WO2013179543A1 - Lens, hybrid lens, replacement lens, and image capture device - Google Patents
Lens, hybrid lens, replacement lens, and image capture device Download PDFInfo
- Publication number
- WO2013179543A1 WO2013179543A1 PCT/JP2013/001876 JP2013001876W WO2013179543A1 WO 2013179543 A1 WO2013179543 A1 WO 2013179543A1 JP 2013001876 W JP2013001876 W JP 2013001876W WO 2013179543 A1 WO2013179543 A1 WO 2013179543A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- resin
- organic semiconductor
- fine particles
- inorganic fine
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
Definitions
- the present invention relates to a lens including a resin as a matrix.
- the present invention also relates to a hybrid lens comprising the lens.
- the present invention also relates to an interchangeable lens and an imaging apparatus including the lens or the hybrid lens.
- optical materials in which inorganic fine particles are dispersed in a matrix material such as a resin are known.
- a matrix material such as a resin
- such a material is referred to as a composite material.
- a technique for realizing a predetermined anomalous dispersion using such a composite material is known.
- Patent Document 1 discloses that antimony-doped tin oxide particles (A) 1 to 30% by mass and an organic compound (B) having one or more polymerizable functional groups in one molecule are 65% by mass or more and less than 98% by mass. And a material composition containing 0.1 to 5% by mass of a polymerization initiator (C) and an optical element using the same. Patent Document 1 is a technique for imparting low anomalous dispersion to an optical element (lens) by adding antimony-doped tin oxide particles to a resin matrix.
- An object of the present invention is to provide a novel lens having a predetermined anomalous dispersion and using a resin as a matrix.
- the lens that solves the above problems includes a resin as a matrix and an organic semiconductor material dispersed in the resin.
- a novel lens having a predetermined anomalous dispersion and using a resin as a matrix can be realized.
- FIG. 1 Schematic sectional view showing the lens of Embodiment 1
- the elements on larger scale of the cross section of the lens of Embodiment 1 Schematic sectional view showing the hybrid lens of the second embodiment Schematic showing the manufacturing process of the hybrid lens of Embodiment 2 Schematic which shows the interchangeable lens of Embodiment 3, and the imaging device of Embodiment 4.
- FIG. 1 Schematic sectional view showing the lens of Embodiment 1
- the elements on larger scale of the cross section of the lens of Embodiment 1 Schematic sectional view showing the hybrid lens of the second embodiment Schematic showing the manufacturing process of the hybrid lens of Embodiment 2 Schematic which shows the interchangeable lens of Embodiment 3, and the imaging device of Embodiment 4.
- One embodiment of the present invention is a lens including a resin as a matrix and an organic semiconductor material dispersed in the resin.
- Another embodiment of the present invention includes a first lens serving as a substrate, A hybrid lens comprising a second lens laminated on the first lens and containing a resin, The second lens is a hybrid lens that is the lens described above.
- Another embodiment of the present invention is an interchangeable lens that is detachable from an image pickup apparatus and includes the above-described lens or hybrid lens.
- Another embodiment of the present invention is an imaging apparatus including the above-described lens or hybrid lens.
- FIG. 1 is a schematic cross-sectional view of a lens 1 having a refractive index distribution according to the present embodiment.
- the lens 1 is a disk-shaped member composed of the optical unit 2.
- the lens 1 is a biconvex lens.
- the lens 1 includes a first optical surface 3, a second optical surface 4, and an outer peripheral surface 5.
- the first optical surface 3 and the second optical surface 4 are opposed to each other in the optical axis X direction.
- the outer peripheral surface 5 is a surface that connects the end of the first optical surface 3 and the end of the second optical surface 4.
- the outer peripheral surface 5 is a side surface of the lens 1.
- the outer diameter of the lens 1 is defined by the outer peripheral surface 5.
- the outer diameter is, for example, 10 to 100 mm.
- FIG. 2 is a partial enlarged cross-sectional view for explaining the lens 1.
- the lens 1 is composed of a lens material including a resin 31 as a matrix and an organic semiconductor material 33 dispersed in the resin 31.
- the resin 31 and the organic semiconductor material 33 are essential components for the lens material.
- the lens material further includes inorganic fine particles 32 that are optional components, and the inorganic fine particles 32 are also dispersed in the resin 31.
- the lens material is configured as a composite material 35.
- the inorganic fine particles 32 have a refractive index higher than that of the resin 31.
- a resin having high translucency can be used from resins such as a thermoplastic resin, a thermosetting resin, and an energy ray curable resin.
- resins such as a thermoplastic resin, a thermosetting resin, and an energy ray curable resin.
- acrylic resin methacrylic resin such as polymethyl methacrylate, epoxy resin, polyethylene terephthalate, polyester resin such as polybutylene terephthalate and polycaprolactone
- polystyrene resin such as polystyrene
- olefin resin such as polypropylene
- polyamide resin such as nylon
- polyimide And polyimide resins such as polyetherimide, polyvinyl alcohol, butyral resin, vinyl acetate resin, and alicyclic polyolefin resin may be used.
- engineering plastics such as polycarbonate, liquid crystal polymer, polyphenylene ether, polysulfone, polyethersulfone, polyarylate, and amorphous polyolefin may be used. Also, a mixture or copolymer of these resins (polymers) may be used. Further, a resin obtained by modifying these resins may be used.
- acrylic resins and methacrylic resins are preferable, and have (meth) acrylates having at least one group selected from the group consisting of oxyethylene groups, oxypropylene groups, and oxyisopropylene groups, and polyalicyclic structures
- (meth) acrylates having at least one group selected from the group consisting of oxyethylene groups, oxypropylene groups, and oxyisopropylene groups, and polyalicyclic structures
- a resin obtained by polymerizing and curing (meth) acrylate or epoxy (meth) acrylate is more preferable. Specific examples of the (meth) acrylate are shown below.
- thermosetting resin when using a thermosetting resin, it is often necessary to use a catalyst or curing agent for curing the resin, and when using an energy ray curable resin, a polymerization initiator for curing the resin. It is often necessary to use Therefore, these components may remain in the resin 31.
- the resin 31 may contain a residue (monomer) and by-product (oligomer or the like) of the resin material as long as the effects of the present invention are not impaired.
- the resin 31 may contain additives such as an antioxidant, an ultraviolet absorber, a release agent, a conductive agent, an antistatic agent, a surfactant, and a heat stabilizer as long as the effects of the present invention are obtained.
- additives such as an antioxidant, an ultraviolet absorber, a release agent, a conductive agent, an antistatic agent, a surfactant, and a heat stabilizer as long as the effects of the present invention are obtained.
- the inorganic fine particles 32 may be either aggregated particles or non-aggregated particles, and generally include primary particles 32a and secondary particles 32b formed by aggregating a plurality of primary particles 32a.
- the dispersion state of the inorganic fine particles 32 is not particularly limited since the effect is obtained as long as the inorganic fine particles are present in the matrix material, but it is preferable that the inorganic fine particles 32 are uniformly dispersed in the resin 31.
- “the inorganic fine particles 32 are uniformly dispersed in the resin 31” means that the primary particles 32 a and the secondary particles 32 b of the inorganic fine particles 32 are not unevenly distributed at specific positions in the composite material 35. It is uniformly dispersed.
- the inorganic fine particles 32 are composed only of the primary particles 32a.
- the particle size of the inorganic fine particles 35 is important.
- the composite material 35 in which the inorganic fine particles 32 are dispersed can be regarded as a homogeneous medium having no refractive index variation. Therefore, it is preferable that the maximum particle size of the inorganic fine particles 32 is not larger than the wavelength of visible light. For example, since visible light has a wavelength in the range of 400 nm to 700 nm, the maximum particle size of the inorganic fine particles 32 is preferably 400 nm or less.
- the maximum particle size of the inorganic fine particles 32 is obtained, for example, by taking a scanning electron microscope (SEM) photograph of the inorganic fine particles 32 and determining the largest particle size of the inorganic fine particles 32 (secondary particle size in the case of secondary particles). It can be determined by measuring.
- SEM scanning electron microscope
- the center particle diameter (median diameter: d50) of the inorganic fine particles 32 is preferably 100 nm or less.
- fluorescence may be generated when the inorganic fine particles are made of a material that exhibits a quantum effect, which is a characteristic of the optical component formed using the composite material 35. May have an effect.
- the center particle size of the inorganic fine particles is preferably in the range of 1 nm to 100 nm, and more preferably in the range of 1 nm to 50 nm.
- the particle size of the inorganic fine particles 32 is 20 nm or less because the influence of Rayleigh scattering becomes very small and the translucency of the composite material 35 becomes particularly high.
- the center particle size of the inorganic fine particles 32 is, for example, a photograph of a scanning electron microscope (SEM) of the inorganic fine particles, and the particle size (secondary particle size in the case of secondary particles) of 200 or more inorganic fine particles. ) Can be obtained by measuring.
- Examples of the material of the inorganic fine particles 32 include metal element oxides and fluorides.
- metal element oxides include silicon oxide, zirconium oxide, titanium oxide, zinc oxide, aluminum oxide, yttrium oxide, barium titanate, europium oxide, magnesium oxide, niobium oxide, tantalum oxide, tungsten oxide, hafnium oxide, Indium oxide, indium phosphate, tin oxide, indium tin oxide, cerium oxide, barium sulfate, gadolinium oxide, lanthanum oxide, and the like can be given. Silicon oxide includes those having voids formed therein, such as porous silica.
- fluorides include magnesium fluoride, cerium fluoride, lanthanum fluoride, niobium fluoride, yttrium fluoride, and the like.
- the material of the inorganic fine particles 32 is naturally not limited to these.
- the refractive index of these inorganic fine particles 32 varies depending on the material. Therefore, some materials have a higher refractive index than that of the resin 31 and some have a lower refractive index. In the present embodiment, the inorganic fine particles 32 have a refractive index higher than that of the resin 31, but the material of the inorganic fine particles 32 may be properly used depending on the optical characteristics required for the lens 1.
- the refractive index of the composite material 35 in which the inorganic fine particles 32 are dispersed in the resin 31 can be adjusted by adjusting the particle diameter, the number, and the like of the inorganic fine particles 32.
- an organic semiconductor material 33 is added to the resin 31.
- the anomalous dispersion of the lens material can be changed and controlled.
- the anomalous dispersion is expressed by ⁇ Pg, F which is a deviation between a point on the standard line of normal dispersion glass corresponding to the Abbe number ⁇ d of each material and the partial dispersion ratio Pg, F of the material.
- the partial dispersion ratios Pg and F are numerical values defined by the following mathematical formula (1).
- ng, nF, and nC are refractive indexes of g-line (wavelength 435.8 nm), F-line (wavelength 486 nm), and C-line (wavelength 656 nm), respectively.
- the values of ⁇ Pg, F of the lens 1 can be reduced.
- a resin material to be a matrix and arbitrary inorganic fine particles are appropriately selected. Therefore, the lens 1 can also have a small positive anomalous dispersion or a negative anomalous dispersion such that ⁇ Pg, F is less than 0.03.
- the resin and the lens material in which the organic semiconductor material is dispersed in the resin show a tendency that the ⁇ Pg and F values tend to decrease as the thickness decreases. This is presumably because the organic semiconductor material is oriented in a direction parallel to the lens surface when the lens is molded.
- the addition amount of the organic semiconductor material 33 is preferably 0.01 wt% or more, more preferably 0.05 wt% or more with respect to the resin 31 because an effect of reducing the values of ⁇ Pg and F is easily obtained. Is more preferable.
- the addition amount of the organic semiconductor material 33 is large, the organic semiconductor material 33 may be precipitated from the resin 31 depending on the type of the resin 31. Therefore, it is preferable to add the organic semiconductor material 33 in a range where the organic semiconductor material 33 does not precipitate from the resin 31.
- the addition amount is preferably 15 wt% or less, more preferably 10 wt% or less, and further preferably 8 wt% or less with respect to the resin 31.
- the type of the organic semiconductor material 33 is not particularly limited as long as it is an organic compound exhibiting properties as a semiconductor.
- the organic compound essentially contains a carbon atom and a hydrogen atom, and may further contain a sulfur atom, an oxygen atom, a nitrogen atom or the like, and particularly preferably further contains a sulfur atom.
- the organic compound is preferably a compound having at least one aromatic ring.
- Examples of the organic semiconductor material 33 include poly (3-hexylthiophene-2,5-diyl), poly (3-octylthiophene-2,5-diyl), and poly (3-dodecylthiophene-2,5-diyl).
- the organic semiconductor material 33 is preferably a compound having a thiophene ring.
- the organic semiconductor material 33 may be dispersed as particles in the resin 31 or may be dissolved and dispersed.
- the maximum particle size is preferably 400 nm or less, like the inorganic fine particles 32.
- the central particle size is preferably in the range of 1 nm to 100 nm, more preferably in the range of 1 nm to 50 nm, and still more preferably in the range of 1 nm to 20 nm.
- the lens material is a residue (monomer, polymerization initiator, etc.) when the above-described polymer organic semiconductor compound used as the organic semiconductor material 33 is produced within a range that does not impair the effects of the present invention.
- by-products such as oligomers may be included.
- the lens 1 is prepared by preparing a mixture in which the organic semiconductor material 33 and, if necessary, the inorganic fine particles 32 are dispersed in the resin 31 or the resin raw material, and molding the mixture using a lens mold having a shape corresponding to the lens. Can be manufactured.
- the resin 31 is a thermoplastic resin
- a mixture in which the organic semiconductor material 33 and, if necessary, the inorganic fine particles 32 are uniformly dispersed in the thermoplastic resin is heated to a temperature equal to or higher than the melting point of the thermoplastic resin.
- the lens 1 can be manufactured by filling the lens mold and cooling.
- the lens mold is filled with a mixture in which the organic semiconductor material 33 and, if necessary, the inorganic fine particles 32 are dispersed in the raw material of the thermosetting resin, and thermosetting is performed.
- the lens 1 can be manufactured by thermosetting the raw material of the functional resin.
- the resin 31 is an energy ray curable resin
- a transparent lens mold is filled with a mixture in which the organic semiconductor material 33 and, if necessary, the inorganic fine particles 32 are dispersed in the raw material of the energy ray curable resin.
- the lens 1 can be manufactured by irradiating energy rays to cure the raw material of the energy ray curable resin.
- the mixture preferably contains a polymerization initiator.
- a polymerization initiator a hydroxyketone compound having a molecular weight of 150 to 2,000 is suitable.
- FIG. 3 is a schematic cross-sectional view showing the hybrid lens 40.
- the hybrid lens 40 includes a first lens 41 serving as a base material made of a glass material or the like, and a second lens 42 made of the lens material (composite material 35).
- the second lens 42 is stacked on the optical surface of the first lens 41.
- the lens 1 described in the first embodiment is used (however, one of the optical surfaces has a concave shape).
- the resin constituting the composite material 35 is an energy ray curable resin.
- FIG. 4 is a schematic view showing the manufacturing process of the hybrid lens 40.
- the first lens 41 is molded.
- the first lens 41 is molded using a known manufacturing method such as lens polishing, injection molding, or press molding.
- the raw material of the energy ray curable resin, the organic semiconductor material, and the optional material containing the energy ray polymerization type polymerization initiator on the molding surface of the molding die 51 are used.
- a mixture 52 (raw material of the composite material 35) in which the inorganic fine particles of the components are uniformly mixed is discharged.
- the first lens 41 is placed from above the mixture 52 and spread until the mixture 52 has a predetermined thickness.
- the mixture 52 is hardened by irradiating an energy ray (for example, ultraviolet-ray) from the light source 53 from the upper direction of the 1st lens 41, and the 2nd lens 42 is formed.
- an energy ray for example, ultraviolet-ray
- FIG. 5 shows a schematic diagram of the camera 100.
- the camera 100 includes a camera body 110 and an interchangeable lens 120 attached to the camera body 110.
- the camera 100 is an example of an imaging device.
- the camera body 110 has an image sensor 130.
- the interchangeable lens 120 is configured to be detachable from the camera body 110.
- the interchangeable lens 120 is, for example, a telephoto zoom lens.
- the interchangeable lens 120 has an imaging optical system 140 for focusing the light beam on the image sensor 130 of the camera body 120.
- the imaging optical system 140 includes the lens 1 and refractive lenses 150 and 160.
- the hybrid lens 40 can be used instead of the lens 1.
- the camera has a camera main body and a lens unit that is not separable from the camera main body, and the lens unit includes the lens 1 or the hybrid lens 40. Is also possible.
- Table 1 summarizes the contents of the examples and comparative examples.
- Example 1 After mixing the compounds represented by chemical formula (1) and chemical formula (37) at a weight ratio of 10: 1, 3 wt% of a polymerization initiator (Irgacure184, manufactured by BASF; 1-Hydroxycyclohexyl phenyl ketone, molecular weight 204) is added to the resin raw material A was prepared. To this, ZnO fine particles were added to prepare a composite material. To this composite material, 1% by weight of poly (3-hexylthiophene-2,5-diyl) (manufactured by Aldrich; indicated as X in Table 1) as an organic semiconductor material is added to the resin raw material A and mixed. And dispersed.
- a polymerization initiator Irgacure184, manufactured by BASF; 1-Hydroxycyclohexyl phenyl ketone, molecular weight 204
- Table 1 shows that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
- Example 2 A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that the thickness of the lens material sample was changed to 60 ⁇ m. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
- Example 3 A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that the thickness of the lens material sample was changed to 30 ⁇ m. The results are shown in Table 1. Table 1 shows that a lens material exhibiting negative anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting negative anomalous dispersion can be produced. From the results of Examples 1 to 3, it can be seen that the value of ⁇ Pg, F decreases as the thickness of the lens material decreases.
- Example 4 A sample of the lens material was prepared and the optical characteristics were evaluated in the same manner as in Example 1 except that the amount of the organic semiconductor material added was changed to 5 wt% with respect to the resin raw material A. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
- Example 5 Instead of the compound represented by the chemical formula (1) and the chemical formula (37), the compound represented by the chemical formula (5) is used, and instead of poly (3-hexylthiophene-2,5-diyl), 2,7- A sample of the lens material was prepared in the same manner as in Example 1 except that ditridecyl [1] benzothieno [3,2-b] benzothiophene (Aldrich; indicated as Y in Table 1) was used. Characteristics were evaluated. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
- Example 6 A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 5 except that the thickness of the lens material sample was changed to 60 ⁇ m. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced. From the results of Examples 5 and 6, it can be seen that the value of ⁇ Pg, F decreases as the thickness of the lens material decreases.
- Example 7 Polymerization initiator (ESACURE KIP150, manufactured by Lamberti; Oligo [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone], molecular weight instead of polymerization initiator (Irgacure184, manufactured by BASF)
- ESACURE KIP150 manufactured by Lamberti
- Oligo [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone] molecular weight instead of polymerization initiator (Irgacure184, manufactured by BASF)
- 550 weight average
- Example 8 2,6-diphenylbenzo [1,2-b: 4,5-b ′] dithiophene (Aldrich; in Table 1) instead of poly (3-hexylthiophene-2,5-diyl) as an organic semiconductor material
- Aldrich in Table 1
- poly (3-hexylthiophene-2,5-diyl) instead of poly (3-hexylthiophene-2,5-diyl) as an organic semiconductor material
- ⁇ Comparative Example 1> A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that no organic semiconductor was added. The results are shown in Table 1. From Table 1, it can be seen that the sample of Comparative Example 1 exhibits a larger positive anomalous dispersion than the sample of the Example. This is presumably because the organic semiconductor material is not included, and the absorption characteristics particularly in the short wavelength region are increased.
- ⁇ Comparative example 2> A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that the organic semiconductor was not added and the thickness of the lens material sample was changed to 60 ⁇ m. The results are shown in Table 1. It can be seen that the sample of Comparative Example 2 exhibits a larger positive anomalous dispersion than the sample of the Example. In Comparative Examples 1 and 2, the values of ⁇ Pg, F tended to decrease as the thickness of the lens material decreased. However, the amount of decrease in ⁇ Pg, F was small compared to the example. Recognize.
- the lens and hybrid lens of the present invention can be suitably used for an imaging device, an interchangeable lens of the imaging device, a DVD optical system, and the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention provides a new lens which has a prescribed anomalous dispersion and a resin in a matrix. The present invention is a lens which includes a resin as a matrix, and an organic semiconductor material which is dispersed in the resin. The present invention is also a hybrid lens, comprising a first lens which is a substrate, and a second lens which is layered upon the first lens, and including a resin. The second lens includes a resin as a matrix, and an organic semiconductor member which is dispersed in the resin.
Description
本発明は、樹脂をマトリクスとして含むレンズに関する。本発明はまた、前記レンズを備えるハイブリッドレンズに関する。本発明はまた、前記レンズまたは前記ハイブリッドレンズを備える、交換レンズおよび撮像装置に関する。
The present invention relates to a lens including a resin as a matrix. The present invention also relates to a hybrid lens comprising the lens. The present invention also relates to an interchangeable lens and an imaging apparatus including the lens or the hybrid lens.
光学特性の幅を広げるために、樹脂などのマトリクス材料の中に無機微粒子が分散された光学材料が知られている。以下、このような構成の材料をコンポジット材料と称する。
In order to widen the range of optical characteristics, optical materials in which inorganic fine particles are dispersed in a matrix material such as a resin are known. Hereinafter, such a material is referred to as a composite material.
このようなコンポジット材料を用いて、所定の異常分散性を実現する技術が知られている。
A technique for realizing a predetermined anomalous dispersion using such a composite material is known.
例えば特許文献1には、アンチモンドープ酸化スズ粒子(A)1~30質量%と、1分子中に1個以上の重合性官能基を有する有機化合物(B)65質量%以上、98質量%未満と、重合開始剤(C)0.1~5質量%を含む材料組成物およびそれを用いた光学素子が開示されている。特許文献1は、樹脂マトリクスにアンチモンドープ酸化スズ粒子を添加することによって、光学素子(レンズ)に低い異常分散性を与える技術である。
For example, Patent Document 1 discloses that antimony-doped tin oxide particles (A) 1 to 30% by mass and an organic compound (B) having one or more polymerizable functional groups in one molecule are 65% by mass or more and less than 98% by mass. And a material composition containing 0.1 to 5% by mass of a polymerization initiator (C) and an optical element using the same. Patent Document 1 is a technique for imparting low anomalous dispersion to an optical element (lens) by adding antimony-doped tin oxide particles to a resin matrix.
レンズに求められる光学特性は広範囲にわたるため、レンズの異常分散性を制御する技術は光学分野において非常に有用であり、新たな手法によりレンズの異常分散性を制御する技術の開発が望まれている。
Since the optical properties required for lenses are wide, a technology for controlling the anomalous dispersion of the lens is very useful in the optical field, and the development of a technology for controlling the anomalous dispersion of the lens by a new method is desired. .
本発明は、所定の異常分散性を有し、樹脂をマトリクスとする新規なレンズを提供することを目的とする。
An object of the present invention is to provide a novel lens having a predetermined anomalous dispersion and using a resin as a matrix.
上記課題を解決するレンズは、マトリクスとしての樹脂、および前記樹脂中に分散した有機半導体材料を含む。
The lens that solves the above problems includes a resin as a matrix and an organic semiconductor material dispersed in the resin.
上記レンズによれば、所定の異常分散性を有し、樹脂をマトリクスとする新規なレンズを実現することができる。
According to the above lens, a novel lens having a predetermined anomalous dispersion and using a resin as a matrix can be realized.
本発明の一実施の形態は、マトリクスとしての樹脂、および前記樹脂中に分散した有機半導体材料を含むレンズである。
One embodiment of the present invention is a lens including a resin as a matrix and an organic semiconductor material dispersed in the resin.
本発明の別の一実施の形態は、基材となる第1のレンズと、
前記第1のレンズに積層され、樹脂を含む第2のレンズとを備えるハイブリッドレンズであって、
前記第2のレンズが、上記のレンズである、ハイブリッドレンズである。 Another embodiment of the present invention includes a first lens serving as a substrate,
A hybrid lens comprising a second lens laminated on the first lens and containing a resin,
The second lens is a hybrid lens that is the lens described above.
前記第1のレンズに積層され、樹脂を含む第2のレンズとを備えるハイブリッドレンズであって、
前記第2のレンズが、上記のレンズである、ハイブリッドレンズである。 Another embodiment of the present invention includes a first lens serving as a substrate,
A hybrid lens comprising a second lens laminated on the first lens and containing a resin,
The second lens is a hybrid lens that is the lens described above.
本発明の別の一実施の形態は、上記のレンズまたはハイブリッドレンズを備える、撮像装置に着脱可能な交換レンズである。
Another embodiment of the present invention is an interchangeable lens that is detachable from an image pickup apparatus and includes the above-described lens or hybrid lens.
本発明の別の一実施の形態は、上記のレンズまたはハイブリッドレンズを備える、撮像装置である。
Another embodiment of the present invention is an imaging apparatus including the above-described lens or hybrid lens.
以下、特定の実施形態を挙げて本発明を詳細に説明するが、本発明はこれらの実施形態に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲で適宜変更して実施することができる。
Hereinafter, the present invention will be described in detail with reference to specific embodiments, but the present invention is not limited to these embodiments, and may be appropriately modified and implemented without departing from the technical scope of the present invention. be able to.
<実施の形態1>
以下、実施の形態1のレンズ1について図面を参照しながら説明する。 <Embodiment 1>
Hereinafter, thelens 1 of Embodiment 1 will be described with reference to the drawings.
以下、実施の形態1のレンズ1について図面を参照しながら説明する。 <
Hereinafter, the
[1.レンズ]
図1は、本実施形態に係る屈折率分布を持ったレンズ1の概略断面図である。レンズ1は、光学部2から構成される円盤状の部材である。レンズ1は、両凸形状のレンズである。 [1. lens]
FIG. 1 is a schematic cross-sectional view of alens 1 having a refractive index distribution according to the present embodiment. The lens 1 is a disk-shaped member composed of the optical unit 2. The lens 1 is a biconvex lens.
図1は、本実施形態に係る屈折率分布を持ったレンズ1の概略断面図である。レンズ1は、光学部2から構成される円盤状の部材である。レンズ1は、両凸形状のレンズである。 [1. lens]
FIG. 1 is a schematic cross-sectional view of a
レンズ1は、第1光学面3と、第2光学面4と、外周面5とを備える。第1光学面3と第2光学面4とは、光軸X方向に相対向している。
The lens 1 includes a first optical surface 3, a second optical surface 4, and an outer peripheral surface 5. The first optical surface 3 and the second optical surface 4 are opposed to each other in the optical axis X direction.
外周面5は、第1光学面3の端部と第2光学面4の端部とを接続する面である。外周面5は、レンズ1の側面である。
The outer peripheral surface 5 is a surface that connects the end of the first optical surface 3 and the end of the second optical surface 4. The outer peripheral surface 5 is a side surface of the lens 1.
レンズ1の外径は外周面5で規定される。本実施形態では外径は、例えば10~100mmである。
The outer diameter of the lens 1 is defined by the outer peripheral surface 5. In the present embodiment, the outer diameter is, for example, 10 to 100 mm.
[2.レンズ材料]
図2は、レンズ1を説明するための部分拡大断面図である。 [2. Lens material]
FIG. 2 is a partial enlarged cross-sectional view for explaining thelens 1.
図2は、レンズ1を説明するための部分拡大断面図である。 [2. Lens material]
FIG. 2 is a partial enlarged cross-sectional view for explaining the
図2に示すように、レンズ1は、マトリクスとしての樹脂31と、樹脂31中に分散した有機半導体材料33とを含むレンズ材料により構成されている。樹脂31および有機半導体材料33はレンズ材料に必須の成分である。本実施形態では、レンズ材料は、さらに任意成分である無機微粒子32を含んでおり、無機微粒子32もまた樹脂31中に分散している。このようにレンズ材料は、コンポジット材料35として構成されている。本実施形態では、無機微粒子32は樹脂31よりも屈折率が高いものを用いている。
As shown in FIG. 2, the lens 1 is composed of a lens material including a resin 31 as a matrix and an organic semiconductor material 33 dispersed in the resin 31. The resin 31 and the organic semiconductor material 33 are essential components for the lens material. In the present embodiment, the lens material further includes inorganic fine particles 32 that are optional components, and the inorganic fine particles 32 are also dispersed in the resin 31. Thus, the lens material is configured as a composite material 35. In the present embodiment, the inorganic fine particles 32 have a refractive index higher than that of the resin 31.
[3.樹脂]
樹脂31としては、熱可塑性樹脂、熱硬化性樹脂、及びエネルギー線硬化性樹脂等の樹脂の中から、透光性の高い樹脂を用いることができる。例えば、アクリル樹脂、ポリメタクリル酸メチル等のメタクリル樹脂、エポキシ樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリカプロラクトン等のポリエステル樹脂、ポリスチレン等のポリスチレン樹脂、ポリプロピレン等のオレフィン樹脂、ナイロン等のポリアミド樹脂、ポリイミドやポリエーテルイミド等のポリイミド樹脂、ポリビニルアルコール、ブチラール樹脂、酢酸ビニル樹脂、脂環式ポリオレフィン樹脂を用いてもよい。また、ポリカーボネート、液晶ポリマー、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリアリレート、非晶性ポリオレフィン等のエンジニアリングプラスチックを用いてもよい。また、これらの樹脂(高分子)の混合体や共重合体を用いてもよい。また、これらの樹脂を変性した樹脂を用いても良い。 [3. resin]
As theresin 31, a resin having high translucency can be used from resins such as a thermoplastic resin, a thermosetting resin, and an energy ray curable resin. For example, acrylic resin, methacrylic resin such as polymethyl methacrylate, epoxy resin, polyethylene terephthalate, polyester resin such as polybutylene terephthalate and polycaprolactone, polystyrene resin such as polystyrene, olefin resin such as polypropylene, polyamide resin such as nylon, polyimide And polyimide resins such as polyetherimide, polyvinyl alcohol, butyral resin, vinyl acetate resin, and alicyclic polyolefin resin may be used. Further, engineering plastics such as polycarbonate, liquid crystal polymer, polyphenylene ether, polysulfone, polyethersulfone, polyarylate, and amorphous polyolefin may be used. Also, a mixture or copolymer of these resins (polymers) may be used. Further, a resin obtained by modifying these resins may be used.
樹脂31としては、熱可塑性樹脂、熱硬化性樹脂、及びエネルギー線硬化性樹脂等の樹脂の中から、透光性の高い樹脂を用いることができる。例えば、アクリル樹脂、ポリメタクリル酸メチル等のメタクリル樹脂、エポキシ樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリカプロラクトン等のポリエステル樹脂、ポリスチレン等のポリスチレン樹脂、ポリプロピレン等のオレフィン樹脂、ナイロン等のポリアミド樹脂、ポリイミドやポリエーテルイミド等のポリイミド樹脂、ポリビニルアルコール、ブチラール樹脂、酢酸ビニル樹脂、脂環式ポリオレフィン樹脂を用いてもよい。また、ポリカーボネート、液晶ポリマー、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリアリレート、非晶性ポリオレフィン等のエンジニアリングプラスチックを用いてもよい。また、これらの樹脂(高分子)の混合体や共重合体を用いてもよい。また、これらの樹脂を変性した樹脂を用いても良い。 [3. resin]
As the
上記の中でも、アクリル樹脂およびメタクリル樹脂が好ましく、オキシエチレン基、オキシプロピレン基、およびオキシイソプロピレン基からなる群より選ばれる少なくとも1種の基を有する(メタ)アクリレート、多脂環構造を有する(メタ)アクリレート、又はエポキシ(メタ)アクリレートを重合硬化させた樹脂がより好ましい。当該(メタ)アクリレートの具体例を以下に示す。
Among the above, acrylic resins and methacrylic resins are preferable, and have (meth) acrylates having at least one group selected from the group consisting of oxyethylene groups, oxypropylene groups, and oxyisopropylene groups, and polyalicyclic structures ( A resin obtained by polymerizing and curing (meth) acrylate or epoxy (meth) acrylate is more preferable. Specific examples of the (meth) acrylate are shown below.
なお、熱硬化性樹脂を用いる場合は、樹脂を硬化させるための触媒又は硬化剤を使用する必要があることが多く、エネルギー線硬化性樹脂を用いる場合は、樹脂を硬化させるための重合開始剤を使用する必要があることが多い。よって、樹脂31中にこれらの成分が残存していてもよい。
In addition, when using a thermosetting resin, it is often necessary to use a catalyst or curing agent for curing the resin, and when using an energy ray curable resin, a polymerization initiator for curing the resin. It is often necessary to use Therefore, these components may remain in the resin 31.
また、樹脂31には、本発明の効果を阻害しない範囲内で、前記樹脂材料の残存物(モノマー)および副生物(オリゴマーなど)が含まれていてもよい。
Further, the resin 31 may contain a residue (monomer) and by-product (oligomer or the like) of the resin material as long as the effects of the present invention are not impaired.
樹脂31は、本発明の効果が得られる限り、酸化防止剤、紫外線吸収剤、離型剤、導電剤、帯電防止剤、界面活性剤、熱安定性剤などの添加剤を含んでもよい。
The resin 31 may contain additives such as an antioxidant, an ultraviolet absorber, a release agent, a conductive agent, an antistatic agent, a surfactant, and a heat stabilizer as long as the effects of the present invention are obtained.
[4.無機微粒子]
無機微粒子32は、凝集粒子、非凝集粒子のいずれであってもよく、一般的には一次粒子32aと、一次粒子32aが複数個凝集してなる二次粒子32bを含んで構成されている。無機微粒子32の分散状態は、マトリクス材料中に無機微粒子が存在する限り効果が得られることから特に制限はないが、無機微粒子32が樹脂31中に均一に分散されていることが好ましい。ここで、「無機微粒子32が樹脂31中に均一に分散されている」とは、無機微粒子32の一次粒子32aおよび二次粒子32bがコンポジット材料35内の特定の位置に偏在することなく、実質的に均一に分散していることを意味する。光学材料として透光性を抑制するためには良好な粒子の分散性を有することが好ましい。そのため無機微粒子32は一次粒子32aのみで構成されているのが好ましい。 [4. Inorganic fine particles]
Theinorganic fine particles 32 may be either aggregated particles or non-aggregated particles, and generally include primary particles 32a and secondary particles 32b formed by aggregating a plurality of primary particles 32a. The dispersion state of the inorganic fine particles 32 is not particularly limited since the effect is obtained as long as the inorganic fine particles are present in the matrix material, but it is preferable that the inorganic fine particles 32 are uniformly dispersed in the resin 31. Here, “the inorganic fine particles 32 are uniformly dispersed in the resin 31” means that the primary particles 32 a and the secondary particles 32 b of the inorganic fine particles 32 are not unevenly distributed at specific positions in the composite material 35. It is uniformly dispersed. In order to suppress translucency as an optical material, it is preferable to have good particle dispersibility. Therefore, it is preferable that the inorganic fine particles 32 are composed only of the primary particles 32a.
無機微粒子32は、凝集粒子、非凝集粒子のいずれであってもよく、一般的には一次粒子32aと、一次粒子32aが複数個凝集してなる二次粒子32bを含んで構成されている。無機微粒子32の分散状態は、マトリクス材料中に無機微粒子が存在する限り効果が得られることから特に制限はないが、無機微粒子32が樹脂31中に均一に分散されていることが好ましい。ここで、「無機微粒子32が樹脂31中に均一に分散されている」とは、無機微粒子32の一次粒子32aおよび二次粒子32bがコンポジット材料35内の特定の位置に偏在することなく、実質的に均一に分散していることを意味する。光学材料として透光性を抑制するためには良好な粒子の分散性を有することが好ましい。そのため無機微粒子32は一次粒子32aのみで構成されているのが好ましい。 [4. Inorganic fine particles]
The
無機微粒子32を分散させたコンポジット材料35の透光性を確保するためには、無機微粒子35の粒径が重要となる。無機微粒子32の粒径が光の波長よりも十分小さいときは、無機微粒子32が分散されているコンポジット材料35を屈折率のばらつきがない均質な媒体とみなすことができる。したがって、無機微粒子32の最大粒径は、可視光の波長以下の大きさであることが好ましい。例えば可視光は400nm以上700nm以下の範囲の波長であるため、無機微粒子32の最大粒径は400nm以下であることが好ましい。なお、無機微粒子32の最大粒子径は、例えば、無機微粒子32の走査型電子顕微鏡(SEM)写真を撮影し、最も大きな無機微粒子32の粒径(二次粒子の場合は二次粒径)を測定することにより求めることができる。
In order to ensure the translucency of the composite material 35 in which the inorganic fine particles 32 are dispersed, the particle size of the inorganic fine particles 35 is important. When the particle diameter of the inorganic fine particles 32 is sufficiently smaller than the wavelength of light, the composite material 35 in which the inorganic fine particles 32 are dispersed can be regarded as a homogeneous medium having no refractive index variation. Therefore, it is preferable that the maximum particle size of the inorganic fine particles 32 is not larger than the wavelength of visible light. For example, since visible light has a wavelength in the range of 400 nm to 700 nm, the maximum particle size of the inorganic fine particles 32 is preferably 400 nm or less. The maximum particle size of the inorganic fine particles 32 is obtained, for example, by taking a scanning electron microscope (SEM) photograph of the inorganic fine particles 32 and determining the largest particle size of the inorganic fine particles 32 (secondary particle size in the case of secondary particles). It can be determined by measuring.
無機微粒子32の粒径が光の波長の1/4より大きい場合は、レイリー散乱によって透光性が損なわれるおそれがある。そのため、可視光域において高い透光性を実現するためには、無機微粒子32の中心粒径(メジアン径:d50)は100nm以下であることが好ましい。ただし、無機微粒子の粒径が1nm未満になると、無機微粒子が量子的な効果を発現する材質からなる場合には蛍光を生じることがあり、これがコンポジット材料35を用いて形成した光学部品の特性に影響をおよぼす場合がある。以上の観点から、無機微粒子の中心粒径は1nm以上100nm以下の範囲内にあることが好ましく、1nm以上50nm以下の範囲内にあることがより好ましい。特に、無機微粒子32の粒径を20nm以下とすることで、レイリー散乱の影響が非常に小さくなり、コンポジット材料35の透光性が特に高くなるのでさらに好ましい。なお、無機微粒子32の中心粒径は、例えば、無機微粒子の走査型電子顕微鏡(SEM)写真を撮影し、200個以上の無機微粒子について、その粒径(二次粒子の場合は二次粒径)を測定して求めることができる。
When the particle diameter of the inorganic fine particles 32 is larger than ¼ of the wavelength of light, the translucency may be impaired by Rayleigh scattering. Therefore, in order to realize high translucency in the visible light region, the center particle diameter (median diameter: d50) of the inorganic fine particles 32 is preferably 100 nm or less. However, when the particle size of the inorganic fine particles is less than 1 nm, fluorescence may be generated when the inorganic fine particles are made of a material that exhibits a quantum effect, which is a characteristic of the optical component formed using the composite material 35. May have an effect. From the above viewpoint, the center particle size of the inorganic fine particles is preferably in the range of 1 nm to 100 nm, and more preferably in the range of 1 nm to 50 nm. In particular, it is more preferable that the particle size of the inorganic fine particles 32 is 20 nm or less because the influence of Rayleigh scattering becomes very small and the translucency of the composite material 35 becomes particularly high. The center particle size of the inorganic fine particles 32 is, for example, a photograph of a scanning electron microscope (SEM) of the inorganic fine particles, and the particle size (secondary particle size in the case of secondary particles) of 200 or more inorganic fine particles. ) Can be obtained by measuring.
無機微粒子32の材料としては、金属元素の酸化物や、フッ化物が挙げられる。金属元素の酸化物の例としては、酸化珪素、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化イットリウム、チタン酸バリウム、酸化ユウロピム、酸化マグネシウム、酸化ニオブ、酸化タンタル、酸化タングステン、酸化ハフニウム、酸化インジウム、リン酸インジウム、酸化スズ、酸化インジウムスズ、酸化セリウム、硫酸バリウム、酸化ガドリ二ウム、酸化ランタン、などが挙げられる。酸化珪素には、ポーラスシリカのように内部に空隙が形成されているものも含まれる。フッ化物の例としては、フッ化マグネシウム、フッ化セリウム、フッ化ランタン、フッ化ニオブ、フッ化イットリウムなどが挙げられる。しかしながら無機微粒子32の材料は、当然これらに限定されない。
Examples of the material of the inorganic fine particles 32 include metal element oxides and fluorides. Examples of metal element oxides include silicon oxide, zirconium oxide, titanium oxide, zinc oxide, aluminum oxide, yttrium oxide, barium titanate, europium oxide, magnesium oxide, niobium oxide, tantalum oxide, tungsten oxide, hafnium oxide, Indium oxide, indium phosphate, tin oxide, indium tin oxide, cerium oxide, barium sulfate, gadolinium oxide, lanthanum oxide, and the like can be given. Silicon oxide includes those having voids formed therein, such as porous silica. Examples of fluorides include magnesium fluoride, cerium fluoride, lanthanum fluoride, niobium fluoride, yttrium fluoride, and the like. However, the material of the inorganic fine particles 32 is naturally not limited to these.
これらの無機微粒子32の屈折率は、材料によって屈折率が異なる。そのため、材料によっては、樹脂31よりも屈折率が高いものや、屈折率が低いものがある。本実施形態では、無機微粒子32は樹脂31よりも屈折率が高いものを用いているが、レンズ1に求められる光学特性に応じて、適宜無機微粒子32の材料を使い分ければよい。
The refractive index of these inorganic fine particles 32 varies depending on the material. Therefore, some materials have a higher refractive index than that of the resin 31 and some have a lower refractive index. In the present embodiment, the inorganic fine particles 32 have a refractive index higher than that of the resin 31, but the material of the inorganic fine particles 32 may be properly used depending on the optical characteristics required for the lens 1.
また、無機微粒子32の粒径、数などを調整することにより、樹脂31に無機微粒子32を分散させたコンポジット材料35の屈折率を調整することができる。
Further, the refractive index of the composite material 35 in which the inorganic fine particles 32 are dispersed in the resin 31 can be adjusted by adjusting the particle diameter, the number, and the like of the inorganic fine particles 32.
[5.有機半導体材料]
本実施形態では、樹脂31中に、有機半導体材料33が添加されている。有機半導体材料33を添加することにより、レンズ材料の異常分散性を変化させ、制御することができる。ここで、異常分散性は、個々の材料のアッベ数νdに対応する正常分散ガラスの標準線上の点とその材料の部分分散比Pg,Fとの偏差であるΔPg,Fにより表される。部分分散比Pg,Fは、下記数式(1)により定義される数値である。数式(1)において、ng、nF、nCはそれぞれ、g線(波長435.8nm)、F線(波長486nm)およびC線(波長656nm)における屈折率である。 [5. Organic semiconductor materials]
In the present embodiment, anorganic semiconductor material 33 is added to the resin 31. By adding the organic semiconductor material 33, the anomalous dispersion of the lens material can be changed and controlled. Here, the anomalous dispersion is expressed by ΔPg, F which is a deviation between a point on the standard line of normal dispersion glass corresponding to the Abbe number νd of each material and the partial dispersion ratio Pg, F of the material. The partial dispersion ratios Pg and F are numerical values defined by the following mathematical formula (1). In Formula (1), ng, nF, and nC are refractive indexes of g-line (wavelength 435.8 nm), F-line (wavelength 486 nm), and C-line (wavelength 656 nm), respectively.
本実施形態では、樹脂31中に、有機半導体材料33が添加されている。有機半導体材料33を添加することにより、レンズ材料の異常分散性を変化させ、制御することができる。ここで、異常分散性は、個々の材料のアッベ数νdに対応する正常分散ガラスの標準線上の点とその材料の部分分散比Pg,Fとの偏差であるΔPg,Fにより表される。部分分散比Pg,Fは、下記数式(1)により定義される数値である。数式(1)において、ng、nF、nCはそれぞれ、g線(波長435.8nm)、F線(波長486nm)およびC線(波長656nm)における屈折率である。 [5. Organic semiconductor materials]
In the present embodiment, an
Pg,F=(ng-nF)/(nF-nC) ・・・(1)
Pg, F = (ng-nF) / (nF-nC) (1)
このΔPg,Fについて、有機半導体材料33を添加することにより、レンズ1のΔPg,Fの値を小さくすることができ、特に、マトリクスとなる樹脂材料、および任意の無機微粒子を適切に選択することにより、レンズ1は、ΔPg,Fが0.03未満という、小さな正の異常分散性または負の異常分散性を有することも可能である。
Regarding ΔPg, F, by adding the organic semiconductor material 33, the values of ΔPg, F of the lens 1 can be reduced. In particular, a resin material to be a matrix and arbitrary inorganic fine particles are appropriately selected. Therefore, the lens 1 can also have a small positive anomalous dispersion or a negative anomalous dispersion such that ΔPg, F is less than 0.03.
また、樹脂と当該樹脂中に有機半導体材料が分散するレンズ材料は、その厚みが薄いほど、ΔPg,F値が小さくなる傾向を顕著に示す。これは、レンズを成形する際に、有機半導体材料がレンズ表面と平行な方向に配向するためであると考えられる。
Also, the resin and the lens material in which the organic semiconductor material is dispersed in the resin show a tendency that the ΔPg and F values tend to decrease as the thickness decreases. This is presumably because the organic semiconductor material is oriented in a direction parallel to the lens surface when the lens is molded.
有機半導体材料33の添加量は、ΔPg,Fの値を小さくするという効果を得やすいことから、樹脂31に対して、0.01wt%以上であることが好ましく、0.05wt%以上であることがより好ましい。一方、有機半導体材料33の添加量が多いと、樹脂31の種類によっては、樹脂31から有機半導体材料33が析出する場合がある。したがって、有機半導体材料33は、樹脂31から有機半導体材料33が析出しない範囲で添加することが好ましい。具体的には、添加量は、樹脂31に対し、15wt%以下であることが好ましく、10wt%以下であることがより好ましく、8wt%以下であることがさらに好ましい。
The addition amount of the organic semiconductor material 33 is preferably 0.01 wt% or more, more preferably 0.05 wt% or more with respect to the resin 31 because an effect of reducing the values of ΔPg and F is easily obtained. Is more preferable. On the other hand, when the addition amount of the organic semiconductor material 33 is large, the organic semiconductor material 33 may be precipitated from the resin 31 depending on the type of the resin 31. Therefore, it is preferable to add the organic semiconductor material 33 in a range where the organic semiconductor material 33 does not precipitate from the resin 31. Specifically, the addition amount is preferably 15 wt% or less, more preferably 10 wt% or less, and further preferably 8 wt% or less with respect to the resin 31.
有機半導体材料33は、半導体としての性質を示す有機化合物である限り、その種類には特に制限はない。当該有機化合物は、炭素原子および水素原子を必須に含むものであり、硫黄原子、酸素原子、窒素原子等をさらに含んでいてもよく、特に硫黄原子をさらに含んでいることが好ましい。また、当該有機化合物は、少なくとも1つの芳香環を有する化合物が好ましい。
The type of the organic semiconductor material 33 is not particularly limited as long as it is an organic compound exhibiting properties as a semiconductor. The organic compound essentially contains a carbon atom and a hydrogen atom, and may further contain a sulfur atom, an oxygen atom, a nitrogen atom or the like, and particularly preferably further contains a sulfur atom. The organic compound is preferably a compound having at least one aromatic ring.
有機半導体材料33として、例えば、ポリ(3-へキシルチオフェン-2,5-ジイル)、ポリ(3-オクチルチオフェン-2,5-ジイル)、ポリ(3-ドデシルチオフェン-2,5-ジイル)、ポリ[ビス(4-フェニル)(2,4,6-トリメチルフェニル)アミン]、ポリ[2-メトキシ-5-(2-エチルヘキシロキシ)-1,4-フェニレンビニレン]、ポリ[2-メトキシ-5-(3’,7’-ジメチルオクチロキシ)-1,4-フェニレンビニレン]、ポリ[(9,9-ジ-n-オクチルフルオレニル-2,7-ジイル)-alt-(ベンゾ[2,1,3]チアジアゾ-4,8-ジイル)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-ビチオフェン]、ポリ(3-オクチルチオフェン-2,5-ジイル-co-3-デシロキシチオフェン-2,5-ジイル)、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンサルフォネート)、ポリアセチレン、ポリピロール、ポリアニリンなどの高分子有機半導体化合物;2-ブロモ-3-(ブロモメチル)チオフェン、3-ブロモ-4-メチルチオフェン、2,5-ジブロモチオフェン、チエノ[3,2-b]チオフェン、5-フルオロ-2,3-チオフェンジカルボキシアルデヒド、2,5-ジブロモ-3,4-エチレンジオキシチオフェン、チエノ[2,3-b]チオフェン、3,4-エチレンジオキシチオフェン、ジチエノ[3,2-b]チオフェン、2,2’:5,5’-ターチオフェンなどのモノマー並びに当該モノマーを用いて得られるオリゴマー及びポリマー;ペンタセン、アントラセン、ルブレン、2,7-ジトリデシル[1]ベンゾチエノ[3,2-b]ベンゾチオフェン、ジナフタ[2,3-b:2’3’-f]チアフェナ[3,2-b]チアフェン、2,6-ジフェニルベンゾ[1,2-b:4,5-b]ジチオフェン、オリゴ(p-フェニレンビニレン)、テトラシアノキノジメタン(TCNQ)などの低分子有機半導体化合物を用いることができる。
Examples of the organic semiconductor material 33 include poly (3-hexylthiophene-2,5-diyl), poly (3-octylthiophene-2,5-diyl), and poly (3-dodecylthiophene-2,5-diyl). Poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine], poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene], poly [2- Methoxy-5- (3 ′, 7′-dimethyloctyloxy) -1,4-phenylenevinylene], poly [(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- ( Benzo [2,1,3] thiadiazo-4,8-diyl)], poly [(9,9-dioctylfluorenyl-2,7-diyl) -co-bithiophene], poly (3-octylthiophene-2 , 5 Macromolecular organic semiconductor compounds such as diyl-co-3-decyloxythiophene-2,5-diyl), poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonate), polyacetylene, polypyrrole, polyaniline; 2-bromo-3- (bromomethyl) thiophene, 3-bromo-4-methylthiophene, 2,5-dibromothiophene, thieno [3,2-b] thiophene, 5-fluoro-2,3-thiophenedicarboxaldehyde, 2,5-dibromo-3,4-ethylenedioxythiophene, thieno [2,3-b] thiophene, 3,4-ethylenedioxythiophene, dithieno [3,2-b] thiophene, 2,2 ′: 5 Monomers such as, 5′-terthiophene and oligomers and polymers obtained using such monomers; Tacene, anthracene, rubrene, 2,7-ditridecyl [1] benzothieno [3,2-b] benzothiophene, dinaphtha [2,3-b: 2′3′-f] thiaphena [3,2-b] thiaphene, A low molecular organic semiconductor compound such as 2,6-diphenylbenzo [1,2-b: 4,5-b] dithiophene, oligo (p-phenylene vinylene), tetracyanoquinodimethane (TCNQ) can be used.
有機半導体材料33は、チオフェン環を有する化合物であることが好ましい。
The organic semiconductor material 33 is preferably a compound having a thiophene ring.
なお、有機半導体材料33は、樹脂31中に、粒子として分散していてもよく、溶解して分散していてもよい。有機半導体材料33が粒子として分散する場合には、無機微粒子32と同様に、その最大粒径が400nm以下であることが好ましい。また、その中心粒径は1nm以上100nm以下の範囲内にあることが好ましく、1nm以上50nm以下の範囲内にあることがより好ましく、1nm以上20nm以下の範囲内にあることがさらに好ましい。
The organic semiconductor material 33 may be dispersed as particles in the resin 31 or may be dissolved and dispersed. When the organic semiconductor material 33 is dispersed as particles, the maximum particle size is preferably 400 nm or less, like the inorganic fine particles 32. The central particle size is preferably in the range of 1 nm to 100 nm, more preferably in the range of 1 nm to 50 nm, and still more preferably in the range of 1 nm to 20 nm.
なお、レンズ材料には、本発明の効果を阻害しない範囲内で、有機半導体材料33として使用される前記の高分子有機半導体化合物が製造される際の、残存物(モノマー、重合開始剤等)および副生物(オリゴマーなど)が含まれていてもよい。
It should be noted that the lens material is a residue (monomer, polymerization initiator, etc.) when the above-described polymer organic semiconductor compound used as the organic semiconductor material 33 is produced within a range that does not impair the effects of the present invention. And by-products (such as oligomers) may be included.
[6.製造方法]
レンズ1は、例えば、樹脂31または樹脂原料に、有機半導体材料33および必要に応じ無機微粒子32を分散させた混合物を調製し、当該混合物をレンズに対応する形状を有するレンズ型を用いて成形することにより製造することができる。 [6. Production method]
For example, thelens 1 is prepared by preparing a mixture in which the organic semiconductor material 33 and, if necessary, the inorganic fine particles 32 are dispersed in the resin 31 or the resin raw material, and molding the mixture using a lens mold having a shape corresponding to the lens. Can be manufactured.
レンズ1は、例えば、樹脂31または樹脂原料に、有機半導体材料33および必要に応じ無機微粒子32を分散させた混合物を調製し、当該混合物をレンズに対応する形状を有するレンズ型を用いて成形することにより製造することができる。 [6. Production method]
For example, the
例えば、樹脂31が熱可塑性樹脂であった場合には、熱可塑性樹脂に、有機半導体材料33および必要に応じ無機微粒子32を均一に分散させた混合物を、熱可塑性樹脂の融点以上に加熱して、レンズ型に充填し、冷却してレンズ1を製造することができる。
For example, when the resin 31 is a thermoplastic resin, a mixture in which the organic semiconductor material 33 and, if necessary, the inorganic fine particles 32 are uniformly dispersed in the thermoplastic resin is heated to a temperature equal to or higher than the melting point of the thermoplastic resin. The lens 1 can be manufactured by filling the lens mold and cooling.
例えば、樹脂31が熱硬化性樹脂であった場合には、熱硬化性樹脂の原料に、有機半導体材料33および必要に応じ無機微粒子32を分散させた混合物を、レンズ型に充填し、熱硬化性樹脂の原料を熱硬化させてレンズ1を製造することができる。
For example, when the resin 31 is a thermosetting resin, the lens mold is filled with a mixture in which the organic semiconductor material 33 and, if necessary, the inorganic fine particles 32 are dispersed in the raw material of the thermosetting resin, and thermosetting is performed. The lens 1 can be manufactured by thermosetting the raw material of the functional resin.
例えば、樹脂31がエネルギー線硬化性樹脂であった場合には、エネルギー線硬化性樹脂の原料に、有機半導体材料33および必要に応じ無機微粒子32を分散させた混合物を、透明なレンズ型に充填し、エネルギー線を照射して、エネルギー線硬化性樹脂の原料を硬化させてレンズ1を製造することができる。重合硬化を容易にするために、混合物は、重合開始剤を含むことが好ましい。エネルギー線重合型の重合開始剤としては、分子量150以上2000以下のヒドロキシケトン化合物が好適である。
For example, when the resin 31 is an energy ray curable resin, a transparent lens mold is filled with a mixture in which the organic semiconductor material 33 and, if necessary, the inorganic fine particles 32 are dispersed in the raw material of the energy ray curable resin. Then, the lens 1 can be manufactured by irradiating energy rays to cure the raw material of the energy ray curable resin. In order to facilitate polymerization and curing, the mixture preferably contains a polymerization initiator. As the energy ray polymerization type polymerization initiator, a hydroxyketone compound having a molecular weight of 150 to 2,000 is suitable.
<実施の形態2>
次に実施の形態2に係るハイブリッドレンズ40について図面を用いて説明する。 <Embodiment 2>
Next, thehybrid lens 40 according to Embodiment 2 will be described with reference to the drawings.
次に実施の形態2に係るハイブリッドレンズ40について図面を用いて説明する。 <
Next, the
図3は、ハイブリッドレンズ40を示す概略断面図である。ハイブリッドレンズ40は、ガラス材料などで構成された基材となる第1レンズ41と、前記のレンズ材料(コンポジット材料35)で構成された第2レンズ42と、を備える。第2レンズ42は、第1レンズ41の光学面上に積層されている。
FIG. 3 is a schematic cross-sectional view showing the hybrid lens 40. The hybrid lens 40 includes a first lens 41 serving as a base material made of a glass material or the like, and a second lens 42 made of the lens material (composite material 35). The second lens 42 is stacked on the optical surface of the first lens 41.
第2レンズ42として、上述の実施の形態1で説明したレンズ1が用いられる(ただし、一方の光学面が凹形状である)。
As the second lens 42, the lens 1 described in the first embodiment is used (however, one of the optical surfaces has a concave shape).
次に、ハイブリッドレンズ40の製造方法について図4を用いて説明する。ここでは、コンポジット材料35を構成する樹脂は、エネルギー線硬化性樹脂とする。
Next, a method for manufacturing the hybrid lens 40 will be described with reference to FIG. Here, the resin constituting the composite material 35 is an energy ray curable resin.
図4は、ハイブリッドレンズ40の製造工程を示す概略図である。
FIG. 4 is a schematic view showing the manufacturing process of the hybrid lens 40.
まず、第1レンズ41を成形する。第1レンズ41は、レンズ研磨や射出成形やプレス成形など、公知の製造方法を用いて成形される。
First, the first lens 41 is molded. The first lens 41 is molded using a known manufacturing method such as lens polishing, injection molding, or press molding.
次に、図4(a)に示すように、ディスペンサー50を用いて、成形型51の成形面に、エネルギー線重合型の重合開始剤を含むエネルギー線硬化性樹脂の原料、有機半導体材料および任意成分の無機微粒子が均一に混合された混合物52(コンポジット材料35の原料)を吐出する。
Next, as shown in FIG. 4 (a), using the dispenser 50, the raw material of the energy ray curable resin, the organic semiconductor material, and the optional material containing the energy ray polymerization type polymerization initiator on the molding surface of the molding die 51 are used. A mixture 52 (raw material of the composite material 35) in which the inorganic fine particles of the components are uniformly mixed is discharged.
次に、図4(b)に示すように、混合物52の上方から第1レンズ41を載せて、混合物52が所定の厚みになるまで押し広げる。
Next, as shown in FIG. 4B, the first lens 41 is placed from above the mixture 52 and spread until the mixture 52 has a predetermined thickness.
そして、図4(c)に示すように、第1レンズ41の上方から、光源53よりエネルギー線(例、紫外線)を照射することで、混合物52を硬化させ、第2レンズ42を形成する。
And as shown in FIG.4 (c), the mixture 52 is hardened by irradiating an energy ray (for example, ultraviolet-ray) from the light source 53 from the upper direction of the 1st lens 41, and the 2nd lens 42 is formed.
<実施の形態3および4>
次に、実施の形態3に係る交換レンズ120および実施の形態4に係る撮像装置(カメラ100)について同時に、図面を参照しながら説明する。図5に、カメラ100の概略図を示す。 <Embodiments 3 and 4>
Next, theinterchangeable lens 120 according to the third embodiment and the imaging apparatus (camera 100) according to the fourth embodiment will be described with reference to the drawings. FIG. 5 shows a schematic diagram of the camera 100.
次に、実施の形態3に係る交換レンズ120および実施の形態4に係る撮像装置(カメラ100)について同時に、図面を参照しながら説明する。図5に、カメラ100の概略図を示す。 <Embodiments 3 and 4>
Next, the
カメラ100は、カメラ本体110と、該カメラ本体110に取り付けられた交換レンズ120とを備えている。カメラ100は撮像装置の一例である。
The camera 100 includes a camera body 110 and an interchangeable lens 120 attached to the camera body 110. The camera 100 is an example of an imaging device.
カメラ本体110は、撮像素子130を有している。
The camera body 110 has an image sensor 130.
交換レンズ120は、カメラ本体110に着脱可能に構成されている。交換レンズ120は、例えば、望遠ズームレンズである。交換レンズ120は、光束をカメラ本体120の撮像素子130上に合焦させるための結像光学系140を有している。結像光学系140は、上記レンズ1と、屈折型レンズ150,160とで構成されている。
The interchangeable lens 120 is configured to be detachable from the camera body 110. The interchangeable lens 120 is, for example, a telephoto zoom lens. The interchangeable lens 120 has an imaging optical system 140 for focusing the light beam on the image sensor 130 of the camera body 120. The imaging optical system 140 includes the lens 1 and refractive lenses 150 and 160.
交換レンズ120およびカメラ100の変形例として、上記レンズ1の代わりに上記ハイブリッドレンズ40を使用することができる。
As a modification of the interchangeable lens 120 and the camera 100, the hybrid lens 40 can be used instead of the lens 1.
またカメラ100の変形例として、カメラは、カメラ本体部と、カメラ本体部と分離可能に構成されていないレンズ部を有し、レンズ部が上記レンズ1または上記ハイブリッドレンズ40を含む構成を有することも可能である。
As a modification of the camera 100, the camera has a camera main body and a lens unit that is not separable from the camera main body, and the lens unit includes the lens 1 or the hybrid lens 40. Is also possible.
以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明は、当該実施例に限定されるものではない。表1は、実施例および比較例の内容をまとめた表である。
Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the examples. Table 1 summarizes the contents of the examples and comparative examples.
<実施例1>
化学式(1)及び化学式(37)で示される化合物を重量比10:1で混合後、重合開始剤(Irgacure184,BASF社製;1-Hydroxycyclohexyl phenyl ketone、分子量204)を3wt%添加して樹脂原料Aを調製した。これに、ZnO微粒子を添加してコンポジット材料を調製した。このコンポジット材料に、有機半導体材料としてポリ(3-へキシルチオフェン-2,5-ジイル)(Aldrich社製;表1中ではXと表記)を樹脂原料Aに対して1wt%添加し、混合して分散させた。これにUV照射装置(SP-9,ウシオ社製)を用いて紫外線(80mw/cm2・90sec)を照射して、厚みが100μmのレンズ材料のサンプルを作製した。得られた測定サンプルの光学特性(屈折率、アッベ数、ΔPg,F)を、プリズムカップラー(MODEL 2010,Metricon社製)を用いて測定した。結果を表1に示す。 <Example 1>
After mixing the compounds represented by chemical formula (1) and chemical formula (37) at a weight ratio of 10: 1, 3 wt% of a polymerization initiator (Irgacure184, manufactured by BASF; 1-Hydroxycyclohexyl phenyl ketone, molecular weight 204) is added to the resin raw material A was prepared. To this, ZnO fine particles were added to prepare a composite material. To this composite material, 1% by weight of poly (3-hexylthiophene-2,5-diyl) (manufactured by Aldrich; indicated as X in Table 1) as an organic semiconductor material is added to the resin raw material A and mixed. And dispersed. This was irradiated with ultraviolet rays (80 mw / cm 2 · 90 sec) using a UV irradiation apparatus (SP-9, manufactured by Ushio) to prepare a sample of a lens material having a thickness of 100 μm. The optical properties (refractive index, Abbe number, ΔPg, F) of the obtained measurement sample were measured using a prism coupler (MODEL 2010, manufactured by Metricon). The results are shown in Table 1.
化学式(1)及び化学式(37)で示される化合物を重量比10:1で混合後、重合開始剤(Irgacure184,BASF社製;1-Hydroxycyclohexyl phenyl ketone、分子量204)を3wt%添加して樹脂原料Aを調製した。これに、ZnO微粒子を添加してコンポジット材料を調製した。このコンポジット材料に、有機半導体材料としてポリ(3-へキシルチオフェン-2,5-ジイル)(Aldrich社製;表1中ではXと表記)を樹脂原料Aに対して1wt%添加し、混合して分散させた。これにUV照射装置(SP-9,ウシオ社製)を用いて紫外線(80mw/cm2・90sec)を照射して、厚みが100μmのレンズ材料のサンプルを作製した。得られた測定サンプルの光学特性(屈折率、アッベ数、ΔPg,F)を、プリズムカップラー(MODEL 2010,Metricon社製)を用いて測定した。結果を表1に示す。 <Example 1>
After mixing the compounds represented by chemical formula (1) and chemical formula (37) at a weight ratio of 10: 1, 3 wt% of a polymerization initiator (Irgacure184, manufactured by BASF; 1-Hydroxycyclohexyl phenyl ketone, molecular weight 204) is added to the resin raw material A was prepared. To this, ZnO fine particles were added to prepare a composite material. To this composite material, 1% by weight of poly (3-hexylthiophene-2,5-diyl) (manufactured by Aldrich; indicated as X in Table 1) as an organic semiconductor material is added to the resin raw material A and mixed. And dispersed. This was irradiated with ultraviolet rays (80 mw / cm 2 · 90 sec) using a UV irradiation apparatus (SP-9, manufactured by Ushio) to prepare a sample of a lens material having a thickness of 100 μm. The optical properties (refractive index, Abbe number, ΔPg, F) of the obtained measurement sample were measured using a prism coupler (MODEL 2010, manufactured by Metricon). The results are shown in Table 1.
表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。
Table 1 shows that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
<実施例2>
レンズ材料のサンプルの厚さを60μmに変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 2>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that the thickness of the lens material sample was changed to 60 μm. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
レンズ材料のサンプルの厚さを60μmに変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 2>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that the thickness of the lens material sample was changed to 60 μm. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
<実施例3>
レンズ材料のサンプルの厚さを30μmに変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、負の異常分散性を示すレンズ材料が得られていることがわかる。よって、負の異常分散性を示すレンズを作製可能なことがわかる。また、実施例1~3の結果より、レンズ材料の厚さが小さくなるにつれ、ΔPg,Fの値が小さくなっていることがわかる。 <Example 3>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that the thickness of the lens material sample was changed to 30 μm. The results are shown in Table 1. Table 1 shows that a lens material exhibiting negative anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting negative anomalous dispersion can be produced. From the results of Examples 1 to 3, it can be seen that the value of ΔPg, F decreases as the thickness of the lens material decreases.
レンズ材料のサンプルの厚さを30μmに変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、負の異常分散性を示すレンズ材料が得られていることがわかる。よって、負の異常分散性を示すレンズを作製可能なことがわかる。また、実施例1~3の結果より、レンズ材料の厚さが小さくなるにつれ、ΔPg,Fの値が小さくなっていることがわかる。 <Example 3>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that the thickness of the lens material sample was changed to 30 μm. The results are shown in Table 1. Table 1 shows that a lens material exhibiting negative anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting negative anomalous dispersion can be produced. From the results of Examples 1 to 3, it can be seen that the value of ΔPg, F decreases as the thickness of the lens material decreases.
<実施例4>
有機半導体材料の添加量を、樹脂原料Aに対して5wt%に変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 4>
A sample of the lens material was prepared and the optical characteristics were evaluated in the same manner as in Example 1 except that the amount of the organic semiconductor material added was changed to 5 wt% with respect to the resin raw material A. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
有機半導体材料の添加量を、樹脂原料Aに対して5wt%に変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 4>
A sample of the lens material was prepared and the optical characteristics were evaluated in the same manner as in Example 1 except that the amount of the organic semiconductor material added was changed to 5 wt% with respect to the resin raw material A. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
<実施例5>
化学式(1)及び化学式(37)で示される化合物に代えて化学式(5)で表される化合物を使用し、ポリ(3-へキシルチオフェン-2,5-ジイル)に代えて2,7-ジトリデシル[1]ベンゾチエノ[3,2-b]ベンゾチオフェン(Aldrich社製;表1中ではYと表記)を使用した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 5>
Instead of the compound represented by the chemical formula (1) and the chemical formula (37), the compound represented by the chemical formula (5) is used, and instead of poly (3-hexylthiophene-2,5-diyl), 2,7- A sample of the lens material was prepared in the same manner as in Example 1 except that ditridecyl [1] benzothieno [3,2-b] benzothiophene (Aldrich; indicated as Y in Table 1) was used. Characteristics were evaluated. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
化学式(1)及び化学式(37)で示される化合物に代えて化学式(5)で表される化合物を使用し、ポリ(3-へキシルチオフェン-2,5-ジイル)に代えて2,7-ジトリデシル[1]ベンゾチエノ[3,2-b]ベンゾチオフェン(Aldrich社製;表1中ではYと表記)を使用した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 5>
Instead of the compound represented by the chemical formula (1) and the chemical formula (37), the compound represented by the chemical formula (5) is used, and instead of poly (3-hexylthiophene-2,5-diyl), 2,7- A sample of the lens material was prepared in the same manner as in Example 1 except that ditridecyl [1] benzothieno [3,2-b] benzothiophene (Aldrich; indicated as Y in Table 1) was used. Characteristics were evaluated. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
<実施例6>
レンズ材料のサンプルの厚さを60μmに変更した以外は、実施例5と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。また、実施例5および6の結果より、レンズ材料の厚さが小さくなるにつれ、ΔPg,Fの値が小さくなっていることがわかる。 <Example 6>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 5 except that the thickness of the lens material sample was changed to 60 μm. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced. From the results of Examples 5 and 6, it can be seen that the value of ΔPg, F decreases as the thickness of the lens material decreases.
レンズ材料のサンプルの厚さを60μmに変更した以外は、実施例5と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。また、実施例5および6の結果より、レンズ材料の厚さが小さくなるにつれ、ΔPg,Fの値が小さくなっていることがわかる。 <Example 6>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 5 except that the thickness of the lens material sample was changed to 60 μm. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced. From the results of Examples 5 and 6, it can be seen that the value of ΔPg, F decreases as the thickness of the lens material decreases.
<実施例7>
重合開始剤(Irgacure184,BASF社製)に代えて重合開始剤(ESACURE KIP150,Lamberti社製;Oligo [2-hydroxy-2-methyl-1-[ 4-(1-methylvinyl) phenyl] propanone]、分子量550(重量平均))を使用した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 7>
Polymerization initiator (ESACURE KIP150, manufactured by Lamberti; Oligo [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone], molecular weight instead of polymerization initiator (Irgacure184, manufactured by BASF) A sample of a lens material was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that 550 (weight average) was used. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
重合開始剤(Irgacure184,BASF社製)に代えて重合開始剤(ESACURE KIP150,Lamberti社製;Oligo [2-hydroxy-2-methyl-1-[ 4-(1-methylvinyl) phenyl] propanone]、分子量550(重量平均))を使用した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 7>
Polymerization initiator (ESACURE KIP150, manufactured by Lamberti; Oligo [2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone], molecular weight instead of polymerization initiator (Irgacure184, manufactured by BASF) A sample of a lens material was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that 550 (weight average) was used. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
<実施例8>
有機半導体材料としてポリ(3-へキシルチオフェン-2,5-ジイル)に代えて2,6-ジフェニルベンゾ[1,2-b:4,5-b’]ジチオフェン(Aldrich社製;表1中ではZと表記)を使用し、レンズ材料のサンプルの厚さを30μmに変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 8>
2,6-diphenylbenzo [1,2-b: 4,5-b ′] dithiophene (Aldrich; in Table 1) instead of poly (3-hexylthiophene-2,5-diyl) as an organic semiconductor material In the same manner as in Example 1, except that the thickness of the lens material sample was changed to 30 μm, a sample of the lens material was prepared and the optical characteristics were evaluated. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
有機半導体材料としてポリ(3-へキシルチオフェン-2,5-ジイル)に代えて2,6-ジフェニルベンゾ[1,2-b:4,5-b’]ジチオフェン(Aldrich社製;表1中ではZと表記)を使用し、レンズ材料のサンプルの厚さを30μmに変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、正の小さな異常分散性を示すレンズ材料が得られていることがわかる。よって、正の小さな異常分散性を示すレンズを作製可能なことがわかる。 <Example 8>
2,6-diphenylbenzo [1,2-b: 4,5-b ′] dithiophene (Aldrich; in Table 1) instead of poly (3-hexylthiophene-2,5-diyl) as an organic semiconductor material In the same manner as in Example 1, except that the thickness of the lens material sample was changed to 30 μm, a sample of the lens material was prepared and the optical characteristics were evaluated. The results are shown in Table 1. It can be seen from Table 1 that a lens material exhibiting a small positive anomalous dispersion is obtained. Therefore, it can be seen that a lens exhibiting a small positive anomalous dispersion can be produced.
<比較例1>
有機半導体を添加しなかった以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、比較例1のサンプルは、実施例のサンプルよりも正の大きな異常分散性を示すことがわかる。これは、有機半導体材料を含まないため、特に短波長領域の吸収特性が増加したためと考えられる。 <Comparative Example 1>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that no organic semiconductor was added. The results are shown in Table 1. From Table 1, it can be seen that the sample of Comparative Example 1 exhibits a larger positive anomalous dispersion than the sample of the Example. This is presumably because the organic semiconductor material is not included, and the absorption characteristics particularly in the short wavelength region are increased.
有機半導体を添加しなかった以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。表1より、比較例1のサンプルは、実施例のサンプルよりも正の大きな異常分散性を示すことがわかる。これは、有機半導体材料を含まないため、特に短波長領域の吸収特性が増加したためと考えられる。 <Comparative Example 1>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that no organic semiconductor was added. The results are shown in Table 1. From Table 1, it can be seen that the sample of Comparative Example 1 exhibits a larger positive anomalous dispersion than the sample of the Example. This is presumably because the organic semiconductor material is not included, and the absorption characteristics particularly in the short wavelength region are increased.
<比較例2>
有機半導体を添加せず、レンズ材料のサンプルの厚さを60μmに変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。比較例2のサンプルは、実施例のサンプルよりも正の大きな異常分散性を示すことがわかる。また、比較例1および2でも、レンズ材料の厚さが小さくなるにつれ、ΔPg,Fの値が小さくなる傾向が見られたが、ΔPg,Fの減少量は、実施例と比べて小さいことがわかる。 <Comparative example 2>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that the organic semiconductor was not added and the thickness of the lens material sample was changed to 60 μm. The results are shown in Table 1. It can be seen that the sample of Comparative Example 2 exhibits a larger positive anomalous dispersion than the sample of the Example. In Comparative Examples 1 and 2, the values of ΔPg, F tended to decrease as the thickness of the lens material decreased. However, the amount of decrease in ΔPg, F was small compared to the example. Recognize.
有機半導体を添加せず、レンズ材料のサンプルの厚さを60μmに変更した以外は、実施例1と同様にして、レンズ材料のサンプルを作製し、光学特性を評価した。結果を表1に示す。比較例2のサンプルは、実施例のサンプルよりも正の大きな異常分散性を示すことがわかる。また、比較例1および2でも、レンズ材料の厚さが小さくなるにつれ、ΔPg,Fの値が小さくなる傾向が見られたが、ΔPg,Fの減少量は、実施例と比べて小さいことがわかる。 <Comparative example 2>
A lens material sample was prepared and optical characteristics were evaluated in the same manner as in Example 1 except that the organic semiconductor was not added and the thickness of the lens material sample was changed to 60 μm. The results are shown in Table 1. It can be seen that the sample of Comparative Example 2 exhibits a larger positive anomalous dispersion than the sample of the Example. In Comparative Examples 1 and 2, the values of ΔPg, F tended to decrease as the thickness of the lens material decreased. However, the amount of decrease in ΔPg, F was small compared to the example. Recognize.
本発明のレンズおよびハイブリッドレンズは、撮像装置、撮像装置の交換レンズ、DVD光学系等に好適に用いることができる。
The lens and hybrid lens of the present invention can be suitably used for an imaging device, an interchangeable lens of the imaging device, a DVD optical system, and the like.
Claims (11)
- マトリクスとしての樹脂、および前記樹脂中に分散した有機半導体材料を含むレンズ。 A lens containing a resin as a matrix and an organic semiconductor material dispersed in the resin.
- 前記レンズの異常分散性を示すΔPg,Fが、0.03未満である、請求項1に記載のレンズ。 The lens according to claim 1, wherein ΔPg, F indicating anomalous dispersion of the lens is less than 0.03.
- 前記有機半導体材料が、硫黄原子を含む化合物である、請求項1に記載のレンズ。 The lens according to claim 1, wherein the organic semiconductor material is a compound containing a sulfur atom.
- 前記有機半導体材料が、チオフェン環を有する化合物である、請求項3に記載のレンズ。 The lens according to claim 3, wherein the organic semiconductor material is a compound having a thiophene ring.
- 前記樹脂が、エネルギー線硬化性樹脂の重合硬化物であり、前記エネルギー線硬化性樹脂の重合硬化物が、分子量150以上2000以下のヒドロキシケトン化合物を重合開始剤に用いて重合硬化されたものである、請求項1に記載のレンズ。 The resin is a polymerized cured product of an energy beam curable resin, and the polymerized cured product of the energy beam curable resin is polymerized and cured using a hydroxyketone compound having a molecular weight of 150 to 2000 as a polymerization initiator. The lens according to claim 1.
- 無機微粒子をさらに含む、請求項1に記載のレンズ。 The lens according to claim 1, further comprising inorganic fine particles.
- 基材となる第1のレンズと、
前記第1のレンズに積層され、樹脂を含む第2のレンズとを備えるハイブリッドレンズであって、
前記第2のレンズが、請求項1に記載のレンズである、ハイブリッドレンズ。 A first lens as a substrate;
A hybrid lens comprising a second lens laminated on the first lens and containing a resin,
The hybrid lens, wherein the second lens is the lens according to claim 1. - 請求項1に記載のレンズを備える、撮像装置に着脱可能な交換レンズ。 An interchangeable lens comprising the lens according to claim 1 and detachable from an imaging apparatus.
- 請求項7に記載のハイブリッドレンズを備える、撮像装置に着脱可能な交換レンズ。 An interchangeable lens comprising the hybrid lens according to claim 7 and detachable from an imaging device.
- 請求項1に記載のレンズを備える、撮像装置。 An imaging apparatus comprising the lens according to claim 1.
- 請求項7に記載のハイブリッドレンズを備える、撮像装置。 An imaging apparatus comprising the hybrid lens according to claim 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012121547A JP2015155928A (en) | 2012-05-29 | 2012-05-29 | composite optical element |
JP2012-121547 | 2012-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013179543A1 true WO2013179543A1 (en) | 2013-12-05 |
Family
ID=49672778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/001876 WO2013179543A1 (en) | 2012-05-29 | 2013-03-19 | Lens, hybrid lens, replacement lens, and image capture device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015155928A (en) |
WO (1) | WO2013179543A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014164208A (en) * | 2013-02-27 | 2014-09-08 | Mitsui Chemicals Inc | Optical material and use of the same |
WO2023120096A1 (en) * | 2021-12-22 | 2023-06-29 | パナソニックIpマネジメント株式会社 | Composite member |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006147205A (en) * | 2004-11-16 | 2006-06-08 | Matsushita Electric Ind Co Ltd | Light emitting device and its manufacturing method |
JP2006276423A (en) * | 2005-03-29 | 2006-10-12 | Seiko Precision Inc | Optical lens |
JP2006276425A (en) * | 2005-03-29 | 2006-10-12 | Seiko Precision Inc | Compound lens |
JP2009249542A (en) * | 2008-04-08 | 2009-10-29 | Olympus Corp | Material composition for use in optics, and optical element using it |
JP2010528123A (en) * | 2007-05-18 | 2010-08-19 | エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック | Curable coating composition providing articles coated with antistatic and abrasion resistance |
JP2011001395A (en) * | 2009-06-16 | 2011-01-06 | Olympus Corp | Composite optical element |
-
2012
- 2012-05-29 JP JP2012121547A patent/JP2015155928A/en active Pending
-
2013
- 2013-03-19 WO PCT/JP2013/001876 patent/WO2013179543A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006147205A (en) * | 2004-11-16 | 2006-06-08 | Matsushita Electric Ind Co Ltd | Light emitting device and its manufacturing method |
JP2006276423A (en) * | 2005-03-29 | 2006-10-12 | Seiko Precision Inc | Optical lens |
JP2006276425A (en) * | 2005-03-29 | 2006-10-12 | Seiko Precision Inc | Compound lens |
JP2010528123A (en) * | 2007-05-18 | 2010-08-19 | エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック | Curable coating composition providing articles coated with antistatic and abrasion resistance |
JP2009249542A (en) * | 2008-04-08 | 2009-10-29 | Olympus Corp | Material composition for use in optics, and optical element using it |
JP2011001395A (en) * | 2009-06-16 | 2011-01-06 | Olympus Corp | Composite optical element |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014164208A (en) * | 2013-02-27 | 2014-09-08 | Mitsui Chemicals Inc | Optical material and use of the same |
WO2023120096A1 (en) * | 2021-12-22 | 2023-06-29 | パナソニックIpマネジメント株式会社 | Composite member |
Also Published As
Publication number | Publication date |
---|---|
JP2015155928A (en) | 2015-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101267187B1 (en) | Optical material and optical element | |
JP2008169299A (en) | Optical material, and optical element, diffractive optical element and multi-layer diffractive optical element formed with this material | |
CN105745273A (en) | Resin composition and cured article thereof | |
JP2009280724A (en) | Material composition for optical use, and optical element using the same | |
WO2013179543A1 (en) | Lens, hybrid lens, replacement lens, and image capture device | |
US20150362631A1 (en) | Optical material, optical element and hybrid optical element | |
JP2009256462A (en) | Optical material composition and optical element using the same | |
JP2005316219A (en) | Optical material | |
JP2009276726A (en) | Optical material composition and optical element using the same | |
WO2013125179A1 (en) | Optical element, composite optical element, interchangeable lens, and image-capturing device | |
JP2011202067A (en) | Nanocomposite material, optical lens or window material having nanocomposite material, and method of manufacturing nanocomposite material | |
US20150362626A1 (en) | Optical lens | |
JP2009280731A (en) | Material composition for optical use and optical element using the same | |
JP2006052325A (en) | Optical material composition and optical material | |
US20140362456A1 (en) | Lens, hybrid lens, replacement lens, and image pick-up device | |
JP2009227724A (en) | Material composition for optics and optical element using the same | |
JP2009249542A (en) | Material composition for use in optics, and optical element using it | |
JP2010241985A (en) | Organic-inorganic hybrid resin composition, optical element using the same and method for producing the composition | |
WO2013125180A1 (en) | Optical element, composite optical element, interchangeable lens, and image-capturing device | |
JP2006215295A (en) | Composition for optical material and optical material | |
JP2013036037A (en) | Material composition for optical use and optical element using the same | |
US20150276984A1 (en) | Optical material, optical element and hybrid optical element | |
US20150276985A1 (en) | Optical material and method for producing the same, optical element, and hybrid optical element | |
JP2016095324A (en) | Composite optical element | |
WO2015145502A1 (en) | Optical material, optical element and composite optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13797452 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13797452 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |