends an inert gas such as nitrogen into the pretreatment liquid 73 c stored in the tank 73 b.
  • the inert gas can be dissolved in the pretreatment liquid 73c, whereby oxygen, hydrogen, or the like already dissolved in the pretreatment liquid 73c can be discharged to the outside. That is, a so-called degassing process can be performed on the pretreatment liquid 73c.
  • the degree of the degassing process by the degassing means 73f is not particularly limited.
  • the degassing process is performed so that the oxygen concentration in the cleaning liquid 73c discharged toward the substrate 2 is 1 ppm or less, preferably 0.5 ppm or less. To be implemented.
  • the plating apparatus 20 configured as described above is driven and controlled by the control mechanism 160 in accordance with various programs recorded in the storage medium 161 provided in the control mechanism 160, whereby various processes are performed on the substrate 2.
  • the storage medium 161 stores various programs such as various setting data and a plating processing program described later.
  • known media such as a computer-readable memory such as ROM and RAM, and a disk-shaped storage medium such as a hard disk, CD-ROM, DVD-ROM, and flexible disk can be used.
  • FIG. 5 is a flowchart showing the plating method.
  • 6A to 6F are cross-sectional views showing the state of the substrate 2 in each step of the plating method.
  • the recess 12 for embedding the wiring material is formed in the substrate 2.
  • a conventionally known method can be appropriately employed. Specifically, for example, a general-purpose technique using fluorine-based or chlorine-based gas can be applied as the dry etching technique.
  • ICP-RIE Inductively Coupled Plasma Reactive Ion Etching
  • a method employing the technique of ion etching In particular, a method called a Bosch process in which an etching step using sulfur hexafluoride (SF 6 ) and a protection step using a Teflon-based gas such as C 4 F 8 are repeated can be suitably employed.
  • the specific shape of the recess 12 is not particularly limited as long as the movement of each component of the plating solution inside the recess 12 is mainly based on diffusion rather than flow.
  • the aspect ratio of the recess 12 is in the range of 5-30.
  • the diameter of the recess 12 is in the range of 0.5 to 20 ⁇ m, for example, 8 ⁇ m.
  • the height or depth of the recess 12 is in the range of 10 to 250 ⁇ m, for example, 100 ⁇ m.
  • an insulating film is formed inside the recess 12.
  • a method of forming the insulating film for example, a method of forming a silicon oxide film (SiO 2 ) deposited by a chemical vapor deposition (CVD) method is used.
  • the substrate 2 is prepared inside the casing 101, and the prewetting mechanism 57 is used to discharge the prewetting liquid 76c toward the substrate 2 (prewetting step S10).
  • the surface of the substrate for example, the inner surface 12a of the recess 12 and the upper surface of the substrate 2
  • the pre-wet liquid 76c for example, ion water containing CO 2 ions or the like is used.
  • the pretreatment liquid 73c is discharged toward the substrate 2 using the pretreatment mechanism 54 (pretreatment step S20). Thereby, as shown in FIG. 6B, the inside of the recess 12 is filled with the pretreatment liquid 73c.
  • the pretreatment liquid 73c for example, DIW subjected to a degassing process is used.
  • the plating step S21 includes a replacement step S21a for discharging a low-temperature plating solution 74c toward the substrate 2, and a film-forming step S21b for discharging a high-temperature plating solution 71c toward the substrate 2. Contains.
  • the low-temperature plating solution 74 c is supplied to the replacement unit 55 using the replacement plating solution supply mechanism 74.
  • the temperature of the supplied plating solution 74c is a temperature at which the plating reaction does not proceed significantly, and is, for example, room temperature (about 25 ° C.).
  • the plating solution 74 c is discharged toward the substrate 2 from the discharge nozzle 55 a attached to the discharge head 53.
  • the recess 12 formed in the substrate 2 has a large aspect ratio. Moreover, the depth of the recessed part 12 is remarkably large compared with the depth of the conventional recessed part, for example, is 100 micrometers.
  • each component contained in the plating solution 74c reaches the lower part of the recess 12 mainly based on diffusion in the plating solution.
  • the diffusion phenomenon is a phenomenon that progresses gradually with time. For this reason, a predetermined time is required for each component of the plating solution 74c to reach the lower part of the recess 12 sufficiently. Therefore, the replacement step S21a for supplying the plating solution 74c to the substrate 2 is continued for a predetermined time so that the pretreatment solution 73c in the recess 12 can be sufficiently replaced with the plating solution 74c.
  • FIG. 11 shows the result of calculating the relationship between the diffusion time and the diffusion distance when the plating component (component of the material constituting the plating layer) in the plating solution diffuses based on Fick's second law.
  • the horizontal axis represents time
  • the vertical axis represents the distance from the upper end of the recess 12.
  • the point marked with A in FIG. 11 is the diffusion time required for the concentration of the plating component at a distance of 70 ⁇ m from the upper end of the recess 12 to reach 95% of the concentration of the plating component at the upper end of the recess 12. Means 600 seconds.
  • the duration of the replacement step S21a can be determined based on the relationship shown in FIG. For example, for the recess 12 having a depth of 100 ⁇ m, when the concentration of the plating component at the bottom of the recess 12 is required to reach about 90% of the concentration of the plating component of the plating solution 74c supplied to the substrate 2, The duration of the replacement step S21a is set to about 600 seconds. In this way, by continuing the replacement step S21a for a long time, the plating solution 74c can sufficiently reach the bottom of the recess 12. Thereby, the concentration distribution of the plating solution 74c filled in the recess 12 can be made substantially uniform.
  • the temperature of the plating solution 74c supplied to the substrate 2 in the replacement step S21a is set to a low temperature at which the plating reaction does not proceed significantly.
  • plating is performed so that the deposition rate of the plating layer formed in the replacement step S21a is 10% or less compared to the deposition rate of the thickness of the plating layer 15 finally obtained during the high temperature treatment.
  • the temperature of the liquid 74c is set. For this reason, it is possible to prevent the plating reaction from proceeding significantly before the plating solution 74 reaches the bottom of the recess 12 sufficiently.
  • a high-temperature plating solution 71c is discharged toward the substrate 2 by using the film forming unit 35 (film forming step S21b). Specifically, first, the plating solution 71 c heated to a high temperature is supplied to the film formation unit 35 using the film formation plating solution supply mechanism 71. The temperature of the supplied plating solution 71c is set so that the plating reaction proceeds at an appropriate speed, and is set to 45 ° C., for example. Next, as shown in FIG. 8, the plating solution 71 c is discharged toward the substrate 2 from the plurality of discharge nozzles 34 arranged so as to be aligned along the radial direction of the substrate 2. Thereby, the plating solution 71c can be simultaneously supplied over a wide area of the substrate 2.
  • the temperature distribution of the plating solution 71 c on the substrate 2 can be made substantially uniform regardless of the position on the substrate 2.
  • the temperature of the plating solution 71c reaching the central portion of the substrate 2 and the temperature of the plating solution 71c reaching the peripheral portion of the substrate 2 can be made substantially the same.
  • the low temperature plating solution 74c is already filled in the recess 12.
  • the high-temperature plating solution 71 c is supplied to the substrate 2, first, the low-temperature plating solution 74 c is above the upper end of the recess 12, that is, above the upper surface 11 a of the insulating layer 11. It is replaced with 71c.
  • the low temperature plating solution 74c filled in the recess 12 is heated by the heat from the high temperature plating solution 71c.
  • the heat conduction speed in the liquid is larger than the diffusion speed of the predetermined component in the liquid.
  • the low-temperature plating solution 74c in the recess 12 is rapidly heated to become a high-temperature plating solution 71c. That is, the hot plating solution 71c can be quickly filled in the recess 12.
  • the plating solution 74c and the plating solution 71c are assigned the same reference numerals, but are substantially the same except for the temperature as described above. Therefore, by heating the low temperature plating solution 74c, the low temperature plating solution 74c can be replaced with or changed by the high temperature plating solution 71c.
  • the plating layer 15 is formed on the inner surface 12a of the recess 12 as shown in FIG. 6E.
  • the high-temperature plating solution 71 c in the recess 12 is obtained by heating the low-temperature plating solution 74 c having a substantially uniform concentration distribution in the recess 12.
  • the concentration distribution of the plating solution 71c in the recess 12 can be made uniform as compared with the case where the replacement step is not performed in advance.
  • the plating reaction in the film forming step S21b can be started using the plating solution 71c having a substantially uniform concentration regardless of the position of the recess 12. Thereby, the uniformity of the thickness and density distribution of the plating layer 15 formed on the inner surface 12a of the recess 12 can be improved.
  • rinse treatment steps S32 and S40 for discharging a rinsing liquid toward the substrate 2 a post-cleaning step S33 for discharging a post-cleaning liquid toward the substrate 2, and a drying step S41 for drying the substrate 2 with air, IPA or the like
  • the subsequent process is performed. In this way, the substrate 2 having a barrier film made of the plating layer 15 on the surface can be obtained.
  • a seed film 16 may be formed on the barrier film made of the plating layer 15.
  • a wiring 17 containing a metal material such as copper may be formed in the recess 12 covered with the seed film 16.
  • the method for forming the seed film 16 and the wiring 17 is not particularly limited, for example, an electroless plating method can be used.
  • a two-step plating process using two types of plating solutions having different temperatures may be performed.
  • the plating step S21 includes the replacement step S21a using the low temperature plating solution 74c and the film forming step 21b using the high temperature plating solution 71c.
  • the concentration distribution of the plating solution 71 c in the recess 12 is substantially the same regardless of the position in the recess 12. It can be made uniform. Thereby, the uniformity of the thickness and density distribution of the plating layer 15 formed in the recessed part 12 can be improved.
  • DIW that has been subjected to degassing treatment is used as the pretreatment liquid 73c supplied to the substrate 2 in the pretreatment step S20. For this reason, it can prevent that the bubble resulting from the dissolved gas in the pretreatment liquid 73c is formed on the surface of the substrate 2 such as the inner surface 12a of the recess 12. Thereby, it is possible to prevent the plating reaction on the surface of the substrate 2 from being hindered by bubbles, and thus the plating layer 15 can be uniformly formed on the surface of the substrate 2.
  • ion water containing CO 2 ions or the like is used as the pre-wet liquid supplied to the substrate 2 in the pre-wet process S10. For this reason, compared with the case where electrically neutral process liquids, such as DIW, are first supplied to the board
  • the plating solution 71 c is discharged to the substrate 2 from the plurality of discharge nozzles 34 that are arranged along the radial direction of the substrate 2. For this reason, the temperature distribution of the plating solution 71 c on the substrate 2 can be made substantially uniform regardless of the position on the substrate 2. Thereby, the thickness of the plating layer 15 formed on the substrate 2 can be made uniform regardless of the position on the substrate 2.
  • a low temperature plating solution 74 c may be discharged toward the substrate 2.
  • a speed component corresponding to the moving speed of the discharge head 53 is added to the speed component of the discharged plating solution 74c.
  • the force by which the plating solution 74c pushes the pretreatment solution 73c along the direction S can be increased.
  • an impact force based on the kinetic energy of the plating solution 74c can be directly applied to the pretreatment solution 73c filled in each recess 12. By these things, the efficiency which replaces the pretreatment liquid 73c with the plating liquid 74c can be improved.
  • the direction along the arrow S is parallel to the direction from the center of the substrate 2 toward the peripheral edge of the substrate 2, for example.
  • the heating unit 71g for heating the plating solution 71c supplied to the plating mechanism 30 is provided in the tank 71b.
  • the form for heating the plating solution 71c is not limited to this.
  • the heating unit 71g may be provided in the supply pipe 71a instead of the tank 71b.
  • a tank 71b for supplying the high-temperature plating solution 71c to the film forming unit 35 and a tank 74b for supplying the low-temperature plating solution 74c to the replacement unit 55 are separately prepared. showed that.
  • the invention is not limited to this, and a tank for supplying the high-temperature plating solution 71c to the film forming unit 35 and a tank for supplying the low-temperature plating solution 74c to the replacement unit 55 are shared. Also good.
  • a tank 74b that stores a low-temperature plating solution 74c can be used as a common tank. In this case, as shown in FIG.
  • the supply pipe 71 a of the plating solution supply mechanism 71 for film formation is provided with a heating unit 71 g for heating the plating solution. Accordingly, the high temperature plating solution 71 c can be supplied to the film forming unit 35 and the low temperature plating solution 74 c can be supplied to the replacement unit 55 while using one tank.
  • the plating solution heated by the heating unit 71g may be required to return to the tank 74b again without being supplied to the substrate 2.
  • a return pipe for returning the high-temperature plating solution to the tank 74b may be further provided.
  • a cooling unit for cooling the plating solution may be attached to the return pipe. Thereby, the plating solution returned to a low temperature can be returned to the tank 74b.
  • the cooling unit attached to the return pipe and the heating unit 71g attached to the supply pipe 71a may be configured as an integral heat exchanger.
  • the discharge nozzle 34 that discharges the high-temperature plating solution 71c and the discharge nozzle 55a that discharges the low-temperature plating solution 74c are separately prepared.
  • the present invention is not limited to this, and the discharge nozzle that discharges the high-temperature plating solution 71c and the discharge nozzle that discharges the low-temperature plating solution 74c may be shared.
  • the film forming unit 35 may further include a substrate heating unit 36 that heats the substrate 2.
  • a lamp heater 36 that irradiates light toward the substrate 2 and thereby heats the substrate 2 may be used.
  • the substrate heating unit 36 may be configured to circulate a heat medium such as warm water below the substrate 2 and thereby heat the substrate 2.
  • a heat medium such as warm water below the substrate 2 and thereby heat the substrate 2.
  • the plating solution filled in the recess 12 is heated from the lower side of the recess 12. Heating the plating solution from the lower side of the recess 12 in this way is considered advantageous when a type of plating solution that preferentially forms a plating layer on the upper portion of the recess 12 is used.
  • the plating reaction can be started first in the lower portion of the recess 12, and thereby the thickness of the plating layer formed in the lower portion of the recess 12 and the recess 12. This is because the difference between the thickness of the plating layer formed on the upper part of the metal layer can be reduced.
  • a barrier film made of the plating layer 15 is formed directly on the inner surface 12a of the recess 12 formed in the insulating layer 11 is shown.
  • the present invention is not limited to this, and other layers may be interposed between the inner surface 12a of the recess 12 and the barrier film.
  • a catalyst layer for promoting the plating reaction may be interposed between the inner surface 12a of the recess 12 and the barrier film.
  • the material which comprises a catalyst layer is suitably selected according to the material which comprises a plating layer.
  • the plating layer is CoWB, Pd (palladium) can be used as a material constituting the catalyst layer.
  • an adhesion layer for improving the adhesion between the inner surface 12a of the recess 12 and the catalyst layer may be further provided.
  • the adhesion layer can be formed, for example, by performing a SAM treatment using a coupling agent such as a silane coupling agent.
  • An insulating film such as TEOS or PI (polyimide) may be formed on the inner surface 12 a of the recess 12.
  • the plating apparatus 20 is a single-wafer type apparatus that performs the plating process on the substrate 2 one by one by discharging a plating solution to the substrate 2.
  • the plating apparatus to which the technical idea of the present invention can be applied is not limited to a single wafer type apparatus.
  • the plating apparatus according to the embodiment of the present invention may be a so-called dip type apparatus that can collectively perform the plating process on the plurality of substrates 2.
  • the plating solution is supplied to the substrate 2 by putting the substrate 2 into the plating tank in which the plating solution is stored.
  • Other configurations are substantially the same as those of the single-wafer plating apparatus 20 described above, and thus detailed description thereof is omitted.
  • Example 1 An example in which the CoWB plating layer 15 is formed on the inner surface 12a of the recess 12 of the insulating layer 11 of the substrate 2 using the above-described plating apparatus 20 will be described.
  • a substrate 2 including an insulating layer 11 in which a recess 12 was formed was prepared.
  • the diameter of the recess 12 was 8 ⁇ m, and the depth of the recess 12 was 100 ⁇ m.
  • a pre-wet process S10 was performed, and then a pre-process S20 for discharging a pre-treatment liquid toward the substrate 2 was performed. Thereby, the pretreatment liquid was filled in the recess 12.
  • the pretreatment liquid DIW subjected to degassing treatment was used.
  • a plating step S21 for forming the plating layer 15 on the inner surface 12a of the recess 12 was performed. Specifically, first, a replacement step S21a for discharging a plating solution at 25 ° C. toward the substrate 2 was performed for 20 minutes. Next, a film forming step S21b for discharging a plating solution at 65 ° C. toward the substrate 2 was performed for 5 minutes. The concentration of SPS contained in each plating solution was 5 ppm. Thereafter, appropriate post-processes such as the rinse treatment process S32 were performed.
  • the plating layer formed by the plating step S21 was observed. Specifically, the plating layer formed in the upper part and the lower part (bottom part) of the recessed part 12 was observed. The results are shown in FIG.
  • Comparative Example 1 A CoWB plating layer was formed on the inner surface 12a of the recess 12 of the insulating layer 11 of the substrate 2 in the same manner as in Example 1 except that the replacement step S21a was not performed. That is, in Comparative Example 1, only the step of discharging a plating solution at 65 ° C. toward the substrate 2 over 5 minutes was performed as the plating step. Moreover, the formed plating layer was observed. The results are shown in FIG.
  • Example 1 As shown in FIG. 13, in Comparative Example 1, many places where the plating layer was not formed on the inner wall 12 a of the recess 12 were confirmed. On the other hand, as shown in FIG. 12, in Example 1, the plating layer could be uniformly formed on the inner wall 12 a of the recess 12 in both the upper portion and the lower portion of the recess 12. In Example 1, each component of the plating solution can be sufficiently diffused in the concave portion 12 by performing the substitution step prior to the film forming step. As a result, the inner surface 12a of the concave portion 12 can be uniformly distributed. It can be considered that the plating layer could be formed.

Abstract

A plating method is provided that makes it possible to improve the uniformity of the thickness of a plating layer that is formed on the inner surface of a concave section. The plating method comprises a step in which a substrate having a concave section formed thereon is prepared inside of a casing, and a plating step in which a plating solution is supplied to the substrate and a plating layer having a specific function is formed on the inner surface of the concave section. With regards to the plating step, after the plating solution is supplied to the substrate and the concave section of the substrate is filled with the plating solution that has been supplied thereto, plating solution having a temperature that is higher than that of the aforementioned plating solution is used on the substrate.

Description

めっき処理装置、めっき処理方法および記憶媒体Plating processing apparatus, plating processing method, and storage medium
 本発明は、基板に形成された凹部に対してめっき処理を行うめっき処理方法、めっき処理装置および記憶媒体に関する。 The present invention relates to a plating method, a plating apparatus, and a storage medium that perform plating on a recess formed in a substrate.
 一般に、半導体装置を形成するための半導体ウエハや液晶基板などの基板には、回路を形成するための配線が形成されている。配線の形成方法としては、銅などの配線材料を埋め込むためのビアやトレンチなどの凹部を基板に形成し、それらの凹部の中に配線材料を埋め込むダマシン法などが用いられている。 Generally, wiring for forming a circuit is formed on a substrate such as a semiconductor wafer or a liquid crystal substrate for forming a semiconductor device. As a method for forming the wiring, a damascene method or the like in which a concave portion such as a via or a trench for embedding a wiring material such as copper is formed in the substrate and the wiring material is embedded in the concave portion is used.
 また近年、3次元実装技術を利用して複数のLSIを基板上に実装することにより、部品またはシステム全体としての実装面積を減らす試みがなされている。3次元実装技術においては、例えば、基板(例えば、シリコン基板)に、各LSI間を接続する配線材料が埋め込まれる凹部、例えばシリコン貫通電極(TSV)が形成される。 In recent years, attempts have been made to reduce the mounting area of a component or the entire system by mounting a plurality of LSIs on a substrate using a three-dimensional mounting technique. In the three-dimensional mounting technology, for example, a recess (for example, a silicon through electrode (TSV)) in which a wiring material for connecting LSIs is embedded is formed on a substrate (for example, a silicon substrate).
 基板の凹部の内面と、凹部に形成される配線との間には一般に、配線材料を構成する原子が凹部の内面の絶縁膜(酸化膜、PI「ポリイミド」など)およびその裏側の基板内に拡散することを防ぐことや、密着性を向上させることを目的としてバリア膜が設けられている。またバリア膜と配線との間には一般に、配線材料の埋め込みを容易にするためのシード膜が設けられている。 In general, between the inner surface of the concave portion of the substrate and the wiring formed in the concave portion, atoms constituting the wiring material are present in the insulating film (oxide film, PI “polyimide”, etc.) on the inner surface of the concave portion and the substrate on the back side thereof. A barrier film is provided for the purpose of preventing diffusion and improving adhesion. In general, a seed film is provided between the barrier film and the wiring to facilitate embedding of the wiring material.
 例えば特許文献1において、ルテニウムを含むバリア膜をスパッタリングによって凹部の内面に形成し、次に、ルテニウムおよび銅を含むシード膜をスパッタリングによってバリア膜上に形成し、その後、銅をめっき処理によって凹部内に埋め込む方法が提案されている。 For example, in Patent Document 1, a barrier film containing ruthenium is formed on the inner surface of the recess by sputtering, then a seed film containing ruthenium and copper is formed on the barrier film by sputtering, and then copper is plated in the recess by plating. A method of embedding in is proposed.
特開2010-177538号公報JP 2010-177538 A
 近年、TSVを採用した作成技術の開発が行われている。この作成技術においては、TSVの凹部の高さまたは深さが、従来の前工程プロセスの場合の数十~数百ナノメートルサイズではなく、数ミクロン~数百ミクロンサイズになる。このため、従来のデバイス作成技術を転用できる場合もあるが、異なる手法が必要となる場合もある。 In recent years, the development of production technology using TSV has been underway. In this fabrication technique, the height or depth of the recesses in the TSV is several tens to several hundreds of microns rather than the tens to hundreds of nanometers in the conventional pre-process. For this reason, the conventional device creation technique may be diverted, but a different method may be required.
 例えば、バリア膜やシード膜を形成するために一般に用いられているスパッタリング法は、大きな指向性を有する方法である。このため、凹部の高さまたは深さが大きい場合には、凹部の下部にまで十分にバリア膜やシード膜を形成することが困難である。 For example, a sputtering method generally used for forming a barrier film or a seed film is a method having a large directivity. For this reason, when the height or depth of the concave portion is large, it is difficult to sufficiently form a barrier film or a seed film up to the lower portion of the concave portion.
 このような課題を解決するため、電解めっき処理や無電解めっき処理などのめっき法を利用することが考えられる。ところで、凹部の径が小さく、凹部の高さまたは深さが大きい場合、凹部内におけるめっき液の流動性は低い。このことは、凹部内におけるめっき液の濃度分布が凹部の上部と下部で不均一になることを導く。凹部内におけるめっき液の濃度分布が不均一である場合、凹部の内面に形成される、バリア膜やシード膜などのめっき層の厚みや密度分布が不均一になることが考えられる。 In order to solve such problems, it is conceivable to use a plating method such as electrolytic plating or electroless plating. By the way, when the diameter of a recessed part is small and the height or depth of a recessed part is large, the fluidity | liquidity of the plating solution in a recessed part is low. This leads to a non-uniform distribution of the plating solution concentration in the recess at the upper and lower portions of the recess. When the concentration distribution of the plating solution in the recess is non-uniform, it is considered that the thickness and density distribution of the plating layer such as the barrier film and the seed film formed on the inner surface of the recess become non-uniform.
 本発明は、このような点を考慮してなされたものであり、凹部の内面に形成されるめっき層の厚みの均一性を向上させることができるめっき処理方法、めっき処理装置および記憶媒体を提供することを目的とする。 The present invention has been made in consideration of such points, and provides a plating method, a plating apparatus, and a storage medium that can improve the uniformity of the thickness of the plating layer formed on the inner surface of the recess. The purpose is to do.
 本発明の第1の観点によれば、基板に形成された凹部に対してめっき処理を行うめっき処理方法において、前記凹部が形成された基板をケーシングの内部に準備する工程と、めっき液を基板に対して供給し、特定機能を有するめっき層を前記凹部の内面に形成するめっき工程と、を備え、前記めっき工程は、めっき液を基板に対して供給し、基板の前記凹部内にめっき液を充填した後に、前記めっき液より高い温度のめっき液を基板に対して用いる、めっき処理方法が提供される。 According to a first aspect of the present invention, in a plating method for performing plating on a recess formed in a substrate, a step of preparing the substrate on which the recess is formed inside a casing; A plating step for forming a plating layer having a specific function on the inner surface of the recess, and the plating step supplies a plating solution to the substrate, and the plating solution is provided in the recess of the substrate. A plating method using a plating solution having a temperature higher than that of the plating solution after the substrate is filled is provided.
 本発明の第2の観点によれば、基板に形成された凹部に対してめっき処理を行うめっき処理装置において、前記凹部が形成された基板を保持する基板保持機構と、めっき液を基板に対して供給し、特定機能を有するめっき層を前記凹部の内面に形成するめっき機構と、を備え、前記めっき機構は、めっき液を基板に対して供給し、基板の前記凹部内にめっき液を充填した後に、前記めっき液より高い温度のめっき液を基板に対して用いる、めっき処理装置が提供される。 According to a second aspect of the present invention, in a plating apparatus for performing plating on a recess formed in a substrate, a substrate holding mechanism that holds the substrate on which the recess is formed, and a plating solution for the substrate A plating mechanism that forms a plating layer having a specific function on the inner surface of the recess, and the plating mechanism supplies a plating solution to the substrate and fills the plating solution in the recess of the substrate. Then, a plating apparatus using a plating solution having a temperature higher than that of the plating solution is provided.
 本発明の第3の観点によれば、基板に形成された凹部に対してめっき処理を行うめっき処理方法を実行させるためのコンピュータプログラムを格納した記憶媒体において、前記めっき処理方法は、前記凹部が形成された基板を準備する工程と、めっき液を基板に対して供給し、特定機能を有するめっき層を前記凹部の内面に形成するめっき工程と、を備え、前記めっき工程は、めっき液を基板に対して供給し、基板の前記凹部内にめっき液を充填した後に、前記めっき液より高い温度のめっき液を基板に対して用いる、方法からなっていることを特徴とする記憶媒体が提供される。 According to a third aspect of the present invention, in a storage medium storing a computer program for executing a plating method for performing plating on a recess formed in a substrate, the plating method includes the recess. A step of preparing the formed substrate, and a plating step of supplying a plating solution to the substrate and forming a plating layer having a specific function on the inner surface of the concave portion, wherein the plating step uses the plating solution as a substrate. A storage medium comprising: a method of using a plating solution having a temperature higher than that of the plating solution after the plating solution is filled in the concave portion of the substrate. The
 本発明によれば、凹部の内面に形成されるめっき層の厚みや密度分布の均一性を向上させることができる。 According to the present invention, the uniformity of the thickness and density distribution of the plating layer formed on the inner surface of the recess can be improved.
図1は、本発明の一実施の形態によるめっき処理装置を示す側面図。FIG. 1 is a side view showing a plating apparatus according to an embodiment of the present invention. 図2(a)(b)は、図1に示すめっき処理装置の平面図。2A and 2B are plan views of the plating apparatus shown in FIG. 図3は、めっき機構の成膜ユニットに高温のめっき液を供給する成膜用めっき液供給機構を示す図。FIG. 3 is a diagram showing a film-forming plating solution supply mechanism that supplies a high-temperature plating solution to the film-forming unit of the plating mechanism. 図4は、めっき機構の置換ユニットに低温のめっき液を供給する置換用めっき液供給機構などを示す図。FIG. 4 is a diagram showing a replacement plating solution supply mechanism for supplying a low temperature plating solution to a replacement unit of the plating mechanism. 図5は、めっき処理方法を示すフローチャート。FIG. 5 is a flowchart showing a plating method. 図6Aは、凹部が形成された基板を準備する工程を示す図。FIG. 6A is a diagram illustrating a process of preparing a substrate having a recess. 図6Bは、凹部に前処理液を供給する工程を示す図。FIG. 6B is a diagram illustrating a process of supplying a pretreatment liquid to the recess. 図6Cは、基板の凹部内に充填されている前処理液を低温のめっき液に置換する置換工程を示す図。FIG. 6C is a diagram showing a replacement step of replacing the pretreatment liquid filled in the concave portion of the substrate with a low-temperature plating solution. 図6Dは、高温のめっき液を基板に対して供給する成膜工程を示す図。FIG. 6D is a diagram showing a film forming process for supplying a high-temperature plating solution to the substrate. 図6Eは、凹部の内面にめっき層が形成される様子を示す図。FIG. 6E is a diagram illustrating a state in which a plating layer is formed on the inner surface of the recess. 図6Fは、凹部内に配線材料を埋め込む工程を示す図。FIG. 6F is a diagram showing a process of embedding a wiring material in the recess. 図7は、前処理液が低温のめっき液に置換される様子を示す図。FIG. 7 is a diagram illustrating a state in which the pretreatment liquid is replaced with a low-temperature plating liquid. 図8は、成膜ユニットの複数の吐出ノズルが基板に対してめっき液を供給する様子を示す図。FIG. 8 is a diagram illustrating a state in which a plurality of discharge nozzles of the film forming unit supply a plating solution to the substrate. 図9は、めっき液供給機構の変形例を示す図。FIG. 9 is a view showing a modification of the plating solution supply mechanism. 図10は、置換ユニットの変形例を示す図。FIG. 10 is a diagram showing a modification of the replacement unit. 図11は、置換工程において、めっき液の成分が拡散する際の拡散時間と拡散距離との関係を示す図。FIG. 11 is a diagram showing the relationship between the diffusion time and the diffusion distance when the components of the plating solution diffuse in the replacement step. 図12は、実施例1において、形成されためっき層の一例を示す図。12 is a diagram illustrating an example of a plating layer formed in Example 1. FIG. 図13は、比較例1において、形成されためっき層の一例を示す図。13 is a diagram illustrating an example of a plating layer formed in Comparative Example 1. FIG.
 以下、図1乃至図8を参照して、本発明の実施の形態について説明する。まず図1および図2を参照して、めっき処理装置20の全体構成について説明する。図1は、めっき処理装置20を示す側面図であり、図2は、めっき処理装置20を示す平面図である。なお本実施の形態においては、めっき処理装置20が、基板2に対してめっき液を吐出することにより、基板2に対するめっき処理を一枚ずつ実施する枚葉式の装置である例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 8. First, the overall configuration of the plating apparatus 20 will be described with reference to FIGS. 1 and 2. FIG. 1 is a side view showing the plating apparatus 20, and FIG. 2 is a plan view showing the plating apparatus 20. In the present embodiment, an example will be described in which the plating apparatus 20 is a single-wafer type apparatus that performs the plating process on the substrate 2 one by one by discharging a plating solution to the substrate 2.
 めっき処理装置
 めっき処理装置20は、ケーシング101の内部で基板2を保持して回転させる基板保持機構110と、基板保持機構110に保持された基板2に向けてめっき液を吐出し、特定機能を有するめっき層を基板の凹部の内面に形成するめっき機構30と、めっき機構30に接続され、めっき機構30にめっき液を供給するめっき液供給機構と、を備えている。このうち、めっき機構30は、低温のめっき液を基板2に向けて吐出する置換ユニット55と、置換ユニット55において用いられるめっき液の温度よりも高い温度を有する高温のめっき液を基板2に向けて吐出する成膜ユニット35と、を含んでいる。なお「低温」とは、置換ユニット55から吐出されるめっき液の温度が、めっき反応が有意に進行しない程度の温度となっていることを意味している。例えば、置換ユニット55から吐出されるめっき液によって形成されるめっき層の成膜の速度が、最終的に高温処理時に得られるめっき層15の成膜の速度と比較して10%以下となっていることを意味している。また「高温」とは、成膜ユニット35から吐出されるめっき液の温度が、現実的な処理時間内でめっき処理を完了させることができる程度の温度となっていることを意味している。
The plating processing apparatus 20 has a substrate holding mechanism 110 that holds and rotates the substrate 2 inside the casing 101, and discharges the plating solution toward the substrate 2 held by the substrate holding mechanism 110, thereby having a specific function. A plating mechanism 30 for forming a plating layer on the inner surface of the concave portion of the substrate; and a plating solution supply mechanism that is connected to the plating mechanism 30 and supplies a plating solution to the plating mechanism 30. Among these, the plating mechanism 30 directs a high-temperature plating solution having a temperature higher than the temperature of the plating solution used in the replacement unit 55 and the replacement unit 55 for discharging the low-temperature plating solution toward the substrate 2. And a film forming unit 35 for discharging. “Low temperature” means that the temperature of the plating solution discharged from the replacement unit 55 is such that the plating reaction does not proceed significantly. For example, the deposition rate of the plating layer formed by the plating solution discharged from the replacement unit 55 is 10% or less compared to the deposition rate of the plating layer 15 finally obtained during the high temperature treatment. It means that Further, “high temperature” means that the temperature of the plating solution discharged from the film forming unit 35 is a temperature at which the plating process can be completed within a realistic processing time.
 まためっき液供給機構は、成膜ユニット35に高温のめっき液を供給する成膜用めっき液供給機構71と、置換ユニット55に低温のめっき液を供給する置換用めっき液供給機構74と、を有している。 The plating solution supply mechanism includes a film forming plating solution supply mechanism 71 that supplies a high temperature plating solution to the film forming unit 35 and a replacement plating solution supply mechanism 74 that supplies a low temperature plating solution to the replacement unit 55. Have.
 まためっき処理装置20は、基板2に向けて前処理液を吐出する前処理機構54をさらに備えている。前処理機構54には、前処理機構54に前処理液を供給する前処理液供給機構73が接続されている。前処理液は、基板2に対してめっき液を吐出する前に、基板2に対して吐出される液である。前処理液としては、例えば、脱イオン処理が施された純水、いわゆる脱イオン水(DIW)が用いられる。 The plating apparatus 20 further includes a pretreatment mechanism 54 that discharges a pretreatment liquid toward the substrate 2. A pretreatment liquid supply mechanism 73 that supplies a pretreatment liquid to the pretreatment mechanism 54 is connected to the pretreatment mechanism 54. The pretreatment liquid is a liquid discharged onto the substrate 2 before discharging the plating liquid onto the substrate 2. As the pretreatment liquid, for example, pure water that has been subjected to deionization treatment, so-called deionized water (DIW) is used.
 まためっき処理装置20は、基板2に向けてプリウェット液を吐出するプリウェット機構57をさらに備えていてもよい。プリウェット機構57には、プリウェット機構57にプリウェット液を供給するプリウェット液供給機構76が接続されている。プリウェット液は、乾燥状態の基板2に対して供給される液である。プリウェット液を用いることにより、例えば、その後に基板2に対して供給される処理液と、基板2との間の親和性を高めることができる。プリウェット液としては、例えば、COのイオンなどを含むイオン水が用いられる。 The plating apparatus 20 may further include a prewetting mechanism 57 that discharges a prewetting liquid toward the substrate 2. A pre-wet liquid supply mechanism 76 that supplies a pre-wet liquid to the pre-wet mechanism 57 is connected to the pre-wet mechanism 57. The pre-wet liquid is a liquid supplied to the substrate 2 in a dry state. By using the pre-wet liquid, for example, the affinity between the substrate 2 and the processing liquid that is subsequently supplied to the substrate 2 can be increased. As the pre-wet liquid, for example, ion water containing CO 2 ions or the like is used.
 基板保持機構110の周囲には、第1開口部121および第2開口部126を有し、基板2から飛散しためっき液や前処理液などの液体を受ける排液カップ120と、気体を引き込む開口部106を有する排気カップ105と、が配置されている。排液カップ120の第1開口部121および第2開口部126によって受けられた液体は、第1排液機構122および第2排液機構127によって排出される。排気カップ105の開口部106に引き込まれた気体は、排気機構107によって排出される。また、排液カップ120は昇降機構164に連結されており、この昇降機構164は、排液カップ120を上下に移動させることができる。このため、基板2から飛散した液の種類に応じて排液カップ120を上下させることにより、液が排出される経路を液の種類の応じて異ならせることができる。 The substrate holding mechanism 110 has a first opening 121 and a second opening 126 around the substrate holding mechanism 110. The drainage cup 120 receives a liquid such as a plating solution or a pretreatment liquid scattered from the substrate 2, and an opening for drawing a gas. An exhaust cup 105 having a portion 106 is disposed. The liquid received by the first opening 121 and the second opening 126 of the drainage cup 120 is discharged by the first drainage mechanism 122 and the second drainage mechanism 127. The gas drawn into the opening 106 of the exhaust cup 105 is exhausted by the exhaust mechanism 107. Further, the drainage cup 120 is connected to the lifting mechanism 164, and the lifting mechanism 164 can move the drainage cup 120 up and down. For this reason, by raising and lowering the drainage cup 120 according to the type of liquid splashed from the substrate 2, the path through which the liquid is discharged can be made different according to the type of liquid.
 (基板保持機構)
 基板保持機構110は、図2に示すように、ケーシング101内で上下に伸延する中空円筒状の回転軸部材111と、回転軸部材111の上端部に取り付けられたターンテーブル112と、ターンテーブル112の上面外周部に設けられ、基板2を支持するウエハチャック113と、回転軸部材111に連結され、回転軸部材111を回転駆動する回転機構162と、を有している。
(Substrate holding mechanism)
As shown in FIG. 2, the substrate holding mechanism 110 includes a hollow cylindrical rotating shaft member 111 that extends vertically in the casing 101, a turntable 112 attached to the upper end of the rotating shaft member 111, and a turntable 112. A wafer chuck 113 that supports the substrate 2 and a rotation mechanism 162 that is connected to the rotation shaft member 111 and that rotates the rotation shaft member 111.
 このうち回転機構162は、制御機構160により制御され、回転軸部材111を回転駆動させ、これによって、ウエハチャック113により支持されている基板2が回転される。この場合、制御機構160は、回転機構162を制御することにより、回転軸部材111およびウエハチャック113を回転させ、あるいは停止させることができる。また、制御機構160は、回転軸部材111およびウエハチャック113の回転数を上昇させ、下降させ、あるいは一定値に維持させるように制御することが可能である。 Among these, the rotation mechanism 162 is controlled by the control mechanism 160 and rotates the rotation shaft member 111, whereby the substrate 2 supported by the wafer chuck 113 is rotated. In this case, the control mechanism 160 can rotate or stop the rotation shaft member 111 and the wafer chuck 113 by controlling the rotation mechanism 162. Further, the control mechanism 160 can control the rotational speed of the rotating shaft member 111 and the wafer chuck 113 to be increased, decreased, or maintained at a constant value.
 (めっき機構)
 次にめっき機構30の成膜ユニット35および置換ユニット55について説明する。はじめに成膜ユニット35について説明する。成膜ユニット35は、基板2に向けてめっき液を吐出する吐出ノズル34と、吐出ノズル34が設けられた吐出ヘッド33と、を有している。吐出ヘッド33内には、めっき液供給機構71から供給されためっき液を吐出ノズル34に導くための配管や、めっき液を保温するための熱媒を循環させるための配管などが収納されている。
(Plating mechanism)
Next, the film forming unit 35 and the replacement unit 55 of the plating mechanism 30 will be described. First, the film forming unit 35 will be described. The film forming unit 35 includes a discharge nozzle 34 that discharges the plating solution toward the substrate 2 and a discharge head 33 provided with the discharge nozzle 34. The discharge head 33 accommodates piping for guiding the plating solution supplied from the plating solution supply mechanism 71 to the discharge nozzle 34, piping for circulating a heat medium for keeping the plating solution warm, and the like. .
 吐出ヘッド33は、上下方向および水平方向に移動可能となるよう構成されている。例えば吐出ヘッド33は、アーム32の先端部に取り付けられており、このアーム32は、上下方向に延伸可能であるとともに回転機構165により回転駆動される支持軸31に固定されている。このような回転機構165および支持軸31を用いることにより、図2(a)に示すように、吐出ヘッド33を、基板2に向けてめっき液を吐出する際に位置する吐出位置と、めっき液を吐出しない際に位置する待機位置との間で移動させることができる。 The discharge head 33 is configured to be movable in the vertical direction and the horizontal direction. For example, the ejection head 33 is attached to the distal end portion of the arm 32, and the arm 32 can be extended in the vertical direction and is fixed to the support shaft 31 that is rotationally driven by the rotation mechanism 165. By using such a rotating mechanism 165 and the support shaft 31, as shown in FIG. 2A, a discharge position at which the discharge head 33 is discharged when discharging the plating solution toward the substrate 2, and the plating solution It is possible to move between the standby positions that are located when the ink is not discharged.
 吐出ヘッド33は、図1に示すように、基板2の中心部から基板2の周縁部までの長さ、すなわち基板2の半径の長さに対応するよう延びていてもよい。この場合、吐出ヘッド33には、めっき液を吐出する吐出ノズル34が複数設けられていてもよい。この場合、めっき液を吐出する際に複数の吐出ノズル34が基板2の半径方向に沿って並ぶよう吐出ヘッド33を位置づけることにより、基板2の広域にわたって同時にめっき液を供給することができる。また図示はしないが、吐出ヘッド33に形成される吐出ノズル34は、基板2の半径方向に沿って延び、めっき液を基板2に対して吐出するよう構成されていてもよい。この場合も、基板2の広域にわたって同時にめっき液を供給することができる。 As shown in FIG. 1, the ejection head 33 may extend to correspond to the length from the center of the substrate 2 to the peripheral edge of the substrate 2, that is, the radius of the substrate 2. In this case, the discharge head 33 may be provided with a plurality of discharge nozzles 34 for discharging the plating solution. In this case, the plating solution can be simultaneously supplied over a wide area of the substrate 2 by positioning the discharge head 33 so that the plurality of discharge nozzles 34 are arranged along the radial direction of the substrate 2 when discharging the plating solution. Although not shown, the discharge nozzle 34 formed in the discharge head 33 may be configured to extend along the radial direction of the substrate 2 and discharge the plating solution to the substrate 2. Also in this case, the plating solution can be supplied simultaneously over a wide area of the substrate 2.
 次に置換ユニット55について説明する。図1に示すように、第1置換ユニット55は、基板2に向けてめっき液を吐出する吐出ノズル55aと、吐出ノズル55aが設けられた吐出ヘッド53と、を有している。吐出ヘッド53は、上下方向および水平方向に移動可能となるよう構成されている。例えば成膜ユニット35の吐出ヘッド33の場合と同様に、置換ユニット55の吐出ヘッド53は、アーム52の先端部に取り付けられている。アーム52は、上下方向に延伸可能であるとともに回転機構166により回転駆動される支持軸51に固定されている。この場合、図2(b)に示すように、吐出ヘッド53は、基板2の中心部に対応する位置と基板2の周縁部に対応する位置との間で支持軸51を軸として水平方向に移動可能となっている。 Next, the replacement unit 55 will be described. As shown in FIG. 1, the first replacement unit 55 includes a discharge nozzle 55a that discharges a plating solution toward the substrate 2, and a discharge head 53 provided with the discharge nozzle 55a. The discharge head 53 is configured to be movable in the vertical direction and the horizontal direction. For example, as in the case of the ejection head 33 of the film forming unit 35, the ejection head 53 of the replacement unit 55 is attached to the tip of the arm 52. The arm 52 can be extended in the vertical direction and is fixed to a support shaft 51 that is rotationally driven by a rotation mechanism 166. In this case, as shown in FIG. 2B, the ejection head 53 is horizontally arranged around the support shaft 51 between a position corresponding to the central portion of the substrate 2 and a position corresponding to the peripheral portion of the substrate 2. It is movable.
 (めっき液供給機構)
 次に、めっき機構30の成膜ユニット35および置換ユニット55にめっき液を供給する、めっき液供給機構の成膜用めっき液供給機構71および置換用めっき液供給機構74について、図3を参照して説明する。なお成膜用めっき液供給機構71および置換用めっき液供給機構74は、めっき液を加熱するための加熱ユニットが設けられているかどうかが異なるのみであり、その他の構成は同一である。ここでは、成膜用めっき液供給機構71について主に説明する。
(Plating solution supply mechanism)
Next, the plating solution supply mechanism 71 and the replacement plating solution supply mechanism 74 of the plating solution supply mechanism for supplying the plating solution to the film formation unit 35 and the replacement unit 55 of the plating mechanism 30 will be described with reference to FIG. I will explain. The film forming plating solution supply mechanism 71 and the replacement plating solution supply mechanism 74 differ only in whether or not a heating unit for heating the plating solution is provided, and the other configurations are the same. Here, the plating solution supply mechanism 71 for film formation will be mainly described.
 図3に示すように、めっき液供給機構71は、めっき液71cを貯留するタンク71bと、タンク71b内のめっき液71cをめっき機構30へ供給する供給管71aと、を有している。供給管71aには、めっき液71cの流量を調整するためのバルブ71dおよびポンプ71eが取り付けられている。またタンク71bには、タンク71b内に貯留されるめっき液71cを加熱するための加熱ユニット71gが設けられている。 3, the plating solution supply mechanism 71 has a tank 71b for storing the plating solution 71c and a supply pipe 71a for supplying the plating solution 71c in the tank 71b to the plating mechanism 30. A valve 71d and a pump 71e for adjusting the flow rate of the plating solution 71c are attached to the supply pipe 71a. The tank 71b is provided with a heating unit 71g for heating the plating solution 71c stored in the tank 71b.
 (めっき液)
 次に、本実施の形態において用いられるめっき液について説明する。なお、成膜用めっき液供給機構71から成膜ユニット35に供給されるめっき液と、置換用めっき液供給機構74から置換ユニット55に供給されるめっき液とは、温度を除いて略同一である。以下、めっき液の材料や成分を説明する際に用いられる「めっき液」という用語は、成膜ユニット35において用いられるめっき液、および、置換ユニット55において用いられるめっき液の両方を表している。
(Plating solution)
Next, the plating solution used in this embodiment will be described. The plating solution supplied from the film-forming plating solution supply mechanism 71 to the film-forming unit 35 and the plating solution supplied from the replacement plating-solution supply mechanism 74 to the replacement unit 55 are substantially the same except for the temperature. is there. Hereinafter, the term “plating solution” used when describing the materials and components of the plating solution represents both the plating solution used in the film forming unit 35 and the plating solution used in the replacement unit 55.
 めっき液は、基板2の表面に形成される、特定機能を有するめっき層に対応する材料を含んでいる。例えば、めっき処理装置20によって基板2に形成されるめっき層が、配線を構成する金属材料が絶縁膜や基板2の内部に浸透することを防止するバリア膜である場合、めっき液は、バリア膜の材料となるCo(コバルト)、W(タングステン)やTa(タンタル)などを含んでいる。また、めっき処理装置20によって基板2に形成されるめっき層が、配線材料の埋め込みを容易化するためのシード膜である場合、めっき液は、配線の材料となるCu(銅)などを含んでいる。その他にも、含まれる材料やめっき反応の種類に応じて、錯化剤や還元剤(B(ホウ素)、P(リン)を含む化合物)、界面活性剤などがめっき液に含まれていてもよい。 The plating solution contains a material corresponding to a plating layer having a specific function formed on the surface of the substrate 2. For example, when the plating layer formed on the substrate 2 by the plating apparatus 20 is a barrier film that prevents the metal material constituting the wiring from penetrating into the insulating film or the inside of the substrate 2, the plating solution is a barrier film. Co (cobalt), W (tungsten), Ta (tantalum), and the like, which are materials for the above, are included. Further, when the plating layer formed on the substrate 2 by the plating apparatus 20 is a seed film for facilitating the embedding of the wiring material, the plating solution contains Cu (copper) or the like used as the wiring material. Yes. In addition, the plating solution may contain complexing agents, reducing agents (compounds containing B (boron), P (phosphorus)), surfactants, etc. Good.
 また、めっき液は、めっき反応の速度に影響を与えることができる添加剤を含んでいてもよい。添加剤は、めっき液に含まれる材料などに応じて適宜選択される。例えば、めっき液がバリア膜の材料となるCoおよびWを含む場合、めっき液は、添加剤として、ビス(3-スルホプロピル)ジスルフィド、いわゆるSPSを含んでいる。 Further, the plating solution may contain an additive capable of affecting the rate of the plating reaction. The additive is appropriately selected according to the material contained in the plating solution. For example, when the plating solution contains Co and W as materials for the barrier film, the plating solution contains bis (3-sulfopropyl) disulfide, so-called SPS, as an additive.
 (前処理機構およびプリウェット機構)
 次に前処理機構54およびプリウェット機構57について説明する。前処理機構54は、基板2に向けて前処理液を吐出する吐出ノズル54aを有している。同様に、プリウェット機構57は、基板2に向けてプリウェット液を吐出する吐出ノズル57aを有している。図1に示すように、各吐出ノズル54a,57aは、上下方向および水平方向に移動可能な上述の吐出ヘッド53に取り付けられていてもよい。
(Pretreatment mechanism and pre-wet mechanism)
Next, the pretreatment mechanism 54 and the pre-wet mechanism 57 will be described. The pretreatment mechanism 54 has a discharge nozzle 54 a that discharges the pretreatment liquid toward the substrate 2. Similarly, the pre-wet mechanism 57 has a discharge nozzle 57 a that discharges a pre-wet liquid toward the substrate 2. As shown in FIG. 1, each discharge nozzle 54a, 57a may be attached to the above-described discharge head 53 that is movable in the vertical direction and the horizontal direction.
 (前処理液供給機構およびプリウェット液供給機構)
 次に図4を参照して、前処理機構54に前処理液を供給する前処理液供給機構73、および、プリウェット機構57にプリウェット液を供給するプリウェット液供給機構76について説明する。なお、前処理液供給機構73およびプリウェット液供給機構76は、収容されている処理液の種類が異なるのみであり、その他の構成は略同一である。ここでは、前処理液供給機構73について主に説明する。
(Pretreatment liquid supply mechanism and pre-wet liquid supply mechanism)
Next, a pretreatment liquid supply mechanism 73 that supplies a pretreatment liquid to the pretreatment mechanism 54 and a prewet liquid supply mechanism 76 that supplies a prewet liquid to the prewet mechanism 57 will be described with reference to FIG. Note that the pretreatment liquid supply mechanism 73 and the pre-wet liquid supply mechanism 76 differ only in the types of stored treatment liquids, and the other configurations are substantially the same. Here, the pretreatment liquid supply mechanism 73 will be mainly described.
 図4に示すように、前処理液供給機構73は、DIWなどの前処理液73cを貯留するタンク73bと、タンク73b内の前処理液73cを前処理機構54へ供給する供給管73aと、を有している。供給管73aには、前処理液73cの流量を調整するためのバルブ73dおよびポンプ73eが取り付けられている。 As shown in FIG. 4, the pretreatment liquid supply mechanism 73 includes a tank 73b that stores a pretreatment liquid 73c such as DIW, a supply pipe 73a that supplies the pretreatment liquid 73c in the tank 73b to the pretreatment mechanism 54, have. A valve 73d and a pump 73e for adjusting the flow rate of the pretreatment liquid 73c are attached to the supply pipe 73a.
 また前処理液供給機構73は、前処理液73c中の溶存酸素や溶存水素などの気体を除去する脱気手段73fをさらに有していてもよい。脱気手段73fは、図4に示すように、タンク73bに貯留されている前処理液73cに窒素などの不活性ガスを送り込むガス供給管として構成されていてもよい。これによって、不活性ガスを前処理液73c中に溶解させることができ、このことにより、前処理液73c中に既に溶存していた酸素や水素などを外部に排出することができる。すなわち、前処理液73cに対していわゆる脱ガス処理を施すことができる。脱気手段73fによる脱ガス処理の程度は特には限定されないが、例えば、基板2に向けて吐出される洗浄液73cにおける酸素濃度が1ppm以下、好ましくは0.5ppm以下となるよう、脱ガス処理が実施される。 The pretreatment liquid supply mechanism 73 may further include a deaeration unit 73f that removes gas such as dissolved oxygen and dissolved hydrogen in the pretreatment liquid 73c. As shown in FIG. 4, the deaeration unit 73 f may be configured as a gas supply pipe that sends an inert gas such as nitrogen into the pretreatment liquid 73 c stored in the tank 73 b. As a result, the inert gas can be dissolved in the pretreatment liquid 73c, whereby oxygen, hydrogen, or the like already dissolved in the pretreatment liquid 73c can be discharged to the outside. That is, a so-called degassing process can be performed on the pretreatment liquid 73c. The degree of the degassing process by the degassing means 73f is not particularly limited. For example, the degassing process is performed so that the oxygen concentration in the cleaning liquid 73c discharged toward the substrate 2 is 1 ppm or less, preferably 0.5 ppm or less. To be implemented.
 以上のように構成されるめっき処理装置20は、制御機構160に設けた記憶媒体161に記録された各種のプログラムに従って制御機構160により駆動制御され、これにより基板2に対する様々な処理が行われる。ここで、記憶媒体161は、各種の設定データや後述するめっき処理プログラム等の各種のプログラムを格納している。記憶媒体161としては、コンピューターで読み取り可能なROMやRAMなどのメモリーや、ハードディスク、CD-ROM、DVD-ROMやフレキシブルディスクなどのディスク状記憶媒体などの公知のものが使用され得る。 The plating apparatus 20 configured as described above is driven and controlled by the control mechanism 160 in accordance with various programs recorded in the storage medium 161 provided in the control mechanism 160, whereby various processes are performed on the substrate 2. Here, the storage medium 161 stores various programs such as various setting data and a plating processing program described later. As the storage medium 161, known media such as a computer-readable memory such as ROM and RAM, and a disk-shaped storage medium such as a hard disk, CD-ROM, DVD-ROM, and flexible disk can be used.
 めっき処理方法
 次に、このような構成からなる本実施の形態の作用および効果について説明する。ここでは、基板2に形成された凹部12の内面に、無電解めっき法によって、CoWBのバリア膜を形成するめっき処理方法について説明する。図5は、めっき処理方法を示すフローチャートである。また図6A乃至図6Fは、めっき処理方法の各工程の際の基板2の様子を示す断面図である。
Plating method will now be described operation and effects of the embodiment having such a configuration. Here, a plating method for forming a CoWB barrier film on the inner surface of the recess 12 formed on the substrate 2 by electroless plating will be described. FIG. 5 is a flowchart showing the plating method. 6A to 6F are cross-sectional views showing the state of the substrate 2 in each step of the plating method.
 はじめに、配線材料を埋め込むための凹部12を基板2に形成する。凹部12を基板2に形成する方法としては、従来から公知の方法の中から適宜採用することができる。具体的には、例えば、ドライエッチング技術として、弗素系又は塩素系ガス等を用いた汎用的技術を適用できる。特にアスペクト比(孔の径に対する孔の深さの比)の大きな凹部12を形成するには、高速な深掘エッチングが可能なICP-RIE(Inductively Coupled Plasma Reactive Ion Etching:誘導結合プラズマ-反応性イオンエッチング)の技術を採用した方法をより好適に採用できる。特に、六フッ化硫黄(SF)を用いたエッチングステップとCなどのテフロン系ガスを用いた保護ステップとを繰り返しながら行う、ボッシュプロセスと称される方法を好適に採用できる。 First, the recess 12 for embedding the wiring material is formed in the substrate 2. As a method of forming the concave portion 12 on the substrate 2, a conventionally known method can be appropriately employed. Specifically, for example, a general-purpose technique using fluorine-based or chlorine-based gas can be applied as the dry etching technique. In particular, in order to form a recess 12 having a large aspect ratio (ratio of hole depth to hole diameter), ICP-RIE (Inductively Coupled Plasma Reactive Ion Etching) capable of high-speed deep etching is possible. It is possible to more suitably employ a method employing the technique of ion etching. In particular, a method called a Bosch process in which an etching step using sulfur hexafluoride (SF 6 ) and a protection step using a Teflon-based gas such as C 4 F 8 are repeated can be suitably employed.
 凹部12の内部におけるめっき液の各成分の移動が、流動ではなく主に拡散に基づく限りにおいて、凹部12の具体的な形状が特に限られることはない。例えば、凹部12のアスペクト比は、5~30の範囲内となっている。具体的には、凹部の横断面が円形状である場合、凹部12の直径が、0.5~20μmの範囲内、例えば8μmとなっている。また、凹部12の高さまたは深さが、10~250μmの範囲内、例えば100μmとなっている。その後、凹部12の内部に絶縁膜が形成される。絶縁膜を形成する方法としては、例えば、化学的気相成長(CVD:Chemical Vapor Deposition)法により堆積されるシリコン酸化膜(SiO)を形成する方法が用いられる。 The specific shape of the recess 12 is not particularly limited as long as the movement of each component of the plating solution inside the recess 12 is mainly based on diffusion rather than flow. For example, the aspect ratio of the recess 12 is in the range of 5-30. Specifically, when the cross section of the recess is circular, the diameter of the recess 12 is in the range of 0.5 to 20 μm, for example, 8 μm. The height or depth of the recess 12 is in the range of 10 to 250 μm, for example, 100 μm. Thereafter, an insulating film is formed inside the recess 12. As a method of forming the insulating film, for example, a method of forming a silicon oxide film (SiO 2 ) deposited by a chemical vapor deposition (CVD) method is used.
 次に、基板2をケーシング101の内部に準備し、プリウェット機構57を用いて、基板2に向けてプリウェット液76cを吐出する(プリウェット工程S10)。これによって、図6Aに示すように、基板2の表面、例えば凹部12の内面12aおよび基板2の上面と、プリウェット液76cとを接触させることができる。このことにより、基板2の表面と、後に基板2に対して供給される前処理液との間の親和性を高めることができる。プリウェット液76cとしては、例えば、COのイオンなどを含むイオン水が用いられる。 Next, the substrate 2 is prepared inside the casing 101, and the prewetting mechanism 57 is used to discharge the prewetting liquid 76c toward the substrate 2 (prewetting step S10). Thereby, as shown in FIG. 6A, the surface of the substrate 2, for example, the inner surface 12a of the recess 12 and the upper surface of the substrate 2, can be brought into contact with the pre-wet liquid 76c. Thereby, the affinity between the surface of the substrate 2 and the pretreatment liquid to be supplied to the substrate 2 later can be increased. As the pre-wet liquid 76c, for example, ion water containing CO 2 ions or the like is used.
 次に、前処理機構54を用いて、基板2に向けて前処理液73cを吐出する(前処理工程S20)。これによって、図6Bに示すように、凹部12の内部が前処理液73cによって充填される。前処理液73cとしては、例えば、脱ガス処理が施されたDIWが用いられる。 Next, the pretreatment liquid 73c is discharged toward the substrate 2 using the pretreatment mechanism 54 (pretreatment step S20). Thereby, as shown in FIG. 6B, the inside of the recess 12 is filled with the pretreatment liquid 73c. As the pretreatment liquid 73c, for example, DIW subjected to a degassing process is used.
 次に、めっき機構30を用いて、基板2に向けて、CoWBを成膜するためのめっき液71cを吐出する(めっき工程S21)。めっき工程S21は、図5に示すように、低温のめっき液74cを基板2に向けて吐出する置換工程S21aと、高温のめっき液71cを基板2に向けて吐出する成膜工程S21bと、を含んでいる。 Next, using the plating mechanism 30, a plating solution 71c for depositing CoWB is discharged toward the substrate 2 (plating step S21). As shown in FIG. 5, the plating step S21 includes a replacement step S21a for discharging a low-temperature plating solution 74c toward the substrate 2, and a film-forming step S21b for discharging a high-temperature plating solution 71c toward the substrate 2. Contains.
 置換工程S21aにおいては、はじめに、置換用めっき液供給機構74を用いて、低温のめっき液74cを置換ユニット55に供給する。供給されるめっき液74cの温度は、めっき反応が有意に進行しない温度になっており、例えば常温(約25℃)になっている。次に、吐出ヘッド53に取り付けられた吐出ノズル55aから、基板2に向けてめっき液74cが吐出される。 In the replacement step S <b> 21 a, first, the low-temperature plating solution 74 c is supplied to the replacement unit 55 using the replacement plating solution supply mechanism 74. The temperature of the supplied plating solution 74c is a temperature at which the plating reaction does not proceed significantly, and is, for example, room temperature (about 25 ° C.). Next, the plating solution 74 c is discharged toward the substrate 2 from the discharge nozzle 55 a attached to the discharge head 53.
 ところで、上述のように、基板2に形成された凹部12は、大きなアスペクト比を有している。また、凹部12の深さは、従来の凹部の深さに比べて著しく大きくなっており、例えば100μmとなっている。このような深い凹部12に対してめっき液74cを供給する場合、めっき液74cに含まれる各成分は、主に、めっき液中における拡散に基づいて凹部12の下部にまで到達する。ところで、拡散現象は、時間の経過とともに徐々に進行する現象である。このため、めっき液74cの各成分を凹部12の下部にまで十分に到達させるためには、所定の時間を要する。従って、基板2に対してめっき液74cを供給する置換工程S21aは、凹部12内の前処理液73cをめっき液74cに十分に置換することができるよう、所定の時間にわたって継続される。 By the way, as described above, the recess 12 formed in the substrate 2 has a large aspect ratio. Moreover, the depth of the recessed part 12 is remarkably large compared with the depth of the conventional recessed part, for example, is 100 micrometers. When supplying the plating solution 74c to such a deep recess 12, each component contained in the plating solution 74c reaches the lower part of the recess 12 mainly based on diffusion in the plating solution. By the way, the diffusion phenomenon is a phenomenon that progresses gradually with time. For this reason, a predetermined time is required for each component of the plating solution 74c to reach the lower part of the recess 12 sufficiently. Therefore, the replacement step S21a for supplying the plating solution 74c to the substrate 2 is continued for a predetermined time so that the pretreatment solution 73c in the recess 12 can be sufficiently replaced with the plating solution 74c.
 以下、置換工程S21aの継続時間を決定するための方法の一例について説明する。 Hereinafter, an example of a method for determining the duration of the replacement step S21a will be described.
 めっき液中における非定常状態拡散は、一般に、以下に示すフィックの第2法則によって表される。
Figure JPOXMLDOC01-appb-M000001
ここで、Dは、拡散する成分の拡散係数であり、Cは、拡散する成分の濃度であり、tは、時間であり、xは、基準位置からの距離である。フィックの第2法則に基づいて、めっき液中のめっき成分(めっき層を構成する材料の成分)が拡散する際の拡散時間と拡散距離との関係を計算した結果を図11に示す。図11においては、横軸が時間を表しており、縦軸が凹部12の上端からの距離を表している。なお、この計算においては、時間t=0の際には、凹部12内に前処理液73cのみが充填されており、また時間t=0の際に、凹部12の上端よりも上方に存在する液がめっき液74cに置換されるという条件を仮定している。また、凹部12の深さは無限大であると仮定している。また図11において、「x%(x=50,65,80,88または95)」という注釈が付された実線または破線は、対応する距離におけるめっき成分の濃度が、凹部12の上端におけるめっき成分の濃度のx%に到達することに要する拡散時間を表している。例えば図11において符号Aが付された点は、凹部12の上端から70μmの距離の位置におけるめっき成分の濃度が、凹部12の上端におけるめっき成分の濃度の95%に到達することに要する拡散時間が、600秒であることを意味している。
The unsteady state diffusion in the plating solution is generally expressed by Fick's second law shown below.
Figure JPOXMLDOC01-appb-M000001
Here, D is the diffusion coefficient of the component to be diffused, C is the concentration of the component to be diffused, t is time, and x is the distance from the reference position. FIG. 11 shows the result of calculating the relationship between the diffusion time and the diffusion distance when the plating component (component of the material constituting the plating layer) in the plating solution diffuses based on Fick's second law. In FIG. 11, the horizontal axis represents time, and the vertical axis represents the distance from the upper end of the recess 12. In this calculation, when the time t = 0, only the pretreatment liquid 73c is filled in the recess 12, and when the time t = 0, it exists above the upper end of the recess 12. It is assumed that the solution is replaced with the plating solution 74c. Further, it is assumed that the depth of the recess 12 is infinite. In FIG. 11, the solid line or broken line annotated with “x% (x = 50, 65, 80, 88 or 95)” indicates that the concentration of the plating component at the corresponding distance is the plating component at the upper end of the recess 12. Represents the diffusion time required to reach x% of the concentration. For example, the point marked with A in FIG. 11 is the diffusion time required for the concentration of the plating component at a distance of 70 μm from the upper end of the recess 12 to reach 95% of the concentration of the plating component at the upper end of the recess 12. Means 600 seconds.
 図11に示される関係に基づいて、置換工程S21aの継続時間を決定することができる。例えば、深さが100μmである凹部12について、凹部12の底部におけるめっき成分の濃度を、基板2に供給されためっき液74cのめっき成分の濃度の約90%に到達させることが求められる場合、置換工程S21aの継続時間が約600秒に設定される。このように長時間にわたって置換工程S21aを継続することにより、凹部12の底部にまで十分にめっき液74cを到達させることができる。これによって、凹部12内に充填されるめっき液74cの濃度分布を略均一にすることができる。 The duration of the replacement step S21a can be determined based on the relationship shown in FIG. For example, for the recess 12 having a depth of 100 μm, when the concentration of the plating component at the bottom of the recess 12 is required to reach about 90% of the concentration of the plating component of the plating solution 74c supplied to the substrate 2, The duration of the replacement step S21a is set to about 600 seconds. In this way, by continuing the replacement step S21a for a long time, the plating solution 74c can sufficiently reach the bottom of the recess 12. Thereby, the concentration distribution of the plating solution 74c filled in the recess 12 can be made substantially uniform.
 また本実施の形態においては、上述のように、置換工程S21aにおいて基板2に対して供給されるめっき液74cの温度が、めっき反応が有意に進行しない程度の低温に設定されている。例えば、置換工程S21aの際に形成されるめっき層の成膜の速度が、最終的に高温処理時に得られるめっき層15の厚みの成膜の速度と比較して10%以下となるよう、めっき液74cの温度が設定されている。このため、凹部12の底部にまで十分にめっき液74が到達するよりも前にめっき反応が有意に進行してしまうことを防ぐことができる。 In the present embodiment, as described above, the temperature of the plating solution 74c supplied to the substrate 2 in the replacement step S21a is set to a low temperature at which the plating reaction does not proceed significantly. For example, plating is performed so that the deposition rate of the plating layer formed in the replacement step S21a is 10% or less compared to the deposition rate of the thickness of the plating layer 15 finally obtained during the high temperature treatment. The temperature of the liquid 74c is set. For this reason, it is possible to prevent the plating reaction from proceeding significantly before the plating solution 74 reaches the bottom of the recess 12 sufficiently.
 その後、成膜ユニット35を用いて、基板2に向けて、高温のめっき液71cを吐出する(成膜工程S21b)。具体的には、はじめに、成膜用めっき液供給機構71を用いて、高温に加熱されためっき液71cを成膜ユニット35に供給する。供給されるめっき液71cの温度は、めっき反応が適切な速度で進行するよう設定されており、例えば45℃に設定されている。次に図8に示すように、基板2の半径方向に沿って並ぶよう配置された複数の吐出ノズル34から、基板2に向けてめっき液71cが吐出される。これによって、基板2の広域にわたって同時にめっき液71cを供給することができる。このことにより、基板2上におけるめっき液71cの温度分布を、基板2上の位置に依らず略均一にすることができる。例えば、基板2の中心部分に到達しためっき液71cの温度と、基板2の周縁部分に到達しためっき液71cの温度とを略同一にすることができる。 Thereafter, a high-temperature plating solution 71c is discharged toward the substrate 2 by using the film forming unit 35 (film forming step S21b). Specifically, first, the plating solution 71 c heated to a high temperature is supplied to the film formation unit 35 using the film formation plating solution supply mechanism 71. The temperature of the supplied plating solution 71c is set so that the plating reaction proceeds at an appropriate speed, and is set to 45 ° C., for example. Next, as shown in FIG. 8, the plating solution 71 c is discharged toward the substrate 2 from the plurality of discharge nozzles 34 arranged so as to be aligned along the radial direction of the substrate 2. Thereby, the plating solution 71c can be simultaneously supplied over a wide area of the substrate 2. Thereby, the temperature distribution of the plating solution 71 c on the substrate 2 can be made substantially uniform regardless of the position on the substrate 2. For example, the temperature of the plating solution 71c reaching the central portion of the substrate 2 and the temperature of the plating solution 71c reaching the peripheral portion of the substrate 2 can be made substantially the same.
 ところで、成膜工程S21bが開始される際、上述のように、凹部12の内部には低温のめっき液74cが既に充填されている。この場合、基板2に対して高温のめっき液71cを供給すると、はじめに、凹部12の上端よりも上方において、すなわち絶縁層11の上面11aよりも上方において、低温のめっき液74cが高温のめっき液71cに置換される。次に、凹部12の内部に充填されている低温のめっき液74cが、高温のめっき液71cからの熱によって加熱される。ここで一般に、液体における熱の伝導速度は、液体における所定の成分の拡散速度よりも大きい。このため凹部12内の低温のめっき液74cは、迅速に加熱されて高温のめっき液71cとなる。すなわち、凹部12内に迅速に高温のめっき液71cを充填することができる。なお、めっき液74cおよびめっき液71cは、異なる符号が付されてはいるが、上述のように、温度を除いて略同一である。従って、低温のめっき液74cを加熱することにより、低温のめっき液74cを高温のめっき液71cに置換する、若しくは変化させることができる。 Incidentally, when the film forming step S21b is started, as described above, the low temperature plating solution 74c is already filled in the recess 12. In this case, when the high-temperature plating solution 71 c is supplied to the substrate 2, first, the low-temperature plating solution 74 c is above the upper end of the recess 12, that is, above the upper surface 11 a of the insulating layer 11. It is replaced with 71c. Next, the low temperature plating solution 74c filled in the recess 12 is heated by the heat from the high temperature plating solution 71c. Here, in general, the heat conduction speed in the liquid is larger than the diffusion speed of the predetermined component in the liquid. For this reason, the low-temperature plating solution 74c in the recess 12 is rapidly heated to become a high-temperature plating solution 71c. That is, the hot plating solution 71c can be quickly filled in the recess 12. The plating solution 74c and the plating solution 71c are assigned the same reference numerals, but are substantially the same except for the temperature as described above. Therefore, by heating the low temperature plating solution 74c, the low temperature plating solution 74c can be replaced with or changed by the high temperature plating solution 71c.
 凹部12の内部に高温のめっき液71cが充填されると、図6Eに示すように、凹部12の内面12aにめっき層15が形成される。ここで上述のように、凹部12内の高温のめっき液71cは、凹部12内において略均一な濃度分布を有していた低温のめっき液74cを加熱することにより得られたものである。このため本実施の形態によれば、凹部12内におけるめっき液71cの濃度分布を、事前に置換工程が実施されない場合に比べて均一にすることができる。これによって、成膜工程S21bにおけるめっき反応を、凹部12の位置によらず略均一の濃度を有するめっき液71cを用いて開始することが可能となる。このことにより、凹部12の内面12aに形成されるめっき層15の厚みや密度分布の均一性を高めることができる。 When the inside of the recess 12 is filled with the high-temperature plating solution 71c, the plating layer 15 is formed on the inner surface 12a of the recess 12 as shown in FIG. 6E. Here, as described above, the high-temperature plating solution 71 c in the recess 12 is obtained by heating the low-temperature plating solution 74 c having a substantially uniform concentration distribution in the recess 12. For this reason, according to the present embodiment, the concentration distribution of the plating solution 71c in the recess 12 can be made uniform as compared with the case where the replacement step is not performed in advance. Thus, the plating reaction in the film forming step S21b can be started using the plating solution 71c having a substantially uniform concentration regardless of the position of the recess 12. Thereby, the uniformity of the thickness and density distribution of the plating layer 15 formed on the inner surface 12a of the recess 12 can be improved.
 その後、基板2に向けてリンス液を吐出するリンス処理工程S32,S40、基板2に向けて後洗浄液を吐出する後洗浄工程S33、および、基板2をエアやIPAなどによって乾燥する乾燥工程S41などの後工程を実施する。このようにして、表面にめっき層15からなるバリア膜が形成された基板2を得ることができる。 Thereafter, rinse treatment steps S32 and S40 for discharging a rinsing liquid toward the substrate 2, a post-cleaning step S33 for discharging a post-cleaning liquid toward the substrate 2, and a drying step S41 for drying the substrate 2 with air, IPA or the like The subsequent process is performed. In this way, the substrate 2 having a barrier film made of the plating layer 15 on the surface can be obtained.
 その後、図6Fに示すように、めっき層15からなるバリア膜上にシード膜16が形成されてもよい。また、シード膜16によって覆われた凹部12内に、銅などの金属材料を含む配線17が形成されてもよい。シード膜16および配線17を形成する方法が特に限られることはないが、例えば無電解めっき法が用いられ得る。この際、めっき層15からなるバリア膜を形成する場合と同様に、温度の異なる2種類のめっき液を用いた2段階のめっき工程が実施されてもよい。 Thereafter, as shown in FIG. 6F, a seed film 16 may be formed on the barrier film made of the plating layer 15. In addition, a wiring 17 containing a metal material such as copper may be formed in the recess 12 covered with the seed film 16. Although the method for forming the seed film 16 and the wiring 17 is not particularly limited, for example, an electroless plating method can be used. At this time, as in the case of forming the barrier film made of the plating layer 15, a two-step plating process using two types of plating solutions having different temperatures may be performed.
 本実施の形態によれば、上述のように、めっき工程S21は、低温のめっき液74cを用いる置換工程S21aと、高温のめっき液71cを用いる成膜工程21bと、を含んでいる。このように2段階に分けてめっき工程を実施することにより、高温のめっき液71cにおけるめっき反応を進行させる際、凹部12内におけるめっき液71cの濃度分布を、凹部12内の位置によらず略均一にすることができる。このことにより、凹部12に形成されるめっき層15の厚みや密度分布の均一性を高めることができる。 According to the present embodiment, as described above, the plating step S21 includes the replacement step S21a using the low temperature plating solution 74c and the film forming step 21b using the high temperature plating solution 71c. By carrying out the plating process in two stages in this way, when the plating reaction in the high-temperature plating solution 71 c is advanced, the concentration distribution of the plating solution 71 c in the recess 12 is substantially the same regardless of the position in the recess 12. It can be made uniform. Thereby, the uniformity of the thickness and density distribution of the plating layer 15 formed in the recessed part 12 can be improved.
 また本実施の形態によれば、上述のように、前処理工程S20において基板2に供給される前処理液73cとして、脱ガス処理が施されたDIWが用いられる。このため、凹部12の内面12aなどの基板2の表面に、前処理液73c内の溶存ガスに起因する気泡が形成されることを防ぐことができる。これによって、基板2の表面におけるめっき反応が気泡によって阻害されることを防ぐことができ、このことにより、基板2の表面に万遍なくめっき層15を形成することができる。 Also, according to the present embodiment, as described above, DIW that has been subjected to degassing treatment is used as the pretreatment liquid 73c supplied to the substrate 2 in the pretreatment step S20. For this reason, it can prevent that the bubble resulting from the dissolved gas in the pretreatment liquid 73c is formed on the surface of the substrate 2 such as the inner surface 12a of the recess 12. Thereby, it is possible to prevent the plating reaction on the surface of the substrate 2 from being hindered by bubbles, and thus the plating layer 15 can be uniformly formed on the surface of the substrate 2.
 また本実施の形態によれば、上述のように、プリウェット工程S10において基板2に供給されるプリウェット液として、COのイオンなどを含むイオン水が用いられる。このため、DIWなどの電気的に中性な処理液がはじめに基板2に供給される場合に比べて、めっき処理の際に放電が生じることを抑制することができる。 Further, according to the present embodiment, as described above, ion water containing CO 2 ions or the like is used as the pre-wet liquid supplied to the substrate 2 in the pre-wet process S10. For this reason, compared with the case where electrically neutral process liquids, such as DIW, are first supplied to the board | substrate 2, it can suppress that discharge arises in the case of a plating process.
 また本実施の形態によれば、上述のように、基板2の半径方向に沿って並ぶよう配置された複数の吐出ノズル34から、基板2に対してめっき液71cが吐出される。このため、基板2上におけるめっき液71cの温度分布を、基板2上の位置に依らず略均一にすることができる。このことにより、基板2に形成されるめっき層15の厚みを、基板2上の位置に依らず均一にすることができる。 Further, according to the present embodiment, as described above, the plating solution 71 c is discharged to the substrate 2 from the plurality of discharge nozzles 34 that are arranged along the radial direction of the substrate 2. For this reason, the temperature distribution of the plating solution 71 c on the substrate 2 can be made substantially uniform regardless of the position on the substrate 2. Thereby, the thickness of the plating layer 15 formed on the substrate 2 can be made uniform regardless of the position on the substrate 2.
 変形例
 なお本実施の形態による置換工程S21aにおいて、図7に示すように、矢印Sに沿った方向へ吐出ヘッド53が移動している間に、吐出ヘッド53に取り付けられた吐出ノズル55aから、基板2に向けて低温のめっき液74cを吐出してもよい。この場合、吐出されるめっき液74cの速度成分に、吐出ヘッド53の移動速度に対応する速度成分が追加される。このため、方向Sに沿ってめっき液74cが前処理液73cを押す力を強めることができる。また、各凹部12内に充填されている前処理液73cに対して、めっき液74cの運動エネルギーに基づく衝撃力を直接に印加することができる。これらのことにより、前処理液73cをめっき液74cに置換する効率を高めることができる。
 なお、矢印Sに沿った方向は、例えば、基板2の中心部から基板2の周縁部に向かう方向に平行なっている。
In the replacement step S21a according to the present embodiment, as shown in FIG. 7, while the discharge head 53 is moving in the direction along the arrow S, from the discharge nozzle 55a attached to the discharge head 53, A low temperature plating solution 74 c may be discharged toward the substrate 2. In this case, a speed component corresponding to the moving speed of the discharge head 53 is added to the speed component of the discharged plating solution 74c. For this reason, the force by which the plating solution 74c pushes the pretreatment solution 73c along the direction S can be increased. Further, an impact force based on the kinetic energy of the plating solution 74c can be directly applied to the pretreatment solution 73c filled in each recess 12. By these things, the efficiency which replaces the pretreatment liquid 73c with the plating liquid 74c can be improved.
Note that the direction along the arrow S is parallel to the direction from the center of the substrate 2 toward the peripheral edge of the substrate 2, for example.
 また本実施の形態において、めっき機構30に供給されるめっき液71cを加熱するための加熱ユニット71gが、タンク71bに設けられる例を示した。しかしながら、めっき液71cを加熱するための形態がこれに限られることはない。例えば加熱ユニット71gは、タンク71bではなく供給管71aに設けられていてもよい。 Further, in the present embodiment, an example in which the heating unit 71g for heating the plating solution 71c supplied to the plating mechanism 30 is provided in the tank 71b is shown. However, the form for heating the plating solution 71c is not limited to this. For example, the heating unit 71g may be provided in the supply pipe 71a instead of the tank 71b.
 また本実施の形態において、成膜ユニット35に高温のめっき液71cを供給するためのタンク71bと、置換ユニット55に低温のめっき液74cを供給するためのタンク74bとが別個に準備される例を示した。しかしながら、これに限られることはなく、成膜ユニット35に高温のめっき液71cを供給するためのタンクと、置換ユニット55に低温のめっき液74cを供給するためのタンクとが共通化されていてもよい。例えば図9に示すように、共通のタンクとして、低温のめっき液74cを貯留するタンク74bを用いることができる。この場合、図9に示すように、成膜用めっき液供給機構71の供給管71aには、めっき液を加熱するための加熱ユニット71gが設けられている。これによって、1つのタンクを用いながら、高温のめっき液71cを成膜ユニット35に供給し、かつ、低温のめっき液74cを置換ユニット55に供給することができる。 In the present embodiment, a tank 71b for supplying the high-temperature plating solution 71c to the film forming unit 35 and a tank 74b for supplying the low-temperature plating solution 74c to the replacement unit 55 are separately prepared. showed that. However, the invention is not limited to this, and a tank for supplying the high-temperature plating solution 71c to the film forming unit 35 and a tank for supplying the low-temperature plating solution 74c to the replacement unit 55 are shared. Also good. For example, as shown in FIG. 9, a tank 74b that stores a low-temperature plating solution 74c can be used as a common tank. In this case, as shown in FIG. 9, the supply pipe 71 a of the plating solution supply mechanism 71 for film formation is provided with a heating unit 71 g for heating the plating solution. Accordingly, the high temperature plating solution 71 c can be supplied to the film forming unit 35 and the low temperature plating solution 74 c can be supplied to the replacement unit 55 while using one tank.
 なお、加熱ユニット71gによって加熱されためっき液を、基板2に対して供給することなく再びタンク74b内に戻すことが求められる場合がある。この場合、図示はしないが、高温のめっき液をタンク74bに戻すための返送管がさらに設けられていてもよい。また返送管には、めっき液を冷却するための冷却ユニットが取り付けられていてもよい。これによって、低温に戻されためっき液をタンク74bに戻すことができる。なお、返送管に取り付けられた冷却ユニットと、供給管71aに取り付けられた上述の加熱ユニット71gとは、一体の熱交換器として構成されていてもよい。 In some cases, the plating solution heated by the heating unit 71g may be required to return to the tank 74b again without being supplied to the substrate 2. In this case, although not shown, a return pipe for returning the high-temperature plating solution to the tank 74b may be further provided. Further, a cooling unit for cooling the plating solution may be attached to the return pipe. Thereby, the plating solution returned to a low temperature can be returned to the tank 74b. The cooling unit attached to the return pipe and the heating unit 71g attached to the supply pipe 71a may be configured as an integral heat exchanger.
 また本実施の形態において、高温のめっき液71cを吐出する吐出ノズル34と、低温のめっき液74cを吐出する吐出ノズル55aとが別個に準備される例を示した。しかしながら、これに限られることはなく、高温のめっき液71cを吐出する吐出ノズルと、低温のめっき液74cを吐出する吐出ノズルとが共通化されていてもよい。 Further, in the present embodiment, an example is shown in which the discharge nozzle 34 that discharges the high-temperature plating solution 71c and the discharge nozzle 55a that discharges the low-temperature plating solution 74c are separately prepared. However, the present invention is not limited to this, and the discharge nozzle that discharges the high-temperature plating solution 71c and the discharge nozzle that discharges the low-temperature plating solution 74c may be shared.
 また本実施の形態の成膜工程S21bにおいて、高温のめっき液71cを基板2に対して供給することにより、凹部12に既に充填されている低温のめっき液74cを加熱する例を示した。しかしながら、基板2に対して高温のめっき液を用いるための方法がこれに限られることはない。例えば、基板2やターンテーブル112を加熱することによって、基板2の凹部12内に充填されている低温のめっき液74cを加熱し、これによって高温のめっき液71cを得てもよい。この際、基板2を加熱する方法が特に限られることはなく、様々な方法が用いられ得る。例えば図10に示すように、成膜ユニット35は、基板2を加熱する基板加熱ユニット36をさらに有していてもよい。基板加熱ユニットとしては、基板2に向けて光を照射し、これによって基板2を加熱するランプヒータ36が用いられてもよい。また基板加熱ユニット36は、基板2の下側において温水などの熱媒体を循環させ、これによって基板2を加熱するよう構成されていてもよい。なお、下方から基板2を加熱する場合、凹部12内に充填されているめっき液は、凹部12の下部側から加熱される。このように凹部12の下部側からめっき液を加熱することは、凹部12の上部に優先的にめっき層を形成するタイプのめっき液が用いられる場合に有利であると考えられる。なぜなら、凹部12の下部側からめっき液を加熱することにより、凹部12の下部において先にめっき反応を開始させることができ、これによって、凹部12の下部に形成されるめっき層の厚みと凹部12の上部に形成されるめっき層の厚みとの間の差を小さくすることができるからである。 Also, in the film forming step S21b of the present embodiment, an example in which the low temperature plating solution 74c already filled in the recess 12 is heated by supplying the high temperature plating solution 71c to the substrate 2 has been shown. However, the method for using the high-temperature plating solution for the substrate 2 is not limited to this. For example, by heating the substrate 2 or the turntable 112, the low temperature plating solution 74c filled in the recess 12 of the substrate 2 may be heated, thereby obtaining the high temperature plating solution 71c. At this time, the method for heating the substrate 2 is not particularly limited, and various methods can be used. For example, as illustrated in FIG. 10, the film forming unit 35 may further include a substrate heating unit 36 that heats the substrate 2. As the substrate heating unit, a lamp heater 36 that irradiates light toward the substrate 2 and thereby heats the substrate 2 may be used. The substrate heating unit 36 may be configured to circulate a heat medium such as warm water below the substrate 2 and thereby heat the substrate 2. When the substrate 2 is heated from below, the plating solution filled in the recess 12 is heated from the lower side of the recess 12. Heating the plating solution from the lower side of the recess 12 in this way is considered advantageous when a type of plating solution that preferentially forms a plating layer on the upper portion of the recess 12 is used. This is because, by heating the plating solution from the lower side of the recess 12, the plating reaction can be started first in the lower portion of the recess 12, and thereby the thickness of the plating layer formed in the lower portion of the recess 12 and the recess 12. This is because the difference between the thickness of the plating layer formed on the upper part of the metal layer can be reduced.
 また本実施の形態において、絶縁層11に形成された凹部12の内面12aに直接的に、めっき層15からなるバリア膜が形成される例を示した。しかしながら、これに限られることはなく、凹部12の内面12aとバリア膜との間にその他の層が介在されていてもよい。例えば、めっき反応を促進するための触媒層が、凹部12の内面12aとバリア膜との間に介在されていてもよい。触媒層を構成する材料は、めっき層を構成する材料に応じて適宜選択される。例えばめっき層がCoWBである場合、触媒層を構成する材料としてPd(パラジウム)が用いられ得る。また、凹部12の内面12aと触媒層との間の密着性を向上させるための密着層がさらに設けられていてもよい。密着層は、例えば、シランカッップリング剤などのカップリング剤を用いたSAM処理を実施することによって形成され得る。また凹部12の内面12aに、TEOSやPI(ポリイミド)などの絶縁膜が形成されていてもよい。 In the present embodiment, an example in which a barrier film made of the plating layer 15 is formed directly on the inner surface 12a of the recess 12 formed in the insulating layer 11 is shown. However, the present invention is not limited to this, and other layers may be interposed between the inner surface 12a of the recess 12 and the barrier film. For example, a catalyst layer for promoting the plating reaction may be interposed between the inner surface 12a of the recess 12 and the barrier film. The material which comprises a catalyst layer is suitably selected according to the material which comprises a plating layer. For example, when the plating layer is CoWB, Pd (palladium) can be used as a material constituting the catalyst layer. Further, an adhesion layer for improving the adhesion between the inner surface 12a of the recess 12 and the catalyst layer may be further provided. The adhesion layer can be formed, for example, by performing a SAM treatment using a coupling agent such as a silane coupling agent. An insulating film such as TEOS or PI (polyimide) may be formed on the inner surface 12 a of the recess 12.
 また本実施の形態において、めっき処理装置20が、基板2に対してめっき液を吐出することにより、基板2に対するめっき処理を一枚ずつ実施する枚葉式の装置である例を示した。しかしながら、本発明の技術的思想が適用され得るめっき処理装置が、枚葉式の装置に限られることはない。例えば、本発明の実施の形態によるめっき処理装置が、複数の基板2に対するめっき処理を一括で実施することができる、いわゆるディップ式の装置であってもよい。ディップ式の装置においては、めっき液が貯留されているめっき槽の中に基板2を投入することにより、基板2に対してめっき液が供給される。その他の構成は、上述の枚葉式のめっき処理装置20と略同一であるので、詳細な説明を省略する。 Further, in the present embodiment, an example is shown in which the plating apparatus 20 is a single-wafer type apparatus that performs the plating process on the substrate 2 one by one by discharging a plating solution to the substrate 2. However, the plating apparatus to which the technical idea of the present invention can be applied is not limited to a single wafer type apparatus. For example, the plating apparatus according to the embodiment of the present invention may be a so-called dip type apparatus that can collectively perform the plating process on the plurality of substrates 2. In the dip type apparatus, the plating solution is supplied to the substrate 2 by putting the substrate 2 into the plating tank in which the plating solution is stored. Other configurations are substantially the same as those of the single-wafer plating apparatus 20 described above, and thus detailed description thereof is omitted.
 なお、上述した各実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。 In addition, although several modifications with respect to each embodiment mentioned above have been demonstrated, naturally, it is also possible to apply a combination of a plurality of modifications appropriately.
 (実施例1)
 上述のめっき処理装置20を用いて、基板2の絶縁層11の凹部12の内面12aにCoWBのめっき層15を形成した例について説明する。
Example 1
An example in which the CoWB plating layer 15 is formed on the inner surface 12a of the recess 12 of the insulating layer 11 of the substrate 2 using the above-described plating apparatus 20 will be described.
 はじめに、凹部12が形成された絶縁層11を含む基板2を準備した。凹部12の直径は8μmであり、凹部12の深さは100μmであった。 First, a substrate 2 including an insulating layer 11 in which a recess 12 was formed was prepared. The diameter of the recess 12 was 8 μm, and the depth of the recess 12 was 100 μm.
 次に、プリウェット工程S10を実施し、その後、基板2に向けて前処理液を吐出する前処理工程S20を実施した。これによって、凹部12内に前処理液を充填した。前処理液としては、脱ガス処理が施されたDIWを用いた。 Next, a pre-wet process S10 was performed, and then a pre-process S20 for discharging a pre-treatment liquid toward the substrate 2 was performed. Thereby, the pretreatment liquid was filled in the recess 12. As the pretreatment liquid, DIW subjected to degassing treatment was used.
 次に、凹部12の内面12aにめっき層15を形成するめっき工程S21を実施した。具体的には、はじめに、25℃のめっき液を基板2に向けて吐出する置換工程S21aを、20分間にわたって実施した。次に、65℃のめっき液を基板2に向けて吐出する成膜工程S21bを、5分間にわたって実施した。なお、各めっき液に含有されるSPSの濃度は5ppmであった。その後、リンス処理工程S32などの適切な後工程を実施した。 Next, a plating step S21 for forming the plating layer 15 on the inner surface 12a of the recess 12 was performed. Specifically, first, a replacement step S21a for discharging a plating solution at 25 ° C. toward the substrate 2 was performed for 20 minutes. Next, a film forming step S21b for discharging a plating solution at 65 ° C. toward the substrate 2 was performed for 5 minutes. The concentration of SPS contained in each plating solution was 5 ppm. Thereafter, appropriate post-processes such as the rinse treatment process S32 were performed.
 めっき工程S21によって形成されためっき層を観察した。具体的には、凹部12の上部および下部(底部)に形成されためっき層を観察した。結果を図12に示す。 The plating layer formed by the plating step S21 was observed. Specifically, the plating layer formed in the upper part and the lower part (bottom part) of the recessed part 12 was observed. The results are shown in FIG.
 (比較例1)
 上述の置換工程S21aを実施しなかったこと以外は、実施例1と同様にして、基板2の絶縁層11の凹部12の内面12aにCoWBのめっき層を形成した。すなわち、比較例1においては、めっき工程として、65℃のめっき液を基板2に向けて5分間にわたって吐出する工程のみを実施した。また、形成されためっき層を観察した。結果を図13に示す。
(Comparative Example 1)
A CoWB plating layer was formed on the inner surface 12a of the recess 12 of the insulating layer 11 of the substrate 2 in the same manner as in Example 1 except that the replacement step S21a was not performed. That is, in Comparative Example 1, only the step of discharging a plating solution at 65 ° C. toward the substrate 2 over 5 minutes was performed as the plating step. Moreover, the formed plating layer was observed. The results are shown in FIG.
 図13に示すように、比較例1においては、凹部12の内壁12aにめっき層が形成されていない箇所が多く確認された。一方、図12に示すように、実施例1においては、凹部12の上部および下部のいずれにも、凹部12の内壁12aに万遍なくめっき層を形成することができた。実施例1においては、成膜工程に先立って置換工程を実施することにより、めっき液の各成分を凹部12内において十分に拡散させることができ、この結果、凹部12の内面12aに万遍なくめっき層を形成することができたと考えらえる。 As shown in FIG. 13, in Comparative Example 1, many places where the plating layer was not formed on the inner wall 12 a of the recess 12 were confirmed. On the other hand, as shown in FIG. 12, in Example 1, the plating layer could be uniformly formed on the inner wall 12 a of the recess 12 in both the upper portion and the lower portion of the recess 12. In Example 1, each component of the plating solution can be sufficiently diffused in the concave portion 12 by performing the substitution step prior to the film forming step. As a result, the inner surface 12a of the concave portion 12 can be uniformly distributed. It can be considered that the plating layer could be formed.
 2 基板
 12 凹部
 15 めっき層
 20 めっき処理装置
 30 めっき機構
 101 ケーシング
 110 基板保持機構
2 Substrate 12 Recessed portion 15 Plating layer 20 Plating treatment device 30 Plating mechanism 101 Casing 110 Substrate holding mechanism

Claims (15)

  1.  基板に形成された凹部に対してめっき処理を行うめっき処理方法において、
     前記凹部が形成された基板をケーシングの内部に準備する工程と、
     めっき液を基板に対して供給し、特定機能を有するめっき層を前記凹部の内面に形成するめっき工程と、を備え、
     前記めっき工程は、めっき液を基板に対して供給し、基板の前記凹部内にめっき液を充填した後に、前記めっき液より高い温度のめっき液を基板に対して用いる、めっき処理方法。
    In the plating method for performing plating on the recesses formed on the substrate,
    Preparing the substrate with the recesses formed inside the casing;
    A plating step of supplying a plating solution to the substrate and forming a plating layer having a specific function on the inner surface of the recess, and
    The plating process is a plating method in which a plating solution is supplied to the substrate, and after filling the plating solution in the concave portion of the substrate, a plating solution having a temperature higher than that of the plating solution is used for the substrate.
  2.  前処理液を基板に対して供給する前処理工程をさらに備え、
     前記めっき工程は、めっき液を基板に対して供給し、基板の前記凹部内に充填されている前処理液をめっき液に置換する置換工程と、前記置換工程の後に、めっき液を基板に対して供給して前記めっき層を形成する成膜工程と、を含み、
     前記置換工程において用いられるめっき液の温度が、前記成膜工程において用いられるめっき液の温度よりも低くなっている、請求項1に記載のめっき処理方法。
    A pretreatment step of supplying a pretreatment liquid to the substrate;
    In the plating step, a plating solution is supplied to the substrate, and the pretreatment liquid filled in the concave portion of the substrate is replaced with the plating solution. After the replacement step, the plating solution is supplied to the substrate. Forming a plating layer by supplying the
    The plating method according to claim 1, wherein the temperature of the plating solution used in the replacement step is lower than the temperature of the plating solution used in the film formation step.
  3.  前記成膜工程は、前記置換工程において用いられるめっき液の温度よりも高い温度に加熱されためっき液を基板に対して供給する工程を含む、請求項2に記載のめっき処理方法。 The plating process method according to claim 2, wherein the film forming step includes a step of supplying a plating solution heated to a temperature higher than a temperature of the plating solution used in the replacement step to the substrate.
  4.  前記成膜工程は、基板に対して供給されためっき液を、前記置換工程において用いられるめっき液の温度よりも高い温度に加熱する工程を含む、請求項2に記載のめっき処理方法。 3. The plating method according to claim 2, wherein the film forming step includes a step of heating the plating solution supplied to the substrate to a temperature higher than the temperature of the plating solution used in the replacement step.
  5.  前記前処理液は、脱ガス処理された脱イオン水からなる、請求項2乃至4のいずれか一項に記載のめっき処理方法。 The plating method according to any one of claims 2 to 4, wherein the pretreatment liquid is made of deionized water that has been degassed.
  6.  前記前処理工程の前に実施され、イオンを含むイオン水を基板に対して供給するプリウェット工程をさらに備える、請求項5に記載のめっき処理方法。 The plating method according to claim 5, further comprising a pre-wetting step that is performed before the pretreatment step and supplies ion water containing ions to the substrate.
  7.  前記成膜工程において、めっき液は、基板の半径方向に沿って並べられた複数の吐出ノズルから、または、基板の半径方向に沿って延びる吐出ノズルから、基板に対して吐出される、請求項2乃至6のいずれか一項に記載のめっき処理方法。 In the film forming step, the plating solution is discharged to the substrate from a plurality of discharge nozzles arranged along the radial direction of the substrate or from a discharge nozzle extending along the radial direction of the substrate. The plating method according to any one of 2 to 6.
  8.  基板に形成された凹部に対してめっき処理を行うめっき処理装置において、
     前記凹部が形成された基板を保持する基板保持機構と、
     めっき液を基板に対して供給し、特定機能を有するめっき層を前記凹部の内面に形成するめっき機構と、を備え、
     前記めっき機構は、めっき液を基板に対して供給し、基板の前記凹部内にめっき液を充填した後に、前記めっき液より高い温度のめっき液を基板に対して用いる、めっき処理装置。
    In a plating apparatus that performs a plating process on a recess formed in a substrate,
    A substrate holding mechanism for holding the substrate on which the recess is formed;
    A plating mechanism for supplying a plating solution to the substrate and forming a plating layer having a specific function on the inner surface of the recess, and
    The said plating mechanism is a plating processing apparatus which supplies a plating solution with respect to a board | substrate and uses the plating solution of temperature higher than the said plating solution with respect to a board | substrate after filling the plating solution in the said recessed part.
  9.  前処理液を基板に対して供給する前処理機構をさらに備え、
     前記めっき機構は、基板の前記凹部内に充填された前処理液を置換するめっき液を基板に対して供給する置換ユニットと、前記置換ユニットがめっき液を基板に対して供給した後に、基板に対してめっき液を供給する成膜ユニットと、を有し、
     前記置換ユニットにおいて用いられるめっき液の温度が、前記成膜ユニットにおいて用いられるめっき液の温度よりも低くなっている、請求項8に記載のめっき処理装置。
    A pretreatment mechanism for supplying a pretreatment liquid to the substrate;
    The plating mechanism includes a replacement unit that supplies the substrate with a plating solution that replaces the pretreatment liquid filled in the concave portion of the substrate, and the replacement unit that supplies the plating solution to the substrate, And a film forming unit for supplying a plating solution
    The plating apparatus according to claim 8, wherein the temperature of the plating solution used in the replacement unit is lower than the temperature of the plating solution used in the film forming unit.
  10.  前記成膜ユニットは、前記置換ユニットにおいて用いられるめっき液の温度よりも高い温度に加熱されためっき液を基板に対して供給するよう構成されている、請求項9に記載のめっき処理装置。 The plating apparatus according to claim 9, wherein the film forming unit is configured to supply a plating solution heated to a temperature higher than a temperature of the plating solution used in the replacement unit to the substrate.
  11.  前記成膜ユニットは、基板に対して供給されためっき液を、前記置換ユニットにおいて用いられるめっき液の温度よりも高い温度に加熱するよう構成されている、請求項9に記載のめっき処理装置。 The plating apparatus according to claim 9, wherein the film forming unit is configured to heat the plating solution supplied to the substrate to a temperature higher than the temperature of the plating solution used in the replacement unit.
  12.  前記前処理液は、脱ガス処理された脱イオン水からなる、請求項9乃至11のいずれか一項に記載のめっき処理装置。 The plating apparatus according to any one of claims 9 to 11, wherein the pretreatment liquid is made of degassed deionized water.
  13.  前処理液を基板に対して供給する前に、イオンを含むイオン水を基板に対して供給するプリウェット機構をさらに備える、請求項12に記載のめっき処理装置。 The plating apparatus according to claim 12, further comprising a pre-wet mechanism for supplying ion water containing ions to the substrate before supplying the pretreatment liquid to the substrate.
  14.  前記成膜ユニットは、基板の半径方向に沿って並べられ、めっき液を基板に対して吐出する複数の吐出ノズルを含む、または、基板の半径方向に沿って延び、めっき液を基板に対して吐出する吐出ノズルを含む、請求項9乃至13のいずれか一項に記載のめっき処理装置。 The film forming unit is arranged along the radial direction of the substrate and includes a plurality of discharge nozzles for discharging the plating solution to the substrate, or extends along the radial direction of the substrate, and the plating solution is supplied to the substrate. The plating apparatus as described in any one of Claims 9 thru | or 13 containing the discharge nozzle which discharges.
  15.  基板に形成された凹部に対してめっき処理を行うめっき処理方法を実行させるためのコンピュータプログラムを格納した記憶媒体において、
     前記めっき処理方法は、
     前記凹部が形成された基板をケーシングの内部に準備する工程と、
     めっき液を基板に対して供給し、特定機能を有するめっき層を前記凹部の内面に形成するめっき工程と、を備え、
     前記めっき工程は、めっき液を基板に対して供給し、基板の前記凹部内にめっき液を充填した後に、前記めっき液より高い温度のめっき液を基板に対して用いる、方法からなっていることを特徴とする記憶媒体。
    In a storage medium storing a computer program for executing a plating method for performing plating on a recess formed in a substrate,
    The plating method is:
    Preparing the substrate with the recesses formed inside the casing;
    A plating step of supplying a plating solution to the substrate and forming a plating layer having a specific function on the inner surface of the recess, and
    The plating step comprises a method of supplying a plating solution to the substrate and filling the concave portion of the substrate with the plating solution, and then using a plating solution having a temperature higher than the plating solution on the substrate. A storage medium characterized by the above.
PCT/JP2013/064644 2012-05-30 2013-05-27 Plating device, plating method, and storage medium WO2013180063A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/404,174 US20150167174A1 (en) 2012-05-30 2013-05-27 Plating apparatus, plating method, and storage medium
KR1020147033270A KR102052131B1 (en) 2012-05-30 2013-05-27 Plating device, plating method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012123611A JP2013249495A (en) 2012-05-30 2012-05-30 Plating process device, plating process method, and storage medium
JP2012-123611 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013180063A1 true WO2013180063A1 (en) 2013-12-05

Family

ID=49673257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064644 WO2013180063A1 (en) 2012-05-30 2013-05-27 Plating device, plating method, and storage medium

Country Status (5)

Country Link
US (1) US20150167174A1 (en)
JP (1) JP2013249495A (en)
KR (1) KR102052131B1 (en)
TW (1) TW201409573A (en)
WO (1) WO2013180063A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233624B1 (en) * 2022-08-08 2023-03-06 株式会社荏原製作所 Pre-wet module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124235A (en) * 2002-10-07 2004-04-22 Tokyo Electron Ltd Electroless plating method and electroless plating apparatus
JP2007177324A (en) * 2005-12-02 2007-07-12 Tokyo Electron Ltd Electroless plating apparatus and electroless plating method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW522455B (en) * 1998-11-09 2003-03-01 Ebara Corp Plating method and apparatus therefor
JP2003264159A (en) * 2002-03-11 2003-09-19 Ebara Corp Catalyst treatment method and catalyst treatment solution
JP2005072044A (en) * 2003-08-26 2005-03-17 Ebara Corp Wiring forming apparatus
JP2005113162A (en) * 2003-10-02 2005-04-28 Ebara Corp Plating method and plating apparatus
JP2007523463A (en) * 2004-02-24 2007-08-16 株式会社荏原製作所 Substrate processing apparatus and method
KR20070058310A (en) * 2005-12-02 2007-06-08 도쿄 엘렉트론 가부시키가이샤 Electroless plating apparatus and electroless plating method
JP2010177538A (en) 2009-01-30 2010-08-12 Fujitsu Semiconductor Ltd Production process of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124235A (en) * 2002-10-07 2004-04-22 Tokyo Electron Ltd Electroless plating method and electroless plating apparatus
JP2007177324A (en) * 2005-12-02 2007-07-12 Tokyo Electron Ltd Electroless plating apparatus and electroless plating method

Also Published As

Publication number Publication date
TW201409573A (en) 2014-03-01
US20150167174A1 (en) 2015-06-18
JP2013249495A (en) 2013-12-12
KR102052131B1 (en) 2019-12-04
KR20150016275A (en) 2015-02-11

Similar Documents

Publication Publication Date Title
TWI499695B (en) Apparatus for wetting pretreatment for enhanced damascene metal filling
TWI656246B (en) Alkaline pretreatment for electroplating
KR102546486B1 (en) Plating method, plating apparatus and storage medium
JP5917297B2 (en) Plating treatment method, plating treatment apparatus, and storage medium
US9966306B2 (en) Catalyst layer forming method, catalyst layer forming system and recording medium
WO2013180063A1 (en) Plating device, plating method, and storage medium
US10903081B2 (en) Substrate processing method
JP2004115885A (en) Electroless plating method
US20170167029A1 (en) Substrate processing apparatus, substrate processing method and recording medium
US9725810B2 (en) Plating method, plating apparatus and storage medium
US9761485B2 (en) Catalyst layer forming method, catalyst layer forming system, and recording medium
US20160013101A1 (en) Pre-treatment method of plating, plating system, and recording medium
WO2013150828A1 (en) Plating apparatus, plating method, and storage medium
US10354915B2 (en) Adhesion layer forming method, adhesion layer forming system and recording medium
US20160190040A1 (en) Wiring layer forming method, wiring layer forming system and recording medium
JP7297905B2 (en) SUBSTRATE LIQUID PROCESSING METHOD, SUBSTRATE LIQUID PROCESSING APPARATUS AND COMPUTER-READABLE RECORDING MEDIUM
JP2003277985A (en) Plating film forming method and plating film forming apparatus
JP2006057171A (en) Electroless plating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147033270

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14404174

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797439

Country of ref document: EP

Kind code of ref document: A1