WO2013177766A1 - 一种文丘里激冷系统 - Google Patents
一种文丘里激冷系统 Download PDFInfo
- Publication number
- WO2013177766A1 WO2013177766A1 PCT/CN2012/076288 CN2012076288W WO2013177766A1 WO 2013177766 A1 WO2013177766 A1 WO 2013177766A1 CN 2012076288 W CN2012076288 W CN 2012076288W WO 2013177766 A1 WO2013177766 A1 WO 2013177766A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- venturi
- chilling system
- coolant
- throat
- chilling
- Prior art date
Links
- 239000002826 coolant Substances 0.000 claims abstract description 50
- 230000007246 mechanism Effects 0.000 claims abstract description 17
- 230000000903 blocking effect Effects 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000007921 spray Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 239000004033 plastic Substances 0.000 claims description 7
- 238000005260 corrosion Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 239000011150 reinforced concrete Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 21
- 238000000926 separation method Methods 0.000 abstract description 9
- 238000005406 washing Methods 0.000 abstract description 9
- 230000008859 change Effects 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 39
- 239000000498 cooling water Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000001816 cooling Methods 0.000 description 15
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 14
- 239000003546 flue gas Substances 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000000110 cooling liquid Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 150000002013 dioxins Chemical class 0.000 description 3
- 239000002440 industrial waste Substances 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C3/00—Other direct-contact heat-exchange apparatus
- F28C3/06—Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/08—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
Definitions
- the invention belongs to the field of industrial waste gas treatment, and in particular relates to a venturi chill system. Background technique
- the temperature of the exhaust gas needs to be rapidly reduced in a very short time.
- high-temperature exhaust gas such as power plant and incinerator flue gas, petrochemical plant catalytic cracking regeneration flue gas, industrial furnace kiln flue gas, sintering machine flue gas, and high-temperature exhaust gas generated by chemical plant reaction equipment need to be cooled and purified.
- the Quench System is usually used for rapid cooling of high temperature gases.
- the chilling system generally uses the principle of adiabatic cool ing, that is, the heat of the absorbing gas is transferred by the evaporation of the cooling liquid, and the cooling process does not need to consume extra energy like a chiller.
- the existing chilling system mainly employs a method of spraying the treated gas with cooling water in a pipe or a cooling container.
- the scheme uses the principle of adiabatic cooling to absorb the heat of the gas by evaporation of the droplet-like coolant.
- it is necessary to disperse a large number of nozzles and consume a certain hydraulic pressure drop on each nozzle; at the same time, due to the form of the nozzle and the water pressure and energy consumption thereof.
- the specific surface area of the obtained cooling water droplets has a certain limit; and, in addition to using a large number of nozzles, the scheme requires a large number of pipes and valves to distribute the cooling water; in addition, when the amount of gas to be treated is relatively large , the amount of cooling water injected will be more, and the cooling water is generally required to be recycled.
- cycle cooling Since the cooling water is in direct contact with the air, solid or corrosive components of the gas enter the cooling water, and the nozzles and valves are blocked or corroded.
- Another type of chilling system uses submerged cooling, in which hot exhaust gas is passed directly through the diffuser to the cooling water for cooling. With this method, the gas forms bubbles in the water, and when the bubbles leave the cooling water, the gas is saturated with water vapor and reaches the lowest temperature that can be achieved by adiabatic cooling.
- the advantage of this scheme is that the device is relatively simple, but because the gas-liquid contact area is not large, the bubbles are unstable in the cooling water, which will cause vortexes and waves on the surface of the cooling water, thereby causing pressure fluctuations of the airflow.
- U.S. Patent No. 6,149,137 discloses a venturi chilling system in which a enthalpy is provided with a cofferdam through which a cooling water flows into a circular cross section near the cofferdam.
- the venturi tube the cooling water is split into very fine droplets by the shearing force in the venturi tube; the flow rate increases as the air passes through the venturi, the static pressure decreases, and the airflow between the different sections produces a strong shear.
- the outlet end of the venturi tube is placed in a chamber containing circulating cooling water. The height of the circulating water surface can be adjusted to allow the venturi outlet to be submerged in the cooling water.
- This solution absorbs the advantages of the Venturi air scrubber in the formation and diffusion of absorbing liquid droplets, and the venturi pressure drop is adjusted to some extent without the use of nozzles.
- the existing venturi chilling system is more conducive to the formation and dispersion of cooling water droplets, reduces energy consumption, eliminates clogging problems, and is more resistant to corrosion;
- the adjustment of the surface can also achieve the adjustment of the venturi pressure drop to some extent.
- the shape of the Venturi passage is circular and the size cannot be adjusted, the ability to resist the wind pressure fluctuation is poor.
- the distribution of the airflow in the cross section cannot be adjusted, and it is difficult to connect with the rear polyester device. Or the gas inlet and outlet requirements of the gas-liquid separation device are matched. In the case of large flux airflow, such a design will weaken the Venturi effect and thus reduce the cooling effect.
- the purpose of the present invention is to optimize the shape design of the Venturi channel and to solve the problem that the size of the Chinese churi channel of the existing Venturi chill system cannot be adjusted, the distribution of the airflow in the cross section cannot be adjusted, and It is very resistant to fluctuations in the wind pressure of the gas to be treated.
- the object of the present invention is achieved by a venturi chilling system comprising:
- a body located within the body; a coolant dispensing device located within the body; one or more venturi passages disposed behind the coolant delivery device; the flow passage section of the venturi passage being an adjustable elongated rectangle.
- the venturi chilling system, the venturi passage thereof includes:
- Venturi throat ; and an adjustment mechanism that regulates the cross section of the venturi throat.
- the venturi throat is composed of a set of slits formed between the divided columnar body and the blocking column body which are placed in the windward direction and perpendicular to the airflow direction;
- the blocking columnar body is disposed at a gas outflow end between two adjacent divided cylindrical bodies, and the leeward side is fixed to the adjusting mechanism.
- the venturi passage further includes: a baffle disposed on the windward side and the leeward side of the divided columnar body.
- the divided columnar body and the blocking column body are made of metal or high-strength temperature-resistant plastic.
- the adjusting mechanism is an adjustable spiral link.
- the adjusting mechanism is manual adjustment or electric adjustment.
- the coolant distribution device adopts a spray or overflow method.
- the venturi chilling system comprises: a coolant spray conveying pipe; and one or more nozzles; the coolant conveying pipe and the nozzle are located directly above the venturi throat, and the direction The length of the venturi throat is the same.
- the nozzle is fixed to the inner wall of the main body or the coolant spray pipe.
- the venturi chilling system comprises: a coolant overflow conveying pipe fixed to an inner wall of the main body; and an overflow trough; a direction of the overflow trough and the venturi throat The length direction is the same.
- venturi chilling system the venturi chilling system further comprising: the venturi passage a subsequent turbulent reaction zone; and an outlet disposed after the turbulent reaction zone.
- the lining anti-j window material is polytetrafluoroethylene, or 3 ⁇ 4 is made of high-strength and high-temperature resistant plastic or resin, or steel J concrete material.
- the Chinese churi channel of the invention can generate a large airflow shearing force even under a large flow cross section, and can be automatically adjusted according to the air volume or the venturi pressure difference, when the multi-venturi channel is set,
- the gas flow and coolant flow rate of different channels can be controlled separately, so that the distribution of the gas flow in the cross section can also be adjusted, which increases the adjustability and load change resistance of the Venturi chill system, so that the cooled air flow can be more Good match with the air inlet requirements of the subsequent scrubber or gas-liquid separator, which can greatly reduce the resistance and energy consumption of the entire scrubbing system during high-flow flue gas treatment.
- FIG. 1 is a schematic elevational view of a venturi chilling system according to an embodiment of the present invention
- Figure 2 is a cross-sectional view taken along line I-I of Figure 1;
- Figure 3 is a cross-sectional view taken along line II-II of Figure 1;
- FIG. 4 is a schematic elevational view of a chilling system according to another embodiment of the present invention.
- Figure 5 is a sectional view taken along line III-III of Figure 4.
- the coolant delivery device is located in the main body 7, and is cooled.
- One or more venturi passages are provided behind the liquid dispensing device, and the cross section of the Venturi passage is an elongated rectangle of adjustable size.
- the main body 7 adopts a cylindrical structure, and the material thereof is made of stainless steel or ordinary steel and lining anticorrosive materials, such as Teflon, etc., high-strength and high-temperature resistant plastic or resin, or reinforced concrete material (inner wall) Apply anti-corrosion layer).
- anticorrosive materials such as Teflon, etc., high-strength and high-temperature resistant plastic or resin, or reinforced concrete material (inner wall) Apply anti-corrosion layer).
- the cross section of the main body 7 can be designed in various shapes such as a circle, a square or a rectangle.
- the Venturi passage includes the Venturi throat 2 and an adjustment mechanism that adjusts the size of the venturi throat 2 overflow section.
- the Venturi throat 2 consists of a large set of mutually parallel divided cylindrical bodies 5 and a set of small parallel parallel blocking columns 6 with a cross-flow cross-section for high shear and high diffusion capacity. Long and narrow rectangle.
- the divided columnar bodies 5 are placed side by side in the windward direction, and a gas blocking end between each two adjacent divided cylindrical bodies 5 is provided with a blocking columnar body 6, which divides and blocks the airflow.
- the leeward side of the blocking column 6 is fixed to an adjustment mechanism 9, and the adjustment mechanism 9 can change the position of the blocking column 6 in the direction of the airflow, thereby adjusting the cross-sectional shape and size of the opening of the venturi throat 2.
- the cross section of the divided columnar body 5 may be circular, elliptical, rhombic, water drop type, or any geometric shape that facilitates the formation of the Venturi effect.
- the positions of the divided columns 5 are fixed, and the sum of their cross-sectional diameters (or widths) is substantially equal to or slightly smaller than the cross-sectional diameter (or width in the same direction) of the body 7 (the difference is generally not more than 10%).
- the length of each of the divided columns 5 ensures that they traverse across the cross section of the chilling system.
- the divided columnar body 5 is generally made of a material such as metal or high-strength temperature-resistant plastic.
- the cross section of the barrier columnar body 6 may be circular, elliptical, or any geometric shape that facilitates the formation of the Venturi effect and is in close contact with the surface of the segmented columnar body 5.
- the diameter or width of the cross section of the blocking columnar body 6 is approximately 1/2 - 1/3 of the corresponding diameter or width of the divided columnar body 5.
- the barrier columnar body 6 is generally made of a material such as metal or high-strength temperature-resistant plastic.
- the number of venturi throats 2 is selected according to the flow rate of the treated exhaust gas, generally less throats are used when the flow rate is low, such as a single throat, and more throats are used at a large flow rate. , such as 3 throats. The use of more throats allows the width of the rectangular throat to be further reduced, even if the flow rate is further increased to maintain the shear and diffusion capabilities required for the Venturi chill system to operate.
- the adjustment mechanism 9 can be an adjustable helical link that allows the blocking column 6 to be arbitrarily adjusted in the direction of flow of the airflow.
- a combination of the two divided columnar bodies 5 and one of the blocking columnar bodies 6 forms a special bifurcated venturi throat 2 which adjusts the position of the blocking columnar body 6 and even closes the entire venturi throat 2 .
- the position of the blocking column 6 can be fully adjusted by the adjusting mechanism 9, and the entire venturi throat 2 can be closed, so that the venturi throat 2 has a valve function, and all venturi throats can be taken in the event of equipment failure requiring maintenance. Closed, the exhaust gas entering the chilling system changes the flow direction, and the exhaust gas is introduced into the overrunning line.
- the opening size of the different throats can be separately adjusted by the adjusting mechanism 9, and the distribution of the air volume in the different throats can be changed, thereby changing the distribution of the air volume on the flow cross section, in extreme cases It is also possible to close part of the throat.
- Embodiments of the present invention can be adapted to the adjustment of the coolant spray to provide greater temperability of the venturi chilling system and to facilitate matching with subsequent washing equipment or gas-liquid separation devices.
- the adjustment mechanism 9 can be manually adjusted or electrically adjusted.
- the electric adjustment can be automatically controlled by the exhaust gas flow or by the pressure change of the venturi throat 2 .
- a baffle 8 is provided on the windward and leeward sides of the divided columnar body 5 for preventing a local vortex from appearing before entering the venturi throat 2, resulting in unnecessary energy loss.
- the deflector 8 is made of the same material as the main body 7.
- the turbulent reaction zone 3 is located behind the venturi throat 2, and the droplets are no longer separated after contact with each other, the particle accumulation becomes large, and the amount of the droplet is affected by the amount of the added coolant and the intake air.
- the outlet 4 is disposed behind the turbulent reaction zone 3 and is connected to a subsequent air scrubber.
- the outlet 4 is connected to a gas-liquid separator, such as a cyclone or a membrane receiver, to recover the coolant and recycle it.
- the delivery form of the coolant may be sprayed.
- the nozzle 10 and the coolant spray pipe 11 are disposed directly above the venturi throat 2, and are oriented.
- the length of the venturi throat 2 is the same.
- the spray of nozzle 10 covers at least the entire venturi throat 2 and can also be extended to all coolant distribution zones 1, the coolant distribution zone 1 and the inlet of the chilling system.
- the nozzle 10 may be fixed to the inner wall of the coolant delivery area 1, or may be fixed to the coolant spray pipe 11.
- the arrangement of the nozzles 10 is evenly spaced along the length of the venturi throat 2 .
- the spraying direction of the cooling liquid may be at any angle with the air flow direction, and the cooling liquid may use the process water of the plant area or any other kind of water, and when the absorption liquid for the subsequent absorption tower is an aqueous solution.
- This absorbing liquid can also be used as a cooling liquid.
- the absorbing liquid stored in the cooling water of the dedicated sump or the subsequent air washing device sump is sent to the nozzle 10 through the water pump to treat the exhaust gas, and the cooling liquid can be recycled.
- the amount of coolant is generally determined by the amount of water required to reach the minimum temperature at which adiabatic cooling can be achieved. At this point, the amount of water can only meet the cooling requirements, and the amount of water condensed in the turbulent reaction zone 3 and subsequent processing units is small. However, by adding an excessive amount of water and using the gas-liquid separation device, the chilling system of the embodiment of the present invention can achieve the purpose of dust removal and partial removal of the dissolved gas component while performing cooling.
- the delivery form of the cooling liquid may also be in an overflow mode.
- the coolant overflow conveying pipe 12 is fixed to the inner wall of the main body 7, and the coolant is supplied to the overflow tank 13.
- the flow direction of the overflow groove 13 coincides with the longitudinal direction of the venturi throat 2 and can be fixed to the top of the baffle 8.
- the coolant enters the overflow tank 13 through the coolant overflow conveying pipe 12, and then overflows along the notch of the overflow tank 13, enters the venturi throat 2 along the surface of the deflector 8, and is sheared in the venturi throat 2
- the force is dispersed into extremely fine droplets, which are quickly and efficiently evaporated and cool the passing high temperature gas.
- the overflow method can save the nozzle, eliminate the energy required to pass through the nozzle, and completely eliminate the nozzle clogging problem, especially when dealing with high concentration particulate matter exhaust gas, and with the subsequent air washing device and washing When the liquid acts as a coolant.
- the flue gas to be treated first enters the coolant distribution area 1 of the main body 7 from the flue gas discharge pipe, and the flue gas is in the coolant distribution area.
- the residence time in 1 is 0.3 seconds, and the plurality of nozzles 10 are fixed to the water distribution pipe 11 at even intervals, and are sprayed into the venturi throat 2 at the same angle as the airflow direction.
- the coolant is treated with process water and is delivered by a water pump from the cooling water collection tank to the nozzle 10.
- the flue gas After leaving the coolant distribution area 1, the flue gas enters the venturi throat 2 and then enters the turbulent reaction zone 3.
- the average flow velocity of the gas flow in the turbulent reaction zone 3 returns to a level close to the venturi throat 2, static pressure. It is also able to pick up, the shearing force of the airflow is drastically reduced, and the droplets are no longer separated after contact with each other, and the accumulation of particles becomes large.
- the residence time of the flue gas in the turbulent reaction zone 3 is about 0.2 seconds, so that the residence time in the entire chilling system is about 0.5 seconds, so that the high temperature gas is from several hundred degrees Celsius to thousands of degrees Celsius in such a short time. Decreasing the adiabatic saturation temperature below 100 °C can effectively suppress the formation of dioxins. After the flue gas is quenched, the temperature drops to 80 ° C and the relative humidity is 100%.
- the flue gas exits the turbulent reaction zone 3 and passes through the exit zone. 4 If necessary, it is required to enter a subsequent vapor-liquid separation device, such as a cyclone separator or a honeycomb type water collection device, or a gas scrubbing device for further gas-liquid separation or purification treatment.
- a subsequent vapor-liquid separation device such as a cyclone separator or a honeycomb type water collection device, or a gas scrubbing device for further gas-liquid separation or purification treatment.
- the system When the system is used together with the subsequent gas-liquid separation device, it can increase the circulating coolant flow rate, and realize the dust removal of the flue gas and the removal of dissolved gaseous pollutants (such as S0 2 ) while achieving rapid cooling of the gas.
- dissolved gaseous pollutants such as S0 2
- Venturi chilling system and subsequent gas-liquid separation device or air washing device in the embodiment of the invention can be stacked on top of each other in the same tower, or they can be placed in different towers in parallel or perpendicular to each other.
- the Chinese churi channel can be automatically adjusted according to the change of the air volume or the venturi pressure difference.
- the gas flow rate and the coolant flow rate through different channels can be separately controlled, so that the air flow is on the cross section.
- the distribution can also be adjusted to increase the adjustability of the Venturi chill system so that the cooled airflow can be better matched to the airflow inlet requirements of the subsequent scrubber or gas-liquid separation device.
- the gas treatment can greatly reduce the resistance and energy consumption of the entire washing system.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
Abstract
一种文丘里激冷系统,包括:主体(7),位于主体内的冷却液配送装置,设置于冷却液配送装置后面的一个或者多个文丘里通道;文丘里通道的过流断面为可调节的狭长矩形;文丘里通道包括文丘里喉口(2)和调节文丘里喉口(2)过流断面大小的调节机构(9);文丘里喉口(2)由一组大的相互平行的分割柱状体(5)和一组小的相互平行的阻挡柱状体(6)组成。文丘里通道可以根据气体流量或文丘里压差变化进行调节,当设置多个文丘里通道时,可以单独控制通过不同通道的气体流量和冷却液流量,以调控气流在横断面上的分布,增强了系统的可调节性。由于气流可以与下游的洗涤装置或气液分离装置相匹配,因此可以降低整个系统的阻力和能耗。
Description
一种文丘里激冷系统 技术领域
本发明属于工业废气处理领域, 尤其涉及一种文丘里激冷系统。 背景技术
当工业废气在空气洗涤装置中处理时, 若废气温度过高会使吸收液蒸发, 降低洗涤废气的效果。 同时, 高的温度还会降低废气的气体成分在吸收液中的 饱和分压, 从而影响吸收液的吸收能力。 在某类工业废气处理过程中, 为防止 二恶英(PCDDs/PCDFs或 dioxins )的大量生成, 需要将废气的温度在极短时间 内急速降低。 因此, 电厂及焚烧炉烟气、 石化厂催化裂化再生烟气、 工业炉窑 烟气、 烧结机烟气、 及化工厂反应装置所产生的高温尾气等各类高温废气需要 进行冷却及净化处理。
工程上使高温气体快速冷却通常使用激冷系统(Quench System) 。 激冷系 统一般采用绝热冷却 (adiabatic cool ing) 的原理, 即通过冷却液的蒸发来传 递吸收气体的热量, 冷却过程不需像制冷机那样消耗额外能量。
现有的激冷系统主要采用在管道或冷却容器中对被处理气体用冷却水进行 喷淋的方式。 当冷却液呈液滴状时具有很大的表面积, 该方案运用绝热冷却的 原理, 通过液滴状冷却液的蒸发来吸收气体的热量。 但为了使冷却水和空气接 触均匀且接触表面积大, 需要分散设置很多喷嘴并且每个喷嘴上要消耗一定的 水力压降; 同时, 由于受喷嘴的形式及其所受水压及能耗的限制, 所获的冷却 水水滴的比表面积有一定的限度; 并且, 该方案除了要用到很多喷嘴外, 还需 用很多的管道和阀门来分配输送冷却水; 此外, 当所处理的气量比较大时, 喷 入的冷却水量就会较多, 此时冷却水一般要求循环使用。 而采用循环冷却时,
由于冷却水和空气进行直接接触, 则气体中固体或腐蚀性成分就会进入冷却水 中去, 喷嘴和阀门就会受到堵塞或腐蚀。
另一种激冷系统采用淹没式冷却方式, 即热的废气通过扩散装置直接通入 到冷却水中冷却。 采用这种方法时, 气体在水中形成气泡, 当气泡离开冷却水 时气体被水蒸汽饱和, 并达到绝热冷却所能达到的最低温度。 此方案的优点是 装置比较简单, 但由于气液接触面积不大, 气泡在冷却水中不稳定, 会引起冷 却水水面产生漩涡和波浪, 从而造成气流的压力波动。
美国专利 US Pat 6, 149, 137揭示了一种文丘里激冷系统, 这种激冷系统内 设有一围堰, 冷却水通过围堰溢流进入围堰附近的一段过流断面为圆形的文丘 里管, 冷却水在文丘里管内受剪切力作用被拆分成很细的液滴; 空气通过文丘 里管时流速增加, 静压降低, 不同断面上的气流间产生很强的剪切力; 文丘里 管出口端置于一存有循环冷却水的室腔内, 循环水水面高度可以调节, 可使文 丘里管出口淹没在冷却水中。 此方案吸收了文丘里空气洗涤装置在吸收液液滴 形成以及扩散方面的优点, 无须使用喷嘴, 在一定程度上也实现了文丘里压降 的调节。
现有的文丘里激冷系统相对于其它冷却装置而言, 更有利于冷却水水滴的 形成及分散, 降低了能耗, 排除了堵塞问题, 抗腐蚀性更强; 同时通过对循环 冷却水液面的调节, 也能在某种程度上实现文丘里压降的调节。 但由于文丘里 通道的形状为圆形, 且大小无法进行调节, 抵抗风量风压波动的能力较差, 同 时由于其单一通道设计, 气流在横断面上的分布不能调控, 难以与后面的涤装 置或气液分离装置的气流入口要求相匹配, 在大通量气流情况下, 这样的设计 会削弱文丘里效应, 从而降低冷却效果。 发明内容
本发明目的旨在优化文丘里通道的形状设计并解决现有文丘里激冷系统中 文丘里通道的大小无法进行调节, 气流在横断面上的分布不能调控, 以及不能
很好抵抗待处理气体的风压风量的波动等问题。 本发明目的是这样实现的, 一种文丘里激冷系统, 包括:
主体;位于主体内的冷却液配送装置; 设置于所述冷却液配送装置后面的一 个或者多个文丘里通道; 所述文丘里通道的过流断面为可调节的狭长矩形。
所述的文丘里激冷系统, 其文丘里通道包括:
文丘里喉口; 以及调节所述文丘里喉口过流断面的调节机构。
所述的文丘里激冷系统, 其文丘里喉口由一组放置在迎风方向、 与气流方 向垂直的分割柱状体和阻挡柱状体之间所形成的狭缝组成;
所述阻挡柱状体设置在两相邻分割圆筒体之间的气体出流端, 背风一侧固 定在所述调节机构上。
所述的文丘里激冷系统, 其文丘里通道还包括: 设置于所述分割柱状体的 迎风侧和背风侧的导流板。
所述的文丘里激冷系统, 其分割柱状体和阻挡柱状体采用金属或者高强耐 温塑料等材料。
所述的文丘里激冷系统, 其调节机构为一个可调节的螺旋连杆。
所述的文丘里激冷系统, 其调节机构为手动调节或者电动调节。
所述的文丘里激冷系统, 其冷却液配送装置采用喷淋或者溢流方式。
所述的文丘里激冷系统, 其冷却液配送装置包括: 冷却液喷淋输送管; 以 及一个或者多个喷嘴; 所述冷却液输送管和喷嘴位于文丘里喉口的正上方, 走 向与所述文丘里喉口的长度方向一致。
所述的文丘里激冷系统, 其喷嘴固定在所述主体内壁, 或者所述冷却液喷 淋输送管上。
所述的文丘里激冷系统, 其冷却液配送装置包括: 固定于所述主体内壁上 的冷却液溢流输送管; 以及溢流槽; 所述溢流槽的走向与所述文丘里喉口的长 度方向一致。
所述的文丘里激冷系统, 其文丘里激冷系统还包括: 位于所述文丘里通道
后的紊动反应区; 以及设置于所述紊动反应区后的出口。 所述的文丘里激冷系统, 其所述内衬防 j窗材料为聚四氟乙烯, 或¾用高强 度且耐高温的塑料或树脂, 或者采用钢 J混凝土材料。
本发明的中文丘里通道即使在较大的过流断面下仍然可以产生较大的气流 剪切力, 可以根据空气量或文丘里压差变化进行自动化调节, 当设置多文丘里 通道时, 通过不同通道的气体流量和冷却液流量可以单独控制, 这样气流在横 断面上的分布也可以得到调控, 增加了文丘里激冷系统的可调节性及抗负荷变 化能力, 使得冷却后的气流可以更好地和后面的洗涤装置或气液分离装置的气 流入口要求相匹配, 这在大流量烟气处理时可以大大降低整个洗涤系统的阻力 和能耗。
附图说明
图 1是本发明一个实施例提供的文丘里激冷系统的立面示意图;
图 2是图 1中 I-I剖面图;
图 3是图 1中 II-II剖面图;
图 4是本发明另一实施例提供的激冷系统的立面示意图;
图 5是图 4中 III-III剖面图。
图中:
1-冷却液配送区 (兼进口) ; 2-文丘里喉口; 3-紊动反应区; 4-出口; 5- 分割柱状体; 6-阻挡柱状体; 7-主体; 8-导流板; 9-调节机构; 10-喷嘴; 11-冷却液喷淋输送管; 12-冷却液溢流输送管; 13-冷却液溢流槽。
具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
在本发明实施例中, 参见图广图 5, 冷却液配送装置位于主体 7内, 冷却
液配送装置后面设置有一个或者多个文丘里通道, 文丘里通道的过流断面为大 小可调节的狭长矩形。
主体 7采用筒体结构, 其材料采用不锈钢或普通钢材加内衬防腐材料, 如 聚四氟乙烯 (Teflon ) 等, 也可采用高强度且耐高温的塑料或树脂, 或者采用 钢筋混凝土材料 (内壁涂防腐层) 。
主体 7的横截面可以设计成圆形、 正方形或矩形等不同形状。
文丘里通道包括文丘里喉口 2, 以及调节文丘里喉口 2过流断面大小的调 节机构 9。
文丘里喉口 2由一组大的相互平行的分割柱状体 5和一组小的相互平行的 阻挡柱状体 6组成, 其过流横断面为能使气流获得高剪切力和高扩散能力的狭 长矩形。
分割柱状体 5并排放置在迎风方向, 每两相邻分割圆筒体 5之间的气体出 流端设有一个阻挡柱状体 6, 对气流起分割和阻挡作用。
阻挡柱状体 6的背风一侧固定在一个调节机构 9上, 调节机构 9可以沿着 气流方向来改变阻挡柱状体 6的位置, 以此调整文丘里喉口 2开口横断面形状 和大小。
作为本发明的一个实施例, 分割柱状体 5的横截面可为圆形、 椭圆形、 菱 形、 水滴型、 或任何有利于文丘里效应形成的几何形状。
分割柱状体 5的位置固定, 它们的横截面直径 (或宽度) 之和与主体 7的 横截面直径 (或同一方向宽度) 大致相等或略小 (相差一般不超过 10%) 。 每 根分割柱状体 5的长度都保证它们在激冷系统的横截面上横贯。 分割柱状体 5 一般用金属或高强耐温塑料等材料制成。
作为本发明的一个实施例, 阻挡柱状体 6的横截面可为圆形、 椭圆形、 或 任何有利于文丘里效应形成、 且能和分割柱状体 5表面紧密接触的几何形状。 阻挡柱状体 6的横截面的直径或宽度大致为分割柱状体 5相应的直径或宽度的 1/2-1/3。 阻挡柱状体 6—般用金属或高强耐温塑料等材料制成。
在本发明实施例中, 文丘里喉口 2的数量根据所处理废气的流量来选用, 一般在流量低时选用较少的喉口, 如单喉口, 而在大流量时选用较多喉口, 如 3 个喉口。 采用较多喉口可以使得矩形喉口的宽度进一步降低, 即使流量进一 步增加仍然可以维持文丘里激冷系统工作所需要的剪切力和扩散能力。
调节机构 9可以是一个可调节的螺旋连杆, 旋转螺旋连杆可以使得阻挡柱 状体 6沿着气流的流动方向任意调节。 这样, 两个分割柱状体 5和一个阻挡柱 状体 6之间组成了一个特殊分叉的文丘里喉口 2, 调节阻挡柱状体 6的位置甚 至可以把整个文丘里喉口 2关闭。
通过调节机构 9可以充分调节阻挡柱状体 6的位置, 还可以将整个文丘里 喉口 2关闭, 使得文丘里喉口 2具备阀门功能, 在出现设备故障需检修时可以 将所有文丘里喉口 2关闭, 使得进入激冷系统的废气改变流动方向, 将废气导 入超越管线。
当设置有多文丘里喉口 2时, 可以通过调节机构 9分别调节不同喉口的开 口大小, 还可以改变风量在不同喉口中的分配, 从而改变风量在过流断面上的 分布, 极端情况下还可以关闭部分喉口。
本发明实施例可以配合冷却液喷淋的调节, 使得文丘里激冷系统具有更大 的可调节性, 并且便于和后续的洗涤设备或气液分离装置相匹配。
作为本发明的一个实施例, 调节机构 9可以手动调节, 也可以电动调节。 电动调节时可以通过废气流量或通过文丘里喉口 2 的压力变化而进行自动控 制。
作为本发明的一个实施例, 在分割柱状体 5的迎风和背风一侧设有导流板 8,用于防止气流在进入文丘里喉口 2前出现局部漩涡,造成不必要的能量损失。 其中, 导流板 8采用和主体 7相同的材料制成。
在本发明实施例中, 紊动反应区 3位于文丘里喉口 2后面, 此时液滴相互 接触后不再分开, 颗粒积聚变大, 同时液滴的量受加入的冷却液量及进气中的 湿度影响。
作为本发明的一个实施例, 出口 4设置于紊动反应区 3后面, 连接到后续 的空气洗涤装置。 当激冷系统单独使用时, 出口 4则连接到气液分离器, 如旋 风分离器或薄膜收水器, 以便回收冷却液并进行循环利用。
在本发明的一个实施例中, 冷却液的配送形式可以采用喷淋方式, 参见图 广图 3, 喷嘴 10和冷却液喷淋输送管 11均设置于文丘里喉口 2的正上方, 走 向与文丘里喉口 2的长度方向一致。
喷嘴 10喷淋的范围至少覆盖整个文丘里喉口 2, 也可扩展到全部冷却液配 送区 1, 冷却液配送区 1兼激冷系统的进口。
喷嘴 10可以固定在冷却液配送区 1的内壁上,也可固定在冷却液喷淋输送 管 11上。
在使用多个喷嘴 10时, 喷嘴 10的布置沿文丘里喉口 2的长度方向均匀间 隔排列。
在本发明实施例中, 冷却液的喷入方向可以与空气流动方向成任意角度, 冷却液可以采用厂区的工艺水或其它任何种类的水, 并且当后续的吸收塔用的 吸收液为水溶液时也可用此吸收液作为冷却液。 储存在专用集水池的冷却液或 后续空气洗涤装置集水池中的吸收液,通过水泵被输送至喷嘴 10对废气进行处 理, 同时冷却液可以循环使用。
冷却液量一般按照达到绝热冷却所能达到的最低温度所需要的水量来确 定, 此时水量仅能满足冷却的要求, 在紊动反应区 3及后续处理单元中冷凝的 水量很少。 但通过加入过量的水并且配合气液分离装置的使用, 本发明实施例 的激冷系统在实施冷却的同时还能实现除尘及部分去除溶解性气体成分的目 的。
作为本发明的另一实施例, 冷却液的配送形式也可以采用溢流方式。
参见图 4〜5, 冷却液溢流输送管 12固定在主体 7的内壁上, 向溢流槽 13 输送冷却液。溢流槽 13的走向与文丘里喉口 2的长度方向一致,可以固定在导 流板 8的顶部。
冷却液经过冷却液溢流输送管 12进入溢流槽 13, 然后沿溢流槽 13槽口溢 流, 沿导流板 8表面进入文丘里喉口 2, 在文丘里喉口 2内受剪切力作用被分 散成极细的液滴, 从而被快速高效地蒸发, 并对经过的高温气体进行冷却。
采用溢流方式可以省去喷嘴, 免去通过喷嘴所需要消耗的能量, 也可以彻 底排除喷嘴的堵塞问题, 尤其适用于处理含高浓度颗粒物废气时, 以及与后续 空气洗涤装置一起使用并采用洗涤液来充当冷却液时。
当烟气采用如图广图 3所示的文丘里激冷系统进行冷却处理时, 待处理的 烟气首先从烟气排出管道进入主体 7的冷却液配送区 1,烟气在冷却液配送区 1 内的停留时间为 0. 3秒, 多个喷嘴 10以均匀的间隔固定在配水管 11上, 以与 气流方向相同的角度喷入文丘里喉口 2。 冷却液选用工艺水充当, 由水泵从冷 却水集水池输送至喷嘴 10。
烟气离开冷却液配送区 1后进入文丘里喉口 2,然后进入紊动反应区 3,在 紊动反应区 3内气流的平均流速回复到接近进入文丘里喉口 2前的水平, 静压 也得以回升, 气流的剪切力剧然降低, 液滴相互接触后不再分开, 颗粒积聚变 大。
烟气在紊动反应区 3内的停留时间约 0. 2秒, 这样在整个激冷系统内的停 留时间约 0. 5秒, 在这样短的时间内使得高温气体从几百摄氏度至上千摄氏度 降低至 100°C以下的绝热饱和温度, 可以有效地遏制二恶英类物质的生成。 烟 气经激冷处理后, 温度降为 80°C, 相对湿度为 100%。
烟气从紊动反应区 3出来后通过出口区 4视需要进入后续的汽液分离装置, 如旋风分离器或蜂巢式收水装置, 或气体洗涤装置进一步进行气液分离或净化 处理。
本系统与后续的气液分离装置一起使用时, 配合加大循环冷却液流量, 在 实现对气体的快速冷却的同时还能实现对烟气的除尘和去除溶解性气体污染物 (如 S02) 的作用。
本发明实施例中的文丘里激冷系统和后续的气液分离装置或空气洗涤装置
既可以上下叠加布置在同一个塔体内, 也可以相互并行或垂直并分别放置在不 同的塔体内。
本发明实施例中文丘里通道可以根据空气量或文丘里压差变化进行自动化 调节, 当设置多文丘里通道时, 通过不同通道的气体流量和冷却液流量可以单 独控制, 这样气流在横断面上的分布也可以得到调控, 增加了文丘里激冷系统 的可调节性, 使得冷却后的气流可以更好地和后面的洗涤装置或气液分离装置 的气流入口要求相匹配, 这在大流量烟气处理时可以大大降低整个洗涤系统的 阻力和能耗。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。
Claims
1、 一种文丘里激冷系统, 其特征在于, 所述文丘里激冷系统包括: 主体;
位于主体内的冷却液配送装置;
设置于所述冷却液配送装置后面的一个或者多个文丘里通道;
所述文丘里通道的过流断面为可调节的狭长矩形。
2、如权利要求 1所述的文丘里激冷系统, 其特征在于, 所述文丘里通道包 括:
文丘里喉口; 以及
调节所述文丘里喉口过流断面的调节机构。
3、如权利要求 2所述的文丘里激冷系统, 其特征在于, 所述文丘里喉口由 一组放置在迎风方向、 与气流方向垂直的分割柱状体和阻挡柱状体之间所形成 的狭缝组成;
所述阻挡柱状体设置在两相邻分割圆筒体之间的气体出流端, 背风一侧固 定在所述调节机构上。
4、如权利要求 3所述的文丘里激冷系统,其特征在于,文丘里通道还包括: 设置于所述分割柱状体的迎风侧和背风侧的导流板。
5、 如权利要求 2、 3或 4所述的文丘里激冷系统, 其特征在于, 所述分割 柱状体和阻挡柱状体采用金属或者高强耐温塑料等材料。
6、如权利要求 1所述的文丘里激冷系统, 其特征在于, 所述调节机构为一 个可调节的螺旋连杆。
7、如权利要求 1或 6所述的文丘里激冷系统, 其特征在于, 所述调节机构 为手动调节或者电动调节。
8、如权利要求 1所述的文丘里激冷系统, 其特征在于, 所述冷却液配送装 置采用喷淋或者溢流方式。
9、如权利要求 8所述的文丘里激冷系统, 其特征在于, 冷却液配送装置包
括:
冷却液喷淋输送管; 以及
一个或者多个喷嘴;
所述冷却液输送管和喷嘴位于文丘里喉口的正上方, 走向与所述文丘里喉 口的长度方向一致。
10、 如权利要求 9所述的文丘里激冷系统, 其特征在于, 所述喷嘴固定在 所述主体内壁, 或者所述冷却液喷淋输送管上。
11、 如权利要求 8所述的文丘里激冷系统, 其特征在于, 冷却液配送装置 包括:
固定于所述主体内壁上的冷却液溢流输送管; 以及
溢流槽;
所述溢流槽的走向与所述文丘里喉口的长度方向一致。
12、 如权利要求 1所述的文丘里激冷系统, 其特征在于, 文丘里激冷系统 还包括:
位于所述文丘里通道后的紊动反应区; 以及
设置于所述紊动反应区后的出口。
13、 如权利要求 1所述的文丘里激冷系统, 其特征在于, 主体采用不锈钢 或普通钢材加内衬防腐材料。
14、如权利要求 13所述的文丘里激冷系统, 其特征在于, 所述内衬防腐材 料为聚四氟乙烯, 或采用高强度且耐高温的塑料或树脂, 或者采用钢筋混凝土 材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/076288 WO2013177766A1 (zh) | 2012-05-30 | 2012-05-30 | 一种文丘里激冷系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/076288 WO2013177766A1 (zh) | 2012-05-30 | 2012-05-30 | 一种文丘里激冷系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013177766A1 true WO2013177766A1 (zh) | 2013-12-05 |
Family
ID=49672294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/076288 WO2013177766A1 (zh) | 2012-05-30 | 2012-05-30 | 一种文丘里激冷系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013177766A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113624031A (zh) * | 2021-09-14 | 2021-11-09 | 西安热工研究院有限公司 | 一种混合式蒸汽发生系统和流量分配方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4152123A (en) * | 1977-12-16 | 1979-05-01 | Gottfried Bischoff Bau Kompl. Gasreinigungs- Und Wasserruckkuhlanlagen Gmbh & Co. Kommanditgesellschaft | Gas-cleaning apparatus and method for high-pressure blast furnace |
US4206159A (en) * | 1979-01-05 | 1980-06-03 | Combustion Engineering, Inc. | Rod scrubber |
US4981500A (en) * | 1987-10-09 | 1991-01-01 | Thyssen Industrie Ag | Venturi type cooler for flue gas desulphurization device |
CN2258584Y (zh) * | 1996-04-17 | 1997-07-30 | 北京市机电研究院环境保护技术研究所 | 垃圾焚烧后排气的处理装置 |
CN2630660Y (zh) * | 2003-05-31 | 2004-08-04 | 沈阳东方钛业有限公司 | 工业危险废物焚烧线骤冷器 |
CN200972134Y (zh) * | 2006-11-15 | 2007-11-07 | 龚德明 | 垃圾焚烧设备中的防止二恶英生成装置 |
-
2012
- 2012-05-30 WO PCT/CN2012/076288 patent/WO2013177766A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4152123A (en) * | 1977-12-16 | 1979-05-01 | Gottfried Bischoff Bau Kompl. Gasreinigungs- Und Wasserruckkuhlanlagen Gmbh & Co. Kommanditgesellschaft | Gas-cleaning apparatus and method for high-pressure blast furnace |
US4206159A (en) * | 1979-01-05 | 1980-06-03 | Combustion Engineering, Inc. | Rod scrubber |
US4981500A (en) * | 1987-10-09 | 1991-01-01 | Thyssen Industrie Ag | Venturi type cooler for flue gas desulphurization device |
CN2258584Y (zh) * | 1996-04-17 | 1997-07-30 | 北京市机电研究院环境保护技术研究所 | 垃圾焚烧后排气的处理装置 |
CN2630660Y (zh) * | 2003-05-31 | 2004-08-04 | 沈阳东方钛业有限公司 | 工业危险废物焚烧线骤冷器 |
CN200972134Y (zh) * | 2006-11-15 | 2007-11-07 | 龚德明 | 垃圾焚烧设备中的防止二恶英生成装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113624031A (zh) * | 2021-09-14 | 2021-11-09 | 西安热工研究院有限公司 | 一种混合式蒸汽发生系统和流量分配方法 |
CN113624031B (zh) * | 2021-09-14 | 2022-11-25 | 西安热工研究院有限公司 | 一种混合式蒸汽发生系统和流量分配方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10294123B2 (en) | Humidification-dehumidification systems and methods at low top brine temperatures | |
US20190184307A1 (en) | Efficient and energy-saving wastewater evaporation crystallizer | |
WO2024011887A1 (zh) | 一种二氧化碳吸收系统 | |
JP2006205077A (ja) | 螺旋構造体とそれを用いた気体内からの混合物分離装置及び熱交換装置 | |
CN107042048A (zh) | 一种重力热管式除雾方法及除雾装置 | |
CN102657991A (zh) | 一体化文丘里空气洗涤装置 | |
RU2650967C1 (ru) | Способ очистки газов и устройство для его осуществления | |
WO2014060131A1 (en) | A flue gas purification device | |
CN202161915U (zh) | 文丘里棒层 | |
WO2013177766A1 (zh) | 一种文丘里激冷系统 | |
WO2013173996A1 (zh) | 一体化文丘里空气洗涤装置 | |
CN209226762U (zh) | 一种湿法脱硫时使用的废水处理塔 | |
CN102688657A (zh) | 一种文丘里激冷系统 | |
CN202605988U (zh) | 一种文丘里激冷系统 | |
CN207845196U (zh) | 一种脱硫废水低温蒸发浓缩系统 | |
CN102274688A (zh) | 多级喷雾高效吸收装置 | |
CN101332397A (zh) | 大型化旋流塔板 | |
CN115040962A (zh) | 一种二氧化碳吸收系统 | |
CN206688443U (zh) | 一种重力热管式除雾装置 | |
JP5901176B2 (ja) | 分離装置及び分離システム | |
RU102900U1 (ru) | Установка для очистки газов | |
RU2029197C1 (ru) | Аппарат для обработки воздуха | |
CN109453621A (zh) | 一种废气回收利用节能装置 | |
CN218238450U (zh) | 一种改进的紧凑型板式蒸发空冷器 | |
CN203017982U (zh) | 一种防壁流喷淋脱硫塔 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12877866 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12877866 Country of ref document: EP Kind code of ref document: A1 |