WO2013179772A1 - 開閉器ユニットまたはスイッチギヤ - Google Patents

開閉器ユニットまたはスイッチギヤ Download PDF

Info

Publication number
WO2013179772A1
WO2013179772A1 PCT/JP2013/060580 JP2013060580W WO2013179772A1 WO 2013179772 A1 WO2013179772 A1 WO 2013179772A1 JP 2013060580 W JP2013060580 W JP 2013060580W WO 2013179772 A1 WO2013179772 A1 WO 2013179772A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
switch unit
fin
resin
heat
Prior art date
Application number
PCT/JP2013/060580
Other languages
English (en)
French (fr)
Inventor
美稀 山崎
内海 知明
雅人 藪
歩 森田
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to KR1020147033134A priority Critical patent/KR101694330B1/ko
Priority to US14/404,081 priority patent/US9437380B2/en
Priority to CN201380027566.7A priority patent/CN104335313A/zh
Priority to EP13797146.1A priority patent/EP2858082A4/en
Priority to JP2014518325A priority patent/JP5868501B2/ja
Priority to BR112014029749A priority patent/BR112014029749A2/pt
Publication of WO2013179772A1 publication Critical patent/WO2013179772A1/ja
Priority to IN9763DEN2014 priority patent/IN2014DN09763A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/6606Terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/6606Terminal arrangements
    • H01H2033/6613Cooling arrangements directly associated with the terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/66215Details relating to the soldering or brazing of vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/6623Details relating to the encasing or the outside layers of the vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6661Combination with other type of switch, e.g. for load break switches

Definitions

  • the present invention relates to a switch unit or switch gear, and more particularly to cooling of a switch unit or switch gear that is solid-insulated with an insulating resin.
  • the switchgear is arranged in the power system as a power receiving and distributing device, and receives the generated power sent from the power plant and distributes it to the load side.
  • the switch unit is a main part of the switch gear that is disposed inside the switch gear and accommodates the switch.
  • the shape connecting the bottoms of the fins is a rectangular shape in a plan view, but the vacuum valve formed inside the resin layer is cylindrical, and the position of the bottom of the fins and the resin There is no correlation in the internal shape of the layer.
  • the resin has lower thermal conductivity than the metal and a temperature distribution is generated. Therefore, it is difficult to expect a dramatic improvement in the heat dissipation effect even if the fin is simply provided large.
  • the switch gear is installed in a limited space, it is not desirable to increase the size.
  • an object of the present invention is to provide a switch unit or a switch gear that can increase the heat dissipation and prevent an increase in size.
  • a switch unit includes a fixed electrode, a movable electrode facing the fixed electrode and operating in the axial direction so as to contact or separate from the fixed electrode, A switch having a bus-side conductor connected to the electrode and connected to the bus-side, and a load-side conductor connected to the other electrode and connected to the load side, and covers the periphery of the switch
  • the insulating resin is formed with fins in the circumferential direction on the outer surface of the insulating resin, and the distance between the outer periphery of the switch and the bottom of the fin is It is formed so as to be substantially constant in the direction.
  • FIG. 1 It is a sectional side view of the switch unit concerning Example 1. It is AA 'sectional drawing of the switch unit concerning Example 1.
  • FIG. 2 It is a sectional side view of the switch unit concerning Example 2. It is AA 'sectional drawing of the switch unit concerning Example 2.
  • FIG. It is a sectional side view of the switch unit concerning Example 3. It is AA 'sectional drawing of the switch unit concerning Example 3.
  • FIG. It is an external view of the switch unit concerning Example 3.
  • FIG. It is a figure which shows the switchgear which concerns on Example 4.
  • Example 1 will be described with reference to FIGS.
  • the switch unit includes a metal case 21 that is grounded, an insulating resin 2 such as epoxy that is connected to the metal case 21, and an integral casting using the insulating resin 2.
  • the vacuum valve 26 and the ground disconnection portion 27, the bus bushing 13 and the cable bushing 28 are mainly configured.
  • the vacuum valve 26 includes a fixed side electrode 16, a movable side in a vacuum container 8 configured by connecting a fixed side ceramic insulating cylinder 29, a movable side ceramic insulating cylinder 30, a fixed side end plate 31 and a movable side end plate 32.
  • a shield 25 is provided.
  • the fixed-side conductor 5 is connected to the cable bushing center conductor 15 so that power can be distributed to the load side.
  • the cable bushing center conductor 15 is arranged in a direction orthogonal to the fixed-side conductor 5, and the conductor is concentrated at the portion sandwiched between the cable bushing center conductor 15 and the fixed-side conductor 5, and heat tends to rise during use. .
  • the heat generation density increases and heat accumulates during use.
  • a bellows 22 for realizing the movement of the movable conductor 6 is arranged on the movable side while maintaining the vacuum state in the vacuum valve 26.
  • the vacuum valve 26 is turned on and off by allowing the movable electrode 17 and the movable conductor 6 to move in the axial direction while maintaining the internal vacuum by the bellows 22 connected to the movable end plate 32 and the movable conductor 6.
  • the state is switched.
  • a bellows shield 33 is provided in the vicinity of the connection between the bellows 22 and the movable conductor 6 in order to protect the bellows 22 from an arc or the like during opening and closing, and the concentration of the electric field at the end of the bellows 22 is alleviated.
  • the movable side conductor 6 is connected to an operating rod 18 for a vacuum valve 26 that is air-insulated and solid-insulated, and the vacuum valve operating rod 18 is connected to an operating device (not shown).
  • a fixed-side electric field relaxation shield 34 is arranged around the fixed-side ceramic insulating cylinder 29 to relieve electric field concentration at the connection portion with the fixed-side end plate 31, and a movable-side end is arranged around the movable-side ceramic insulating cylinder 30.
  • movable side electric field relaxation shields 35 are respectively arranged.
  • the ground disconnection portion 27 is connected to the bus-line bushing central conductor 14, the bushing fixed electrode 3 connected to the bus-line side via the center conductor, and the ground-side fixed electrode (guide) 19 that is set to the ground potential.
  • the intermediate fixed electrode 9 is provided in the middle in the axial direction and electrically connected to the movable conductor 6 on the vacuum valve 26 side through the flexible conductor 20, and the inside is insulated in the air.
  • Each of these fixed electrodes has a uniform inner diameter and is arranged in a straight line. With respect to each of these fixed electrodes, the ground disconnection portion movable conductor 4 moves linearly within the ground disconnection portion 27, so that it can be switched to three positions of closed, disconnection, and ground.
  • the ground disconnection section movable conductor 4 is connected to an operation rod 12 that is air-insulated and solid-insulated, and can be moved by an operation mechanism (not shown).
  • the portion that comes into contact with each of the fixed contacts is configured by the spring contact 10, so that the ground disconnection section movable conductor 4 is not obstructed to move and is reliably contacted by an elastic force. I can do it.
  • the bus bushing 13 is configured by covering the periphery of the bus bushing central conductor 14 with the insulating resin 2
  • the cable bushing 28 is configured by covering the periphery of the cable bushing central conductor 15 with the insulating resin 2.
  • an epoxy resin is used as the material for the operation rod 12 for the vacuum valve, the operation rod 18 for the ground disconnection portion, and the insulating resin 2. Further, the operation rods 12 and 18 and the insulating resin 2 are individually insulated by themselves and gas insulated by the surrounding gas.
  • the ground disconnection part movable conductor 4, the fixed side conductor 5, the movable side conductor 6, the aerial part 7, and the vacuum vessel 8 are integrally cast with the insulating resin 2, and the ground disconnection part movable conductor 4, the fixed side conductor 5, Resin heat radiating fins 1 formed of the same member as the insulating resin 2 are provided on the outer surface of the insulating resin 2 covering the movable conductor 6. As shown in FIG. 1, the outer surface closest to the heat generation source is at the highest height (location) 1 ′ of the resin radiating fin, and as the distance from the heat generation source increases, The height 1d of the resin heat radiation fin 1 is gradually (continuously) shortened.
  • the heat generation source corresponds to a portion where conductors are concentrated (because the density of conductors serving as resistance is high) and a portion where electrodes are in contact (because contact resistance is generated).
  • the insulating resin 2 is covered, the airtightness is increased, so that the heat dissipation performance is lowered and heat is more likely to accumulate.
  • the heat dissipation performance is improved, and even if the heat generation property is high, it is difficult to become a heat accumulation place.
  • the resin heat radiation fin sandwiched between the cable bushing center conductor 15 and the vacuum valve 26 corresponding to the portion where the conductor is concentrated and the periphery is covered with the insulating resin 2 increases the height of the fin.
  • the height of the fin is lowered as the distance from the portion increases.
  • the height of the fins provided around the spring contact 10 and the bushing fixed electrode 3 corresponding to the portion where the electrodes are in contact with each other and the periphery is covered with the insulating resin 2 is increased.
  • a portion that is a heat generation source and is covered with the insulating resin 2 is referred to as a heat accumulation portion.
  • the intermediate fixed electrode 9 connected to the periphery of the bus bushing 13 and the cable bushing 28 and the flexible conductor 20 having a high thermal resistance corresponds to a heat accumulation location.
  • the resin heat dissipating fins in the circumferential direction of the vacuum vessel 8 and the ground disconnecting portion 27 are arranged so that the resin heat dissipating fins are high in the circumferential direction as shown in FIG. It is configured to have a gradient.
  • the bottom part 1b of the resin radiation fin is formed so that the distance 1W of the resin between the bottom part 1b of the resin radiation fin and the outer periphery of the vacuum vessel 8 can be kept constant in a circumferential shape. Heat dissipation performance can be enhanced while ensuring the minimum resin height required for strength and insulation performance.
  • a minimum curvature necessary for ensuring strength and insulation performance is provided on the front end 1t and the bottom 1b of the resin heat radiation fin 1 according to the height 1d of the resin heat radiation fin 1.
  • the curvature increases as the height 1d increases, and the curvature 1b-out on the inner diameter side (bottom) of the fin having the highest height in the radial direction of the fin has the highest height in the radial direction of the fin. It is formed larger than the curvature 1b-in on the inner diameter side of the fin other than the curvature 1b-out on the inner diameter side (bottom) of the fin.
  • a flat portion (flat surface) 2p where the resin heat dissipating fins 1 are not provided is formed in a part of the outermost skin of the resin layer, and the tip 1t of the resin heat dissipating fin 1 of any height is more than the surface of the resin layer flat portion 2p. It is provided so as to be located inside (including the case where the tip of the resin radiating fin is located on the surface. It is necessary to prevent the tip of the resin radiating fin from protruding outward from the surface).
  • the surface of the resin layer flat portion 2p includes a portion where the flat portion itself is not provided. Accordingly, even when a switch unit molded with resin is placed (laid down) at the time of assembly or the like, the load of the switch unit can be received by the flat portion 2p, and the tip of the resin radiating fin is not damaged.
  • the grounding disconnection part movable conductor 4, the fixed side conductor 5, and the movable side conductor 6 are enlarged to reduce the current density, or the switching part. Then, it is possible to increase the contact pressure with respect to the electrodes 16 and 17 and reduce the contact resistance.
  • the former leads to an increase in the size of the entire device, and the latter leads to an increase in the capacity per line because a large driving force is required by the operation mechanism, which may eventually increase the size of the device. is there.
  • the switch unit is integrally cast with the insulating resin 2 as in the switch unit according to the present embodiment, if the entire outer surface of the insulating resin 2 has a fin shape for cooling, the insulating resin 2 The fins for cooling are uniformly attached to the portion where the temperature difference between the outer surface and the switchgear panel in which the switch unit is housed is low, that is, the portion where there is little need to improve the heat radiation performance.
  • the thermal conductivity is small compared to metal, so temperature distribution occurs in the insulating resin fins, and heat is not transmitted to locations away from the heat generating part. Even if a fin for radiating heat is provided at such a part, the degree of contribution to the improvement of heat radiating performance is small.
  • Providing fins as a whole leads to an increase in the weight of the entire switch unit. Therefore, it is not necessary to provide fins unnecessarily, but to arrange fins at positions that can sufficiently contribute to improving heat dissipation performance, the shape of the fins and their mounting It is desirable to determine the position.
  • the resin heat radiation fin sandwiched between the cable bushing center conductor 15 and the vacuum valve 26 has a larger fin height, and the height of the fin increases as the distance from the portion increases. To make it thinner. Further, the fin heights of the fins provided around the spring contact 10 and the bushing fixed electrode 3 are also increased, and the height of the fins is also reduced as the distance from the portion increases.
  • the resin heat dissipating fins in the circumferential direction of the vacuum vessel 8 and the ground disconnection portion 27 are provided with a gradient in the circumferential height in order to ensure strength and insulation performance.
  • the bottom 1b of the resin radiating fin is formed so that the distance 1W of the resin between the bottom 1b of the resin radiating fin and the outer periphery of the vacuum vessel 8 can be kept constant (that is, when there is one switch covered with the resin).
  • the figure formed by connecting the bottoms of the resin radiating fins and the figure formed by the outer periphery of the switch are similar.If there are multiple switches covered with resin, the part between the switches However, the heat radiation performance can be improved while ensuring the minimum resin height necessary for strength and insulation performance.
  • the curvature 1b-out on the inner diameter side of the fin having the highest radial height of the resin radiating fin is provided larger than the curvature 1b-in on the inner diameter side of the fins other than the fin having the highest height. This is because, since the fin having the highest height of the resin radiating fin has a relatively large deformation, the stress at the tip 1t and the bottom 1 of the resin radiating fin 1 may be concentrated. Concentration is reduced. In addition, it is understood that the electric field is relatively concentrated in the fin having the highest height.
  • the curvature 1b-out on the inner diameter side of the fin having the highest radial direction of the resin radiating fin is set larger than the curvature 1b-in on the inner diameter side of the fin other than the fin having the highest height.
  • Electric field concentration can be reduced. That is, by adopting the above configuration, it becomes possible to improve the resistance in terms of both stress and electric field strength.
  • a flat portion 2p where the resin heat radiating fins 1 are not provided is formed in a part of the outermost skin of the resin layer, and the resin layer flat portions 2p are provided so as to be closer to the outer surface of the resin layer than the tips 1t of the resin heat radiating fins 1. Thereby, the resin heat radiation fin can be protected by the resin layer outer surface contact at the time of assembly or the like.
  • Joule heat is generated in the current conduction part during current conduction.
  • the generated Joule heat is transmitted to the surrounding medium and is radiated to the outside from the surrounding medium.
  • the heat generated in both the cable bushing center conductor 15 and the conductor in the vacuum valve 26 is transmitted to the insulating resin 2 sandwiched between the cable bushing center conductor 15 and the vacuum valve 26, the heat dissipation performance is further improved. Need to be high.
  • the resin heat radiation fin sandwiched between the cable bushing center conductor 15 and the vacuum valve 26 has a large fin height, and the fin height decreases as the distance from the portion increases. .
  • part can improve heat dissipation performance by enlarging the height of a fin.
  • the distance from the part that is a heat accumulation part is increased, the density of the conductor is reduced, and the heat is not in the vicinity of the heat generation part, and since the heat conductivity is small in the insulating resin fin, the heat from the heat accumulation part is also reduced. Since it becomes difficult to transmit, the necessity to improve heat dissipation performance from both viewpoints is reduced. Therefore, in order to prevent an increase in size, the height of the resin heat radiating fins 1 is gradually reduced as the distance from the portion that is the heat accumulation portion increases.
  • the resin heat dissipating fins 1 provided at the portions are made larger in height, and the resin heat dissipating fins 1 are made thinner as they are separated from the portions.
  • the cooling performance can be improved and the size is not increased more than necessary.
  • the resin heat radiating fin 1 expands the heat transfer surface to the surroundings and lowers the heat density of the surface. Therefore, the larger the heat transfer area, the better the performance. However, even if the surface area is increased unnecessarily, a decrease in heat transfer coefficient on the surface and a decrease in heat transfer efficiency up to the tips of the resin heat radiation fins 1 are expected. That is, the resin radiating fin 1 is most effective when the entire heat radiating surface is at the same temperature as the heat source. Therefore, although the metal has a large thermal conductivity and the temperature distribution is not easily generated, the insulating resin 2 has a small thermal conductivity and the temperature distribution is significantly generated. Therefore, the height of the resin radiating fins 1 is not uniform. In order to effectively cool the resin heat radiating fins 1, the resin heat radiating fins 1 are provided with a gradient (gradients are provided in the longitudinal direction of the fins, the axial direction, and further in the circumferential direction).
  • the resin heat dissipating fin 1 has a gradient in the longitudinal direction of the fin (the axial direction of the movable electrode), so that the height has no gradient.
  • the cooling performance can be improved compared to the case.
  • the bottom portion 1b of the resin heat radiation fin so that the resin distance 1W between the bottom portion 1b of the resin heat radiation fin and the outer periphery of the vacuum vessel 8 can be kept constant, the minimum necessary for strength and insulation performance is achieved.
  • the heat dissipation performance can be enhanced while ensuring the resin height.
  • a minimum curvature necessary for ensuring strength and insulation performance is provided at the tip 1t and the bottom 1b of the resin radiating fin 1 in accordance with the height 1d of the resin radiating fin 1 (the curvature increases as the height 1d increases).
  • a portion of the outermost outer layer of the resin layer forms a flat portion 2p where the resin heat radiating fin 1 is not provided, and the resin layer flat portion 2p is located on the outer surface of the resin layer rather than the tip 1t of the resin heat radiating fin 1.
  • the switch unit according to the present embodiment is formed by integrally molding a circuit breaker and a ground switch with the insulating resin 2, and can be miniaturized by optimizing while enhancing the insulation characteristics. .
  • the resin radiating fin 1 is provided on the insulating resin 2 of the switch unit, and a height gradient is provided in the longitudinal direction and the circumferential direction, and the strength and insulating performance are provided at the tip 1t and the bottom 1b of the resin radiating fin.
  • the minimum curvature necessary for securing is provided according to the size of the height 1d, it is more suitable. In addition, since enlargement can be prevented, realization of downsizing is not hindered. Rather, as a switch unit that takes heat dissipation performance into consideration, the switch unit is very downsized.
  • the earthing switch is used as the earthing disconnection part and the disconnecting function is also integrated, in addition to the above points, further miniaturization is realized. Furthermore, by using both vacuum insulation and air insulation, it is possible to provide a switch that does not increase in size even when an air ground disconnection part is used. In this way, in the case of a switch unit that realizes miniaturization by using any one of these means or a combination of these means, the heat generation density is originally increased, but the heat radiation space is also reduced. Increasing the heat dissipation performance with the heat dissipating fins 1 is preferable without increasing the size of the apparatus.
  • the insulating resin forms fins in the circumferential direction on the outer surface of the insulating resin, and the outer periphery of the vacuum valve and the air ground disconnection portion, and the resin radiating fins.
  • the distance to the bottom is formed to be substantially constant in the circumferential shape, taking into account the temperature distribution that occurs due to the low thermal conductivity specific to the resin radiating fins, increasing heat dissipation and sacrificing cooling performance It is possible to prevent an unnecessarily large size as long as it is not in the range. Further, when the fin is not used, it is necessary to enlarge the entire device for heat dissipation.
  • the provision of the fin improves the heat dissipation performance, and contributes to further miniaturization in terms of the entire device.
  • the outer surface of the insulating resin 2 has a flat portion 2p, and the tip of the insulating resin 2 is formed so as to be located inside the surface of the flat portion 2p. Even when the switch unit after casting is laid with the insulating resin 2, the tip of the fin is not damaged.
  • the curvature 1b-out on the inner diameter side of the fin having the highest radial height is larger than the curvature 1b-in on the inner diameter side of the fin other than the fin having the highest height in the radial direction. Therefore, the concentration of the electric field can be reduced while concentrating the stress of the fin having the highest height in the radial direction of the fin.
  • the curvature on the inner diameter side is increased only for the fin having the highest height in the radial direction, but the curvature increases as the height in the radial direction of the fin increases. It is also effective to reduce the curvature as the height increases. Moreover, it becomes possible to ensure the strength and insulation performance of the end portion of the outer surface of the resin layer covering the conductor and the container.
  • the resin radiating fins 1 are arranged in four directions whose directions are different by 90 ° as shown in FIG. 2, that is, the tips of the resin radiating fins 1 are in the air ground disconnection portion 27 or vacuum. Two sets of surfaces are formed, one set of surfaces facing each other with the bulb 26 interposed therebetween, and one set of surfaces facing each other with the air ground disconnection portion 27 and the vacuum valve 26 sandwiched therebetween. Therefore, even when the mold is removed after casting, the mold can be pulled out in the direction facing the resin heat radiating fin 1 (without being caught by the fin), and the manufacture is easy.
  • Example 2 will be described with reference to FIGS. The description of the same parts as those in the first embodiment is omitted.
  • the role of the insulating shield and the role of the heat dissipating member can be achieved at the same time.
  • the metal heat sink 1m is connected and fixed to the bus bushing 13, the cable bushing 28, and the intermediate fixed electrode 9, which are heat storage locations, and the heat is radiated to the resin layer so that the temperature of the resin layer is high.
  • the height of the resin radiating fin is increased (maximum height 1 ′), and the height is reduced as the distance from the portion increases.
  • the height of the resin radiating fin 1 is highest around the heat radiating plate 1m closest to the surface of the insulating resin 2 among the heat radiating plates 1m, and away from the periphery of the heat radiating plate 1m closest to the surface of the insulating resin 2 in the axial direction. As a result, the slope becomes lower.
  • the heat radiating plate 1m is provided between the vacuum valve 26 and the ground disconnection portion 27, around the vacuum valve 26 and around the ground disconnection portion 27, and the heat radiating plate 1m on the side close to the operating unit is brought close to the surface of the insulating resin 2. It is arranged.
  • the metal heat sink 1m has a minimum curvature (roundness) necessary for insulation performance at the tip so that it can serve as an insulation shield.
  • the heat from the heat accumulation point is moved to the part to be radiated.
  • the height of the resin heat radiating fin 1 is the highest in the periphery of the heat radiating plate 1m closest to the surface of the insulating resin 2 among the heat radiating plates 1m, and the axial direction from the periphery of the heat radiating plate 1m closest to the surface of the insulating resin 2 The distance is lowered as the distance increases, so that the moved heat can be efficiently dissipated.
  • the heat radiating plate 1m is formed (connected) around the conductor and the vacuum valve 26 at the end of the conductor inside the insulating resin 2 and the vacuum valve 26, the heat from the conductor and the vacuum valve 26 is dissipated. Since heat is transferred to the plate 1m and accumulated, the heat radiation fin 1m has the highest surface temperature in the outer surface of the insulating resin 2 near the heat sink 1m where the heat is accumulated. It is better to lower the part.
  • the height of the resin radiating fins made of resin is not uniform in the longitudinal direction and the circumferential direction, but has a gradient, and the height of the resin radiating fins of the heat accumulating portion is increased in order to achieve further effects. It is common in that it is the highest and the cooling performance is improved.
  • Example 3 will be described with reference to FIGS. Also in this embodiment, the description of the same points as the above embodiments is omitted.
  • the tips of the resin radiating fins 1 are opposed to a pair of surfaces opposed to each other with the air ground disconnection part 27 or the vacuum valve 26 interposed therebetween, and between the air ground disconnection part 27 and the vacuum valve 26.
  • the entire outer surface of the integrally casted switch is formed with a cooling fin shape.
  • the resin between the bottom 1b of the resin radiating fins provided on the front and rear sides and the outer periphery of the vacuum vessel 8 is not provided on both side surfaces.
  • the distance 1 W is formed so as to be kept constant.
  • a metal heat dissipating plate 1m as in this embodiment and provide the resin heat dissipating fins 1 only on a pair of opposing surfaces.
  • the resin heat radiating fins 1 are provided only on a pair of opposing surfaces without providing the metal heat radiating plate 1m.
  • the degree to which the cooling performance needs to be improved differs depending on the amount of current to be energized and the temperature of the installation environment. Of course, such various modifications are possible.
  • Example 4 will be described with reference to FIG. Also in this embodiment, the description of the same points as the above embodiments is omitted.
  • the switchgear includes a bus 40 connected to the power system side for receiving power, a switch unit 46 connected to the bus 40 and having a switch, and power from the switch unit 46 on the load side.
  • the cable 42 that distributes power to the cable, the cable head 45 that connects the switch unit 46 and the cable 42 according to the first embodiment, the operation unit 43 that operates the switch in the switch unit 46, and when an overcurrent is detected or a lightning strike And a control device room 44 that houses a protective relay that protects the device at times.
  • the switch unit 46 is provided with a resin heat radiation fin for heat radiation having a height in the longitudinal direction of the fin and a height in the circumferential direction. Since the switch unit is the place where the heat generation is mainly high in the switch gear (panel), the cooling performance can be improved even when viewed as the entire switch gear.
  • the switch unit which is the main part in the switch gear, can be miniaturized so that the entire switch gear can be miniaturized.

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Thermally Actuated Switches (AREA)
  • Patch Boards (AREA)
  • Push-Button Switches (AREA)

Abstract

 放熱性を高めつつ、大型化を防止できる開閉器ユニットまたはスイッチギヤを提供することを目的とする。 上記課題を解決するために、本発明に係る開閉器ユニットは、固定電極と、該固定電極に対向すると共に軸方向に動作して前記固定電極と接触または開離される可動電極と、前記一方の電極に接続されて、母線側と接続される母線側導体と、前記他方の電極に接続されて、負荷側と接続される負荷側導体と、を有する開閉器と、該開閉器の周囲を覆う様に配置される絶縁樹脂と、を備え、該絶縁樹脂は、該絶縁樹脂の外表面に、周方向にフィンを形成し、前記開閉器の外周と、前記フィンの底部との距離は、周方向で略一定になる様に形成されることを特徴とする。

Description

開閉器ユニットまたはスイッチギヤ
 本発明は、開閉器ユニットまたはスイッチギヤに関するものであり、特に絶縁樹脂で固体絶縁された開閉器ユニットまたはスイッチギヤの冷却に関する。
 スイッチギヤは受配電機器として、電力系統に配置され、発電所から送られる発電電力を受電して負荷側へと配電するものである。そして、開閉器ユニットは、スイッチギヤの内部に配置され、開閉器を収容するスイッチギヤにおける主要部である。
 近年、都市部での消費電力は一部の地域に集中し、消費電力の増加する需要に対応して、配電用変電所の立地困難、配電用配管の配置に余裕が無い。また、供給設備の高稼働率化への要求が高まっている。それに応えるため、配電電圧の昇圧、即ち、回線当たりの容量を大きくすることにより、高い電圧系統に積極的に負荷の吸収を図って、効率的な電力供給設備の形成が検討されている。このためには、高い電圧系統のための配電器材・受変電設備の更なるコンパクト化を図る必要がある。
 また、スイッチギヤ内は大電流通電の時においては電流の導通部を中心に高温となるので、大電流通電に伴い、冷却性能を向上させる必要がある。このような冷却性能を向上させるための機能を備えるスイッチギヤとして例えば特許文献1に記載されたものがある。該特許文献1ではスイッチギヤを覆う樹脂層に樹脂製または金属製のフィンを設けることで冷却性能を高めている。
特開2001-160342号公報
 しかし、上記特許文献1によれば、フィンの底部を繋いだ形状は平面図において長方形形状となるが、樹脂層の内部に形成される真空バルブは円筒形状であり、フィンの底部の位置と樹脂層の内部の形状には相関性がない。ここで、樹脂によりフィンを構成する場合、樹脂では金属と比較して熱伝導率が低く、温度分布が生ずることから、単にフィンを大きく設けても放熱効果の飛躍的向上は期待しにくい。一方、スイッチギヤは限られたスペースに設置されるものであり、大型化することは望ましくない。
 そこで、本発明では放熱性を高めつつ、大型化を防止できる開閉器ユニットまたはスイッチギヤを提供することを目的とする。
 上記課題を解決するために、本発明に係る開閉器ユニットは、固定電極と、該固定電極に対向すると共に軸方向に動作して前記固定電極と接触または開離される可動電極と、前記一方の電極に接続されて、母線側と接続される母線側導体と、前記他方の電極に接続されて、負荷側と接続される負荷側導体と、を有する開閉器と、該開閉器の周囲を覆う様に配置される絶縁樹脂と、を備え、該絶縁樹脂は、該絶縁樹脂の外表面に、周方向にフィンを形成し、前記開閉器の外周と、前記フィンの底部との距離は、周方向で略一定になる様に形成されることを特徴とする。
 本発明によれば、放熱性を高めつつ、大型化を防止できる開閉器ユニットまたはスイッチギヤを提供することが可能になる。
実施例1に係る開閉器ユニットの側断面図である。 実施例1に係る開閉器ユニットのA-A′断面図である。 実施例2に係る開閉器ユニットの側断面図である。 実施例2に係る開閉器ユニットのA-A′断面図である。 実施例3に係る開閉器ユニットの側断面図である。 実施例3に係る開閉器ユニットのA-A′断面図である。 実施例3に係る開閉器ユニットの外観図である。 実施例4に係るスイッチギヤを示す図である。
 以下、本発明を実施する上で好適な実施例について説明する。尚、下記はあくまでも実施の例に過ぎず、実施の態様を下記具体的態様に限定するものでないことは言うまでもない。
 実施例1について図1及び図2を用いて説明する。
 図1に示すように、本実施例に係る開閉器ユニットは、接地されている金属ケース21と、該金属ケース21に接続されるエポキシ等の絶縁樹脂2と、該絶縁樹脂2により一体注型された真空バルブ26及び接地断路部27と、母線用ブッシング13と、ケーブル用ブッシング28とから主として構成されている。
 真空バルブ26は、固定側セラミックス絶縁筒29、可動側セラミックス絶縁筒30、固定側端板31及び可動側端板32とを接続して構成される真空容器8内に、固定側電極16、可動側電極17、固定側電極16と接続される固定側導体5、可動側電極17と接続される可動側導体6、及びセラミックス絶縁筒29、30を電極の開閉時のアークから保護するためのアークシールド25を配備している。そして、固定側導体5はケーブル用ブッシング中心導体15と接続され、負荷側へ電力を配電できるようになっている。ケーブル用ブッシング中心導体15は固定側導体5に対し、直交方向に配置しており、ケーブル用ブッシング中心導体15と固定側導体5に挟まれる箇所は導体が集中し、使用時に熱が上昇し易い。この様に、複数の導体が交わる交点付近においては、発熱密度が高まり、使用時に熱が蓄積する。また、可動側には真空バルブ26内の真空状態を維持したまま、可動側導体6の可動を実現するためのベローズ22を配置している。真空バルブ26は可動側端板32と可動側導体6に接続されたベローズ22によって内部の真空を維持しながら可動側電極17、可動側導体6を軸方向に移動可能とすることによって投入・遮断状態を切換えている。また、ベローズ22と可動側導体6の接続部近傍には、開閉時のアーク等からベローズ22を保護するために、ベローズシールド33を設けており、併せてベローズ22端部における電界の集中を緩和することもできる。可動側導体6は、気中絶縁及び固体絶縁された真空バルブ26用操作ロッド18と接続されており、該真空バルブ用操作ロッド18は、図示しない操作器に接続されている。固定側セラミックス絶縁筒29の周囲には固定側端板31との接続部における電界集中を緩和するための固定側電界緩和シールド34を配置し、可動側セラミックス絶縁筒30の周囲には可動側端板32との接続部における電界集中を緩和するために可動側電界緩和シールド35をそれぞれ配置している。
 接地断路部27は、母線用ブッシング中心導体14と接続されており、この中心導体を介して母線側に接続されるブッシング用固定電極3と、接地電位としている接地側固定電極(ガイド)19と、それらの軸方向中間に位置し、フレキシブル導体20を介して真空バルブ26側の可動側導体6と電気的に接続される中間固定電極9を備えており、内部は気中絶縁されている。また、これら各固定電極は、内径をいずれも等しくし、直線状に配置されている。これらの各固定電極に対し、接地断路部可動導体4が直線状に接地断路部27内を移動することで、閉・断路・接地の3位置に切換えることが可能となる。接地断路部可動導体4は、気中絶縁及び固体絶縁された操作ロッド12と連結しており、図示していない操作機構によって可動が可能となる。そして接地断路部可動導体4のうち、前記の各固定接点と接触する部位をばね接点10で構成することにより、接地断路部可動導体4の可動を妨げず、かつ弾性力により確実に接触を実現できるようにしている。
 母線用ブッシング13は、母線用ブッシング中心導体14の周囲を絶縁樹脂2で覆うことにより、また、ケーブル用ブッシング28は、ケーブル用ブッシング中心導体15の周囲を絶縁樹脂2で覆うことにより構成されている。
 真空バルブ用の操作ロッド12、接地断路部用の操作ロッド18、絶縁樹脂2の材料としては、絶縁特性及び機械的強度を考慮し、かつ成形性も良いことからエポキシ樹脂を使用している。また、操作ロッド12、18、絶縁樹脂2は、それぞれ自身による固体絶縁とともに、周囲の気体による気体絶縁がなされている。
 そして、接地断路部可動導体4、固定側導体5、可動側導体6、気中部7、真空容器8は絶縁樹脂2により一体注型されており、接地断路部可動導体4、固定側導体5、可動側導体6を覆う絶縁樹脂2の外表面には絶縁樹脂2と同じ部材で形成される樹脂放熱フィン1を設けてある。図1に示すように、熱発生源に最も近い外表面が樹脂放熱フィンの最高の高さ(箇所)1′となるようにしており、熱発生源から離れて行くに連れ、前記外表面の樹脂放熱フィン1の高さ1dが徐々に(連続的に)短くなっている。ここで、熱発生源には導体が集中する部位(抵抗となる導体の密度が高いため)、電極同士が接触する部位(接触抵抗が生じるため)が該当する。加えて、絶縁樹脂2が覆っていると気密性が高まるため放熱性能も下がり、更に熱が溜まりやすい。一方で、上記の熱発生源の周囲であっても、熱発生源の周囲が気体で囲まれている場合には、放熱性能が高まり、発熱性は高くても熱の溜まり場とはなりにくい。係る点から、導体が集中する部位で、かつ周囲を絶縁樹脂2が覆っている部位に該当するケーブル用ブッシング中心導体15及び真空バルブ26に挟まれる樹脂放熱フィンは、フィンの高さを高くしており、該部から離れるにつれて、フィンの高さが低くなるようにしている。また、電極同士が接触する部位で、かつ周囲を絶縁樹脂2が覆っている部位に該当するばね接点10とブッシング用固定電極3の周囲に設けたフィンの高さを高くしており、該部から離れるにつれて、フィンの高さが低くなるようにしているものもある。本明細書中では、熱発生源であり、かつ絶縁樹脂2に覆われている部位を熱蓄積箇所と呼ぶこととする。母線用ブッシング13やケーブル用ブッシング28の周囲と熱抵抗が高いフレキシブル導体20の連結されている中間固定電極9は熱蓄積箇所に該当する。そして、樹脂放熱フィン1が設けられている側とは反対側(操作器側)に、樹脂放熱フィン1の高さが最も高い部位と同等以上の高さを有する平坦部(平坦面)2pを設けている。
 さらに本実施例では、真空容器8と接地断路部27の周方向の樹脂放熱フィンの形態は図2(図1のA-A′の断面図)に示すように樹脂放熱フィンが周方向の高さに勾配を有するように構成している。そして、樹脂放熱フィンの底部1bと真空容器8の外周間の樹脂の距離1Wが周状に一定に維持できるように、樹脂放熱フィンの底部1bを形成している。強度・絶縁性能上の必要な最小限の樹脂高さを確保しながら、放熱性能を高めることができる。また、樹脂放熱フィン1の先端1tおよび底部1bには強度・絶縁性能確保の上で必要な最小限の曲率を樹脂放熱フィン1の高さ1dの大きさに従って設ける。具体的には、高さ1dが大きくなると曲率は大きくなり、フィンの径方向の高さが最も高いフィンの内径側(底部)の曲率1b-outは、フィンの径方向の高さが最も高いフィンの内径側(底部)の曲率1b-out以外のフィンの内径側の曲率1b-inよりも大きく形成される。さらに樹脂層最外皮の一部には樹脂放熱フィン1を設けない平坦部(平坦面)2pを形成し、いずれの高さの樹脂放熱フィン1の先端1tが樹脂層平坦部2pの面よりも内側(面上に樹脂放熱フィンの先端が位置する場合も含む。樹脂放熱フィンの先端が面よりも外側に突出しない様にすることを要する)に位置するように設ける。ここで、樹脂層平坦部2pの面には、平坦部自体が設けられない部分も含む。これにより組み立て時など、樹脂でモールドした開閉器ユニットを置く(寝かせる)場合にも、平坦部2pで開閉器ユニットの荷重を受けることができ、樹脂放熱フィンの先端が破損することがない。
 次に、本実施例に係る開閉器ユニットの使用時の状態について説明する。電力系統に開閉器ユニットが接続されている場合、開閉器ユニット内に母線から電力が供給されていることになり、更に接地断路部27が閉位置にあり、真空開閉器も投入されていると、電力系統側から母線を経由して母線用ブッシング中心導体14→ブッシング用固定電極3→ばね接点10→接地断路部可動導体4→ばね接点10→中間固定電極9→フレキシブル導体20→可動側導体6→可動側電極17→固定側電極16→固定側導体5→ケーブル用ブッシング中心導体15を通じてケーブルを介し、負荷側へと電力が送られる。この場合、上記各電流導通部には抵抗値に応じてジュール熱が発生する。スイッチギヤのように高電圧が印加される場合、発熱量は非常に大きくなるため、放熱性を考慮することは機器製作上必要不可欠な事項となる。
 通電時に各部で発生するジュール熱は、ばね接点10を介したブッシング用固定電極3と接地断路部可動導体4との接点部位や、可動側電極17と固定側電極16との接触部位で大きくなり、また、これらの部位の近く、特に、固定側導体5と真空容器端部とが固定された部位付近に放熱した熱が局所的にこもりやすい環境になっている。また、開閉器内部の各導体である接地断路部可動導体4や固定側導体5及び可動側導体6の導体温度が上昇するため、温度上昇に伴う熱電子放出が促進されて絶縁性能が低下してしまう。温度上昇を防止するために、発熱自体を抑えることが考えられ、具体的には接地断路部可動導体4、固定側導体5、可動側導体6を大きくして電流密度を下げたり、或いは開閉部では電極16、17に対する接触圧を大きくし、接触抵抗を下げることが考えられる。しかし、前者は装置全体の大型化につながり、後者は操作機構により大きな駆動力を必要とするために回線当たりの容量を大きくすることにつながり、結局いずれの場合も装置が大型化する可能性がある。
 そこで、抵抗低減による発熱量を低減するのでなく、放熱性能を向上させることが、温度上昇対策として有効となる。放熱性能を向上させるに際し、通電時の開閉器の各部で発生するジュール熱は、電極同士の接点及び導体を中心に発熱することを鑑み、これら発熱部位付近を中心として、放熱することがより効率的となる。しかしながら、本実施例に係る開閉器ユニットのように、開閉器ユニットを絶縁樹脂2で一体注型した場合に、該絶縁樹脂2の外表面全体を冷却用のフィン形状とすると、絶縁樹脂2の外表面と開閉器ユニットが収納されるスイッチギヤの盤との温度差が低い部位、即ち放熱性能を向上させる必要性が少ない個所まで、一律に冷却用のフィンを取り付けることになる。
 特に、絶縁樹脂製のフィンを設ける場合、金属と比較して熱伝導率が小さいことから、絶縁樹脂製のフィン内に温度分布が生じ、発熱部位から離れた箇所には熱が伝わっておらず、係る部位に放熱用のフィンを設けても放熱性能の向上に寄与する度合いは小さい。フィンを全体に設けることは開閉器ユニット全体の重量の増大につながるため、むやみにフィンを設けるのでなく、放熱性能の向上に充分寄与し得る位置にフィンを配置する様、フィンの形状やその取り付け位置を決定するのが望ましい。
 そこで、本実施例に係る開閉器ユニットでは、ケーブル用ブッシング中心導体15及び真空バルブ26に挟まれる樹脂放熱フィンは、フィンの高さを大きくしており、該部から離れるにつれて、フィンの高さが薄くなるようにしている。また、ばね接点10とブッシング用固定電極3の周囲に設けたフィンについてもフィンの高さを大きくしており、該部から離れるにつれて、やはりフィンの高さが薄くなるようにしている。
 また、通電時の開閉器の各部で発生するジュール熱は、電極の接点および導体を中心に発熱するので、発熱付近を中心に放熱する方がより効率的である。しかしながら、絶縁樹脂の内部に配置される開閉器の外径形状との相関なしに、一体注型した開閉器の外表面全体にフィンを形成すると、樹脂の外表面と盤の温度との差が低い部位まで同じ形態のフィンを取り付けることになる。絶縁樹脂によりフィンを設ける場合、樹脂の熱伝導率は金属と比較すると小さく、フィン内に温度分布が生じる。故に、樹脂放熱フィンを用いる場合、当該樹脂放熱フィンを全体に設けることは開閉器の重量の増大を招く可能性があり、フィンの放熱効率を考慮して、適切なフィンの形態や取り付け位置を決定するのが有効である。即ち、フィンの高さや間隔を一定とすると、樹脂特性に応じて効率的な冷却を行うことは困難である。
 本実施例では、真空容器8と接地断路部27の周方向の樹脂放熱フィンの形態は強度・絶縁性能を確保するために周方向の高さに勾配を設けている。樹脂放熱フィンの底部1bと真空容器8の外周間の樹脂の距離1Wを一定に維持できるように樹脂放熱フィンの底部1bを形成する(即ち、樹脂で覆われる開閉器が一つである場合には、樹脂放熱フィンの底部を繋いで形成される図形と、開閉器の外周が形成する図形とは、相似形状となる。樹脂で覆われる開閉器が複数存在する場合、複数開閉器の間部分が相似形状からは異なってくる。)ことで、強度・絶縁性能上の必要な最小限の樹脂高さを確保しながら、放熱性能を高めることができる。また、樹脂放熱フィンの径方向の高さが最も高いフィン内径側の曲率1b-outは高さが最も高いフィン以外のフィンの内径側の曲率1b-inより大きく設ける。これは、樹脂放熱フィンの高さが最も高いフィンは比較的に変形が大きいので、樹脂放熱フィン1の先端1tおよび底部1応力が集中する可能性があり、一番大きく曲率を設けることで応力集中を低減させるものである。加えて、高さが最も高いフィンは相対的に電界が集中しやすいことも理解されている。しかし、上記の様に樹脂放熱フィンの径方向の高さが最も高いフィンの内径側の曲率1b-outを高さが最も高いフィン以外のフィンの内径側の曲率1b-inより大きく設けることで、電界集中を緩和できる。即ち、上記構成を採用することで応力的にも電界強度的にも耐性を向上することが可能になる。さらに樹脂層最外皮の一部には、樹脂放熱フィン1を設けない平坦部2pを形成し、樹脂層平坦部2pは樹脂放熱フィン1の先端1tよりも樹脂層外表面になるように設ける。これにより組み立て時などの樹脂層外表面接触により樹脂放熱フィンを保護することができる。
 上述のように、電流導通時に電流導通部位にはジュール熱が発生する。そして、発生したジュール熱は周囲の媒体に伝わり、周囲の媒体から外部に放熱される。ここで、ケーブル用ブッシング中心導体15及び真空バルブ26に挟まれる絶縁樹脂2には、ケーブル用ブッシング中心導体15と真空バルブ26内の導体の両方で発生する熱が伝達されるため、より放熱性能が高くなる必要がある。本実施例では、ケーブル用ブッシング中心導体15及び真空バルブ26に挟まれる樹脂放熱フィンは、フィンの高さを大きくしており、該部から離れるにつれて、フィンの高さが薄くなるようにしている。熱蓄積部位である該部はフィンの高さを大きくすることで、放熱性能を向上させることができる。一方で、熱蓄積部位である該部から離れるにつれて、導体の密集度は低下し、そもそも発熱部位近傍でなくなると共に、絶縁樹脂製のフィンでは熱伝導率が小さいため、熱蓄積部位からの熱も伝達しにくくなるので、両観点から放熱性能を向上させる必要性は少なくなる。そこで、大型化を防ぐべく、熱蓄積部位である該部から離れるにつれ徐々に樹脂放熱フィン1の高さを薄くすることとしている。
 同様に、ばね接点10とブッシング用固定電極3の周囲に設けられる絶縁樹脂2についても、ブッシング用固定電極3、接地断路部可動導体4、及びばね接点10とブッシング用固定電極3との接点部位を覆っており、熱蓄積部位となる。よって、該部位に設けられる樹脂放熱フィン1については、樹脂放熱フィン1の高さを大きくしており、該部から離れるにつれて、樹脂放熱フィン1の高さが薄くなるようにしている。
 これらにより、冷却性能を向上させることができると共に、必要以上に大型化することもなくなる。
 基本的に樹脂放熱フィン1は周囲への伝熱面を拡大して表面の熱密度を下げるものであるから、伝熱面積が大きくなるほど性能は良くなる。しかし、むやみに表面積を拡大しても、表面の熱伝達率の低下や、樹脂放熱フィン1先端までの伝熱効率の低下が予想される。即ち、樹脂放熱フィン1が最も効果的な場合は、放熱面全体が熱源と同じ温度になっている場合である。故に、金属では熱伝導率が大きく温度分布が顕著に発生しにくいが、絶縁樹脂2では熱伝導率が小さく、温度分布が顕著に発生するため、樹脂放熱フィン1の高さを一律とせず、樹脂放熱フィン1が効果的な冷却を行える様、樹脂放熱フィン1に勾配を持たせる(フィンの長手方向、または軸方向、更には周方向に勾配を持たせる)こととしている。
 本実施例に係る開閉器ユニットでは、樹脂放熱フィン1がフィンの長手方向(可動電極の軸方向)において、その高さが勾配を有するようにしたことにより、高さが勾配を有していない場合と比較して冷却性能を向上させることができる。また、樹脂放熱フィンの底部1bと真空容器8の外周間の樹脂の距離1Wを一定に維持できるように樹脂放熱フィンの底部1bを形成することで、強度・絶縁性能上の必要な最小限の樹脂高さを確保しながら、放熱性能を高めることができる。さらに、樹脂放熱フィン1の先端1tおよび底部1bには強度・絶縁性能確保の上で必要な最小限の曲率を樹脂放熱フィン1の高さ1dの大きさに従って設ける(高さ1dが大きくなると曲率は大きくなる)とともに樹脂層最外皮の一部は樹脂放熱フィン1を設けない平坦部2pを形成し、樹脂層平坦部2pは樹脂放熱フィン1の先端1tよりも樹脂層外表面になるように設けることにより、組み立て時などの樹脂層外表面接触により樹脂放熱フィンを保護すると同時に不必要に大型化するのを防止することができる。
 そして、係る高さが熱蓄積箇所で大きくなり、該部から離れるにつれ、高さが薄くなるようにしたことにより、通電時に生じる温度条件により適した冷却を行うことが可能となる。
 また、本実施例に係る開閉器ユニットは、遮断器と、接地開閉器とを絶縁樹脂2によって一体にモールドしたものであり、絶縁特性を高めながら最適化することで、小型化が図れている。この様な小型化が図られた開閉器ユニットにおいては、密閉性が高く、熱が集中し易いため、発熱性の低下でなく、放熱性能向上に対するニーズは大きい。本実施例では、係る開閉器ユニットの絶縁樹脂2に樹脂放熱フィン1を設け、長手方向および周方向に高さの勾配を設けることと、樹脂放熱フィンの先端1tおよび底部1bに強度・絶縁性能確保の上で必要な最小限の曲率を高さ1dの大きさに従って設けることとしたので、より適したものとなる。加えて、大型化も防止できるため、小型化の実現を妨げることがない。むしろ、放熱性能も加味した開閉器ユニットとしては、非常に小型化されたものとなる。
 更に、本実施例では接地開閉器を接地断路部として、断路機能も集約したので、上記点に加えて更に小型化を実現している。さらに、真空絶縁と気中絶縁を併用することで、気中接地断路部を用いても大型化しない開閉器を提供することが可能となる。この様に、いずれかの手段またはそれらの手段を併用して小型化を実現した開閉器ユニットの場合、本来は発熱密度が高まる一方で、放熱空間も低減されるところ、本実施例に係る樹脂放熱フィン1により放熱性能を高めれば、装置の大型化をすることがなく好適である。
 本実施例に係る開閉器ユニット及びスイッチギヤによれば、絶縁樹脂は、絶縁樹脂の外表面に、周方向にフィンを形成し、真空バルブや気中接地断路部の外周と、樹脂放熱フィンの底部との距離は、周状で略一定になる様に形成されており、樹脂放熱フィン特有の熱伝導率が低いために生ずる温度分布を考慮して、放熱性を高めると共に、冷却性能を犠牲にしない範囲で、不必要に大型化を防止することが可能になる。更に当該フィンを用いない場合、放熱用に装置全体を大きくする必要が生ずるが、むしろ当該フィンを設けることで放熱性能が上がり、装置全体で見ても更なる小型化に寄与するものとなる。上記構成により、高電圧・高電流の投入、遮断、断路、接地が行える低抵抗回路開閉器において、冷却性能を向上させることが可能となる。
 また、本実施例では絶縁樹脂2の外表面は平坦部2pを有しており、絶縁樹脂2の先端が平坦部2pの面の内側に位置する様に形成されているので、組み立て時等、絶縁樹脂2で注型後の開閉器ユニットを横たえる場合にも、フィンの先端を傷つけることがない。
 更に、本実施例ではフィンの径方向の高さが最も高いフィンの内径側の曲率1b-outは、フィンの径方向の高さが最も高いフィン以外のフィンの内径側の曲率1b-inよりも大きく形成されており、これにより、フィンの径方向の高さが最も高いフィンの応力の集中を図りつつ、電界の集中も緩和できる。尚、本実施例では、特にフィンの径方向の高さが最も高いフィンについてのみ内径側の曲率を大きくすることを説明しているが、フィンの径方向の高さに応じて高いものほど曲率を大きくし、高さが低いものほど曲率を小さくすることも有効である。また、導体と容器を覆う樹脂層の外皮の表面の端部の強度・絶縁性能を確保することが可能となる。
 また、本実施例では樹脂放熱フィン1は、図2に示す様に90°ずつ方向が異なる4方向を向いて配置され、即ち、樹脂放熱フィン1の先端は、気中接地断路部27または真空バルブ26を挟んで対向する一組の面と、気中接地断路部27及び真空バルブ26を挟んで対向する一組の面の二組の面を形成する。故に、注型後に金型を外す場合にも、樹脂放熱フィン1の向く方向に金型を(フィンに引っかからずに)引き外すことができ、製作も容易である。
 実施例2について、図3及び図4を用いて説明する。実施例1と重複する箇所についてはその説明を省略する。
 図3及び図4に示す様に、本実施例では、絶縁樹脂2の内部に金属の放熱板1mを設けることで絶縁シールドの役割と放熱部材の役割を同時に達成できるようにしている。また、金属の放熱板1mは熱蓄積箇所である母線用ブッシング13、ケーブル用ブッシング28、中間固定電極9に接続固定され、熱を樹脂層に放熱され、樹脂層の温度が高くなっているところで樹脂放熱フィンの高さが大きくなり(最大高さ1′)、該部から離れるにつれ、高さが薄くなるようにしている。樹脂放熱フィン1の高さは、放熱板1mのうちで最も絶縁樹脂2の表面に近い放熱板1mの周囲で最も高く、最も絶縁樹脂2の表面に近い放熱板1mの周囲から軸方向に離れるにつれて、低くなる様な勾配を有している。放熱板1mは、真空バルブ26と接地断路部27の間、真空バルブ26の周囲及び接地断路部27の周囲に設けており、操作器に近い側の放熱板1mを絶縁樹脂2表面に近付けて配置している。外周側に近い放熱板の近傍でフィンを高くして放熱性を高めることで、通電時に生じる温度条件により適した冷却を行うことが可能となる。
 また、金属の放熱板1mは絶縁シールドの役割ができるように先端が絶縁性能上必要な最小限の曲率(丸み)を設けている。
 本実施例では放熱板1mを設けることで、熱蓄積箇所からの熱を、放熱すべき部位に移動させている。そして、樹脂放熱フィン1の高さを、放熱板1mのうちで最も絶縁樹脂2の表面に近い放熱板1mの周囲で最も高く、最も絶縁樹脂2の表面に近い放熱板1mの周囲から軸方向に離れるにつれて、低くなる様にしており、移動させた熱を効率的に放熱できるようにしている。更に望ましくは、放熱板1mを絶縁樹脂2内部の導体や真空バルブ26端部に、導体や真空バルブ26周辺を囲むような形状で(接続)形成すると、導体や真空バルブ26からの熱が放熱板1mに伝わり熱が蓄積するので、熱が蓄積された放熱板1mに近い絶縁樹脂2の外皮における最も表面温度が高くなる部位で、樹脂放熱フィンの長手方向の高さを最も高く、他の部分で低くするのが良い。
 尚、本実施例の様に金属の放熱板1mと樹脂放熱フィン1を併せて構成した場合でも実施例1で述べた種々の効果をいずれも奏することが可能であることは勿論である。両実施例共に、樹脂製の樹脂放熱フィンの高さを長手方および周方向に一律とするのでなく、勾配を有するということ及び、更なる効果を奏するために熱蓄積部の樹脂放熱フィンの高さを最も高くし、冷却性能を高めると言う点で共通している。
 実施例3について図5ないし図7を用いて説明する。本実施例でも上記各実施例と重複する点については説明を省略する。
 実施例1及び2では、樹脂放熱フィン1の先端は、気中接地断路部27または真空バルブ26を挟んで対向する一組の面と、気中接地断路部27及び真空バルブ26を挟んで対向する一組の面の二組の面を形成していたが、本実施例では、図5の断面図で示す様に、一体注型した開閉器の外表面全体を冷却用のフィン形態を形成する場合、注型用の金型のパーツを最小限にするために両側面には樹脂放熱フィンを設けずに、前後に設けている樹脂放熱フィンの底部1bと真空容器8の外周間の樹脂の距離1Wを一定に維持できるように形成する。
 本実施例の様に金属の放熱板1mを設けて樹脂放熱フィン1を対向する一組の面にのみ設けることも可能である。その他、金属の放熱板1mを設けずに樹脂放熱フィン1を対向する一組の面にのみ設けることも排除するものではない。通電する電流の量、設置環境の温度等により、どの程度冷却性能を高める必要があるかは異なる。この様な種々の変形が可能であることは勿論である。
 実施例4について図8を用いて説明する。本実施例でも上記各実施例と重複する点については説明を省略する。
 本実施例に係るスイッチギヤは、電力系統側に接続されて電力を受電する母線40と、母線40に接続されて開閉器を有する開閉器ユニット46と、開閉器ユニット46からの電力を負荷側へ配電するケーブル42と、実施例1に係る開閉器ユニット46とケーブル42とを連結するケーブルヘッド45と、開閉器ユニット46内の開閉器を操作する操作器43と、過電流検出時や落雷時等に機器を保護する保護継電器等を収納する制御機器室44とから概略構成される。
 開閉器ユニット46については、実施例1で説明したものに関わらず、上記各実施例で説明した内容のいずれも含めて様々なものが適用可能である。この際、少なくとも上記した各効果はスイッチギヤに適用することによって、減じられるものではない。
 本実施例に係るスイッチギヤについて、開閉器ユニット46に、フィンの長手方向に高さが勾配を有し、かつ周方向にも高さが勾配を有する放熱用の樹脂放熱フィンを備えることで、スイッチギヤ(盤)内で主として発熱性が高い場所が、開閉器ユニットであることから、スイッチギヤ全体として見た時も冷却性能を向上させることができる。
 また、スイッチギヤ内の主要部である開閉器ユニットを小型化できることで、スイッチギヤ全体を小型化することも可能になることは更に特筆すべき点である。
1 樹脂放熱フィン
1′ 樹脂放熱フィンの最高の高さ
1b 樹脂放熱フィンの底部
1b-in 樹脂放熱フィン内径側の曲率
1b-out フィンの径方向の高さが最も高い樹脂放熱フィン内径側の曲率
1d 樹脂放熱フィンの高さ
1m 放熱板
1t 樹脂放熱フィンの先端
1t-in 樹脂放熱フィンの先端の曲率
1t-out フィン高さが最も高い樹脂放熱フィン先端曲率
1w 樹脂放熱フィンの底部と真空容器外周間の樹脂の距離
2 絶縁樹脂
2p (樹脂表面の)平坦部
2w 樹脂表面の対称平坦部間の幅
3 ブッシング用固定電極
4 接地断路部可動導体
5 固定側導体
6 可動側導体
7 気中部
8 真空容器
9 中間固定電極
10 ばね接点
11、28 ケーブル用ブッシング
12、18 操作ロッド
13 母線用ブッシング
14 母線用ブッシング中心導体
15 ケーブル用ブッシング中心導体
16 固定側電極
17 可動側電極
19 接地側固定電極(ガイド)
20 フレキシブル導体
21 金属ケース
22 ベローズ
26 真空バルブ
27 接地断路部
29 固定側セラミックス絶縁筒
30 可動側セラミックス絶縁筒
31 固定側端板
32 可動側端板
33 ベローズシールド
34 固定側電界緩和シールド
35 可動側電界緩和シールド
40 母線
42 ケーブル
43 操作器
44 制御機器室
45 ケーブルヘッド
46 開閉器ユニット

Claims (10)

  1.  固定電極と、該固定電極に対向すると共に軸方向に動作して前記固定電極と接触または開離される可動電極と、前記一方の電極に接続されて、母線側と接続される母線側導体と、前記他方の電極に接続されて、負荷側と接続される負荷側導体と、を有する開閉器と、 該開閉器の周囲を覆う様に配置される絶縁樹脂と、を備え、
     該絶縁樹脂は、該絶縁樹脂の外表面に、周方向にフィンを形成し、
     前記開閉器の外周と、前記フィンの底部との距離は、周方向で略一定になる様に形成されることを特徴とする開閉器ユニット。
  2.  請求項1に記載の開閉器ユニットであって、
     前記樹脂の外表面は平坦部を有しており、前記樹脂の先端が前記平坦部の面の内側に位置する様に形成されることを特徴とする開閉器ユニット。
  3.  請求項1または2に記載の開閉器ユニットであって、
     前記フィンの径方向の高さが最も高いフィンの内径側の曲率は、該フィンの径方向の高さが最も高いフィン以外のフィンの内径側の曲率よりも大きく形成されることを特徴とする開閉器ユニット。
  4.  請求項1ないし3のいずれか一つに記載の開閉器ユニットであって、
     前記開閉器は、前記固定電極及び前記可動電極を内部に有する真空容器を備える真空開閉器であり、
     更に、1つまたは複数の他の固定電極と、該他の固定電極に対向すると共に軸方向に動作して前記他の固定電極と接触または開離される1つまたは複数の他の可動電極と、前記いずれかの他の電極に接続されて、母線側と接続される他の母線側導体と、前記いずれかの他の電極に接続されて、負荷側と接続される他の負荷側導体と、を有し、かつ、接地機能を有する開閉器を備えており、
     該開閉器と前記真空開閉器は、導体を介して電気的に接続され、
     前記絶縁樹脂は、前記開閉器及び前記真空開閉器の周囲を覆う様に配置され、
     該絶縁樹脂の外表面に、周方向にフィンが形成され、該フィンの径方向の高さが最も高いフィンの内径側の曲率は、該フィンの径方向の高さが最も高いフィン以外のフィンの内径側の曲率よりも大きく形成されることを特徴とする開閉器ユニット。
  5.  請求項4に記載の開閉器ユニットであって、
     前記開閉器及び前記真空開閉器は並んで配置され、
     前記フィンの先端は、前記開閉器または前記真空開閉器を挟んで対向する一組の面を形成することを特徴とする開閉器ユニット。
  6.  請求項5に記載の開閉器ユニットであって、
     前記フィンの先端は、更に前記一組の面に直交し、前記開閉器及び前記真空開閉器を挟んで対向する他の一組の面を形成することを特徴とする開閉器ユニット。
  7.  請求項4ないし6のいずれか一つに記載の開閉器ユニットであって、
     更に前記いずれかの導体に接続されると共に、前記開閉器または真空開閉器の周囲を軸方向に亘って覆う放熱板を、前記絶縁樹脂の内部に配置し、前記フィンは前記放熱板の周囲を覆う様に形成されることを特徴とする開閉器ユニット。
  8.  請求項7に記載の開閉器ユニットであって、
     前記フィンの高さは、前記放熱板のうちで最も前記絶縁樹脂の表面に近い前記放熱板の周囲で最も高く、該最も前記絶縁樹脂の表面に近い前記放熱板の周囲から軸方向に離れるにつれて、低くなる様な勾配を有することを特徴とする開閉器ユニット。
  9.  請求項7または8に記載の開閉器ユニットであって、
     前記放熱板の先端は丸みを有していることを特徴とする開閉器ユニット。
  10.  請求項1ないし9のいずれか一つに記載の開閉器ユニットと、該開閉器ユニットに接続される母線及びケーブルと、前記いずれかの可動電極を駆動するための操作力を発生する操作器と、保護継電器を収納する制御機器室を有し、前記開閉器ユニット、前記母線、前記ケーブル、前記操作器及び前記制御機器室を内部に有する筺体を備えることを特徴とするスイッチギヤ。
PCT/JP2013/060580 2012-05-29 2013-04-08 開閉器ユニットまたはスイッチギヤ WO2013179772A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147033134A KR101694330B1 (ko) 2012-05-29 2013-04-08 개폐기 유닛 또는 스위치 기어
US14/404,081 US9437380B2 (en) 2012-05-29 2013-04-08 Switching unit or switching gear
CN201380027566.7A CN104335313A (zh) 2012-05-29 2013-04-08 开闭器单元或开关设备
EP13797146.1A EP2858082A4 (en) 2012-05-29 2013-04-08 SWITCHING UNIT OR SWITCHING DEVICE
JP2014518325A JP5868501B2 (ja) 2012-05-29 2013-04-08 開閉器ユニットまたはスイッチギヤ
BR112014029749A BR112014029749A2 (pt) 2012-05-29 2013-04-08 unidade de comutação ou equipamento de comutação
IN9763DEN2014 IN2014DN09763A (ja) 2012-05-29 2014-11-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-121480 2012-05-29
JP2012121480 2012-05-29

Publications (1)

Publication Number Publication Date
WO2013179772A1 true WO2013179772A1 (ja) 2013-12-05

Family

ID=49672980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060580 WO2013179772A1 (ja) 2012-05-29 2013-04-08 開閉器ユニットまたはスイッチギヤ

Country Status (9)

Country Link
US (1) US9437380B2 (ja)
EP (1) EP2858082A4 (ja)
JP (1) JP5868501B2 (ja)
KR (1) KR101694330B1 (ja)
CN (1) CN104335313A (ja)
BR (1) BR112014029749A2 (ja)
IN (1) IN2014DN09763A (ja)
TW (1) TWI533344B (ja)
WO (1) WO2013179772A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9230750B2 (en) * 2011-10-19 2016-01-05 Mitsubishi Electric Corporation Gas circuit breaker
CA2939796A1 (en) * 2014-02-20 2015-08-27 Cooper Technologies Company Modular switchgear insulation system
USD800667S1 (en) 2015-02-20 2017-10-24 Cooper Technologies Company Modular switchgear insulation device
CN205335165U (zh) * 2015-08-31 2016-06-22 西门子公司 改进的断续器
US10872739B2 (en) * 2019-05-24 2020-12-22 Frank P Stacom Methods and systems for DC current interrupter based on thermionic arc extinction via anode ion depletion
CN112928644B (zh) * 2021-01-31 2022-07-19 淄博天乙电气设备有限公司 一种有效防水防潮的配电柜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594141U (ja) * 1982-07-01 1984-01-11 株式会社高岳製作所 固体絶縁真空開閉装置の冷却構造
JPH02128335U (ja) * 1989-03-29 1990-10-23
JPH05303929A (ja) * 1992-04-27 1993-11-16 Mitsubishi Electric Corp 固体絶縁開閉装置
JP2001160342A (ja) 1999-12-01 2001-06-12 Toshiba Corp スイッチギヤとその製造方法
JP2012069345A (ja) * 2010-09-22 2012-04-05 Nissin Electric Co Ltd 真空遮断器、及びスイッチギヤ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716098A (en) * 1971-01-28 1973-02-13 G Dotto Automotive apparatus
US4123618A (en) * 1976-06-09 1978-10-31 Westinghouse Electric Corp. Vapor-cooled terminal-bushings for oil-type circuit-interrupters
DE3327390A1 (de) * 1983-07-29 1985-02-07 Siemens AG, 1000 Berlin und 8000 München Vakuumschaltroehre, insbesondere fuer einen niederspannungsschuetz
JPH08132711A (ja) * 1994-11-07 1996-05-28 Seiko Epson Corp 印刷装置
US5597992A (en) * 1994-12-09 1997-01-28 Cooper Industries, Inc. Current interchange for vacuum capacitor switch
JPH10321096A (ja) * 1997-05-23 1998-12-04 Mitsubishi Electric Corp 開閉器
JP2001006502A (ja) * 1999-06-18 2001-01-12 Toshiba Corp 真空遮断器
JP2001028858A (ja) * 1999-07-14 2001-01-30 Mitsubishi Electric Corp 回転電機用鋳造フレームおよび鋳造ブラケットならびにこれを備えた回転電機
US6735068B1 (en) * 2001-03-29 2004-05-11 Mcgraw-Edison Company Electrical apparatus employing one or more housing segments
JP2005074885A (ja) * 2003-09-02 2005-03-24 Seiko Epson Corp インパクトドットヘッドの放熱器およびその製造方法、並びに、インパクトドットヘッドおよびプリンタ
JP2007073816A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ダクト型冷却構造

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594141U (ja) * 1982-07-01 1984-01-11 株式会社高岳製作所 固体絶縁真空開閉装置の冷却構造
JPH02128335U (ja) * 1989-03-29 1990-10-23
JPH05303929A (ja) * 1992-04-27 1993-11-16 Mitsubishi Electric Corp 固体絶縁開閉装置
JP2001160342A (ja) 1999-12-01 2001-06-12 Toshiba Corp スイッチギヤとその製造方法
JP2012069345A (ja) * 2010-09-22 2012-04-05 Nissin Electric Co Ltd 真空遮断器、及びスイッチギヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2858082A4 *

Also Published As

Publication number Publication date
BR112014029749A2 (pt) 2017-06-27
KR20150003881A (ko) 2015-01-09
US20150102013A1 (en) 2015-04-16
JPWO2013179772A1 (ja) 2016-01-18
JP5868501B2 (ja) 2016-02-24
IN2014DN09763A (ja) 2015-07-31
TW201405614A (zh) 2014-02-01
KR101694330B1 (ko) 2017-01-09
EP2858082A4 (en) 2016-02-24
TWI533344B (zh) 2016-05-11
EP2858082A1 (en) 2015-04-08
CN104335313A (zh) 2015-02-04
US9437380B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5423657B2 (ja) 開閉器ユニット及び開閉器ユニットを搭載するスイッチギヤ
JP5868501B2 (ja) 開閉器ユニットまたはスイッチギヤ
JP4962616B2 (ja) 真空遮断器及びそれを用いたガス絶縁開閉装置
JP4568765B2 (ja) 真空スイッチギヤ
EP2979292B1 (en) A switch assembly, a switching device comprising a switch assembly, a switchgear comprising a switching device and a method for cooling
JP4989794B1 (ja) ガス遮断器
JP5565236B2 (ja) 真空遮断器、及びスイッチギヤ
JP5557794B2 (ja) モールドスイッチ及びこれを搭載した装置
WO2023021842A1 (ja) ガス絶縁開閉装置
CN109314010B (zh) 具有双导电壳体的开关装置
EP2720244A1 (en) A pole part of a circuit-breaker arrangement with a heat sink element
EP4290547A1 (en) Dielectric shielding heat sink
JP5899028B2 (ja) スイッチギヤ
CN114203479A (zh) 一种断路器结构
CA2881903A1 (en) A circuit breaker
CN114121527A (zh) 用于开关设备的散热布置结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518325

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147033134

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013797146

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013797146

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14404081

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014029749

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014029749

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141128