WO2013175896A1 - Dialysis unit - Google Patents

Dialysis unit Download PDF

Info

Publication number
WO2013175896A1
WO2013175896A1 PCT/JP2013/061264 JP2013061264W WO2013175896A1 WO 2013175896 A1 WO2013175896 A1 WO 2013175896A1 JP 2013061264 W JP2013061264 W JP 2013061264W WO 2013175896 A1 WO2013175896 A1 WO 2013175896A1
Authority
WO
WIPO (PCT)
Prior art keywords
dialysate
line
blood
upstream
downstream
Prior art date
Application number
PCT/JP2013/061264
Other languages
French (fr)
Japanese (ja)
Inventor
佐野 嘉彦
満隆 上田
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Priority to JP2014516722A priority Critical patent/JPWO2013175896A1/en
Publication of WO2013175896A1 publication Critical patent/WO2013175896A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1694Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes with recirculating dialysing liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1694Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes with recirculating dialysing liquid
    • A61M1/1696Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes with recirculating dialysing liquid with dialysate regeneration

Definitions

  • the present invention relates to a dialysis unit constituting an extracorporeal circuit such as hemodialysis, blood filtration, blood exchange and the like.
  • a dialysis unit and a dialysis apparatus including a hemodialyzer have been used as an extracorporeal circuit for hemodialysis. Waste products, moisture, and other solute-removing solutes in the blood are dialyzed into fresh dialysate delivered from the dialyzer in a hemodialyzer. The treated dialysate is collected in a dialysis machine.
  • a dialysis unit including such a hemodialyzer is disclosed in JP-A-01-62167 (Patent Document 1), JP-A-01-62168 (Patent Document 2), and JP-A-01-227763 (Patent Document 3). Is disclosed.
  • Typical solute-removing solutes in blood include low molecular weight solutes urea (molecular weight: 60), creatinine (molecular weight: 113.12), phosphorus (molecular weight: 98), and medium molecular weight solute vitamin B12 (molecular weight: 1355.38), myoglobin (molecular weight: about 17,200), which is a high molecular weight solute, and the like.
  • FIG. 5 shows the relationship between the removal rate of the solute removal solute by the hemodialyzer and the time.
  • the removal rate of the low molecular weight solute among the solute removal solutes greatly changes in about 30 minutes after the start of dialysis. This indicates that the low molecular weight solute is efficiently removed from the blood by the hemodialyzer compared to the medium molecular weight solute and the high molecular weight solute within about 30 minutes after the start of dialysis.
  • the low molecular weight solute is rapidly removed from the blood, the body fluid balance will be lost, and a large burden will be placed on the dialysis patient.
  • various amino acids belonging to the medium molecular weight solute are also removed from the low molecular weight solute that is not originally required to be removed, which places a heavy burden on dialysis patients.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a dialysis unit that makes it possible to reduce the burden on the dialysis patient during hemodialysis for the dialysis patient.
  • a hemodialyzer having a blood inlet and a blood outlet, a dialysate inlet and a dialysate outlet, an upstream blood line connected to the blood inlet, and connected to the blood outlet
  • a downstream blood line that is connected to the dialysate inlet and through which the fresh dialysate passes
  • a downstream dialysate line that is connected to the dialysate outlet and through which the treated dialysate passes
  • One end is connected to an intermediate region of the downstream dialysate line, and the other end is connected to an intermediate region of the upstream dialysate line, thereby allowing the treated dialysate to pass through the downstream dialysate line.
  • a bypass line that allows part of the gas to be introduced into the upstream dialysate line; and an opening / closing device that is provided in the bypass line and opens and closes the bypass line.
  • bypass line is provided with a filter that captures a solute having a predetermined molecular weight or more in the treated dialysate.
  • the opening / closing device is a pump.
  • the amount of the treated dialysate introduced into the upstream dialysate line is controlled by controlling the rotation speed of the pump.
  • the dialysis unit based on the present invention it is possible to provide a dialysis unit that makes it possible to reduce the burden on the dialysis patient during hemodialysis on the dialysis patient.
  • FIG. 1 is a diagram showing an extracorporeal circuit using the dialysis unit in the present embodiment.
  • the extracorporeal circuit 10 in this embodiment includes a dialysis unit 20 and a dialysis device 30.
  • the dialysis unit 20 includes a hemodialyzer 100, a blood circuit having an upstream blood line 140 and a downstream blood line 150, and a dialysate circuit having an upstream dialysate line 300 and a downstream dialysate line 400.
  • the hemodialyzer 100 has a blood inlet BF1 and a blood outlet BF2, and a dialysate inlet DF1 and a dialysate outlet DF2. Inside the hemodialyzer 100, a filter 130 using a hollow fiber filter or the like is attached, and a blood flow channel region 110 and a dialysate flow channel region 120 are formed.
  • hemodialyzer 100 when a hollow fiber filter is used as the filter 130, blood flows inside the hollow fiber filter, and fresh dialysate flows outside the hollow fiber filter in the direction opposite to the blood flow. . Dialysis is performed between blood and fresh dialysate using this hollow fiber filter.
  • One end of the upstream blood line 140 is connected to the blood inlet BF1 of the hemodialyzer 100.
  • An arterial puncture needle (not shown) is provided at the other end of the upstream blood line 140. The arterial puncture needle is punctured into an arteriovenous shunt of a dialysis patient.
  • One end of the downstream blood line 150 is connected to the blood outlet BF2 of the hemodialyzer 100.
  • a vein puncture needle (not shown) is provided at the other end of the downstream blood line 150. The venous puncture needle is punctured into a vein of a dialysis patient.
  • the upstream blood line 140 or the downstream blood line 150 is provided with a blood pump (not shown).
  • One end of the upstream dialysate line 300 is connected to the dialysate inlet DF1 of the hemodialyzer 100.
  • the other end of the upstream dialysate line 300 is connected to the dialysate outlet DM1 of the dialyzer 30.
  • Fresh dialysate is led out from the dialyzer 30 to the upstream dialysate line 300.
  • One end of the downstream dialysate line 400 is connected to the dialysate outlet DF2 of the hemodialyzer 100.
  • the other end of the downstream dialysate line 400 is connected to the dialysate inlet DM2 of the dialyzer 30.
  • the treated dialysate is introduced into the dialyzer 30 from the downstream dialysate line 400.
  • a roller pump 500 is provided in the downstream dialysate line 400.
  • the position where the roller pump 500 is provided is not limited to the downstream dialysate line 400, and may be inside the upstream dialysate line 300 or the dialyzer 30.
  • a bypass line 600 is provided in which one end is connected to the middle region C1 of the downstream dialysate line 400 and the other end is connected to the middle region C2 of the upstream dialysate line 300. ing.
  • This bypass line 600 allows a part of the treated dialysate passing through the downstream dialysate line 400 to be introduced into the upstream dialysate line 300.
  • the bypass line 600 is provided with an opening / closing device 700 that controls the introduction of the treated dialysate into the upstream dialysate line 300 by opening and closing the bypass line 600.
  • an opening / closing device 700 a roller pump is provided in the present embodiment.
  • the opening / closing device 700 is not limited to the roller pump 700 but may be an opening / closing device having a clamp mechanism.
  • FIG. 2 shows the relationship between the removal rate and time when the extracorporeal circuit 10 having the above configuration is used.
  • a control device 900 is used to control the bypass line 600 so that a 50 ml / min treated dialysate is sent from the downstream dialysate line 400 to the upstream dialysate line 300 by the switch 700.
  • the amount of fresh dialysate drawn from the dialyzer 30 to the upstream dialysate line 300 and the amount of treated dialysate introduced from the downstream dialysate line 400 to the dialyzer 30 are each 500 ml / min. It becomes.
  • Line L1p, line L2P, and line L3P in FIG. 2 remove low molecular weight solute, medium molecular weight solute, and high molecular weight solute when a portion of the treated dialysate is not returned to the upstream dialysate line 300.
  • This is a line indicating the relationship between rate and time, and is the same as the line shown in FIG.
  • the line L1a, the line L2a, and the line L3a in FIG. 2 are low molecular weight solute, medium molecular weight solute, and high molecular weight solute when a part of the treated dialysate is returned to the upstream dialysate line 300. It is a line which shows the relationship between the removal rate of time and time.
  • the amount of the treated dialysate introduced from the downstream dialysate line 400 into the dialyzer 30 can be controlled by the opening / closing device 700 using the control device 900. As a result, it is possible to flexibly cope with the condition of the dialysis patient, and hemodialysis can be performed while taking into consideration the physical condition of the dialysis patient.
  • the amount of the treated dialysate introduced into the dialyzer 30 from the downstream dialysate line 400 is increased. Thereby, the collapse of the body fluid balance is alleviated and the burden on the dialysis patient is reduced.
  • the treated dialysis introduced from the downstream dialysate line 400 to the dialyzer 30 is increased. Control of the opening / closing device 700 for reducing the amount of liquid is performed using the control device 900.
  • Such control of the opening / closing device 700 can be easily performed by executing programming by storing the control flow in the control device 900 in advance.
  • the treatment time is plotted on the horizontal axis and the rotation speed or flow rate of the roller pump (opening / closing device 700) is plotted on the vertical axis so that the rotation speed or flow rate of the roller pump at the elapsed time can be set in advance.
  • a filter 800 that captures a solute having a predetermined molecular weight or more in the treated dialysate in the bypass line 600.
  • a filter 800 that passes a low molecular weight solute and captures a medium molecular weight solute and a high molecular weight solute is used.
  • the filter 800 there is a CTA (cellulose triacetate) membrane manufactured by Nipro Corporation used for hemodialyzers, or a Nipro precision ultrafiltration filter CF-609 used for cleaning dialysate.
  • 10, 10A extracorporeal circuit 20 dialysis unit, 30 dialysis machine, 100 hemodialyzer, 110 blood channel region, 120 dialysate channel region, 130,800 filter, 140 upstream blood line, 150 downstream blood line, 300 upstream dialysate line, 400 downstream dialysate line, 500,700 roller pump (opening / closing device), 600 bypass line, 900 control device, BF1 blood inlet, BF2 blood outlet, C1, C2 halfway region, DF1 dialysate inlet , DF2 dialysate outlet, DM1 dialysate outlet, DM2 dialysate inlet.

Abstract

This dialysis unit (20) has a bypass line (600) which, by having one end coupled to an intermediate area (C1) of a downstream-side dialysate line (400), and another end coupled to an intermediate area (C2) of an upstream-side dialysate line (300), is capable of introducing a portion of treated dialysate passing through the downstream-side dialysate line (400) to the upstream-side dialysate line (300). On the bypass line (600) is provided a shut-off device (700) which performs opening and closing of the bypass line (600). By way of the configuration, it is possible to mitigate the burden upon a dialysis patient at a time of hemodialysis for the dialysis patient.

Description

透析ユニットDialysis unit
 この発明は、血液透析、血液濾過、血液交換等の体外循環回路を構成する透析ユニットに関する。 The present invention relates to a dialysis unit constituting an extracorporeal circuit such as hemodialysis, blood filtration, blood exchange and the like.
 従来、血液透析用の体外循環回路として、血液透析器を含む透析ユニットおよび透析装置が用いられている。血液中の老廃物、水分、その他の溶質除去溶質は、血液透析器において、透析装置から送り出される新鮮透析液に透析される。処理済透析液は、透析装置に回収される。このような血液透析器を含む透析ユニットは、特開平01-62167号公報(特許文献1)、特開平01-62168号公報(特許文献2)、特開平01-227763号公報(特許文献3)に開示されている。 Conventionally, as an extracorporeal circuit for hemodialysis, a dialysis unit and a dialysis apparatus including a hemodialyzer have been used. Waste products, moisture, and other solute-removing solutes in the blood are dialyzed into fresh dialysate delivered from the dialyzer in a hemodialyzer. The treated dialysate is collected in a dialysis machine. A dialysis unit including such a hemodialyzer is disclosed in JP-A-01-62167 (Patent Document 1), JP-A-01-62168 (Patent Document 2), and JP-A-01-227763 (Patent Document 3). Is disclosed.
 血液中の代表的な溶質除去溶質としては、低分子量溶質である尿素(分子量:60)、クレアチニン(分子量:113.12)、リン(分子量:98)、中分子量溶質であるビタミンB12(分子量:1355.38)、高分子量溶質であるミオグロビン(分子量:約1万7200)等が挙げられる。 Typical solute-removing solutes in blood include low molecular weight solutes urea (molecular weight: 60), creatinine (molecular weight: 113.12), phosphorus (molecular weight: 98), and medium molecular weight solute vitamin B12 (molecular weight: 1355.38), myoglobin (molecular weight: about 17,200), which is a high molecular weight solute, and the like.
 図5に、溶質除去溶質の血液透析器による除去率と時間との関係を示す。図5に示すように、溶質除去溶質のうち低分子量溶質については、透析開始後約30分程度の間に除去率は大きく変化する。これは、透析開始後約30分程度の間に、血液透析器により、中分子量溶質および高分子量溶質に比べ、低分子量溶質が血液から効率良く除去されることを示している。 FIG. 5 shows the relationship between the removal rate of the solute removal solute by the hemodialyzer and the time. As shown in FIG. 5, the removal rate of the low molecular weight solute among the solute removal solutes greatly changes in about 30 minutes after the start of dialysis. This indicates that the low molecular weight solute is efficiently removed from the blood by the hemodialyzer compared to the medium molecular weight solute and the high molecular weight solute within about 30 minutes after the start of dialysis.
特開平01-62167号公報Japanese Patent Laid-Open No. 01-62167 特開平01-62168号公報Japanese Patent Laid-Open No. 01-62168 特開平01-227763号公報Japanese Patent Laid-Open No. 01-227763
 しかしながら、血液から低分子量溶質が急激に除去されると、体液バランスが崩れ、透析患者に大きな負担を与えることになる。特に、低分子量溶質の中には、本来除去する必要のない低分子量溶質から中分子量溶質に属する各種のアミノ酸も除去することとなり、透析患者に与える負担は大きい。 However, if the low molecular weight solute is rapidly removed from the blood, the body fluid balance will be lost, and a large burden will be placed on the dialysis patient. In particular, among the low molecular weight solutes, various amino acids belonging to the medium molecular weight solute are also removed from the low molecular weight solute that is not originally required to be removed, which places a heavy burden on dialysis patients.
 この発明は上記課題に鑑みてなされたもので、この発明の目的は、透析患者に対する血液透析時の、透析患者への負担を軽減させることを可能とする、透析ユニットを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a dialysis unit that makes it possible to reduce the burden on the dialysis patient during hemodialysis for the dialysis patient.
 この発明に基づいた透析ユニットにおいては、血液入口および血液出口と、透析液入口および透析液出口とを有する血液透析器と、上記血液入口に連結される上流側血液ラインと、上記血液出口に連結される下流側血液ラインと、上記透析液入口に連結され、新鮮透析液が通過する上流側透析液ラインと、上記透析液出口に連結され、処理済透析液が通過する下流側透析液ラインと、一端が上記下流側透析液ラインの途中領域に連結され、他端が上記上流側透析液ラインの途中領域に連結されることにより、上記下流側透析液ラインを通過する上記処理済透析液の一部を上記上流側透析液ラインに導入可能とするバイパスラインと、上記バイパスラインに設けられ、上記バイパスラインの開閉を行なう開閉装置とを備える。 In the dialysis unit according to the present invention, a hemodialyzer having a blood inlet and a blood outlet, a dialysate inlet and a dialysate outlet, an upstream blood line connected to the blood inlet, and connected to the blood outlet A downstream blood line that is connected to the dialysate inlet and through which the fresh dialysate passes; a downstream dialysate line that is connected to the dialysate outlet and through which the treated dialysate passes; , One end is connected to an intermediate region of the downstream dialysate line, and the other end is connected to an intermediate region of the upstream dialysate line, thereby allowing the treated dialysate to pass through the downstream dialysate line. A bypass line that allows part of the gas to be introduced into the upstream dialysate line; and an opening / closing device that is provided in the bypass line and opens and closes the bypass line.
 他の形態において、上記バイパスラインには、上記処理済透析液中の所定の分子量以上の溶質を捕捉するフィルタが設けられている。 In another embodiment, the bypass line is provided with a filter that captures a solute having a predetermined molecular weight or more in the treated dialysate.
 他の形態において、上記開閉装置は、ポンプである。
 他の形態において、上記ポンプの回転数を制御することにより、上記上流側透析液ラインへの上記処理済透析液の導入量を制御する。
In another embodiment, the opening / closing device is a pump.
In another embodiment, the amount of the treated dialysate introduced into the upstream dialysate line is controlled by controlling the rotation speed of the pump.
 この発明に基づいた透析ユニットによれば、透析患者に対する血液透析時の、透析患者への負担を軽減させることを可能とする、透析ユニットを提供することを可能とする。 According to the dialysis unit based on the present invention, it is possible to provide a dialysis unit that makes it possible to reduce the burden on the dialysis patient during hemodialysis on the dialysis patient.
実施の形態における透析ユニットを採用した体外循環回路を示す図である。It is a figure which shows the extracorporeal circuit which employ | adopted the dialysis unit in embodiment. 実施の形態における透析ユニットを採用した体外循環回路を用いた場合の除去率と時間との関係を示す図である。It is a figure which shows the relationship between the removal rate at the time of using the extracorporeal circuit which employ | adopted the dialysis unit in embodiment, and time. 実施の形態における他の透析ユニットを採用した体外循環回路を示す図である。It is a figure which shows the extracorporeal circuit which employ | adopted the other dialysis unit in embodiment. 実施の形態における他の透析ユニットを採用した体外循環回路を用いた場合の除去率と時間との関係を示す図である。It is a figure which shows the relationship between the removal rate at the time of using the extracorporeal circuit which employ | adopted the other dialysis unit in embodiment, and time. 背景技術における透析ユニットを用いた場合の除去率と時間との関係を示す図である。It is a figure which shows the relationship between the removal rate at the time of using the dialysis unit in background art, and time.
 以下、各実施の形態において、本発明に基づいた透析ユニットおよび体外循環回路について、図を参照しながら説明する。以下に説明する各実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。各実施の形態に表れる構成を適宜組み合わせて用いることは当初から予定されていることである。 Hereinafter, in each embodiment, a dialysis unit and an extracorporeal circuit according to the present invention will be described with reference to the drawings. In each embodiment described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. It is planned from the beginning to use a combination of the configurations appearing in each embodiment as appropriate.
 (実施の形態1)
 以下、図1を参照して、本実施の形態における血液透析に用いられる体外循環回路10について説明する。図1は、本実施の形態における透析ユニットを用いた体外循環回路を示す図である。
(Embodiment 1)
Hereinafter, the extracorporeal circuit 10 used for hemodialysis in the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an extracorporeal circuit using the dialysis unit in the present embodiment.
 本実施の形態における体外循環回路10は、透析ユニット20と透析装置30とを有する。透析ユニット20は、血液透析器100、上流側血液ライン140および下流側血液ライン150を有する血液回路と、上流側透析液ライン300および下流側透析液ライン400を有する透析液回路とを備える。 The extracorporeal circuit 10 in this embodiment includes a dialysis unit 20 and a dialysis device 30. The dialysis unit 20 includes a hemodialyzer 100, a blood circuit having an upstream blood line 140 and a downstream blood line 150, and a dialysate circuit having an upstream dialysate line 300 and a downstream dialysate line 400.
 血液透析器100は、血液入口BF1および血液出口BF2と、透析液入口DF1および透析液出口DF2とを有する。血液透析器100の内部には、中空糸フィルタ等を用いたフィルタ130が装着され、血液流路領域110と透析液流路領域120とが形成される。 The hemodialyzer 100 has a blood inlet BF1 and a blood outlet BF2, and a dialysate inlet DF1 and a dialysate outlet DF2. Inside the hemodialyzer 100, a filter 130 using a hollow fiber filter or the like is attached, and a blood flow channel region 110 and a dialysate flow channel region 120 are formed.
 血液透析器100の内部においては、フィルタ130に中空糸フィルタを用いた場合には、中空糸フィルタの内部を血液が流れ、中空糸フィルタの外部を血液の流れと反対方向に新鮮透析液が流れる。この中空糸フィルタを用いて血液と新鮮透析液との間で透析が行なわれる。 In the hemodialyzer 100, when a hollow fiber filter is used as the filter 130, blood flows inside the hollow fiber filter, and fresh dialysate flows outside the hollow fiber filter in the direction opposite to the blood flow. . Dialysis is performed between blood and fresh dialysate using this hollow fiber filter.
 血液透析器100の血液入口BF1には、上流側血液ライン140の一端が連結される。上流側血液ライン140の他端には図示しない動脈用穿刺針が設けられている。動脈用穿刺針は、透析患者の動静脈シャントに穿刺される。 One end of the upstream blood line 140 is connected to the blood inlet BF1 of the hemodialyzer 100. An arterial puncture needle (not shown) is provided at the other end of the upstream blood line 140. The arterial puncture needle is punctured into an arteriovenous shunt of a dialysis patient.
 血液透析器100の血液出口BF2には、下流側血液ライン150の一端が連結される。下流側血液ライン150の他端には図示しない静脈用穿刺針が設けられている。静脈用穿刺針は、透析患者の静脈に穿刺される。 One end of the downstream blood line 150 is connected to the blood outlet BF2 of the hemodialyzer 100. A vein puncture needle (not shown) is provided at the other end of the downstream blood line 150. The venous puncture needle is punctured into a vein of a dialysis patient.
 血液回路において、上流側血液ライン140または下流側血液ライン150には、図示しない血液ポンプが設けられている。 In the blood circuit, the upstream blood line 140 or the downstream blood line 150 is provided with a blood pump (not shown).
 血液透析器100の透析液入口DF1には、上流側透析液ライン300の一端が連結される。上流側透析液ライン300の他端は、透析装置30の透析液導出口DM1に連結される。透析装置30からは、新鮮透析液が上流側透析液ライン300に導出される。 One end of the upstream dialysate line 300 is connected to the dialysate inlet DF1 of the hemodialyzer 100. The other end of the upstream dialysate line 300 is connected to the dialysate outlet DM1 of the dialyzer 30. Fresh dialysate is led out from the dialyzer 30 to the upstream dialysate line 300.
 血液透析器100の透析液出口DF2には、下流側透析液ライン400の一端が連結される。下流側透析液ライン400の他端は、透析装置30の透析液導入口DM2に連結される。透析装置30には、処理済透析液が下流側透析液ライン400から導入される。 One end of the downstream dialysate line 400 is connected to the dialysate outlet DF2 of the hemodialyzer 100. The other end of the downstream dialysate line 400 is connected to the dialysate inlet DM2 of the dialyzer 30. The treated dialysate is introduced into the dialyzer 30 from the downstream dialysate line 400.
 透析液回路において、本実施の形態では、下流側透析液ライン400に、ローラポンプ500が設けられている。ローラポンプ500を設ける位置は、下流側透析液ライン400に限定されず、上流側透析液ライン300または透析装置30の内部であってもかまわない。 In the dialysate circuit, in this embodiment, a roller pump 500 is provided in the downstream dialysate line 400. The position where the roller pump 500 is provided is not limited to the downstream dialysate line 400, and may be inside the upstream dialysate line 300 or the dialyzer 30.
 本実施の形態における透析ユニット20においては、一端が下流側透析液ライン400の途中領域C1に連結され、他端が上流側透析液ライン300の途中領域C2に連結されるバイパスライン600が設けられている。このバイパスライン600により、下流側透析液ライン400を通過する処理済透析液の一部を上流側透析液ライン300に導入可能とする。 In the dialysis unit 20 according to the present embodiment, a bypass line 600 is provided in which one end is connected to the middle region C1 of the downstream dialysate line 400 and the other end is connected to the middle region C2 of the upstream dialysate line 300. ing. This bypass line 600 allows a part of the treated dialysate passing through the downstream dialysate line 400 to be introduced into the upstream dialysate line 300.
 このバイパスライン600には、バイパスライン600の開閉を行なうことにより、上流側透析液ライン300への処理済透析液の導入を制御する開閉装置700が設けられている。この開閉装置700の一例として、本実施の形態では、ローラポンプが設けられている。開閉装置700としてローラポンプ700に限定されるものではなく、クランプ機構を有する開閉装置であってもよい。 The bypass line 600 is provided with an opening / closing device 700 that controls the introduction of the treated dialysate into the upstream dialysate line 300 by opening and closing the bypass line 600. As an example of the opening / closing device 700, a roller pump is provided in the present embodiment. The opening / closing device 700 is not limited to the roller pump 700 but may be an opening / closing device having a clamp mechanism.
 図2に、上記構成を備える体外循環回路10を用いた場合の、除去率と時間との関係を示す。血液透析器100の透析液流路領域120には、550ml/minの透析液を流す場合を考える。バイパスライン600には、制御装置900を用いて、開閉装置700により50ml/minの処理済透析液を下流側透析液ライン400から上流側透析液ライン300に送り込むように制御する。 FIG. 2 shows the relationship between the removal rate and time when the extracorporeal circuit 10 having the above configuration is used. Consider a case where a 550 ml / min dialysate is allowed to flow through the dialysate channel region 120 of the hemodialyzer 100. A control device 900 is used to control the bypass line 600 so that a 50 ml / min treated dialysate is sent from the downstream dialysate line 400 to the upstream dialysate line 300 by the switch 700.
 したがって、透析装置30から上流側透析液ライン300に導出される新鮮透析液の量、および、下流側透析液ライン400から透析装置30に導入される処理済透析液の量は、それぞれ500ml/minとなる。 Therefore, the amount of fresh dialysate drawn from the dialyzer 30 to the upstream dialysate line 300 and the amount of treated dialysate introduced from the downstream dialysate line 400 to the dialyzer 30 are each 500 ml / min. It becomes.
 このように、一旦血液透析器100から導出された処理済透析液の一部を上流側透析液ライン300に戻すことにより、図2に示すように、血液中の溶質除去溶質の除去率を低下させることが可能となる。これにより、透析患者の体液バランスの崩れが緩和される。
これにより、透析患者に与える負担を軽減させることが可能となる。
In this way, by returning a part of the treated dialysate once derived from the hemodialyzer 100 to the upstream dialysate line 300, as shown in FIG. 2, the solute removal solute removal rate in the blood is lowered. It becomes possible to make it. Thereby, the collapse of the body fluid balance of the dialysis patient is relieved.
Thereby, it becomes possible to reduce the burden given to a dialysis patient.
 図2中のラインL1p、ラインL2P、およびラインL3Pは、処理済透析液の一部を上流側透析液ライン300に戻さない場合の、低分子量溶質、中分子量溶質、および、高分子量溶質の除去率と時間との関係を示すラインであり、図5に示すラインと同じである。一方、図2中のラインL1a、ラインL2a、およびラインL3aは、処理済透析液の一部を上流側透析液ライン300に戻した場合の、低分子量溶質、中分子量溶質、および、高分子量溶質の除去率と時間との関係を示すラインである。 Line L1p, line L2P, and line L3P in FIG. 2 remove low molecular weight solute, medium molecular weight solute, and high molecular weight solute when a portion of the treated dialysate is not returned to the upstream dialysate line 300. This is a line indicating the relationship between rate and time, and is the same as the line shown in FIG. On the other hand, the line L1a, the line L2a, and the line L3a in FIG. 2 are low molecular weight solute, medium molecular weight solute, and high molecular weight solute when a part of the treated dialysate is returned to the upstream dialysate line 300. It is a line which shows the relationship between the removal rate of time and time.
 下流側透析液ライン400から透析装置30に導入される処理済透析液の量は、制御装置900を用いて、開閉装置700により制御することができる。その結果、透析患者の状態に柔軟に対応することが可能となり、透析患者の体調を考慮しながら、血液透析を行なうことが可能となる。 The amount of the treated dialysate introduced from the downstream dialysate line 400 into the dialyzer 30 can be controlled by the opening / closing device 700 using the control device 900. As a result, it is possible to flexibly cope with the condition of the dialysis patient, and hemodialysis can be performed while taking into consideration the physical condition of the dialysis patient.
 たとえば、当初30分の間は除去率を低下させるために、下流側透析液ライン400から透析装置30に導入される処理済透析液の量を増加させる。これにより、体液バランスの崩れが緩和され、透析患者に与える負担が軽減される。次に、分子量溶質、中分子量溶質、および、高分子量溶質の除去率の変化が安定した後に、除去率を上昇させるために、下流側透析液ライン400から透析装置30に導入される処理済透析液の量を減少させる開閉装置700の制御を、制御装置900を用いて行なう。 For example, in order to reduce the removal rate for the first 30 minutes, the amount of the treated dialysate introduced into the dialyzer 30 from the downstream dialysate line 400 is increased. Thereby, the collapse of the body fluid balance is alleviated and the burden on the dialysis patient is reduced. Next, after the change in the removal rate of the molecular weight solute, the medium molecular weight solute, and the high molecular weight solute is stabilized, the treated dialysis introduced from the downstream dialysate line 400 to the dialyzer 30 to increase the removal rate. Control of the opening / closing device 700 for reducing the amount of liquid is performed using the control device 900.
 このような開閉装置700の制御は、あらかじめ制御装置900に制御フローを記憶させておくことで、プログラミングの実行により容易に実施することができる。たとえば、横軸に治療経過時間、縦軸にローラポンプ(開閉装置700)の回転数又は流量を取り、経過時刻におけるローラポンプの回転数または流量をあらかじめ設定できるようにしておく方法がある。 Such control of the opening / closing device 700 can be easily performed by executing programming by storing the control flow in the control device 900 in advance. For example, there is a method in which the treatment time is plotted on the horizontal axis and the rotation speed or flow rate of the roller pump (opening / closing device 700) is plotted on the vertical axis so that the rotation speed or flow rate of the roller pump at the elapsed time can be set in advance.
 (他の構成の体外循環回路10A)
 上記実施の形態における体外循環回路10に用いた透析ユニット20では、図2に示したように、低分子量溶質、中分子量溶質、および高分子量溶質のすべてにおいて除去率を低下させている。急激に体液バランスを崩す要因になっているのは、血液透析の開始から一定時間内において、低分子量溶質の除去率が、中分子量溶質および高分子量溶質に除去率に比べて大きい点にある。
(An extracorporeal circuit 10A having another configuration)
In the dialysis unit 20 used in the extracorporeal circuit 10 in the above embodiment, the removal rate is reduced in all of the low molecular weight solute, the medium molecular weight solute, and the high molecular weight solute as shown in FIG. The reason for suddenly losing the balance of body fluid is that the removal rate of low molecular weight solutes is larger than that of medium molecular weight solutes and high molecular weight solutes within a fixed time from the start of hemodialysis.
 図3に示す他の構成の体外循環回路10Aを採用した体外循環回路10Aにおいては、体外循環回路10Aにおいて、バイパスライン600に、処理済透析液中の所定の分子量以上の溶質を捕捉するフィルタ800が用いられている。本実施の形態では、低分子量溶質を通過させ、中分子量溶質および高分子量溶質を捕捉するフィルタ800が用いられる。たとえば、フィルタ800として、血液透析器に用いられるニプロ社製のCTA(セルローストリアセテート)膜、または、透析液清浄化に用いられるニプロ精密限外濾過フィルタCF-609等がある。 In an extracorporeal circuit 10A employing an extracorporeal circuit 10A having another configuration shown in FIG. 3, in the extracorporeal circuit 10A, a filter 800 that captures a solute having a predetermined molecular weight or more in the treated dialysate in the bypass line 600. Is used. In the present embodiment, a filter 800 that passes a low molecular weight solute and captures a medium molecular weight solute and a high molecular weight solute is used. For example, as the filter 800, there is a CTA (cellulose triacetate) membrane manufactured by Nipro Corporation used for hemodialyzers, or a Nipro precision ultrafiltration filter CF-609 used for cleaning dialysate.
 図4に示すように、低分子量溶質の除去率のみを低下させ、高分子量溶質および中分子量溶質の除去率を上昇させることが可能になる。これにより、体液バランスの崩れが緩和される。その結果、透析患者への負担を軽減しながら、透析時間の拡大を抑制することが可能となる。 As shown in FIG. 4, it is possible to reduce only the removal rate of low molecular weight solutes and increase the removal rate of high molecular weight solutes and medium molecular weight solutes. Thereby, the collapse of the body fluid balance is alleviated. As a result, it is possible to suppress an increase in dialysis time while reducing the burden on the dialysis patient.
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 As mentioned above, although embodiment of this invention was described, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10,10A 体外循環回路、20 透析ユニット、30 透析装置、100 血液透析器、110 血液流路領域、120 透析液流路領域、130,800 フィルタ、140 上流側血液ライン、150 下流側血液ライン、300 上流側透析液ライン、400 下流側透析液ライン、500,700 ローラポンプ(開閉装置)、600 バイパスライン、900 制御装置、BF1 血液入口、BF2 血液出口、C1,C2 途中領域、DF1 透析液入口、DF2 透析液出口、DM1 透析液導出口、DM2 透析液導入口。 10, 10A extracorporeal circuit, 20 dialysis unit, 30 dialysis machine, 100 hemodialyzer, 110 blood channel region, 120 dialysate channel region, 130,800 filter, 140 upstream blood line, 150 downstream blood line, 300 upstream dialysate line, 400 downstream dialysate line, 500,700 roller pump (opening / closing device), 600 bypass line, 900 control device, BF1 blood inlet, BF2 blood outlet, C1, C2 halfway region, DF1 dialysate inlet , DF2 dialysate outlet, DM1 dialysate outlet, DM2 dialysate inlet.

Claims (4)

  1.  血液入口および血液出口と、透析液入口および透析液出口とを有する血液透析器と、
     前記血液入口に連結される上流側血液ラインと、
     前記血液出口に連結される下流側血液ラインと、
     前記透析液入口に連結され、新鮮透析液が通過する上流側透析液ラインと、
     前記透析液出口に連結され、処理済透析液が通過する下流側透析液ラインと、
     一端が前記下流側透析液ラインの途中領域に連結され、他端が前記上流側透析液ラインの途中領域に連結されることにより、前記下流側透析液ラインを通過する前記処理済透析液の一部を前記上流側透析液ラインに導入可能とするバイパスラインと、
     前記バイパスラインに設けられ、前記バイパスラインの開閉を行なう開閉装置と、を備える透析ユニット。
    A hemodialyzer having a blood inlet and a blood outlet, and a dialysate inlet and a dialysate outlet;
    An upstream blood line connected to the blood inlet;
    A downstream blood line connected to the blood outlet;
    An upstream dialysate line connected to the dialysate inlet and through which fresh dialysate passes;
    A downstream dialysate line connected to the dialysate outlet and through which the treated dialysate passes;
    One end of the treated dialysate passing through the downstream dialysate line is connected to one end of the downstream dialysate line and the other end is connected to the midrange of the upstream dialysate line. A bypass line that allows introduction of a part into the upstream dialysate line;
    A dialysis unit comprising: an opening / closing device provided in the bypass line, for opening and closing the bypass line.
  2.  前記バイパスラインには、前記処理済透析液中の所定の分子量以上の溶質を捕捉するフィルタが設けられている、請求項1に記載の透析ユニット。 The dialysis unit according to claim 1, wherein the bypass line is provided with a filter for capturing a solute having a predetermined molecular weight or more in the treated dialysate.
  3.  前記開閉装置は、ポンプである、請求項1または2に記載の透析ユニット。 The dialysis unit according to claim 1 or 2, wherein the opening / closing device is a pump.
  4.  前記ポンプの回転数を制御することにより、前記上流側透析液ラインへの前記処理済透析液の導入量を制御する、請求項3に記載の透析ユニット。 The dialysis unit according to claim 3, wherein an amount of the treated dialysate introduced into the upstream dialysate line is controlled by controlling a rotation speed of the pump.
PCT/JP2013/061264 2012-05-25 2013-04-16 Dialysis unit WO2013175896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014516722A JPWO2013175896A1 (en) 2012-05-25 2013-04-16 Dialysis unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012119472 2012-05-25
JP2012-119472 2012-05-25

Publications (1)

Publication Number Publication Date
WO2013175896A1 true WO2013175896A1 (en) 2013-11-28

Family

ID=49623598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061264 WO2013175896A1 (en) 2012-05-25 2013-04-16 Dialysis unit

Country Status (2)

Country Link
JP (1) JPWO2013175896A1 (en)
WO (1) WO2013175896A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597176A (en) * 2016-01-28 2016-05-25 龚德华 Intermittent CRRT (Continuous Renal Replacement Therapy) machine capacity balance device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744915U (en) * 1993-05-27 1995-12-05 邦彦 山中 Dialysis fluid recirculation equipment for hemodialysis
JP2000237305A (en) * 1999-02-19 2000-09-05 Fresenius Medical Care Deutschland Gmbh Apparatus for dialysis treatment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009026901A1 (en) * 2009-06-10 2010-12-16 Fresenius Medical Care Deutschland Gmbh dialysis machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744915U (en) * 1993-05-27 1995-12-05 邦彦 山中 Dialysis fluid recirculation equipment for hemodialysis
JP2000237305A (en) * 1999-02-19 2000-09-05 Fresenius Medical Care Deutschland Gmbh Apparatus for dialysis treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597176A (en) * 2016-01-28 2016-05-25 龚德华 Intermittent CRRT (Continuous Renal Replacement Therapy) machine capacity balance device

Also Published As

Publication number Publication date
JPWO2013175896A1 (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5543049B2 (en) Method of operating blood purification apparatus and blood purification apparatus
US9814822B2 (en) Plasma generation with dialysis systems
US11433173B2 (en) System for extracorporeal blood treatment, treatment apparatus, kit and method for operating a system for extracorporeal blood treatment
KR20150097785A (en) Haemodiafiltration method
Ronco Backfiltration: a controversial issue in modern dialysis
WO2016171180A1 (en) Blood purification apparatus
WO2011099464A1 (en) Dialyzer
CN103732270A (en) Blood purification device
JP2012504436A (en) Blood extracorporeal treatment device by single needle operation
EP2281591B1 (en) Wearable artificial kidney with regeneration system
EP3134144A1 (en) Hemodialysis systems
WO2015177606A1 (en) Home hemodialysis systems
Ronco et al. Dialysis membranes in convective treatments
CN108697987B (en) System and method for filtering a fluid
WO2013175896A1 (en) Dialysis unit
WO2017170797A1 (en) Stock solution processing device, roller pump device, and bag arrangement method
JP2012529321A (en) Dialysis machine
JP5431228B2 (en) Blood purification equipment
EP2277572B2 (en) Dialysis machine with regeneration system
JP6296057B2 (en) Automatic blood return method in case of emergency such as a power failure that occurred during blood purification
US10471200B2 (en) Blood purification apparatus
JP7132093B2 (en) blood purifier
JP2961481B2 (en) Hemodialyzer and hemofilter
US20210030938A1 (en) A blood hose set, a control device or closed-loop control device, a blood treatment apparatus and a method for the single-needle treatment
JP2894475B2 (en) Hemodialysis machine using hollow fiber membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13794654

Country of ref document: EP

Kind code of ref document: A1