WO2013178498A1 - Dispositif et procede de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un vehicule automobile - Google Patents

Dispositif et procede de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un vehicule automobile Download PDF

Info

Publication number
WO2013178498A1
WO2013178498A1 PCT/EP2013/060358 EP2013060358W WO2013178498A1 WO 2013178498 A1 WO2013178498 A1 WO 2013178498A1 EP 2013060358 W EP2013060358 W EP 2013060358W WO 2013178498 A1 WO2013178498 A1 WO 2013178498A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
exchanger
heat
vehicle
circuit
Prior art date
Application number
PCT/EP2013/060358
Other languages
English (en)
Inventor
Fabien BIREAU
Christian Mahe
Xavier Marchadier
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2013178498A1 publication Critical patent/WO2013178498A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0493Controlling the air charge temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a device and a method for thermal conditioning, in particular cooling, of the charge air of a heat engine of a motor vehicle.
  • the invention also relates to an assembly of such a device and an air conditioning circuit of the vehicle.
  • the cooling of the charge air has two purposes. The first is to limit overheating of the compressed air. The second is to densify the air to further increase the amount of oxygen available at given volume.
  • charge air coolers located on the front side of motor vehicles are mainly used. cooling the charge air by heat exchange with a flow of ambient air from outside the vehicle.
  • Such a solution although effective so far, however knows its limits, especially because of the congestion that should be given to the exchangers to achieve the desired level of results with the new standards. Indeed, the size of the heat exchangers would then no longer be compatible with the available space, in particular because of the shock absorption constraints which limit the volume that can be occupied by heat exchangers on the front of the vehicles.
  • the cooling circuit comprises a heat exchanger for cooling the heat transfer fluid so that the latter cool in turn the charge air.
  • a heat exchanger for cooling the heat transfer fluid also having limited performance given its location on the front of the vehicle and the limitations imposed on its resulting size.
  • the invention proposes to solve these difficulties and carries for this purpose on a thermal conditioning device, including cooling, the supercharging air of a thermal engine of a motor vehicle, said device comprising a first heat exchanger for thermal conditioning said supercharging air with a heat transfer fluid, said device further comprising a second heat exchanger for heat exchange between said coolant and a refrigerant of an air conditioning circuit of a passenger compartment of the vehicle.
  • the invention thus makes it possible to increase the cooling possibilities of the charge air by converting the overcapacities offered by the air conditioning circuit of the vehicle, at least at certain points of operation. In this way, it is possible to improve the situation without sizing the exchangers, in particular the front-end exchangers.
  • said device further comprises a third heat exchanger allowing a heat exchange between said coolant and an ambient air flow, said third heat exchanger is a front-end exchanger of the vehicle,
  • said third exchanger is a heat exchanger of a circuit, called low temperature, parallel to a so-called high temperature cooling circuit of the motor,
  • said second heat exchanger and said third heat exchanger supply alternately or cumulatively said first heat exchanger heat transfer fluid.
  • the invention also relates to an assembly of a thermal conditioning device, including cooling, the charge air as described above and an air conditioning circuit of the vehicle.
  • Said assembly may be configured so that the refrigerant circulating in said air conditioning circuit circulates alternately or cumulatively in said second heat exchanger and in an evaporator of said air conditioning circuit.
  • said assembly comprises a control system determining the flows of coolant and / or refrigerant through said first heat exchanger, said second heat exchanger, said third heat exchanger and / or said evaporator.
  • the invention also relates to a method of thermal conditioning, in particular of cooling, of the supercharging air of a thermal engine of a motor vehicle, in which process a heat exchange is carried out between the charge air and a heat transfer fluid, said method comprising a first step in which a heat exchange is carried out between said heat transfer fluid and the refrigerant an air conditioning circuit of a passenger compartment of the vehicle.
  • said method comprises a second step in which a heat exchange is carried out between said heat transfer fluid and a flow of ambient air, the first and second steps are carried out cumulatively and / or successively,
  • the supercharging air is cooled by mainly implementing the first step, at high speed of the vehicle,
  • the charge air is cooled by exclusively implementing the first step, at low and stabilized load of the engine,
  • the charge air is cooled by mainly implementing the second step, at low speed of the vehicle,
  • the flows of the coolant and / or the refrigerant are adapted according to the operating points of the engine.
  • the device for thermal conditioning of the supercharging air of the motor vehicle engine engine described above and / or all of said device and of the air conditioning system of the vehicle, also mentioned above, are advantageously configured for the implementation of said process.
  • Figure 1 schematically illustrates an embodiment of the device according to the invention, in a first mode of operation.
  • Figure 2 shows Figure 1 in a second mode of operation.
  • the device for thermal conditioning of the supercharging air of a heat engine 10 of a motor vehicle comprises a first heat exchanger 1, making it possible to perform a thermal conditioning of the charge air with a heat transfer fluid.
  • said device comprises a charge air cooler.
  • said cooler may also be used as a heater, in particular during engine temperature rise phases 10, when it starts, as will be detailed below.
  • Said coolant is, for example, liquid. This is, in particular, a mixture of water and antifreeze such as glycol.
  • said device further comprises a second heat exchanger 2, allowing a heat exchange between said heat transfer fluid and a refrigerant of a circuit 30 for air conditioning of a passenger compartment of the vehicle.
  • Said refrigerant is a fluid capable of undergoing a liquid / vapor phase change, at the pressure of the air conditioning circuit, when it exchanges heat with a flow of air at ambient temperature.
  • This is, for example, fluoro fluid, such as that known under the name R134a, CO2, or low-impact fluid environment, such as that known as 1234YF.
  • air conditioning circuit 30 is meant a circuit for cooling an ambient air flow intended to be introduced into the passenger compartment of the vehicle.
  • the possible overcapacities of the air conditioning circuit 30 are used for cooling the charge air of the engine.
  • the invention can still be used to heat it, by operating the air conditioning circuit 30 in heat pump mode. It will then be possible, through said second heat exchanger 2, to recover calories from the air conditioning circuit to transfer them to the circuit 3 for circulating the coolant. In this way, the charge air is heated with the aid of the charge air cooler, as already mentioned above.
  • Said second heat exchanger 2 is, for example, of the stacked plate type, said plates alternately defining channels for the circulation of the refrigerant and the coolant.
  • Said device further comprises here a third exchanger 4 for a heat exchange between said heat transfer fluid and a flow of ambient air.
  • a third exchanger 4 for a heat exchange between said heat transfer fluid and a flow of ambient air.
  • This is, for example, a front exchanger of the vehicle such as a cooling radiator.
  • Said circuit 3 for circulating the coolant thus comprises said charge cooler 1, said second exchanger 2 and said cooling radiator 4.
  • This is, for example, a so-called low temperature circuit.
  • Such naming is used in opposition to a circuit 5, said high temperature, engine cooling, detailed below.
  • Said low temperature circuit 3 is here independent of the high temperature circuit 5, that is to say, without communication of heat transfer fluid between the two said circuits 3, 5.
  • the high and low temperature circuits could present common areas.
  • said device is configured so that said second heat exchanger and said third heat exchanger alternately or cumulatively supply said first exchanger heat transfer fluid.
  • Said supercharging cooler 1, said second exchanger 2 and said cooling radiator 4 are mounted in three parallel branches, marked respectively 20, 21, 22, located between a so-called cold track 23 and a so-called hot track 24.
  • Said circuit low temperature here includes a pump 25, provided on the branch 20 provided with the charge cooler 1, for example downstream of the latter. It further comprises here a three-way valve 26, located between said branch 20 provided with the charge cooler 1, a first portion of the hot path 24, provided between the branch 20 provided with the charge cooler 1 and the branch 21 provided with the second exchanger 2, and a second portion of the hot path 24, provided between the branch 20 provided with the charge cooler 1 and the branch 22 provided with the cooling radiator 4.
  • the charge cooler 1 can thus be fed with heat transfer fluid from the second exchanger 2 and / or the cooling radiator 4, depending on the state of said three-way valve 26.
  • the latter can be replaced by two valves respectively located on the branch 21 provided with the second heat exchanger 2 and on the branch 22 provided with the cooling radiator 4.
  • Said high temperature circuit 5 comprises, for example, a cooling radiator 6, said high temperature, as opposed to the cooling radiator 4 of the low temperature circuit, called its low temperature radiator side.
  • said high temperature circuit 5 further comprises a by-pass channel 7 and a heating radiator 8 for heating the passenger compartment of the vehicle, as well as a track 9 incorporating the heat engine 10.
  • Said high-temperature radiator 6, said bypass path 7, said heating radiator 8 and said channel 9 integrating the heat engine 10 are connected in parallel between a so-called hot channel 11 and a so-called cold channel 12.
  • the hot lane 1 1 recovers the coolant, hot, out of the engine 10 and distributes said fluid between the bypass path 7, the high temperature radiator 6 and the heating radiator 8, as needed, with the aid of one or more valves 13, 14 of said high temperature circuit 5.
  • the latter further comprises a pump 15, provided here on the channel 9 integrating the heat engine 10, in particular upstream of said engine 10.
  • Said low-temperature radiator 4 and said high-temperature radiator 6 may be located one behind the other so as to be swept by the same air flow, possibly forced by a fan 16.
  • the low-temperature radiator 4 is advantageously located in upstream of the high temperature cooling radiator 6, according to the direction of flow of the air flow.
  • the invention also relates to an assembly of a thermal conditioning device, including cooling, the charge air as described above and a circuit 30 for air conditioning of the vehicle.
  • said assembly is configured so that the refrigerant circulating in said air conditioning circuit 30 circulates alternately or cumulatively in said second heat exchanger 2 and in an evaporator 31 of said air conditioning circuit 30.
  • said air conditioning circuit 30 comprises here a condenser 32 and a compressor 40.
  • Said condenser 32 is located, for example, on the front of the vehicle, here between the low-temperature cooling radiator 4 and the high temperature cooling radiator 6, to be traversed by the same flow of outside air. It is optionally provided with a bottle 41, one of whose functions is to ensure the completeness of the vapor / liquid phase change.
  • said evaporator 31 and said condenser 32 are mounted according to three parallel branches, respectively marked 33, 34, 35 between a so-called liquid phase channel 36 and a so-called vapor phase channel 37.
  • the compressor 40 is located on the vapor phase path 37, between the branch 33 provided with the second exchanger 2 and the branch 35 provided with said condenser 32.
  • Said air conditioning circuit also comprises two valves 38, 39, respectively located on the branch 33 provided with said second exchanger 2 and on the branch 34 provided with said evaporator 31.
  • it may be a three-way valve, located at the intersection of said branches 33, 34 provided with the second exchanger 2 and said evaporator 31.
  • said assembly comprises a control system determining the flows of coolant and / or refrigerant through said charge air cooler 1, said second heat exchanger 2, said low temperature cooling radiator 4 and / or said evaporator 31.
  • Said pilot system in particular, said valves 26, 38, 39 of said low temperature circuit 3 and said air conditioning circuit 30 and / or their pump 25 or compressor 33. It can operate from the engine speed and / or one or more stored strategies .
  • the invention also relates to a method for thermal conditioning, in particular cooling, of the charge air of a heat engine of a motor vehicle.
  • a heat exchange is carried out between the supercharging air and a heat transfer fluid, said method comprising a first step in which a heat exchange is carried out between said heat transfer fluid and the refrigerant of an air conditioning circuit. 'a passenger compartment of the vehicle.
  • Said method may further comprise a second step in which a heat exchange is carried out between said heat transfer fluid and a flow of ambient air.
  • the intake air is heated by cooling or heating said coolant, this using the refrigerant. It will also be possible to cool said heat transfer fluid using said ambient air flow.
  • the first and second steps are carried out cumulatively and / or successively.
  • High speed means, for example, a speed greater than or equal to 50 km / h, in particular greater than or equal to 70 km / h.
  • the coolant flow in the second heat exchanger 2 is then greater than the heat transfer fluid flow in the low temperature cooling radiator 4.
  • the charge air is cooled by exclusively implementing the first step, that is to say, using exclusively said second exchanger 2, low load and stabilized engine 10.
  • the instantaneous engine torque of the vehicle is in the lower part of the engine torque range corresponding to a nominal operation of said engine and / or that said engine torque is constant.
  • the coolant flow rate is then zero or almost zero in the low temperature cooling radiator 4. It will then be possible to adapt the flow of heat transfer fluid in the charge air cooler 1, thanks to the pump 25.
  • the charge air is cooled by mainly implementing the second step at low speed of the vehicle, that is to say, by serving mainly said low temperature cooling radiator 4.
  • low speed is meant, for example, a speed below 70 km / h, especially less than 50 km / h.
  • the flow of heat transfer fluid in the low temperature cooling radiator 4 is then greater than the heat transfer fluid flow in the second exchanger 2.
  • heat exchange is carried out both on the one hand, between the coolant and the refrigerant, and, on the other hand, between a flow of air passing through the evaporator 31 for cooling the passenger compartment of the vehicle and said refrigerant.
  • said refrigerant circulates both in the branch 33 provided with said second exchanger 2 and in the branch 34 provided with said evaporator 31. This is, for example, the operating mode in which the vehicle is traveling at high speed.
  • the flow of air passing through the condenser 32 then brings enough fresh air for the air conditioning circuit 30 to be overcapacitated.
  • heat exchange is carried out only between the air flow passing through the evaporator 31 and the refrigerant.
  • the fluid flows in the branch 34 provided with said evaporator 31 but not in the branch 33 provided with said second exchanger 2, which has thus been shown in fine lines.
  • This corresponds, for example, to the operating mode in which the vehicle is traveling at low speed.
  • the flow of air passing through the condenser 32 then does not allow the air conditioning circuit 30 to be overcapacitated and, if said second heat exchanger 2 was used, a risk of heat transfer towards the engine would appear, by the intermediate of the flow of air passing through the condenser 32.
  • the flow rates of the coolant and / or the refrigerant will be adapted as a function of the operating points of the vehicle engine, in particular the points mentioned above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne un procédé et un dispositif de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique (10) d'un véhicule automobile, ledit dispositif comprenant un premier échangeur de chaleur (1) permettant d'effectuer un conditionnement thermique dudit air de suralimentation à l'aide d'un fluide caloporteur, ledit dispositif comprenant en outre un second échangeur de chaleur (2) permettant un échange de chaleur entre ledit fluide caloporteur et un fluide frigorigène d'un circuit (30) de climatisation d'un habitacle du véhicule. L'invention concerne encore un ensemble d'un tel dispositif et du circuit de climatisation du véhicule.

Description

Dispositif et procédé de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un véhicule automobile
La présente invention concerne un dispositif et un procédé de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un véhicule automobile. L'invention concerne aussi un ensemble d'un tel dispositif et d'un circuit de climatisation du véhicule.
Il est connu d'améliorer le fonctionnement des moteurs thermiques, en particulier Diesel mais aussi essence, en les alimentant avec de l'air préalablement comprimé, aussi appelé air de suralimentation. Cette solution permet, à volume donné, d'introduire dans le moteur de l'air plus riche en oxygène que de l'air à pression ambiante. On peut de la sorte utiliser des moteurs de cylindrée plus faible tout en conservant une puissance élevée.
Il est également connu de refroidir l'air de suralimentation à l'aide d'échangeurs de chaleur aussi appelés refroidisseurs d'air de suralimentation. Le refroidissement de l'air de suralimentation poursuit deux buts. Le premier est de limiter un échauffement trop important de l'air comprimé. Le second est de densifier l'air pour augmenter encore la quantité d'oxygène disponible, à volume donné.
Les exigences toujours plus élevées en terme d'efficacité du fonctionnement des moteurs thermiques, notamment les normes Euro V et Euro VI, augmentent les besoins en refroidissement de l'air de suralimentation. En effet, pour atteindre ces exigences, une solution est de recirculer des gaz d'échappement à l'admission du moteur, en particulier en amont du refroidisseur de suralimentation. Ces gaz d'échappement, chauds, contribuent donc à réchauffer l'air d'admission, d'où les besoins plus élevés en refroidissement.
Dans ce domaine, on utilise principalement des refroidisseurs d'air de suralimentation situés en face avant des véhicules automobiles et refroidissant l'air de suralimentation par échange de chaleur avec un flux d'air ambiant provenant de l'extérieur du véhicule. Une telle solution, bien qu'efficace jusqu'à maintenant, connaît cependant ses limites, notamment en raison de l'encombrement qu'il faudrait donner aux échangeurs pour atteindre le niveau de résultats souhaité avec les nouvelles normes. En effet, la taille des échangeurs ne serait alors plus compatible avec la place disponible, en particulier en raison des contraintes d'absorption de chocs qui limitent le volume qui peut être occupé par des échangeurs de chaleur en face avant des véhicules.
II est encore connu des refroidisseurs de suralimentation qui fonctionnent en assurant un échange de chaleur entre l'air de suralimentation et un fluide caloporteur d'un circuit de refroidissement. N'ayant plus besoin d'être traversé par un flux d'air venant de l'extérieur du véhicule, de tels échangeurs peuvent être disposés librement sous le capot, notamment à proximité du moteur.
Le circuit de refroidissement comprend un échangeur de chaleur permettant de refroidir le fluide caloporteur pour que ce dernier refroidisse à son tour l'air de suralimentation. Cependant, cette solution est également insuffisante face aux exigences définies par les nouvelles normes, l'échangeur de chaleur permettant de refroidir le fluide caloporteur ayant lui aussi des performances limitées compte-tenu de son emplacement en face avant du véhicule et des limitations imposées à sa taille qui en résultent.
L'invention se propose de résoudre ces difficultés et porte à cette fin sur un dispositif de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un véhicule automobile, ledit dispositif comprenant un premier échangeur de chaleur permettant d'effectuer un conditionnement thermique dudit air de suralimentation à l'aide d'un fluide caloporteur, ledit dispositif comprenant en outre un second échangeur de chaleur permettant un échange de chaleur entre ledit fluide caloporteur et un fluide frigorigène d'un circuit de climatisation d'un habitacle du véhicule. L'invention permet ainsi d'augmenter les possibilités de refroidissement de l'air de suralimentation en convertissant les surcapacités qu'offre le circuit de climatisation du véhicule, au moins en certains points de fonctionnement. On peut de la sorte améliorer la situation sans sur dimensionner les échangeurs, en particulier les échangeurs de face avant.
Selon différents modes de réalisation du dispositif conforme à l'invention, qui pourront être pris ensemble ou séparément :
- ledit dispositif comprend en outre un troisième échangeur permettant un échange de chaleur entre ledit fluide caloporteur et un flux d'air ambiant, - ledit troisième échangeur est un échangeur de face avant du véhicule,
- ledit troisième échangeur est un échangeur d'un circuit, dit basse température, parallèle à un circuit, dite haute température, de refroidissement du moteur,
- ledit second échangeur et ledit troisième échangeur alimentent alternativement ou cumulativement ledit premier échangeur en fluide caloporteur.
L'invention concerne également un ensemble d'un dispositif de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation tel que décrit plus haut et un circuit de climatisation du véhicule.
Ledit ensemble pourra être configuré pour que le fluide frigorigène circulant dans ledit circuit de climatisation circule alternativement ou cumulativement dans ledit second échangeur de chaleur et dans un évaporateur dudit circuit de climatisation.
Selon un aspect de l'invention, ledit ensemble comprend un système de contrôle déterminant les débits de fluide caloporteur et/ou frigorigène à travers ledit premier échangeur de chaleur, ledit second échangeur de chaleur, ledit troisième échangeur de chaleur et/ou ledit évaporateur.
L'invention concerne encore un procédé de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un véhicule automobile, procédé dans lequel on effectue un échange de chaleur entre l'air de suralimentation et un fluide caloporteur, ledit procédé comprenant une première étape dans laquelle on effectue un échange de chaleur entre ledit fluide caloporteur et le fluide frigorigène d'un circuit de climatisation d'un habitacle du véhicule.
Selon différents mode de réalisation du procédé conforme à l'invention, qui pourront être pris ensemble ou séparément :
- ledit procédé comprend une seconde étape dans lequel on effectue un échange de chaleur entre ledit fluide caloporteur et un flux d'air ambiant, - on réalise les première et seconde étapes cumulativement et/ou successivement,
- on refroidit l'air de suralimentation en mettant principalement en œuvre la première étape, à vitesse élevée du véhicule,
- on refroidit l'air de suralimentation en mettant exclusivement en œuvre la première étape, à charge faible et stabilisée du moteur,
- on refroidit l'air de suralimentation en mettant principalement en œuvre la seconde étape, à vitesse faible du véhicule,
- on adapte les débits du fluide caloporteur et/ou du fluide frigorigène en fonction de points de fonctionnement du moteur.
Le dispositif de conditionnement thermique de l'air de suralimentation du moteur thermique de véhicule automobile décrit plus haut et/ou l'ensemble dudit dispositif et du circuit de climatisation du véhicule, également évoqué plus haut, sont avantageusement configurés pour la mise en œuvre dudit procédé.
L'invention sera décrite ci-après en regard des figures annexées qui feront bien comprendre comment elle peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
La figure 1 illustre de façon schématique un exemple de réalisation du dispositif conforme à l'invention, dans un premier mode de fonctionnement.
La figure 2 reprend la figure 1 dans un second mode de fonctionnement. Comme illustré aux figures 1 et 2, le dispositif de conditionnement thermique de l'air de suralimentation d'un moteur thermique 10 d'un véhicule automobile, conforme à l'invention, comprend un premier échangeur de chaleur 1 , permettant d'effectuer un conditionnement thermique de l'air de suralimentation à l'aide d'un fluide caloporteur. Autrement dit, ledit dispositif comprend un refroidisseur d'air de suralimentation. Il est à noter que, malgré son nom, ledit refroidisseur pourra aussi être utilisé en tant que réchauffeur, en particulier lors de phases de montée en température du moteur 10, lors de son démarrage, comme cela sera détaillé plus loin.
Ledit fluide caloporteur est, par exemple, liquide. Il s'agit, notamment, d'un mélange d'eau et d'antigel tel que du glycol.
Cela étant, selon l'invention, ledit dispositif comprend en outre un second échangeur de chaleur 2, permettant un échange de chaleur entre ledit fluide caloporteur et un fluide frigorigène d'un circuit 30 de climatisation d'un habitacle du véhicule.
Ledit fluide frigorigène est un fluide susceptible de subir un changement de phase liquide/vapeur, à la pression du circuit de climatisation, lorsqu'il échange de la chaleur avec un flux d'air à température ambiante. Il s'agit, par exemple, de fluide fluoré, tel que celui connu sous le nom R134a, de C02, ou encore de fluide à faible impact sur l'environnement, tel que celui connu sous le nom de 1234YF.
Par circuit de climatisation 30, on entend un circuit permettant de refroidir un flux d'air ambiant destiné à être introduit dans l'habitacle du véhicule.
On comprend que, selon l'invention, on utilise les éventuelles surcapacités du circuit de climatisation 30 pour le refroidissement de l'air de suralimentation du moteur. On peut de la sorte apporter un supplément de refroidissement à l'air de suralimentation à l'aide d'un simple échangeur de chaleur, à savoir le second échangeur 2, qui établit une liaison thermique entre le circuit de climatisation 30 et un circuit 3 de circulation du fluide caloporteur comprenant ledit refroidisseur de suralimentation 1 . Bien que principalement destinée à refroidir l'air de suralimentation, l'invention pourra encore être utilisée pour le réchauffer, en faisant fonctionner le circuit de climatisation 30 en mode pompe à chaleur. On pourra alors, grâce audit second échangeur 2, récupérer des calories du circuit de climatisation pour les transférer dans le circuit 3 de circulation du fluide caloporteur. On réchauffe de la sorte l'air de suralimentation à l'aide du refroidisseur d'air de suralimentation, comme cela a déjà été évoqué plus haut.
Ledit second échangeur 2 est, par exemple, du type à plaques empilées, lesdites plaques définissant alternativement des canaux pour la circulation du fluide frigorigène et du fluide caloporteur.
Ledit dispositif comprend en outre ici un troisième échangeur 4 permettant un échange de chaleur entre ledit fluide caloporteur et un flux d'air ambiant. Il s'agit, par exemple, d'un échangeur de face avant du véhicule tel qu'un radiateur de refroidissement.
Ledit circuit 3 de circulation du fluide caloporteur comprend ainsi ledit refroidisseur de suralimentation 1 , ledit second échangeur 2 et ledit radiateur de refroidissement 4. Il s'agit, par exemple, d'un circuit, dite basse température. Une telle appellation est utilisée par opposition à un circuit 5, dite haute température, de refroidissement du moteur, détaillé plus loin.
Ledit circuit basse température 3 est ici indépendant du circuit haute température 5, c'est-à-dire, sans communication de fluide caloporteur entre les deux dits circuits 3, 5. En variante, non illustrée, les circuits haute et basse température pourraient présenter des parties communes.
Selon un aspect de l'invention, ledit dispositif est configuré pour que ledit second échangeur et ledit troisième échangeur alimentent alternativement ou cumulativement ledit premier échangeur en fluide caloporteur.
Ledit refroidisseur de suralimentation 1 , ledit second échangeur 2 et ledit radiateur de refroidissement 4 sont montés en trois branches parallèles, repérées respectivement 20, 21 , 22, situées entre une voie, dite froide, 23 et une voie, dite chaude 24. Ledit circuit basse température comprend ici une pompe 25, prévue sur la branche 20 munie du refroidisseur de suralimentation 1 , par exemple en aval de ce dernier. Il comprend encore ici une vanne trois voies 26, située entre ladite branche 20 munie du refroidisseur de suralimentation 1 , une première partie de la voie chaude 24, prévue entre la branche 20 munie du refroidisseur de suralimentation 1 et la branche 21 munie du second échangeur de chaleur 2, et une seconde partie de la voie chaude 24, prévue entre la branche 20 munie du refroidisseur de suralimentation 1 et la branche 22 munie du radiateur de refroidissement 4.
Le refroidisseur de suralimentation 1 peut ainsi être alimenté en fluide caloporteur provenant du second échangeur 2 et/ou du radiateur de refroidissement 4, en fonction de l'état de ladite vanne trois voies 26. En variante, celle dernière pourra être remplacée par deux vannes, respectivement situées sur la branche 21 munie du second échangeur de chaleur 2 et sur la branche 22 munie du radiateur de refroidissement 4.
Ledit circuit haute température 5 comprend, par exemple, un radiateur de refroidissement 6, dit haute température, par opposition au radiateur de refroidissement 4 du circuit basse température, appelé de son côté radiateur basse température.
De façon connue, ledit circuit haute température 5 comprend encore, une voie by-pass 7 et un radiateur de chauffage 8, destiné à chauffer l'habitacle du véhicule, ainsi qu'une voie 9 intégrant le moteur thermique 10. Ledit radiateur haute température 6, ladite voie by-pass 7, ledit radiateur de chauffage 8 et ladite voie 9 intégrant le moteur thermique 10 sont montés en parallèle entre une voie, dite chaude, 1 1 et une voie, dite froide, 12.
La voie chaude 1 1 récupère le fluide caloporteur, chaud, sortant du moteur 10 et répartit ledit fluide entre la voie by-pass 7, le radiateur haute température 6 et le radiateur de chauffage 8, en fonction des besoins, à l'aide d'une ou plusieurs vanne 13, 14 dudit circuit haute température 5. Ce dernier comprend encore une pompe 15, prévue ici sur la voie 9 intégrant le moteur thermique 10, notamment en amont dudit moteur 10. Ledit radiateur basse température 4 et ledit radiateur haute température 6 pourront être situés l'un derrière l'autre de façon à être balayé par un même flux d'air, éventuellement forcé par un ventilateur 16. Le radiateur basse température 4 est avantageusement situé en amont du radiateur de refroidissement haute température 6, selon le sens de circulation du flux d'air.
L'invention concerne aussi un ensemble d'un dispositif de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation tel que décrit plus haut et d'un circuit 30 de climatisation du véhicule.
Selon un aspect de l'invention, ledit ensemble est configuré pour que le fluide frigorigène circulant dans ledit circuit de climatisation 30 circule alternativement ou cumulativement dans ledit second échangeur de chaleur 2 et dans un évaporateur 31 dudit circuit de climatisation 30.
Outre ledit second échangeur 2 et ledit évaporateur 31 , ledit circuit de climatisation 30 comprend ici un condenseur 32 et un compresseur 40. Ledit condenseur 32 est situé, par exemple, en face avant du véhicule, ici entre le radiateur de refroidissement basse température 4 et le radiateur de refroidissement haute température 6, pour être traversé par le même flux d'air extérieur. Il est éventuellement muni d'une bouteille 41 dont l'une des fonctions est d'assurer le caractère complet du changement de phase vapeur/liquide.
Ledit second échangeur 2, ledit évaporateur 31 et ledit condenseur 32 sont montés selon trois branches parallèles, respectivement repérées 33, 34, 35 entre une voie, dite de phase liquide, 36 et une voie, dite de phase vapeur, 37. Le compresseur 40 est situé sur la voie de phase vapeur 37, entre la branche 33 munie du second échangeur 2 et la branche 35 munie dudit condenseur 32.
Ledit circuit de climatisation comprend encore deux vannes 38, 39, respectivement situées sur la branche 33 munie dudit second échangeur 2 et sur la branche 34 munie dudit évaporateur 31 . En variante, il pourra s'agir d'une vanne trois voies, situées à l'intersection desdites branches 33, 34 munies du second échangeur 2 et dudit évaporateur 31 .
On pourra de la sorte faire passer le fluide frigorigène dans ledit second échangeur 2 et/ou dans ledit évaporateur 31 , en fonction de l'état desdites vannes 38, 39.
De manière avantageuse, ledit ensemble comprend un système de contrôle déterminant les débits de fluide caloporteur et/ou frigorigène à travers ledit refroidisseur d'air de suralimentation 1 , ledit second échangeur de chaleur 2, ledit radiateur de refroidissement basse température 4 et/ou ledit évaporateur 31 .
Ledit système pilote, notamment, lesdites vannes 26, 38, 39 dudit circuit basse température 3 et dudit circuit de climatisation 30 et/ou leur pompe 25 ou compresseur 33. Il pourra fonctionner à partir du régime moteur et/ou une ou des stratégies mémorisées.
L'invention concerne encore un procédé de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un véhicule automobile.
Selon ledit procédé, on effectue un échange de chaleur entre l'air de suralimentation et un fluide caloporteur, ledit procédé comprenant une première étape dans laquelle on effectue un échange de chaleur entre ledit fluide caloporteur et le fluide frigorigène d'un circuit de climatisation d'un habitacle du véhicule.
Ledit procédé pourra en outre comprendre une seconde étape dans laquelle on effectue un échange de chaleur entre ledit fluide caloporteur et un flux d'air ambiant.
Autrement dit, selon le procédé conforme à l'invention, on refroidit ou, plus rarement, on réchauffe l'air d'admission en refroidissant ou réchauffant ledit fluide caloporteur, ceci à l'aide du fluide frigorigène. On pourra aussi refroidir ledit fluide caloporteur à l'aide dudit flux d'air ambiant.
Selon un aspect de l'invention, on réalise les première et seconde étapes cumulativement et/ou successivement. A titre d'exemple, on pourra refroidir l'air de suralimentation en mettant principalement en œuvre la première étape, c'est-à-dire, en se servant principalement dudit second échangeur 2, à vitesse élevée du véhicule. Par vitesse élevée, on entend, par exemple, une vitesse supérieure ou égale à 50 km/h, en particulier supérieure ou égale à 70 km/h. Le débit de fluide caloporteur dans le second échangeur 2 est alors supérieur au débit de fluide caloporteur dans le radiateur de refroidissement basse température 4.
Toujours à titre d'exemple, on refroidit l'air de suralimentation en mettant exclusivement en œuvre la première étape, c'est-à-dire, en se servant exclusivement dudit second échangeur 2, à charge faible et stabilisée du moteur 10. On entend par là, par exemple, que le couple moteur instantané du véhicule est dans la partie inférieure de la plage de couple moteur correspondant à un fonctionnement nominal dudit moteur et/ou que ledit couple moteur est constant. Le débit de fluide caloporteur est alors nul ou quasiment nul dans le radiateur de refroidissement basse température 4. On pourra alors adapter le débit de fluide caloporteur dans le refroidisseur d'air de suralimentation 1 , grâce à la pompe 25.
Encore à titre d'exemple, on refroidit l'air de suralimentation en mettant principalement en œuvre la seconde étape à vitesse faible du véhicule, c'est-à-dire, en servant principalement dudit radiateur de refroidissement basse température 4. Par vitesse faible, on entend, par exemple, une vitesse inférieure à 70 km/h, en particulier inférieure à 50 km/h. Le débit de fluide caloporteur dans le radiateur de refroidissement basse température 4 est alors supérieur au débit de fluide caloporteur dans le second échangeur 2.
Selon le mode de réalisation illustré à la figure 1 , on effectue un échange de chaleur à la fois, d'une part, entre le fluide caloporteur et le fluide frigorigène, et, d'autre part, entre un flux d'air traversant l'évaporateur 31 pour refroidir l'habitacle du véhicule et ledit fluide frigorigène. Autrement dit, ledit fluide frigorigène circule à la fois dans la branche 33 munie dudit second échangeur 2 et dans la branche 34 munie dudit évaporateur 31 . Ceci correspond, par exemple, au mode de fonctionnement dans lequel le véhicule se déplace à vitesse élevée. Le flux d'air traversant le condenseur 32 apporte alors suffisamment d'air frais pour que le circuit de climatisation 30 soit en surcapacité.
Selon le mode de réalisation de la figure 2, on effectue un échange de chaleur uniquement entre le flux d'air traversant l'évaporateur 31 et ledit fluide frigorigène. Autrement dit, le fluide circule dans la branche 34 munie dudit évaporateur 31 mais non dans la branche 33 munie dudit second échangeur 2, qui a ainsi été représentée en trait fin. Ceci correspond, par exemple, au mode de fonctionnement dans lequel le véhicule se déplace à faible vitesse. Le flux d'air traversant le condenseur 32 ne permet alors pas au circuit de climatisation 30 d'être en surcapacité et, si l'on utilisait ledit second échangeur 2, un risque de transfert de calories en direction du moteur apparaîtrait, par l'intermédiaire du flux d'air traversant le condenseur 32.
Comme on le voit, selon un aspect de l'invention, on adaptera ainsi les débits du fluide caloporteur et/ou du fluide frigorigène en fonction de points de fonctionnement du moteur du véhicule, notamment les points mentionnés plus haut.

Claims

REVENDICATIONS
1 . Dispositif de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique (10) d'un véhicule automobile, ledit dispositif comprenant un premier échangeur de chaleur (1 ) permettant d'effectuer un conditionnement thermique dudit air de suralimentation à l'aide d'un fluide caloporteur, ledit dispositif comprenant en outre un second échangeur de chaleur (2) permettant un échange de chaleur entre ledit fluide caloporteur et un fluide frigorigène d'un circuit (30) de climatisation d'un habitacle du véhicule.
2. Dispositif selon la revendication 1 comprenant en outre un troisième échangeur (4) permettant un échange de chaleur entre ledit fluide caloporteur et un flux d'air ambiant.
3. Dispositif selon la revendication 2 dans lequel ledit troisième échangeur (4) est un échangeur de face avant du véhicule.
4. Dispositif selon l'une des revendications 2 ou 3 dans lequel ledit troisième échangeur (4) est un échangeur d'un circuit (3), dite basse température, parallèle à un circuit (5), dite haute température, de refroidissement du moteur.
5. Dispositif selon l'une quelconque des revendications 2 à 4 configuré pour que ledit second échangeur (2) et ledit troisième échangeur (4) alimentent alternativement ou cumulativement ledit premier échangeur (1 ) en fluide caloporteur.
6. Ensemble d'un dispositif de conditionnement thermique de l'air de suralimentation selon l'une quelconque des revendications précédentes et d'un circuit (30) de climatisation du véhicule.
7. Ensemble selon la revendication 6 configuré pour que le fluide frigorigène circulant dans ledit circuit de climatisation (30) circule alternativement ou cumulativement dans ledit second échangeur de chaleur (2) et dans un évaporateur (31 ) dudit circuit de climatisation (30).
8. Ensemble selon l'une quelconque des revendications 6 ou 7 comprenant un système de contrôle déterminant les débits de fluide caloporteur et/ou frigorigène à travers ledit premier (1 ) et/ou ledit second (2) échangeur de chaleur.
9. Procédé de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique (10) d'un véhicule automobile, procédé dans lequel on effectue un échange de chaleur entre l'air de suralimentation et un fluide caloporteur, ledit procédé comprenant une première étape dans laquelle on effectue un échange de chaleur entre ledit fluide caloporteur et le fluide frigorigène d'un circuit de climatisation (30) d'un habitacle du véhicule.
10. Procédé selon la revendication 9 comprenant une seconde étape dans lequel on effectue un échange de chaleur entre ledit fluide caloporteur et un flux d'air ambiant.
1 1 . Procédé selon la revendication 10 dans lequel on réalise les première et seconde étapes cumulativement et/ou successivement.
12. Procédé selon l'une quelconque des revendications 10 ou 1 1 dans lequel on refroidit l'air de suralimentation en mettant principalement en œuvre la première étape, à vitesse élevée du véhicule.
13. Procédé se!on l'une quelconque des revendications 10 à 12 dans lequel on refroidit l'air de suralimentation en mettant exclusivement en œuvre la première étape, à charge faible et stabilisée du moteur (10).
14. Procédé selon l'une quelconque des revendications 10 à 13 dans lequel on refroidit l'air de suralimentation en mettant principalement en œuvre la seconde étape, à vitesse faible du véhicule.
15. Procédé selon l'une quelconque des revendications 9 à 12 dans lequel on adapte les débits du fluide caloporteur et/ou du fluide frigorigène en fonction de points de fonctionnement du moteur.
PCT/EP2013/060358 2012-05-30 2013-05-21 Dispositif et procede de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un vehicule automobile WO2013178498A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254959A FR2991394B1 (fr) 2012-05-30 2012-05-30 Dispositif et procede de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un vehicule automobile
FR1254959 2012-05-30

Publications (1)

Publication Number Publication Date
WO2013178498A1 true WO2013178498A1 (fr) 2013-12-05

Family

ID=48468318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/060358 WO2013178498A1 (fr) 2012-05-30 2013-05-21 Dispositif et procede de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un vehicule automobile

Country Status (2)

Country Link
FR (1) FR2991394B1 (fr)
WO (1) WO2013178498A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026143A1 (fr) * 2014-09-22 2016-03-25 Peugeot Citroen Automobiles Sa Module d'admission d'air d'un moteur a combustion interne de vehicule automobile
WO2017129910A1 (fr) * 2016-01-28 2017-08-03 Valeo Systemes De Controle Moteur Systeme de gestion d'air d'admission pour un moteur thermique de vehicule automobile
FR3078388A1 (fr) * 2018-02-23 2019-08-30 Psa Automobiles Sa Installation thermique pour moteur a combustion interne a climatisation optimisee par synergie entre ses boucles froide et chaude

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006540A (en) * 1998-08-03 1999-12-28 Ford Global Technologies, Inc. Charge air management system for automotive engine
US20030015183A1 (en) * 2001-07-23 2003-01-23 Sealy Brent Edward Charge air management system for automotive engine
EP1342893A2 (fr) * 2002-03-08 2003-09-10 Behr GmbH & Co. Dispositif de refroidissement de l'air suralimenté et procédé pour faire fonctionner un tel dispositif

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006540A (en) * 1998-08-03 1999-12-28 Ford Global Technologies, Inc. Charge air management system for automotive engine
US20030015183A1 (en) * 2001-07-23 2003-01-23 Sealy Brent Edward Charge air management system for automotive engine
EP1342893A2 (fr) * 2002-03-08 2003-09-10 Behr GmbH & Co. Dispositif de refroidissement de l'air suralimenté et procédé pour faire fonctionner un tel dispositif

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026143A1 (fr) * 2014-09-22 2016-03-25 Peugeot Citroen Automobiles Sa Module d'admission d'air d'un moteur a combustion interne de vehicule automobile
EP3002443A1 (fr) * 2014-09-22 2016-04-06 Peugeot Citroën Automobiles S.A. Module d'admission d'air d'un moteur a combustion interne de vehicule automobile
WO2017129910A1 (fr) * 2016-01-28 2017-08-03 Valeo Systemes De Controle Moteur Systeme de gestion d'air d'admission pour un moteur thermique de vehicule automobile
FR3078388A1 (fr) * 2018-02-23 2019-08-30 Psa Automobiles Sa Installation thermique pour moteur a combustion interne a climatisation optimisee par synergie entre ses boucles froide et chaude

Also Published As

Publication number Publication date
FR2991394B1 (fr) 2016-02-05
FR2991394A1 (fr) 2013-12-06

Similar Documents

Publication Publication Date Title
FR3002285A1 (fr) Systeme de recuperation de chaleur des gaz d'echappement dans un moteur a combustion interne, avec deux echangeurs de chaleur au niveau d'un circuit de recirculation de gaz
FR2779215A1 (fr) Circuit de climatisation utilisant un fluide refrigerant a l'etat supercritique, notamment pour vehicule
FR2936445A1 (fr) Systeme de chauffage et climatisation ameliore pour vehicule automobile
FR3037639A1 (fr) Dispositif de gestion thermique
EP2720890B1 (fr) Circuit de fluide refrigerant et procede de controle d'un tel circuit
WO2013178498A1 (fr) Dispositif et procede de conditionnement thermique, notamment de refroidissement, de l'air de suralimentation d'un moteur thermique d'un vehicule automobile
EP1963657B1 (fr) Dispositif de refroidissement de l'air d'admission et des gaz d'echappement recircules
EP1432907B1 (fr) Dispositif perfectionne de regulation thermique de l'air d'admission d'un moteur a combustion interne de vehicule automobile
EP3002443A1 (fr) Module d'admission d'air d'un moteur a combustion interne de vehicule automobile
EP1636479B1 (fr) Procede de regulation de la temperature des gaz admis dans un moteur thermique de vehicule automobile et systeme pour la mise en oeuvre de ce procede
EP1828559B1 (fr) Systeme de gestion de l'energie thermique d'un moteur de vehicule automobile par regulation des actionneurs des fluides de ce systeme
FR2976322A1 (fr) Repartiteur d'air comprenant un dispositif adapte a echanger de la chaleur avec de l'air de suralimentation, et systeme de transfert thermique comprenant un tel repartiteur
FR2948421A1 (fr) Procede de gestion de la circulation d'un fluide caloporteur dans un circuit de refroidissement d'un moteur thermique de vehicule automobile.
WO2021197936A1 (fr) Dispositif de gestion thermique pour un véhicule automobile hybride
FR3106881A1 (fr) Dispositif de gestion thermique pour véhicule automobile
FR2880652A1 (fr) Circuit de refroidissement d'un moteur thermique sur un vehicule
FR3109912A1 (fr) Dispositif de gestion thermique pour un véhicule automobile hybride
FR2832185A1 (fr) Systeme de gestion de l'energie thermique developpee par un moteur thermique de vehicule automobile
FR2971041A1 (fr) Installation de chauffage/climatisation a architecture simplifiee et a puissance de refrigeration accrue
WO2017207038A1 (fr) Système de gestion thermique d'air d'admission d'un moteur thermique suralimenté
EP3521073B1 (fr) Circuit de gestion thermique d'un véhicule hybride
WO2023072586A1 (fr) Systeme de gestion thermique pour vehicule hybride ou electrique
WO2024056768A1 (fr) Systeme de conditionnement thermique
WO2023072587A1 (fr) Systeme de gestion thermique pour vehicule hybride ou electrique
FR3103741A1 (fr) Systeme de traitement thermique destine a un vehicule automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13723794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13723794

Country of ref document: EP

Kind code of ref document: A1