WO2013176247A1 - Method for manufacturing transistor and transistor - Google Patents

Method for manufacturing transistor and transistor Download PDF

Info

Publication number
WO2013176247A1
WO2013176247A1 PCT/JP2013/064466 JP2013064466W WO2013176247A1 WO 2013176247 A1 WO2013176247 A1 WO 2013176247A1 JP 2013064466 W JP2013064466 W JP 2013064466W WO 2013176247 A1 WO2013176247 A1 WO 2013176247A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
base film
forming
transistor
source electrode
Prior art date
Application number
PCT/JP2013/064466
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 小泉
敬 杉▲崎▼
宮本 健司
雄介 川上
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2013176247A1 publication Critical patent/WO2013176247A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene

Definitions

  • the present invention relates to a transistor manufacturing method and a transistor.
  • This application claims priority based on Japanese Patent Application No. 2012-120154 for which it applied on May 25, 2012, and uses the content here.
  • a transistor manufacturing method As a transistor manufacturing method, application of a solution process that is inexpensive and suitable for an increase in size has been studied. When a solution process is employed, a transistor can be manufactured at a lower temperature than in the past. Further, by forming an organic semiconductor layer using an organic semiconductor material on a flexible substrate using a resin material, a flexible organic transistor can be manufactured.
  • Chemical plating is, for example, a plating method that uses reduction by contact action on the surface of a material. Electroless plating does not use electrical energy. Therefore, it is possible to apply plating to resin materials and glass that are non-conductors. However, difficult-to-plat materials such as resin materials and glass have weak adhesion to the formed plating film, and the plating is easily peeled off due to the internal stress of the plating film, resulting in peeling such as swelling.
  • the surface of the substrate is etched using a chromic acid solution or the like to chemically roughen the surface.
  • the plating film to be formed is formed so as to bite into the unevenness of the roughened resin material. Therefore, adhesion can be obtained (anchor effect).
  • a method is disclosed in which a base film made of a filler component such as fine powder silica and a resin composition component is provided on the substrate surface and electroless plating is performed on the base film (see, for example, Patent Document 1). Yes.
  • the electrode formed by the above method is provided with a concavo-convex shape reflecting the concavo-convex shape of the base to which the concavo-convex shape is provided due to the etching treatment or the base film containing the filler component. That is, the electrode formed by the above method has an uneven shape caused by an etching process or a base film containing a filler component.
  • the transistor has a stacked structure, and has an electrode and a semiconductor layer in each layer. Therefore, when the electrode has an uneven shape, the performance of the transistor may be deteriorated.
  • An object of an aspect of the present invention is to provide a method for manufacturing a transistor capable of manufacturing a high-performance transistor by using an electroless plating method. Another object is to provide a high-performance transistor.
  • a step of forming a gate electrode on a substrate a step of forming a layer including the insulator layer so that the insulator layer is in contact with the gate electrode, and the insulator layer Forming a source electrode and a drain electrode on the surface of the layer including, at least one of the gate electrode, the source electrode or the drain electrode is coated with a forming material containing a silane coupling agent,
  • a method of manufacturing a transistor is provided that includes a group having at least one of sulfur atoms.
  • a step of forming a gate electrode on a substrate a step of forming a layer including the insulator layer so that the insulator layer is in contact with the gate electrode, Forming a source electrode and a drain electrode on the surface of the layer including the insulator layer, and at least one of the gate electrode, the source electrode, or the drain electrode is made of a metal that is an electroless plating catalyst.
  • a source electrode and a drain electrode a gate electrode provided corresponding to a channel between the source electrode and the drain electrode, and the source electrode and the drain electrode And at least one of the gate electrode, the source electrode, or the drain electrode is stacked on a base film containing a silane coupling agent, and the silane coupling agent includes a nitrogen atom.
  • a transistor including a group having at least one of sulfur atoms is provided.
  • a source electrode and a drain electrode a gate electrode provided corresponding to a channel between the source electrode and the drain electrode, and the source electrode and the drain electrode
  • a base layer comprising a silane coupling agent having a group capable of capturing a metal that is a catalyst for electroless plating, wherein at least one of the gate electrode, the source electrode, and the drain electrode is provided in contact with the semiconductor layer
  • Transistors are provided that are stacked on top of each other.
  • a transistor manufacturing method capable of manufacturing a high-performance transistor using an electroless plating method can be provided.
  • a high-performance transistor can be provided.
  • FIG. 1 is a schematic cross-sectional view showing a transistor manufactured by the transistor manufacturing method of the present embodiment and the transistor of the present embodiment.
  • the transistor 1A is a so-called bottom contact type transistor.
  • an organic transistor using an organic semiconductor as a material for forming a semiconductor layer will be described.
  • the embodiment of the present invention can also be applied to an inorganic transistor using an inorganic semiconductor as a material for forming a semiconductor layer.
  • the transistor 1A includes a substrate 2, base films 3 and 13, catalysts 5 and 15 for electroless plating, a gate electrode 6, an insulator layer 7, a source electrode 16, a drain electrode 17, and an organic semiconductor layer. (Semiconductor layer) 20.
  • a layer including the insulator layer 7 and the base film 13 is a “layer including an insulator layer”.
  • the substrate 2 can be either a light transmissive material or a non-light transmissive material.
  • an inorganic substance such as glass, quartz glass, or silicon nitride, or an organic polymer (resin) such as an acrylic resin, a polycarbonate resin, or a polyester resin such as PET (polyethylene terephthalate) or PBT (polybutylene terephthalate) can be used.
  • an organic polymer such as an acrylic resin, a polycarbonate resin, or a polyester resin such as PET (polyethylene terephthalate) or PBT (polybutylene terephthalate)
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • the material of the substrate 2 is handled as a difficult-to-platable material in which it is difficult to directly form a plating film and the formed plating film is easily peeled off.
  • a composite material of the above-described materials can be used as the material for forming the substrate 2 as long as the plating film is easily peeled off for the same reason.
  • the base film 3 is a gate base film in the present invention.
  • the base film 3 is formed so as to cover the entire main surface of the substrate 2.
  • a catalyst (electroless plating catalyst) 5 is selectively provided on a part of the surface of the base film 3.
  • the catalyst 5 is a catalyst that reduces metal ions contained in a plating solution for electroless plating. Examples of the catalyst 5 include silver and metallic palladium. Of these, metallic palladium is preferably used.
  • the base film 3 is a film capable of capturing the metal that is the catalyst 5 described above.
  • the base film 3 uses a silane coupling agent having a group capable of capturing the metal as a forming material.
  • the base film 3 is formed by applying a liquid material containing such a silane coupling agent to one main surface of the substrate 2.
  • the “silane coupling agent” which is a material for forming the base film 3 is a compound in which a group capable of capturing the metal which is the catalyst 5 and a group capable of binding to the substrate 2 are bonded to a silicon atom.
  • the “group capable of capturing a metal” refers to a group capable of capturing the metal that is the catalyst 5 or an ion of the metal by, for example, an ionic bond or a coordinate bond. Examples of such groups include groups having a nitrogen atom or a sulfur atom.
  • groups capable of capturing a metal for example, an amino group, a urea group, a thiol group (or mercapto group), a thiocarbonyl group, a thiourea group, a hydrogen atom bonded to a heterocyclic compound containing a nitrogen atom or a sulfur atom is 1 Examples thereof include groups having groups obtained by removing two or more.
  • heterocyclic compound containing a nitrogen atom or sulfur atom includes a monocyclic heteroaromatic compound, a polycyclic heteroaromatic compound, and two or more aromatic rings in these aromatic compounds.
  • Examples include heterocyclic compounds in which carbon atoms are hydrogenated and do not have an aromatic attribute.
  • Examples of monocyclic heteroaromatic compounds include pyrrole, imidazole, pyridine, pyrimidine, thiophene and the like.
  • polycyclic heteroaromatic compounds include indole and benzothiophene.
  • the “group capable of binding to the substrate 2” includes a hydroxy group and an alkoxy group having 1 to 6 carbon atoms.
  • compounds that can be used as a material for forming such an undercoat film 3 include N-cyclohexylaminopropyltrimethoxysilane, bis (3- (trimethoxysilyl) propyl) ethylenediamine, and 1- (3- (Trimethoxysilylpropyl)) urea, bis (3- (trimethoxysilylpropyl)) urea, 2,2-dimethoxy-1,6-diaza-2-silacyclooctane, N- (3- (trimethoxysilylpropyl) ))-4,5-dihydroimidazole, bis (3- (trimethoxysilyl) propyl) thiourea, 3-trimethoxysilylpropanethiol, polyethyleneimine modified with a trimethoxysilylpropyl group, and the like.
  • the silane coupling agent preferably has an amino group as a “group capable of capturing a metal”, and is a primary amine or a secondary amine (the “group capable of capturing a metal” is —NH 2 , And a group represented by —NH— is more preferable.
  • the base film 3 is formed using a silane coupling agent that is a primary amine.
  • the gate electrode 6 is a metal electrode formed on the surface of the catalyst 5.
  • the gate electrode 6 is formed of a metal deposited on the surface of the catalyst 5 by electroless plating as will be described later. Examples of the material of the gate electrode 6 include nickel-phosphorus (NiP) and copper (Cu).
  • the insulator layer 7 is formed using any of an inorganic material and an organic material as long as it has insulating properties and can electrically insulate the gate electrode 6 from the source electrode 16 and the drain electrode 17. May be. Among these, it is preferable to use a photocurable resin material as a forming material because it is easy to manufacture and finely process. Examples of the material for forming the insulator layer 7 include an ultraviolet curable acrylic resin, an epoxy resin, an ene / thiol resin, and a silicone resin.
  • the base film 13 is formed on the entire upper surface of the insulator layer 7.
  • the base film 13 is a source base film and a drain base film in the embodiment of the present invention.
  • the base film 13 is formed as a film in which a source base film and a drain base film are continuous.
  • the base film 13 is formed so as to cover the entire main surface of the substrate 2.
  • a catalyst (electroless plating catalyst) 15 is selectively provided on a part of the surface of the base film 13.
  • the same material as the base film 3 described above can be used.
  • the base film 3 and the base film 13 may be formed of different materials. In the following description, it is assumed that the base film 13 is formed using a silane coupling agent that is the same primary amine as the base film 3.
  • the base film 13 is formed on the entire upper surface of the insulator layer 7.
  • the base film 13 may be selectively formed only at the position where the catalyst 15 is provided.
  • the base film 13 is selectively formed on the upper surface of the insulator layer 7 by selectively applying a silane coupling agent, which is a material for forming the base film 13, using a generally known method. Can do.
  • a silane coupling agent is applied to a region wider than a region where the base film 13 is formed, and then a film formed in a portion protruding from the region where the base film 13 is formed.
  • the base film 13 may be selectively formed by decomposing and removing the silane coupling agent by irradiating the substrate with ultraviolet rays.
  • the source electrode 16 and the drain electrode 17 are metal electrodes formed on the surface of the catalyst 15.
  • the source electrode 16 includes a first electrode 161 and a second electrode 162 that covers the surface of the first electrode 161.
  • the drain electrode 17 includes a first electrode 171 and a second electrode 172 that covers the surface of the first electrode 171.
  • the first electrodes 161 and 171 are formed by electroless plating similarly to the gate electrode 6 described above.
  • Examples of the material of the first electrodes 161 and 171 include nickel-phosphorus (NiP) and copper (Cu). In the present embodiment, it is assumed that nickel-phosphorus (work function: 5.5 eV) is used as a material for forming the first electrodes 161 and 171.
  • the second electrodes 162 and 172 are metal plating layers formed so as to cover the entire surface of the first electrodes 161 and 171 that do not contact the catalyst 15. That is, the second electrodes 162 and 172 are provided so as to cover the side surfaces 16a and 17a (opposing surfaces) facing each other in the source electrode 16 and the drain electrode 17, respectively.
  • a metal material having a work function that facilitates electron transfer (or hole transfer) is used in relation to the HOMO / LUMO level of the material for forming the semiconductor layer 20 described later.
  • gold work function: 5.4 eV
  • the semiconductor layer 20 is provided on the surface of the base film 13 between the source electrode 16 and the drain electrode 17, and is formed in contact with the source electrode 16 and the drain electrode 17. Specifically, the semiconductor layer 20 is provided in contact with the side surface 16 a of the source electrode 16 and the side surface 17 a of the drain electrode 17, and is in contact with the second electrodes 162 and 172.
  • a generally known organic semiconductor material can be used as a forming material of the semiconductor layer 20 .
  • a generally known organic semiconductor material can be used.
  • copper phthalocyanine (CuPc) pentacene, rubrene, tetracene, p-type semiconductor and as P3HT (poly (3-hexylthiophene- 2,5-diyl)), fullerenes such as C 60, PTCDI-C8H (N N-type semiconductors such as perylene derivatives such as N′-dioctyl-3,4,9,10-perylene tetracarboxylic diimide) can be used.
  • CuPc copper phthalocyanine
  • pentacene pentacene
  • rubrene tetracene
  • P3HT poly (3-hexylthiophene- 2,5-diyl)
  • fullerenes such as C 60
  • PTCDI-C8H N N-type semiconductor
  • soluble pentacene such as TIPS pentacene (6,13-Bis (triisopropylsilylethynyl) pentacene) and organic semiconductor polymers such as P3HT are soluble in organic solvents such as toluene, and form the semiconductor layer 20 in a wet process.
  • TIPS pentacene HOMO level: 5.2 eV
  • the material for forming the semiconductor layer 20 is not limited to an organic semiconductor material, and a generally known inorganic semiconductor material can also be used.
  • the gate electrode 6, the source electrode 16, and the drain electrode 17 formed by electroless plating are the base films 3 and 13 (gate base film, source base film, A drain base film).
  • each electrode is provided with a concavo-convex shape reflecting the unevenness of the base. Then, the distance between the electrodes stacked via the insulator layer is not constant, and there is a possibility that the insulation breaks at a position where the distance between the gate electrode and the source electrode or the gate electrode and the drain electrode is close, and a leakage current is generated. .
  • an uneven shape is also given (formed) to the channel region (indicated by symbol AR in the drawing) of the semiconductor layer that overlaps the gate electrode in a planar manner, and the carrier travel distance in the channel region May become longer and performance may be reduced.
  • the base films 3 and 13 use a silane coupling agent as a forming material. Therefore, since the substrate surface is not roughened and a base film containing a filler component is not used, the base films 3 and 13 are smooth films. Therefore, by forming the base films 3 and 13, the uneven shape is not formed, and a problem caused by the uneven shape does not occur. Therefore, a high-performance transistor can be manufactured.
  • a liquid material obtained by diluting the above-described silane coupling agent with an organic solvent as necessary is applied to the surface of the substrate 2 to form a coating film 3A.
  • the application method include generally known methods such as spin coating, dip coating, spray coating, roll coating, brush coating, printing methods such as flexographic printing and screen printing.
  • 3-aminopropyltriethoxysilane which is a primary amine is used as the silane coupling agent.
  • organic solvent various solvents can be used as long as they can dissolve the silane coupling agent.
  • a polar solvent can be used conveniently.
  • Usable solvents include, for example, alcohols such as methanol, ethanol, 1-propanol and 2-propanol (isopropyl alcohol, IPA), ethers such as propylene glycol monomethyl ether acetate (PGMEA), and aromatics such as toluene. Examples include hydrocarbons, nitriles such as acetonitrile, esters such as acetate, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • the organic solvent is volatilized and removed by heat treatment to form the base film 3.
  • the base film 3 formed in this way becomes a silane coupling agent layer having a very thin film thickness. Therefore, light scattering hardly occurs and a transparent film is obtained. Therefore, for example, when the transistor manufactured by the manufacturing method of the present embodiment is provided on a light-transmitting substrate, the substrate 2 and the base film 3 are combined even if the base film 3 is formed on the entire surface of the substrate 2. In addition, light transmittance can be maintained as a whole, and film formation is easy.
  • a resist material is applied on the base film 3 and pre-baked to form a resist layer 4A that is not patterned.
  • a positive photoresist is used as the resist material.
  • the mask M1 includes an opening Ma at a position corresponding to a region where the metal electrode is formed, and includes a light shielding portion Mb in a region where the metal electrode is not formed.
  • the resist layer 4 provided with the openings 4a is formed by developing with a developer that dissolves the resist layer irradiated with ultraviolet rays.
  • the catalyst 5 used for electroless plating is captured on the surface of the base film 3 exposed from the opening 4 a formed in the resist layer 4.
  • the metal which is the catalyst 5 is captured by the base film 3 by contacting a colloidal solution of a divalent palladium salt.
  • a general resin electroless plating step is represented by washing ⁇ etching ⁇ catalyst application (catalyst formation) ⁇ electroless plating.
  • Catalyst application is a process in which a metal such as palladium (Pd), which is a reaction initiator (catalyst) for electroless plating, is attached to the surface of the region to be plated.
  • the usual “catalyst application (catalyst formation)” is a method in which a colloidal solution of divalent palladium salt and divalent tin (Sn) salt is brought into contact with a substrate to deposit palladium, and then palladium is added to an acid or alkali solution called an accelerator. Soak.
  • the usual “catalyst application (catalyst formation)” includes a step of reducing palladium to zero valence and activating it as described above.
  • the silane coupling agent that is the material for forming the base film is a primary amine or a secondary amine as in the present embodiment
  • the reduction treatment using the accelerator described above is unnecessary. It has been confirmed by the inventors (described later). Therefore, when primary amine or secondary amine is used as the silane coupling agent, the operation of electroless plating is simplified.
  • 3-aminopropyltriethoxysilane which is a primary amine is used as a material for forming the base film 3. Therefore, a reduction process is unnecessary and the operation is simplified.
  • the silane coupling agent is a tertiary amine or a silicon compound having another “group capable of capturing a metal”
  • an ordinary accelerator using the above-described accelerator is used.
  • the base film 3 can capture the catalyst 5 for electroless plating.
  • the electroless plating solution by bringing the electroless plating solution into contact with the catalyst 5, metal ions dissolved in the electroless plating solution on the surface of the catalyst 5 are reduced and deposited.
  • the gate electrode 6 made of nickel-phosphorus is formed selectively in the opening 4a.
  • the silane coupling agent is a primary amine or a secondary amine
  • the surface of the catalyst 5 is plated by immersing in an electroless plating solution without activation using an accelerator. From this, it can be indirectly confirmed that metal palladium is captured on the surface of the base film 3.
  • the entire surface of the remaining resist layer is exposed to ultraviolet rays, and then the resist layer is removed with a generally known developer. In this way, the gate electrode 6 is formed.
  • a coating solution is applied to the surface of the base film 3 so as to cover the gate electrode 6.
  • This coating solution is obtained by dissolving a precursor of an insulating resin material in an organic solvent.
  • a coating method the above-described method can be used.
  • an ultraviolet curable acrylic resin for example, an epoxy resin, an ene / thiol resin, or a silicone resin can be used.
  • an organic solvent the polar solvent similar to the coating liquid concerning the above-mentioned coating film 3A can be used suitably.
  • the viscosity of the whole coating liquid can be adjusted by changing the concentration and the type of the organic solvent, and the film thickness of the coating film 7A of the coating liquid can be controlled.
  • the coating film 7A is thickly applied to a thickness of about several hundred nm.
  • the resin material is cured by irradiating the coating film 7 ⁇ / b> A with ultraviolet rays L through the mask M ⁇ b> 2 to form the insulator layer 7.
  • the mask M2 has an opening corresponding to a region where the insulator layer 7 is formed.
  • the uncured coating film is removed by developing with a solvent S that dissolves the coating film, and a patterned insulator layer 7 is formed.
  • a coating solution in which a precursor of an insulating resin material is dissolved in an organic solvent is applied to the surface of the base film 3 so as to cover the gate electrode 6, and the precursor is cured by irradiation with ultraviolet rays.
  • a silane coupling agent may be applied to cover the surface including the gate electrode 6 before applying the coating solution.
  • a liquid material obtained by diluting the above-described silane coupling agent with an organic solvent as required is applied to the entire upper surface of the insulator layer 7. Subsequently, heat treatment is performed to volatilize and remove the organic solvent, and the base film 13 is formed.
  • the silane coupling agent and the organic solvent those similar to those exemplified in the formation of the base film 3 described above can be used.
  • a resist material is applied so as to cover the insulator layer 7 and the base film 13, and a pre-baked resist layer 14A is formed.
  • a positive photoresist is used as the resist material.
  • the resist layer 14A is irradiated with ultraviolet rays L through the mask M3 to expose the resist layer 14A.
  • the mask M3 is provided with an opening corresponding to a region where the source electrode and the drain electrode are formed.
  • the resist layer 14 provided with the openings 14a is formed by developing with a developer that dissolves the resist layer irradiated with ultraviolet rays.
  • the base film 13 exposed from the opening 14a is brought into contact with a colloidal solution of a divalent palladium salt, whereby the catalyst 15 used for electroless plating is applied to the surface of the base film 13. Capture. Thereafter, by bringing the electroless plating solution into contact with the catalyst 15, metal ions dissolved in the electroless plating solution on the surface of the catalyst 15 are reduced and deposited. As described above, the first electrodes 161 and 171 are formed selectively using nickel-phosphorus as a forming material in the opening 14a.
  • the resist layer is removed with a generally known developer. In this way, the first electrodes 161 and 171 are formed.
  • gold is substituted and deposited on the surfaces of the first electrodes 161 and 171 by immersing the whole in a substitution gold plating bath. Furthermore, by immersing in a reduced gold plating bath, second electrodes 162 and 172 using gold as a forming material are formed on the surfaces of the first electrodes 161 and 171. In this way, the source electrode 16 and the drain electrode 17 are formed.
  • the semiconductor layer 20 is formed by applying the solution S1 between the source electrode 16 and the drain electrode 17 and drying it.
  • the solution S1 is obtained by dissolving an organic semiconductor material soluble in an organic solvent, such as TIPS pentacene, in the organic solvent.
  • the semiconductor layer 20 is formed by a wet method. However, methods such as a sublimation method and a transfer method can also be used. As described above, the transistor 1A can be manufactured.
  • the base films 3 and 13 are made of a silane coupling agent as a forming material, and are smooth films. Therefore, there is no problem due to the uneven shape of the base film, and a high-performance transistor can be easily manufactured.
  • the resist layer 14 is removed in advance before the formation of the second electrodes 162 and 172. Therefore, the second electrodes 162 and 172 can be reliably formed on the side surface 16 a of the source electrode 16 and the side surface 17 a of the drain electrode 17. Thus, in the manufactured transistor 1A, current can easily flow between the semiconductor layer 20 and the source electrode 16 (or the semiconductor layer 20 and the drain electrode 17) during driving, and good driving is possible.
  • first electrodes 161 and 171 are covered with the second electrodes 162 and 172, corrosion over time of the first electrodes 161 and 171 is suppressed, and the performance of the transistor can be stably maintained. It also has an effect.
  • FIG. 3A and FIG. 3B are schematic diagrams showing how the transistors are driven.
  • FIG. 3A shows a transistor 1x having a configuration similar to that of the transistor 1A except that the second electrode is not provided.
  • FIG. 3B is a diagram showing the transistor 1A manufactured by the manufacturing method of the present embodiment.
  • the energy level of molecular orbitals used for electron transfer in the organic semiconductor layer forming material is the HOMO energy level when the organic semiconductor layer is a p-type semiconductor. In the case of an n-type semiconductor, it is the LUMO energy level.
  • the gap (energy level difference) between the HOMO of the semiconductor layer 20 and the work function of the first electrode 161 is large. For this reason, a Schottky resistor is generated, and current does not flow easily. Therefore, for example, a current flow through the high-resistance semiconductor layer 20 as shown by an arrow A in FIG. 3A is easily formed, and it is difficult to ensure good conduction.
  • FIG. 3B when applied to a gate electrode (not shown) in the transistor 1A, a channel region AR having a thickness of several nm is formed in the semiconductor layer 20 near the interface with the base film 13.
  • the conduction between the source electrode 16 and the drain electrode (not shown) is enabled.
  • the surface of the source electrode 16 has a work function in which electron transfer between the surface of the source electrode 16 and the material for forming the semiconductor layer 20 is easier than that of the first electrode 161 (energy level difference from the HOMO of the semiconductor layer 20 is small).
  • the second electrode 162 is formed using a metal material, and the Schottky resistance is reduced. Therefore, the current flows into the channel region AR favorably through the first electrode 161 and the second electrode 162.
  • an arrow B is used to indicate the current flow. Therefore, a high-performance transistor 1A can be realized.
  • FIG. 4 is a schematic cross-sectional view of a transistor 1B manufactured by the method for manufacturing a transistor according to the second embodiment of the present invention.
  • the transistor 1B of this embodiment is partially in common with the transistor 1A of the first embodiment.
  • the difference is that the transistor of the first embodiment is a bottom contact type transistor, and the transistor 1B of this embodiment is a top contact type transistor. Therefore, in this embodiment, the same code
  • the transistor 1B has a semiconductor layer 20.
  • the semiconductor layer 20 is disposed on the insulator layer 7, and the source electrode 16 and the drain electrode 17 are formed on the surface thereof.
  • the semiconductor layer 20 is formed on the entire upper surface of the insulator layer 7, and the base film 13 is formed on the entire upper surface of the semiconductor layer 20.
  • a layer including the insulator layer 7, the semiconductor layer 20, and the base film 13 is a “layer including an insulator layer”.
  • a catalyst 15 is selectively provided on the upper surface of the base film 13, and a source electrode 16 and a drain electrode 17 are formed.
  • the source electrode 16 has a first electrode 161 and a second electrode 162.
  • the drain electrode 17 has a first electrode 171 and a second electrode 172.
  • the vicinity of the upper surface sandwiched between the source electrode 16 and the drain electrode 17 becomes the channel region AR.
  • the base film 3, the catalyst 5, the gate electrode 6, and the insulator layer 7 are laminated on the upper surface of the substrate 2.
  • the solution S ⁇ b> 1 is applied between the source electrode 16 and the drain electrode 17 and dried to form the semiconductor layer 20.
  • the solution S1 is obtained by dissolving an organic semiconductor soluble in an organic solvent in the organic solvent.
  • a liquid material is applied to the entire upper surface of the semiconductor layer 20, and heat treatment is performed to volatilize and remove the organic solvent, thereby forming a base film 13.
  • the liquid material is obtained by diluting the above silane coupling agent with an organic solvent as necessary.
  • a resist material is applied so as to cover the insulator layer 7, the semiconductor layer 20, and the base film 13. This is pre-baked to form an unpatterned resist layer 14A. Thereafter, the resist layer 14A is irradiated with ultraviolet light L through the mask M3 to expose the resist layer 14A.
  • the mask M3 is provided with an opening corresponding to a region where the source electrode and the drain electrode are formed.
  • the resist layer 14 provided with the openings 14a is formed by developing with a developer that dissolves the resist layer irradiated with ultraviolet rays.
  • a catalyst 15 used for electroless plating is applied to the surface of the base film 13 by bringing a colloidal solution of a divalent palladium salt into contact with the base film 13 exposed from the opening 14a. Capture. Thereafter, by bringing the electroless plating solution into contact with the catalyst 15, metal ions dissolved in the electroless plating solution on the surface of the catalyst 15 are reduced and deposited. As described above, the first electrodes 161 and 171 using nickel-phosphorus as a forming material are selectively formed in the opening 14a (first electroless plating).
  • the entire surface of the remaining resist layer is exposed to ultraviolet rays, and then the resist layer is removed with a generally known developer. In this way, the first electrodes 161 and 171 are formed.
  • the base films 3 and 13 use a silane coupling agent as a forming material, and the base films 3 and 13 are smooth films. Therefore, there is no problem due to the uneven shape of the base film, and a high-performance transistor can be easily manufactured.
  • the source electrode 16 and the drain electrode 17 of the transistor 1B electron transfer is easier between the forming material of the semiconductor layer 20 than the first electrodes 161 and 171 (energy level difference from the HOMO of the semiconductor layer 20).
  • the second electrodes 162 and 172 are formed using a metal material having a work function. Current flows from the second electrodes 162 and 172 into the channel region AR at a position surrounded by the symbol ⁇ . Therefore, a high-performance transistor 1B can be realized.
  • first electrodes 161 and 171 are covered with the second electrodes 162 and 172, corrosion of the first electrodes 161 and 171 with time is suppressed. Therefore, the transistor performance can be stably maintained.
  • the semiconductor layer 20 and the source electrode 16 and the drain electrode 17 are in direct contact with each other through the base film 13.
  • the base film 13 is formed in a very thin layer of several nm. For this reason, the influence of the base film 13 on the transistor characteristics is small, and a good current flows between the semiconductor layer 20 and the source electrode 16 and the drain electrode 17.
  • a non-metallic material can be used as the substrate.
  • a PET substrate which is a non-metallic material, prepare a plurality of plating members on which a base film is formed, and manufacture transistors using the above-described manufacturing method in the transport process while transporting the plurality of plating members.
  • a high-performance transistor can be formed on the PET substrate.
  • a transistor can be formed on a PET film in a so-called roll-to-roll process. Specifically, a flexible long PET film is used as a substrate, and a plating member having a base film formed on the film is rolled up. Then, the plating member is conveyed while being unwound, and transistors are continuously formed using the above-described manufacturing method. Thereafter, the transistor can be formed on a PET film so that the manufactured transistor is rolled up.
  • a catalyst for electroless plating is captured by the base film, and electroless plating is performed to form a gate electrode, a source electrode, and a drain.
  • An electrode was formed.
  • any one or two of these electrodes may be formed by the above method, and the remaining electrodes may be formed by another method.
  • the gate electrode may be formed using a generally known patterning method, and the source electrode and the drain electrode formed in the same layer may be formed using the above-described manufacturing method.
  • the liquid material is applied onto the PET substrate by spin coating (4000 rpm ⁇ 30 seconds). did. Then, it heated at 120 degreeC for 10 minute (s), and formed the base film.
  • a resist material (SUMIRESIST PFI-34A6, manufactured by Sumitomo Chemical Co., Ltd.) was spin-coated on the surface of the substrate on which the base film was formed, and heated (prebaked) at 90 ° C. for 5 minutes.
  • a resist layer was formed as described above.
  • the spin coating conditions are 1000 rpm for 30 seconds.
  • a resist layer having a thickness of about 1 ⁇ m was formed.
  • UV light having an intensity of 18 mW / cm 2 was exposed for 5 seconds through a photomask and heated (post-baked) at 110 ° C. for 5 minutes. Thereafter, the mask pattern was developed in the resist layer to form an opening by immersing in a 2.38% TMAH solution for 2 minutes.
  • the substrate on which the resist layer opening was formed was subjected to ultrasonic water washing at room temperature for 30 seconds. After that, it was immersed in a catalyst colloid solution for electroless plating (Melplate TM activator 7331, manufactured by Meltex) for 60 seconds at room temperature. As described above, the catalyst was adhered to the base film exposed from the opening of the resist layer.
  • the surface was washed with water and then immersed in an electroless plating solution (Melplate NI-867, manufactured by Meltex) at 73 ° C. for 60 seconds.
  • an electroless plating solution (Melplate NI-867, manufactured by Meltex) at 73 ° C. for 60 seconds.
  • nickel-phosphorus was deposited on the catalyst adhering to the opening of the resist layer to perform nickel-phosphorus plating.
  • the surface was washed with water and dried, and the entire surface including the remaining resist layer was exposed to ultraviolet light having an intensity of 18 mW / cm 2 for 1 minute. Then, the resist layer was removed by immersing in ethanol for 1 minute, and the gate electrode was produced.
  • a silane coupling agent N-2- (aminoethyl) -3-aminopropyltrimethyl trichloride is formed on the entire surface of the PET substrate on which the gate electrode is formed.
  • Ethoxysilane, KBM603, manufactured by Shin-Etsu Silicone Co., Ltd. was applied.
  • the silane coupling agent was diluted to 1% by mass with a mixed solvent of ethanol and water. Thereafter, the diluted silane coupling agent was further diluted with MIBK to prepare a 0.2 mass% silane coupling agent solution. This 0.2 mass% silane coupling agent solution was applied by spin coating on the entire surface of the PET substrate on which the gate electrode was formed.
  • the ultraviolet curable resin solution is composed of urethane acrylate resin (Art Resin HA3220, manufactured by Negami Kogyo Co., Ltd.), polymerization initiator IRGACURE 1173 (manufactured by Ciba Specialty Chemicals), and propylene glycol monoethyl ether (hereinafter referred to as solvent). , Sometimes referred to as PGME) and butyl acetate.
  • the spin coating conditions were 1000 rpm for 30 seconds.
  • ultraviolet rays were irradiated for 45 seconds through a mask having an opening at the portion where the insulator layer was formed.
  • heat treatment was performed at 120 ° C. for 5 minutes. Then, it was immersed in an acetone developer and subjected to ultrasonic treatment for 10 seconds. As described above, an ultraviolet curable resin was patterned into a film. After patterning film formation, heat treatment was performed at 120 ° C. for 10 minutes to form an insulator layer.
  • the resist was stripped, it was immersed in a displacement gold plating bath for 1 minute and further immersed in a reduction plating bath for 3 minutes. As described above, electroless gold plating was performed, and the surface of the NiP electrode was covered with gold to produce a source electrode and a drain electrode.
  • 6A and 6B are cross-sectional images of the multilayer wiring structure manufactured by the above procedure.
  • 6A is an SEM image
  • FIG. 6B is a TEM image.
  • FIG. 7 is an enlarged photograph of a source electrode and a drain electrode having an organic semiconductor layer formed on the surface. It was observed that a TIPS pentacene crystal was formed between the source electrode and the drain electrode.
  • FIG. 8 is a graph showing transistor characteristics of a transistor manufactured by a wet process using the above-described method.
  • a gate voltage of 0 V to ⁇ 40 V was applied to the gate electrode of the obtained organic thin film transistor, and a voltage of 0 V to ⁇ 40 V was applied between the source and drain to pass a current.
  • a voltage of 0 V to ⁇ 40 V was applied between the source and drain to pass a current.
  • holes were induced in the channel region (between the source and drain) of the semiconductor layer, and the manufactured transistor operated as a p-type transistor.
  • the base film formed using the silane coupling agent is a flat film with extremely small irregularities. Therefore, it was found that when the stacked structure was formed, the upper layer structure of the base film was not provided with an uneven shape (not formed), and a high-performance transistor could be obtained.
  • the entire surface of the source / drain electrodes can be covered with a metal material having a work function with a small energy gap and HOMO as a material for forming the organic semiconductor layer by using an electroless plating method. Therefore, it was found that a transistor having a small electrical contact resistance between the organic semiconductor layer and the source / drain electrodes can be provided. From the above results, the usefulness of the present invention was confirmed.

Abstract

A method for manufacturing transistors comprises a step for forming a gate electrode, a step for forming a layer including an insulator layer, and a step for forming a source electrode and a drain electrode on the surface of the layer including the insulator layer. At least one of the gate electrode, source electrode or drain electrode is formed by a step for forming a base membrane by coating with a moulding material including a silane coupling agent and a step for electroless plating after a metal which is an electroless plating catalyst has been deposited on the surface of the base membrane. The silane coupling agent comprises a group containing nitrogen atoms and/or sulphur atoms.

Description

トランジスタの製造方法およびトランジスタTransistor manufacturing method and transistor
 本発明は、トランジスタの製造方法およびトランジスタに関する。
 本願は、2012年5月25日に出願された日本国特願2012-120154号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a transistor manufacturing method and a transistor.
This application claims priority based on Japanese Patent Application No. 2012-120154 for which it applied on May 25, 2012, and uses the content here.
 従来、トランジスタの製造方法として、安価で大型化に向いている溶液プロセスの適用が検討されている。溶液プロセスを採用すると、従来よりも低温でトランジスタを製造することが可能となる。また、有機半導体材料を用いた有機半導体層を、樹脂材料を用いたフレキシブル基板上に形成することで、可撓性を有する有機トランジスタを製造することも可能となる。 Conventionally, as a transistor manufacturing method, application of a solution process that is inexpensive and suitable for an increase in size has been studied. When a solution process is employed, a transistor can be manufactured at a lower temperature than in the past. Further, by forming an organic semiconductor layer using an organic semiconductor material on a flexible substrate using a resin material, a flexible organic transistor can be manufactured.
 このようなトランジスタの製造方法においては、化学めっき(無電解めっき)を用いることができる。化学めっき(無電解めっき)は、例えば、材料表面の接触作用による還元を利用しためっき法である。無電解めっきでは、電気エネルギーを用いない。そのため、不導体である樹脂材料やガラスなどに対してもめっきを施すことが可能である。しかし、樹脂材料やガラスなどの難めっき材料は、形成されるめっき皮膜との間の密着力が弱く、めっき皮膜の内部応力によって簡単にめっきが剥がれ、膨れなどの剥離を生じてしまう。 In such a transistor manufacturing method, chemical plating (electroless plating) can be used. Chemical plating (electroless plating) is, for example, a plating method that uses reduction by contact action on the surface of a material. Electroless plating does not use electrical energy. Therefore, it is possible to apply plating to resin materials and glass that are non-conductors. However, difficult-to-plat materials such as resin materials and glass have weak adhesion to the formed plating film, and the plating is easily peeled off due to the internal stress of the plating film, resulting in peeling such as swelling.
 そこで、基板の表面にクロム酸溶液などを用いてエッチング処理を施し、表面を化学的に粗化することが行われている。これにより、形成されるめっき皮膜が、粗化された樹脂材料の凹凸に食い込むようにして形成される。そのため、密着力を得ることができる(アンカー効果)。 Therefore, the surface of the substrate is etched using a chromic acid solution or the like to chemically roughen the surface. Thereby, the plating film to be formed is formed so as to bite into the unevenness of the roughened resin material. Therefore, adhesion can be obtained (anchor effect).
 その他にも、基板表面上に微粉末シリカなどのフィラー成分と樹脂組成成分とからなる下地膜を設け、その下地膜上に無電解めっきを行う方法(例えば、特許文献1参照)が開示されている。 In addition, a method is disclosed in which a base film made of a filler component such as fine powder silica and a resin composition component is provided on the substrate surface and electroless plating is performed on the base film (see, for example, Patent Document 1). Yes.
日本国特開2008-208389号Japanese Unexamined Patent Publication No. 2008-208389
 しかしながら、上記方法で形成した電極には、エッチング処理やフィラー成分を含む下地膜に起因して凹凸形状が付与されている下地の凹凸を反映して、凹凸形状が付与される。すなわち、上記方法で形成した電極は、エッチング処理やフィラー成分を含む下地膜に起因する凹凸形状を有する。トランジスタは積層構造を有しており、各層に電極や半導体層を有する。そのため、電極が凹凸形状を有していると、トランジスタの性能が低下するおそれがある。 However, the electrode formed by the above method is provided with a concavo-convex shape reflecting the concavo-convex shape of the base to which the concavo-convex shape is provided due to the etching treatment or the base film containing the filler component. That is, the electrode formed by the above method has an uneven shape caused by an etching process or a base film containing a filler component. The transistor has a stacked structure, and has an electrode and a semiconductor layer in each layer. Therefore, when the electrode has an uneven shape, the performance of the transistor may be deteriorated.
 本発明の態様は、無電解めっき法を用いて、高性能なトランジスタを製造することが可能なトランジスタの製造方法を提供することを目的とする。また、高性能なトランジスタを提供することをあわせて目的とする。 An object of an aspect of the present invention is to provide a method for manufacturing a transistor capable of manufacturing a high-performance transistor by using an electroless plating method. Another object is to provide a high-performance transistor.
 本発明の一態様に従えば、基板上にゲート電極を形成する工程と、前記ゲート電極に絶縁体層が接触するように前記絶縁体層を含む層を形成する工程と、前記絶縁体層を含む層の表面にソース電極およびドレイン電極を形成する工程と、を有し、前記ゲート電極、前記ソース電極または前記ドレイン電極の少なくとも一つは、シランカップリング剤を含む形成材料を塗布して、下地膜を形成する工程と、前記下地膜の表面に無電解めっき用触媒である金属を析出させた後に、無電解めっきを行う工程と、により形成され、前記シランカップリング剤は、窒素原子または硫黄原子のうち少なくとも一方を有する基を含んでいるトランジスタの製造方法が提供される。 According to one embodiment of the present invention, a step of forming a gate electrode on a substrate, a step of forming a layer including the insulator layer so that the insulator layer is in contact with the gate electrode, and the insulator layer Forming a source electrode and a drain electrode on the surface of the layer including, at least one of the gate electrode, the source electrode or the drain electrode is coated with a forming material containing a silane coupling agent, A step of forming a base film, and a step of performing electroless plating after depositing a metal which is a catalyst for electroless plating on the surface of the base film, and the silane coupling agent contains nitrogen atoms or A method of manufacturing a transistor is provided that includes a group having at least one of sulfur atoms.
 また、本発明の別の一態様に従えば、基板上にゲート電極を形成する工程と、前記ゲート電極に絶縁体層が接触するように前記絶縁体層を含む層を形成する工程と、前記絶縁体層を含む層の表面にソース電極およびドレイン電極を形成する工程と、を有し、前記ゲート電極、前記ソース電極または前記ドレイン電極の少なくとも一つは、無電解めっき用触媒である金属を捕捉可能な基を有するシランカップリング剤を含む形成材料を塗布して、下地膜を形成する工程と、前記下地膜の表面に前記金属を析出させた後に、無電解めっきを行う工程と、により形成されるトランジスタの製造方法が提供される。 According to another aspect of the present invention, a step of forming a gate electrode on a substrate, a step of forming a layer including the insulator layer so that the insulator layer is in contact with the gate electrode, Forming a source electrode and a drain electrode on the surface of the layer including the insulator layer, and at least one of the gate electrode, the source electrode, or the drain electrode is made of a metal that is an electroless plating catalyst. Applying a forming material containing a silane coupling agent having a group capable of trapping to form a base film, and depositing the metal on the surface of the base film and then performing electroless plating; A method of manufacturing the formed transistor is provided.
 また、本発明の別の一態様に従えば、ソース電極およびドレイン電極と、前記ソース電極および前記ドレイン電極の間のチャネルに対応させて設けられたゲート電極と、前記ソース電極および前記ドレイン電極に接して設けられた半導体層と、を備え、前記ゲート電極、ソース電極またはドレイン電極の少なくとも一つは、シランカップリング剤を含む下地膜の上に積層され、前記シランカップリング剤は、窒素原子または硫黄原子のうち少なくとも一方を有する基を含んでいる トランジスタが提供される。 According to another aspect of the present invention, a source electrode and a drain electrode, a gate electrode provided corresponding to a channel between the source electrode and the drain electrode, and the source electrode and the drain electrode And at least one of the gate electrode, the source electrode, or the drain electrode is stacked on a base film containing a silane coupling agent, and the silane coupling agent includes a nitrogen atom. Alternatively, a transistor including a group having at least one of sulfur atoms is provided.
 また、本発明の別の一態様に従えば、ソース電極およびドレイン電極と、前記ソース電極および前記ドレイン電極の間のチャネルに対応させて設けられたゲート電極と、前記ソース電極および前記ドレイン電極に接して設けられた半導体層と、を備え、前記ゲート電極、ソース電極またはドレイン電極の少なくとも一つは、無電解めっき用触媒である金属を捕捉可能な基を有するシランカップリング剤を含む下地膜の上に積層しているトランジスタが提供される。 According to another aspect of the present invention, a source electrode and a drain electrode, a gate electrode provided corresponding to a channel between the source electrode and the drain electrode, and the source electrode and the drain electrode A base layer comprising a silane coupling agent having a group capable of capturing a metal that is a catalyst for electroless plating, wherein at least one of the gate electrode, the source electrode, and the drain electrode is provided in contact with the semiconductor layer Transistors are provided that are stacked on top of each other.
 本発明の態様によれば、無電解めっき法を用いて、高性能なトランジスタを製造することが可能なトランジスタの製造方法を提供することができる。また、高性能なトランジスタを提供することができる。 According to the aspect of the present invention, a transistor manufacturing method capable of manufacturing a high-performance transistor using an electroless plating method can be provided. In addition, a high-performance transistor can be provided.
第1実施形態のトランジスタの概略断面図である。It is a schematic sectional drawing of the transistor of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 第1実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 1st Embodiment. 本実施形態の製造方法で製造されるトランジスタの駆動の様子を示す図である。It is a figure which shows the mode of the drive of the transistor manufactured with the manufacturing method of this embodiment. 本実施形態の製造方法で製造されるトランジスタの駆動の様子を示す図である。It is a figure which shows the mode of the drive of the transistor manufactured with the manufacturing method of this embodiment. 第2実施形態のトランジスタの概略断面図である。It is a schematic sectional drawing of the transistor of 2nd Embodiment. 第2実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 2nd Embodiment. 第2実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 2nd Embodiment. 第2実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 2nd Embodiment. 第2実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 2nd Embodiment. 第2実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 2nd Embodiment. 第2実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 2nd Embodiment. 第2実施形態の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of 2nd Embodiment. 実施例の結果を示す写真である。It is a photograph which shows the result of an Example. 実施例の結果を示す写真である。It is a photograph which shows the result of an Example. 実施例の結果を示す写真である。It is a photograph which shows the result of an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.
[第1実施形態]
 以下、図1~図3Bを参照しながら、本発明の第1実施形態に係るトランジスタの製造方法および本実施形態に係るトランジスタについて説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
[First Embodiment]
The transistor manufacturing method according to the first embodiment of the present invention and the transistor according to the present embodiment will be described below with reference to FIGS. 1 to 3B. In all the drawings below, the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.
 図1は、本実施形態のトランジスタの製造方法で製造するトランジスタ、および本実施形態のトランジスタを示す概略断面図である。トランジスタ1Aは、いわゆるボトムコンタクト型のトランジスタである。以下の説明では、半導体層の形成材料として有機半導体を用いた有機トランジスタについて説明する。ただし、本発明の態様は、半導体層の形成材料として無機半導体を用いた無機トランジスタについても適用可能である。 FIG. 1 is a schematic cross-sectional view showing a transistor manufactured by the transistor manufacturing method of the present embodiment and the transistor of the present embodiment. The transistor 1A is a so-called bottom contact type transistor. In the following description, an organic transistor using an organic semiconductor as a material for forming a semiconductor layer will be described. However, the embodiment of the present invention can also be applied to an inorganic transistor using an inorganic semiconductor as a material for forming a semiconductor layer.
 トランジスタ1Aは、基板2と、下地膜3,13と、無電解めっき用の触媒5,15と、ゲート電極6と、絶縁体層7と、ソース電極16と、ドレイン電極17と、有機半導体層(半導体層)20と、を有している。トランジスタ1Aにおいては、絶縁体層7と下地膜13とを合わせた層が、「絶縁体層を含む層」である。 The transistor 1A includes a substrate 2, base films 3 and 13, catalysts 5 and 15 for electroless plating, a gate electrode 6, an insulator layer 7, a source electrode 16, a drain electrode 17, and an organic semiconductor layer. (Semiconductor layer) 20. In the transistor 1A, a layer including the insulator layer 7 and the base film 13 is a “layer including an insulator layer”.
 基板2は、光透過性を有するもの及び光透過性を有しないもののいずれも用いることができる。例えば、ガラス、石英ガラス、窒化ケイ素などの無機物や、アクリル樹脂、ポリカーボネート樹脂、PET(ポリエチレンテレフタレート)やPBT(ポリブチレンテレフタレート)などのポリエステル樹脂などの有機高分子(樹脂)などを用いることができる。 The substrate 2 can be either a light transmissive material or a non-light transmissive material. For example, an inorganic substance such as glass, quartz glass, or silicon nitride, or an organic polymer (resin) such as an acrylic resin, a polycarbonate resin, or a polyester resin such as PET (polyethylene terephthalate) or PBT (polybutylene terephthalate) can be used. .
 これら基板2の材料は、無電解めっきの結果として形成される金属製のめっき皮膜と金属結合を形成しない。そのため、本実施形態においては、これら基板2の材料を、直接めっき皮膜を形成しにくく、また形成されるめっき皮膜が剥離しやすい難めっき性の材料として取り扱う。同様の理由によりめっき皮膜が剥離しやすい材料であれば、例えば上述した材料の複合材料なども同様に基板2の形成材料として用いることができる。 These materials of the substrate 2 do not form a metal bond with a metal plating film formed as a result of electroless plating. Therefore, in the present embodiment, the material of the substrate 2 is handled as a difficult-to-platable material in which it is difficult to directly form a plating film and the formed plating film is easily peeled off. For example, a composite material of the above-described materials can be used as the material for forming the substrate 2 as long as the plating film is easily peeled off for the same reason.
 下地膜3は、本発明におけるゲート下地膜である。下地膜3は、基板2の一主面の全面を覆って形成されている。下地膜3の表面の一部には、触媒(無電解めっき用触媒)5が選択的に設けられている。触媒5は、無電解めっき用のめっき液に含まれる金属イオンを還元する触媒である。触媒5の例としては、銀や金属パラジウムなどが挙げられる。中でも金属パラジウムが好適に用いられる。 The base film 3 is a gate base film in the present invention. The base film 3 is formed so as to cover the entire main surface of the substrate 2. A catalyst (electroless plating catalyst) 5 is selectively provided on a part of the surface of the base film 3. The catalyst 5 is a catalyst that reduces metal ions contained in a plating solution for electroless plating. Examples of the catalyst 5 include silver and metallic palladium. Of these, metallic palladium is preferably used.
 下地膜3は、上述の触媒5である金属を捕捉可能な膜である。下地膜3は、前記金属を捕捉可能な基を有するシランカップリング剤を形成材料としている。下地膜3は、このようなシランカップリング剤を含む液状物を、基板2の一主面に塗布して形成される。 The base film 3 is a film capable of capturing the metal that is the catalyst 5 described above. The base film 3 uses a silane coupling agent having a group capable of capturing the metal as a forming material. The base film 3 is formed by applying a liquid material containing such a silane coupling agent to one main surface of the substrate 2.
 下地膜3の形成材料である「シランカップリング剤」は、触媒5である金属を捕捉可能な基と、基板2に結合可能な基と、がケイ素原子に結合している化合物である。 The “silane coupling agent” which is a material for forming the base film 3 is a compound in which a group capable of capturing the metal which is the catalyst 5 and a group capable of binding to the substrate 2 are bonded to a silicon atom.
 「金属を捕捉可能な基」とは、触媒5である金属またはこの金属のイオンを、例えばイオン結合や配位結合により捕捉することが可能な基を指す。このような基としては、例えば窒素原子や硫黄原子を有する基が例として挙げられる。「金属を捕捉可能な基」として、例えば、アミノ基、ウレア基、チオール基(またはメルカプト基)、チオカルボニル基、チオウレア基、窒素原子や硫黄原子を含む複素環化合物に結合する水素原子を1つ以上取り去って得られる基、などを有する基を例示することができる。 The “group capable of capturing a metal” refers to a group capable of capturing the metal that is the catalyst 5 or an ion of the metal by, for example, an ionic bond or a coordinate bond. Examples of such groups include groups having a nitrogen atom or a sulfur atom. As the “group capable of capturing a metal”, for example, an amino group, a urea group, a thiol group (or mercapto group), a thiocarbonyl group, a thiourea group, a hydrogen atom bonded to a heterocyclic compound containing a nitrogen atom or a sulfur atom is 1 Examples thereof include groups having groups obtained by removing two or more.
 「窒素原子や硫黄原子を含む複素環化合物」としては、単環式の複素環芳香族化合物や、多環式の複素環芳香族化合物や、これらの芳香族化合物が有する芳香環における2以上の炭素原子が水素化され芳香属性を有さない複素環化合物が挙げられる。単環式の複素環芳香族化合物の例としては、ピロール、イミダゾール、ピリジン、ピリミジン、チオフェンなどがある。多環式の複素環芳香族化合物の例としては、インドール、ベンゾチオフェンなどがある。 The “heterocyclic compound containing a nitrogen atom or sulfur atom” includes a monocyclic heteroaromatic compound, a polycyclic heteroaromatic compound, and two or more aromatic rings in these aromatic compounds. Examples include heterocyclic compounds in which carbon atoms are hydrogenated and do not have an aromatic attribute. Examples of monocyclic heteroaromatic compounds include pyrrole, imidazole, pyridine, pyrimidine, thiophene and the like. Examples of polycyclic heteroaromatic compounds include indole and benzothiophene.
 「基板2に結合可能な基」としては、ヒドロキシ基や、炭素数1から6のアルコキシ基が挙げられる。 The “group capable of binding to the substrate 2” includes a hydroxy group and an alkoxy group having 1 to 6 carbon atoms.
 このような下地膜3の形成材料として用いることが可能な化合物として、具体的には、N-シクロヘキシルアミノプロピルトリメトキシシラン、ビス(3-(トリメトキシシリル)プロピル)エチレンジアミン、1-(3-(トリメトキシシリルプロピル))ウレア、ビス(3-(トリメトキシシリルプロピル))ウレア、2,2-ジメトキシ-1,6-ジアザ-2-シラシクロオクタン、N-(3-(トリメトキシシリルプロピル))-4,5-ジヒドロイミダゾール、ビス(3-(トリメトキシシリル)プロピル)チオウレア、3-トリメトキシシリルプロパンチオール、トリメトキシシリルプロピル基で修飾されたポリエチレンイミンなどを例示することができる。 Specific examples of compounds that can be used as a material for forming such an undercoat film 3 include N-cyclohexylaminopropyltrimethoxysilane, bis (3- (trimethoxysilyl) propyl) ethylenediamine, and 1- (3- (Trimethoxysilylpropyl)) urea, bis (3- (trimethoxysilylpropyl)) urea, 2,2-dimethoxy-1,6-diaza-2-silacyclooctane, N- (3- (trimethoxysilylpropyl) ))-4,5-dihydroimidazole, bis (3- (trimethoxysilyl) propyl) thiourea, 3-trimethoxysilylpropanethiol, polyethyleneimine modified with a trimethoxysilylpropyl group, and the like.
 中でも、シランカップリング剤としては、「金属を捕捉可能な基」としてアミノ基を有するものが好ましく、1級アミンまたは2級アミンである(「金属を捕捉可能な基」が、-NH、-NH-で表される基である)とより好ましい。以下の説明においては、下地膜3は、1級アミンであるシランカップリング剤を用いて形成されているものとして説明する。 Among them, the silane coupling agent preferably has an amino group as a “group capable of capturing a metal”, and is a primary amine or a secondary amine (the “group capable of capturing a metal” is —NH 2 , And a group represented by —NH— is more preferable. In the following description, it is assumed that the base film 3 is formed using a silane coupling agent that is a primary amine.
 ゲート電極6は、触媒5の表面に形成された金属電極である。ゲート電極6は、後述するように無電解めっきにより触媒5の表面に析出した金属で形成されている。ゲート電極6の材料としては、ニッケル-リン(NiP)や、銅(Cu)が挙げられる。 The gate electrode 6 is a metal electrode formed on the surface of the catalyst 5. The gate electrode 6 is formed of a metal deposited on the surface of the catalyst 5 by electroless plating as will be described later. Examples of the material of the gate electrode 6 include nickel-phosphorus (NiP) and copper (Cu).
 絶縁体層7は、絶縁性を有し、ゲート電極6と、ソース電極16およびドレイン電極17と、を電気的に絶縁することが可能であれば、無機材料および有機材料のいずれを用いて形成してもよい。中でも、製造や微細な加工が容易であることから、光硬化型樹脂材料を形成材料とすることが好ましい。例えば、絶縁体層7の形成材料として、紫外線硬化型のアクリル樹脂、エポキシ樹脂、エン・チオール樹脂、シリコーン樹脂などを挙げることができる。 The insulator layer 7 is formed using any of an inorganic material and an organic material as long as it has insulating properties and can electrically insulate the gate electrode 6 from the source electrode 16 and the drain electrode 17. May be. Among these, it is preferable to use a photocurable resin material as a forming material because it is easy to manufacture and finely process. Examples of the material for forming the insulator layer 7 include an ultraviolet curable acrylic resin, an epoxy resin, an ene / thiol resin, and a silicone resin.
 下地膜13は、絶縁体層7の上面全面に形成されている。下地膜13は、本発明の態様におけるソース下地膜およびドレイン下地膜である。下地膜13は、ソース下地膜およびドレイン下地膜が連続する膜として形成されている。下地膜13は、基板2の一主面の全面を覆って形成されている。下地膜13の表面の一部には、触媒(無電解めっき用触媒)15が選択的に設けられている。触媒15の形成材料としては、上述の触媒5と同様のものを用いることができる。 The base film 13 is formed on the entire upper surface of the insulator layer 7. The base film 13 is a source base film and a drain base film in the embodiment of the present invention. The base film 13 is formed as a film in which a source base film and a drain base film are continuous. The base film 13 is formed so as to cover the entire main surface of the substrate 2. A catalyst (electroless plating catalyst) 15 is selectively provided on a part of the surface of the base film 13. As a material for forming the catalyst 15, the same material as the catalyst 5 described above can be used.
 下地膜13の形成材料としては、上述の下地膜3と同様のものを用いることができる。ただし、下地膜3と下地膜13との形成材料を異ならせてもよい。以下の説明においては、下地膜13は、下地膜3と同じ1級アミンであるシランカップリング剤を用いて形成されているものとして説明する。 As a material for forming the base film 13, the same material as the base film 3 described above can be used. However, the base film 3 and the base film 13 may be formed of different materials. In the following description, it is assumed that the base film 13 is formed using a silane coupling agent that is the same primary amine as the base film 3.
 図では、下地膜13が絶縁体層7の上面全面に形成されているものとしている。しかし、触媒15が設けられる位置にのみ選択的に下地膜13を形成することとしても構わない。その場合、絶縁体層7の上面に、下地膜13の形成材料であるシランカップリング剤を通常知られた方法を用いて選択的に塗布することで、選択的に下地膜13を形成することができる。また、絶縁体層7の上面において、まず、下地膜13を形成する領域よりも広い領域にシランカップリング剤を塗布し、次いで、下地膜13を形成する領域からはみ出た部分に形成された膜に紫外線を照射することでシランカップリング剤を分解して除去し、選択的に下地膜13を形成することとしても構わない。 In the figure, it is assumed that the base film 13 is formed on the entire upper surface of the insulator layer 7. However, the base film 13 may be selectively formed only at the position where the catalyst 15 is provided. In that case, the base film 13 is selectively formed on the upper surface of the insulator layer 7 by selectively applying a silane coupling agent, which is a material for forming the base film 13, using a generally known method. Can do. Further, on the upper surface of the insulator layer 7, first, a silane coupling agent is applied to a region wider than a region where the base film 13 is formed, and then a film formed in a portion protruding from the region where the base film 13 is formed. The base film 13 may be selectively formed by decomposing and removing the silane coupling agent by irradiating the substrate with ultraviolet rays.
 ソース電極16およびドレイン電極17は、触媒15の表面に形成された金属電極である。ソース電極16は、第1電極161と、第1電極161の表面を覆う第2電極162とを有している。同様に、ドレイン電極17は、第1電極171と、第1電極171の表面を覆う第2電極172とを有している。 The source electrode 16 and the drain electrode 17 are metal electrodes formed on the surface of the catalyst 15. The source electrode 16 includes a first electrode 161 and a second electrode 162 that covers the surface of the first electrode 161. Similarly, the drain electrode 17 includes a first electrode 171 and a second electrode 172 that covers the surface of the first electrode 171.
 第1電極161,171は、上述したゲート電極6と同様に、無電解めっきにより形成される。第1電極161,171の材料としては、ニッケル-リン(NiP)や、銅(Cu)が挙げられる。本実施形態においては、第1電極161,171の形成材料として、ニッケル-リン(仕事関数:5.5eV)を用いることとして説明する。 The first electrodes 161 and 171 are formed by electroless plating similarly to the gate electrode 6 described above. Examples of the material of the first electrodes 161 and 171 include nickel-phosphorus (NiP) and copper (Cu). In the present embodiment, it is assumed that nickel-phosphorus (work function: 5.5 eV) is used as a material for forming the first electrodes 161 and 171.
 第2電極162,172は、第1電極161,171の触媒15に接しない表面全面を覆って形成された金属めっき層である。すなわち、第2電極162,172は、ソース電極16およびドレイン電極17において、それぞれ互いに対向する側面16a,17a(対向する面)を覆って設けられている。 The second electrodes 162 and 172 are metal plating layers formed so as to cover the entire surface of the first electrodes 161 and 171 that do not contact the catalyst 15. That is, the second electrodes 162 and 172 are provided so as to cover the side surfaces 16a and 17a (opposing surfaces) facing each other in the source electrode 16 and the drain electrode 17, respectively.
 第2電極162,172の形成材料としては、後述する半導体層20の形成材料のHOMO/LUMO準位との関係で、電子移動(または正孔移動)が容易な仕事関数を持つ金属材料を用いる。本実施形態においては、第2電極162,172の形成材料として、金(仕事関数:5.4eV)を用いることとして説明する。 As a material for forming the second electrodes 162 and 172, a metal material having a work function that facilitates electron transfer (or hole transfer) is used in relation to the HOMO / LUMO level of the material for forming the semiconductor layer 20 described later. . In the present embodiment, it is assumed that gold (work function: 5.4 eV) is used as a material for forming the second electrodes 162 and 172.
 半導体層20は、ソース電極16およびドレイン電極17の間において下地膜13の表面に設けられ、ソース電極16とドレイン電極17とに接して形成されている。詳しくは、半導体層20は、ソース電極16の側面16a、およびドレイン電極17の側面17aに接して設けられており、第2電極162,172と接している。 The semiconductor layer 20 is provided on the surface of the base film 13 between the source electrode 16 and the drain electrode 17, and is formed in contact with the source electrode 16 and the drain electrode 17. Specifically, the semiconductor layer 20 is provided in contact with the side surface 16 a of the source electrode 16 and the side surface 17 a of the drain electrode 17, and is in contact with the second electrodes 162 and 172.
 半導体層20の形成材料としては、通常知られた有機半導体材料を用いることができる。例えば、銅フタロシアニン(CuPc)、ペンタセン、ルブレン、テトラセン、P3HT(poly(3-hexylthiophene-2,5-diyl))のようなp型半導体や、C60のようなフラーレン類、PTCDI-C8H(N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide)のようなペリレン誘導体などのn型半導体を用いることができる。中でも、TIPSペンタセン(6,13-Bis(triisopropylsilylethynyl)pentacene)のような可溶性ペンタセンや、P3HTなどの有機半導体ポリマーは、トルエンのような有機溶媒に可溶であり、湿式工程で半導体層20を形成可能であるため好ましい。本実施形態においては、半導体層20の形成材料として、p型半導体であるTIPSペンタセン(HOMO準位:5.2eV)を用いることとして説明する。
 半導体層20の形成材料としては、有機半導体材料に限らず、通常知られた無機半導体材料を用いることも可能である。
As a forming material of the semiconductor layer 20, a generally known organic semiconductor material can be used. For example, copper phthalocyanine (CuPc), pentacene, rubrene, tetracene, p-type semiconductor and as P3HT (poly (3-hexylthiophene- 2,5-diyl)), fullerenes such as C 60, PTCDI-C8H (N N-type semiconductors such as perylene derivatives such as N′-dioctyl-3,4,9,10-perylene tetracarboxylic diimide) can be used. Among them, soluble pentacene such as TIPS pentacene (6,13-Bis (triisopropylsilylethynyl) pentacene) and organic semiconductor polymers such as P3HT are soluble in organic solvents such as toluene, and form the semiconductor layer 20 in a wet process. This is preferable because it is possible. In the present embodiment, it is assumed that TIPS pentacene (HOMO level: 5.2 eV) which is a p-type semiconductor is used as a material for forming the semiconductor layer 20.
The material for forming the semiconductor layer 20 is not limited to an organic semiconductor material, and a generally known inorganic semiconductor material can also be used.
 このようなトランジスタ1Aでは、無電解めっきによって形成されたゲート電極6、ソース電極16、ドレイン電極17が、シランカップリング剤を形成材料とする下地膜3,13(ゲート下地膜、ソース下地膜、ドレイン下地膜)の上に形成されている。例えば、凹凸形状を有している領域にこれらの電極を形成する場合、下地の凹凸を反映して各電極には凹凸形状が付される(形成される)。すると、絶縁体層を介して積層された電極間の距離が一定せず、ゲート電極とソース電極またはゲート電極とドレイン電極の距離が近づいた位置において絶縁が破れ、リーク電流が発生するおそれがある。また、下地が凹凸形状を有すると、ゲート電極と平面的に重なる半導体層のチャネル領域(図中、符号ARで示す)にも凹凸形状が付与され(形成され)、チャネル領域においてキャリアの移動距離が長くなり、性能が低下するおそれがある。 In such a transistor 1A, the gate electrode 6, the source electrode 16, and the drain electrode 17 formed by electroless plating are the base films 3 and 13 (gate base film, source base film, A drain base film). For example, when these electrodes are formed in a region having a concavo-convex shape, each electrode is provided with a concavo-convex shape reflecting the unevenness of the base. Then, the distance between the electrodes stacked via the insulator layer is not constant, and there is a possibility that the insulation breaks at a position where the distance between the gate electrode and the source electrode or the gate electrode and the drain electrode is close, and a leakage current is generated. . When the base has an uneven shape, an uneven shape is also given (formed) to the channel region (indicated by symbol AR in the drawing) of the semiconductor layer that overlaps the gate electrode in a planar manner, and the carrier travel distance in the channel region May become longer and performance may be reduced.
 しかし、本実施形態のトランジスタ1Aでは、下地膜3,13がシランカップリング剤を形成材料としている。よって、基板表面を粗化したりフィラー成分を含む下地膜を用いたりしないので、下地膜3,13は平滑な膜となっている。そのため、下地膜3,13を形成することによっては凹凸形状が形成されず、凹凸形状に起因する不具合が生じない。したがって、高性能なトランジスタを製造することができる。 However, in the transistor 1A of this embodiment, the base films 3 and 13 use a silane coupling agent as a forming material. Therefore, since the substrate surface is not roughened and a base film containing a filler component is not used, the base films 3 and 13 are smooth films. Therefore, by forming the base films 3 and 13, the uneven shape is not formed, and a problem caused by the uneven shape does not occur. Therefore, a high-performance transistor can be manufactured.
 以下、図2A~図2Rを用いて、上述のトランジスタ1Aの製造方法について説明する。 Hereinafter, a manufacturing method of the above-described transistor 1A will be described with reference to FIGS. 2A to 2R.
 まず、図2Aに示すように、基板2の表面に、上述のシランカップリング剤を必要に応じて有機溶媒で希釈した液状物を塗布し、塗膜3Aを形成する。塗布の方法としては、スピンコート、ディップコート、スプレーコート、ロールコート、刷毛塗り、フレキソ印刷やスクリーン印刷といった印刷法などの通常知られた方法を例示することができる。
 ここでは、シランカップリング剤として、1級アミンである3-アミノプロピルトリエトキシシランを用いることとして説明する。
First, as shown in FIG. 2A, a liquid material obtained by diluting the above-described silane coupling agent with an organic solvent as necessary is applied to the surface of the substrate 2 to form a coating film 3A. Examples of the application method include generally known methods such as spin coating, dip coating, spray coating, roll coating, brush coating, printing methods such as flexographic printing and screen printing.
Here, it is assumed that 3-aminopropyltriethoxysilane which is a primary amine is used as the silane coupling agent.
 有機溶媒としては、シランカップリング剤を溶解可能であれば種々のものを用いることができる。中でも、有機溶媒としては、極性溶媒を好適に用いることができる。使用可能な溶媒として、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール、IPA)などのアルコール類、プロピレングリコールモノメチルエーテルアセテート(PGMEA)のようなエーテル類、トルエンのような芳香族炭化水素、アセトニトリルのようなニトリル類、酢酸エステルのようなエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類を挙げることができる。 As the organic solvent, various solvents can be used as long as they can dissolve the silane coupling agent. Especially, as an organic solvent, a polar solvent can be used conveniently. Usable solvents include, for example, alcohols such as methanol, ethanol, 1-propanol and 2-propanol (isopropyl alcohol, IPA), ethers such as propylene glycol monomethyl ether acetate (PGMEA), and aromatics such as toluene. Examples include hydrocarbons, nitriles such as acetonitrile, esters such as acetate, and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone.
 次いで、図2Bに示すように、熱処理により有機溶媒を揮発させて除去し、下地膜3を形成する。このように形成された下地膜3は、極めて薄い膜厚のシランカップリング剤層となる。そのため、光散乱が生じにくく透明な皮膜となる。そのため、例えば本実施形態の製造方法で製造するトランジスタが光透過性を有する基板上に設けられる場合、下地膜3を基板2の表面全面に成膜しても基板2と下地膜3とを合わせた全体として光透過性を維持することができ、成膜が容易である。 Next, as shown in FIG. 2B, the organic solvent is volatilized and removed by heat treatment to form the base film 3. The base film 3 formed in this way becomes a silane coupling agent layer having a very thin film thickness. Therefore, light scattering hardly occurs and a transparent film is obtained. Therefore, for example, when the transistor manufactured by the manufacturing method of the present embodiment is provided on a light-transmitting substrate, the substrate 2 and the base film 3 are combined even if the base film 3 is formed on the entire surface of the substrate 2. In addition, light transmittance can be maintained as a whole, and film formation is easy.
 次に、図2Cに示すように、下地膜3上にレジスト材料を塗布し、これをプリベークすることでパターニングされていないレジスト層4Aを形成する。レジスト材料としては、ここではポジ型フォトレジストを用いる。 Next, as shown in FIG. 2C, a resist material is applied on the base film 3 and pre-baked to form a resist layer 4A that is not patterned. Here, a positive photoresist is used as the resist material.
 その後、マスクM1を介し、レジスト層4Aに紫外線Lを照射して、レジスト層4Aを露光する。マスクM1は、金属電極を形成する領域に対応する位置に開口部Maを備え、金属電極を形成しない領域に遮光部Mbを備えている。 Thereafter, the resist layer 4A is exposed to ultraviolet rays L through the mask M1 to expose the resist layer 4A. The mask M1 includes an opening Ma at a position corresponding to a region where the metal electrode is formed, and includes a light shielding portion Mb in a region where the metal electrode is not formed.
 次いで、図2Dに示すように、紫外線が照射されたレジスト層を溶解する現像液で現像することにより、開口部4aが設けられたレジスト層4を形成する。 Next, as shown in FIG. 2D, the resist layer 4 provided with the openings 4a is formed by developing with a developer that dissolves the resist layer irradiated with ultraviolet rays.
 次いで、図2Eに示すように、レジスト層4に形成された開口部4aから露出している下地膜3の表面に、無電解めっきに用いる触媒5を捕捉させる。具体的には、2価パラジウム塩のコロイド溶液を接触させることで、下地膜3に触媒5である金属を捕捉させる。 Next, as shown in FIG. 2E, the catalyst 5 used for electroless plating is captured on the surface of the base film 3 exposed from the opening 4 a formed in the resist layer 4. Specifically, the metal which is the catalyst 5 is captured by the base film 3 by contacting a colloidal solution of a divalent palladium salt.
 一般的な樹脂の無電解めっき工程は、洗浄→エッチング→触媒付与(触媒形成)→無電解めっきで示される。ここで、「触媒付与(触媒形成)」は、無電解めっきの反応開始剤(触媒)となるパラジウム(Pd)などの金属を、めっきを施す領域の表面に付着させる工程である。通常の「触媒付与(触媒形成)」は、2価パラジウム塩と2価スズ(Sn)塩とのコロイド溶液を基板に接触させてパラジウムを付着させ、その後アクセレーターと呼ばれる酸またはアルカリ溶液にパラジウムを浸漬させる。上述のようにしてパラジウムを0価に還元して活性化する工程を通常の「触媒付与(触媒形成)」は含む。 A general resin electroless plating step is represented by washing → etching → catalyst application (catalyst formation) → electroless plating. Here, “catalyst application (catalyst formation)” is a process in which a metal such as palladium (Pd), which is a reaction initiator (catalyst) for electroless plating, is attached to the surface of the region to be plated. The usual “catalyst application (catalyst formation)” is a method in which a colloidal solution of divalent palladium salt and divalent tin (Sn) salt is brought into contact with a substrate to deposit palladium, and then palladium is added to an acid or alkali solution called an accelerator. Soak. The usual “catalyst application (catalyst formation)” includes a step of reducing palladium to zero valence and activating it as described above.
 これに対し、本実施形態のように、下地膜の形成材料であるシランカップリング剤が1級アミンまたは2級アミンであると、上述したアクセレーターを用いた還元処理が不要となることが、発明者らによって確認されている(後述)。そのため、シランカップリング剤として1級アミンまたは2級アミンを用いると、無電解めっきの操作が簡略化される。
 本実施形態においては、下地膜3の形成材料として1級アミンである3-アミノプロピルトリエトキシシランを用いる。そのため、還元処理が不要となり、操作が簡略化される。
On the other hand, when the silane coupling agent that is the material for forming the base film is a primary amine or a secondary amine as in the present embodiment, the reduction treatment using the accelerator described above is unnecessary. It has been confirmed by the inventors (described later). Therefore, when primary amine or secondary amine is used as the silane coupling agent, the operation of electroless plating is simplified.
In the present embodiment, 3-aminopropyltriethoxysilane which is a primary amine is used as a material for forming the base film 3. Therefore, a reduction process is unnecessary and the operation is simplified.
 シランカップリング剤が3級アミン、または他の「金属を捕捉可能な基」を有するケイ素化合物である場合には、2価パラジウム塩のコロイド溶液を塗布した後、上述したアクセレーターを用いる通常の処理(活性化する工程)を行うことで、下地膜3に無電解めっき用の触媒5を捕捉させることができる。 When the silane coupling agent is a tertiary amine or a silicon compound having another “group capable of capturing a metal”, after applying a colloidal solution of a divalent palladium salt, an ordinary accelerator using the above-described accelerator is used. By performing the treatment (activation step), the base film 3 can capture the catalyst 5 for electroless plating.
 次いで、図2Fに示すように、触媒5に無電解めっき液を接触させることにより、触媒5の表面で無電解めっき液に溶解する金属イオンを還元して析出させる。上述のようにして、開口部4a内に選択的にニッケル-リンを形成材料とするゲート電極6を形成する。シランカップリング剤が1級アミンまたは2級アミンである場合、アクセレーターを用いた活性化を行うことなく無電解めっき液に浸漬することで、触媒5の表面がめっきされる。このことから、下地膜3の表面には、金属パラジウムが捕捉されていることを間接的に確認することができる。 Next, as shown in FIG. 2F, by bringing the electroless plating solution into contact with the catalyst 5, metal ions dissolved in the electroless plating solution on the surface of the catalyst 5 are reduced and deposited. As described above, the gate electrode 6 made of nickel-phosphorus is formed selectively in the opening 4a. When the silane coupling agent is a primary amine or a secondary amine, the surface of the catalyst 5 is plated by immersing in an electroless plating solution without activation using an accelerator. From this, it can be indirectly confirmed that metal palladium is captured on the surface of the base film 3.
 次いで、図2Gに示すように、残存するレジスト層の全面に紫外線を露光した後に、通常知られた現像液でレジスト層を除去する。このようにして、ゲート電極6を形成する。 Next, as shown in FIG. 2G, the entire surface of the remaining resist layer is exposed to ultraviolet rays, and then the resist layer is removed with a generally known developer. In this way, the gate electrode 6 is formed.
 次に、図2Hに示すように、ゲート電極6を覆って下地膜3の表面に、塗布液を塗布する。この塗布液は、絶縁性を有する樹脂材料の前駆体を有機溶媒に溶解させたものである。塗布の方法としては、上述の方法を用いることができる。 Next, as shown in FIG. 2H, a coating solution is applied to the surface of the base film 3 so as to cover the gate electrode 6. This coating solution is obtained by dissolving a precursor of an insulating resin material in an organic solvent. As a coating method, the above-described method can be used.
 樹脂材料としては、例えば、紫外線硬化型のアクリル樹脂、エポキシ樹脂、エン・チオール樹脂、シリコーン樹脂を用いることができる。また、有機溶媒としては、上述の塗膜3Aに係る塗布液と同様の極性溶媒を好適に用いることができる。また、塗布液においては、濃度や有機溶媒の種類を変更することにより、塗布液全体の粘度を調整し、塗布液の塗膜7Aの膜厚を制御することができる。 As the resin material, for example, an ultraviolet curable acrylic resin, an epoxy resin, an ene / thiol resin, or a silicone resin can be used. Moreover, as an organic solvent, the polar solvent similar to the coating liquid concerning the above-mentioned coating film 3A can be used suitably. Moreover, in the coating liquid, the viscosity of the whole coating liquid can be adjusted by changing the concentration and the type of the organic solvent, and the film thickness of the coating film 7A of the coating liquid can be controlled.
 図に示す工程においては、ゲート電極6と、上層に形成するソース電極およびドレイン電極との間のリークを抑制するため、塗膜7Aが数百nm程度の厚さとなるように厚塗りする。 In the process shown in the figure, in order to suppress leakage between the gate electrode 6 and the source electrode and drain electrode formed in the upper layer, the coating film 7A is thickly applied to a thickness of about several hundred nm.
 次いで、図2Iに示すように、マスクM2を介し、塗膜7Aに紫外線Lを照射して樹脂材料を硬化させ、絶縁体層7を形成する。マスクM2には、絶縁体層7を形成する領域に対応して開口部が設けられている。この際、樹脂材料の硬化反応を促進させるため、紫外線照射と同時または紫外線照射後に熱処理を行うと好ましい。 Next, as shown in FIG. 2I, the resin material is cured by irradiating the coating film 7 </ b> A with ultraviolet rays L through the mask M <b> 2 to form the insulator layer 7. The mask M2 has an opening corresponding to a region where the insulator layer 7 is formed. At this time, in order to promote the curing reaction of the resin material, it is preferable to perform a heat treatment simultaneously with the ultraviolet irradiation or after the ultraviolet irradiation.
 次いで、図2Jに示すように、塗膜を溶解する溶媒Sで現像することにより、未硬化の塗膜を除去し、パターニングされた絶縁体層7を形成する。 Next, as shown in FIG. 2J, the uncured coating film is removed by developing with a solvent S that dissolves the coating film, and a patterned insulator layer 7 is formed.
 本実施形態では、ゲート電極6を覆って下地膜3の表面に、絶縁性を有する樹脂材料の前駆体を有機溶媒に溶解させた塗布液を塗布し、紫外線を照射して前記前駆体を硬化させて絶縁体層7を形成する形態について説明した。しかし、絶縁体層7とゲート電極6との密着性を向上させるため、前記塗布液を塗布する前に、ゲート電極6を含む表面を覆ってシランカップリング剤を塗布してもよい。 In this embodiment, a coating solution in which a precursor of an insulating resin material is dissolved in an organic solvent is applied to the surface of the base film 3 so as to cover the gate electrode 6, and the precursor is cured by irradiation with ultraviolet rays. Thus, the embodiment in which the insulator layer 7 is formed has been described. However, in order to improve the adhesion between the insulator layer 7 and the gate electrode 6, a silane coupling agent may be applied to cover the surface including the gate electrode 6 before applying the coating solution.
 次に、図2Kに示すように、絶縁体層7の上面全面に、上述のシランカップリング剤を必要に応じて有機溶媒で希釈した液状物を塗布する。続いて、熱処理を行って有機溶媒を揮発させて除去し、下地膜13を形成する。シランカップリング剤および有機溶媒としては、上述した下地膜3の形成で例示したものと同様のものを用いることができる。 Next, as shown in FIG. 2K, a liquid material obtained by diluting the above-described silane coupling agent with an organic solvent as required is applied to the entire upper surface of the insulator layer 7. Subsequently, heat treatment is performed to volatilize and remove the organic solvent, and the base film 13 is formed. As the silane coupling agent and the organic solvent, those similar to those exemplified in the formation of the base film 3 described above can be used.
 次いで、図2Lに示すように、絶縁体層7および下地膜13を覆ってレジスト材料を塗布し、これをプリベークすることでパターニングされていないレジスト層14Aを形成する。レジスト材料としては、ここではポジ型フォトレジストを用いる。 Next, as shown in FIG. 2L, a resist material is applied so as to cover the insulator layer 7 and the base film 13, and a pre-baked resist layer 14A is formed. Here, a positive photoresist is used as the resist material.
 その後、マスクM3を介し、レジスト層14Aに紫外線Lを照射し、レジスト層14Aを露光する。マスクM3には、ソース電極およびドレイン電極を形成する領域に対応して開口部が設けられている。 Thereafter, the resist layer 14A is irradiated with ultraviolet rays L through the mask M3 to expose the resist layer 14A. The mask M3 is provided with an opening corresponding to a region where the source electrode and the drain electrode are formed.
 次いで、図2Mに示すように、紫外線が照射されたレジスト層を溶解する現像液で現像することにより、開口部14aが設けられたレジスト層14を形成する。 Next, as shown in FIG. 2M, the resist layer 14 provided with the openings 14a is formed by developing with a developer that dissolves the resist layer irradiated with ultraviolet rays.
 次に、図2Nに示すように、開口部14aから露出している下地膜13に、2価パラジウム塩のコロイド溶液を接触させることで、下地膜13の表面に無電解めっきに用いる触媒15を捕捉させる。その後、触媒15に無電解めっき液を接触させることにより、触媒15の表面で無電解めっき液に溶解する金属イオンを還元して析出させる。上述のようにして、開口部14a内に選択的にニッケル-リンを形成材料とする第1電極161,171を形成する。 Next, as shown in FIG. 2N, the base film 13 exposed from the opening 14a is brought into contact with a colloidal solution of a divalent palladium salt, whereby the catalyst 15 used for electroless plating is applied to the surface of the base film 13. Capture. Thereafter, by bringing the electroless plating solution into contact with the catalyst 15, metal ions dissolved in the electroless plating solution on the surface of the catalyst 15 are reduced and deposited. As described above, the first electrodes 161 and 171 are formed selectively using nickel-phosphorus as a forming material in the opening 14a.
 次いで、図2Pに示すように、残存するレジスト層の全面に紫外線を露光した後に、通常知られた現像液でレジスト層を除去する。このようにして、第1電極161,171を形成する。 Next, as shown in FIG. 2P, after the entire surface of the remaining resist layer is exposed to ultraviolet rays, the resist layer is removed with a generally known developer. In this way, the first electrodes 161 and 171 are formed.
 次に、図2Qに示すように、全体を置換金めっき浴に浸漬させることで、第1電極161,171の表面に金を置換析出させる。更に、還元金めっき浴に浸漬させることにより、第1電極161、171の表面に金を形成材料とする第2電極162,172を形成する。このようにして、ソース電極16およびドレイン電極17を形成する。 Next, as shown in FIG. 2Q, gold is substituted and deposited on the surfaces of the first electrodes 161 and 171 by immersing the whole in a substitution gold plating bath. Furthermore, by immersing in a reduced gold plating bath, second electrodes 162 and 172 using gold as a forming material are formed on the surfaces of the first electrodes 161 and 171. In this way, the source electrode 16 and the drain electrode 17 are formed.
 次いで、図2Rに示すように、溶液S1を、ソース電極16およびドレイン電極17の間に塗布し、乾燥させることにより、半導体層20を形成する。溶液S1は、TIPSペンタセンのような、有機溶媒に可溶な有機半導体材料を前記有機溶媒に溶解したものである。本実施形態では、湿式法により半導体層20を形成することとした。しかし、昇華法、転写法などの方法を用いることもできる。
 以上のようにして、トランジスタ1Aを製造することができる。
Next, as shown in FIG. 2R, the semiconductor layer 20 is formed by applying the solution S1 between the source electrode 16 and the drain electrode 17 and drying it. The solution S1 is obtained by dissolving an organic semiconductor material soluble in an organic solvent, such as TIPS pentacene, in the organic solvent. In the present embodiment, the semiconductor layer 20 is formed by a wet method. However, methods such as a sublimation method and a transfer method can also be used.
As described above, the transistor 1A can be manufactured.
 以上のような構成のトランジスタの製造方法によれば、下地膜3,13がシランカップリング剤を形成材料としており、平滑な膜となっている。そのため、下地膜の凹凸形状に起因する不具合が生じず、高性能なトランジスタを容易に製造することができる。 According to the method of manufacturing a transistor having the above-described configuration, the base films 3 and 13 are made of a silane coupling agent as a forming material, and are smooth films. Therefore, there is no problem due to the uneven shape of the base film, and a high-performance transistor can be easily manufactured.
 また、第2電極162,172の形成前に予めレジスト層14を除去している。そのため、ソース電極16の側面16a、およびドレイン電極17の側面17aにも確実に第2電極162,172を形成することができる。これにより、製造されたトランジスタ1Aでは、駆動時に半導体層20とソース電極16(または半導体層20とドレイン電極17)との間で電流が流れやすく、良好な駆動が可能となる。 Further, the resist layer 14 is removed in advance before the formation of the second electrodes 162 and 172. Therefore, the second electrodes 162 and 172 can be reliably formed on the side surface 16 a of the source electrode 16 and the side surface 17 a of the drain electrode 17. Thus, in the manufactured transistor 1A, current can easily flow between the semiconductor layer 20 and the source electrode 16 (or the semiconductor layer 20 and the drain electrode 17) during driving, and good driving is possible.
 また、第1電極161、171が第2電極162、172に覆われていることによって第1電極161、171の経時的な腐食が抑制され、トランジスタの性能を安定して維持することができるという効果も有する。 In addition, since the first electrodes 161 and 171 are covered with the second electrodes 162 and 172, corrosion over time of the first electrodes 161 and 171 is suppressed, and the performance of the transistor can be stably maintained. It also has an effect.
 図3A及び図3Bは、トランジスタの駆動の様子を示す模式図である。図3Aは、第2電極を有しないこと以外はトランジスタ1Aと同様の構成を備えたトランジスタ1xである。図3Bは、本実施形態の製造方法で製造するトランジスタ1Aについて示した図である。 FIG. 3A and FIG. 3B are schematic diagrams showing how the transistors are driven. FIG. 3A shows a transistor 1x having a configuration similar to that of the transistor 1A except that the second electrode is not provided. FIG. 3B is a diagram showing the transistor 1A manufactured by the manufacturing method of the present embodiment.
 本実施形態において「有機半導体層の形成材料において電子移動に用いる分子軌道のエネルギー準位」とは、有機半導体層がp型半導体である場合は、HOMOのエネルギー準位であり、有機半導体層がn型半導体である場合は、LUMOのエネルギー準位である。 In the present embodiment, “the energy level of molecular orbitals used for electron transfer in the organic semiconductor layer forming material” is the HOMO energy level when the organic semiconductor layer is a p-type semiconductor. In the case of an n-type semiconductor, it is the LUMO energy level.
 まず、図3Aに示すトランジスタ1xのように、第2電極を有さない構成とすると、半導体層20のHOMOと第1電極161の仕事関数との間のギャップ(エネルギー準位差)が大きい。そのため、ショットキー抵抗が生じ、電流が流れにくい。そのため、例えば図3A中の矢印Aで示すような、高抵抗な半導体層20を流れる電流の流れが形成されやすく、良好な導通を確保しにくい。 First, when the second electrode is not provided like the transistor 1x shown in FIG. 3A, the gap (energy level difference) between the HOMO of the semiconductor layer 20 and the work function of the first electrode 161 is large. For this reason, a Schottky resistor is generated, and current does not flow easily. Therefore, for example, a current flow through the high-resistance semiconductor layer 20 as shown by an arrow A in FIG. 3A is easily formed, and it is difficult to ensure good conduction.
 対して、図3Bに示すように、トランジスタ1Aにおいて、不図示のゲート電極に印加されると、半導体層20において下地膜13との界面付近に、数nmの厚さのチャネル領域ARが形成され、ソース電極16と不図示のドレイン電極との間の導通を可能とする。この際、ソース電極16の表面は、第1電極161よりも半導体層20の形成材料との間で電子移動が容易な(半導体層20のHOMOとのエネルギー準位差が小さい)仕事関数を持つ金属材料を用いて第2電極162が形成されており、ショットキー抵抗が低減されている。そのため、電流は、第1電極161および第2電極162を介して、良好にチャネル領域ARに流れ込む。図3B中では、矢印Bを用いて電流の流れを示している。そのため、高性能のトランジスタ1Aを実現することができる。 On the other hand, as shown in FIG. 3B, when applied to a gate electrode (not shown) in the transistor 1A, a channel region AR having a thickness of several nm is formed in the semiconductor layer 20 near the interface with the base film 13. The conduction between the source electrode 16 and the drain electrode (not shown) is enabled. At this time, the surface of the source electrode 16 has a work function in which electron transfer between the surface of the source electrode 16 and the material for forming the semiconductor layer 20 is easier than that of the first electrode 161 (energy level difference from the HOMO of the semiconductor layer 20 is small). The second electrode 162 is formed using a metal material, and the Schottky resistance is reduced. Therefore, the current flows into the channel region AR favorably through the first electrode 161 and the second electrode 162. In FIG. 3B, an arrow B is used to indicate the current flow. Therefore, a high-performance transistor 1A can be realized.
[第2実施形態]
 図4は、本発明の第2実施形態に係るトランジスタの製造方法により製造されるトランジスタ1Bの概略断面図である。
[Second Embodiment]
FIG. 4 is a schematic cross-sectional view of a transistor 1B manufactured by the method for manufacturing a transistor according to the second embodiment of the present invention.
 本実施形態のトランジスタ1Bは、第1実施形態のトランジスタ1Aと一部共通している。異なるのは、第1実施形態のトランジスタがボトムコンタクト型のトランジスタであり、本実施形態のトランジスタ1Bがトップコンタクト型のトランジスタであることである。したがって、本実施形態において第1実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。 The transistor 1B of this embodiment is partially in common with the transistor 1A of the first embodiment. The difference is that the transistor of the first embodiment is a bottom contact type transistor, and the transistor 1B of this embodiment is a top contact type transistor. Therefore, in this embodiment, the same code | symbol is attached | subjected about the component which is common in 1st Embodiment, and detailed description is abbreviate | omitted.
 トランジスタ1Bは、半導体層20を有する。半導体層20は、絶縁体層7の上に配置され、その表面にソース電極16およびドレイン電極17が形成されている。 The transistor 1B has a semiconductor layer 20. The semiconductor layer 20 is disposed on the insulator layer 7, and the source electrode 16 and the drain electrode 17 are formed on the surface thereof.
 すなわち、絶縁体層7の上面全面に半導体層20が形成され、半導体層20の上面全面に下地膜13が形成されている。トランジスタ1Bにおいては、絶縁体層7と半導体層20と下地膜13とを合わせた層が、「絶縁体層を含む層」である。 That is, the semiconductor layer 20 is formed on the entire upper surface of the insulator layer 7, and the base film 13 is formed on the entire upper surface of the semiconductor layer 20. In the transistor 1B, a layer including the insulator layer 7, the semiconductor layer 20, and the base film 13 is a “layer including an insulator layer”.
 下地膜13の上面には、選択的に触媒15が設けられ、ソース電極16と、ドレイン電極17と、が形成されている。ソース電極16は、第1電極161および第2電極162を有している。ドレイン電極17は、第1電極171および第2電極172を有している。半導体層20においては、ソース電極16とドレイン電極17とに挟まれた上面近傍がチャネル領域ARとなる。 A catalyst 15 is selectively provided on the upper surface of the base film 13, and a source electrode 16 and a drain electrode 17 are formed. The source electrode 16 has a first electrode 161 and a second electrode 162. The drain electrode 17 has a first electrode 171 and a second electrode 172. In the semiconductor layer 20, the vicinity of the upper surface sandwiched between the source electrode 16 and the drain electrode 17 becomes the channel region AR.
 以下、図5A~図5Gを用いて、上述のトランジスタ1Bの製造方法について説明する。 Hereinafter, a method for manufacturing the transistor 1B will be described with reference to FIGS. 5A to 5G.
 トランジスタ1Bの製造においては、まず、第1実施形態と同様に、基板2の上面に、下地膜3,触媒5、ゲート電極6、絶縁体層7を積層する。次いで、図5Aに示すように、溶液S1を、ソース電極16およびドレイン電極17の間に塗布し、乾燥させることにより、半導体層20を形成する。溶液S1は、有機溶媒に可溶な有機半導体を前記有機溶媒に溶解したものである。 In the manufacture of the transistor 1B, first, as in the first embodiment, the base film 3, the catalyst 5, the gate electrode 6, and the insulator layer 7 are laminated on the upper surface of the substrate 2. Next, as illustrated in FIG. 5A, the solution S <b> 1 is applied between the source electrode 16 and the drain electrode 17 and dried to form the semiconductor layer 20. The solution S1 is obtained by dissolving an organic semiconductor soluble in an organic solvent in the organic solvent.
 次いで、図5Bに示すように、半導体層20の上面全面に、液状物を塗布し、熱処理を行って有機溶媒を揮発させて除去し、下地膜13を形成する。液状物は、上述のシランカップリング剤を必要に応じて有機溶媒で希釈したものである。 Next, as shown in FIG. 5B, a liquid material is applied to the entire upper surface of the semiconductor layer 20, and heat treatment is performed to volatilize and remove the organic solvent, thereby forming a base film 13. The liquid material is obtained by diluting the above silane coupling agent with an organic solvent as necessary.
 次いで、図5Cに示すように、絶縁体層7、半導体層20および下地膜13を覆ってレジスト材料を塗布する。これをプリベークすることでパターニングされていないレジスト層14Aを形成する。その後、マスクM3を介し、レジスト層14Aに紫外線Lを照射し、レジスト層14Aを露光する。マスクM3には、ソース電極およびドレイン電極を形成する領域に対応して開口部が設けられている。 Next, as shown in FIG. 5C, a resist material is applied so as to cover the insulator layer 7, the semiconductor layer 20, and the base film 13. This is pre-baked to form an unpatterned resist layer 14A. Thereafter, the resist layer 14A is irradiated with ultraviolet light L through the mask M3 to expose the resist layer 14A. The mask M3 is provided with an opening corresponding to a region where the source electrode and the drain electrode are formed.
 次いで、図5Dに示すように、紫外線が照射されたレジスト層を溶解する現像液で現像することにより、開口部14aが設けられたレジスト層14を形成する。 Next, as shown in FIG. 5D, the resist layer 14 provided with the openings 14a is formed by developing with a developer that dissolves the resist layer irradiated with ultraviolet rays.
 次に、図5Eに示すように、開口部14aから露出している下地膜13に、2価パラジウム塩のコロイド溶液を接触させることで、下地膜13の表面に無電解めっきに用いる触媒15を捕捉させる。その後、触媒15に無電解めっき液を接触させることにより、触媒15の表面で無電解めっき液に溶解する金属イオンを還元して析出させる。上述のようにして、開口部14a内に選択的にニッケル-リンを形成材料とする第1電極161,171を形成する(第1の無電解めっき)。 Next, as shown in FIG. 5E, a catalyst 15 used for electroless plating is applied to the surface of the base film 13 by bringing a colloidal solution of a divalent palladium salt into contact with the base film 13 exposed from the opening 14a. Capture. Thereafter, by bringing the electroless plating solution into contact with the catalyst 15, metal ions dissolved in the electroless plating solution on the surface of the catalyst 15 are reduced and deposited. As described above, the first electrodes 161 and 171 using nickel-phosphorus as a forming material are selectively formed in the opening 14a (first electroless plating).
 次いで、図5Fに示すように、残存するレジスト層の全面に紫外線を露光した後に、通常知られた現像液でレジスト層を除去する。このようにして、第1電極161,171を形成する。 Next, as shown in FIG. 5F, the entire surface of the remaining resist layer is exposed to ultraviolet rays, and then the resist layer is removed with a generally known developer. In this way, the first electrodes 161 and 171 are formed.
 次に、図5Gに示すように、全体を置換金めっき浴に浸漬させることで、第1電極161,171の表面に金を置換析出させる。更に、還元金めっき浴に浸漬させることにより、第1電極161、171の表面に金を形成材料とする第2電極162,172を形成する(第2の無電解めっき)。このようにして、ソース電極16およびドレイン電極17を形成する。
 以上のようにして、トランジスタ1Bを製造することができる。
Next, as shown in FIG. 5G, gold is substituted and deposited on the surfaces of the first electrodes 161 and 171 by immersing the whole in a substitution gold plating bath. Further, by dipping in a reduced gold plating bath, second electrodes 162 and 172 using gold as a forming material are formed on the surfaces of the first electrodes 161 and 171 (second electroless plating). In this way, the source electrode 16 and the drain electrode 17 are formed.
As described above, the transistor 1B can be manufactured.
 このようなトランジスタ1Bにおいても、下地膜3,13がシランカップリング剤を形成材料としており、下地膜3,13は平滑な膜となっている。そのため、下地膜の凹凸形状に起因する不具合が生じず、高性能なトランジスタを容易に製造することができる。 Also in such a transistor 1B, the base films 3 and 13 use a silane coupling agent as a forming material, and the base films 3 and 13 are smooth films. Therefore, there is no problem due to the uneven shape of the base film, and a high-performance transistor can be easily manufactured.
 また、トランジスタ1Bのソース電極16およびドレイン電極17においては、第1電極161,171よりも半導体層20の形成材料との間で電子移動が容易な(半導体層20のHOMOとのエネルギー準位差が小さい)仕事関数を持つ金属材料を用いて、第2電極162,172が形成されている。これら第2電極162,172から、符号αで囲む位置において、チャネル領域ARに良好に電流が流れ込む。そのため、高性能のトランジスタ1Bを実現することができる。 Further, in the source electrode 16 and the drain electrode 17 of the transistor 1B, electron transfer is easier between the forming material of the semiconductor layer 20 than the first electrodes 161 and 171 (energy level difference from the HOMO of the semiconductor layer 20). The second electrodes 162 and 172 are formed using a metal material having a work function. Current flows from the second electrodes 162 and 172 into the channel region AR at a position surrounded by the symbol α. Therefore, a high-performance transistor 1B can be realized.
 また、第1電極161、171が第2電極162、172に覆われていることによって第1電極161、171の経時的な腐食が抑制される。したがって、トランジスタの性能を安定して維持することができるという効果も有する。 Further, since the first electrodes 161 and 171 are covered with the second electrodes 162 and 172, corrosion of the first electrodes 161 and 171 with time is suppressed. Therefore, the transistor performance can be stably maintained.
 本実施形態のトランジスタは、半導体層20とソース電極16及びドレイン電極17とが直接接触せずに下地膜13を介して接触している。しかし、下地膜13は数nmと非常に薄い層に形成されている。そのため、下地膜13がトランジスタ特性に与える影響は少なく、半導体層20とソース電極16及びドレイン電極17との間で良好に電流が流れる。 In the transistor of this embodiment, the semiconductor layer 20 and the source electrode 16 and the drain electrode 17 are in direct contact with each other through the base film 13. However, the base film 13 is formed in a very thin layer of several nm. For this reason, the influence of the base film 13 on the transistor characteristics is small, and a good current flows between the semiconductor layer 20 and the source electrode 16 and the drain electrode 17.
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせなどは一例であって、本発明の主旨から逸脱しない範囲において設計要求などに基づき種々変更可能である。 As described above, the preferred embodiments according to the present invention have been described with reference to the accompanying drawings, but the present invention is not limited to such examples. Various shapes and combinations of the constituent members shown in the above-described examples are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 例えば、基板として非金属材料を用いることができる。非金属材料であるPET基板を用いて、この基板上に下地膜を形成しためっき用部材を複数用意し、複数のめっき用部材を搬送しながら搬送過程において上述の製造方法を用いてトランジスタを製造することで、PET基板上に高性能のトランジスタを形成することができる。 For example, a non-metallic material can be used as the substrate. Using a PET substrate, which is a non-metallic material, prepare a plurality of plating members on which a base film is formed, and manufacture transistors using the above-described manufacturing method in the transport process while transporting the plurality of plating members. Thus, a high-performance transistor can be formed on the PET substrate.
 さらに、所謂ロールトゥロール工程においてPETフィルム上にトランジスタを形成することができる。具体的には、基板として可撓性を有する長尺のPETフィルムを用い、このフィルム上に下地膜を形成しためっき用部材をロール状に巻き取っておく。そして、このめっき用部材を巻出しながら搬送し、上述の製造方法を用いて連続的にトランジスタを形成する。この後に、製造されるトランジスタをロール状に巻き取るようにして、PETフィルム上にトランジスタを形成することができる。 Furthermore, a transistor can be formed on a PET film in a so-called roll-to-roll process. Specifically, a flexible long PET film is used as a substrate, and a plating member having a base film formed on the film is rolled up. Then, the plating member is conveyed while being unwound, and transistors are continuously formed using the above-described manufacturing method. Thereafter, the transistor can be formed on a PET film so that the manufactured transistor is rolled up.
 本実施形態においては、シランカップリング剤を形成材料とする下地膜を形成した上で、この下地膜に無電解めっき用の触媒を捕捉させ、無電解めっきを行ってゲート電極、ソース電極およびドレイン電極を形成することとした。しかし、これらの電極のうちいずれか1つまたは2つの電極を上記方法で形成し、残る電極を他の方法で形成することとしても構わない。例えば、ゲート電極については、通常知られたパターニング方法を用いて形成し、同層に形成されるソース電極およびドレイン電極について、上述の製造方法を用いて形成することとしてもよい。 In this embodiment, after forming a base film using a silane coupling agent as a forming material, a catalyst for electroless plating is captured by the base film, and electroless plating is performed to form a gate electrode, a source electrode, and a drain. An electrode was formed. However, any one or two of these electrodes may be formed by the above method, and the remaining electrodes may be formed by another method. For example, the gate electrode may be formed using a generally known patterning method, and the source electrode and the drain electrode formed in the same layer may be formed using the above-described manufacturing method.
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples.
[ゲート電極の作製]
 本実施例においては、アミン系シランカップリング剤である3-アミノプロピルトリエトキシシラン(KBE903、信越シリコーン社製)を、0.2質量%となるようにメチルイソブチルケトン(以下、MIBKと称することがある)に溶解して液状物を調製し、下地膜の形成に用いた。
[Fabrication of gate electrode]
In this example, 3-aminopropyltriethoxysilane (KBE903, manufactured by Shin-Etsu Silicone Co., Ltd.), which is an amine silane coupling agent, is methyl isobutyl ketone (hereinafter referred to as MIBK) so as to be 0.2% by mass. And a liquid material was prepared and used to form the base film.
 PET基板(型番:A-4100(コートなし)、東洋紡績株式会社製)の表面を大気圧酸素プラズマにより洗浄した後、上記液状物をスピンコート(4000rpm×30秒)にてPET基板上に塗布した。その後、120℃で10分間加熱して下地膜を形成した。 After cleaning the surface of a PET substrate (model number: A-4100 (no coating), manufactured by Toyobo Co., Ltd.) with atmospheric pressure oxygen plasma, the liquid material is applied onto the PET substrate by spin coating (4000 rpm × 30 seconds). did. Then, it heated at 120 degreeC for 10 minute (s), and formed the base film.
 次に、基板の下地膜が形成された面に対し、レジスト材料(SUMIRESIST PFI-34A6、住友化学株式会社製)をスピンコートし、90℃にて5分間加熱(プリベーク)した。上述のようにして、レジスト層を形成した。スピンコートの条件は1000rpmで30秒間である。約1μmの厚さのレジスト層を形成した。 Next, a resist material (SUMIRESIST PFI-34A6, manufactured by Sumitomo Chemical Co., Ltd.) was spin-coated on the surface of the substrate on which the base film was formed, and heated (prebaked) at 90 ° C. for 5 minutes. A resist layer was formed as described above. The spin coating conditions are 1000 rpm for 30 seconds. A resist layer having a thickness of about 1 μm was formed.
 次いで、フォトマスクを介して、18mW/cmの強度の紫外線を5秒間露光し、110℃で5分間加熱(ポストベーク)した。その後に、2.38%TMAH溶液に2分間浸漬させることにより、レジスト層にマスクパターンを現像し開口部を形成した。 Next, UV light having an intensity of 18 mW / cm 2 was exposed for 5 seconds through a photomask and heated (post-baked) at 110 ° C. for 5 minutes. Thereafter, the mask pattern was developed in the resist layer to form an opening by immersing in a 2.38% TMAH solution for 2 minutes.
 次いで、レジスト層開口部が形成された基板について、室温にて30秒間、超音波水洗を行った。その後に、無電解めっき用の触媒コロイド溶液(メルプレート アクチベーター7331、メルテックス社製)に、室温にて60秒間浸漬させた。上述のようにして、レジスト層の開口部から露出している下地膜に触媒を付着させた。 Next, the substrate on which the resist layer opening was formed was subjected to ultrasonic water washing at room temperature for 30 seconds. After that, it was immersed in a catalyst colloid solution for electroless plating (Melplate ™ activator 7331, manufactured by Meltex) for 60 seconds at room temperature. As described above, the catalyst was adhered to the base film exposed from the opening of the resist layer.
 次いで、表面を水洗した後に、無電解めっき液(メルプレート NI-867、メルテックス社製)に、73℃にて60秒間浸漬させた。上述のようにして、レジスト層の開口部に付着している触媒上にニッケル-リンを析出させてニッケル-リンめっきを行った。 Next, the surface was washed with water and then immersed in an electroless plating solution (Melplate NI-867, manufactured by Meltex) at 73 ° C. for 60 seconds. As described above, nickel-phosphorus was deposited on the catalyst adhering to the opening of the resist layer to perform nickel-phosphorus plating.
 次いで、表面を水洗した後に乾燥させ、残存するレジスト層を含む全面に、18mW/cmの強度の紫外線を1分間露光した。その後、エタノールに1分間浸漬させることでレジスト層を除去し、ゲート電極を作製した。 Next, the surface was washed with water and dried, and the entire surface including the remaining resist layer was exposed to ultraviolet light having an intensity of 18 mW / cm 2 for 1 minute. Then, the resist layer was removed by immersing in ethanol for 1 minute, and the gate electrode was produced.
[絶縁体層の作製]
 ゲート電極と形成する絶縁体層との密着性を向上させるため、PET基板においてゲート電極が形成された側の全面に、シランカップリング剤(N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、KBM603、信越シリコーン社製)を塗布した。具体的には、シランカップリング剤をエタノールと水の混合溶媒で1質量%に希釈した。その後、前記希釈されたシランカップリング剤をさらにMIBKで希釈して、0.2質量%のシランカップリング剤溶液を調製した。この0.2質量%のシランカップリング剤溶液を、PET基板においてゲート電極が形成された側の全面にスピンコートで塗布した。
[Preparation of insulator layer]
In order to improve the adhesion between the gate electrode and the insulator layer to be formed, a silane coupling agent (N-2- (aminoethyl) -3-aminopropyltrimethyl trichloride is formed on the entire surface of the PET substrate on which the gate electrode is formed. Ethoxysilane, KBM603, manufactured by Shin-Etsu Silicone Co., Ltd.) was applied. Specifically, the silane coupling agent was diluted to 1% by mass with a mixed solvent of ethanol and water. Thereafter, the diluted silane coupling agent was further diluted with MIBK to prepare a 0.2 mass% silane coupling agent solution. This 0.2 mass% silane coupling agent solution was applied by spin coating on the entire surface of the PET substrate on which the gate electrode was formed.
 次いで、120℃で5分間加熱した後、紫外線硬化型樹脂溶液をスピンコートで塗布した。紫外線硬化型樹脂溶液は、ウレタンアクリレート樹脂(アートレジンHA3220、根上工業株式会社製)と、重合開始剤であるIRGACURE1173(チバスペシャリティケミカルズ(株)製)と、溶媒であるプロピレングリコールモノエチルエーテル(以下、PGMEと称することがある)および酢酸ブチルを混合して調製した。混合比(質量比)は、樹脂:重合開始剤:PGME:酢酸ブチル=15:0.5:50:34.5であった。また、スピンコートの条件は1000rpmで30秒間とした。 Next, after heating at 120 ° C. for 5 minutes, an ultraviolet curable resin solution was applied by spin coating. The ultraviolet curable resin solution is composed of urethane acrylate resin (Art Resin HA3220, manufactured by Negami Kogyo Co., Ltd.), polymerization initiator IRGACURE 1173 (manufactured by Ciba Specialty Chemicals), and propylene glycol monoethyl ether (hereinafter referred to as solvent). , Sometimes referred to as PGME) and butyl acetate. The mixing ratio (mass ratio) was resin: polymerization initiator: PGME: butyl acetate = 15: 0.5: 50: 34.5. The spin coating conditions were 1000 rpm for 30 seconds.
 次いで、絶縁体層を成膜する部分に開口部を有するマスクを介して、紫外線を45秒照射した。硬化促進のため120℃で5分熱処理した。その後、アセトン現像液に浸漬させ10秒間超音波処理をおこなった。上述のようにして、紫外線硬化型樹脂をパターニング成膜した。パターニング成膜した後、120℃で10分熱処理を行い、絶縁体層を形成した。 Next, ultraviolet rays were irradiated for 45 seconds through a mask having an opening at the portion where the insulator layer was formed. In order to accelerate curing, heat treatment was performed at 120 ° C. for 5 minutes. Then, it was immersed in an acetone developer and subjected to ultrasonic treatment for 10 seconds. As described above, an ultraviolet curable resin was patterned into a film. After patterning film formation, heat treatment was performed at 120 ° C. for 10 minutes to form an insulator layer.
[ソース・ドレイン電極の作製]
 次いで、PET基板において絶縁体層が形成された側の全面に、上述の[ゲート電極の作製]と同様の方法にて下地膜及びレジスト層の作製と、無電解めっきとを行った。上述のようにして、絶縁体層上にパターニングされたNiP電極を形成した。NiP電極は、実施形態で説明した第1電極に対応する。
[Production of source / drain electrodes]
Next, on the entire surface of the PET substrate on which the insulator layer was formed, a base film and a resist layer were prepared and electroless plating was performed in the same manner as in [Preparation of gate electrode] described above. As described above, a patterned NiP electrode was formed on the insulator layer. The NiP electrode corresponds to the first electrode described in the embodiment.
 更に、加えて、レジスト剥離後に、置換金めっき浴に1分間浸漬させ、更に還元めっき浴に3分間浸漬させた。上述のようにして、無電解金めっきを行い、NiP電極の表面を金で被覆してソース電極およびドレイン電極を作製した。 In addition, after the resist was stripped, it was immersed in a displacement gold plating bath for 1 minute and further immersed in a reduction plating bath for 3 minutes. As described above, electroless gold plating was performed, and the surface of the NiP electrode was covered with gold to produce a source electrode and a drain electrode.
 図6A及び図6Bは、上記の手順で作製した多層配線構造の断面像である。図6AはSEM像、図6BはTEM像である。 6A and 6B are cross-sectional images of the multilayer wiring structure manufactured by the above procedure. 6A is an SEM image, and FIG. 6B is a TEM image.
 図6Aに示す断面SEM像より、ソース・ドレイン電極は二層で構成され、NiP電極の表面をきれいに金が被覆している様子が観察された。また、図6Bに示す断面TEM像より、平滑なゲート電極およびソース・ドレイン電極が形成されていることが分かった。 From the cross-sectional SEM image shown in FIG. 6A, it was observed that the source / drain electrode was composed of two layers, and the surface of the NiP electrode was covered with gold cleanly. Further, from the cross-sectional TEM image shown in FIG. 6B, it was found that smooth gate electrodes and source / drain electrodes were formed.
[有機半導体層の作製]
 窒素雰囲気下において、ソース電極およびドレイン電極の間に、TIPSペンタセン(シグマアルドリッチ製)のトルエン溶液を滴下し、自然乾燥させた。上述のようにして半導体層を形成して、トランジスタを作製した。用いたTIPSペンタセン/トルエン溶液の調整も、窒素雰囲気下で行った。
[Production of organic semiconductor layer]
Under a nitrogen atmosphere, a toluene solution of TIPS pentacene (manufactured by Sigma-Aldrich) was dropped between the source electrode and the drain electrode and allowed to dry naturally. A semiconductor layer was formed as described above to manufacture a transistor. The TIPS pentacene / toluene solution used was also adjusted under a nitrogen atmosphere.
 図7は、表面に有機半導体層を形成したソース電極およびドレイン電極の拡大写真である。ソース電極およびドレイン電極の間にTIPSペンタセンの結晶が形成されていることが観察された。 FIG. 7 is an enlarged photograph of a source electrode and a drain electrode having an organic semiconductor layer formed on the surface. It was observed that a TIPS pentacene crystal was formed between the source electrode and the drain electrode.
[トランジスタの評価]
 作製したトランジスタのトランジスタ特性は、半導体パラメータアナライザー(型番:4145B、横河・ヒューレット・パッカード社製)を用いて評価した。
[Evaluation of transistors]
The transistor characteristics of the manufactured transistor were evaluated using a semiconductor parameter analyzer (model number: 4145B, manufactured by Yokogawa / Hewlett Packard).
 図8は、上述の方法を用い、湿式プロセスで作製したトランジスタのトランジスタ特性を示すグラフである。 FIG. 8 is a graph showing transistor characteristics of a transistor manufactured by a wet process using the above-described method.
 得られた有機薄膜トランジスタのゲート電極に0V~-40Vのゲート電圧を印加し、ソース-ドレイン間に0V~-40Vの電圧を印加して電流を流した。その結果、図8に示す様に、正孔が半導体層のチャンネル領域(ソース-ドレイン間)に誘起され、作製したトランジスタはp型トランジスタとして動作した。 A gate voltage of 0 V to −40 V was applied to the gate electrode of the obtained organic thin film transistor, and a voltage of 0 V to −40 V was applied between the source and drain to pass a current. As a result, as shown in FIG. 8, holes were induced in the channel region (between the source and drain) of the semiconductor layer, and the manufactured transistor operated as a p-type transistor.
 以上の結果より、全湿式プロセスにてトランジスタ(有機薄膜トランジスタ)を作製できることが分かった。また、下地膜として1級アミンであるシランカップリング剤を用いることにより、アクセレーターによる処理が不要となり、無電解めっきの操作が簡略化されることが確かめられた。 From the above results, it was found that a transistor (organic thin film transistor) can be produced by a fully wet process. Further, it was confirmed that the use of a silane coupling agent, which is a primary amine, as the undercoat film eliminates the need for an accelerator treatment and simplifies the operation of electroless plating.
 シランカップリング剤を用いて形成される下地膜は、極めて凹凸が小さく平坦な膜となる。そのため、積層構造を形成した際に、下地膜の上層の構成に凹凸形状が付与されず(形成されず)、高性能なトランジスタとすることができることが分かった。 The base film formed using the silane coupling agent is a flat film with extremely small irregularities. Therefore, it was found that when the stacked structure was formed, the upper layer structure of the base film was not provided with an uneven shape (not formed), and a high-performance transistor could be obtained.
 さらに、無電解めっき法を用い、有機半導体層の形成材料のHOMOとエネルギーギャップが小さい仕事関数を有する金属材料でソース・ドレイン電極全面を被覆できる。そのため、有機半導体層とソース・ドレイン電極との電気的接触抵抗が小さいトランジスタを提供できることが分かった。
 以上の結果より、本発明の有用性が確かめられた。
Furthermore, the entire surface of the source / drain electrodes can be covered with a metal material having a work function with a small energy gap and HOMO as a material for forming the organic semiconductor layer by using an electroless plating method. Therefore, it was found that a transistor having a small electrical contact resistance between the organic semiconductor layer and the source / drain electrodes can be provided.
From the above results, the usefulness of the present invention was confirmed.
1…トランジスタ、2…基板、3…下地膜(ゲート下地膜)、6…ゲート電極、7…絶縁体層、13…下地膜(ソース下地膜、ドレイン下地膜)、14…レジスト層、14a…開口部、15…無電解めっき用触媒、16…ソース電極、16a,17a…側面(対向する面)、17…ドレイン電極、20…半導体層 DESCRIPTION OF SYMBOLS 1 ... Transistor, 2 ... Substrate, 3 ... Base film (gate base film), 6 ... Gate electrode, 7 ... Insulator layer, 13 ... Base film (source base film, drain base film), 14 ... Resist layer, 14a ... Opening portion, 15 ... catalyst for electroless plating, 16 ... source electrode, 16a, 17a ... side surface (opposing surface), 17 ... drain electrode, 20 ... semiconductor layer

Claims (20)

  1.  基板上にゲート電極を形成する工程と、
     前記ゲート電極に絶縁体層が接触するように前記絶縁体層を含む層を形成する工程と、
     前記絶縁体層を含む層の表面にソース電極およびドレイン電極を形成する工程と、を有し、
     前記ゲート電極、前記ソース電極または前記ドレイン電極の少なくとも一つは、
     シランカップリング剤を含む形成材料を塗布して、下地膜を形成する工程と、
     前記下地膜の表面に無電解めっき用触媒である金属を析出させた後に、無電解めっきを行う工程と、により形成され、
     前記シランカップリング剤は、窒素原子または硫黄原子のうち少なくとも一方を有する基を含んでいる
     トランジスタの製造方法。
    Forming a gate electrode on the substrate;
    Forming a layer including the insulator layer so that the insulator layer is in contact with the gate electrode;
    Forming a source electrode and a drain electrode on the surface of the layer including the insulator layer, and
    At least one of the gate electrode, the source electrode or the drain electrode is:
    Applying a forming material containing a silane coupling agent to form a base film;
    A step of performing electroless plating after depositing a metal as a catalyst for electroless plating on the surface of the base film,
    The silane coupling agent includes a group having at least one of a nitrogen atom and a sulfur atom.
  2.  基板上にゲート電極を形成する工程と、
     前記ゲート電極に絶縁体層が接触するように前記絶縁体層を含む層を形成する工程と、
     前記絶縁体層を含む層の表面にソース電極およびドレイン電極を形成する工程と、を有し、
     前記ゲート電極、前記ソース電極または前記ドレイン電極の少なくとも一つは、
     無電解めっき用触媒である金属を捕捉可能な基を有するシランカップリング剤を含む形成材料を塗布して、下地膜を形成する工程と、
     前記下地膜の表面に前記金属を析出させた後に、無電解めっきを行う工程と、により形成される
     トランジスタの製造方法。
    Forming a gate electrode on the substrate;
    Forming a layer including the insulator layer so that the insulator layer is in contact with the gate electrode;
    Forming a source electrode and a drain electrode on the surface of the layer including the insulator layer, and
    At least one of the gate electrode, the source electrode or the drain electrode is:
    Applying a forming material containing a silane coupling agent having a group capable of capturing a metal which is a catalyst for electroless plating, and forming a base film;
    And a step of performing electroless plating after depositing the metal on the surface of the base film. A method of manufacturing a transistor.
  3.  前記ソース電極および前記ドレイン電極は、前記下地膜であるソース下地膜とドレイン下地膜とを形成した後に、前記ソース下地膜および前記ドレイン下地膜の表面に前記金属を析出させ、無電解めっきを行う工程により形成される
     請求項1または2に記載のトランジスタの製造方法。
    The source electrode and the drain electrode are formed by forming the source base film and the drain base film, which are the base films, and then depositing the metal on the surfaces of the source base film and the drain base film and performing electroless plating. The method for manufacturing a transistor according to claim 1, wherein the transistor is formed by a process.
  4.  前記ソース下地膜と前記ドレイン下地膜とを、連続する膜として形成する
     請求項3に記載のトランジスタの製造方法。
    The method for manufacturing a transistor according to claim 3, wherein the source base film and the drain base film are formed as a continuous film.
  5.  前記ゲート電極は、前記下地膜であるゲート下地膜を形成した後に前記ゲート下地膜の表面に前記金属を析出させ、無電解めっきを行う工程により形成される
     請求項1から4のいずれか1項に記載のトランジスタの製造方法。
    5. The gate electrode is formed by a step of depositing the metal on the surface of the gate underlayer after forming a gate underlayer which is the underlayer, and performing electroless plating. A method for producing the transistor according to 1.
  6.  前記シランカップリング剤が、アミノ基を有する
     請求項1から5のいずれか1項に記載のトランジスタの製造方法。
    The method for manufacturing a transistor according to claim 1, wherein the silane coupling agent has an amino group.
  7.  前記シランカップリング剤が、1級アミンまたは2級アミンである
     請求項6に記載のトランジスタの製造方法。
    The method for manufacturing a transistor according to claim 6, wherein the silane coupling agent is a primary amine or a secondary amine.
  8.  前記絶縁体層を含む層は、前記絶縁体層と、前記絶縁体層の上に配置され表面に前記ソース電極および前記ドレイン電極が形成される有機半導体層と、を有する
     請求項1から7のいずれか1項に記載のトランジスタの製造方法。
    The layer including the insulator layer includes the insulator layer, and an organic semiconductor layer disposed on the insulator layer and having the source electrode and the drain electrode formed on a surface thereof. The manufacturing method of the transistor of any one of Claims 1.
  9.  前記ソース電極および前記ドレイン電極を形成した後、前記ソース電極および前記ドレイン電極の互いに対向する面に接した有機半導体層を形成する工程を有する
     請求項1から7のいずれか1項に記載のトランジスタの製造方法。
    The transistor according to claim 1, further comprising: forming an organic semiconductor layer in contact with surfaces of the source electrode and the drain electrode facing each other after forming the source electrode and the drain electrode. Manufacturing method.
  10.  前記ソース電極および前記ドレイン電極を形成することに先だって、前記ソース電極および前記ドレイン電極に対応した開口部を有するレジスト層を形成し、少なくとも前記開口部内から露出する面に形成された前記下地膜の表面に前記金属を析出させる工程と、
     第1の無電解めっきを行った後に、前記レジスト層を除去する工程と、
     前記第1の無電解めっきにより形成された電極の表面に第2の無電解めっきを行い、前記ソース電極および前記ドレイン電極を形成する工程と、を有し、
     前記第2の無電解めっきに用いる金属材料の仕事関数と、前記有機半導体層の形成材料において電子移動に用いる分子軌道のエネルギー準位とのエネルギー準位差は、前記第1の無電解めっきに用いる金属材料の仕事関数と、前記分子軌道のエネルギー準位とのエネルギー準位差よりも小さい
     請求項8または9に記載のトランジスタの製造方法。
    Prior to forming the source electrode and the drain electrode, a resist layer having an opening corresponding to the source electrode and the drain electrode is formed, and at least the base film formed on the surface exposed from the opening is formed. Depositing the metal on the surface;
    Removing the resist layer after performing the first electroless plating;
    Performing a second electroless plating on the surface of the electrode formed by the first electroless plating to form the source electrode and the drain electrode, and
    The energy level difference between the work function of the metal material used for the second electroless plating and the energy level of the molecular orbital used for electron transfer in the material for forming the organic semiconductor layer is the same as that of the first electroless plating. 10. The method for manufacturing a transistor according to claim 8, wherein an energy level difference between a work function of a metal material to be used and an energy level of the molecular orbital is smaller.
  11.  前記基板が、非金属材料からなる
     請求項1から10のいずれか1項に記載のトランジスタの製造方法。
    The method for manufacturing a transistor according to claim 1, wherein the substrate is made of a nonmetallic material.
  12.  前記基板が、樹脂材料からなる
     請求項11に記載のトランジスタの製造方法。
    The method for manufacturing a transistor according to claim 11, wherein the substrate is made of a resin material.
  13.  前記基板が、可撓性を有する
     請求項12に記載のトランジスタの製造方法。
    The method for manufacturing a transistor according to claim 12, wherein the substrate has flexibility.
  14.  ソース電極およびドレイン電極と、
     前記ソース電極および前記ドレイン電極の間のチャネルに対応させて設けられたゲート電極と、
     前記ソース電極および前記ドレイン電極に接して設けられた半導体層と、
     を備え、
     前記ゲート電極、ソース電極またはドレイン電極の少なくとも一つは、シランカップリング剤を含む下地膜の上に積層され、
     前記シランカップリング剤は、窒素原子または硫黄原子のうち少なくとも一方を有する基を含んでいる
     トランジスタ。
    A source electrode and a drain electrode;
    A gate electrode provided corresponding to a channel between the source electrode and the drain electrode;
    A semiconductor layer provided in contact with the source electrode and the drain electrode;
    With
    At least one of the gate electrode, the source electrode or the drain electrode is laminated on a base film containing a silane coupling agent,
    The silane coupling agent includes a group having at least one of a nitrogen atom and a sulfur atom.
  15.  ソース電極およびドレイン電極と、
     前記ソース電極および前記ドレイン電極の間のチャネルに対応させて設けられたゲート電極と、
     前記ソース電極および前記ドレイン電極に接して設けられた半導体層と、を備え、
     前記ゲート電極、ソース電極またはドレイン電極の少なくとも一つは、無電解めっき用触媒である金属を捕捉可能な基を有するシランカップリング剤を含む下地膜の上に積層している
     トランジスタ。
    A source electrode and a drain electrode;
    A gate electrode provided corresponding to a channel between the source electrode and the drain electrode;
    A semiconductor layer provided in contact with the source electrode and the drain electrode,
    At least one of the gate electrode, the source electrode, and the drain electrode is laminated on a base film containing a silane coupling agent having a group capable of capturing a metal that is a catalyst for electroless plating.
  16.  前記半導体層は有機半導体層である
     請求項14または15に記載のトランジスタ。
    The transistor according to claim 14, wherein the semiconductor layer is an organic semiconductor layer.
  17.  前記ソース電極および前記ドレイン電極は、それぞれ第1電極と、前記第1電極を覆って形成された第2電極とを有し、
     前記第2電極の形成材料の仕事関数と、前記有機半導体層の形成材料において電子移動に用いる分子軌道のエネルギー準位とのエネルギー準位差は、前記第1電極の形成材料の仕事関数と、前記分子軌道のエネルギー準位とのエネルギー準位差よりも小さい
     請求項16に記載のトランジスタ。
    The source electrode and the drain electrode each have a first electrode and a second electrode formed to cover the first electrode,
    The energy level difference between the work function of the material forming the second electrode and the energy level of the molecular orbital used for electron transfer in the material forming the organic semiconductor layer is the work function of the material forming the first electrode, The transistor according to claim 16, wherein the transistor has an energy level difference smaller than an energy level of the molecular orbital.
  18.  非金属材料からなる基板上に形成された
     請求項14から17のいずれか1項に記載のトランジスタ。
    The transistor according to claim 14, formed on a substrate made of a nonmetallic material.
  19.  前記基板が、樹脂材料からなる
     請求項18に記載のトランジスタ。
    The transistor according to claim 18, wherein the substrate is made of a resin material.
  20.  前記基板が、可撓性を有する
     請求項19に記載のトランジスタ。
    The transistor according to claim 19, wherein the substrate has flexibility.
PCT/JP2013/064466 2012-05-25 2013-05-24 Method for manufacturing transistor and transistor WO2013176247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-120154 2012-05-25
JP2012120154 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013176247A1 true WO2013176247A1 (en) 2013-11-28

Family

ID=49623927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064466 WO2013176247A1 (en) 2012-05-25 2013-05-24 Method for manufacturing transistor and transistor

Country Status (1)

Country Link
WO (1) WO2013176247A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092019A1 (en) * 2012-12-12 2014-06-19 株式会社ニコン Composition, laminate, method for producing laminate, transistor, and method for producing transistor
WO2014106955A1 (en) * 2013-01-07 2014-07-10 株式会社ニコン Composition, laminate, method for producing laminate, transistor, and method for producing transistor
WO2020031404A1 (en) * 2018-08-08 2020-02-13 株式会社ニコン Method for manufacturing transistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068494A (en) * 2003-08-25 2005-03-17 Advanced Lcd Technologies Development Center Co Ltd Thin film treatment system, thin film treatment method, thin film transistor, and display device
JP2008159683A (en) * 2006-12-21 2008-07-10 Tohoku Univ Semiconductor device and manufacturing method of same
JP2009102720A (en) * 2007-10-25 2009-05-14 Sony Corp Method for forming metal thin film, metal thin film, and method for producing thin film transistor
JP2009246123A (en) * 2008-03-31 2009-10-22 Brother Ind Ltd Thin-film transistor manufacturing method, and thin-film transistor manufactured by the same
JP2010040897A (en) * 2008-08-07 2010-02-18 Sony Corp Organic thin film transistor, production method thereof, and electronic device
JP2011044524A (en) * 2009-08-20 2011-03-03 Brother Industries Ltd Laminate, method of manufacturing the same, thin film transistor having laminate, and printed wiring board having laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068494A (en) * 2003-08-25 2005-03-17 Advanced Lcd Technologies Development Center Co Ltd Thin film treatment system, thin film treatment method, thin film transistor, and display device
JP2008159683A (en) * 2006-12-21 2008-07-10 Tohoku Univ Semiconductor device and manufacturing method of same
JP2009102720A (en) * 2007-10-25 2009-05-14 Sony Corp Method for forming metal thin film, metal thin film, and method for producing thin film transistor
JP2009246123A (en) * 2008-03-31 2009-10-22 Brother Ind Ltd Thin-film transistor manufacturing method, and thin-film transistor manufactured by the same
JP2010040897A (en) * 2008-08-07 2010-02-18 Sony Corp Organic thin film transistor, production method thereof, and electronic device
JP2011044524A (en) * 2009-08-20 2011-03-03 Brother Industries Ltd Laminate, method of manufacturing the same, thin film transistor having laminate, and printed wiring board having laminate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092019A1 (en) * 2012-12-12 2014-06-19 株式会社ニコン Composition, laminate, method for producing laminate, transistor, and method for producing transistor
US10074803B2 (en) * 2012-12-12 2018-09-11 Nikon Corporation Composition, laminate, method of manufacturing laminate, transistor, and method of manufacturing transistor
US10476005B2 (en) 2012-12-12 2019-11-12 Nikon Corporation Composition, laminate, method of manufacturing laminate, transistor, and method of manufacturing transistor
WO2014106955A1 (en) * 2013-01-07 2014-07-10 株式会社ニコン Composition, laminate, method for producing laminate, transistor, and method for producing transistor
WO2020031404A1 (en) * 2018-08-08 2020-02-13 株式会社ニコン Method for manufacturing transistor
TWI726290B (en) * 2018-08-08 2021-05-01 日商尼康股份有限公司 Manufacturing method of transistor
JPWO2020031404A1 (en) * 2018-08-08 2021-08-12 株式会社ニコン Transistor manufacturing method
JP7127685B2 (en) 2018-08-08 2022-08-30 株式会社ニコン Method of manufacturing a transistor
US11522145B2 (en) 2018-08-08 2022-12-06 Nikon Corporation Method for manufacturing transistor comprising removal of oxide film

Similar Documents

Publication Publication Date Title
TWI628719B (en) Transistor manufacturing method and transistor
US9401478B2 (en) Method for manufacturing transistor and transistor
JP6394691B2 (en) Wiring pattern manufacturing method and transistor manufacturing method
US11309503B2 (en) Transistor manufacturing method
JPWO2015129799A6 (en) Wiring pattern manufacturing method and transistor manufacturing method
WO2013176247A1 (en) Method for manufacturing transistor and transistor
US10510460B2 (en) Composition, laminate, method of manufacturing laminate, transistor, and method of manufacturing transistor
US10476005B2 (en) Composition, laminate, method of manufacturing laminate, transistor, and method of manufacturing transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP