WO2013177736A1 - 光网络终端管理控制接口报文传递方法、系统及相应的设备 - Google Patents

光网络终端管理控制接口报文传递方法、系统及相应的设备 Download PDF

Info

Publication number
WO2013177736A1
WO2013177736A1 PCT/CN2012/076159 CN2012076159W WO2013177736A1 WO 2013177736 A1 WO2013177736 A1 WO 2013177736A1 CN 2012076159 W CN2012076159 W CN 2012076159W WO 2013177736 A1 WO2013177736 A1 WO 2013177736A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicast
terminal device
omci
packet
message
Prior art date
Application number
PCT/CN2012/076159
Other languages
English (en)
French (fr)
Inventor
梁选勤
郑刚
罗远秋
吴炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR20147035665A priority Critical patent/KR20150022859A/ko
Priority to AU2012381695A priority patent/AU2012381695A1/en
Priority to PCT/CN2012/076159 priority patent/WO2013177736A1/zh
Priority to EP12837663.9A priority patent/EP2750330A1/en
Priority to CN201280000947.1A priority patent/CN103636164A/zh
Priority to US13/896,816 priority patent/US20130315594A1/en
Priority to ARP130101841 priority patent/AR091169A1/es
Publication of WO2013177736A1 publication Critical patent/WO2013177736A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/02Standardisation; Integration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present invention relates to a fiber access technology, and in particular, to a method, system and device for transmitting a message of an optical network terminal management control interface.
  • the access network refers to the network between the backbone network and the user terminals.
  • the fiber access network such as passive optical network (PON, Passive) Optical Netwotk) has gradually become a strong contender for the next generation of broadband access networks.
  • the traditional PON system mainly includes: optical line terminal equipment (OLT, Optical Line Terminal), optical distribution network (ODN, Optical Distribution Network) and optical network terminal equipment (ONT, Optical Network) Terminal).
  • OLT optical line terminal equipment
  • ODN optical distribution network
  • ONT optical network terminal equipment
  • ONT optical network terminal equipment
  • ONT operations, management, and maintenance
  • OAM Operations, Administration, and Maintenance
  • GPON Gigabit-capable Passive Optical
  • XG-PON XG-PON (10-Gigabit-capable Passive Optical) Network
  • OMCI optical network terminal management control interface
  • the downlink propagation of the optical network terminal management control interface message (referred to as OMCI message) is mainly unicast, that is, an OMCI message can only be sent to An ONT. If the same OMCI message needs to be sent to multiple ONTs, the OLT must copy the OMCI message into multiple copies and send an OMCI message to each ONT. As the number of ONTs that need to be sent increases, downstream bandwidth resources will be seriously wasted.
  • the present application proposes an OMCI message delivery method, system and device.
  • An aspect of the present application provides an OMCI message delivery method, including: an optical line terminal device sends configuration information to an optical network terminal device, where the configuration information is used to instruct the optical network terminal device to configure the device according to the configuration information. Ending the open state of the multicast port to establish a multicast channel; sending, by the multicast channel, an OMCI message carrying multicast information to the optical network unit device, where the multicast information includes a multicast port identifier, The multicast port identifier is used to reflect the mapping relationship between the OMCI packet and the multicast port.
  • the present application further provides another OMCI message delivery method, including: the optical network terminal device receives configuration information sent by the optical line terminal device; and configures an open state of the local multicast port according to the configuration information to establish a multicast channel; Obtaining, by the multicast channel, the OMCI message that is sent by the optical line terminal device and carrying the multicast information, where the multicast information includes a multicast port identifier, and the multicast port identifier is used to reflect the OMCI message.
  • the mapping relationship with the multicast port including: the optical network terminal device receives configuration information sent by the optical line terminal device; and configures an open state of the local multicast port according to the configuration information to establish a multicast channel; Obtaining, by the multicast channel, the OMCI message that is sent by the optical line terminal device and carrying the multicast information, where the multicast information includes a multicast port identifier, and the multicast port identifier is used to reflect the OMCI message.
  • the mapping relationship with the multicast port includes: the multicast
  • an optical line terminal device including: a sending module, configured to send configuration information to an optical network terminal device, where the configuration information is used to indicate that the optical network terminal device configures a local multicast port An open state to establish a multicast channel; an information processing module, configured to carry the multicast information to the OMCI message, where the multicast information includes a multicast port identifier, and the multicast port identifier is used to reflect the OMCI message And a multicasting module, configured to send, by using the multicast channel, an OMCI message that includes the multicast information to the optical network terminal device.
  • the present application further provides an optical network terminal device, including: a configuration information receiving module, configured to receive configuration information sent by an optical line terminal device; and a configuration module, configured to configure an open state of the local multicast port according to the configuration information
  • the OMCI message obtaining module is configured to acquire, from the multicast channel, an OMCI message that is sent by the optical line terminal device and carries multicast information, where the multicast information includes a multicast port.
  • the identifier of the multicast port is used to reflect the mapping relationship between the OMCI packet and the multicast port.
  • a further aspect of the present application provides a passive optical network system comprising the optical line termination device and the plurality of optical network termination devices as described above, the optical line termination device being connected to the plurality of lights through an optical distribution network Network terminal equipment. .
  • the same OMCI message sent by the OLT can be simultaneously multiple.
  • the ONT receiving can greatly reduce the waste of downlink bandwidth resources and reduce the burden on the OLT to copy OMCI packets.
  • the speed of light propagation is very fast, and the time delay of OMCI message not being copied will improve the real-time performance of the system and reduce the waste of time.
  • FIG. 1 is a schematic structural diagram of an embodiment of a PON system of the present application.
  • FIG. 2 is a flowchart of an embodiment of an OMCI message delivery method of the present application
  • FIG. 3 is a flowchart of another embodiment of an OMCI message delivery method of the present application.
  • FIG. 5 is a schematic structural diagram of an embodiment of an optical line terminal device of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of an optical network terminal device according to the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of an optical network terminal device according to the present application.
  • FIG. 1 is a schematic structural diagram of a passive optical network (PON) system applicable to an OMCI message delivery method provided by the present application.
  • the passive optical network system 100 may include at least one optical line termination (OLT) device 110.
  • the optical line termination device 110 is connected to the plurality of optical network termination devices 120 in a point-to-multipoint manner through the optical distribution network 130.
  • the direction from the optical line terminal device 110 to the optical network terminal device 120 is defined as a downlink direction, and the direction from the optical network terminal device 120 to the optical line terminal device 110 is an uplink direction.
  • the optical line termination device 110 is time division multiplexed (TDM, Time) Division
  • TDM Time division multiplexed
  • the Multiplexing mode broadcasts the downlink data stream to all optical network terminal devices 120, and each optical network terminal device 120 receives only data with its own identity.
  • the passive optical network system 100 adopts time division multiple access (TDMA, Time) in the uplink direction in order to ensure that uplink data of each optical network terminal device 120 does not collide.
  • TDMA Time division multiple access
  • the optical line terminal device 110 allocates time slots for each optical network terminal device 120, and each optical network terminal device 120 transmits uplink data strictly according to the time slot allocated by the optical line terminal device 110.
  • the passive optical network system 100 can be a communication network that does not require any active devices to implement data distribution between the optical line termination device 110 and the optical network termination device 120, such as, in particular embodiments, Data distribution between the optical line termination device 110 and the optical network termination device 120 can be implemented by passive optical devices (such as optical splitters) in the optical distribution network 130.
  • the passive optical network system 100 can be an ITU-T GPON system defined by the G.984 series of standards, or ITU-T The XG-PON standard defined by the G.987 series of standards, or other PON systems that use the Optical Network Terminal Management Control Interface (OMCI) channel to transmit OAM messages.
  • OMCI Optical Network Terminal Management Control Interface
  • the optical line termination device 110 is typically located at a central location (eg, Central Office Central) Office, CO), which can uniformly manage the plurality of optical network terminal devices 120.
  • the optical line terminal device 110 can serve as a medium between the optical network terminal device 120 and an upper layer network (not shown), and the data received from the upper layer network is used as downlink data and passes through the optical distribution network 130. Forwarding to the optical network terminal device 120, and forwarding uplink data received from the optical network terminal device 120 to the upper layer network.
  • the optical network terminal device 120 can be distributedly disposed at a user side location (such as a customer premises).
  • the optical network terminal device 120 may be a network device for communicating with the optical line terminal device 110 and the user terminal.
  • the optical network terminal device 120 may serve as the optical line terminal device 110 and the Referring to a medium between user terminals, for example, the optical network terminal device 120 may forward downlink data received from the optical line terminal device 110 to the user, and receive data received from the user terminal as The uplink data is forwarded to the optical line termination device 110 through the optical distribution network 130.
  • the structure and optical network unit of the optical network terminal device 120 (Optical) The Network Unit, ONU) devices are similar, so in the solution provided in this application, the optical network terminal device and the optical network unit device can be interchanged.
  • the optical distribution network 130 can be a data distribution system that can include optical fibers, optical couplers, optical splitters, and/or other devices.
  • the fiber, optocoupler, optical splitter, and/or other device may be a passive optical device, in particular, the fiber, optocoupler, optical splitter, and/or other
  • the device may be a device that distributes data signals between the optical line termination device 110 and the optical network termination device 120 that does not require power support.
  • the optical distribution network 130 may also include one or more processing devices, such as optical amplifiers or relay devices (Relay) Device).
  • the optical distribution network 130 may specifically adopt a two-stage splitting manner from the optical line terminal. 110 extends to the plurality of optical network termination devices 120, but can also be configured in any other point-to-multipoint (eg, single-stage split or multi-stage split) configurations.
  • FIG. 2 is a flowchart of an embodiment of an optical network terminal management control interface (OMCI) message delivery method according to the present application.
  • the OMCI message delivery method includes:
  • the optical line terminal device sends the configuration information to the optical network terminal device.
  • the optical line terminal device and its corresponding optical network terminal device Before transmitting the configuration information, the optical line terminal device and its corresponding optical network terminal device respectively establish a unicast channel similar to a point-to-point.
  • the optical line terminal device sends the configuration information to the optical network terminal device through the unicast channel, where the configuration information sent by the optical line terminal device may be indication information for indicating that the optical network terminal device performs the multicast port open state configuration, and the optical network terminal device
  • the open state of the local multicast port can be configured according to the configuration information to establish a multicast channel between the optical line terminal device and the optical network terminal device.
  • the optical network terminal device opens the multicast port of the local end; otherwise, the local multicast port is prohibited from being opened.
  • a multicast channel is formed between the optical line terminal device and the optical network terminal device of the open multicast port, specifically, if connected to the optical line terminal device A part of the optical network terminal device of the PON port is open to the multicast port, and the optical line terminal device forms a multicast channel with the terminal device connected to the optical network, that is, the part of the optical network terminal device forms a multicast group; In particular, if all of the optical network terminal devices connected to the same PON port of the optical line terminal device open the multicast port, the optical line terminal device forms a broadcast channel with all the optical network terminal devices connected to the PON port.
  • the multicast channel can be used for multicast service packets and OMCI messages at the same time, or OMCI packets can be multicasted separately, and the multicast port of the optical network terminal device in the same multicast channel is only received.
  • a service packet and an OMCI packet with the corresponding multicast port identifier can be used for multicast service packets and OMCI messages at the same time, or OMCI packets can be multicasted separately, and the multicast port of the optical network terminal device in the same multicast channel is only received.
  • the optical line terminal device can also set the multicast channel to encrypt the downlink service packet and the OMCI packet. For example, the optical line terminal device can generate an encrypted key and send a key to the optical network terminal device through a unicast channel between the optical line terminal device and the designated optical network terminal device, so that the optical network terminal device that obtains the key can The encrypted multicast message received through the multicast channel is decrypted.
  • the optical line terminal device carries the multicast information to the OMCI message to be sent to the optical network terminal device.
  • the optical line terminal device may set the multicast information in the OMCI message to be sent to the optical network terminal device, where the multicast information may include a multicast port identifier, where the multicast port identifier is used to reflect the OMCI message and the optical network.
  • the mapping relationship between the multicast ports of the terminal device may include a multicast port identifier, where the multicast port identifier is used to reflect the OMCI message and the optical network.
  • the multicast information may further include a packet type identifier to distinguish the service packet from the OMCI packet.
  • the multicast information can be carried to the OMCI message by extending the GEM frame or the XGEM frame.
  • optical line termination equipment can be GPON encapsulation (GEM, GPON Encapsulation) Method) encapsulates the OMCI message, that is, the OMCI message is encapsulated into the GEM frame.
  • GEM GPON Encapsulation
  • the frame structure of the GEM frame of the encapsulated OMCI packet is as shown in Table 1:
  • GEM frame header (Header) Payload Length Identifier ( PLI ) 12 bits, indicating the length of the GEM frame GEM port ID (GEM Port-ID) 12 bits, indicating the GEM port to which this OMCI message belongs.
  • Payload Type Identifier (PTI) 3 bits, indicating the type of this message fragment Frame header error control field (HEC) 13 bits, through which the GEM header is error detected and corrected GEM Payload (Payload) OMCI payload If it is a basic OMCI packet, the length is 48 bytes. If the extended OMCI packet length is not fixed, the range is 16 to 1980 bytes.
  • the optical line terminal device may carry the specific message content of the OMCI message in the GEM payload of the GEM frame, and carry the multicast port identifier in the “GEM Port Identity” field in the “GEM Frame Head”, the multicast The port identifier may indicate that the optical network terminal device that opens the corresponding multicast port receives the OMCI message.
  • the optical line terminal device may also set the "payload type identifier" field in the "GEM frame header" to a packet type identifier, and indicate whether the GEM frame encapsulation is an OMCI message or a service packet, and Type of OMCI packet or service packet.
  • the GEM supports fragment encapsulation.
  • the payload type identifier is 0x110, it indicates that the GEM frame encapsulates an OMCI packet, but not the last one; if the payload type identifier is 0x111, it indicates that it is OMCI. The message is the last one. If the payload type identifier is 0x000, it is represented as a service packet, but not the last one. If the payload type identifier is 0x001, it is a service packet and is the last one.
  • optical line termination equipment can be packaged in XG-PON (XGEM, XG-PON) Encapsulation Method) encapsulates the OMCI message, that is, encapsulates the OMCI message into the XGEM frame.
  • XGEM XG-PON
  • Encapsulation Method encapsulates the OMCI message, that is, encapsulates the OMCI message into the XGEM frame.
  • the frame structure of the XGEM frame encapsulated with the OMCI packet is as shown in Table 2:
  • XGEM frame header Payload Length Identification 14 bits, indicating the length of the XGEM frame Key Index 2 bits, indicating the key index to be selected for encryption
  • XGEM port ID (XGEM Port-ID) Indicates the XGEM port to which this OMCI packet belongs.
  • Reserved field Options ) 18 bits, reserved Last Fragment 1 bit, indicating whether this fragment is the last fragment Mixed error correction domain (HEC) Error detection and correction of XGEM headers through this field
  • XGEM Payload OMCI payload If it is a basic OMCI packet, the length is 48 bytes. If the extended OMCI packet length is not fixed, the range is 16 to 1980 bytes.
  • the optical line terminal device may carry the specific message content of the OMCI message in the GEM payload of the GEM frame, and carry the multicast port identifier in the XGEM port identifier field in the XGEM frame header, the multicast The port identifier may indicate that the optical network terminal device that opens the corresponding multicast port receives the OMCI message.
  • the optical line terminal device may also set the "reserved field" field in the "XGEM frame header" to a packet type identifier, which is used to indicate whether the GEM frame encapsulation is an OMCI message or a service packet, specifically If the reserved domain is 0x00001, it is an OMCI packet; if the reserved domain is 0x00000, it is a service packet.
  • a packet type identifier which is used to indicate whether the GEM frame encapsulation is an OMCI message or a service packet, specifically If the reserved domain is 0x00001, it is an OMCI packet; if the reserved domain is 0x00000, it is a service packet.
  • the optical line terminal device sends the OMCI message including the multicast information to the optical network terminal device by using the multicast channel.
  • the optical line terminal device can send the OMCI message including the multicast information to the optical network unit device through the optical distribution network, and the OMCI message is transmitted to the optical network terminal on the multicast channel.
  • the optical network terminal device can learn that the OMCI message needs to be received through the multicast information included in the OMCI message, and obtain the OMCI message from the multicast channel.
  • the optical line terminal device sets the multicast channel and sets the multicast information in the OMCI message, so that the same OMCI message sent by the optical line terminal device can be simultaneously received by multiple optical network terminal devices. It can greatly reduce the waste of downlink bandwidth resources and reduce the burden of optical line terminal equipment copying OMCI messages. At the same time, because the speed of light propagation is very fast, and the time delay of OMCI message not being copied will improve the real-time performance of the system and reduce the waste of time. Moreover, encrypting service packets and OMCI packets can effectively prevent business packets and OMCI packets from being illegally eavesdropped, ensuring the security of message transmission.
  • FIG. 3 is a flowchart of another embodiment of the OMCI message delivery method of the present application.
  • the OMCI message delivery method includes:
  • the optical network terminal device receives the configuration information sent by the optical line terminal device.
  • the optical line terminal device and each of its corresponding optical network terminal devices Before transmitting the configuration information, the optical line terminal device and each of its corresponding optical network terminal devices have respectively established a unicast channel similar to a point-to-point. After the optical line terminal sends the configuration information to the optical network terminal device, the optical network terminal device receives the configuration information through the unicast channel. For the specific content of the configuration information, refer to step S201 in the previous embodiment.
  • the optical network terminal device configures an open state of the local multicast port according to the configuration information to establish a multicast channel.
  • the optical network terminal device After receiving the configuration information, the optical network terminal device configures an open state of the local multicast port according to the configuration information to establish a multicast channel.
  • the optical network terminal device opens the multicast port of the local end. On the contrary, it is forbidden to open the local multicast port.
  • a multicast channel is formed between the optical line terminal device and the optical network terminal device of the open multicast port.
  • the multicast channel can be used for multicast service packets and OMCI messages at the same time, or OMCI packets can be multicasted separately, and the multicast port of the optical network terminal device in the same multicast channel is only received.
  • a service packet and an OMCI packet with the corresponding multicast port identifier can be used for multicast service packets and OMCI messages at the same time, or OMCI packets can be multicasted separately, and the multicast port of the optical network terminal device in the same multicast channel is only received.
  • the optical line terminal device can also set the multicast channel to encrypt the downlink service packet and the OMCI packet. For example, the optical line terminal device generates an encrypted key and sends the key to the designated optical network terminal device through the unicast channel. After receiving the key through the unicast channel, the optical network terminal device can use the key to decrypt the key. Encrypted multicast message received through the multicast channel.
  • the optical network terminal device acquires an OMCI message that includes multicast information from the multicast channel.
  • the optical line terminal device can provide the OMCI message to the optical network terminal device through the multicast channel, where the OMCI message can carry the multicast information including the multicast port identifier, and the optical network terminal The device may learn to receive the OMCI packet according to the multicast information, and obtain an OMCI packet from the multicast channel.
  • the same OMCI message sent by the optical line terminal device can be simultaneously received by multiple optical network terminal devices, which can greatly reduce the downlink.
  • the waste of bandwidth resources reduces the burden on the optical line terminal equipment to copy OMCI messages.
  • the speed of light propagation is very fast, and the time delay of OMCI message not being copied will improve the real-time performance of the system and reduce the waste of time.
  • encrypting service packets and OMCI packets can effectively prevent business packets and OMCI packets from being illegally eavesdropped, ensuring the security of message transmission.
  • FIG. 4 is a flowchart of still another embodiment of the OMCI message delivery method of the present application.
  • the OMCI message delivery method includes:
  • the optical network terminal device receives configuration information sent by the optical line terminal device.
  • the optical network terminal device configures an open state of the local multicast port according to the configuration information to establish a multicast channel.
  • Steps S401 and S402 are substantially the same as steps S301 and S302 of the previous embodiment. For details, refer to related descriptions of steps S301 and S302 of the previous embodiment, and details are not described herein again.
  • the optical network terminal device uses its multicast port to receive the packet sent by the optical line terminal device through the multicast channel.
  • the packet sent by the optical line terminal device through the multicast channel may include a service packet and an OMCI packet, or may include only an OMCI packet, and the optical line terminal device may encapsulate the packet into a GEM frame or an XGEM frame for transmission.
  • the packet may carry multicast information such as a multicast port identifier and a packet type identifier. For the specific packet format, refer to the description of the previous embodiment.
  • the optical network terminal device filters the packet received by the multicast port according to the multicast port identifier carried in the packet, and obtains a packet matching the multicast port identifier that is carried by the multicast port that is opened by the node.
  • the optical network terminal device After the optical line terminal device transmits the packet sent by the multicast channel to the multicast port of the optical network terminal device, the optical network terminal device uses the multicast port to filter the packet, if the packet carries more multicast information. If the broadcast port identifier matches the multicast port opened by the local node, the packet is pushed onto the stack. Otherwise, the packet is discarded. At this time, the packet obtained by the optical network terminal device may be an OMCI packet or an OMCI packet and a service packet.
  • the optical network terminal device identifies the service packet and the OMCI packet, and obtains the OMCI packet, according to the packet type identifier of the packet.
  • the multicast information sent by the optical line terminal device further includes a packet type identifier.
  • the optical network terminal device further parses the packet carried by the packet. And identifying the service packet and the OMCI packet according to the packet type identifier, so as to obtain the OMCI packet sent by the optical line terminal device.
  • step S405 is not required, that is, step S405 is optional.
  • the optical network terminal device responds to the OMCI message in a random delay manner.
  • the optical network terminal device After the optical network terminal device receives the OMCI message, if the optical line terminal device specifies that the optical network terminal device responds to the OMCI message, the optical network terminal device responds to the OMCI message in a random delay manner to prevent the optical network terminal device. A large number of responses to the OMCI message in a short period of time cause an impact on the optical line terminal device. Moreover, when the optical network terminal device responds to the OMCI message, it still responds through the unicast channel. In a preferred embodiment, the longest delay time is no more than 3 seconds.
  • an OMCI message exclusively has a multicast channel
  • the optical line terminal device can pass between the optical network terminal device and the optical network terminal device.
  • the unicast channel resends the configuration information for instructing the optical network terminal device to close the multicast port.
  • the optical network terminal device turns off the multicast port of the local end, that is, prohibits the opening of the local multicast port.
  • the impact on the optical line terminal device can be prevented, and when the optical network terminal device no longer receives the OMCI packet, the local multicast port is closed. It can flexibly manage multicast channels and improve the efficiency of the entire system.
  • encrypting service packets and OMCI packets can effectively prevent business packets and OMCI packets from being illegally eavesdropped, ensuring the security of message transmission.
  • FIG. 5 is a schematic structural diagram of an optical line terminal device according to an embodiment of the present application.
  • the optical line terminal device provided in this embodiment includes: a sending module 501, an information processing module 502, and a multicast module 503.
  • the sending module 501 is configured to send, by using a pre-established unicast channel, configuration information for instructing the optical network terminal device to perform multicast port open state configuration to the optical network terminal device.
  • the optical line terminal device before transmitting the configuration information, can establish a unicast channel similar to a point-to-point connection with each optical network terminal device corresponding thereto, and the sending module 501 can use the unicast channel to send configuration information to establish an optical network. Multicast channel between terminal devices. After the configuration information received by the optical network terminal device is determined, the multicast port of the local end is opened or the multicast port of the local end is prohibited from being opened according to the content of the configuration information, so that a multicast channel is established between the optical line terminal device and the optical network terminal device.
  • the information processing module 502 is configured to carry the multicast information to the OMCI message to be sent to the optical network terminal device.
  • the multicast information includes the multicast port identifier, and the multicast port identifier is used to reflect the mapping relationship between the OMCI packet and the multicast port of the optical network terminal device, and the service packet and the OMCI packet share the same multiple
  • the multicast information may further include a packet type identifier, which is used to indicate whether the packet sent by the optical line terminal device is an OMCI packet or a service packet, and an OMCI packet or a service packet type.
  • the multicast module 503 is configured to send, by using a multicast channel, an OMCI message that includes multicast information to the optical network terminal device.
  • the optical line terminal device sets the multicast channel and sets the multicast information in the OMCI message, so that the same OMCI message sent by the optical line terminal device can be simultaneously received by multiple optical network terminal devices. It can greatly reduce the waste of downlink bandwidth resources and reduce the burden of optical line terminal equipment copying OMCI messages. At the same time, because the speed of light propagation is very fast, and the time delay of OMCI message not being copied will improve the real-time performance of the system and reduce the waste of time.
  • FIG. 6 is a schematic structural diagram of an embodiment of an optical network terminal device according to the present application.
  • the optical network terminal device provided in this embodiment includes: a configuration information receiving module 601, a configuration module 602, and an OMCI message acquiring module 603.
  • the configuration information receiving module 601 is configured to receive, by using a pre-established unicast channel, configuration information that is sent by the optical line terminal device to instruct the optical network terminal device to perform the multicast port open state configuration. For example, before transmitting the configuration information, the optical line terminal device can establish a unicast channel similar to a point-to-point connection with each optical network terminal device corresponding thereto, and the optical line terminal device can send the optical network terminal device to the optical network terminal device through the unicast channel. The configuration information, whereby the configuration information receiving module 601 can receive the configuration information from the unicast channel.
  • the configuration module 602 is configured to configure an open state of the local multicast port according to the configuration information received by the configuration information receiving module 601 to establish a multicast channel. For example, the configuration module 602 can determine to open the local multicast port according to the content of the configuration information. Or prohibiting the opening of the local multicast port, so that the optical line terminal device and the optical network terminal device of the open multicast port can form an OMCI message (or simultaneously transmit service packets and OMCI messages). Broadcast channel.
  • the OMCI packet obtaining module 603 is configured to obtain, from the multicast channel, an OMCI packet that includes multicast information, where the multicast information includes a multicast port identifier, and the multicast port identifier is used to reflect the OMCI packet and the optical network terminal.
  • the mapping relationship between multicast ports of the device when the service packet and the OMCI packet share the same multicast channel, the multicast information may further include a packet type identifier, which is used to indicate whether the packet sent by the optical line terminal device is an OMCI packet or a service packet, and Type of OMCI packet or service packet.
  • the same OMCI message sent by the optical line terminal device can be simultaneously received by multiple optical network terminal devices, which can greatly reduce the downlink bandwidth.
  • the waste of resources reduces the burden on the optical line terminal equipment to copy OMCI messages.
  • the speed of light propagation is very fast, and the time delay of OMCI message not being copied will improve the real-time performance of the system and reduce the waste of time.
  • FIG. 7 is a schematic structural diagram of another embodiment of an optical network terminal device according to the present application.
  • the optical network terminal device provided in this embodiment includes: a configuration information receiving module 701, a configuration module 702, a multicast receiving module 707, a filtering module 703, an identifying module 704, and a delay response module 705.
  • the configuration information receiving module 701 is configured to receive, by using a pre-established unicast channel, configuration information that is sent by the optical line terminal device to instruct the optical network terminal device to perform multicast port open state configuration. For example, before transmitting the configuration information, the optical line terminal device can establish a unicast channel similar to a point-to-point connection with each optical network terminal device corresponding thereto, and the optical line terminal device can send configuration information to the optical network terminal device through the unicast channel. .
  • the configuration module 702 is configured to configure an open state of the local multicast port according to the configuration information received by the configuration information receiving module 701 to establish a multicast channel. For example, the configuration module 702 can determine to open the local multicast port according to the content of the configuration information. Or prohibiting the opening of the local multicast port, whereby the optical line terminal device and the optical network terminal device of the open multicast port can be configured to transmit the OMCI message.
  • a multicast channel (or a service packet and an OMCI packet), where the OMCI packet carries multicast information such as a multicast port identifier and a packet type identifier.
  • the multicast receiving module 707, the filtering module 703, and the identifying module 704 can form an OMCI packet acquiring module, which is used to obtain an OMCI packet sent by the optical line terminal device through the multicast channel.
  • the multicast receiving module 707 receives, by using the multicast port, the packet sent by the optical line terminal device by using the multicast channel.
  • the filtering module 703 is configured to filter, according to the broadcast port identifier carried in the packet, the packet received by the multicast port, and obtain the packet whose multicast port identifier matches the multicast port opened by the node.
  • the packet obtained by the multicast port filtering is an OMCI packet.
  • the filtered packet includes both the service packet and the OMCI packet.
  • the identification module 704 is configured to: according to the packet type identifier carried in the packet, the packet filtered by the filtering module 703 further identifies the service packet and the OMCI packet, respectively, to obtain the OMCI packet sent by the optical line terminal device. It should be understood that when the OMCI message is exclusive to a multicast channel, the packet filtered by the filtering module 703 is an OMCI message, so that no further packet identification is needed, that is, the identification module 704 is optional.
  • the delay response module 705 is configured to respond to the OMCI message in a random delay manner. Moreover, when the delay module 705 responds to the OMCI message, it still responds through the unicast channel. In a preferred embodiment, the longest delay time is no more than 3 seconds.
  • the configuration information receiving module 701 is further configured to: after receiving the receiving configuration information, the configuration module 702 may further disable opening the multicast port of the local end according to the configuration information.
  • the impact on the optical line terminal device can be prevented, and when the optical network terminal device no longer receives the OMCI packet, the local multicast port is closed. It can flexibly manage multicast channels and improve the efficiency of the entire system.
  • an embodiment of the present application further provides a passive optical network system, including: an optical line terminal device and multiple optical network terminal devices, where the optical line terminal device is connected to the optical distribution network through the optical distribution network.
  • the passive optical network system may refer to FIG. 1 and related descriptions.
  • the optical line terminal device and its corresponding optical network terminal device are respectively pre-established with a point-to-point unicast channel for transmitting configuration information.
  • the optical line terminal device is configured to send, by using a unicast channel, configuration information for instructing the optical network terminal device to configure its multicast port open state to establish a multicast channel to the optical network terminal device, and send the information to the optical network terminal device.
  • the multicast information such as the multicast port identifier, which is used to identify the mapping between the OMCI packet and the multicast port, is carried to the OMCI packet to be sent to the optical network terminal device, and further through the multicast channel.
  • the optical network terminal device sends the OMCI message including the multicast information.
  • the optical network terminal device is configured to: after receiving the configuration information through the unicast channel, configure an open state of the local multicast port according to the configuration information, thereby establishing a multicast channel with the optical line terminal, and acquiring the light through the multicast channel.
  • the multicast information carried by the packet sent by the optical line terminal device may further include a packet type identifier, where the optical network terminal device is After receiving the packet sent by the optical line terminal device, the information of the OMCI packet or the service packet, and the type of the OMCI packet or the service packet can be obtained according to the packet type identifier.
  • the optical network terminal device is further configured to: after obtaining the OMCI packet, respond to the OMCI packet in a random delay manner.
  • the optical line terminal device can also be used for the unicast channel between the optical network terminal device and the optical network terminal device. Re-transmitting configuration information indicating that the optical network terminal device turns off the multicast port, instructing the optical network terminal device to close its multicast port.
  • the optical network terminal device is further configured to receive the configuration information used to indicate that the multicast port is closed, and prohibit the opening of the local multicast port according to the configuration information.
  • a multicast channel is established between the optical line terminal device and the optical network terminal device, and multicast information is set in the OMCI message, so that the same OMCI message sent by the optical line terminal device can be multiple lights at the same time.
  • the network terminal device can greatly reduce the waste of downlink bandwidth resources and reduce the burden on the optical line terminal device to copy OMCI packets. At the same time, because the speed of light propagation is very fast, and the time delay of OMCI message not being copied will improve the real-time performance of the system and reduce the waste of time.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM, Read-Only) Memory, random access memory (RAM), disk or optical disk, and other media that can store program code.

Abstract

本申请公开了一种OMCI报文多播方法、系统及相应的设备。其中,所述方法包括:光线路终端设备发送配置信息至光网络终端设备,配置信息用于指示光网络终端设备配置本端多播端口的开放状态以建立多播通道;通过多播通道向光网络单元设备发送携带有多播信息的OMCI报文,多播信息包括多播端口标识,多播端口标识用于反映OMCI报文与多播端口之间的映射关系。

Description

光网络终端管理控制接口报文传递方法、系统及相应的设备
【技术领域】
本申请涉及光纤接入技术,尤其涉及一种光网络终端管理控制接口报文传递方法、系统及设备。
【背景技术】
接入网是指骨干网络到用户终端之间的网络,随着用户对带宽需求的不断增长,传统的铜线宽带接入系统越来越面临带宽瓶颈。与此同时,带宽容量巨大的光纤接入技术日益成熟,应用成本逐年下降,光纤接入网,比如无源光网络(PON,Passive Optical Netwotk),逐渐成为下一代宽带接入网的有力竞争者。
传统的PON系统主要包括:光线路终端设备(OLT,Optical Line Terminal)、光分配网络 (ODN,Optical Distribution Network)以及光网络终端设备(ONT,Optical Network Terminal)。其中,OLT通过ODN以点到多点的方式与多个ONT连接。
为了实现对ONT的远程管理和维护,必须在OLT和ONT之间进行操作、管理和维护(OAM,Operations,Administation,and Maintenance)消息的传递。。
通常,GPON(Gigabit-capable Passive Optical Network)系统和XG-PON(10-Gigabit-capable Passive Optical Network)系统主要采用光网络终端管理控制接口(OMCI, ONT Management and Control Interface)来传递OAM消息。但是,在现有的GPON系统和XG-PON系统中,光网络终端管理控制接口报文(简称OMCI报文)的下行传播主要是采用单播的方式,即一份OMCI报文只能发送给一个ONT。如果相同的OMCI报文需要发送给多个ONT时,OLT必须将OMCI报文复制成多份,并分别给每个ONT发送一份OMCI报文。随着需要发送ONT数量的增加,下行带宽资源将会被严重浪费。
【发明内容】
为了解决以上问题,本申请提出了一种OMCI报文传递方法、系统及设备。
本申请的一方面提供了一种OMCI报文传递方法,包括:光线路终端设备发送配置信息至光网络终端设备,所述配置信息用于指示所述光网络终端设备根据所述配置信息配置本端多播端口的开放状态以建立多播通道;通过所述多播通道向所述光网络单元设备发送携带有多播信息的OMCI报文,所述多播信息包括多播端口标识,所述多播端口标识用于反映所述OMCI报文与多播端口之间的映射关系。
本申请还提供了另一种OMCI报文传递方法,包括:光网络终端设备接收光线路终端设备发送的配置信息;根据所述配置信息配置本端多播端口的开放状态以建立多播通道;从所述多播通道获取所述光线路终端设备发送的携带有多播信息的OMCI报文,其中,所述多播信息包括多播端口标识,所述多播端口标识用于反映OMCI报文与多播端口之间的映射关系。
本申请的另一方面提供了一种光线路终端设备,包括:发送模块,用于发送配置信息至光网络终端设备,所述配置信息用于指示所述光网络终端设备配置本端多播端口的开放状态以建立多播通道;信息处理模块,用于将多播信息承载到OMCI报文,其中,所述多播信息包括多播端口标识,所述多播端口标识用于反映OMCI报文与多播端口之间的映射关系;多播模块,用于通过所述多播通道向所述光网络终端设备发送包含所述多播信息的OMCI报文。
本申请还提供了一种光网络终端设备,包括:配置信息接收模块,用于接收光线路终端设备发送的配置信息;配置模块,用于根据所述配置信息配置本端多播端口的开放状态以建立多播通道;OMCI报文获取模块,用于从所述多播通道获取所述光线路终端设备发送的携带有多播信息的OMCI报文,其中,所述多播信息包括多播端口标识,所述多播端口标识用于反映OMCI报文与多播端口之间的映射关系。
本申请的再一方面提供了一种无源光网络系统,包括如上所述的光线路终端设备和多个光网络终端设备,所述光线路终端设备通过光分配网络连接到所述多个光网络终端设备。。
本申请提供的方案中,通过在光线路终端设备和光网络终端设备之间建立多播通道,并在OMCI报文中设置多播信息,使得OLT所发送的同一份OMCI报文可以同时被多个ONT接收,能够大大减少对下行带宽资源的浪费,减轻OLT复制OMCI报文的负担。同时,由于光传播的速度十分快,而OMCI报文没有复制的时间延迟将能够提高系统的实时性,减少时间的浪费。
【附图说明】
图1是本申请PON系统一实施例的结构示意图;
图2是本申请OMCI报文传递方法一实施例的流程图;
图3是本申请OMCI报文传递方法另一实施例的流程图;
图4是本申请OMCI接口报文传递方法再一实施例的流程图;
图5是本申请光线路终端设备一实施例的结构示意图;
图6是本申请光网络终端设备一实施例的结构示意图;
图7是本申请光网络终端设备另一实施例的结构示意图。
【具体实施方式】
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透切理解本申请。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
下面结合附图和实施例进行详细说明。其中,文中所陈述的多播包括广播和组播。请参阅图1,其为本申请提供的OMCI报文传递方法可以适用的无源光网络(PON)系统的结构示意图,该无源光网络系统100可以包括至少一个光线路终端(OLT)设备110、多个光网络终端(ONT)设备120和一个光分配网络(ODN)130。所述光线路终端设备110通过所述光分配网络130以点到多点的方式连接到所述多个光网络终端设备120。
其中,从所述光线路终端设备110到所述光网络终端设备120的方向定义为下行方向,而从所述光网络终端设备120到所述光线路终端设备110的方向为上行方向。在下行方向,由所述光线路终端设备110按照时分复用(TDM,Time Division Multiplexing)方式将下行数据流广播到所有光网络终端设备120,各个光网络终端设备120只接收带有自身标识的数据。在上行方向,由于各个光网络终端设备120共享光传输通道,为了保证各个光网络终端设备120的上行数据不发生冲突,所述无源光网络系统100在上行方向采用时分多址(TDMA,Time Division Multiple Access)方式,即由所述光线路终端设备110为每个光网络终端设备120分配时隙,各个光网络终端设备120严格按照所述光线路终端设备110分配的时隙发送上行数据。
所述无源光网络系统100可以是不需要任何有源器件来实现所述光线路终端设备110与所述光网络终端设备120之间的数据分发的通信网络,比如,在具体实施例中,所述光线路终端设备110与所述光网络终端设备120之间的数据分发可以通过所述光分配网络130中的无源光器件(比如分光器)来实现。并且,所述无源光网络系统100可以为ITU-T G.984系列标准定义的GPON系统,或者ITU-T G.987系列标准定义的XG-PON标准,或者其他采用光网络终端管理控制接口(OMCI)通道来传输OAM消息的PON系统,上述标准定义的各种无源光网络系统的全部内容通过引用结合在本申请文件中。
所述光线路终端设备110通常位于中心位置(例如中心局Central Office,CO),其可以统一管理所述多个光网络终端设备120。所述光线路终端设备110可以充当所述光网络终端设备120与上层网络(图未示)之间的媒介,将从所述上层网络接收到的数据作为下行数据并通过所述光分配网络130转发到所述光网络终端设备120,以及将从所述光网络终端设备120接收到的上行数据转发到所述上层网络。
所述光网络终端设备120可以分布式地设置在用户侧位置(比如用户驻地)。所述光网络终端设备120可以为用于与所述光线路终端设备110和用户终端进行通信的网络设备,具体而言,所述光网络终端设备120可以充当所述光线路终端设备110与所述用户终端之间的媒介,例如,所述光网络终端设备120可以将从所述光线路终端设备110接收到的下行数据转发到所述用户,以及将从所述用户终端接收到的数据作为上行数据通过所述光分配网络130转发到所述光线路终端设备110。应当理解,所述光网络终端设备120的结构与光网络单元(Optical Network Unit, ONU)设备相近,因此在本申请文件提供的方案中,光网络终端设备和光网络单元设备之间可以互换。
所述光分配网络130可以是一个数据分发系统,其可以包括光纤、光耦合器、光分路器和/或其他设备。在一个实施例中,所述光纤、光耦合器、光分路器和/或其他设备可以是无源光器件,具体来说,所述光纤、光耦合器、光分路器和/或其他设备可以是在所述光线路终端设备110和所述光网络终端设备120之间分发数据信号是不需要电源支持的器件。另外,在其他实施例中,该光分配网络130还可以包括一个或多个处理设备,例如,光放大器或者中继设备(Relay device)。所述光分配网络130具体可以采用两级分光的方式从所述光线路终端 110延伸到所述多个光网络终端设备120,但也可以配置成其他任何点到多点(如单级分光或者多级分光)的结构。
参阅图2,图2是本申请光网络终端管理控制接口(OMCI)报文传递方法一实施例的流程图。所述OMCI报文传递方法包括:
S201:光线路终端设备发送配置信息至光网络终端设备。
在发送配置信息前,光线路终端设备与其对应的每个光网络终端设备分别建立类似于点对点的单播通道。光线路终端设备通过单播通道发送配置信息至光网络终端设备,其中光线路终端设备发送的配置信息可以是用于指示光网络终端设备进行多播端口开放状态配置的指示信息,光网络终端设备可以根据配置信息配置本端多播端口的开放状态,以在光线路终端设备和光网络终端设备之间建立多播通道。其中,当光网络终端设备接收到的配置信息是要求本端建立多播通道时,光网络终端设备开放本端的多播端口;反之,则禁止开放本端的多播端口。
在光网络终端设备完成本端多播端口开放状态的配置之后,光线路终端设备与开放多播端口的光网络终端设备之间形成多播通道,具体地,如果连接到光线路终端设备的同一个PON端口的光网络终端设备中一部分开放多播端口,则光线路终端设备与连接到此部分光网络终端设备之间形成组播通道,即是此部分光网络终端设备形成一个组播组;特别地,如果连接到光线路终端设备的同一个PON端口的所有光网络终端设备都开放多播端口,则光线路终端设备与连接到该PON端口的所有光网络终端设备之间形成广播通道。
值得注意的是,多播通道可同时用于多播业务报文及OMCI报文,也可以单独多播OMCI报文,而且,同一多播通道中的光网络终端设备的多播端口只接收具有相应多播端口标识的业务报文及OMCI报文。
光线路终端设备还可以对多播通道进行设置,以实现对下行的业务报文及OMCI报文进行加密。比如,光线路终端设备可以生成加密的密钥,并通过其与指定光网络终端设备之间的单播通道将密钥发送给该光网络终端设备,以使获得密钥的光网络终端设备可解密通过多播通道接收到的被加密的多播报文。
S202:光线路终端设备将多播信息承载到待发送给光网络终端设备的OMCI报文。
光线路终端设备可以在待发送给光网络终端设备的OMCI报文中设置多播信息,其中,多播信息可以包括多播端口标识,所述多播端口标识用于反映OMCI报文与光网络终端设备的多播端口之间的映射关系。
在一种实施例中,当业务报文和OMCI报文共用同一个多播通道时,多播信息还可以包括报文类型标识,以区分业务报文和OMCI报文。对于GPON系统和XG-PON系统可通过扩展GEM帧或XGEM帧的方式实现将多播信息承载到OMCI报文。
对于GPON系统,光线路终端设备可以采用GPON封装方式(GEM,GPON Encapsulation Method)来封装OMCI报文,即OMCI报文封装到GEM帧中。所述封装OMCI报文的GEM帧的帧结构如表1所示:
表1
域名称 子域名称 描述
GEM 帧头 (Header) 净荷长度标识( PLI ) 12 比特,表示 GEM 帧的长度
GEM 端口标识( GEM Port-ID ) 12 比特,表示此 OMCI 报文所属的 GEM 端口
净荷类型标识( PTI ) 3 比特,表示此报文分片的类型
帧头错误控制域( HEC ) 13 比特,通过此域来对 GEM 帧头进行错误检测和纠错
GEM 净荷 (Payload) OMCI 净荷 如果是基本 OMCI 报文,长度为 48 字节,如果是扩展 OMCI 报文长度不固定,范围为 16 至 1980 字节
其中,光线路终端设备可以将OMCI消息的具体消息内容承载在GEM帧的GEM净荷中,并将多播端口标识承载在“GEM帧头”中的“GEM端口标识”字段,所述多播端口标识可以指示开放相应的多播端口的光网络终端设备接收所述OMCI消息。另一方面,光线路终端设备还可以将“GEM帧头”中的“净荷类型标识”字段设置为报文类型标识,用来指示所述GEM帧封装是OMCI报文还是业务报文,以及OMCI报文或业务报文的类型。具体地,GEM支持分片封装,如果“净荷类型标识”为0x110,表示为所述GEM帧封装的是OMCI报文,但非最后一片;如果“净荷类型标识”为0x111,表示为OMCI报文,而且为最后一片;如果“净荷类型标识”为0x000,表示为业务报文,但非最后一片;如果“净荷类型标识”为0x001,表示为业务报文,而且为最后一片。
对于XG-PON系统,光线路终端设备可以采用XG-PON封装方式(XGEM,XG-PON Encapsulation Method)来封装OMCI报文,即将OMCI报文封装到XGEM帧中。所述封装有OMCI报文的XGEM帧的帧结构如表2所示:
表2
域名称 子域名称 描述
XGEM 帧头 净荷长度标识 (PLI) 14 比特,表示 XGEM 帧的长度
密钥索引( Key Index ) 2 比特,表示加密需要选择的密钥索引
XGEM 端口标识 (XGEM Port-ID) 表示此 OMCI 报文所属的 XGEM 端口
预留域( Options ) 18 比特,预留
最后一分片标识( Last Fragment ) 1 比特,表示此分片是否是最后一个分片
混合纠错域 (HEC) 通过此域来对 XGEM 头进行错误检测和纠错
XGEM 净荷 (Payload) OMCI 净荷 如果是基本 OMCI 报文,长度为 48 字节,如果是扩展 OMCI 报文长度不固定,范围为 16 至 1980 字节
其中,光线路终端设备可以将OMCI消息的具体消息内容承载在GEM帧的GEM净荷中,并将多播端口标识承载在“XGEM帧头”中的“XGEM端口标识”字段,所述多播端口标识可以指示开放相应的多播端口的光网络终端设备接收所述OMCI消息。另一方面,光线路终端设备还可以将“XGEM帧头”中的“预留域”字段设置为报文类型标识,用来指示所述GEM帧封装是OMCI报文还是业务报文,具体地,如果“预留域”为0x00001,表示为OMCI报文;如果“预留域”为0x00000,表示为业务报文。
S203:光线路终端设备通过多播通道向光网络终端设备发送包含多播信息的OMCI报文。
在将多播信息承载到OMCI报文之后,光线路终端设备可以通过光分配网络向光网络单元设备发送包含多播信息的OMCI报文,OMCI报文在传输到多播通道上的光网络终端设备之后,光网络终端设备可以通过包含在OMCI报文的多播信息获知需要接收所述OMCI报文,并从所述多播通道获得OMCI报文。
在本实施例中,光线路终端设备通过建立多播通道,并在OMCI报文中设置多播信息,使得光线路终端设备所发送的同一份OMCI报文可以同时被多个光网络终端设备接收,能够大大减少对下行带宽资源的浪费,减轻光线路终端设备复制OMCI报文的负担。同时,由于光传播的速度十分快,而OMCI报文没有复制的时间延迟将能够提高系统的实时性,减少时间的浪费。而且,对业务报文及OMCI报文进行加密,可以有效预防业务报文及OMCI报文被非法窃听,保证了报文传送的安全。
参阅图3,图3是本申请OMCI报文传递方法另一实施例的流程图。所述OMCI报文传递方法包括:
S301:光网络终端设备接收光线路终端设备发送的配置信息。
在发送配置信息前,光线路终端设备与其对应的每个光网络终端设备分别已经建立了类似于点对点的单播通道。在光线路终端将配置信息发送给光网络终端设备之后,光网络终端设备通过单播通道接收该配置信息,所述配置信息的具体内容可以参照如前一实施例的步骤S201所述。
S302:光网络终端设备根据配置信息配置本端多播端口的开放状态以建立多播通道。
光网络终端设备接收到配置信息后,根据配置信息配置本端多播端口的开放状态以建立多播通道。其中,当光网络终端设备接收到的配置信息是要求本端建立多播通道时,光网络终端设备开放本端的多播端口。反之,则禁止开放本端的多播端口。在光网络终端设备完成本端多播端口开放状态的配置之后,光线路终端设备与开放多播端口的光网络终端设备之间形成多播通道。
值得注意的是,多播通道可同时用于多播业务报文及OMCI报文,也可以单独多播OMCI报文,而且,同一多播通道中的光网络终端设备的多播端口只接收具有相应多播端口标识的业务报文及OMCI报文。
光线路终端设备还可以对多播通道进行设置,以实现对下行的业务报文及OMCI报文进行加密。比如,光线路终端设备生成加密的密钥,并通过单播通道将密钥发送给指定的光网络终端设备,光网络终端设备接收通过单播通道接收到密钥之后,可以利用该密钥解密通过多播通道接收到的被加密的多播报文。
S303:光网络终端设备从多播通道获取包含多播信息的OMCI报文。
在配置好本端的多播端口之后,光线路终端设备可以通过多播通道将OMCI报文提供给光网络终端设备,其中OMCI报文可以携带有包括多播端口标识的多播信息,光网络终端设备可以根据多播信息获知需要接收该OMCI报文,并从所述多播通道获取OMCI报文。
本实施例的通过建立多播通道,并在OMCI报文中设置多播信息,使得光线路终端设备所发送的同一份OMCI报文可以同时被多个光网络终端设备接收,能够大大减少对下行带宽资源的浪费,减轻光线路终端设备复制OMCI报文的负担。同时,由于光传播的速度十分快,而OMCI报文没有复制的时间延迟将能够提高系统的实时性,减少时间的浪费。
而且,对业务报文及OMCI报文进行加密,可以有效预防业务报文及OMCI报文被非法窃听,保证了报文传送的安全。
参阅图4,图4是本申请OMCI报文传递方法再一实施例的流程图。所述OMCI报文传递方法包括:
S401:光网络终端设备接收光线路终端设备发送的配置信息。
S402:光网络终端设备根据配置信息配置本端多播端口的开放状态以建立多播通道。
步骤S401和S402与前一实施例的步骤S301和S302基本相同,具体可以参阅前一实施例的步骤S301和S302的相关描述,此处不再赘述。
S403:光网络终端设备利用其多播端口接收光线路终端设备通过多播通道发送的报文。
光线路终端设备通过多播通道发送的报文可以包括业务报文和OMCI报文,也可以仅包括OMCI报文,并且,光线路终端设备可以将报文可以封装到GEM帧或者XGEM帧进行传送,且该报文可以携带有如多播端口标识和报文类型标识等多播信息,具体报文格式可以参照前面实施例的描述。
S404:光网络终端设备根据报文携带的多播端口标识对多播端口接收到的报文进行过滤,得到携带的多播端口标识与本节点所开放的多播端口相匹配的报文。
光线路终端设备通过多播通道发送的报文传输到光网络终端设备的多播端口之后,光网络终端设备利用其多播端口对报文进行过滤,如果报文携带的多播信息中的多播端口标识与本节点所开放的多播端口相匹配,则将此报文入栈,反之,则将此报文丢弃。此时,光网络终端设备获得的报文可以是OMCI报文,或者同时包括OMCI报文和业务报文。
S405:光网络终端设备根据报文携带的报文类型标识从过滤得到的报文分别识别出业务报文和OMCI报文,并获取OMCI报文。
在一种实施例中,光线路终端设备发送的多播信息还包括报文类型标识,当业务报文和OMCI报文共用同一个多播通道时,光网络终端设备进一步解析报文携带的报文类型标识,并根据报文类型标识分别识别出业务报文和OMCI报文,从而获得所述光线路终端设备发送的OMCI报文。
值得注意的是,当OMCI报文独享一个多播通道时,多播端口过滤得到的报文即为OMCI报文,此时便无需执行步骤S405,即步骤S405是可选的。
406:光网络终端设备以随机延时的方式对OMCI报文进行回应。
光网络终端设备接收到OMCI报文后,若光线路终端设备指定光网络终端设备回应OMCI报文,则光网络终端设备以随机延时的方式对OMCI报文进行回应,以防止光网络终端设备在短时间内大量回应OMCI报文造成对光线路终端设备的冲击,而且,光网络终端设备回应OMCI报文时,依然通过单播通道进行回应。在优选的实施方式中,最长的延时时间不过超过3秒。
值得注意的是,当OMCI报文独享多播通道时,如果多播通道中的某个光网络终端设备不再接收OMCI报文,光线路终端设备可以通过其与该光网络终端设备之间的单播通道重新发送用于指示该光网络终端设备关闭多播端口的配置信息,光网络终端设备收到配置信息后,关闭本端的多播端口,即禁止开放本端的多播端口。
本实施例通过随机设置光网络终端设备对OMCI报文回复的时间,能够防止对光线路终端设备的冲击,并且,当某个光网络终端设备不再接收OMCI报文,关闭本端的多播端口,能够灵活管理多播通道,提高整个系统的使用效率。
而且,对业务报文及OMCI报文进行加密,可以有效预防业务报文及OMCI报文被非法窃听,保证了报文传送的安全。
参阅图5,图5是本申请光线路终端设备一实施例的结构示意图。本实施例提供的光线路终端设备包括:发送模块501、信息处理模块502以及多播模块503。
发送模块501,用于通过预先建立的单播通道发送用于指示光网络终端设备进行多播端口开放状态配置的配置信息至光网络终端设备。
比如,在发送配置信息前,光线路终端设备可以与其所对应的每个光网络终端设备分别建立类似于点对点的单播通道,发送模块501可以利用单播通道发送配置信息,以建立与光网络终端设备之间的多播通道。光网络终端设备接收到的配置信息后,根据配置信息的内容决定开放本端的多播端口或禁止开放本端的多播端口,从而在光线路终端设备和光网络终端设备之间建立多播通道。
信息处理模块502,用于将多播信息承载到待发送给光网络终端设备的OMCI报文。
其中,多播信息包括多播端口标识,多播端口标识用于反映OMCI报文与光网络终端设备的多播端口之间的映射关系,而且,当业务报文和OMCI报文共用同一个多播通道时,多播信息还可以包括报文类型标识,用于指示光线路终端设备发送的报文是OMCI报文还是业务报文,以及OMCI报文或业务报文的类型。
多播模块503,用于通过多播通道向光网络终端设备发送包含多播信息的OMCI报文。
在本实施例中,光线路终端设备通过建立多播通道,并在OMCI报文中设置多播信息,使得光线路终端设备所发送的同一份OMCI报文可以同时被多个光网络终端设备接收,能够大大减少对下行带宽资源的浪费,减轻光线路终端设备复制OMCI报文的负担。同时,由于光传播的速度十分快,而OMCI报文没有复制的时间延迟将能够提高系统的实时性,减少时间的浪费。
参阅图6,图6是本申请光网络终端设备一实施例的结构示意图。本实施例提供的光网络终端设备包括:配置信息接收模块601、配置模块602以及OMCI报文获取模块603。
配置信息接收模块601,用于通过预先建立的单播通道接收光线路终端设备发送的用于指示光网络终端设备进行多播端口开放状态配置的配置信息。比如,在发送配置信息前,光线路终端设备可以与其对应的每个光网络终端设备分别建立了类似于点对点的单播通道,并且,光线路终端设备可以通过单播通道向光网络终端设备发送配置信息,由此,配置信息接收模块601可以从单播通道接收到配置信息。
配置模块602,用于根据配置信息接收模块601接收到的配置信息配置本端多播端口的开放状态以建立多播通道,比如,配置模块602可以根据配置信息的内容决定开放本端的多播端口或禁止开放本端的多播端口,由此,光线路终端设备与开放多播端口的光网络终端设备之间形成可以用来传输OMCI报文(或同时传输业务报文和OMCI报文)的多播通道。
OMCI报文获取模块603,用于从所述多播通道获取包含多播信息的OMCI报文,其中,多播信息包括多播端口标识,多播端口标识用于反映OMCI报文与光网络终端设备的多播端口之间的映射关系。而且,当业务报文和OMCI报文共用同一个多播通道时,多播信息还可以包括报文类型标识,用于指示光线路终端设备发送的报文是OMCI报文还是业务报文,以及OMCI报文或业务报文的类型。
本实施例通过建立多播通道,并在OMCI报文中设置多播信息,使得光线路终端设备所发送的同一份OMCI报文可以同时被多个光网络终端设备接收,能够大大减少对下行带宽资源的浪费,减轻光线路终端设备复制OMCI报文的负担。同时,由于光传播的速度十分快,而OMCI报文没有复制的时间延迟将能够提高系统的实时性,减少时间的浪费。
参阅图7,图7是本申请光网络终端设备另一实施例的结构示意图。本实施例提供的光网络终端设备包括:配置信息接收模块701、配置模块702、多播接收模块707、过滤模块703、识别模块704和延时回应模块705。
配置信息接收模块701,用于通过预先建立的单播通道接收光线路终端设备发送的用于指示光网络终端设备进行多播端口开放状态配置的配置信息。比如,在发送配置信息前,光线路终端设备可以与其所对应的每个光网络终端设备分别建立类似于点对点的单播通道,光线路终端设备可以通过单播通道向光网络终端设备发送配置信息。
配置模块702,用于根据配置信息接收模块701接收到的配置信息配置本端多播端口的开放状态以建立多播通道,比如,配置模块702可以根据配置信息的内容决定开放本端的多播端口或禁止开放本端的多播端口,由此,光线路终端设备与开放多播端口的光网络终端设备之间形成可以用来传输OMCI报文 (或同时传输业务报文和OMCI报文)的多播通道,其中OMCI报文可以携带有如多播端口标识和报文类型标识等多播信息。
在本实施例中,多播接收模块707、过滤模块703和识别模块704可以构成OMCI报文获取模块,用于获取光线路终端设备通过多播通道发送的OMCI报文。
具体而言,多播接收模块707,利用多播端口接收所述光线路终端设备通过所述多播通道发送的报文;
过滤模块703,用于根据报文携带的播端口标识,对多播端口接收到的报文进行过滤,得到携带的多播端口标识与本节点所开放的多播端口相匹配的报文。当OMCI报文独享一个多播通道时,多播端口过滤得到的报文即为OMCI报文。可替代地,当业务报文和OMCI报文共用同一个多播通道时,过滤得到的报文便同时包括业务报文和OMCI报文。
识别模块704,用于根据报文携带的报文类型标识,从过滤模块703过滤得到的报文进一步分别识别业务报文和OMCI报文,从而获得光线路终端设备发送的OMCI报文。应当理解,当OMCI报文独享一个多播通道时,过滤模块703过滤得到的报文便是OMCI报文,因此无需进一步进行报文识别,即识别模块704是可选的。
延时回应模块705,用于以随机延时的方式对OMCI报文进行回应。而且,延时模块705回应OMCI报文时,依然通过单播通道进行回应。在优选的实施方式中,最长的延时时间不过超过3秒。
可选地,当OMCI报文独享多播通道时,如果多播通道中的某个光网络终端设备不再接收OMCI报文,比如完成相关OMCI报文的接收,光线路终端设备可以通过其与该光网络终端设备之间的单播通道重新发送用于指示该光网络终端设备关闭多播端口的配置信息。相对应的,配置信息接收模块701还可以用于接收所述接收配置信息后,且配置模块702还可以根据所述配置信息,禁止开放本端的多播端口。
本实施例通过随机设置光网络终端设备对OMCI报文回复的时间,能够防止对光线路终端设备的冲击,并且,当某个光网络终端设备不再接收OMCI报文,关闭本端的多播端口,能够灵活管理多播通道,提高整个系统的使用效率。
基于上述OMCI报文传递方法及装置,本申请一实施例还提供一种无源光网络系统,包括:光线路终端设备和多个光网络终端设备,其中光线路终端设备通过光分配网络连接到所述多个光网络终端设备,所述无源光网络系统的具体网络结构可以参见图1及相关描述。光线路终端设备与其对应的光网络终端设备分别预先建立有类似于点对点的单播通道,用来传输配置信息。
光线路终端设备,用于通过单播通道发送用于指示光网络终端设备配置其多播端口开放状态以建立多播通道的配置信息给光网络终端设备,并在需要向光网络终端设备下发OMCI报文时,将用于标识OMCI报文与多播端口之间映射关系的多播端口标识等多播信息承载到待发送给光网络终端设备的OMCI报文,并且进一步通过多播通道向光网络终端设备发送该包含多播信息的OMCI报文。
光网络终端设备,用于在通过单播通道接收到配置信息后,根据配置信息配置本端多播端口的开放状态,从而与光线路终端之间建立多播通道,并通过多播通道获取光线路终端发送的OMCI报文。
在一种实施例中,当业务报文和OMCI报文共用同一个多播通道时,光线路终端设备发送的报文所承载的多播信息还可以包括报文类型标识,光网络终端设备在接收到光线路终端设备发送的报文之后,可以根据报文类型标识获知报文是OMCI报文还是业务报文,以及OMCI报文或业务报文的类型等信息。
可选地,光网络终端设备还可以用于获取到OMCI报文之后,以随机延时的方式对OMCI报文进行回应。另一方面,当OMCI报文独享多播通道时,如果光网络终端设备不需要再接收OMCI报文,光线路终端设备还可以用于通过其与该光网络终端设备之间的单播通道重新发送用于指示该光网络终端设备关闭多播端口的配置信息,指示该光网络终端设备关闭其多播端口。相对应的,光网络终端设备还可以用于接收该用于指示关闭多播端口的配置信息,并根据所述配置信息,禁止开放本端的多播端口。
本实施例通过在光线路终端设备和光网络终端设备之间建立多播通道,并在OMCI报文中设置多播信息,使得光线路终端设备所发送的同一份OMCI报文可以同时被多个光网络终端设备接收,能够大大减少对下行带宽资源的浪费,减轻光线路终端设备复制OMCI报文的负担。同时,由于光传播的速度十分快,而OMCI报文没有复制的时间延迟将能够提高系统的实时性,减少时间的浪费。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种光网络终端管理控制接口OMCI报文传递方法,其特征在于,包括:
    光线路终端设备发送配置信息至光网络终端设备,所述配置信息用于指示所述光网络终端设备配置本端多播端口的开放状态以建立多播通道;
    通过所述多播通道向所述光网络单元设备发送携带有多播信息的OMCI报文,所述多播信息包括多播端口标识,所述多播端口标识用于反映所述OMCI报文与多播端口之间的映射关系。
  2. 根据权利要求1所述的方法,其特征在于,所述OMCI报文与业务报文共用所述多播通道,且所述多播信息还包括报文类型标识,所述报文类型标识用于指示所述光线路终端设备通过所述多播通道发送的报文是OMCI报文还是业务报文。
  3. 根据权利要求2所述的方法,其特征在于,所述OMCI报文被封装到GEM帧,所述GEM帧包括帧头和净荷,所述帧头包括GEM端口标识字段和净荷类型标识字段,所述GEM端口标识字段用于承载所述OMCI消息携带的多播端口标识,所述净荷类型标识字段用于承载所述OMCI消息携带的所述报文类型标识,所述GEM帧的净荷用于承载所述OMCI消息的内容。
  4. 根据权利要求2所述的方法,其特征在于,所述OMCI报文被封装到XGEM帧,所述XGEM帧包括XGEM端口标识字段和预留域字段,所述XGEM端口标识字段用于承载所述OMCI消息携带的多播端口标识,所述预留域字段用于承载所述OMCI消息携带的所述报文类型标识。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述配置信息是通过所述光线路终端设备和所述光网络终端设备之间预先建立的单播通道传输给所述光网络终端设备。
  6. 一种光网络终端管理控制接口OMCI报文传递方法,其特征在于,包括:
    光网络终端设备接收光线路终端设备发送的配置信息;
    根据所述配置信息配置本端多播端口的开放状态以建立多播通道;
    从所述多播通道获取所述光线路终端设备发送的携带有多播信息的OMCI报文,其中,所述多播信息包括多播端口标识,所述多播端口标识用于反映OMCI报文与多播端口之间的映射关系。
  7. 根据权利要求6所述的方法,其特征在于,所述OMCI报文与业务报文共用所述多播通道时,所述多播信息还包括报文类型标识,所述报文类型标识用于指示光线路终端设备通过所述多播通道发送的报文是OMCI报文还是业务报文。
  8. 根据权利要求7所述的方法,其特征在于,所述从多播通道获取所述光线路终端设备发送的携带有多播信息的OMCI报文包括:
    所述光网络终端设备利用其多播端口接收所述光线路终端设备通过所述多播通道发送的报文;
    根据所述报文携带的多播端口标识对所述多播端口接收到的报文进行过滤,得到携带的多播端口标识与本节点所开放的多播端口相匹配的报文;
    根据所述报文携带的报文类型标识,从过滤得到的报文分别识别出业务报文和OMCI报文,并获取所述OMCI报文。
  9. 根据权利要求6所述的方法,其特征在于,还包括:
    在获得所述OMCI报文之后,根据所述光线路终端设备的指定,以随机延时的方式对所述OMCI报文进行回应。
  10. 根据权利要求9所述的方法,其特征在于,所述OMCI报文独享所述多播通道,且所述方法还包括,所述光网络终端设备在不再接收OMCI报文时,根据所述光线路终端的指示,关闭所述多播端口。
  11. 一种光线路终端设备,其特征在于,包括:
    发送模块,用于发送配置信息至光网络终端设备,所述配置信息用于指示所述光网络终端设备配置本端多播端口的开放状态以建立多播通道;
    信息处理模块,用于将多播信息承载到OMCI报文,其中,所述多播信息包括多播端口标识,所述多播端口标识用于反映OMCI报文与多播端口之间的映射关系;
    多播模块,用于通过所述多播通道向所述光网络终端设备发送包含所述多播信息的OMCI报文。
  12. 根据权利要求11所述的设备,其特征在于,所述OMCI报文与业务报文共用所述多播通道,且所述多播信息还包括报文类型标识,所述报文类型标识用于指示所述光线路终端设备通过所述多播通道发送的报文是OMCI报文还是业务报文。
  13. 根据权利要求12所述的设备,其特征在于,所述OMCI报文被封装到GEM帧,所述GEM帧包括帧头和净荷,所述帧头包括GEM端口标识字段和净荷类型标识字段,所述GEM端口标识字段用于承载所述OMCI消息携带的多播端口标识,所述净荷类型标识字段用于承载所述OMCI消息携带的所述报文类型标识,所述GEM帧的净荷用于承载所述OMCI消息的内容。
  14. 根据权利要求12所述的设备,其特征在于,所述OMCI报文被封装到XGEM帧,所述XGEM帧包括XGEM端口标识字段和预留域字段,所述XGEM端口标识字段用于承载所述OMCI消息携带的多播端口标识,所述预留域字段用于承载所述OMCI消息携带的所述报文类型标识。
  15. 一种光网络终端设备,其特征在于,包括:
    配置信息接收模块,用于接收光线路终端设备发送的配置信息;
    配置模块,用于根据所述配置信息配置本端多播端口的开放状态以建立多播通道;
    OMCI报文获取模块,用于从所述多播通道获取所述光线路终端设备发送的携带有多播信息的OMCI报文,其中,所述多播信息包括多播端口标识,所述多播端口标识用于反映OMCI报文与多播端口之间的映射关系。
  16. 根据权利要求15所述的设备,其特征在于,所述OMCI报文与业务报文和共用所述多播通道,所述多播信息还包括报文类型标识,所述报文类型标识用于指示光线路终端设备通过所述多播通道发送的报文是OMCI报文还是业务报文。
  17. 根据权利要求16所述的设备,其特征在于,所述OMCI报文获取模块包括:
    多播接收模块,利用多播端口接收所述光线路终端设备通过所述多播通道发送的报文;
    过滤模块,用于根据所述报文携带的多播端口标识对所述多播端口接收到的报文进行过滤,得到携带的多播端口标识与本节点所开放的多播端口相匹配的报文;
    识别模块,用于根据所述报文携带的报文类型标识,从过滤得到的报文分别识别出业务报文和OMCI报文,并获取所述OMCI报文。
  18. 根据权利要求17所述的设备,其特征在于,还包括:
    延时回应模块,用于在获得所述OMCI报文之后,根据所述光线路终端设备的指定,以随机延时的方式对所述OMCI报文进行回应。
  19. 一种无源光网络系统,其特征在于,包括:光线路终端设备和多个光网络终端设备,所述光线路终端设备通过光分配网络连接到所述多个光网络终端设备,其中所述光线路终端设备为如权利要求11至14中任一项所述的光线路终端设备。
  20. 根据权利要求19所述的系统,其特征在于,所述光网络终端设备为如权利要求15-18中任一项的光网络终端设备。
PCT/CN2012/076159 2012-05-28 2012-05-28 光网络终端管理控制接口报文传递方法、系统及相应的设备 WO2013177736A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR20147035665A KR20150022859A (ko) 2012-05-28 2012-05-28 광 네트워크 단말 관리 및 제어 인터페이스 메시지를 전송하는 방법 및 시스템, 및 대응하는 장치
AU2012381695A AU2012381695A1 (en) 2012-05-28 2012-05-28 Optical network terminal management control interface message transmission method and system, and corresponding device
PCT/CN2012/076159 WO2013177736A1 (zh) 2012-05-28 2012-05-28 光网络终端管理控制接口报文传递方法、系统及相应的设备
EP12837663.9A EP2750330A1 (en) 2012-05-28 2012-05-28 Optical network terminal management control interface message transmission method and system, and corresponding device
CN201280000947.1A CN103636164A (zh) 2012-05-28 2012-05-28 光网络终端管理控制接口报文传递方法、系统及相应的设备
US13/896,816 US20130315594A1 (en) 2012-05-28 2013-05-17 Method, system, and device for transmittng optical network terminal management and control interface message
ARP130101841 AR091169A1 (es) 2012-05-28 2013-05-27 Metodo, sistema y dispositivo para transmitir mensaje de interfaz de administracion y control de terminal de red optica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/076159 WO2013177736A1 (zh) 2012-05-28 2012-05-28 光网络终端管理控制接口报文传递方法、系统及相应的设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/896,816 Continuation US20130315594A1 (en) 2012-05-28 2013-05-17 Method, system, and device for transmittng optical network terminal management and control interface message

Publications (1)

Publication Number Publication Date
WO2013177736A1 true WO2013177736A1 (zh) 2013-12-05

Family

ID=49621686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076159 WO2013177736A1 (zh) 2012-05-28 2012-05-28 光网络终端管理控制接口报文传递方法、系统及相应的设备

Country Status (7)

Country Link
US (1) US20130315594A1 (zh)
EP (1) EP2750330A1 (zh)
KR (1) KR20150022859A (zh)
CN (1) CN103636164A (zh)
AR (1) AR091169A1 (zh)
AU (1) AU2012381695A1 (zh)
WO (1) WO2013177736A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701640B (zh) * 2013-12-18 2016-09-28 烽火通信科技股份有限公司 使用智能管理终端升级odn设备的方法及系统
CN104168139A (zh) * 2014-08-13 2014-11-26 烽火通信科技股份有限公司 一种基于pon系统的olt设备定制方法
WO2016049964A1 (zh) * 2014-09-29 2016-04-07 华为技术有限公司 一种波分复用无源光网络通信的方法、装置及系统
WO2016187785A1 (zh) * 2015-05-25 2016-12-01 华为技术有限公司 一种消息的传输方法、装置和系统
US10194007B2 (en) * 2016-08-11 2019-01-29 Calix, Inc. Concurrent optical network terminal simulation
CN108156538B (zh) * 2016-12-02 2019-08-23 中兴通讯股份有限公司 一种无源光网络系统及其实现方法
US10880410B2 (en) * 2017-12-05 2020-12-29 Adtran, Inc. PON data compression for high efficiency
US10958565B2 (en) * 2018-02-28 2021-03-23 Tellabs Enterprise, Inc. Methodology for efficient upstream multicast in PON networks
CN110971531B (zh) 2018-09-28 2021-09-21 华为技术有限公司 一种数据传输方法、通信设备及存储介质
BR112021012301A2 (pt) * 2018-12-28 2021-09-08 Huawei Technologies Co., Ltd. Método e aparelho para estabelecer conexão de cabo óptico
CN113068085B (zh) * 2020-01-02 2022-11-01 中国移动通信有限公司研究院 一种onu管理方法、装置、设备及系统
US20240053557A1 (en) * 2022-08-12 2024-02-15 Arris Enterprises Llc Olts interoperable with different onts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208631A1 (en) * 2003-04-15 2004-10-21 Jae-Yeon Song GTC frame structure and method for transmission of ONT management control information in GPON
CN101060523A (zh) * 2006-04-26 2007-10-24 华为技术有限公司 光网络终端、其端口限速属性配置方法及报文处理方法
CN101202591A (zh) * 2006-12-13 2008-06-18 中兴通讯股份有限公司 一种gpon系统中组播虚拟局域网注册的实现方法
CN101252522A (zh) * 2008-04-02 2008-08-27 中兴通讯股份有限公司 介质访问控制地址过滤配置的方法及系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870844B2 (en) * 2001-03-06 2005-03-22 Pluris, Inc. Apparatus and methods for efficient multicasting of data packets
US7450551B2 (en) * 2003-07-14 2008-11-11 Samsung Electronics Co., Ltd. Multicast transmission method in GEM mode in Gigabit-capable passive optical network and method of processing frame
KR100570842B1 (ko) * 2004-12-13 2006-04-13 한국전자통신연구원 파장 분할 다중화 수동 광 가입자망(wdm-pon)에서의통신, 방송 융합을 위한 동적 멀티캐스트 그룹 관리 및서비스 파장 할당방법
JP4747717B2 (ja) * 2005-07-29 2011-08-17 日本電気株式会社 光アクセスネットワークにおけるセンタ側装置、マルチキャスト通信方法、装置および光アクセスネットワーク
US7760734B2 (en) * 2005-12-09 2010-07-20 Electronics And Telecommunications Research Institute TDMA passive optical network OLT system for broadcast service
CN1997240B (zh) * 2006-01-04 2010-12-08 华为技术有限公司 无源光网络组播流量控制方法、系统及无源光网络终端
JP4231061B2 (ja) * 2006-05-10 2009-02-25 株式会社日立コミュニケーションテクノロジー 加入者接続装置およびネットワークシステム
US20070274720A1 (en) * 2006-05-25 2007-11-29 Menasco Heyward E Jr Optical Network Unit Activation
US8121479B2 (en) * 2006-08-11 2012-02-21 Futurewei Technologies, Inc. Optical network terminal management and control interface (OMCI) containing a description of the OMCI
CN101051923A (zh) * 2007-04-05 2007-10-10 中兴通讯股份有限公司 以太无源光网络中的组播控制方法
US7920792B2 (en) * 2007-05-02 2011-04-05 Fujitsu Limited System and method for managing communication in a hybrid passive optical network
IL186239A0 (en) * 2007-09-24 2008-01-20 Eci Telecom Ltd Technique for forwarding packets with unknown destination in a gigabit passive optical network (gpon)
CN101399611A (zh) * 2007-09-28 2009-04-01 华为技术有限公司 Pon组播通信系统、组播管理方法及相应的设备
CN101414925B (zh) * 2007-10-17 2011-04-06 华为技术有限公司 光网络终端配置的方法及系统、装置
CN101621461A (zh) * 2008-06-30 2010-01-06 中兴通讯股份有限公司 一种无源光网络系统的下行数据传输方法
JP5277071B2 (ja) * 2009-05-25 2013-08-28 株式会社日立製作所 光アクセスシステム、光集線装置および光加入者装置
US8630548B2 (en) * 2009-06-10 2014-01-14 Alcatel Lucent Method and apparatus for improved upstream frame synchronization in a passive optical network
CN101998276A (zh) * 2009-08-25 2011-03-30 中兴通讯股份有限公司 一种传输动态调度信息的方法及系统
KR101298813B1 (ko) * 2009-11-04 2013-08-22 한국전자통신연구원 기가 비트 수동형 광 가입자 망에서 멀티캐스트 포트 식별자 필터링 방법 및 장치
CN102136907A (zh) * 2010-01-25 2011-07-27 中兴通讯股份有限公司 一种无源光网络系统组播业务加密方法和装置
US8254386B2 (en) * 2010-03-26 2012-08-28 Verizon Patent And Licensing, Inc. Internet protocol multicast on passive optical networks
CN101877803B (zh) * 2010-06-29 2015-10-21 中兴通讯股份有限公司 一种实现组播预览的方法、系统及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208631A1 (en) * 2003-04-15 2004-10-21 Jae-Yeon Song GTC frame structure and method for transmission of ONT management control information in GPON
CN101060523A (zh) * 2006-04-26 2007-10-24 华为技术有限公司 光网络终端、其端口限速属性配置方法及报文处理方法
CN101202591A (zh) * 2006-12-13 2008-06-18 中兴通讯股份有限公司 一种gpon系统中组播虚拟局域网注册的实现方法
CN101252522A (zh) * 2008-04-02 2008-08-27 中兴通讯股份有限公司 介质访问控制地址过滤配置的方法及系统

Also Published As

Publication number Publication date
US20130315594A1 (en) 2013-11-28
AU2012381695A1 (en) 2015-01-15
EP2750330A4 (en) 2014-07-02
CN103636164A (zh) 2014-03-12
EP2750330A1 (en) 2014-07-02
KR20150022859A (ko) 2015-03-04
AR091169A1 (es) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2013177736A1 (zh) 光网络终端管理控制接口报文传递方法、系统及相应的设备
US8331400B2 (en) Passive optical network (PON) system
US9106438B2 (en) Methods and apparatus for extending MAC control messages in EPON
JP4231061B2 (ja) 加入者接続装置およびネットワークシステム
JP4398317B2 (ja) ギガビット受動型光加入者網のgemモードにおけるマルチキャスト転送方法及びそのフレーム処理方法
US8335316B2 (en) Method and apparatus for data privacy in passive optical networks
US8457494B2 (en) PON multicast communication system, multicast management method, and corresponding devices
US8280055B2 (en) Optical network system and method of changing encryption keys
KR20040025354A (ko) 이더넷 수동형광가입자망에서 오에이엠 기능 디스커버리방법
JP2008541658A (ja) イーサネット(登録商標)受動光ネットワークにおける複数の光セグメントの収容
WO2014059626A1 (zh) 无源光网络的保护倒换方法、系统及装置
KR20110049084A (ko) 기가 비트 수동형 광 가입자 망에서 멀티캐스트 포트 식별자 필터링 방법 및 장치
CN102098166A (zh) 一种吉比特无源光网络系统及其可控组播实现方法
WO2012136089A1 (zh) 一种无源光网络环路检测方法及系统
JP4866381B2 (ja) ネットワークシステムおよび加入者接続装置
WO2014166186A1 (zh) 光纤和铜缆间的组播业务传递方法、装置及系统
WO2008141505A1 (fr) Procédé de multidiffusion et son dispositif pour un système de réseau optique passif gigabit
JP2006245778A (ja) 通信装置、通信方法、およびプログラム
KR100630065B1 (ko) 기가비트 이더넷 수동광가입자망의 노드간 핑 테스트를위한 데이터구조 및 그 방법
JP2015133610A (ja) 局側装置、ponシステムおよび局側装置の制御方法
JP4991578B2 (ja) Ponシステム

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2012837663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012837663

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147035665

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012381695

Country of ref document: AU

Date of ref document: 20120528

Kind code of ref document: A