WO2013179344A1 - 蓄電池管理装置 - Google Patents

蓄電池管理装置 Download PDF

Info

Publication number
WO2013179344A1
WO2013179344A1 PCT/JP2012/003580 JP2012003580W WO2013179344A1 WO 2013179344 A1 WO2013179344 A1 WO 2013179344A1 JP 2012003580 W JP2012003580 W JP 2012003580W WO 2013179344 A1 WO2013179344 A1 WO 2013179344A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
storage battery
current
charging time
time
Prior art date
Application number
PCT/JP2012/003580
Other languages
English (en)
French (fr)
Inventor
池部 早人
靖弘 大上
洋輔 大槻
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to PCT/JP2012/003580 priority Critical patent/WO2013179344A1/ja
Priority to JP2014518090A priority patent/JP5861128B2/ja
Publication of WO2013179344A1 publication Critical patent/WO2013179344A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage

Definitions

  • the present invention relates to power distribution technology, and more particularly to technology for controlling power in a system in which a storage battery connected to a power generator of renewable energy and a commercial power source coexist.
  • a storage battery and a commercial power supply are connected in parallel to the load, and the storage battery is used as a backup for the power consumed by the load in case of a power failure of the commercial power supply.
  • a technology for charging and discharging the electric power has been developed. In such a technology, for example, during the time when power consumption due to loads such as nighttime is low, AC power from a commercial power source is converted to DC power and stored in a storage battery, and during times when power consumption due to loads such as daytime is high. The power of the storage battery is converted into AC power and supplied to the load.
  • a control method for charging the storage battery As a control method for charging the storage battery, a control method in which constant current charging is first performed and switching to constant voltage charging when the upper limit voltage is reached is often used. In this control method, when the charging current when the upper limit voltage is reached is weak, it may be erroneously recognized that the target capacity has been reached, and charging may stop halfway.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for suppressing a stop of charging during charging of a storage battery.
  • a storage battery management device includes a reception unit that receives a charging time for a storage battery, a received charging time, a power amount that should be charged in a preset storage battery, and a preset setting.
  • a change unit configured to compare a predetermined charging time calculated based on the charged current and to shorten the received charging time when the received charging time exceeds the predetermined charging time.
  • Another aspect of the present invention is also a storage battery management device.
  • this device starts charging with constant current charging.
  • the charging management unit switches from constant current charging to constant voltage charging, and charging is performed according to the management by the charging management unit.
  • an end determination unit that determines the end of charging
  • a reception unit that receives a charge time to the storage battery
  • a storage battery The charging current calculation unit that calculates the charging current during constant current charging based on the amount of power to be charged and the accepted charging time, and compares the calculated charging current with the set current, and the charging current is less than the set current
  • a charging current changing unit that changes the charging current to a set current or more.
  • FIGS. 4A to 4B are diagrams showing examples of fluctuations in the storage capacity of the storage battery in one day.
  • FIGS. 5A and 5B are diagrams showing transition examples of the charging current and the voltage of the storage battery during charge control by the storage battery management apparatus according to the embodiment of the present invention. It is a flowchart for demonstrating the charge control by the storage battery management apparatus which concerns on embodiment of this invention.
  • FIG. 10 is a flowchart for explaining charging control by the storage battery management device according to Modification 1; It is a figure which shows an example of the screen which prompts re-input of the charging time below the charging time calculated by the charging time calculation part based on the modification 1.
  • Embodiment of this invention is related with the power distribution system which connects a solar cell in parallel with a commercial power system, supplies electric power to a load from both a commercial power source and a solar cell, and charges a storage battery.
  • a power distribution system is suitable for installation in commercial facilities, public facilities, office buildings, condominiums, and the like.
  • the electricity bill at night time is set lower than the electricity bill at daytime.
  • the daytime time zone is defined as 7 o'clock to 23:00
  • the night time zone is defined as 23 o'clock to 7 o'clock on the next day.
  • the power distribution system stores power in the storage battery with electric power from a commercial power source in the night time zone.
  • the electric power stored in the storage battery is used as a backup power source for operating important devices such as servers and elevators when the commercial power supply fails. Furthermore, the storage battery is generally used as a so-called peak shift that lowers the maximum value of the amount of use in commercial power during the daytime by discharging in the daytime hours when the amount of use of electricity is large.
  • storage batteries have two roles: backup as a specific load and peak shift.
  • the commercial power supply performs a peak shift while ensuring a certain amount of power storage in the storage battery during normal operation while the commercial power supply is energized.
  • the storage battery is discharged to supply power to a specific load.
  • FIG. 1 is a diagram schematically showing a power distribution system 100 according to an embodiment of the present invention.
  • the power distribution system 100 is a system for supplying power to a load 40, and includes a solar cell 60, a bidirectional inverter 50, a storage battery 70, a storage battery management device 80, a control device 10, a first switch SW1, and a second switch.
  • a switch SW2, a third switch SW3, an input device 92, and a display device 94 are included.
  • the solar cell 60 is an example of a renewable energy power generation device, and is not limited to the solar cell 60 but may be, for example, a wind power generation device. They may coexist.
  • the load 40 is classified into a first type load 42 and a second type load 44. Both are devices driven by AC power.
  • the first type load 42 is a specific load having a high power supply priority. For example, elevators and servers are applicable.
  • the second type load 44 is a general load. At the time of a power failure, only the first type load 42 is supplied with backup power from the storage battery 70. Thus, by giving priority to the load 40, the limited electric power accumulated in the storage battery 70 can be effectively used at the time of a power failure.
  • Commercial power supply 20 is a system power supply supplied from an electric power company.
  • the distribution board 30 is connected to the system and connected to the bidirectional inverter 50 via the first switch SW1.
  • the distribution board 30 supplies AC power drawn from the system to the load 40 on the premises.
  • Distribution board 30 receives generated power from solar battery 60, discharged power from storage battery 70, or combined power thereof via bidirectional inverter 50.
  • the distribution board 30 can also synthesize the power and the power from the grid and supply them to the load 40.
  • the distribution board 30 measures the power of each of the system side terminal and the inverter side terminal and notifies the control device 10 of the power. For example, when a power failure occurs in the system, the distribution board 30 notifies the control device 10 of the power failure.
  • the first switch SW1 is provided between the distribution board 30 and the bidirectional inverter 50 and is on / off controlled by the control device 10. When the first switch SW1 is controlled to be turned off, only the system power is supplied to the load 40, and when the first switch SW1 is controlled to be turned on, the combined power of the system power and the power supplied from the bidirectional inverter 50 is supplied. Is done.
  • the second switch SW2 connects the connection destination of the input terminal of the first type load 42 to a node between the distribution board 30 and the first switch SW1 (hereinafter referred to as an external terminal), or the bidirectional switch 50 and the second switch SW2. Whether to connect to a node (hereinafter referred to as an internal terminal) with one switch SW1 is switched.
  • the second switch SW2 is controlled to be switched by the control device 10.
  • the input terminal of the first type load 42 is controlled to be connected to the external terminal.
  • the first switch SW1 is controlled to be off and the second switch SW2 is controlled to be connected to the internal terminal so that the backup power is supplied only to the first type load 42.
  • the same connection state as normal time is maintained.
  • the solar cell 60 is a power generator that directly converts light energy into electric power using the photovoltaic effect.
  • a silicon solar cell a solar cell using various compound semiconductors, a dye-sensitized type (organic solar cell), or the like is used.
  • the solar cell 60 is connected to the bidirectional inverter 50 via the third switch SW3.
  • the bidirectional inverter 50 converts AC power input from the AC side terminal into DC power and outputs it to the DC side terminal, and also converts DC power input from the DC side terminal into AC power and converts it to the AC side terminal. Output.
  • the AC side terminal of the bidirectional inverter 50 is connected to the system and the load 40, and the DC side terminal is connected to the solar battery 60 and the storage battery 70.
  • the third switch SW3 is provided between the solar cell 60 and the DC node.
  • the third switch SW3 is on / off controlled by the control device 10.
  • the DC node is a node to which the DC side terminal of the bidirectional inverter 50, the inverter side terminal of the third switch SW3 connected to the output terminal of the solar battery 60, and the input / output terminal of the storage battery 70 are coupled.
  • the power generation amount of the solar cell 60 depends on the amount of sunlight, it is difficult to control the power generation amount.
  • the third switch SW3 By providing the third switch SW3, overcharge of the storage battery 70 due to the generated power of the solar battery 60 can be prevented.
  • the storage battery 70 is a secondary battery that can be charged and discharged and can be used repeatedly.
  • the storage battery 70 is formed, for example, by combining a plurality of battery packs incorporating a large number of lithium ion battery cells. Specifically, a plurality of battery packs are connected in series and parallel, and connected / disconnected by the switching unit in series.
  • the storage battery 70 is connected to the DC node described above.
  • the storage battery 70 is basically charged by the system power converted into DC power by the bidirectional inverter 50.
  • the battery is also charged by the power generated by the solar cell 60.
  • the storage battery 70 supplies the load 40 with the discharge power converted from DC power to AC power by the bidirectional inverter 50. In particular, the power is supplied to the first type load 42 during a power failure.
  • Each battery pack constituting the storage battery 70 incorporates a current sensor, a voltage sensor, and a temperature sensor (not shown). Each battery pack constantly monitors the current, voltage, and temperature of each built-in battery cell, and transmits monitoring data to the storage battery management device 80.
  • the storage battery management device 80 performs charge / discharge control and protection control of the storage battery 70 based on the charge / discharge command and the monitoring data received from the storage battery 70.
  • the storage battery management device 80 instructs the switching unit of the storage battery 70 to connect the battery pack and the bus connected to the bidirectional inverter 50.
  • the control device 10 is instructed to cause the bidirectional inverter 50 to perform AC-DC conversion.
  • the storage battery management device 80 instructs the switching unit to connect the battery pack and the bus.
  • the control device 10 is instructed to cause the bidirectional inverter 50 to perform DC-AC conversion.
  • the storage battery management device 80 when the storage battery management device 80 detects a short circuit, overcurrent, overcharge or overdischarge in the storage battery 70 based on the monitoring data received from the storage battery 70, the storage battery management device 80 controls to turn off at least one switch of the switching unit described above. To do. The storage battery management device 80 also controls to turn off at least one of the switching units described above even when an overcurrent detection signal is received from the control device 10.
  • the control device 10 and the bidirectional inverter 50 constitute a bidirectional power conditioner.
  • the bidirectional inverter 50 operates at a frequency synchronized with the frequency of the commercial power source 20 when the commercial power source 20 is energized, and operates at a frequency asynchronous with the frequency of the commercial power source 20 when the commercial power source 20 is out of power.
  • the control device 10 When the control device 10 supplies power to the load 40 from the solar cell 60 and / or the storage battery 70, the control device 10 selects one of the grid interconnection operation mode and the independent operation mode.
  • the grid connection operation mode refers to an operation state in which the solar battery 60 and / or the storage battery 70 are electrically connected to the commercial power source 20 and the bidirectional inverter 50 is passing a current synchronized with the commercial power source 20 through the grid.
  • the current flowing in this system is a sine wave having the same frequency as that of the commercial power supply 20 and not including a high-frequency current exceeding a specified value, and having a power factor of approximately 1 (the same phase as the voltage of the commercial power supply 20). It is.
  • the self-sustaining operation mode refers to an operation state in which the bidirectional inverter 50 supplies power to the first type load 42 in a state where the solar battery 60 and / or the storage battery 70 are electrically disconnected from the commercial power source 20.
  • the bidirectional inverter 50 itself generates a sine wave voltage having a specified voltage and frequency and having no distortion greater than a specified value.
  • the control device 10 When power is supplied from the solar cell 60 and / or the storage battery 70 to the load 40, the control device 10 operates in the grid connection operation mode when the commercial power source 20 is not out of power, and when the commercial power source 20 is out of power. Operate in autonomous mode.
  • the control device 10 When operating in the grid connection operation mode, the control device 10 turns on the first switch SW1 and controls the connection destination of the second switch SW2 to the above-described external terminal.
  • the phase and frequency synchronized with the commercial power source 20 are set in the bidirectional inverter 50 so as to be linked to the commercial power source 20.
  • the control device 10 When operating in the self-sustaining operation mode, the control device 10 turns off the first switch SW1 and controls the connection destination of the second switch SW2 to the above-described internal terminal.
  • a phase and frequency independent of the commercial power supply 20 are set in the bidirectional inverter 50.
  • the input device 92 includes operation switches, operation buttons, operation keys, and the like.
  • the input device 92 receives a user operation and transmits an instruction signal corresponding to the operation to the control device 10 or the storage battery management device 80.
  • the display device 94 includes a display panel such as an LCD (Liquid Crystal Display) panel or an organic EL (Electro-Luminescence).
  • the display device 94 displays information provided from the control device 10 or the storage battery management device 80.
  • the input device 92 and the display device 94 may be configured as an integrated touch panel display.
  • FIG. 2 is a diagram showing a configuration of the storage battery management device 80 according to the embodiment of the present invention.
  • the storage battery management device 80 includes an operation reception unit 81, a display control unit 82, and a control unit 83.
  • Control unit 83 includes a charge control unit 84 and a discharge control unit 85.
  • attention is paid to charge / discharge control by the storage battery management device 80. Pay particular attention to charge control.
  • the operation reception unit 81 receives various types of information input to the input device 92 by the user and outputs the information to the control unit 83.
  • information necessary for the schedule operation for peak shift is received.
  • the secured storage capacity at the time of a power failure is a storage capacity that should be secured at least in the storage battery 70 in preparation for a power failure of the commercial power supply 20.
  • the secured storage capacity at the time of a power failure may be a fixed value set in advance regardless of the user setting.
  • the discharge time zone is a time zone in which power is discharged from the storage battery 70 for peak shift.
  • the discharge amount is a discharge amount that permits discharge from the storage battery 70 during the discharge time period.
  • the charging time zone is a time zone for charging the storage battery 70.
  • the display control unit 82 causes the display device 94 to display various information generated by the control unit 83.
  • information that supports input of information necessary for the scheduled operation by the user is displayed. Details of this information will be described later.
  • the charge control unit 84 includes a storage amount calculation unit 841, a charge current calculation unit 842, a charge current change unit 843, a charge time calculation unit 844, a charge management unit 845, and a charge end determination unit 846.
  • These configurations can be realized by any microcomputer, memory, or other LSI in terms of hardware, and can be realized by programs loaded into the memory in terms of software.
  • Draw functional blocks Accordingly, those skilled in the art will understand that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
  • the power storage amount calculation unit 841 calculates the power storage amount charged in the storage battery 70 during the charging time period based on the storage capacity secured during a power failure and the total amount of discharge discharged during the discharge time period. At that time, the conversion loss due to the bidirectional inverter 50 is taken into consideration.
  • FIG. 3 is a diagram for explaining the amount of electricity stored in the storage battery 70 during the charging time period.
  • the bidirectional inverter 50 converts AC power from the commercial power source 20 into DC power. An AC / DC conversion loss occurs during this conversion.
  • two-way inverter 50 converts the direct current power which the storage battery 70 discharges into alternating current power. A DC / AC conversion loss occurs during this conversion.
  • the storage capacity secured during a power failure is P F
  • the peak shift storage capacity that is the amount of power discharged from the storage battery 70 during the discharge time zone is P S
  • the ratio of AC / DC conversion loss is R AD .
  • the AC / DC conversion loss R AD represents the magnitude of AC power converted when the DC power discharged from the storage battery 70 is 1. Therefore, 0 ⁇ R AD ⁇ 1.
  • the storage amount P m charged in the storage battery 70 in the charging time zone is: P m ⁇ (P F + P S ) / R AD (1) It becomes.
  • the condition for establishing the equal sign is when the storage battery 70 is charged from an empty state.
  • the battery 70, the maximum allowable storage capacity P M is previously determined as the upper limit of the electricity storage possible power. Therefore, the storage amount calculation section 841 if the charged amount P m calculated using Equation (1) exceeds the maximum allowable storage capacity P M, the maximum allowable storage capacity P M and the storage amount P m.
  • the maximum allowable storage capacity P M is may be determined based on the rated capacity of the battery 70, the allowable maximum voltage may be calculated by experiment or simulation in consideration of charge and discharge characteristics. For example, the maximum allowable storage capacity P M is set to 15 kWh. In that case, power failure ensures storage capacity P F is set to a value in the range of 5 ⁇ 14kWh.
  • FIGS. 4A and 4B are diagrams showing examples of fluctuations in the storage capacity of the storage battery 70 in one day.
  • FIG. 4A shows an example of fluctuations in the storage capacity when the bidirectional inverter 50 is operated as a solar cell power conditioner without discharging the storage battery 70 for peak shift. Since the battery 70 is not to discharge for peak shift, the power storage capacity of the storage battery 70 as shown in FIG. 4 (a) is maintained in the power failure secure storage capacity P F, it does not vary.
  • FIG. 4B shows a variation example of the storage capacity when the storage battery 70 is discharged for peak shift.
  • Time T 1 in FIG. 4 (b) is a charge starting time
  • time T 2 is the charging end time
  • the period from time T 1 to time T 2 is a charging time period.
  • Storage capacity of the storage battery 70 in the charging time period is increased from the power failure secure storage capacity P F, and reaches the maximum allowed power storage capacity P M at around the time T 2.
  • Time T 3 is a discharge start time. After the start of discharge, the storage capacity of the storage battery 70 gradually decreases. Period from time T 4 to time T 5 is a period where the load 40 does not consume power. Power storage capacity of the storage battery 70 at time T 6 is reduced at the time to ensure storage capacity P F power outage. If the power storage capacity of the storage battery 70 during the discharge has reached the power outage secure storage capacity P F, the discharge control unit 85 also stops discharge from the battery 70 to a preset discharge time zone.
  • the charge management unit 845 manages charging to the storage battery 70. Specifically, charging is started by constant current charging (CC charging), and when the voltage of the storage battery 70 reaches the upper limit voltage, switching from constant current charging to constant voltage charging (CV charging) is performed. Although constant current charging is faster than constant voltage charging, it may overcharge beyond the end-of-charge voltage. Therefore, an upper limit voltage lower by a predetermined value than the end-of-charge voltage is set, and when the voltage of the storage battery 70 reaches the upper limit voltage, switching from constant current charging to constant voltage charging is performed. Thereby, efficient and safe charging can be realized.
  • CC charging constant current charging
  • CV charging constant voltage charging
  • the charging end determination unit 846 starts charging the storage battery 70 according to the management by the charging management unit 845
  • the voltage of the storage battery 70 is equal to or higher than the upper limit voltage and the charging current to the storage battery 70 is less than the lower limit current. It is determined that charging is complete.
  • the constant current charging is switched to the constant voltage charging.
  • the charging current decreases.
  • this property is used to determine the charging end timing. Designers, characteristics of the battery 70, on the basis of the upper limit voltage and the maximum allowable storage capacity P M, obtaining the lower-limit current for stopping the charging of the battery 70 at the maximum allowable charge capacity P M by an experiment or simulation.
  • the charging current calculation unit 842 calculates the charging current during constant current charging based on the amount of power calculated by the storage amount calculation unit 841 and the charging time based on the accepted charging time zone.
  • the charging time the time specified as the charging time zone may be used as it is, or a time obtained by subtracting the auxiliary charging time (for example, 30 minutes) from the time may be used.
  • the charging current calculation unit 842 calculates a charging rate R c that is a charging amount per unit time supplied to the storage battery 70.
  • the charge rate RC is obtained by the following formula (4).
  • R C P 1 / T C (4)
  • P 1 represents the amount of power to be supplied to the battery 70, T C denotes a charging time.
  • the charging current calculation unit 842 calculates the charging current by dividing the charging rate RC by the output voltage of the bidirectional inverter 50.
  • the charging current changing unit 843 compares the charging current calculated by the charging current calculating unit 842 with the above-described lower limit current. When the charging current is less than the lower limit current, the charging current changing unit 843 changes the charging current to the lower limit current or more.
  • the charging current changing unit 843 changes the charging current to the lower limit current or more.
  • an example in which the current is changed to the lower limit current is assumed for easy understanding. In practice, it is preferable to change the value of the lower limit current to a value with a certain margin in consideration of fluctuations in the charging current.
  • the charging time calculation unit 844 calculates a charging time in the case of performing constant current charging with the charging current changed by the charging current changing unit 843. First, the charging time calculation unit 844 calculates the charging rate RC by multiplying the changed charging current by the output voltage of the bidirectional inverter 50. Then charge time calculation unit 844, the amount of power P 1 to be supplied to the battery 70, and calculates the charging time T C is divided by the calculated charge rate R C.
  • FIGS. 5A to 5B are diagrams showing transition examples of the charging current and the voltage of the storage battery 70 at the time of charge control by the storage battery management apparatus 80 according to the embodiment of the present invention.
  • FIG. 5A shows an example in which the charging current during constant current charging is equal to or greater than the lower limit current
  • FIG. 5B shows an example in which the charging current during constant current charging is less than the lower limit current.
  • FIG. 6 is a flowchart for illustrating charging control by storage battery management device 80 according to the embodiment of the present invention.
  • the storage amount calculation unit 841 calculates the amount of power to be charged in the storage battery 70 (S12).
  • the calculation is not limited to the method described above. For example to get the SOC (State of. Charge) from the battery 70, and calculates the difference between the maximum allowable storage capacity P M, it may calculate the amount of power to be charged. Further, the amount of power to be charged may be set directly by user input.
  • the operation accepting unit 81 accepts the charging time input by the user from the input device 92 and passes it to the control unit 83 (S14).
  • the charging current calculation unit 842 calculates the charging current based on the amount of power to be charged and the charging time (S16).
  • the charging current changing unit 843 compares the charging current calculated by the charging current calculating unit 842 with the above-described lower limit current (S18). When the charging current is less than the lower limit current (Y in S18), the charging current changing unit 843 changes the charging current to the value of the lower limit current (S20).
  • the charging time calculation unit 844 calculates the charging time to be changed based on the electric energy to be charged and the changed charging current (S22). Note that this process may be omitted when the changed charging time is not displayed on the display device 94. If the charging current calculated by the charging current calculation unit 842 in step S18 is greater than or equal to the lower limit current (N in S18), the processes in steps S20 and S22 are skipped.
  • the charge management unit 845 starts constant current charging to the storage battery 70 with the determined charging current (S24). Specifically, the charge management unit 845 sets a charging rate for the bidirectional inverter 50, and the bidirectional inverter 50 controls the output current to maintain the charging current according to the set charging rate.
  • the charge management unit 845 determines whether or not the condition that the charging current is equal to or higher than the lower limit current and the voltage of the storage battery 70 is equal to or higher than the upper limit voltage (S26). While the condition is not satisfied (N in S26), constant current charging is continued. When the condition is satisfied (Y in S26), the charge management unit 845 switches from constant current charging to constant voltage charging (S28). In constant voltage charging, the charge management unit 845 refers to the voltage acquired from the storage battery 70 and adaptively switches the power command to the bidirectional inverter 50 so that the voltage becomes constant. The charge management unit 845 normally instructs the bidirectional inverter 50 to gradually reduce the output power according to the power command. The bidirectional inverter 50 gradually decreases the output power in accordance with the power command.
  • the charge end determination unit 846 determines whether or not the condition that the charging current is less than the lower limit current and the voltage of the storage battery 70 is equal to or higher than the upper limit voltage is satisfied (S30). While the condition is not satisfied (N in S30), constant voltage charging is continued. When the condition is satisfied (Y in S30), the charging control to the storage battery 70 is finished.
  • the display control unit 82 causes the display device 94 to display the charging time calculated by the charging time calculation unit 844. This prompts the user to re-input the charging time to the input device 92.
  • the display control unit 82 may cause the display device 94 to display a message prompting the user to input a charging time equal to or less than the calculated charging time.
  • FIG. 7 is a flowchart for explaining charging control by the storage battery management device 80 according to the first modification.
  • the flowchart of FIG. 7 is obtained by adding step S23 to the flowchart of FIG.
  • the display control unit 82 causes the display device 94 to display the charging time calculated in step S22 (S23). Thereafter, the process proceeds to step S14, and re-input of the charging time by the user is accepted (S14).
  • the other processes are the same as those in the flowchart of FIG.
  • FIG. 8 shows an example of a screen that prompts re-input of a charging time equal to or less than the charging time calculated by the charging time calculation unit 844 according to the first modification.
  • the display control unit 82 displays an input field 921 for inputting a charging time zone on the screen and a message 922 that prompts the user to input a charging time equal to or less than the calculated charging time.
  • the charging current was calculated based on the accepted charging time, and the charging current was compared with the lower limit current to determine whether the accepted charging time was too long.
  • it is determined whether the accepted charging time is too long by comparing the accepted charging time with a preset charging time.
  • the set charging time is calculated by dividing the amount of power to be charged in the preset storage battery 70 by the preset charging current.
  • the charging current is set to the above-described lower limit current or a current larger than the lower limit current.
  • the charging control unit 84 compares the charging time received by the operation receiving unit 81 with the set charging time, and shortens the received charging time when the former exceeds the latter.
  • the charging time is changed to the set charging time. It may be changed to a time shorter than the set charging time.
  • the display control unit 82 may display a screen that prompts re-input of the charging time equal to or less than the set charging time. Good.
  • the storage battery 70 when the charging current calculated from the amount of power to be charged and the charging time is less than the lower limit current, the storage battery 70 is changed by changing the charging current to the lower limit current or more. It is possible to suppress the stop of charging during charging. That is, with reference to the voltage and charging current of the storage battery 70, in charging control for switching from constant current charging to constant voltage charging and charging termination determination, the charging current falls below the lower limit current, so that constant voltage charging is performed. It is possible to avoid erroneously determining that charging has ended when switching should be determined. Therefore, it is possible to avoid a situation in which the charging ends before reaching the planned charging amount.
  • the charging time for charging with the changed charging current is calculated and displayed on the display device 94, so that the user can recognize the changed charging time.
  • the user can also re-enter the charging time.
  • the charging stop during charging of the storage battery 70 can be suppressed by changing the received charging time to the set charging time.
  • the invention according to the present embodiment may be specified by the items described below.
  • a reception unit for accepting charging time for the storage battery The received charging time is compared with a predetermined charging time calculated based on a preset amount of electric power to be charged in the storage battery and a preset charging current, and the received charging time is the predetermined charging time.
  • a change unit that shortens the accepted charging time A storage battery management device comprising:
  • the changing unit compares the received charging time with the predetermined charging time, and changes the received charging time to the predetermined charging time when the received charging time exceeds the predetermined charging time.
  • Item 4 The storage battery management device according to item 1.
  • the charge management unit starts charging with constant current charging, and switches from constant current charging to constant voltage charging when the voltage of the storage battery reaches a set voltage; After charging is started in accordance with management by the charge management unit, when the voltage of the storage battery is equal to or higher than the set voltage and the charge current to the storage battery is less than the set current, an end determination unit that determines that charging is complete, A reception unit for receiving a charging time for the storage battery; A charging current calculation unit for calculating a charging current during constant current charging based on the amount of power to be charged in the storage battery and the received charging time; The calculated charging current is compared with the set current, and when the charging current is less than the set current, a charging current changing unit that changes the charging current to the set current or more;
  • a storage battery management device comprising:
  • a charging time calculation unit for calculating a charging time in the case of constant current charging with the changed charging current;
  • a display control unit for displaying the calculated charging time on a display device;
  • the storage battery management device according to item 3, further comprising:
  • 100 power distribution system 10 control device, 20 commercial power supply, 30 distribution board, 40 load, 42 first load, 44 second load, 50 bidirectional inverter, 60 solar cell, 70 storage battery, 80 storage battery management device, 81 Operation acceptance unit, 82 display control unit, 83 control unit, 84 charge control unit, 841 storage amount calculation unit, 842 charge current calculation unit, 843 charge current change unit, 844 charge time calculation unit, 845 charge management unit, 846 charge termination Judgment unit, 85 discharge control unit, 92 input device, 94 display device, SW1 first switch, SW2 second switch, SW3 third switch.
  • the present invention can be used for a large-scale power storage system linked with solar power generation.

Abstract

 充電管理部845は、蓄電池70を充電する際、定電流充電で充電開始し、蓄電池70の電圧が設定電圧に達すると定電流充電から定電圧充電に切り替える。充電終了判定部846は、充電が開始された後、蓄電池70の電圧が設定電圧以上かつ充電電流が設定電流未満の状態になると充電終了と判定する。充電電流算出部842は、充電すべき電力量と、受け付けた充電時間をもとに定電流充電時の充電電流を算出する。充電電流変更部843は、算出された充電電流が設定電流未満のとき、充電電流を設定電流以上に変更する。

Description

蓄電池管理装置
 本発明は、配電技術に関し、特に再生可能エネルギーの発電装置に接続された蓄電池と、商用電源とが併存するシステムにおける電力を制御する技術に関する。
 蓄電池と商用電源とを負荷に並列に接続し、商用電源の停電時に備えて負荷で消費される電力のバックアップとして蓄電池を用いるとともに、通常時は負荷で消費される電力のピークシフトのために蓄電池の電力を充放電する技術が開発されている。このような技術においては、例えば夜間などの負荷による電力消費の少ない時間帯に商用電源からの交流電力を直流電力に変換して蓄電池に蓄電し、昼間などの負荷による電力消費の多い時間帯に蓄電池の電力を交流電力に変換して負荷に供給することが行われる。
特開平9-56082号公報
 蓄電池に充電する際の制御方式として、まず定電流充電をし、上限電圧に到達すると定電圧充電に切り替える制御方式が用いられることが多い。この制御方式において上限電圧に到達した際の充電電流が微弱な場合、目標とする容量に到達したと誤認識し、充電が途中で停止してしまうことがある。
 本発明はこうした状況に鑑みなされたものであり、その目的は、蓄電池への充電途中での充電停止を抑制する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の蓄電池管理装置は、蓄電池への充電時間を受け付ける受付部と、受け付けた充電時間と、あらかじめ設定された蓄電池に充電すべき電力量とあらかじめ設定された充電電流とをもとに算出した所定の充電時間を比較し、受け付けた充電時間が所定の充電時間を超える場合、受け付けた充電時間を短くする変更部と、を備える。
 本発明の別の態様もまた、蓄電池管理装置である。この装置は、蓄電池を充電する際、定電流充電で充電開始し、蓄電池の電圧が設定電圧に達すると定電流充電から定電圧充電に切り替える充電管理部と、充電管理部による管理にしたがい充電が開始された後、蓄電池の電圧が設定電圧以上かつ蓄電池への充電電流が設定電流未満の状態になると、充電終了と判定する終了判定部と、蓄電池への充電時間を受け付ける受付部と、蓄電池に充電すべき電力量と、受け付けた充電時間をもとに定電流充電時の充電電流を算出する充電電流算出部と、算出された充電電流と、設定電流を比較し、充電電流が設定電流未満のとき、充電電流を設定電流以上に変更する充電電流変更部と、を備える。
 本発明によれば、蓄電池への充電途中での充電停止を抑制できる。
本発明の実施の形態に係る配電システムを模式的に示す図である。 本発明の実施の形態に係る蓄電池管理装置の構成を示す図である。 充電時間帯において蓄電池に充電させる蓄電量を説明するための図である。 図4(a)-(b)は、蓄電池の1日における蓄電容量の変動例を示す図である。 図5(a)-(b)は、本発明の実施の形態に係る蓄電池管理装置による充電制御時の充電電流と、蓄電池の電圧の推移例を示す図である。 本発明の実施の形態に係る蓄電池管理装置による充電制御を説明するためのフローチャートである。 変形例1に係る、蓄電池管理装置による充電制御を説明するためのフローチャートである。 変形例1に係る、充電時間算出部により算出された充電時間以下の充電時間の再入力を促す画面の一例を示す図である。
 本発明の実施の形態は、太陽電池を商用電力系統と並列に接続し、商用電源および太陽電池の両方から負荷へ電力を供給するとともに、蓄電池を充電する配電システムに関する。このような配電システムは、例えば商業施設、公共施設、オフィスビル、マンションなどへの設置に適している。電力会社が時間帯別電気料金制度を採用している場合、夜間の時間帯の電気料金は、昼間の時間帯の電気料金よりも安く設定される。これらの時間帯の一例として、昼間の時間帯は7時から23時であり、夜間の時間帯は23時から翌日の7時というように規定される。このような低い電気料金を有効に利用するために、配電システムは、夜間の時間帯に、商用電源からの電力によって蓄電池に蓄電する。
 蓄電池に蓄えられた電力は、商用電源が停電したときに、サーバやエレベータなどの重要な機器を動作させるためのバックアップ電源として用いられる。さらに蓄電池は、一般に電気の使用量が大きくなる昼間の時間帯において放電することによって、昼間の商用電力における使用量の最大値を下げる、いわゆるピークシフトとしても用いられる。
 このように、蓄電池は特定の負荷のバックアップとしての役割と、ピークシフトとしての役割のふたつの役割を持つ。実施の形態に係る配電システムは、蓄電池に上述のふたつの役割を果たさせるために、商用電源が通電中の通常時には蓄電池に一定の蓄電量を確保しつつピークシフトを実行し、商用電源が停電の場合には、蓄電池を放電して特定の負荷に電力を供給する。
 図1は、本発明の実施の形態に係る配電システム100を模式的に示す図である。実施の形態に係る配電システム100は負荷40に電力を供給するためのシステムであり、太陽電池60、双方向インバータ50、蓄電池70、蓄電池管理装置80、制御装置10、第1スイッチSW1、第2スイッチSW2、第3スイッチSW3、入力装置92および表示装置94を含む。太陽電池60は再生可能エネルギー発電装置の一例であり、太陽電池60に限らず、例えば風力発電装置であってもよい。またそれらが併存されてもよい。
 負荷40は、第1種負荷42および第2種負荷44に分類される。両者とも交流電力で駆動される機器である。第1種負荷42は電力供給の優先順位が高い特定負荷である。例えばエレベータ、サーバなどが該当する。第2種負荷44は一般負荷である。停電時には第1種負荷42のみが蓄電池70からバックアップ電源の供給を受ける。このように負荷40に優先順位をつけることにより、停電時に、蓄電池70に蓄積された限られた電力を効果的に使用できる。
 商用電源20は電力会社から供給される系統電源である。分電盤30は系統に接続されるとともに、第1スイッチSW1を介して双方向インバータ50に接続される。分電盤30は系統から引き込んだ交流電力を構内の負荷40に供給する。また分電盤30は、双方向インバータ50を介して太陽電池60からの発電電力、蓄電池70からの放電電力またはその合成電力を受ける。分電盤30は、その電力と系統からの電力を合成して負荷40に供給することもできる。分電盤30は、系統側端子およびインバータ側端子それぞれの電力を計測し、制御装置10に通知する。例えば系統の停電時に、分電盤30はその停電を制御装置10に通知する。
 第1スイッチSW1は、分電盤30と双方向インバータ50との間に設けられ、制御装置10によりオンオフ制御される。第1スイッチSW1がオフに制御されるとき負荷40に系統電力のみが供給され、第1スイッチSW1がオンに制御されるとき系統電力と双方向インバータ50から供給される電力との合成電力が供給される。
 第2スイッチSW2は、第1種負荷42の入力端子の接続先を、分電盤30と第1スイッチSW1とのノード(以下、外部側端子という)に接続するか、双方向インバータ50と第1スイッチSW1とのノード(以下、内部側端子という)に接続するか切り替える。第2スイッチSW2は制御装置10により切り替え制御される。通常時は第1種負荷42の入力端子が外部側端子に接続されるよう制御される。停電時は第1種負荷42にのみバックアップ電源が供給されるよう、第1スイッチSW1がオフに制御され、第2スイッチSW2が内部側端子に接続されるよう制御される。なお停電時において負荷40に優先順位をつけない場合、通常時と同じ接続状態が維持される。
 太陽電池60は、光起電力効果を利用し、光エネルギーを直接電力に変換する発電装置である。太陽電池60として、シリコン太陽電池、さまざまな化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)などが使用される。太陽電池60は、第3スイッチSW3を介して双方向インバータ50に接続される。
 双方向インバータ50は、交流側端子から入力される交流電力を直流電力に変換して直流側端子に出力するとともに、直流側端子から入力される直流電力を交流電力に変換して交流側端子に出力する。双方向インバータ50の交流側端子は系統および負荷40に接続され、直流側端子は太陽電池60および蓄電池70に接続される。
 第3スイッチSW3は太陽電池60と、直流ノードとの間に設けられる。第3スイッチSW3は制御装置10によりオンオフ制御される。当該直流ノードは、双方向インバータ50の直流側端子と、太陽電池60の出力端子に接続された第3スイッチSW3のインバータ側端子と、蓄電池70の入出力端子が結合されるノードである。
 太陽電池60の発電量は太陽光の量によって左右されるため、発電量を制御することは困難である。第3スイッチSW3を設けることにより、太陽電池60の発電電力による蓄電池70の過充電を防止できる。
 蓄電池70は、充放電自在で繰り返し使用できる二次電池である。蓄電池70は例えば、多数のリチウムイオン電池セルを内蔵する電池パックが複数組み合わされて形成される。具体的には複数の電池パックは直並列接続され、直列単位でスイッチングユニットにより接続/切断制御される。
 蓄電池70は上述の直流ノードに接続される。蓄電池70は基本的に、双方向インバータ50によって直流電力に変換された系統電力によって充電される。また太陽電池60が発電した電力によっても充電される。蓄電池70は、双方向インバータ50によって直流電力から交流電力に変換された放電電力を負荷40に供給する。特に停電時、第1種負荷42に供給する。
 蓄電池70を構成する各電池パックは、図示しない電流センサ、電圧センサ、温度センサを内蔵する。各電池パックは、内蔵する各電池セルの電流、電圧、温度を常時監視し、監視データを蓄電池管理装置80に送信する。
 蓄電池管理装置80は、充放電指令および蓄電池70から受信される監視データをもとに、蓄電池70の充放電制御および保護制御を行う。充電指令が発動された場合、蓄電池管理装置80は蓄電池70のスイッチングユニットに、電池パックと、双方向インバータ50につながるバスとを接続させるよう指示する。それとともに制御装置10に、双方向インバータ50にAC-DC変換させるよう指示する。放電指令が発動された場合、蓄電池管理装置80は当該スイッチングユニットに、電池パックと当該バスとを接続させるよう指示する。それとともに制御装置10に、双方向インバータ50にDC-AC変換させるよう指示する。
 また蓄電池管理装置80は、蓄電池70から受信される監視データをもとに蓄電池70における短絡、過電流、過充電または過放電を検出すると、上述のスイッチングユニットの少なくとも一つのスイッチをオフするよう制御する。また蓄電池管理装置80は、制御装置10から過電流検出信号を受信した場合も、上述のスイッチングユニットの少なくとも一つをオフするよう制御する。
 制御装置10および双方向インバータ50は双方向パワーコンディショナを構成する。双方向インバータ50は、商用電源20が通電中の場合は商用電源20の周波数に同期した周波数で動作し、商用電源20が停電中の場合は商用電源20の周波数と非同期の周波数で動作する。
 制御装置10は、太陽電池60および/または蓄電池70から負荷40に給電する際、系統連系運転モードと自立運転モードのいずれかを選択する。系統連系運転モードは、太陽電池60および/または蓄電池70が商用電源20と電気的に接続し、双方向インバータ50が系統に商用電源20に同期した電流を流している運転状態をいう。この系統に流している電流は、商用電源20の周波数と同じ周波数で、規定値以上の高周波電流を含まない正弦波であり、力率が概略1(商用電源20の電圧と同じ位相)の電流である。
 自立運転モードは、太陽電池60および/または蓄電池70が商用電源20と電気的に切り離された状態で、双方向インバータ50が第1種負荷42に電力を供給している運転状態をいう。自立運転モードでは、双方向インバータ50自体が規定の電圧および周波数で規定値以上の歪みのない正弦波の電圧を発生させる。
 制御装置10は、太陽電池60および/または蓄電池70から負荷40に給電する際、商用電源20が停電していない場合は系統連系運転モードで運転し、商用電源20が停電している場合は自立運転モードで運転する。系統連系運転モードで運転する場合、制御装置10は第1スイッチSW1をオンに、第2スイッチSW2の接続先を上述の外部側端子に制御する。それとともに双方向インバータ50に、商用電源20と連系すべく商用電源20に同期した位相と周波数を設定する。自立運転モードで運転する場合、制御装置10は第1スイッチSW1をオフに、第2スイッチSW2の接続先を上述の内部側端子に制御する。それとともに双方向インバータ50に、商用電源20と独立した位相と周波数を設定する。
 入力装置92は操作スイッチ、操作ボタン、操作キーなどを備える。入力装置92はユーザ操作を受け付け、その操作に対応する指示信号を制御装置10または蓄電池管理装置80に送信する。表示装置94はLCD(Liquid Crystal Display)パネル、有機EL(Electro-Luminescence)などの表示パネルを備える。表示装置94は制御装置10または蓄電池管理装置80から提供される情報を表示する。なお入力装置92と表示装置94は一体型のタッチパネルディスプレイで構成されてもよい。
 図2は、本発明の実施の形態に係る蓄電池管理装置80の構成を示す図である。蓄電池管理装置80は、操作受付部81、表示制御部82および制御部83を備える。制御部83は、充電制御部84および放電制御部85を含む。本実施の形態では蓄電池管理装置80による充放電制御に注目する。特に充電制御に注目する。
 操作受付部81は、ユーザにより入力装置92に入力される各種の情報を受け付け、制御部83に出力する。本実施の形態ではピークシフト用のスケジュール運転に必要な情報を受け付ける。具体的には停電時確保蓄電容量、放電時間帯、放電量および充電時間帯を受け付ける。停電時確保蓄電容量は、商用電源20の停電に備えて蓄電池70に最低限確保すべき蓄電容量である。なお停電時確保蓄電容量は、ユーザ設定によらず、予め設定された固定値であってもよい。放電時間帯は、ピークシフトのために蓄電池70から電力を放電する時間帯である。放電量は当該放電時間帯に、蓄電池70からの放電を許可する放電量である。充電時間帯は蓄電池70に充電する時間帯である。
 表示制御部82は、制御部83により生成される各種の情報を表示装置94に表示させる。本実施の形態ではユーザによる、スケジュール運転に必要な情報の入力をサポートする情報を表示させる。この情報の具体的は後述する。
 充電制御部84は、蓄電量算出部841、充電電流算出部842、充電電流変更部843、充電時間算出部844、充電管理部845および充電終了判定部846を含む。これらの構成は、ハードウエア的には、任意のマイクロコンピュータ、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
 蓄電量算出部841は、停電時確保蓄電容量と、放電時間帯に放電させる放電量の総量をもとに、充電時間帯に蓄電池70に充電させる蓄電量を算出する。その際、双方向インバータ50による変換ロスを考慮する。
 図3は、充電時間帯において蓄電池70に充電させる蓄電量を説明するための図である。商用電源20からの交流電力を蓄電池70に充電するため、双方向インバータ50は商用電源20からの交流電力を直流電力に変換する。この変換の際にAC/DC変換ロスが生じる。また、蓄電池70が放電する電力を負荷40に供給するため、双方向インバータ50は蓄電池70が放電する直流電力を交流電力に変換する。この変換の際にDC/AC変換ロスが生じる。
 停電時確保蓄電容量をP、放電時間帯に蓄電池70から放電させる電力量であるピークシフト用蓄電容量をP、AC/DC変換ロスの割合をRADとする。ここでAC/DC変換ロスRADは、蓄電池70が放電する直流電力を1としたときに変換される交流電力の大きさを表す。したがって、0<RAD≦1である。
 充電時間帯において蓄電池70に充電させる蓄電量Pは、
≦(P+P)/RAD ・・・式(1)
となる。等号成立の条件は、蓄電池70が空の状態から充電する場合である。
 蓄電池70は、蓄電可能な電力の上限である最大許容蓄電容量Pが予め定まっている。したがって、蓄電量算出部841は式(1)を用いて算出した蓄電量Pが最大許容蓄電容量Pを上回る場合、最大許容蓄電容量Pを蓄電量Pとする。最大許容蓄電容量Pは蓄電池70の定格容量をもとに決定されてもよいし、許容最大電圧、充放電特性などを考慮して実験またはシミュレーションにより算出されてもよい。例えば最大許容蓄電容量Pは15kWhに設定される。その場合、停電時確保蓄電容量Pは5~14kWhの範囲内の値に設定される。
 上述したように停電時確保蓄電容量Pは、商用電源20が停電したときに使用されるべき蓄電容量であるため、商用電源20が停電しない限り、蓄電池70は停電時確保蓄電容量Pを最低限蓄電している。したがって、充電時間帯に商用電源20から蓄電池70に実際に供給されるべき電力量Pは、
 P=P/RAD ・・・式(2)
となる。
 また、蓄電池70から双方向インバータ50を介して負荷40に供給される電力量Pは、
 P=P×RDA ・・・式(3)
となる。
 図4(a)-(b)は、蓄電池70の1日における蓄電容量の変動例を示す図である。図4(a)は、蓄電池70からピークシフトのための放電をさせず、双方向インバータ50を太陽電池用パワーコンディショナとして動作させた場合の、蓄電容量の変動例を示す。蓄電池70はピークシフトのための放電をしないため、図4(a)に示すように蓄電池70の蓄電容量は停電時確保蓄電容量Pのまま維持され、変動しない。
 図4(b)は、蓄電池70からピークシフトのための放電をさせた場合の、蓄電容量の変動例を示す。図4(b)において時刻Tは充電開始時刻であり、時刻Tは充電終了時刻であり、時刻Tから時刻Tまでの期間が充電時間帯である。充電時間帯において蓄電池70の蓄電容量は停電時確保蓄電容量Pから増加し、時刻T付近で最大許容蓄電容量Pに到達する。
 時刻Tは放電開始時刻である。放電開始後、蓄電池70の蓄電容量は徐々に減少する。時刻Tから時刻Tまでの期間は負荷40が電力を消費していない期間である。時刻Tにおいて蓄電池70の蓄電容量は停電時確保蓄電容量Pまで減少する。放電中に蓄電池70の蓄電容量が停電時確保蓄電容量Pに到達した場合、放電制御部85は、設定された放電時間帯であっても蓄電池70からの放電を停止させる。
 図2に戻る。充電管理部845は蓄電池70への充電を管理する。具体的には定電流充電(CC充電)で充電開始し、蓄電池70の電圧が上限電圧に達すると定電流充電から定電圧充電(CV充電)に切り替える。定電流充電のほうが定電圧充電より高速充電が可能であるが、充電終止電圧を超えて過充電してしまうことがある。そこで充電終止電圧より所定の値低い上限電圧を設定し、蓄電池70の電圧が上限電圧に到達すると、定電流充電から定電圧充電に切り替える。これにより、効率的で安全な充電が実現できる。
 充電終了判定部846は、充電管理部845による管理にしたがい蓄電池70への充電が開始された後、蓄電池70の電圧が上限電圧以上かつ蓄電池70への充電電流が下限電流未満の状態になると、充電終了と判定する。上述したように蓄電池70の電圧が上限電圧に到達すると定電流充電から定電圧充電に切り替わるが、蓄電池70の蓄電量が満充電容量に近づいてくると充電電流が低下してくる。本実施の形態ではこの性質を利用して、充電終了タイミングを決定する。設計者は、蓄電池70の特性、当該上限電圧および最大許容蓄電容量Pをもとに、蓄電池70への充電を最大許容蓄電容量Pで停止させるための下限電流を実験またはシミュレーションにより求める。
 充電電流算出部842は、蓄電量算出部841により算出された電力量と、受け付けた充電時間帯に基づく充電時間をもとに、定電流充電時の充電電流を算出する。当該充電時間には、充電時間帯として指定された時間をそのまま使用してもよいし、その時間から補充電時間(例えば30分)を引いた時間を使用してもよい。
 まず充電電流算出部842は、蓄電池70に供給する単位時間あたりの充電量である充電レートRを算出する。充電レートRは以下の式(4)で求められる。
  R=P/T  ・・・式(4)
 Pは蓄電池70に供給されるべき電力量を示し、Tは充電時間を示す。
 例えば電力量Pが10kWh、充電時間Tが5時間の場合、充電レートRは2kWとなる。次に充電電流算出部842は、充電レートRを双方向インバータ50の出力電圧で割って、充電電流を算出する。
 充電電流変更部843は、充電電流算出部842により算出された充電電流と、上述の下限電流を比較する。当該充電電流が下限電流未満のとき、充電電流変更部843は当該充電電流を下限電流以上に変更する。以下、本実施の形態では説明を分かりやすくするため下限電流に変更する例を想定する。実際には充電電流の変動を考慮し、下限電流に一定のマージンを持たせた値に変更することが好ましい。
 充電時間算出部844は、充電電流変更部843により変更された充電電流で定電流充電する場合の充電時間を算出する。まず充電時間算出部844は、変更された充電電流に双方向インバータ50の出力電圧を掛けて充電レートRを算出する。次に充電時間算出部844は、蓄電池70に供給されるべき電力量Pを、算出した充電レートRで割って充電時間Tを算出する。
 図5(a)-(b)は、本発明の実施の形態に係る蓄電池管理装置80による充電制御時の充電電流と、蓄電池70の電圧の推移例を示す図である。図5(a)は、定電流充電時の充電電流が下限電流以上の例を示し、図5(b)は、定電流充電時の充電電流が下限電流未満の例を示す。
 図5(a)に示す例では、蓄電池70の電圧が上限電圧に到達したとき、充電電流が下限電流以上であるため、定電流充電から定電圧充電に切り替わる。その後、充電電流が徐々に低下し、下限電流未満になると充電終了となる。図5(b)に示す例では、蓄電池70の電圧が上限電圧に到達したとき、充電電流が下限電流未満であるため、定電流充電から定電圧充電に切り替わらず、その時点で充電終了となる。図5(a)と図5(b)を比較すると、後者は前者より蓄電池70への充電量が少なくなることが分かる。
 図6は、本発明の実施の形態に係る蓄電池管理装置80による充電制御を説明するためのフローチャートである。まず蓄電量算出部841は、蓄電池70に充電すべき電力量を算出する(S12)。なお上述した手法による算出に限らない。例えば蓄電池70からSOC(State of. Charge)を取得し、最大許容蓄電容量Pとの差分を算出して、充電すべき電力量を算出してもよい。またユーザ入力により直接、充電すべき電力量が設定されてもよい。
 操作受付部81は入力装置92から、ユーザ入力された充電時間を受け付け、制御部83に渡す(S14)。充電電流算出部842は、充電すべき電力量および充電時間をもとに充電電流を算出する(S16)。
 充電電流変更部843は、充電電流算出部842により算出された充電電流と、上述の下限電流を比較する(S18)。当該充電電流が下限電流未満の場合(S18のY)、充電電流変更部843は、当該充電電流を下限電流の値に変更する(S20)。充電時間算出部844は、充電すべき電力量および変更後の充電電流をもとに、変更すべき充電時間を算出する(S22)。なおこの処理は、変更後の充電時間を表示装置94に表示させない設定の場合、省略してもよい。ステップS18にて充電電流算出部842により算出された充電電流が下限電流以上の場合(S18のN)、ステップS20、ステップS22の処理をスキップする。
 充電管理部845は、決定された充電電流で蓄電池70への定電流充電を開始する(S24)。具体的には充電管理部845は双方向インバータ50に充電レートを設定し、双方向インバータ50は、設定される充電レートにしたがい、出力電流が当該充電電流を維持するよう制御する。
 充電管理部845は、充電電流が下限電流以上であり、かつ蓄電池70の電圧が上限電圧以上である条件を満たすか否か判定する(S26)。当該条件が満たさない間(S26のN)、定電流充電を継続する。当該条件を満たすと(S26のY)、充電管理部845は、定電流充電から定電圧充電に切り替える(S28)。定電圧充電では充電管理部845は、蓄電池70から取得される電圧を参照して、その電圧が一定になるよう双方向インバータ50への電力指令を適応的に切り替える。充電管理部845は、通常、当該電力指令により双方向インバータ50に、出力電力を徐々に低下させるよう指示する。双方向インバータ50は、当該電力指令にしたがい、出力電力を徐々に低下させる。
 充電終了判定部846は、充電電流が下限電流未満であり、かつ蓄電池70の電圧が上限電圧以上である条件を満たすか否か判定する(S30)。当該条件が満たさない間(S30のN)、定電圧充電を継続する。当該条件を満たすと(S30のY)、蓄電池70への充電制御が終了する。
 次に本実施の形態に係る蓄電池管理装置80による充電制御の変形例1を説明する。変形例1では表示制御部82は、充電時間算出部844により算出された充電時間を表示装置94に表示させる。これにより、ユーザによる入力装置92への充電時間の再入力を促す。その再入力を促す際、表示制御部82は、算出された充電時間以下の充電時間を入力するよう、ユーザに促すメッセージを表示装置94に表示させてもよい。
 図7は、変形例1に係る、蓄電池管理装置80による充電制御を説明するためのフローチャートである。図7のフローチャートは、図6のフローチャートにステップS23が追加されたものである。以下、図6のフローチャートとの相違点を説明する。表示制御部82は、ステップS22で算出された充電時間を表示装置94に表示させる(S23)。その後、ステップS14に遷移し、ユーザによる充電時間の再入力を受け付ける(S14)。その他の処理は、図6のフローチャートと同様であるため説明を省略する。
 図8は、変形例1に係る、充電時間算出部844により算出された充電時間以下の充電時間の再入力を促す画面の一例を示す。表示制御部82は、画面内に充電時間帯を入力するための入力欄921と、算出された充電時間以下の充電時間を入力するよう、ユーザに促すメッセージ922を表示させる。
 次に本実施の形態に係る蓄電池管理装置80による充電制御の変形例2を説明する。これまで、受け付けた充電時間をもとに充電電流を算出し、その充電電流と下限電流を比較することにより、受け付けた充電時間が長すぎないかを判定した。変形例2では受け付けた充電時間をあらかじめ設定された充電時間と比較することにより、受け付けた充電時間が長すぎないかを判定する。この設定された充電時間は、あらかじめ設定された蓄電池70に充電すべき電力量を、あらかじめ設定された充電電流で割ることにより算出される。この充電電流には、上述の下限電流または当該下限電流より大きい電流が設定される。充電制御部84は、操作受付部81により受け付けられた充電時間と、当該設定された充電時間とを比較し、前者が後者を超える場合、受け付けた充電時間を短くする。具体的には設定された充電時間に変更する。なお設定された充電時間より短い時間に変更してもよい。また変形例1と同様に、受け付けた充電時間が当該設定された充電時間を超える場合、表示制御部82は、当該設定された充電時間以下の充電時間の再入力を促す画面を表示させてもよい。
 以上説明したように本発明の実施の形態によれば、充電すべき電力量および充電時間から算出される充電電流が下限電流未満の場合、充電電流を下限電流以上に変更することにより、蓄電池70への充電途中での充電停止を抑制できる。即ち、蓄電池70の電圧および充電電流を参照して、定電流充電から定電圧充電への切り替え、および充電終了判定を行う充電制御において、充電電流が下限電流を下回ることにより、定電圧充電への切り替えと判定すべき場合に充電終了と誤判定することを回避できる。したがって予定の充電量に到達する前に充電が終了してしまう事態を回避できる。
 また変形例1では、変更後の充電電流で充電する場合の充電時間を算出して表示装置94に表示させることにより、ユーザは変更後の充電時間を認識できる。またユーザは充電時間を再入力することもできる。
 また変形例2では、受け付けた充電時間が設定された充電時間を超える場合、受け付けた充電時間を設定された充電時間に変更することにより、蓄電池70への充電途中での充電停止を抑制できる。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
 蓄電池への充電時間を受け付ける受付部と、
受け付けた充電時間と、あらかじめ設定された蓄電池に充電すべき電力量とあらかじめ設定された充電電流とをもとに算出した所定の充電時間を比較し、前記受け付けた充電時間が前記所定の充電時間を超える場合、前記受け付けた充電時間を短くする変更部と、
を備えることを特徴とする蓄電池管理装置。
[項目2]
 前記変更部は、前記受け付けた充電時間と前記所定の充電時間を比較し、前記受け付けた充電時間が前記所定の充電時間を超える場合、前記受け付けた充電時間を前記所定の充電時間に変更することを特徴とする項目1に記載の蓄電池管理装置。
[項目3]
 蓄電池を充電する際、定電流充電で充電開始し、前記蓄電池の電圧が設定電圧に達すると定電流充電から定電圧充電に切り替える充電管理部と、
 前記充電管理部による管理にしたがい充電が開始された後、前記蓄電池の電圧が前記設定電圧以上かつ前記蓄電池への充電電流が設定電流未満の状態になると、充電終了と判定する終了判定部と、
 前記蓄電池への充電時間を受け付ける受付部と、
 前記蓄電池に充電すべき電力量と、受け付けた充電時間をもとに定電流充電時の充電電流を算出する充電電流算出部と、
 算出された充電電流と、前記設定電流を比較し、前記充電電流が前記設定電流未満のとき、前記充電電流を前記設定電流以上に変更する充電電流変更部と、
 を備えることを特徴とする蓄電池管理装置。
[項目4]
 変更された充電電流で定電流充電する場合の充電時間を算出する充電時間算出部と、
 算出された充電時間を表示装置に表示させる表示制御部と、
 をさらに備えることを特徴とする項目3に記載の蓄電池管理装置。
[項目5]
 前記表示制御部は、前記充電時間算出部により算出された充電時間以下の充電時間を入力するよう、ユーザに促すメッセージを前記表示装置に表示させることを特徴とする項目4に記載の蓄電池管理装置。
 100 配電システム、 10 制御装置、 20 商用電源、 30 分電盤、 40 負荷、 42 第1種負荷、 44 第2種負荷、 50 双方向インバータ、 60 太陽電池、 70 蓄電池、 80 蓄電池管理装置、 81 操作受付部、 82 表示制御部、 83 制御部、 84 充電制御部、 841 蓄電量算出部、 842 充電電流算出部、 843 充電電流変更部、 844 充電時間算出部、 845 充電管理部、 846 充電終了判定部、 85 放電制御部、 92 入力装置、 94 表示装置、 SW1 第1スイッチ、 SW2 第2スイッチ、 SW3 第3スイッチ。
 本発明は、太陽光発電と連携した大規模蓄電システムに利用できる。

Claims (5)

  1.  蓄電池への充電時間を受け付ける受付部と、
     受け付けた充電時間と、あらかじめ設定された蓄電池に充電すべき電力量とあらかじめ設定された充電電流とをもとに算出した所定の充電時間を比較し、前記受け付けた充電時間が前記所定の充電時間を超える場合、前記受け付けた充電時間を短くする変更部と、
    を備えることを特徴とする蓄電池管理装置。
  2.  前記変更部は、前記受け付けた充電時間と前記所定の充電時間を比較し、前記受け付けた充電時間が前記所定の充電時間を超える場合、前記受け付けた充電時間を前記所定の充電時間に変更することを特徴とする請求項1に記載の蓄電池管理装置。
  3.  蓄電池を充電する際、定電流充電で充電開始し、前記蓄電池の電圧が設定電圧に達すると定電流充電から定電圧充電に切り替える充電管理部と、
     前記充電管理部による管理にしたがい充電が開始された後、前記蓄電池の電圧が前記設定電圧以上かつ前記蓄電池への充電電流が設定電流未満の状態になると、充電終了と判定する終了判定部と、
     前記蓄電池への充電時間を受け付ける受付部と、
     前記蓄電池に充電すべき電力量と、受け付けた充電時間をもとに定電流充電時の充電電流を算出する充電電流算出部と、
     算出された充電電流と、前記設定電流を比較し、前記充電電流が前記設定電流未満のとき、前記充電電流を前記設定電流以上に変更する充電電流変更部と、
     を備えることを特徴とする蓄電池管理装置。
  4.  変更された充電電流で定電流充電する場合の充電時間を算出する充電時間算出部と、
     算出された充電時間を表示装置に表示させる表示制御部と、
     をさらに備えることを特徴とする請求項3に記載の蓄電池管理装置。
  5.  前記表示制御部は、前記充電時間算出部により算出された充電時間以下の充電時間を入力するよう、ユーザに促すメッセージを前記表示装置に表示させることを特徴とする請求項4に記載の蓄電池管理装置。
PCT/JP2012/003580 2012-05-31 2012-05-31 蓄電池管理装置 WO2013179344A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/003580 WO2013179344A1 (ja) 2012-05-31 2012-05-31 蓄電池管理装置
JP2014518090A JP5861128B2 (ja) 2012-05-31 2012-05-31 蓄電池管理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003580 WO2013179344A1 (ja) 2012-05-31 2012-05-31 蓄電池管理装置

Publications (1)

Publication Number Publication Date
WO2013179344A1 true WO2013179344A1 (ja) 2013-12-05

Family

ID=49672603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003580 WO2013179344A1 (ja) 2012-05-31 2012-05-31 蓄電池管理装置

Country Status (2)

Country Link
JP (1) JP5861128B2 (ja)
WO (1) WO2013179344A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136260A1 (ja) * 2015-02-25 2016-09-01 京セラ株式会社 電力管理装置、電力管理システム、および電力管理方法
JP2017163747A (ja) * 2016-03-10 2017-09-14 大和ハウス工業株式会社 電力供給システム
JP2018182925A (ja) * 2017-04-14 2018-11-15 清水建設株式会社 電力供給システム
JP2019068576A (ja) * 2017-09-29 2019-04-25 株式会社第一興商 充電制御装置
JPWO2018047415A1 (ja) * 2016-09-12 2019-06-27 住友電気工業株式会社 蓄電装置及び電源システム
JP2021044950A (ja) * 2019-09-11 2021-03-18 東芝ライフスタイル株式会社 充電装置、電気掃除機、および二次電池装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244862A (ja) * 2002-02-15 2003-08-29 Sumitomonacco Materials Handling Co Ltd 車両用バッテリ充電装置
JP2009044946A (ja) * 2007-07-13 2009-02-26 Sanyo Electric Co Ltd 組電池の充電方法
JP2009296868A (ja) * 2008-03-31 2009-12-17 Intel Corp インテリジェント電池充電率管理方法及び装置
JP2010213502A (ja) * 2009-03-11 2010-09-24 Omron Corp 充電制御装置および方法、並びにプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798087B2 (ja) * 2007-07-10 2011-10-19 トヨタ自動車株式会社 電力システムおよびそれを備えた車両
KR100998302B1 (ko) * 2007-12-07 2010-12-06 삼성에스디아이 주식회사 이차 전지의 충전 방법 및 충전 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244862A (ja) * 2002-02-15 2003-08-29 Sumitomonacco Materials Handling Co Ltd 車両用バッテリ充電装置
JP2009044946A (ja) * 2007-07-13 2009-02-26 Sanyo Electric Co Ltd 組電池の充電方法
JP2009296868A (ja) * 2008-03-31 2009-12-17 Intel Corp インテリジェント電池充電率管理方法及び装置
JP2010213502A (ja) * 2009-03-11 2010-09-24 Omron Corp 充電制御装置および方法、並びにプログラム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136260A1 (ja) * 2015-02-25 2016-09-01 京セラ株式会社 電力管理装置、電力管理システム、および電力管理方法
JPWO2016136260A1 (ja) * 2015-02-25 2017-08-31 京セラ株式会社 電力管理装置、電力管理システム、および電力管理方法
EP3264554A4 (en) * 2015-02-25 2018-08-01 Kyocera Corporation Power management device, power management system, and power management method
US10630077B2 (en) 2015-02-25 2020-04-21 Kyocera Corporation Power management apparatus, power management system, and power management method
JP2017163747A (ja) * 2016-03-10 2017-09-14 大和ハウス工業株式会社 電力供給システム
JPWO2018047415A1 (ja) * 2016-09-12 2019-06-27 住友電気工業株式会社 蓄電装置及び電源システム
JP2018182925A (ja) * 2017-04-14 2018-11-15 清水建設株式会社 電力供給システム
JP2019068576A (ja) * 2017-09-29 2019-04-25 株式会社第一興商 充電制御装置
JP2021044950A (ja) * 2019-09-11 2021-03-18 東芝ライフスタイル株式会社 充電装置、電気掃除機、および二次電池装置
JP7311368B2 (ja) 2019-09-11 2023-07-19 東芝ライフスタイル株式会社 充電装置、電気掃除機、および二次電池装置

Also Published As

Publication number Publication date
JPWO2013179344A1 (ja) 2016-01-14
JP5861128B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
EP3087655B1 (en) Power supply system
JP5076024B2 (ja) 再生可能エネルギーの利用を最大限にする貯蔵システム
CN106816884B (zh) 能量存储系统
JP6028499B2 (ja) 電力供給装置
JP5861128B2 (ja) 蓄電池管理装置
US20130169064A1 (en) Energy storage system and controlling method of the same
EP2858200B1 (en) Power supply system
CN102270884A (zh) 储能系统及其控制方法
KR101264142B1 (ko) 가정과 마이크로그리드에 적용 가능한 신재생에너지시스템
CN103872784A (zh) 储能电源柜及具有其的并网供电系统及离网供电系统
JP2007166818A (ja) 電源システムおよびその制御方法
CN110999013A (zh) 储能系统
JP2022179781A (ja) 電力変換システム
JP5296161B2 (ja) 電力供給システム
JP6082610B2 (ja) 電源システムおよび蓄電型電源装置
KR20170037192A (ko) Ems 기능을 내장한 전력 변환 장치 및 이를 구비하는 마이크로그리드 전원 시스템
JP5895231B2 (ja) 制御装置
JP6076381B2 (ja) 電力供給システム
JP6556482B2 (ja) 蓄電制御システム
JP2014222982A (ja) 無停電電源装置
JP2013176190A (ja) 蓄電池制御装置
WO2013125156A1 (ja) 配電システム
Cavallaro et al. Smart photovoltaic UPS system for domestic appliances
JP6249356B2 (ja) 蓄電池制御装置、蓄電池制御システム
JP2015204656A (ja) 電源制御装置及び電源制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878159

Country of ref document: EP

Kind code of ref document: A1