WO2013175952A1 - Vertical mill - Google Patents

Vertical mill Download PDF

Info

Publication number
WO2013175952A1
WO2013175952A1 PCT/JP2013/062738 JP2013062738W WO2013175952A1 WO 2013175952 A1 WO2013175952 A1 WO 2013175952A1 JP 2013062738 W JP2013062738 W JP 2013062738W WO 2013175952 A1 WO2013175952 A1 WO 2013175952A1
Authority
WO
WIPO (PCT)
Prior art keywords
orifice
pressure
hole
roller
hydraulic
Prior art date
Application number
PCT/JP2013/062738
Other languages
French (fr)
Japanese (ja)
Inventor
田村 雅人
千草 照屋
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2013175952A1 publication Critical patent/WO2013175952A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/007Mills with rollers pressed against a rotary horizontal disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/004Shape or construction of rollers or balls

Definitions

  • the present invention relates to a vertical mill that pulverizes lumps such as coal and limestone into fine powder, and more particularly to a vertical mill that presses a pressure roller against a pulverizing table by hydraulic pressure.
  • a vertical roller mill In a coal-fired boiler using coal as fuel, massive coal is pulverized by a vertical roller mill into pulverized coal, and the pulverized coal is supplied to a burner which is a combustion device together with primary air.
  • the vertical mill includes a housing, a crushing table housed in the housing, a pressure roller pressed against the crushing table, a pressure cylinder provided in the housing and pressing the pressure roller against the crushing table, The coal is supplied to the pulverizing table, and the coal is pulverized by the pressure roller.
  • the rolling resistance of the pressure roller is large, or when the rolling resistance fluctuates, slip occurs between the crushing table and the pressure roller, and the pressure roller is caused by the slip. May generate excitation vibration.
  • Patent Document 1 there is a roller mill disclosed in Patent Document 1 that suppresses self-excited vibration of a grinding roller.
  • a damper device including a throttle valve and an accumulator is connected to the rod side of a hydraulic cylinder to which pressurized oil is supplied, and the vibration energy of the pressurized oil is absorbed by the damper device to Vibration is suppressed.
  • the hydraulic pressure may increase so much that it does not compare with the fluctuation of the hydraulic pressure generated by self-excited vibration.
  • the present invention provides a vertical mill that prevents breakage of a hydraulic system due to a rapid increase in hydraulic pressure.
  • the present invention includes a crushing table housed in a housing and driven to rotate by a table driving device, a plurality of pressure rollers that are pressed onto the crushing table and crush the lump, and a plurality of pressure rollers that press the pressure roller.
  • a pressure unit for applying pressure to the pressure roller a hydraulic circuit connected to the pressure cylinder, and a damping provided in the hydraulic circuit.
  • a first orifice having a first orifice hole and a plurality of escape holes, and a second orifice that overlaps with the first orifice and closes the escape hole.
  • the second orifice is a deformable plate, and the plate is deformed when the hydraulic pressure is increased and is separated from the first orifice to open the escape hole. Than is.
  • the present invention relates to a vertical mill in which the escape hole is provided on a circumference concentric with the first orifice hole, and the second orifice is a circular plate that closes the escape hole. .
  • the escape hole is provided on a straight line parallel to and symmetric with respect to the diameter of the first orifice hole, and the second orifice is a rectangular plate that closes the escape hole. It relates to a mold mill.
  • a plurality of slits are formed at equal intervals in the peripheral portion of the second orifice, and a deformed portion is formed between the adjacent slits. The deformed portion is a pressure that flows through the plurality of escape holes.
  • the present invention relates to a vertical mill that is independently deformed by the oil pressure of the oil.
  • a crushing table housed in a housing and rotated by a table driving device, a plurality of pressure rollers pressed on the crushing table and crushing a lump, and the pressure rollers are pressed.
  • a plurality of roller pressing units, the roller pressing unit being provided in the hydraulic circuit, a pressure cylinder that applies pressure to the pressure roller, a hydraulic circuit connected to the pressure cylinder, and A damping device, a first orifice having a first orifice hole and a plurality of escape holes, and a second orifice that overlaps with the first orifice and closes the escape hole.
  • An orifice, and the second orifice is a deformable plate, and the plate is deformed when the hydraulic pressure is increased and is separated from the first orifice to open the escape hole. Even when the pressure suddenly increases, the passage of the pressure oil is expanded by opening the relief hole, and the hydraulic pressure acting on the pressurizing cylinder and the hydraulic circuit can be reduced. Damage to the hydraulic system such as the pressure cylinder and the hydraulic circuit can be prevented.
  • FIG. 1 is a schematic view showing an example of a vertical mill according to an embodiment of the present invention.
  • FIG. 2 is a hydraulic circuit diagram showing the main part of the embodiment of the present invention.
  • 3 (A) and 3 (B) are schematic front sectional views of the damping device according to the embodiment of the present invention.
  • FIG. 3 (A) shows the damping device in a normal state, and
  • FIG. ) Shows a damping device when the hydraulic pressure is increased.
  • FIG. 4 is a view taken in the direction of arrows AA in FIG.
  • FIG. 5 is a schematic sectional side view showing a first modification of the damping device.
  • FIG. 6 is a schematic sectional side view showing a second modification of the damping device.
  • a crushing table 3 is provided at the lower part of the housing 2, and the crushing table 3 is rotationally driven by a table driving device 10. Further, a pressure roller 4 rolls on the crushing table 3, and the pressure roller 4 is radially provided at a position equally divided into three in the circumferential direction, and is pressed against the crushing table 3 by a roller pressure unit 5. Is done.
  • a coal supply / exhaust portion 6 is provided on the upper side of the housing 2, and a pipe-like chute 7 is provided on the rotational axis of the crushing table 3, and lump coal from the chute 7 is the center of the crushing table 3. To be supplied.
  • a classifier 8 that rotates about the chute 7 is provided at the top of the housing 2. Coal supplied from the chute 7 onto the pulverizing table 3 is moved in the outer peripheral direction by centrifugal force, pulverized by the pressure roller 4 to become powder, and the pulverized coal is sprayed from the outer periphery of the pulverizing table 3. It rises as a pulverized coal stream 9 on the rising primary air for conveyance.
  • the pulverized coal stream 9 is classified into pulverized coal having a predetermined particle size or less by the classifier 8, and the classified pulverized coal is pulverized coal burner (see FIG. Not shown).
  • the roller pressure unit 5 is provided through a journal cover 12 that constitutes a part of the housing 2, and a roller arm 13 is tiltably provided on the journal cover 12.
  • the roller pressing unit 5 is provided on the roller arm 13.
  • the roller pressure unit 5 includes a pressure cylinder 14 and a push rod 15, and the push rod 15 is provided to be slidable in the axial direction.
  • the rod 16 of the pressure cylinder 14 is in contact with the proximal end of the push rod 15, and the distal end (center side end) of the push rod 15 is in contact with the roller arm 13.
  • the pressing force is transmitted to the pressure roller 4 through the push rod 15 and the roller arm 13.
  • the vertical mill 1 has a control device 17, and the control device 17 supplies pressure oil to the pressure cylinder 14 so that the pressure transmitted to the pressure roller 4 becomes a predetermined pressure.
  • the hydraulic circuit 21 (see FIG. 2) is controlled. The hydraulic circuit 21 will be described with reference to FIG.
  • One end of the pressure oil supply path 22 communicates with the cylinder head side of the pressure cylinder 14, and the other end communicates with the oil tank 23.
  • a hydraulic pump 24, a first on-off valve 25, and a pressure detector 26 are provided from the upstream side of the pressure oil supply path 22.
  • a bypass path 27 is provided to bypass the first on-off valve 25 and connect the upstream side and the downstream side of the first on-off valve 25, and the bypass path 27 is provided with a damping device 28.
  • An accumulator 29 communicates with the pressure oil supply path 22 upstream of the first on-off valve 25 or upstream of the damping device 28.
  • One end of the oil drain passage 31 is in communication with the rod 16 side of the pressure cylinder 14, and the other end is in communication with the oil tank 23.
  • a second on-off valve 32 is provided in the oil drain passage 31.
  • the hydraulic circuit 21 functions as pressure oil supply means to the pressure cylinder 14 and also functions as self-excited vibration suppression means. 3 (A), 3 (B), and 4, the details of the damping device 28 will be described.
  • the damping device 28 includes a cylindrical orifice case 33 through which pressure oil flows, and a first orifice 34 and a second orifice 35 provided in the orifice case 33.
  • the first orifice 34 is a disk-like member provided so as to close the pressure oil flow path of the orifice case 33, and a circular first orifice hole 36 is formed in the center thereof.
  • the pressure oil flow path is reduced by one orifice hole 36 so that the flow of the pressure oil is restricted.
  • a plurality of escape holes 37 are formed around the first orifice hole 36 at a predetermined angular pitch on the concentric circumference of the first orifice hole 36.
  • the second orifice 35 is an elastically deformable plate, for example, a plate made of steel, a plate made of stainless steel, or the like, and is attached upstream of the first orifice 34.
  • the second orifice 35 is smaller in diameter than the first orifice 34 and has a diameter that completely closes all the escape holes 37.
  • the plate thickness of the second orifice 35 is set so as to be deformable with an increase in hydraulic pressure, and a second orifice having the same diameter as or slightly larger than the first orifice hole 36 at the center.
  • a hole 38 is formed. Further, as shown in FIG. 4, the first orifice 34 and the second orifice 35 are superposed such that the first orifice hole 36 and the second orifice hole 38 are concentric,
  • the first orifice hole 36 is fixed around a plurality of fixing tools 39 such as bolts. At this time, as shown in FIG.
  • the peripheral portion of the second orifice 35 closes the upstream end of the escape hole 37, and also shown in FIG. 3 (B).
  • the pressure applied to the second orifice 35 exceeds a predetermined pressure, it is bent and deformed with the fixing tool 39 as a fulcrum, and all the escape holes 37 are opened at once.
  • the control device 17 opens the first on-off valve 25 and the second on-off valve 32, and the pressure oil increased in pressure by the hydraulic pump 24 passes through the pressure oil supply path 22 to the pressure cylinder 14.
  • the pressure roller 14 is pressed onto the crushing table 3 by the pressure cylinder 14, and the coal is crushed.
  • the oil pressure in the pressure oil supply passage 22 is detected by the pressure detector 26.
  • the control device 17 The first on-off valve 25 is closed. In this state, as shown in FIG. 3A, the second orifice 35 is in close contact with the first orifice 34 and closes the upstream end of the escape hole 37. If self-excited vibration occurs while the first on-off valve 25 is closed during the coal pulverization process, the pressure roller 4 vibrates up and down, and the vibration of the pressure roller 4 is further affected by the roller arm 13. , Transmitted to the push rod 15 and the rod 16. The vibration of the rod 16 appears as the vibration of the piston 14a of the pressurizing cylinder 14.
  • the vibration of the piston 14a fluctuates the volume on the cylinder head side, and the pressure oil on the cylinder head side enters and exits.
  • Pressure oil corresponding to the change in volume flows into and out of the accumulator 29 through the bypass passage 27 and the damping device 28, but flows through the first orifice hole 36 and the second orifice hole 38.
  • the vibration is attenuated by the viscous resistance of the pressure oil. Therefore, the self-excited vibration can be suppressed by forcibly circulating the pressure oil supplied to the pressure cylinder 14 to the damping device 28.
  • the self-excited vibration is suppressed and the operation is continued without stopping the vertical mill 1. Can be made.
  • the pressure roller 4 bites foreign matter during the coal pulverization process, the pressure roller 4 rides on the foreign matter and is rapidly displaced upward.
  • the displacement of the pressure roller 4 is transmitted to the roller arm 13, the push rod 15, and the rod 16, and the hydraulic pressure in the cylinder head side of the pressure cylinder 14, the pressure oil supply path 22, and the bypass path 27 is rapidly increased.
  • the rising pressure acts on the second orifice 35 through the escape hole 37 to bend and deform the second orifice 35.
  • a gap is formed between the first orifice 34 and the second orifice 35, the upstream end of the escape hole 37 is opened, and the damping device 28 The flow path is enlarged.
  • the second orifice 35 is preferably manufactured so as to be bent and deformed within the range of elastic deformation. By bending and deforming the second orifice 35 within the range of elastic deformation, the second orifice 35 can be used repeatedly without being damaged, and the durability of the damping device 28 can be improved. .
  • the damping device 28 may be replaced, and when the hydraulic pressure higher than a predetermined pressure is generated, the second orifice 35 may be damaged and the relief hole 37 may be opened.
  • the second orifice 35 preferably has such a rigidity and shape (strength) that it does not deform when self-excited vibration occurs but deforms only when the hydraulic pressure suddenly increases when foreign matter is caught.
  • the second orifice 35 is curved so as to be convex toward the upstream side, and is attached so as to correct the curvature with the fixing tool 39, so that the second orifice 35 is initially bent.
  • FIG. 5 shows a first modification of the damping device 28.
  • a plurality of slits 41 are formed at a predetermined angular pitch toward the center at the peripheral edge of the second orifice 35, and the hydraulic pressure increases between the slits 41, 41 of the second orifice 35. It becomes the deformation part 42 at the time.
  • the deforming portion 42 is positioned on the escape hole 37 when the second orifice 35 is fixed to the first orifice 34, and the deformable portions 42 block the escape holes 37, respectively. Yes.
  • the pressure holes 4 circulate through the relief holes 37. Since the deforming portions 42 are independently deformed by the pressure oil, the strength of the second orifice 35 can be easily set.
  • FIG. 6 shows a second modification of the damping device 28. In the second modification, the second orifice 35 is a rectangular plate, and the escape hole 37 is positioned on a straight line parallel to and symmetric with respect to the diameter of the first orifice hole 36.
  • the second orifice 35 is fixed to the first orifice 34, the escape hole 37 is closed by the end of the short side of the second orifice 35, and the escape hole 37 is The two orifices 35 are fixed so as to be parallel to the short side.
  • the second orifice 35 can be easily manufactured.
  • the escape hole 37 is formed so as to be parallel to and symmetric with respect to the diameter of the first orifice hole 36, the bending direction of the second orifice 35 becomes constant, The strength of the second orifice 35 can be easily set.
  • the second orifice 35 in the second modification may be a rectangular plate other than a rectangle, for example, a square plate. Needless to say, the slit 41 may be formed in the second orifice 35 of the second modification as in the first modification.
  • the second orifice By superposing the second orifice on the first orifice and closing the escape hole with the deformable plate-like second orifice, the second orifice is separated from the escape hole when the hydraulic pressure suddenly increases.
  • the flow path of the pressure oil can be expanded to reduce the hydraulic pressure, and can be applied to prevent damage to the hydraulic system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)

Abstract

The present invention is provided with: a pulverizing table that is accommodated in a housing and is rotatably driven by a table drive device; a plurality of pressure rollers that apply pressing pressure on to the pulverizing table and pulverize aggregated material; and a plurality of roller pressure units that apply the pressing pressure to the pressure rollers. The roller pressure units have: a pressure cylinder that applies pressure to the pressure roller; a hydraulic circuit connected to the pressure cylinder; and a damping device (28) provided in the hydraulic circuit. The damping device has a first orifice (34), which has a first orifice hole (36) and a plurality of relief holes (37), and a second orifice (35) that is provided so as to overlap the first orifice and which closes the relief holes. The second orifice is a deformable plate, and the plate deforms during an increase in hydraulic pressure, pulling away from the first orifice and opening the relief holes.

Description

竪型ミルVertical mill
 本発明は、石炭、石灰岩等の塊状物を微粉に粉砕する竪型ミル、特に油圧によって粉砕テーブルに加圧ローラを押圧する竪型ミルに関するものである。 The present invention relates to a vertical mill that pulverizes lumps such as coal and limestone into fine powder, and more particularly to a vertical mill that presses a pressure roller against a pulverizing table by hydraulic pressure.
 石炭を燃料とする石炭焚きボイラでは、塊状の石炭を竪型ローラミルにより粉砕して微粉炭とし、1次空気と共に微粉炭を燃焼装置であるバーナに供給している。
 竪型ミルは、ハウジングと、ハウジング内部に収納された粉砕テーブルと、該粉砕テーブルに押圧される加圧ローラと、前記ハウジングに設けられ、加圧ローラを前記粉砕テーブルに押圧する加圧シリンダとを有し、前記粉砕テーブルに塊状の石炭を供給し、前記加圧ローラにより石炭を粉砕している。
 竪型ミルに於いて、加圧ローラの転がり抵抗が大きい場合、或は転がり抵抗に変動がある場合、粉砕テーブルと加圧ローラとの間にスリップが生じ、加圧ローラがスリップに起因する自励振動を発生することがある。
 従来、粉砕ローラの自励振動を抑制するものとして、特許文献1に示されるローラミルがある。該ローラミルでは、加圧油が供給された油圧シリンダのロッド側に、絞り弁とアキュムレータ等から構成されるダンパ装置を接続し、該ダンパ装置によって加圧油の振動エネルギを吸収して粉砕ローラの振動を抑制している。
 然し乍ら、被粉砕物中に異物が混入し、加圧ローラが異物を噛込む事態が発生した場合、自励振動で発生する油圧の変動とは比べものにならない程の大きな油圧の上昇が考えられる。噛込む異物が58mm程度の鉄の塊であった場合、例えば57.6mmの大きさのボルト等を噛込んだ場合、例えば27.5MPaの耐圧性能を有する油圧シリンダに対して約270MPaもの油圧が発生する。従って、従来の竪型ミルの様に油の流通を制限することで加圧ローラの振動を吸収するダンピング装置が用いられていた場合、発生した過大な油圧を吸収することができず、油圧シリンダ等の油圧系統の破損を招く虞れがあった。
In a coal-fired boiler using coal as fuel, massive coal is pulverized by a vertical roller mill into pulverized coal, and the pulverized coal is supplied to a burner which is a combustion device together with primary air.
The vertical mill includes a housing, a crushing table housed in the housing, a pressure roller pressed against the crushing table, a pressure cylinder provided in the housing and pressing the pressure roller against the crushing table, The coal is supplied to the pulverizing table, and the coal is pulverized by the pressure roller.
In a vertical mill, when the rolling resistance of the pressure roller is large, or when the rolling resistance fluctuates, slip occurs between the crushing table and the pressure roller, and the pressure roller is caused by the slip. May generate excitation vibration.
Conventionally, there is a roller mill disclosed in Patent Document 1 that suppresses self-excited vibration of a grinding roller. In the roller mill, a damper device including a throttle valve and an accumulator is connected to the rod side of a hydraulic cylinder to which pressurized oil is supplied, and the vibration energy of the pressurized oil is absorbed by the damper device to Vibration is suppressed.
However, when foreign matter is mixed into the material to be crushed and the pressure roller bites into the foreign matter, the hydraulic pressure may increase so much that it does not compare with the fluctuation of the hydraulic pressure generated by self-excited vibration. When the foreign matter to be bitten is an iron lump of about 58 mm, for example, when a bolt having a size of 57.6 mm is bitten, for example, a hydraulic pressure of about 270 MPa is applied to a hydraulic cylinder having a pressure resistance of 27.5 MPa. appear. Therefore, when a damping device that absorbs the vibration of the pressure roller by restricting the oil flow like the conventional vertical mill is used, the excessive hydraulic pressure generated cannot be absorbed, and the hydraulic cylinder There is a risk of causing damage to the hydraulic system.
特開平11−285649号公報JP-A-11-285649
 本発明は斯かる実情に鑑み、急激な油圧上昇に伴う油圧系統の破損を防止する竪型ミルを提供するものである。 In view of such circumstances, the present invention provides a vertical mill that prevents breakage of a hydraulic system due to a rapid increase in hydraulic pressure.
 本発明は、ハウジングに収納され、テーブル駆動装置によって回転駆動される粉砕テーブルと、該粉砕テーブル上に押圧され、塊状物を粉砕する複数の加圧ローラと、該加圧ローラを押圧する複数のローラ加圧ユニットとを具備し、該ローラ加圧ユニットは前記加圧ローラに加圧力を付与する加圧シリンダと、該加圧シリンダに接続された油圧回路と、該油圧回路に設けられたダンピング装置とを有し、該ダンピング装置は第1のオリフィス孔と複数の逃し孔を有する第1のオリフィスと、該第1のオリフィスに重合して設けられ前記逃し孔を閉塞する第2のオリフィスとを有し、該第2のオリフィスは変形可能なプレートであり、該プレートは油圧上昇時に変形して前記第1のオリフィスより離反し、前記逃し孔を開放する竪型ミルに係るものである。
 又本発明は、前記逃し孔は前記第1のオリフィス孔と同心の円周上に設けられ、前記第2のオリフィスは前記逃し孔を閉塞する円形のプレートである竪型ミルに係るものである。
 又本発明は、前記逃し孔は前記第1のオリフィス孔の直径に平行で且つ該直径に関して対称な直線上に設けられ、前記第2のオリフィスは前記逃し孔を閉塞する矩形のプレートである竪型ミルに係るものである。
 更に又本発明は、前記第2のオリフィスの周縁部に等間隔で複数のスリットが形成され、隣接する該スリット間に変形部が形成され、該変形部は前記複数の逃し孔を流通する圧油の油圧によりそれぞれ独立して変形される竪型ミルに係るものである。
The present invention includes a crushing table housed in a housing and driven to rotate by a table driving device, a plurality of pressure rollers that are pressed onto the crushing table and crush the lump, and a plurality of pressure rollers that press the pressure roller. A pressure unit for applying pressure to the pressure roller, a hydraulic circuit connected to the pressure cylinder, and a damping provided in the hydraulic circuit. A first orifice having a first orifice hole and a plurality of escape holes, and a second orifice that overlaps with the first orifice and closes the escape hole. And the second orifice is a deformable plate, and the plate is deformed when the hydraulic pressure is increased and is separated from the first orifice to open the escape hole. Than is.
Further, the present invention relates to a vertical mill in which the escape hole is provided on a circumference concentric with the first orifice hole, and the second orifice is a circular plate that closes the escape hole. .
Further, according to the present invention, the escape hole is provided on a straight line parallel to and symmetric with respect to the diameter of the first orifice hole, and the second orifice is a rectangular plate that closes the escape hole. It relates to a mold mill.
Furthermore, according to the present invention, a plurality of slits are formed at equal intervals in the peripheral portion of the second orifice, and a deformed portion is formed between the adjacent slits. The deformed portion is a pressure that flows through the plurality of escape holes. The present invention relates to a vertical mill that is independently deformed by the oil pressure of the oil.
 本発明によれば、ハウジングに収納され、テーブル駆動装置によって回転駆動される粉砕テーブルと、該粉砕テーブル上に押圧され、塊状物を粉砕する複数の加圧ローラと、該加圧ローラを押圧する複数のローラ加圧ユニットとを具備し、該ローラ加圧ユニットは前記加圧ローラに加圧力を付与する加圧シリンダと、該加圧シリンダに接続された油圧回路と、該油圧回路に設けられたダンピング装置とを有し、該ダンピング装置は第1のオリフィス孔と複数の逃し孔を有する第1のオリフィスと、該第1のオリフィスに重合して設けられ前記逃し孔を閉塞する第2のオリフィスとを有し、該第2のオリフィスは変形可能なプレートであり、該プレートは油圧上昇時に変形して前記第1のオリフィスより離反し、前記逃し孔を開放するので、油圧が急激に上昇した場合であっても、前記逃し孔が開放されることで圧油の流路が拡大され、前記加圧シリンダや前記油圧回路に作用する油圧を低下させることができ、前記加圧シリンダや前記油圧回路等の油圧系統の破損を防止することができる。 According to the present invention, a crushing table housed in a housing and rotated by a table driving device, a plurality of pressure rollers pressed on the crushing table and crushing a lump, and the pressure rollers are pressed. A plurality of roller pressing units, the roller pressing unit being provided in the hydraulic circuit, a pressure cylinder that applies pressure to the pressure roller, a hydraulic circuit connected to the pressure cylinder, and A damping device, a first orifice having a first orifice hole and a plurality of escape holes, and a second orifice that overlaps with the first orifice and closes the escape hole. An orifice, and the second orifice is a deformable plate, and the plate is deformed when the hydraulic pressure is increased and is separated from the first orifice to open the escape hole. Even when the pressure suddenly increases, the passage of the pressure oil is expanded by opening the relief hole, and the hydraulic pressure acting on the pressurizing cylinder and the hydraulic circuit can be reduced. Damage to the hydraulic system such as the pressure cylinder and the hydraulic circuit can be prevented.
 図1は本発明の実施例に係る竪型ミルの一例を示す概略図である。
 図2は本発明の実施例の要部を示す油圧回路図である。
 図3(A)、図3(B)は本発明の実施例に係るダンピング装置の概略正断面図であり、図3(A)は通常の状態に於けるダンピング装置を示し、図3(B)は油圧上昇時のダンピング装置を示している。
 図4は図3(A)のA−A矢視図である。
 図5は前記ダンピング装置の第1の変形例を示す概略側断面図である。
 図6は前記ダンピング装置の第2の変形例を示す概略側断面図である。
FIG. 1 is a schematic view showing an example of a vertical mill according to an embodiment of the present invention.
FIG. 2 is a hydraulic circuit diagram showing the main part of the embodiment of the present invention.
3 (A) and 3 (B) are schematic front sectional views of the damping device according to the embodiment of the present invention. FIG. 3 (A) shows the damping device in a normal state, and FIG. ) Shows a damping device when the hydraulic pressure is increased.
FIG. 4 is a view taken in the direction of arrows AA in FIG.
FIG. 5 is a schematic sectional side view showing a first modification of the damping device.
FIG. 6 is a schematic sectional side view showing a second modification of the damping device.
 以下、図面を参照しつつ本発明の実施例を説明する。
 先ず、図1を参照し、竪型ミル1の一例について略述する。
 ハウジング2の下部に粉砕テーブル3が設けられ、該粉砕テーブル3はテーブル駆動装置10によって回転駆動される。又、前記粉砕テーブル3には加圧ローラ4が転動し、該加圧ローラ4は円周方向に3等分した位置に放射状に設けられ、ローラ加圧ユニット5によって前記粉砕テーブル3に押圧される。
 前記ハウジング2の上側には石炭給排部6が設けられ、前記粉砕テーブル3の回転軸心上にパイプ状のシュート7が設けられ、該シュート7から塊状の石炭が前記粉砕テーブル3の中心部に供給される様になっている。又、前記ハウジング2の上部には前記シュート7を中心に回転する分級機8が設けられている。
 前記シュート7より前記粉砕テーブル3上に供給された石炭は、遠心力で外周方向に移動し、前記加圧ローラ4で粉砕され粉状となり、粉状の石炭は前記粉砕テーブル3の外周から噴上がる搬送用の1次空気に乗って粉砕炭流9として上昇する。
 該粉砕炭流9は、前記分級機8で所定粒子以下の微粉炭に分級され、分級された微粉炭は、前記石炭給排部6の微粉炭送給管11を介して微粉炭バーナ(図示せず)に供給される。又、所定粒子以上の粗粉炭は前記粉砕テーブル3上に落下し、前記加圧ローラ4により再度粉砕される。
 前記ローラ加圧ユニット5は、前記ハウジング2の一部を構成するジャーナルカバー12を貫通して設けられ、該ジャーナルカバー12にはローラアーム13が傾動自在に設けられている。該ローラアーム13に前記ローラ加圧ユニット5が設けられている。該ローラ加圧ユニット5は、加圧シリンダ14とプッシュロッド15を有し、該プッシュロッド15は軸心方向に摺動自在に設けられている。
 前記加圧シリンダ14のロッド16は前記プッシュロッド15の基端に当接し、又該プッシュロッド15の先端(中心側端)は、前記ローラアーム13に当接しており、前記加圧シリンダ14の押圧力は、前記プッシュロッド15、前記ローラアーム13を介して前記加圧ローラ4に伝達される様になっている。
 又、前記竪型ミル1は制御装置17を有しており、該制御装置17は前記加圧ローラ4に伝達される圧力が所定の圧力となる様、前記加圧シリンダ14に圧油を供給する油圧回路21(図2参照)を制御する様になっている。
 図2に於いて、該油圧回路21について説明する。
 圧油供給路22の一端が前記加圧シリンダ14のシリンダヘッド側に連通され、他端が油タンク23に連通されている。前記圧油供給路22の上流側から油圧ポンプ24、第1開閉弁25、圧力検出器26が設けられている。又、前記第1開閉弁25をバイパスし、該第1開閉弁25の上流側と下流側とを連通させるバイパス路27が設けられ、該バイパス路27にはダンピング装置28が設けられている。
 前記圧油供給路22の前記第1開閉弁25より上流側、或は前記ダンピング装置28より上流側にアキュムレータ29が連通されている。
 排油路31の一端が前記加圧シリンダ14のロッド16側に連通され、他端が前記油タンク23に連通されている。前記排油路31には第2開閉弁32が設けられている。
 ここで、前記油圧回路21は、前記加圧シリンダ14への圧油供給手段として機能すると共に、自励振動抑制手段としても機能する。
 図3(A)、図3(B)、図4に於いて、前記ダンピング装置28の詳細について説明する。
 該ダンピング装置28は、内部を圧油が流通する円筒状のオリフィスケース33と、該オリフィスケース33内に設けられた第1のオリフィス34及び第2のオリフィス35とを有している。
 前記第1のオリフィス34は、前記オリフィスケース33の圧油の流路を塞ぐ様設けられた円板状の部材であり、中心には円形の第1のオリフィス孔36が穿設され、該第1のオリフィス孔36により圧油の流路が縮小され、圧油の流通が制限される様になっている。又、該第1のオリフィス孔36の周囲には、図4に示される様に、該第1のオリフィス孔36の同心円周上に所定角度ピッチで複数の逃し孔37が穿設されている。
 前記第2のオリフィス35は弾性変形可能なプレート、例えば鋼製のプレート、又はステンレス鋼製のプレート等からなるプレートであり、前記第1のオリフィス34の上流側に取付けられる。前記第2のオリフィス35は、前記第1のオリフィス34よりも小径で、且つ全ての前記逃し孔37を完全に閉塞する直径を有する。又、前記第2のオリフィス35の板厚は、油圧の増大に対して変形可能な様に設定されており、中心には前記第1のオリフィス孔36と同径、又は若干大きい第2のオリフィス孔38が穿設されている。
 又、前記第1のオリフィス34と前記第2のオリフィス35は、図4に示される様に、前記第1のオリフィス孔36と前記第2のオリフィス孔38とが同心となる様に重合し、前記第1のオリフィス孔36の周囲を複数のボルト等の固着具39により固着されている。
 この時、図3(A)に示される様に、前記第2のオリフィス35の周縁部は前記逃し孔37の上流側端を閉塞する様になっており、又図3(B)に示される様に、前記第2のオリフィス35に掛る圧力が所定の圧力を超えると、前記固着具39を支点として屈曲変形し、全ての逃し孔37が一度に開放される様になっている。
 次に、前記油圧回路21の作動について説明する。
 前記制御装置17により、前記第1開閉弁25及び前記第2開閉弁32が開とされ、前記油圧ポンプ24により昇圧された圧油が前記圧油供給路22を介して前記加圧シリンダ14のシリンダヘッド側に供給されることで、前記加圧シリンダ14により前記加圧ローラ4が前記粉砕テーブル3上に加圧され、石炭が粉砕される。
 この時、前記圧油供給路22内の油圧は前記圧力検出器26により検出される様になっており、前記圧油供給路22内の油圧が所定の圧力に到達すると、前記制御装置17が前記第1開閉弁25を閉とする。又この状態では、図3(A)に示される様に、前記第2のオリフィス35は前記第1のオリフィス34に密着し、前記逃し孔37の上流側端を閉塞している。
 石炭の粉砕処理中、前記第1開閉弁25が閉とされた状態で自励振動が発生すると、前記加圧ローラ4が上下に振動し、更に該加圧ローラ4の振動は前記ローラアーム13、前記プッシュロッド15、前記ロッド16に伝達される。
 該ロッド16の振動は、前記加圧シリンダ14のピストン14aの振動となって現れ、該ピストン14aの振動によって、シリンダヘッド側の容積が変動し、シリンダヘッド側の圧油が出入りする。前記容積の変動分の圧油が前記バイパス路27、前記ダンピング装置28を通って前記アキュムレータ29に流入、流出するが、前記第1のオリフィス孔36、前記第2のオリフィス孔38を流通する過程で、圧油の粘性抵抗により振動が減衰される。
 従って、前記加圧シリンダ14に供給される圧油を強制的に前記ダンピング装置28に流通させることで、自励振動を抑制することができる。
 而して、自励振動が生じた場合、或は自励振動が発生する状態となった場合であっても、自励振動を抑制し、前記竪型ミル1を停止させることなく運転を継続させることができる。
 又、石炭の粉砕処理中に、前記加圧ローラ4が異物を噛込んだ場合、該加圧ローラ4は異物に乗上げ、急激に上方に変位する。該加圧ローラ4の変位が前記ローラアーム13、前記プッシュロッド15、前記ロッド16に伝達され、前記加圧シリンダ14のシリンダヘッド側、前記圧油供給路22、前記バイパス路27の油圧が急激に上昇するが、図3(B)に示される様に、前記逃し孔37を通して上昇圧は前記第2のオリフィス35に作用し、該第2のオリフィス35を屈曲変形させる。該第2のオリフィス35が変形することで、前記第1のオリフィス34と前記第2のオリフィス35との間に隙間が生じ、前記逃し孔37の上流側端が開放され、前記ダンピング装置28の流路が拡大される。
 従って、該ダンピング装置28により圧油の流通が制限された状態で、前記加圧ローラ4が異物を噛込み、油圧が急激に上昇した場合であっても、前記逃し孔37により圧油の流路を拡大することで油圧を低下させることができ、急激な油圧上昇に伴う前記加圧シリンダ14、前記圧油供給路22等の油圧系統の破損を防止することができる。
 尚、前記第2のオリフィス35は、弾性変形の範囲内で屈曲変形する様製作するのが好ましい。該第2のオリフィス35を弾性変形の範囲内で屈曲変形させることで、該第2のオリフィス35を破損させることなく繰返し使用することができ、前記ダンピング装置28の耐久性を向上させることができる。又、該ダンピング装置28を交換可能とし、所定圧以上の油圧が発生すると前記第2のオリフィス35が破損し、前記逃し孔37を開放する様にしてもよい。
 又、前記第2のオリフィス35は、自励振動発生時には変形せず、異物噛込みの際の急激な油圧上昇時にのみ変形する様な剛性、形状(強度)とするのが好ましい。例えば、該第2のオリフィス35を上流側に向って凸となる様湾曲させ、前記固着具39で湾曲を矯正する様にして取付け、前記第2のオリフィス35に初期撓みを与える。自励振動発生時に該第2のオリフィス35が変形しない強度とすることで、自励振動発生時に圧油の流路が拡大し、振動減衰の効率が悪化するのを防止することができる。
 図5は、前記ダンピング装置28の第1の変形例を示している。
 該第1の変形例では、前記第2のオリフィス35の周縁部に複数のスリット41が中心に向って所定角度ピッチで形成され、前記第2のオリフィス35の前記スリット41,41間が油圧上昇時の変形部42となっている。
 該変形部42は、前記第2のオリフィス35を前記第1のオリフィス34に固着した際に前記逃し孔37上に位置し、各変形部42が各逃し孔37をそれぞれ閉塞する様になっている。
 第1の変形例に於いては、前記加圧ローラ4の異物噛込みにより、前記加圧シリンダ14、前記圧油供給路22の油圧が急激に上昇した際に、各逃し孔37を流通する圧油により各変形部42がそれぞれ独立して変形される様になっているので、前記第2のオリフィス35の強度の設定を容易に行うことができる。
 図6は、前記ダンピング装置28の第2の変形例を示している。
 該第2の変形例は、前記第2のオリフィス35が長方形のプレートであり、又前記逃し孔37が前記第1のオリフィス孔36の直径と平行且つ該直径に対して対称な直線上に位置する様に穿設されている。前記第2のオリフィス35を前記第1のオリフィス34に固着する際には、前記逃し孔37が前記第2のオリフィス35の短辺の端部により閉塞されると共に、前記逃し孔37が前記第2のオリフィス35の短辺と平行となる様に固着される。
 第2の変形例に於いては、該第2のオリフィス35の製作が容易である。又、前記逃し孔37を前記第1のオリフィス孔36の直径と平行であり且つ該直径に関して対称となる様穿設しているので、前記第2のオリフィス35の屈曲変形する方向が一定となり、該第2のオリフィス35の強度の設定を容易に行うことができる。
 尚、第2の変形例に於ける前記第2のオリフィス35は、長方形ではなく他の方形、例えば正方形のプレートであってもよい。
 又、第2の変形例の前記第2のオリフィス35に対し、第1の変形例と同様スリット41を形成してもよいのは言う迄もない。
Embodiments of the present invention will be described below with reference to the drawings.
First, an example of a vertical mill 1 will be briefly described with reference to FIG.
A crushing table 3 is provided at the lower part of the housing 2, and the crushing table 3 is rotationally driven by a table driving device 10. Further, a pressure roller 4 rolls on the crushing table 3, and the pressure roller 4 is radially provided at a position equally divided into three in the circumferential direction, and is pressed against the crushing table 3 by a roller pressure unit 5. Is done.
A coal supply / exhaust portion 6 is provided on the upper side of the housing 2, and a pipe-like chute 7 is provided on the rotational axis of the crushing table 3, and lump coal from the chute 7 is the center of the crushing table 3. To be supplied. A classifier 8 that rotates about the chute 7 is provided at the top of the housing 2.
Coal supplied from the chute 7 onto the pulverizing table 3 is moved in the outer peripheral direction by centrifugal force, pulverized by the pressure roller 4 to become powder, and the pulverized coal is sprayed from the outer periphery of the pulverizing table 3. It rises as a pulverized coal stream 9 on the rising primary air for conveyance.
The pulverized coal stream 9 is classified into pulverized coal having a predetermined particle size or less by the classifier 8, and the classified pulverized coal is pulverized coal burner (see FIG. Not shown). Coarse coal particles having a predetermined particle size or more fall on the crushing table 3 and are pulverized again by the pressure roller 4.
The roller pressure unit 5 is provided through a journal cover 12 that constitutes a part of the housing 2, and a roller arm 13 is tiltably provided on the journal cover 12. The roller pressing unit 5 is provided on the roller arm 13. The roller pressure unit 5 includes a pressure cylinder 14 and a push rod 15, and the push rod 15 is provided to be slidable in the axial direction.
The rod 16 of the pressure cylinder 14 is in contact with the proximal end of the push rod 15, and the distal end (center side end) of the push rod 15 is in contact with the roller arm 13. The pressing force is transmitted to the pressure roller 4 through the push rod 15 and the roller arm 13.
Further, the vertical mill 1 has a control device 17, and the control device 17 supplies pressure oil to the pressure cylinder 14 so that the pressure transmitted to the pressure roller 4 becomes a predetermined pressure. The hydraulic circuit 21 (see FIG. 2) is controlled.
The hydraulic circuit 21 will be described with reference to FIG.
One end of the pressure oil supply path 22 communicates with the cylinder head side of the pressure cylinder 14, and the other end communicates with the oil tank 23. A hydraulic pump 24, a first on-off valve 25, and a pressure detector 26 are provided from the upstream side of the pressure oil supply path 22. A bypass path 27 is provided to bypass the first on-off valve 25 and connect the upstream side and the downstream side of the first on-off valve 25, and the bypass path 27 is provided with a damping device 28.
An accumulator 29 communicates with the pressure oil supply path 22 upstream of the first on-off valve 25 or upstream of the damping device 28.
One end of the oil drain passage 31 is in communication with the rod 16 side of the pressure cylinder 14, and the other end is in communication with the oil tank 23. A second on-off valve 32 is provided in the oil drain passage 31.
Here, the hydraulic circuit 21 functions as pressure oil supply means to the pressure cylinder 14 and also functions as self-excited vibration suppression means.
3 (A), 3 (B), and 4, the details of the damping device 28 will be described.
The damping device 28 includes a cylindrical orifice case 33 through which pressure oil flows, and a first orifice 34 and a second orifice 35 provided in the orifice case 33.
The first orifice 34 is a disk-like member provided so as to close the pressure oil flow path of the orifice case 33, and a circular first orifice hole 36 is formed in the center thereof. The pressure oil flow path is reduced by one orifice hole 36 so that the flow of the pressure oil is restricted. Further, as shown in FIG. 4, a plurality of escape holes 37 are formed around the first orifice hole 36 at a predetermined angular pitch on the concentric circumference of the first orifice hole 36.
The second orifice 35 is an elastically deformable plate, for example, a plate made of steel, a plate made of stainless steel, or the like, and is attached upstream of the first orifice 34. The second orifice 35 is smaller in diameter than the first orifice 34 and has a diameter that completely closes all the escape holes 37. The plate thickness of the second orifice 35 is set so as to be deformable with an increase in hydraulic pressure, and a second orifice having the same diameter as or slightly larger than the first orifice hole 36 at the center. A hole 38 is formed.
Further, as shown in FIG. 4, the first orifice 34 and the second orifice 35 are superposed such that the first orifice hole 36 and the second orifice hole 38 are concentric, The first orifice hole 36 is fixed around a plurality of fixing tools 39 such as bolts.
At this time, as shown in FIG. 3 (A), the peripheral portion of the second orifice 35 closes the upstream end of the escape hole 37, and also shown in FIG. 3 (B). Similarly, when the pressure applied to the second orifice 35 exceeds a predetermined pressure, it is bent and deformed with the fixing tool 39 as a fulcrum, and all the escape holes 37 are opened at once.
Next, the operation of the hydraulic circuit 21 will be described.
The control device 17 opens the first on-off valve 25 and the second on-off valve 32, and the pressure oil increased in pressure by the hydraulic pump 24 passes through the pressure oil supply path 22 to the pressure cylinder 14. By being supplied to the cylinder head side, the pressure roller 14 is pressed onto the crushing table 3 by the pressure cylinder 14, and the coal is crushed.
At this time, the oil pressure in the pressure oil supply passage 22 is detected by the pressure detector 26. When the oil pressure in the pressure oil supply passage 22 reaches a predetermined pressure, the control device 17 The first on-off valve 25 is closed. In this state, as shown in FIG. 3A, the second orifice 35 is in close contact with the first orifice 34 and closes the upstream end of the escape hole 37.
If self-excited vibration occurs while the first on-off valve 25 is closed during the coal pulverization process, the pressure roller 4 vibrates up and down, and the vibration of the pressure roller 4 is further affected by the roller arm 13. , Transmitted to the push rod 15 and the rod 16.
The vibration of the rod 16 appears as the vibration of the piston 14a of the pressurizing cylinder 14. The vibration of the piston 14a fluctuates the volume on the cylinder head side, and the pressure oil on the cylinder head side enters and exits. Pressure oil corresponding to the change in volume flows into and out of the accumulator 29 through the bypass passage 27 and the damping device 28, but flows through the first orifice hole 36 and the second orifice hole 38. Thus, the vibration is attenuated by the viscous resistance of the pressure oil.
Therefore, the self-excited vibration can be suppressed by forcibly circulating the pressure oil supplied to the pressure cylinder 14 to the damping device 28.
Thus, even when self-excited vibration occurs or when self-excited vibration occurs, the self-excited vibration is suppressed and the operation is continued without stopping the vertical mill 1. Can be made.
Further, when the pressure roller 4 bites foreign matter during the coal pulverization process, the pressure roller 4 rides on the foreign matter and is rapidly displaced upward. The displacement of the pressure roller 4 is transmitted to the roller arm 13, the push rod 15, and the rod 16, and the hydraulic pressure in the cylinder head side of the pressure cylinder 14, the pressure oil supply path 22, and the bypass path 27 is rapidly increased. However, as shown in FIG. 3B, the rising pressure acts on the second orifice 35 through the escape hole 37 to bend and deform the second orifice 35. As the second orifice 35 is deformed, a gap is formed between the first orifice 34 and the second orifice 35, the upstream end of the escape hole 37 is opened, and the damping device 28 The flow path is enlarged.
Therefore, even if the pressure roller 4 bites foreign matter and the hydraulic pressure rises suddenly in a state where the circulation of the pressure oil is restricted by the damping device 28, the flow of the pressure oil is caused by the relief hole 37. By expanding the path, the hydraulic pressure can be reduced, and damage to the hydraulic system such as the pressurizing cylinder 14 and the pressure oil supply path 22 due to a sudden increase in hydraulic pressure can be prevented.
The second orifice 35 is preferably manufactured so as to be bent and deformed within the range of elastic deformation. By bending and deforming the second orifice 35 within the range of elastic deformation, the second orifice 35 can be used repeatedly without being damaged, and the durability of the damping device 28 can be improved. . Alternatively, the damping device 28 may be replaced, and when the hydraulic pressure higher than a predetermined pressure is generated, the second orifice 35 may be damaged and the relief hole 37 may be opened.
The second orifice 35 preferably has such a rigidity and shape (strength) that it does not deform when self-excited vibration occurs but deforms only when the hydraulic pressure suddenly increases when foreign matter is caught. For example, the second orifice 35 is curved so as to be convex toward the upstream side, and is attached so as to correct the curvature with the fixing tool 39, so that the second orifice 35 is initially bent. By setting the strength so that the second orifice 35 is not deformed when the self-excited vibration is generated, it is possible to prevent the pressure oil flow path from expanding when the self-excited vibration is generated and the efficiency of vibration damping to be deteriorated.
FIG. 5 shows a first modification of the damping device 28.
In the first modification, a plurality of slits 41 are formed at a predetermined angular pitch toward the center at the peripheral edge of the second orifice 35, and the hydraulic pressure increases between the slits 41, 41 of the second orifice 35. It becomes the deformation part 42 at the time.
The deforming portion 42 is positioned on the escape hole 37 when the second orifice 35 is fixed to the first orifice 34, and the deformable portions 42 block the escape holes 37, respectively. Yes.
In the first modified example, when the oil pressure of the pressure cylinder 14 and the pressure oil supply passage 22 rises rapidly due to the foreign matter biting of the pressure roller 4, the pressure holes 4 circulate through the relief holes 37. Since the deforming portions 42 are independently deformed by the pressure oil, the strength of the second orifice 35 can be easily set.
FIG. 6 shows a second modification of the damping device 28.
In the second modification, the second orifice 35 is a rectangular plate, and the escape hole 37 is positioned on a straight line parallel to and symmetric with respect to the diameter of the first orifice hole 36. It is drilled to do. When the second orifice 35 is fixed to the first orifice 34, the escape hole 37 is closed by the end of the short side of the second orifice 35, and the escape hole 37 is The two orifices 35 are fixed so as to be parallel to the short side.
In the second modification, the second orifice 35 can be easily manufactured. Further, since the escape hole 37 is formed so as to be parallel to and symmetric with respect to the diameter of the first orifice hole 36, the bending direction of the second orifice 35 becomes constant, The strength of the second orifice 35 can be easily set.
The second orifice 35 in the second modification may be a rectangular plate other than a rectangle, for example, a square plate.
Needless to say, the slit 41 may be formed in the second orifice 35 of the second modification as in the first modification.
 第1のオリフィスに第2のオリフィスを重合させ、逃し孔を変形可能なプレート状の前記第2のオリフィスで閉塞することで、急激な油圧上昇時に該第2のオリフィスを前記逃し孔から離反させて圧油の流路を拡大し、油圧を低下させることができ、油圧系統の破損の防止に適用できる。 By superposing the second orifice on the first orifice and closing the escape hole with the deformable plate-like second orifice, the second orifice is separated from the escape hole when the hydraulic pressure suddenly increases. Thus, the flow path of the pressure oil can be expanded to reduce the hydraulic pressure, and can be applied to prevent damage to the hydraulic system.
 1       竪型ミル
 2       ハウジング
 3       粉砕テーブル
 4       加圧ローラ
 5       ローラ加圧ユニット
 14      加圧シリンダ
 17      制御装置
 21      油圧回路
 28      ダンピング装置
 33      オリフィスケース
 34      第1のオリフィス
 35      第2のオリフィス
 36      第1のオリフィス孔
 37      逃し孔
 38      第2のオリフィス孔
 41      スリット
 42      変形部
DESCRIPTION OF SYMBOLS 1 Vertical mill 2 Housing 3 Crushing table 4 Pressure roller 5 Roller pressure unit 14 Pressure cylinder 17 Control device 21 Hydraulic circuit 28 Damping device 33 Orifice case 34 First orifice 35 Second orifice 36 First orifice hole 37 Escape hole 38 Second orifice hole 41 Slit 42 Deformed portion

Claims (4)

  1.  ハウジングに収納され、テーブル駆動装置によって回転駆動される粉砕テーブルと、該粉砕テーブル上に押圧され、塊状物を粉砕する複数の加圧ローラと、該加圧ローラを押圧する複数のローラ加圧ユニットとを具備し、該ローラ加圧ユニットは前記加圧ローラに加圧力を付与する加圧シリンダと、該加圧シリンダに接続された油圧回路と、該油圧回路に設けられたダンピング装置とを有し、該ダンピング装置は第1のオリフィス孔と複数の逃し孔を有する第1のオリフィスと、該第1のオリフィスに重合して設けられ前記逃し孔を閉塞する第2のオリフィスとを有し、該第2のオリフィスは変形可能なプレートであり、該プレートは油圧上昇時に変形して前記第1のオリフィスより離反し、前記逃し孔を開放することを特徴とする竪型ミル。 A crushing table housed in a housing and driven to rotate by a table driving device, a plurality of pressure rollers that are pressed onto the crushing table and crush the lump, and a plurality of roller pressure units that press the pressure roller The roller pressure unit includes a pressure cylinder that applies pressure to the pressure roller, a hydraulic circuit connected to the pressure cylinder, and a damping device provided in the hydraulic circuit. The damping device has a first orifice having a first orifice hole and a plurality of escape holes, and a second orifice that is overlapped with the first orifice and closes the escape hole, The second orifice is a deformable plate, and the plate is deformed when the hydraulic pressure is increased and is separated from the first orifice to open the relief hole. .
  2.  前記逃し孔は前記第1のオリフィス孔と同心の円周上に設けられ、前記第2のオリフィスは前記逃し孔を閉塞する円形のプレートである請求項1の竪型ミル。 The vertical mill according to claim 1, wherein the escape hole is provided on a circumference concentric with the first orifice hole, and the second orifice is a circular plate closing the escape hole.
  3.  前記逃し孔は前記第1のオリフィス孔の直径に平行で且つ該直径に関して対称な直線上に設けられ、前記第2のオリフィスは前記逃し孔を閉塞する矩形のプレートである請求項1の竪型ミル。 2. The saddle type according to claim 1, wherein the escape hole is provided on a straight line parallel to and symmetric with respect to the diameter of the first orifice hole, and the second orifice is a rectangular plate for closing the escape hole. mill.
  4.  前記第2のオリフィスの周縁部に等間隔で複数のスリットが形成され、隣接する該スリット間に変形部が形成され、該変形部は前記複数の逃し孔を流通する圧油の油圧によりそれぞれ独立して変形される請求項2又は請求項3の竪型ミル。 A plurality of slits are formed at equal intervals in the peripheral portion of the second orifice, and a deformed portion is formed between the adjacent slits, and the deformed portions are independent of each other by the hydraulic pressure of the pressure oil flowing through the plurality of escape holes. The vertical mill according to claim 2 or 3, wherein the vertical mill is deformed.
PCT/JP2013/062738 2012-05-23 2013-04-24 Vertical mill WO2013175952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-117270 2012-05-23
JP2012117270A JP5929506B2 (en) 2012-05-23 2012-05-23 Vertical mill

Publications (1)

Publication Number Publication Date
WO2013175952A1 true WO2013175952A1 (en) 2013-11-28

Family

ID=49623649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062738 WO2013175952A1 (en) 2012-05-23 2013-04-24 Vertical mill

Country Status (2)

Country Link
JP (1) JP5929506B2 (en)
WO (1) WO2013175952A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278268B2 (en) * 2014-05-22 2018-02-14 株式会社Ihi Roller mill system and boiler system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285649A (en) * 1998-04-01 1999-10-19 Babcock Hitachi Kk Roller mill
JP2005009567A (en) * 2003-06-18 2005-01-13 Showa Corp Pressure side damping force generation device of hydraulic damper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285649A (en) * 1998-04-01 1999-10-19 Babcock Hitachi Kk Roller mill
JP2005009567A (en) * 2003-06-18 2005-01-13 Showa Corp Pressure side damping force generation device of hydraulic damper

Also Published As

Publication number Publication date
JP5929506B2 (en) 2016-06-08
JP2013244417A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
AU2009257709B2 (en) Electronically controlled journal loading system
JP6127466B2 (en) Vertical roller mill
WO2013175952A1 (en) Vertical mill
RU2645328C2 (en) Bush of the main shaft of the cone crusher
JP5660225B2 (en) Vertical roller mill
KR20190021319A (en) System, method and apparatus for upgrading a fine grinder
JP2015526285A (en) Crusher
JP5668903B2 (en) Vertical crusher
CN101607222A (en) Hammer crusher
WO2016139830A1 (en) Crushing roller and crusher
EP3595816B1 (en) System and method for adjusting a material bed depth in a pulverizer mill
JP2010279926A (en) Vertical crusher
JP2019155286A (en) Vertical mill operation method and vertical mill
JP4919158B2 (en) Vertical crusher control method and vertical crusher
JP7279641B2 (en) VERTICAL CRUSHER AND METHOD OF CONTROLLING GRINDING ROLLER PRESSURE OF VERTICAL CRUSHER
CN204034772U (en) Cone Crusher Locking Mechanism
JP2010119924A (en) Vertical mill
CN104162464B (en) Cone Crusher Locking Mechanism
US20130161475A1 (en) Vibration dampening base assembly for a grinding mill
JP2016150300A (en) Vertical crusher
JP5919638B2 (en) Vertical roller mill
JP5866970B2 (en) Roller mill
JP5920573B2 (en) Vertical crusher
JPH10128141A (en) Crushing apparatus
JP2016135462A (en) Operation method of vertical mill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793698

Country of ref document: EP

Kind code of ref document: A1