WO2013175817A1 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
WO2013175817A1
WO2013175817A1 PCT/JP2013/054192 JP2013054192W WO2013175817A1 WO 2013175817 A1 WO2013175817 A1 WO 2013175817A1 JP 2013054192 W JP2013054192 W JP 2013054192W WO 2013175817 A1 WO2013175817 A1 WO 2013175817A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
bearing
lubricating oil
chamber
pipe
Prior art date
Application number
PCT/JP2013/054192
Other languages
French (fr)
Japanese (ja)
Inventor
紘太郎 千葉
裕治 紙屋
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201380010269.1A priority Critical patent/CN104136780B/en
Publication of WO2013175817A1 publication Critical patent/WO2013175817A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant

Abstract

The present invention addresses the problem of providing a screw compressor capable of supplying lubrication fluid in an amount suitable to both an operating chamber for compressing gas and a bearing chamber to which a bearing is attached. A screw compressor (1) is provided with: a compressor main body (10) in which are formed an operating chamber in which a pair of male and female rotors rotate and a bearing chamber provided with a bearing for supporting the rotors; an operating chamber oil-supply pipe (20c) for supplying lubrication oil to the operating chamber; a bearing chamber oil-supply pipe (20d) for supplying lubrication oil to the bearing chamber; an oil cooler (3) for cooling the lubrication oil discharged from the operating chamber; a bypass pipeline for bypassing the oil cooler (3); and a three-way valve (21) for opening and closing the bypass pipeline. The operating-chamber oil supply pipe (20c) supplies the lubrication oil cooled by the oil cooler (3) to the operating chamber, the bearing chamber oil supply pipe (20d) branches from the operating-chamber oil supply pipe (20c) to supply lubrication oil cooled by the oil cooler (3) to the bearing chamber, and a flow-adjustment means (22) is provided to the bearing chamber oil supply pipe (20d) to regulate the flow of lubrication oil.

Description

スクリュー圧縮機Screw compressor
 本発明は、スクリュー圧縮機に関する。 The present invention relates to a screw compressor.
 スクリュー圧縮機は、スクリューロータを支持する軸受が組み込まれる軸受室と、気体が圧縮される作動室と、に潤滑油など潤滑用の液体が供給される。このうち、軸受室への液体の供給量(給油量)は、軸受の信頼性とスクリュー圧縮機の動作効率に大きな影響を与える。
 軸受室への給油量が多すぎると軸受における損失動力が増大してスクリュー圧縮機の動作効率が低下する。一方、軸受室への給油量が少なすぎると軸受に対する潤滑性能が低下して軸受の信頼性が低下する。したがって、軸受の信頼性を高めるとともに損失動力を低下するためには、軸受室に供給する給油量が精度よく制御されることが必要になる。
In the screw compressor, a lubricating liquid such as lubricating oil is supplied to a bearing chamber in which a bearing that supports a screw rotor is incorporated and a working chamber in which gas is compressed. Among these, the supply amount (oil supply amount) of the liquid to the bearing chamber has a great influence on the reliability of the bearing and the operation efficiency of the screw compressor.
If the amount of oil supplied to the bearing chamber is too large, the power loss in the bearing increases and the operating efficiency of the screw compressor decreases. On the other hand, if the amount of oil supplied to the bearing chamber is too small, the lubrication performance for the bearing is lowered and the reliability of the bearing is lowered. Therefore, in order to increase the reliability of the bearing and reduce the power loss, it is necessary to accurately control the amount of oil supplied to the bearing chamber.
 例えば特許文献1には、「前記油分離器5で分離された油はオイルクーラ6で冷却されて前記圧縮機1に供給される。この油は圧縮機のロータ間、ロータとケーシング間、及び軸受けの潤滑を行うとともに、圧縮過程における冷媒ガスの冷却をも行う。前記オイルクーラ6の後流には該オイルクーラをバイパスさせる油量を調節して圧縮機に供給される油の温度を調節する三方制御弁8が設けられており、さらに該三方制御弁8の後流には圧縮機に供給される油流量を調節する制御弁7が設けられている。」と記載されている(段落0022参照)。 For example, in Patent Document 1, “the oil separated by the oil separator 5 is cooled by an oil cooler 6 and supplied to the compressor 1. This oil is between the rotors of the compressor, between the rotor and the casing, and In addition to lubricating the bearings, it also cools the refrigerant gas during the compression process, adjusting the temperature of oil supplied to the compressor by adjusting the amount of oil that bypasses the oil cooler in the downstream of the oil cooler 6. In addition, a control valve 7 for adjusting the flow rate of oil supplied to the compressor is provided downstream of the three-way control valve 8 ”(paragraph). 0022).
特許第3990186号公報Japanese Patent No. 3990186
 特許文献1に開示されているように、オイルクーラの後流(下流)側に潤滑油の流量を調節する制御弁を設けることで、給油式スクリュー圧縮機に供給される潤滑油の給油量を調節できる。
 しかしながら、特許文献1に開示される技術では、軸受室に対する給油量を個別に調節できない。したがって、圧縮された流体の吐出温度に応じて作動室への給油量を調節すると軸受室への給油が最適な給油量とならない場合がある。つまり、軸受室への給油量が、軸受の信頼性を高めるとともに損失動力を低下させる最適な給油量とならない。
As disclosed in Patent Document 1, by providing a control valve for adjusting the flow rate of the lubricating oil on the downstream (downstream) side of the oil cooler, the amount of lubricating oil supplied to the oil-fed screw compressor can be reduced. Can be adjusted.
However, the technique disclosed in Patent Document 1 cannot individually adjust the amount of oil supplied to the bearing chamber. Therefore, if the amount of oil supplied to the working chamber is adjusted according to the discharge temperature of the compressed fluid, the amount of oil supplied to the bearing chamber may not be the optimum amount. That is, the amount of oil supplied to the bearing chamber is not the optimum amount of oil that increases the reliability of the bearing and reduces the power loss.
 そこで本発明は、気体を圧縮する作動室と軸受が取り付けられる軸受室とのそれぞれに適した供給量の潤滑用液体を供給できるスクリュー圧縮機を提供することを課題とする。 Therefore, an object of the present invention is to provide a screw compressor capable of supplying a supply amount of lubricating liquid suitable for each of a working chamber for compressing gas and a bearing chamber to which a bearing is attached.
 前記課題を解決するため本発明は、雌雄一対のロータが回転して空気を圧縮する作動室およびロータを支持する軸受が備わる軸受室が形成される圧縮機本体と、作動室に潤滑用の液体を供給する第1管路および軸受室に液体を供給する第2管路と、作動室から排出された液体を冷却する冷却手段と、を備えるスクリュー圧縮機とする。そして、作動室には第1管路から液体が供給され、軸受室には流量調節手段が備わる第2管路から液体が供給されるという特徴を有する。 In order to solve the above problems, the present invention provides a compressor body in which a working chamber in which a pair of male and female rotors rotate to compress air and a bearing chamber having a bearing for supporting the rotor are formed, and a lubricating liquid in the working chamber. The screw compressor is provided with a first pipe for supplying liquid, a second pipe for supplying liquid to the bearing chamber, and a cooling means for cooling the liquid discharged from the working chamber. The working chamber is supplied with liquid from the first pipe, and the bearing chamber is supplied with liquid from the second pipe having flow rate adjusting means.
 本発明によると、気体を圧縮する作動室と軸受が取り付けられる軸受室とのそれぞれに適した供給量の潤滑用液体を供給できるスクリュー圧縮機を提供できる。 According to the present invention, it is possible to provide a screw compressor capable of supplying a supply amount of lubricating liquid suitable for each of the working chamber for compressing gas and the bearing chamber to which the bearing is attached.
スクリュー圧縮機の圧縮機本体の構成を示す断面図である。It is sectional drawing which shows the structure of the compressor main body of a screw compressor. 実施例1に係るスクリュー圧縮機の潤滑油の給油経路を示す図である。It is a figure which shows the oil supply path | route of the lubricating oil of the screw compressor which concerns on Example 1. FIG. 潤滑油の温度が低い場合の潤滑油の流通を示す図である。It is a figure which shows distribution | circulation of the lubricating oil when the temperature of lubricating oil is low. 定常運転時の潤滑油の流通を示す図である。It is a figure which shows distribution | circulation of the lubricating oil at the time of steady operation. 運転負荷が高い場合の潤滑油の流通を示す図である。It is a figure which shows distribution | circulation of the lubricating oil when an operation load is high. 実施例2に係るスクリュー圧縮機の潤滑油の給油経路を示す図である。FIG. 6 is a diagram illustrating an oil supply path for lubricating oil of a screw compressor according to a second embodiment. (a)は自律式三方弁の構造を示す断面図、(b)は自律式開閉弁の構造を示す断面図である。(A) is sectional drawing which shows the structure of an autonomous three-way valve, (b) is sectional drawing which shows the structure of an autonomous on-off valve. (a)は潤滑油の温度が低い場合の潤滑油の流通を示す図、(b)は定常運転時の潤滑油の流通を示す図である。(A) is a figure which shows distribution | circulation of lubricating oil in case the temperature of lubricating oil is low, (b) is a figure which shows distribution | circulation of lubricating oil at the time of steady operation. (a)は運転負荷が高い場合の潤滑油の流通を示す図、(b)は軸受の負荷が最大限になった状態でスクリュー圧縮機が運転される場合の潤滑油の流通を示す図である。(A) is a figure which shows distribution | circulation of lubricating oil when an operation load is high, (b) is a figure which shows distribution | circulation of lubricating oil when a screw compressor is drive | operated in the state where the load of the bearing became the maximum. is there.
 1   スクリュー圧縮機
 3   オイルクーラ(冷却手段)
 10  圧縮機本体
 11  雄ロータ(スクリューロータ)
 13  作動室
 14a,14b 軸受
 15a,15b 軸受室
 20c 作動室給油管(第1管路)
 20d 軸受室給油管(第2管路)
 21  三方弁(開閉手段)
 22  流量調節弁(流量調節手段)
 50  自律式開閉弁(流量調節手段)
 51  自律式三方弁(開閉手段)
 52  絞り(第2の流量調節手段)
1 Screw compressor 3 Oil cooler (cooling means)
10 Compressor body 11 Male rotor (screw rotor)
13 Working chamber 14a, 14b Bearing 15a, 15b Bearing chamber 20c Working chamber oil supply pipe (first pipe)
20d Bearing chamber oil supply pipe (second pipe)
21 Three-way valve (open / close means)
22 Flow control valve (flow control means)
50 Autonomous open / close valve (flow control means)
51 Autonomous three-way valve (opening / closing means)
52 Restriction (second flow rate adjusting means)
 以下、適宜図を参照して本発明の実施例を詳細に説明する。
[実施例1]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
[Example 1]
 図1は、実施例1に係るスクリュー圧縮機の圧縮機本体の構成を示す断面図、図2は、実施例1に係るスクリュー圧縮機の潤滑油の給油経路を示す図である。
 実施例1に係る圧縮機本体10は、図2に示すようにスクリュー圧縮機1に組み込まれ、互いに噛み合って回転する雌雄一対のスクリューロータ(雄ロータ11と雌ロータ(図示せず))で空気を圧縮する圧縮機である。
 雄ロータ11は、図示しない雌ロータとともに、ケーシング12の中空部として形成される作動室13内に収納され、それぞれのロータの回転軸(図1には雄ロータ11の回転軸11aを図示)が作動室13を貫通するように備わっている。回転軸11aの軸線方向の作動室13の両端には、回転軸11aを両端側で支持する軸受14a,14bが取り付けられる軸受室15a,15bが形成される。
 なお、図示はしないが、雌ロータも同様に構成され、その回転軸は、軸受室15a,15bに備わる図示しない軸受で支持される。
1 is a cross-sectional view illustrating a configuration of a compressor main body of a screw compressor according to a first embodiment, and FIG. 2 is a diagram illustrating a lubricating oil supply path of the screw compressor according to the first embodiment.
The compressor main body 10 according to the first embodiment is incorporated in the screw compressor 1 as shown in FIG. 2 and is a pair of male and female screw rotors (a male rotor 11 and a female rotor (not shown)) that rotate while meshing with each other. It is a compressor that compresses.
The male rotor 11 is housed in a working chamber 13 formed as a hollow portion of the casing 12 together with a female rotor (not shown), and the rotation shaft of each rotor (the rotation shaft 11a of the male rotor 11 is shown in FIG. 1). It is provided to penetrate the working chamber 13. Bearing chambers 15a and 15b to which bearings 14a and 14b for supporting the rotating shaft 11a at both ends are attached are formed at both ends of the working chamber 13 in the axial direction of the rotating shaft 11a.
Although not shown, the female rotor is configured in the same manner, and its rotating shaft is supported by a bearing (not shown) provided in the bearing chambers 15a and 15b.
 ケーシング12には、圧縮する気体(実施例1では空気とする)を作動室13に取り込む吸込口16aと、圧縮した空気が作動室13から吐出する吐出口16bとが形成される。そして圧縮機本体10では、吸込口16aから吸い込まれた空気が雄ロータ11と雌ロータ(図示せず)の回転によって圧縮されて吐出口16bから吐出するように構成される。 The casing 12 is formed with a suction port 16 a that takes in a gas to be compressed (in the first embodiment, air) into the working chamber 13 and a discharge port 16 b through which the compressed air is discharged from the working chamber 13. The compressor body 10 is configured such that the air sucked from the suction port 16a is compressed by the rotation of the male rotor 11 and the female rotor (not shown) and discharged from the discharge port 16b.
 軸受室15a,15bには、軸受14a,14bの潤滑のために、潤滑用の液体(実施例1では潤滑油とする)が供給される。
 そのため、軸受室15a,15bには、それぞれ軸受潤滑油供給口17a,17bが形成される。さらに、軸受室15a,15bには、供給された潤滑油を排出するために、それぞれ軸受潤滑油排出口18a,18bが形成される。軸受潤滑油排出口18a,18bは軸受室15a,15bと作動室13を連通する連通路であり、軸受室15a,15bから排出された潤滑油は作動室13に供給される。なお、潤滑用の液体は潤滑油に限定されず、水や液冷媒など他の液体であってもよい。
The bearing chambers 15a and 15b are supplied with a lubricating liquid (in the first embodiment, the lubricating oil) for lubricating the bearings 14a and 14b.
Therefore, bearing lubricating oil supply ports 17a and 17b are formed in the bearing chambers 15a and 15b, respectively. Furthermore, bearing lubricating oil discharge ports 18a and 18b are formed in the bearing chambers 15a and 15b, respectively, in order to discharge the supplied lubricating oil. The bearing lubricating oil discharge ports 18 a and 18 b are communication passages that connect the bearing chambers 15 a and 15 b and the working chamber 13, and the lubricating oil discharged from the bearing chambers 15 a and 15 b is supplied to the working chamber 13. The lubricating liquid is not limited to lubricating oil, and may be other liquids such as water or liquid refrigerant.
 また、ケーシング12には、作動室13に潤滑油を供給するための作動室給油口19が形成される。スクリュー圧縮機1では、作動室13で圧縮された空気の冷却や雄ロータ11と雌ロータ(図示せず)の潤滑や作動室13に形成される隙間の密封のために作動室13にも潤滑油が供給される。実施例1においては、作動室給油口19および軸受潤滑油排出口18a,18bから作動室13に潤滑油が供給される。そして、作動室13に供給された潤滑油は圧縮された空気とともに吐出口16bから排出される。 Also, the casing 12 is formed with a working chamber oil supply port 19 for supplying lubricating oil to the working chamber 13. In the screw compressor 1, the working chamber 13 is also lubricated to cool the air compressed in the working chamber 13, lubricate the male rotor 11 and the female rotor (not shown), and seal the gap formed in the working chamber 13. Oil is supplied. In the first embodiment, lubricating oil is supplied to the working chamber 13 from the working chamber oil supply port 19 and the bearing lubricating oil discharge ports 18a and 18b. The lubricating oil supplied to the working chamber 13 is discharged from the discharge port 16b together with the compressed air.
 なお、雄ロータ11は軸受室15aの側を吸込側、軸受室15bの側を吐出側とする。作動室13は雄ロータ11の吸込側に低圧部が形成され、吐出側に高圧部が形成される。
 そして、軸受潤滑油排出口18a,18bは軸受室15a,15bと作動室13の低圧部を連通するように構成される。また、吸込口16aは作動室13の低圧部に形成され、吐出口16bは作動室13の高圧部に形成される。さらに、吐出側の軸受室15bには、供給された潤滑油の温度を軸受14bの温度として計測する軸受温度センサ15cが備わっている。この軸受温度センサ15cは、吐出側の軸受14bの外輪温度を計測するように構成される。
The male rotor 11 has the bearing chamber 15a side as the suction side and the bearing chamber 15b side as the discharge side. The working chamber 13 has a low pressure portion formed on the suction side of the male rotor 11 and a high pressure portion formed on the discharge side.
The bearing lubricating oil discharge ports 18 a and 18 b are configured to communicate the bearing chambers 15 a and 15 b with the low pressure portion of the working chamber 13. The suction port 16 a is formed in the low pressure portion of the working chamber 13, and the discharge port 16 b is formed in the high pressure portion of the working chamber 13. Furthermore, the bearing chamber 15b on the discharge side is provided with a bearing temperature sensor 15c that measures the temperature of the supplied lubricating oil as the temperature of the bearing 14b. The bearing temperature sensor 15c is configured to measure the outer ring temperature of the discharge-side bearing 14b.
 以上のように構成される圧縮機本体10は、図2に示すように、潤滑油の給油経路を有するスクリュー圧縮機1に組み込まれる。
 圧縮機本体10の吐出口16bは、吐出配管20aによってオイルセパレータ2に接続される。オイルセパレータ2では、圧縮された空気とともに圧縮機本体10から排出される潤滑油が空気と分離する。そして、オイルセパレータ2は第3管路(冷却配管20b)を介して、潤滑油を冷却するオイルクーラ3の上流側に接続される。
 この構成によって、圧縮機本体10の作動室13(図1参照)から排出された潤滑油をオイルクーラ3に供給できる。
 オイルクーラ3は、ファン3aで供給される外気との熱交換で潤滑油を冷却する冷却手段である。なお、図2に示す給油経路において、潤滑油は、圧縮機本体10で圧縮された空気の圧力で加圧されたオイルセパレータ2から送出されて給油経路を循環する。そして、図2に示す給油経路の上流および下流は、潤滑油を送出するオイルセパレータ2を上流とし、潤滑油の流れに沿った上流および下流とする。
 つまり、圧縮機本体10、オイルセパレータ2、オイルクーラ3、圧縮機本体10という順に潤滑油が流通するときの上流および下流とする。
As shown in FIG. 2, the compressor main body 10 configured as described above is incorporated into a screw compressor 1 having a lubricating oil supply path.
The discharge port 16b of the compressor body 10 is connected to the oil separator 2 by a discharge pipe 20a. In the oil separator 2, the lubricating oil discharged from the compressor body 10 together with the compressed air is separated from the air. And the oil separator 2 is connected to the upstream of the oil cooler 3 which cools lubricating oil via the 3rd pipe line (cooling piping 20b).
With this configuration, the lubricating oil discharged from the working chamber 13 (see FIG. 1) of the compressor body 10 can be supplied to the oil cooler 3.
The oil cooler 3 is a cooling unit that cools the lubricating oil by exchanging heat with the outside air supplied by the fan 3a. In the oil supply path shown in FIG. 2, the lubricating oil is sent from the oil separator 2 pressurized with the pressure of the air compressed by the compressor body 10 and circulates in the oil supply path. In addition, upstream and downstream of the oil supply path shown in FIG. 2 are upstream of the oil separator 2 that sends out the lubricating oil, and upstream and downstream along the flow of the lubricating oil.
In other words, the compressor body 10, the oil separator 2, the oil cooler 3, and the compressor body 10 are upstream and downstream when the lubricating oil flows.
 オイルクーラ3の下流側は、第1管路(作動室給油管20c)を介して圧縮機本体10の作動室給油口19と接続される。この構成によって、オイルクーラ3で冷却された潤滑油を作動室給油管20cで圧縮機本体10の作動室13(図1参照)に供給できる。 The downstream side of the oil cooler 3 is connected to the working chamber oil supply port 19 of the compressor body 10 via a first pipe (working chamber oil supply tube 20c). With this configuration, the lubricating oil cooled by the oil cooler 3 can be supplied to the working chamber 13 (see FIG. 1) of the compressor body 10 through the working chamber oil supply pipe 20c.
 また、作動室給油管20cから、分岐点P1で第2管路(軸受室給油管20d)が分岐する。軸受室給油管20dは、吸込側給油管20d1と吐出側給油管20d2とに分岐し、吸込側給油管20d1は吸込側の軸受室15a(図1参照)に形成される軸受潤滑油供給口17aに接続される。また、吐出側給油管20d2は吐出側の軸受室15b(図1参照)に形成される軸受潤滑油供給口17bに接続される。この構成によって、オイルクーラ3で冷却された潤滑油を軸受室給油管20dを介して圧縮機本体10の軸受室15a,15bに供給できる。 Further, the second pipe line (bearing chamber oil supply pipe 20d) branches from the working chamber oil supply pipe 20c at the branch point P1. The bearing chamber oil supply pipe 20d branches into a suction side oil supply pipe 20d1 and a discharge side oil supply pipe 20d2, and the suction side oil supply pipe 20d1 is formed in a bearing lubricating oil supply port 17a formed in the bearing chamber 15a on the suction side (see FIG. 1). Connected to. The discharge-side oil supply pipe 20d2 is connected to a bearing lubricant supply port 17b formed in the discharge-side bearing chamber 15b (see FIG. 1). With this configuration, the lubricating oil cooled by the oil cooler 3 can be supplied to the bearing chambers 15a and 15b of the compressor body 10 through the bearing chamber oil supply pipe 20d.
 また、オイルセパレータ2とオイルクーラ3の上流側を接続する冷却配管20bから、分岐点P2で第1バイパス管20eが分岐し、オイルクーラ3の下流側と作動室給油口19を接続する作動室給油管20cから分岐点P3で第2バイパス管20fが分岐する。第2バイパス管20fが作動室給油管20cから分岐する分岐点P3は、軸受室給油管20dが分岐する分岐点P1よりも上流(すなわち、分岐点P1とオイルクーラ3の間)であることが好ましい。さらに、軸受室給油管20dに形成される分岐点P4で第3バイパス管20gが分岐する。分岐点P4は、軸受室給油管20dが作動室給油管20cから分岐する分岐点P1と圧縮機本体10の軸受室15a,15bとの間に形成される。
 そして、第1バイパス管20eと第2バイパス管20fと第3バイパス管20gは三方弁21に接続される。
Also, the first bypass pipe 20e branches at a branch point P2 from the cooling pipe 20b connecting the oil separator 2 and the upstream side of the oil cooler 3, and the working chamber connecting the downstream side of the oil cooler 3 and the working chamber oil supply port 19 is connected. The second bypass pipe 20f branches from the oil supply pipe 20c at the branch point P3. The branch point P3 where the second bypass pipe 20f branches from the working chamber oil supply pipe 20c is upstream of the branch point P1 where the bearing chamber oil supply pipe 20d branches (that is, between the branch point P1 and the oil cooler 3). preferable. Further, the third bypass pipe 20g branches at a branch point P4 formed in the bearing chamber oil supply pipe 20d. The branch point P4 is formed between the branch point P1 where the bearing chamber oil supply pipe 20d branches from the working chamber oil supply pipe 20c and the bearing chambers 15a and 15b of the compressor body 10.
The first bypass pipe 20e, the second bypass pipe 20f, and the third bypass pipe 20g are connected to the three-way valve 21.
 三方弁21は、3つの接続口(第1接続口21a、第2接続口21b、第3接続口21c)を有し、図示しない弁体の動作によって、3つの接続口がそれぞれ開閉するように構成される。
 実施例1においては、第1バイパス管20eが三方弁21の第1接続口21aに接続し、第2バイパス管20fが第2接続口21bに接続し、第3バイパス管20gが第3接続口21cに接続する。なお、三方弁21は、例えば、制御装置4によって制御される。
 また、三方弁21の第1接続口21a、第2接続口21b、第3接続口21cはそれぞれ開閉する。したがって、三方弁21は、第1接続口21aに接続する第1バイパス管20e、第2接続口21bに接続する第2バイパス管20f、第3接続口21cに接続する第3バイパス管20gをそれぞれ開閉する開閉手段として機能する。
The three-way valve 21 has three connection ports (first connection port 21a, second connection port 21b, and third connection port 21c) so that the three connection ports can be opened and closed by the operation of a valve body (not shown). Composed.
In the first embodiment, the first bypass pipe 20e is connected to the first connection port 21a of the three-way valve 21, the second bypass pipe 20f is connected to the second connection port 21b, and the third bypass pipe 20g is the third connection port. Connect to 21c. The three-way valve 21 is controlled by the control device 4, for example.
The first connection port 21a, the second connection port 21b, and the third connection port 21c of the three-way valve 21 are opened and closed. Therefore, the three-way valve 21 includes a first bypass pipe 20e connected to the first connection port 21a, a second bypass pipe 20f connected to the second connection port 21b, and a third bypass pipe 20g connected to the third connection port 21c, respectively. Functions as opening / closing means for opening and closing.
 また、軸受室給油管20dには、作動室給油管20cとの分岐点P1と、第3バイパス管20gとの分岐点P4と、の間に潤滑油の流量を調節する流量調節手段22が備わる。実施例1の流量調節手段22は、軸受室給油管20dを流れる潤滑油の流量を規制する機能を有するものであればよく、流量調節弁や単なる絞り機構であってもよい。 Further, the bearing chamber oil supply pipe 20d is provided with a flow rate adjusting means 22 for adjusting the flow rate of the lubricating oil between the branch point P1 with the working chamber oil supply pipe 20c and the branch point P4 with the third bypass pipe 20g. . The flow rate adjusting means 22 of the first embodiment only needs to have a function of regulating the flow rate of the lubricating oil flowing through the bearing chamber oil supply pipe 20d, and may be a flow rate adjusting valve or a simple throttle mechanism.
 図3~5は、実施例1における潤滑油の流通を示す図であり、実線は潤滑油が流通する経路を示し、破線は潤滑油が流通しない経路を示す。また、点線の矢印は潤滑油の流通を示す。
 実施例1では、制御装置4が軸受温度センサ15cから入力される検出信号に基づいて吐出側の軸受14b(図1参照)の温度を演算(推定)し、演算した軸受14bの温度に基づいて三方弁21を制御する。つまり、三方弁21は吐出側の軸受14bの温度に基づいて動作する。
 図3は、スクリュー圧縮機1の起動直後など、潤滑油の温度(吐出側の軸受14bの温度)が低い場合の潤滑油の流通を示す図である。
3 to 5 are diagrams illustrating the flow of the lubricating oil in the first embodiment, where the solid line indicates the path through which the lubricating oil flows, and the broken line indicates the path through which the lubricating oil does not flow. A dotted arrow indicates the flow of the lubricating oil.
In the first embodiment, the control device 4 calculates (estimates) the temperature of the discharge-side bearing 14b (see FIG. 1) based on the detection signal input from the bearing temperature sensor 15c, and based on the calculated temperature of the bearing 14b. The three-way valve 21 is controlled. That is, the three-way valve 21 operates based on the temperature of the discharge-side bearing 14b.
FIG. 3 is a diagram illustrating the distribution of the lubricating oil when the temperature of the lubricating oil (the temperature of the discharge-side bearing 14b) is low, such as immediately after the screw compressor 1 is started.
 スクリュー圧縮機1の起動直後はオイルセパレータ2が充分に加圧された状態ではない。また、潤滑油の温度も低く粘度が高い状態にある。
 そこで、制御装置4は軸受温度センサ15cから入力される検出信号に基づいて演算する軸受14bの温度が所定値(起動判定閾値)より低い場合、スクリュー圧縮機1の起動直後と判定する。そして制御装置4は、三方弁21の第1接続口21a、第2接続口21b、第3接続口21cの全てを開弁する。この状態を三方弁21の第1状態とする。
 三方弁21が第1状態に設定されると、第1バイパス管20eと第2バイパス管20fと第3バイパス管20gが連通した状態になる。
Immediately after the screw compressor 1 is started, the oil separator 2 is not sufficiently pressurized. Further, the temperature of the lubricating oil is low and the viscosity is high.
Therefore, when the temperature of the bearing 14b calculated based on the detection signal input from the bearing temperature sensor 15c is lower than a predetermined value (startup determination threshold), the control device 4 determines that the screw compressor 1 has just started. Then, the control device 4 opens all of the first connection port 21a, the second connection port 21b, and the third connection port 21c of the three-way valve 21. This state is the first state of the three-way valve 21.
When the three-way valve 21 is set to the first state, the first bypass pipe 20e, the second bypass pipe 20f, and the third bypass pipe 20g communicate with each other.
 オイルクーラ3は潤滑油を効率よく冷却するために流量が少なくなる構造であって、第1バイパス管20eや第3バイパス管20gよりも潤滑油の流通に対する抵抗が大きい。したがって、三方弁21が第1状態に設定されると、オイルセパレータ2から送出された潤滑油は第1バイパス管20eを流通してオイルクーラ3を迂回する。
 第1バイパス管20eを流通した潤滑油は三方弁21で第2バイパス管20fと第3バイパス管20gに分流する。
The oil cooler 3 has a structure in which the flow rate is reduced in order to cool the lubricating oil efficiently, and has a higher resistance to the flow of the lubricating oil than the first bypass pipe 20e and the third bypass pipe 20g. Therefore, when the three-way valve 21 is set to the first state, the lubricating oil delivered from the oil separator 2 flows through the first bypass pipe 20e and bypasses the oil cooler 3.
The lubricating oil flowing through the first bypass pipe 20e is diverted to the second bypass pipe 20f and the third bypass pipe 20g by the three-way valve 21.
 三方弁21から第2バイパス管20fに流れ込んだ潤滑油は分岐点P3から作動室給油管20cに流れ込み、圧縮機本体10の作動室給油口19から作動室13(図1参照)に供給される。
 一方、三方弁21から第3バイパス管20gに流れ込んだ潤滑油は分岐点P4で軸受室給油管20dに流れ込み、さらに、吸込側給油管20d1と吐出側給油管20d2に分流する。そして、潤滑油は吸込側給油管20d1から軸受潤滑油供給口17aを介して吸込側の軸受室15a(図1参照)に供給され、吐出側給油管20d2から軸受潤滑油供給口17bを介して吐出側の軸受室15b(図1参照)に供給される。
The lubricating oil flowing into the second bypass pipe 20f from the three-way valve 21 flows into the working chamber oil supply pipe 20c from the branch point P3, and is supplied to the working chamber 13 (see FIG. 1) from the working chamber oil supply port 19 of the compressor body 10. .
On the other hand, the lubricating oil that has flowed from the three-way valve 21 into the third bypass pipe 20g flows into the bearing chamber oil supply pipe 20d at the branch point P4, and further splits into the suction-side oil supply pipe 20d1 and the discharge-side oil supply pipe 20d2. Then, the lubricating oil is supplied from the suction side oil supply pipe 20d1 to the bearing chamber 15a (see FIG. 1) on the suction side via the bearing lubricating oil supply port 17a, and from the discharge side oil supply pipe 20d2 to the bearing lubricating oil supply port 17b. It is supplied to the bearing chamber 15b (see FIG. 1) on the discharge side.
 圧縮機本体10の作動室13(図1参照)および軸受室15a,15b(図1参照)に供給された潤滑油は圧縮された空気とともに吐出口16bから吐出されて吐出配管20aを流通し、オイルセパレータ2に流入する。オイルセパレータ2で潤滑油は圧縮された空気と分離されて貯留される。 The lubricating oil supplied to the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10 is discharged from the discharge port 16b together with the compressed air, and flows through the discharge pipe 20a. It flows into the oil separator 2. In the oil separator 2, the lubricating oil is separated from the compressed air and stored.
 このように、軸受14bの温度が所定の起動判定閾値より低い場合、オイルセパレータ2から送出された潤滑油は、流通に対する抵抗の大きなオイルクーラ3を迂回して圧縮機本体10に供給される。したがって、オイルセパレータ2が充分に加圧されていない起動時であっても、圧縮機本体10の作動室13(図1参照)、軸受室15a,15b(図1参照)に充分な量の潤滑油を供給できる。 As described above, when the temperature of the bearing 14b is lower than the predetermined start determination threshold value, the lubricating oil sent from the oil separator 2 bypasses the oil cooler 3 having a large resistance to circulation and is supplied to the compressor body 10. Therefore, even when the oil separator 2 is not sufficiently pressurized, a sufficient amount of lubrication is provided in the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10. Oil can be supplied.
 図4は、定常運転時の潤滑油の流通を示す図である。
 制御装置4は軸受温度センサ15cから入力される検出信号に基づいて演算する軸受14bの温度が起動判定閾値より高い所定値(定常運転判定閾値)まで上昇し、かつ、それよりも高い所定値(高負荷判定閾値)までは上昇しない場合、スクリュー圧縮機1が定常運転状態になったと判定する。そして制御装置4は、三方弁21の第1接続口21a、第2接続口21b、第3接続口21cの全てを閉弁する。この状態を三方弁21の第2状態とする。
FIG. 4 is a diagram showing the flow of the lubricating oil during steady operation.
The control device 4 increases the temperature of the bearing 14b calculated based on the detection signal input from the bearing temperature sensor 15c to a predetermined value (steady operation determination threshold value) higher than the activation determination threshold value, and a predetermined value ( When it does not increase until the high load determination threshold value), it is determined that the screw compressor 1 is in a steady operation state. Then, the control device 4 closes all of the first connection port 21a, the second connection port 21b, and the third connection port 21c of the three-way valve 21. This state is the second state of the three-way valve 21.
 三方弁21が第2状態に設定されると、第1バイパス管20e、第2バイパス管20f、第3バイパス管20gは閉塞される。したがって、オイルセパレータ2から送出されて冷却配管20bを流通する潤滑油は分岐点P2で第1バイパス管20eに流れ込まずにオイルクーラ3に流れ込む。オイルクーラ3に流れ込んだ潤滑油はファン3aで供給される外気で冷却されて作動室給油管20cに流れ込む。第2バイパス管20fは三方弁21で閉塞されているため、作動室給油管20cを流通する潤滑油は分岐点P3で第2バイパス管20fに流れ込まずに、圧縮機本体10の作動室給油口19から作動室13(図1参照)に供給される。 When the three-way valve 21 is set to the second state, the first bypass pipe 20e, the second bypass pipe 20f, and the third bypass pipe 20g are closed. Therefore, the lubricating oil sent from the oil separator 2 and flowing through the cooling pipe 20b flows into the oil cooler 3 without flowing into the first bypass pipe 20e at the branch point P2. The lubricating oil flowing into the oil cooler 3 is cooled by the outside air supplied by the fan 3a and flows into the working chamber oil supply pipe 20c. Since the second bypass pipe 20f is closed by the three-way valve 21, the lubricating oil flowing through the working chamber oil supply pipe 20c does not flow into the second bypass pipe 20f at the branch point P3, and the working chamber oil supply port of the compressor body 10 is used. 19 is supplied to the working chamber 13 (see FIG. 1).
 また、分岐点P1では作動室給油管20cを流通する潤滑油の一部が軸受室給油管20dに流れ込み、吸込側給油管20d1と吐出側給油管20d2を流通して軸受潤滑油供給口17a,17bから軸受室15a,15b(図1参照)に供給される。 Further, at the branch point P1, a part of the lubricating oil flowing through the working chamber oil supply pipe 20c flows into the bearing chamber oil supply pipe 20d, and flows through the suction side oil supply pipe 20d1 and the discharge side oil supply pipe 20d2 so as to receive the bearing lubricant oil supply port 17a, 17b is supplied to bearing chambers 15a and 15b (see FIG. 1).
 圧縮機本体10の作動室13(図1参照)および軸受室15a,15b(図1参照)に供給された潤滑油は圧縮された空気とともに吐出口16bから吐出されて吐出配管20aを流通し、オイルセパレータ2に流入する。オイルセパレータ2で潤滑油は圧縮された空気と分離されて貯留される。 The lubricating oil supplied to the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10 is discharged from the discharge port 16b together with the compressed air, and flows through the discharge pipe 20a. It flows into the oil separator 2. In the oil separator 2, the lubricating oil is separated from the compressed air and stored.
 実施例1では軸受室給油管20dに流量調節手段22が備わって、軸受室給油管20dを流通する潤滑油の流量を適宜規制する。したがって、軸受室15a,15b(図1参照)への潤滑油の供給量が適宜規制されることになり、軸受14a,14b(図1参照)での損失動力を抑制できる。ひいては、スクリュー圧縮機1の動作効率の低下が抑制されて省エネルギなどの効果を奏する。
 なお、流量調節手段22は、損失動力を抑制できる程度に、軸受14a,14bに潤滑油が供給されるように、軸受室給油管20dにおける潤滑油の流量を規制する構成とすればよい。
In the first embodiment, the bearing chamber oil supply pipe 20d is provided with the flow rate adjusting means 22 to appropriately regulate the flow rate of the lubricating oil flowing through the bearing chamber oil supply pipe 20d. Accordingly, the amount of lubricating oil supplied to the bearing chambers 15a and 15b (see FIG. 1) is appropriately regulated, and the power loss in the bearings 14a and 14b (see FIG. 1) can be suppressed. As a result, the fall of the operating efficiency of the screw compressor 1 is suppressed, and effects, such as energy saving, are produced.
The flow rate adjusting means 22 may be configured to regulate the flow rate of the lubricating oil in the bearing chamber oil supply pipe 20d so that the lubricating oil is supplied to the bearings 14a and 14b to such an extent that the power loss can be suppressed.
 以上のように、軸受14bの温度が所定の定常運転判定閾値まで上昇した場合、オイルセパレータ2から送出された潤滑油はオイルクーラ3を流通して冷却され、圧縮機本体10に供給される。このとき、軸受室15a,15b(図1参照)に供給される潤滑油は流量調節手段22で供給量が規制され、軸受14a,14b(図1参照)における損失動力を抑制できる。
 また、作動室13(図1参照)には冷却された潤滑油が供給される。したがって、作動室13で圧縮される空気を効果的に冷却できる。
As described above, when the temperature of the bearing 14 b rises to a predetermined steady operation determination threshold value, the lubricating oil sent from the oil separator 2 is cooled through the oil cooler 3 and supplied to the compressor body 10. At this time, the supply amount of the lubricating oil supplied to the bearing chambers 15a and 15b (see FIG. 1) is regulated by the flow rate adjusting means 22, and power loss in the bearings 14a and 14b (see FIG. 1) can be suppressed.
The working chamber 13 (see FIG. 1) is supplied with cooled lubricating oil. Therefore, the air compressed in the working chamber 13 can be effectively cooled.
 図5は、例えば圧縮機本体10からの空気の吐出圧力が高い場合や、雄ロータ11(図1参照)と雌ロータ(図示せず)の回転速度が高い場合など、運転負荷が高い場合の潤滑油の流通を示す図である。
 制御装置4は軸受温度センサ15cから入力される検出信号に基づいて演算する軸受14bの温度が定常運転判定閾値よりも高い所定値(高負荷判定閾値)まで上昇した場合、スクリュー圧縮機1が高負荷運転状態になったと判定する。そして制御装置4は、三方弁21の第1接続口21aを閉弁し、第2接続口21b、第3接続口21cを開弁する。この状態を三方弁21の第3状態とする。
FIG. 5 shows a case where the operation load is high, for example, when the discharge pressure of air from the compressor body 10 is high, or when the rotation speed of the male rotor 11 (see FIG. 1) and the female rotor (not shown) is high. It is a figure which shows distribution | circulation of lubricating oil.
When the temperature of the bearing 14b calculated based on the detection signal input from the bearing temperature sensor 15c rises to a predetermined value (high load determination threshold) higher than the steady operation determination threshold, the control device 4 increases the screw compressor 1. It is determined that a load operation state has been reached. And the control apparatus 4 closes the 1st connection port 21a of the three-way valve 21, and opens the 2nd connection port 21b and the 3rd connection port 21c. This state is the third state of the three-way valve 21.
 三方弁21が第3状態に設定されると第1バイパス管20eが閉塞される。したがって、オイルセパレータ2から送出されて冷却配管20bを流通する潤滑油は分岐点P2で第1バイパス管20eに流れ込まずにオイルクーラ3に流れ込む。オイルクーラ3に流れ込んだ潤滑油はファン3aで供給される外気で冷却されて作動室給油管20cに流れ込む。 When the three-way valve 21 is set to the third state, the first bypass pipe 20e is closed. Therefore, the lubricating oil sent from the oil separator 2 and flowing through the cooling pipe 20b flows into the oil cooler 3 without flowing into the first bypass pipe 20e at the branch point P2. The lubricating oil flowing into the oil cooler 3 is cooled by the outside air supplied by the fan 3a and flows into the working chamber oil supply pipe 20c.
 三方弁21の第2接続口21b、第3接続口21cは開弁した状態であり、作動室給油管20cを流通する潤滑油は分岐点P3で分流し、一方は作動室給油管20cを流通して圧縮機本体10の作動室給油口19から作動室13(図1参照)に供給される。
 分岐点P3で分流して第2バイパス管20fに流れ込んだ潤滑油は、三方弁21を介して第3バイパス管20gに流れ込み、分岐点P4で軸受室給油管20dに流れ込む。そして、軸受室給油管20dを流通する潤滑油は吸込側給油管20d1、吐出側給油管20d2を流通して圧縮機本体10の軸受潤滑油供給口17a,17bから軸受室15a,15b(図1参照)に供給される。
The second connection port 21b and the third connection port 21c of the three-way valve 21 are opened, and the lubricating oil flowing through the working chamber oil supply pipe 20c is diverted at the branch point P3, and one of the three way valves 21c flows through the working chamber oil supply pipe 20c. Then, it is supplied to the working chamber 13 (see FIG. 1) from the working chamber oil supply port 19 of the compressor body 10.
The lubricating oil that has been branched at the branch point P3 and flows into the second bypass pipe 20f flows into the third bypass pipe 20g via the three-way valve 21, and flows into the bearing chamber oil supply pipe 20d at the branch point P4. The lubricating oil flowing through the bearing chamber oil supply pipe 20d flows through the suction-side oil supply pipe 20d1 and the discharge-side oil supply pipe 20d2 from the bearing lubricating oil supply ports 17a and 17b of the compressor body 10 to the bearing chambers 15a and 15b (FIG. 1). ).
 圧縮機本体10の作動室13(図1参照)および軸受室15a,15b(図1参照)に供給された潤滑油は圧縮された空気とともに吐出口16bから吐出されて吐出配管20aを流通し、オイルセパレータ2に流入する。オイルセパレータ2で潤滑油は圧縮された空気と分離されて貯留される。 The lubricating oil supplied to the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10 is discharged from the discharge port 16b together with the compressed air, and flows through the discharge pipe 20a. It flows into the oil separator 2. In the oil separator 2, the lubricating oil is separated from the compressed air and stored.
 分岐点P3から第2バイパス管20f、第3バイパス管20gを経由することによって、潤滑油は流量調節手段22を迂回することができ、軸受室15a,15b(図1参照)への潤滑油の供給量を増やすことができる。これによって、運転負荷が高くなって軸受14a,14b(図1参照)への負荷が大きくなった場合に充分な量の潤滑油を軸受14a,14bに供給できる。したがって負荷が大きくなった軸受14a,14bを潤滑油で充分に潤滑することができ、軸受14a,14bの潤滑不良を防止できる。
 また、軸受14a,14bには、オイルクーラ3で冷却された冷温の潤滑油が供給される。したがって大きな負荷で高温になった軸受14a,14bを潤滑油で冷却できる。
By passing through the second bypass pipe 20f and the third bypass pipe 20g from the branch point P3, the lubricating oil can bypass the flow rate adjusting means 22, and the lubricating oil is supplied to the bearing chambers 15a and 15b (see FIG. 1). Supply amount can be increased. As a result, a sufficient amount of lubricating oil can be supplied to the bearings 14a and 14b when the operating load increases and the load on the bearings 14a and 14b (see FIG. 1) increases. Therefore, the bearings 14a and 14b having increased loads can be sufficiently lubricated with the lubricating oil, and poor lubrication of the bearings 14a and 14b can be prevented.
The bearings 14 a and 14 b are supplied with cold lubricating oil cooled by the oil cooler 3. Therefore, the bearings 14a and 14b, which have become high temperature under a large load, can be cooled with the lubricating oil.
 以上のように、実施例1のスクリュー圧縮機1は、圧縮機本体10で空気を圧縮する作動室13(図1参照)に潤滑油を供給する給油経路と、圧縮機本体10の軸受室15a,15b(図1参照)に潤滑油を供給する給油経路が、独立した経路となるように構成される。そして、軸受室15a,15bに潤滑油を供給する給油経路に流量調節手段22を備え、さらに、流量調節手段22を迂回する給油経路を備えた。
 これによって、作動室13への潤滑油の供給量に大きな影響を与えることなく、起動時、定常運転時、高負荷運転時、に応じた好適な供給量の潤滑油を軸受室15a,15bに供給できる。
As described above, the screw compressor 1 according to the first embodiment includes the oil supply path for supplying the lubricating oil to the working chamber 13 (see FIG. 1) that compresses air by the compressor body 10, and the bearing chamber 15 a of the compressor body 10. 15b (see FIG. 1), the oil supply path for supplying the lubricating oil is configured to be an independent path. The oil supply path for supplying the lubricating oil to the bearing chambers 15a and 15b is provided with the flow rate adjusting means 22, and the oil supply path for bypassing the flow rate adjusting means 22 is further provided.
Accordingly, a suitable amount of lubricating oil corresponding to the start-up, steady operation, and high-load operation is supplied to the bearing chambers 15a and 15b without greatly affecting the amount of lubricant supplied to the working chamber 13. Can supply.
 また、潤滑油が流量調節手段22を経由することで軸受室15a,15bに供給される潤滑油の供給量を好適に規制できる。したがって、損失動力の増大による動作効率の低下を防止できる。
 また、流量調節手段22を迂回することで軸受室15a,15bに供給される潤滑油の供給量を増やすことができる。したがって、必要に応じて軸受14a,14b(図1参照)に充分な量の潤滑油を供給でき、軸受14a,14bに対する潤滑性能を維持できる。
 このように、損失動力の増大を抑制しつつ、軸受14a,14bに対する潤滑性能を維持することができ、軸受14a,14bに対する信頼性を確保できる。
Further, the supply amount of the lubricating oil supplied to the bearing chambers 15a and 15b can be suitably regulated by passing the lubricating oil through the flow rate adjusting means 22. Therefore, it is possible to prevent a decrease in operating efficiency due to an increase in power loss.
Further, by bypassing the flow rate adjusting means 22, the supply amount of the lubricating oil supplied to the bearing chambers 15a and 15b can be increased. Therefore, a sufficient amount of lubricating oil can be supplied to the bearings 14a and 14b (see FIG. 1) as necessary, and the lubricating performance for the bearings 14a and 14b can be maintained.
In this manner, the lubrication performance for the bearings 14a and 14b can be maintained while suppressing an increase in power loss, and the reliability for the bearings 14a and 14b can be ensured.
 また、潤滑油が流量調節手段22を流通する給油経路と、潤滑油が流量調節手段22を迂回する給油経路と、を制御装置4による三方弁21の制御で切り替える構成とした。
 そして制御装置4は、圧縮機本体10に備わる吐出側の軸受14b(図1参照)の温度を演算(推定)し、軸受14bの温度に基づいて三方弁21を制御する構成とした。
 このような構成によって、軸受14bの温度に応じた好適な供給量の潤滑油を軸受14a,14b(図1参照)に供給することができる。
Further, the oil supply path through which the lubricating oil flows through the flow rate adjusting means 22 and the oil supply path through which the lubricating oil bypasses the flow rate adjusting means 22 are switched by the control of the three-way valve 21 by the control device 4.
And the control apparatus 4 was set as the structure which calculates (estimates) the temperature of the bearing 14b (refer FIG. 1) of the discharge side with which the compressor main body 10 is equipped, and controls the three-way valve 21 based on the temperature of the bearing 14b.
With such a configuration, it is possible to supply a suitable supply amount of lubricating oil according to the temperature of the bearing 14b to the bearings 14a and 14b (see FIG. 1).
 例えば、スクリュー圧縮機1の起動時にはオイルクーラ3を経由することなく充分な供給量の潤滑油を圧縮機本体10の作動室13(図1参照)、軸受室15a,15b(図1参照)に供給できる。
 また、スクリュー圧縮機1の定常運転時には、作動室13に充分な供給量の潤滑油を供給することができ、軸受室15a,15bには損失動力を抑制できる供給量の潤滑油を供給することができる。
 また、スクリュー圧縮機1の運転負荷が高いとき(高負荷運転時)には、オイルクーラ3で冷却された充分な供給量の潤滑油を作動室13、軸受室15a,15bに供給できる。したがって、負荷が高くなる軸受14a,14b(図1参照)にも冷却された充分な量の潤滑油が供給され、軸受14a,14bを冷却できる。
For example, when the screw compressor 1 is started, a sufficient amount of lubricating oil is supplied to the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10 without passing through the oil cooler 3. Can supply.
Further, during steady operation of the screw compressor 1, a sufficient supply amount of lubricating oil can be supplied to the working chamber 13, and a supply amount of lubricating oil that can suppress lost power is supplied to the bearing chambers 15a and 15b. Can do.
When the operating load of the screw compressor 1 is high (during high load operation), a sufficient supply amount of lubricating oil cooled by the oil cooler 3 can be supplied to the working chamber 13 and the bearing chambers 15a and 15b. Therefore, a sufficient amount of the cooled lubricating oil is also supplied to the bearings 14a and 14b (see FIG. 1) where the load becomes high, and the bearings 14a and 14b can be cooled.
 なお、軸受温度センサ15cの設置位置は、軸受14a,14b(図1参照)の内輪側が好ましいが、軸受14a,14bの内輪は駆動部であって、センサの配線が複雑になることからセンサの設置が難しい。
 また、吐出側の軸受14bは、吸込側に備わる軸受14aよりも荷重負荷が大きくなる。以上のことから、実施例1において軸受温度センサ15cは吐出側の軸受14bの外輪の温度を検出するように備わる構成とする。
[実施例2]
The installation position of the bearing temperature sensor 15c is preferably on the inner ring side of the bearings 14a and 14b (see FIG. 1). However, the inner ring of the bearings 14a and 14b is a drive unit, and the sensor wiring is complicated. Installation is difficult.
Further, the load on the discharge-side bearing 14b is larger than that on the bearing 14a provided on the suction side. From the above, in the first embodiment, the bearing temperature sensor 15c is configured to detect the temperature of the outer ring of the discharge-side bearing 14b.
[Example 2]
 図6は、実施例2に係るスクリュー圧縮機の潤滑油の給油経路を示す図、図7は実施例2のスクリュー圧縮機に備わる自律式三方弁と自律式開閉弁の構造を示す図である。
 実施例2に係るスクリュー圧縮機1aの構成は、実施例1に係るスクリュー圧縮機1(図2参照)の構成とほぼ同等であり、図2に示すスクリュー圧縮機1と同じ構成要素には同じ符号を付して詳細な説明は省略する。
FIG. 6 is a diagram illustrating a lubricating oil supply path of the screw compressor according to the second embodiment, and FIG. 7 is a diagram illustrating a structure of an autonomous three-way valve and an autonomous on-off valve provided in the screw compressor of the second embodiment. .
The configuration of the screw compressor 1a according to the second embodiment is substantially the same as the configuration of the screw compressor 1 (see FIG. 2) according to the first embodiment, and the same components as those of the screw compressor 1 shown in FIG. A detailed description is omitted with reference numerals.
 実施例2に係るスクリュー圧縮機1aは、軸受室給油管20dの分岐点P1と分岐点P4の間に流量調節手段22(図2参照)に替わって自律式開閉弁50が備わる。自律式開閉弁50は2つの接続口50aを有し、この接続口50aに軸受室給油管20dが接続される。そして自律式開閉弁50は、流量調節手段22と同様に、軸受室給油管20dを流通する潤滑油の流量を調節する流量調節手段として機能する。 The screw compressor 1a according to the second embodiment includes an autonomous on-off valve 50 instead of the flow rate adjusting means 22 (see FIG. 2) between the branch point P1 and the branch point P4 of the bearing chamber oil supply pipe 20d. The autonomous on-off valve 50 has two connection ports 50a, and the bearing chamber oil supply pipe 20d is connected to the connection ports 50a. The autonomous on-off valve 50 functions as a flow rate adjusting unit that adjusts the flow rate of the lubricating oil flowing through the bearing chamber oil supply pipe 20d in the same manner as the flow rate adjusting unit 22.
 また、第1バイパス管20e、第2バイパス管20f、第3バイパス管20gが接続される三方弁21(図2参照)に替わって、自律式三方弁51が備わる。自律式三方弁51は3つの接続口(第1接続口51a、第2接続口51b、第3接続口51c)を有し、第1バイパス管20eが第1接続口51aに接続し、第2バイパス管20fが第2接続口51bに接続し、第3バイパス管20gが第3接続口51cに接続する。
 そして、第3バイパス管20gには、自律式三方弁51の第3接続口51cと分岐点P4の間に絞り52が備わる。絞り52は第3バイパス管20gを流通する潤滑油の流量を調整する第2の流量調節手段として機能する。
Further, an autonomous three-way valve 51 is provided in place of the three-way valve 21 (see FIG. 2) to which the first bypass pipe 20e, the second bypass pipe 20f, and the third bypass pipe 20g are connected. The autonomous three-way valve 51 has three connection ports (first connection port 51a, second connection port 51b, and third connection port 51c), the first bypass pipe 20e is connected to the first connection port 51a, and the second The bypass pipe 20f is connected to the second connection port 51b, and the third bypass pipe 20g is connected to the third connection port 51c.
The third bypass pipe 20g is provided with a throttle 52 between the third connection port 51c of the autonomous three-way valve 51 and the branch point P4. The restrictor 52 functions as a second flow rate adjusting means for adjusting the flow rate of the lubricating oil flowing through the third bypass pipe 20g.
 自律式開閉弁50は潤滑油の温度で動作する構成であり、油取出し管20hを流通する潤滑油が取込口502aから取り込まれて排出口502bから油戻し管20iに排出される。また、自律式三方弁51も潤滑油の温度で動作する構成であり、油取出し管20hを流通する潤滑油が取込口512aから取り込まれて排出口512bから油戻し管20iに排出される。
 なお、実施例2に係るスクリュー圧縮機1aに制御装置4(図2参照)および軸受温度センサ15c(図2参照)は備わらなくてもよい。
The autonomous open / close valve 50 is configured to operate at the temperature of the lubricating oil, and the lubricating oil flowing through the oil take-out pipe 20h is taken in from the take-in port 502a and discharged from the discharge port 502b to the oil return pipe 20i. The autonomous three-way valve 51 is also configured to operate at the temperature of the lubricating oil, and the lubricating oil flowing through the oil take-out pipe 20h is taken in from the intake 512a and discharged from the discharge 512b to the oil return pipe 20i.
The screw compressor 1a according to the second embodiment may not include the control device 4 (see FIG. 2) and the bearing temperature sensor 15c (see FIG. 2).
 図7の(a)に示すように、自律式三方弁51は、例えば、略円筒形の筐体511を有する。筐体511の内部は軸方向に分割され、一方に弁体駆動部512、他方に接続口開口部513が形成される。接続口開口部513には、弁体駆動部512の側から軸方向に沿って、第3接続口51c、第2接続口51b、第1接続口51aがこの順に開口する。そして第3接続口51c、第2接続口51b、第1接続口51aは接続口開口部513を介して互いに連通する。 As shown in FIG. 7A, the autonomous three-way valve 51 has a substantially cylindrical casing 511, for example. The inside of the housing 511 is divided in the axial direction, and a valve body driving portion 512 is formed on one side and a connection port opening 513 is formed on the other side. In the connection port opening 513, the third connection port 51c, the second connection port 51b, and the first connection port 51a are opened in this order along the axial direction from the valve body driving unit 512 side. The third connection port 51c, the second connection port 51b, and the first connection port 51a communicate with each other through the connection port opening 513.
 また、筐体511の内部には、軸方向に移動する弁体514が備わる。弁体514は、接続口開口部513から弁体駆動部512まで貫通するロッド514aと、ロッド514aの接続口開口部513側に取り付けられ、ロッド514aの変位に応じて接続口開口部513内を軸方向に移動する開閉部514bとを有する。 In addition, a valve body 514 that moves in the axial direction is provided inside the housing 511. The valve body 514 is attached to the connecting port opening 513 side of the rod 514a and the rod 514a penetrating from the connecting port opening 513 to the valve body driving unit 512, and the inside of the connecting port opening 513 is changed according to the displacement of the rod 514a. And an opening / closing portion 514b that moves in the axial direction.
 開閉部514bは、接続口開口部513に開口する接続口(第3接続口51c、第2接続口51b、第1接続口51a)の位置に移動したときに該当する接続口を閉鎖する。また、開閉部514bには、閉鎖されない接続口を互いに連通する連通路514cが形成されている。この構成によって、開閉部514bは、接続口の1つを閉鎖し閉鎖されない2つの接続口を互いに連通する。 The opening / closing part 514b closes the corresponding connection port when moved to the position of the connection port (the third connection port 51c, the second connection port 51b, the first connection port 51a) that opens to the connection port opening 513. The open / close portion 514b is formed with a communication path 514c that allows connection ports that are not closed to communicate with each other. With this configuration, the opening / closing portion 514b closes one of the connection ports and communicates the two connection ports that are not closed with each other.
 ロッド514aは弁体駆動部512側の端部にワックス515が取り付けられる。ワックス515は、周囲の温度変化によって弁体駆動部512の内部で筐体511の軸方向に伸縮するように構成される。そして、弁体駆動部512の内部にはワックス515を伸縮させて弁体514を駆動する油(弁体駆動油)が充填される。ワックス515は弁体駆動油の温度に応じて伸縮し、ロッド514aはワックス515の伸縮に応じて軸方向に変位する。 The wax 515 is attached to the end of the rod 514a on the valve body drive unit 512 side. The wax 515 is configured to expand and contract in the axial direction of the housing 511 inside the valve body driving unit 512 due to a change in ambient temperature. The inside of the valve body drive unit 512 is filled with oil (valve body drive oil) that drives the valve body 514 by expanding and contracting the wax 515. The wax 515 expands and contracts according to the temperature of the valve body driving oil, and the rod 514a is displaced in the axial direction according to the expansion and contraction of the wax 515.
 例えば、弁体駆動油の温度が高いほどワックス515が膨張(伸長)する構成であれば、弁体駆動油の温度が高いほどロッド514aが接続口開口部513の側に変位し、開閉部514bが弁体駆動部512から離反する方向に移動する。そして、開閉部514bは弁体駆動部512から最も離れた第1接続口51aを閉鎖する。このとき、第3接続口51cと第2接続口51bは連通する。この状態を自律式三方弁51の第1状態とする。 For example, in the configuration in which the wax 515 expands (extends) as the temperature of the valve body driving oil increases, the rod 514a is displaced toward the connection port opening 513 as the temperature of the valve body driving oil increases, and the opening / closing section 514b. Moves in a direction away from the valve body drive unit 512. The opening / closing part 514b closes the first connection port 51a farthest from the valve body driving part 512. At this time, the third connection port 51c and the second connection port 51b communicate with each other. This state is defined as a first state of the autonomous three-way valve 51.
 弁体駆動油の温度が低下するとワックス515が収縮してロッド514aが弁体駆動部512の側に変位し、開閉部514bが弁体駆動部512に接近する方向に移動する。そして、開閉部514bは、第3接続口51cと第1接続口51aの間に開口する第2接続口51bの位置で第2接続口51bを閉鎖する。このとき、第3接続口51cと第1接続口51aは開閉部514bに形成される連通路514cを介して連通する。この状態を自律式三方弁51の第2状態とする。 When the temperature of the valve body drive oil decreases, the wax 515 contracts, the rod 514a is displaced toward the valve body drive unit 512, and the opening / closing unit 514b moves in a direction approaching the valve body drive unit 512. The opening / closing part 514b closes the second connection port 51b at the position of the second connection port 51b that opens between the third connection port 51c and the first connection port 51a. At this time, the third connection port 51c and the first connection port 51a communicate with each other via a communication path 514c formed in the opening / closing part 514b. This state is the second state of the autonomous three-way valve 51.
 弁体駆動油の温度がさらに低下するとワックス515がさらに収縮してロッド514aが弁体駆動部512の側にさらに変位する。そして、開閉部514bは弁体駆動部512の側に移動して第3接続口51cを閉鎖する。このとき、第2接続口51bと第1接続口51aは連通する。この状態を自律式三方弁51の第3状態とする。 When the temperature of the valve body drive oil further decreases, the wax 515 further contracts and the rod 514a is further displaced toward the valve body drive unit 512. Then, the opening / closing part 514b moves to the valve body driving part 512 side and closes the third connection port 51c. At this time, the second connection port 51b and the first connection port 51a communicate with each other. This state is the third state of the autonomous three-way valve 51.
 このように、自律式三方弁51は、弁体駆動部512に充填される弁体駆動油の温度に応じて第1状態、第2状態、第3状態が切り替わる。そして、第1接続口51a、第2接続口51b、第3接続口51cをそれぞれ開閉する。したがって、自律式三方弁51は、第1接続口51aに接続される第1バイパス管20eと、第2接続口51bに接続される第2バイパス管20fと、第3接続口51cに接続される第3バイパス管20gと、をそれぞれ開閉する開閉手段として機能する。 As described above, the autonomous three-way valve 51 is switched between the first state, the second state, and the third state according to the temperature of the valve body drive oil filled in the valve body drive unit 512. Then, the first connection port 51a, the second connection port 51b, and the third connection port 51c are opened and closed, respectively. Therefore, the autonomous three-way valve 51 is connected to the first bypass pipe 20e connected to the first connection port 51a, the second bypass pipe 20f connected to the second connection port 51b, and the third connection port 51c. The third bypass pipe 20g functions as an opening / closing means for opening and closing each.
 さらに、弁体駆動部512には弁体駆動油を取り込む取込口512aと、弁体駆動油を排出する排出口512bが形成される。この構成によって、ワックス515は取込口512aから取り込まれる弁体駆動油の温度に応じて伸縮し、ロッド514aを変位させる。 Furthermore, the valve body drive unit 512 is formed with an intake port 512a for taking in the valve body drive oil and a discharge port 512b for discharging the valve body drive oil. With this configuration, the wax 515 expands and contracts in accordance with the temperature of the valve body drive oil taken in from the take-in port 512a, and displaces the rod 514a.
 実施例2では、圧縮機本体10の吐出側の軸受14b(図1参照)を潤滑した後の潤滑油を弁体駆動油とする。そのため、弁体駆動部512の取込口512aは図6に示すように、油取出し管20hを介して圧縮機本体10の吐出側の軸受室15b(図1参照)、より詳細には、軸受14bを潤滑した後の潤滑油が流れる箇所、と接続される。また、弁体駆動部512の排出口512bは、油戻し管20iを介して吐出配管20aと接続される。
 この構成によると、自律式三方弁51の弁体駆動部512には軸受14bを潤滑した後の潤滑油が充填される。そして、自律式三方弁51は軸受14bの温度、より詳細には、軸受14bを潤滑した後の潤滑油の温度に応じて動作し、第1状態、第2状態、第3状態が切り替わる。
In the second embodiment, the lubricating oil after lubricating the discharge-side bearing 14b (see FIG. 1) of the compressor body 10 is used as the valve body driving oil. Therefore, as shown in FIG. 6, the intake port 512a of the valve body drive unit 512 is provided with a bearing chamber 15b (see FIG. 1) on the discharge side of the compressor body 10 via the oil take-out pipe 20h. It connects with the location through which lubricating oil after lubricating 14b flows. Moreover, the discharge port 512b of the valve body drive part 512 is connected with the discharge piping 20a via the oil return pipe | tube 20i.
According to this structure, the valve body drive part 512 of the autonomous three-way valve 51 is filled with the lubricating oil after the bearing 14b is lubricated. The autonomous three-way valve 51 operates according to the temperature of the bearing 14b, more specifically, the temperature of the lubricating oil after lubricating the bearing 14b, and the first state, the second state, and the third state are switched.
 自律式開閉弁50は自律式三方弁51と略同等の構造である。図7の(b)に示すように、自律式開閉弁50は、例えば、略円筒形の筐体501を有する。筐体501の内部は軸方向に分割され、一方に弁体駆動部502、他方に接続口開口部503が形成される。接続口開口部503には2つの接続口50aが開口し、2つの接続口50aは接続口開口部503を介して互いに連通している。また、2つの接続口50aは、例えば、接続口開口部503において軸方向の略中央部に形成される。 The autonomous open / close valve 50 has a structure substantially equivalent to the autonomous three-way valve 51. As shown in FIG. 7B, the autonomous on-off valve 50 includes a substantially cylindrical casing 501, for example. The inside of the housing 501 is divided in the axial direction, and a valve body driving unit 502 is formed on one side and a connection port opening 503 is formed on the other side. Two connection ports 50 a are opened in the connection port opening 503, and the two connection ports 50 a communicate with each other via the connection port opening 503. Further, the two connection ports 50a are formed, for example, at a substantially central portion in the axial direction in the connection port opening 503.
 筐体501の内部には、軸方向に移動する弁体504が備わる。弁体504は、接続口開口部503から弁体駆動部502まで貫通するロッド504aと、ロッド504aの接続口開口部503側に取り付けられ、ロッド504aの変位に応じて接続口開口部503内を軸方向に移動する開閉部504bとを有する。
 この開閉部504bは、接続口開口部503に開口する2つの接続口50aの位置に移動したときに2つの接続口50aを閉鎖する。
A valve body 504 that moves in the axial direction is provided inside the housing 501. The valve body 504 is attached to the rod 504a penetrating from the connection port opening 503 to the valve body driving unit 502, and the connection port opening 503 side of the rod 504a, and the inside of the connection port opening 503 is changed according to the displacement of the rod 504a. And an opening / closing portion 504b that moves in the axial direction.
The opening / closing portion 504b closes the two connection ports 50a when moved to the position of the two connection ports 50a that open to the connection port opening 503.
 ロッド504aは弁体駆動部502側の端部にワックス505が取り付けられる。ワックス505は、周囲の温度変化によって弁体駆動部502の内部で筐体501の軸方向に伸縮するように構成される。そして、弁体駆動部502の内部にはワックス505を伸縮させて弁体504を駆動する弁体駆動油が充填される。ワックス505は弁体駆動油の温度に応じて伸縮し、ロッド504aはワックス505の伸縮に応じて軸方向に変位する。 The wax 505 is attached to the end of the rod 504a on the valve body drive unit 502 side. The wax 505 is configured to expand and contract in the axial direction of the housing 501 inside the valve body driving unit 502 due to a change in ambient temperature. The inside of the valve body driving unit 502 is filled with valve body driving oil that drives the valve body 504 by expanding and contracting the wax 505. The wax 505 expands and contracts according to the temperature of the valve body drive oil, and the rod 504a is displaced in the axial direction according to the expansion and contraction of the wax 505.
 ワックス505は、自律式三方弁51のワックス515と同様に弁体駆動油の温度が高いほど膨張(伸長)する構成であり、弁体駆動油の温度が高いほどロッド504aが接続口開口部503の側に変位し、開閉部504bが弁体駆動部502から離反する方向に移動する。
 そして、開閉部504bは、接続口開口部503において軸方向の略中央部に形成される2つの接続口50aよりも接続口開口部503の端部側に移動して2つの接続口50aを開放する。この状態は自律式開閉弁50の開弁状態である。
The wax 505 is configured to expand (elongate) as the temperature of the valve body driving oil increases, similarly to the wax 515 of the autonomous three-way valve 51, and the rod 504a is connected to the connection opening 503 as the temperature of the valve body driving oil increases. The opening / closing part 504b moves in a direction away from the valve body driving part 502.
The opening / closing portion 504b moves to the end side of the connection port opening 503 rather than the two connection ports 50a formed at the substantially central portion in the axial direction in the connection port opening 503 to open the two connection ports 50a. To do. This state is the open state of the autonomous open / close valve 50.
 弁体駆動油の温度が低下するとワックス505が収縮してロッド504aが弁体駆動部502の側に変位し、開閉部504bが弁体駆動部502に接近する方向に移動する。そして、開閉部504bは、2つの接続口50aの位置で2つの接続口50aを閉鎖する。この状態は自律式開閉弁50の閉弁状態である。 When the temperature of the valve body drive oil decreases, the wax 505 contracts, the rod 504a is displaced toward the valve body drive unit 502, and the opening / closing unit 504b moves in a direction approaching the valve body drive unit 502. The opening / closing part 504b closes the two connection ports 50a at the positions of the two connection ports 50a. This state is a closed state of the autonomous open / close valve 50.
 弁体駆動油の温度がさらに低下するとワックス505がさらに収縮してロッド504aが弁体駆動部502の側にさらに変位する。そして、開閉部504bは弁体駆動部502の側に移動して2つの接続口50aを開放する。この状態は自律式開閉弁50の開弁状態である。 When the temperature of the valve body drive oil further decreases, the wax 505 further contracts and the rod 504a is further displaced toward the valve body drive unit 502. Then, the opening / closing part 504b moves to the valve body driving part 502 side and opens the two connection ports 50a. This state is the open state of the autonomous open / close valve 50.
 このように、自律式開閉弁50は、弁体駆動部502に充填される弁体駆動油の温度に応じて動作し開弁状態と閉弁状態が切り替わる。
 さらに、弁体駆動部502には弁体駆動油を取り込む取込口502aと、弁体駆動油を排出する排出口502bが形成される。この構成によって、ワックス505は取込口502aから取り込まれる弁体駆動油の温度に応じて伸縮し、ロッド504aを変位させる。
As described above, the autonomous open / close valve 50 operates in accordance with the temperature of the valve body drive oil charged in the valve body drive unit 502 and switches between the valve open state and the valve closed state.
Further, the valve body drive unit 502 is formed with an intake port 502a for taking in the valve body drive oil and a discharge port 502b for discharging the valve body drive oil. With this configuration, the wax 505 expands and contracts according to the temperature of the valve body drive oil taken in from the take-in port 502a, and displaces the rod 504a.
 実施例2では、自律式三方弁51と同様に、圧縮機本体10の吐出側の軸受14b(図1参照)を潤滑した後の潤滑油を自律式開閉弁50の弁体駆動油とする。そのため、弁体駆動部502の取込口502aは、図6に示すように、油取出し管20hと接続される。また、弁体駆動部502の排出口502bは油戻し管20iと接続される。
 この構成によると、自律式開閉弁50の弁体駆動部502には軸受14bを潤滑した後の潤滑油が充填される。そして、自律式開閉弁50は軸受14bを潤滑した後の潤滑油の温度に応じて開弁状態と閉弁状態が切り替わる。
In the second embodiment, similarly to the autonomous three-way valve 51, the lubricating oil after lubricating the discharge-side bearing 14 b (see FIG. 1) of the compressor body 10 is used as the valve body driving oil for the autonomous opening / closing valve 50. Therefore, the intake port 502a of the valve body drive unit 502 is connected to the oil extraction pipe 20h as shown in FIG. Further, the discharge port 502b of the valve body driving unit 502 is connected to the oil return pipe 20i.
According to this configuration, the valve body drive unit 502 of the autonomous on-off valve 50 is filled with the lubricating oil after the bearing 14b is lubricated. The autonomous open / close valve 50 is switched between a valve open state and a valve closed state according to the temperature of the lubricating oil after the bearing 14b is lubricated.
 このように、実施例2に係る給油経路には自律式開閉弁50と自律式三方弁51が備わり、軸受14b(図1参照)を潤滑した後の潤滑油の温度によって、潤滑油が流通する経路が切り替わる。
 図8、図9は、実施例2における潤滑油の流通を示す図であり、実線は潤滑油が流通する経路を示し、破線は潤滑油が流通しない経路を示す。また、点線の矢印は潤滑油の流通を示す。
 図8の(a)は、スクリュー圧縮機1aの起動直後など、潤滑油の温度が低い場合の潤滑油の流通を示す図である。
As described above, the oil supply path according to the second embodiment includes the autonomous on-off valve 50 and the autonomous three-way valve 51, and the lubricating oil flows according to the temperature of the lubricating oil after the bearing 14b (see FIG. 1) is lubricated. The route is switched.
8 and 9 are diagrams illustrating the circulation of the lubricating oil in the second embodiment, where the solid line indicates the path through which the lubricating oil flows, and the broken line indicates the path through which the lubricating oil does not flow. A dotted arrow indicates the flow of the lubricating oil.
(A) of FIG. 8 is a figure which shows distribution | circulation of the lubricating oil when the temperature of lubricating oil is low, such as immediately after starting of the screw compressor 1a.
 前記したように、スクリュー圧縮機1aの起動直後はオイルセパレータ2が充分に加圧された状態ではない。また、潤滑油の温度も低く粘度が高い状態にある。
 潤滑油の温度が低いため軸受14b(図1参照)を潤滑した後の潤滑油の温度も低く、自律式三方弁51は第3状態に設定される。すなわち、第3接続口51cが閉鎖されて、第2接続口51bと第1接続口51aが連通する。また、自律式開閉弁50は開弁状態となる。
 前記したようにオイルクーラ3は潤滑油の流通に対する抵抗が大きいため、自律式三方弁51が第3状態に設定されると、オイルセパレータ2から送出された潤滑油は第1バイパス管20eから自律式三方弁51を介して第2バイパス管20fに流れ込みオイルクーラ3を迂回する。
 第2バイパス管20fを流通した潤滑油は分岐点P3から作動室給油管20cに流れ込み、圧縮機本体10の作動室給油口19から作動室13(図1参照)に供給される。
As described above, the oil separator 2 is not sufficiently pressurized immediately after the screw compressor 1a is started. Further, the temperature of the lubricating oil is low and the viscosity is high.
Since the temperature of the lubricating oil is low, the temperature of the lubricating oil after lubricating the bearing 14b (see FIG. 1) is also low, and the autonomous three-way valve 51 is set to the third state. That is, the third connection port 51c is closed, and the second connection port 51b and the first connection port 51a communicate with each other. In addition, the autonomous on-off valve 50 is opened.
As described above, since the oil cooler 3 has a large resistance to the flow of the lubricating oil, when the autonomous three-way valve 51 is set to the third state, the lubricating oil sent from the oil separator 2 autonomously passes through the first bypass pipe 20e. It flows into the second bypass pipe 20f via the three-way valve 51 and bypasses the oil cooler 3.
The lubricating oil flowing through the second bypass pipe 20f flows into the working chamber oil supply pipe 20c from the branch point P3, and is supplied from the working chamber oil supply port 19 of the compressor body 10 to the working chamber 13 (see FIG. 1).
 また、自律式開閉弁50が開弁状態に設定されるため、作動室給油管20cを流通する潤滑油は分岐点P1で分流して一部が軸受室給油管20dに流れ込み、さらに、吸込側給油管20d1と吐出側給油管20d2に分流する。そして、潤滑油は吸込側給油管20d1から軸受潤滑油供給口17aを介して吸込側の軸受室15a(図1参照)に供給され、吐出側給油管20d2から軸受潤滑油供給口17bを介して吐出側の軸受室15b(図1参照)に供給される。 Further, since the autonomous on-off valve 50 is set to the open state, the lubricating oil flowing through the working chamber oil supply pipe 20c is diverted at the branch point P1, and a part thereof flows into the bearing chamber oil supply pipe 20d. The oil is divided into the oil supply pipe 20d1 and the discharge-side oil supply pipe 20d2. Then, the lubricating oil is supplied from the suction side oil supply pipe 20d1 to the bearing chamber 15a (see FIG. 1) on the suction side via the bearing lubricating oil supply port 17a, and from the discharge side oil supply pipe 20d2 to the bearing lubricating oil supply port 17b. It is supplied to the bearing chamber 15b (see FIG. 1) on the discharge side.
 圧縮機本体10の作動室13(図1参照)および軸受室15a,15b(図1参照)に供給された潤滑油は圧縮された空気とともに吐出口16bから吐出されて吐出配管20aを流通し、オイルセパレータ2に流入する。オイルセパレータ2で潤滑油は圧縮された空気と分離されて貯留される。 The lubricating oil supplied to the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10 is discharged from the discharge port 16b together with the compressed air, and flows through the discharge pipe 20a. It flows into the oil separator 2. In the oil separator 2, the lubricating oil is separated from the compressed air and stored.
 このように、スクリュー圧縮機1aの起動時など潤滑油の温度が低い場合、オイルセパレータ2から送出された潤滑油は、流通に対する抵抗の大きなオイルクーラ3を迂回して圧縮機本体10に供給される。したがって、オイルセパレータ2が充分に加圧されていない起動時であっても、圧縮機本体10の作動室13(図1参照)、軸受室15a,15b(図1参照)に充分な量の潤滑油を供給できる。 Thus, when the temperature of the lubricating oil is low, such as when the screw compressor 1a is started, the lubricating oil sent from the oil separator 2 bypasses the oil cooler 3 having a large resistance to circulation and is supplied to the compressor body 10. The Therefore, even when the oil separator 2 is not sufficiently pressurized, a sufficient amount of lubrication is provided in the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10. Oil can be supplied.
 図8の(b)は、定常運転時の潤滑油の流通を示す図である。
 スクリュー圧縮機1aの運転状態が継続されて定常運転状態になると潤滑油の温度は上昇する。そして、軸受14b(図1参照)を潤滑した後の潤滑油の温度が上昇すると、自律式三方弁51は第2状態に設定される。すなわち、第2接続口51bが閉鎖されて、第3接続口51cと第1接続口51aが連通する。また、自律式開閉弁50は閉弁状態となる。
(B) of FIG. 8 is a figure which shows distribution | circulation of the lubricating oil at the time of steady operation.
When the operation state of the screw compressor 1a is continued and becomes a steady operation state, the temperature of the lubricating oil rises. And if the temperature of the lubricating oil after lubricating the bearing 14b (refer FIG. 1) rises, the autonomous three-way valve 51 will be set to a 2nd state. That is, the second connection port 51b is closed, and the third connection port 51c and the first connection port 51a communicate with each other. Further, the autonomous open / close valve 50 is closed.
 自律式三方弁51が第2状態に設定されると、オイルセパレータ2から送出されて冷却配管20bを流通する潤滑油は分岐点P2で分流して一部が第1バイパス管20eに流れ込む。そして、第1バイパス管20eを流通した潤滑油は自律式三方弁51を介して第3バイパス管20gに流れ込む。第3バイパス管20gを流通した潤滑油は分岐点P4で軸受室給油管20dに流れ込み、さらに、吸込側給油管20d1と吐出側給油管20d2に分流する。そして、潤滑油は吸込側給油管20d1から軸受潤滑油供給口17aを介して吸込側の軸受室15a(図1参照)に供給され、吐出側給油管20d2から軸受潤滑油供給口17bを介して吐出側の軸受室15b(図1参照)に供給される。 When the autonomous three-way valve 51 is set to the second state, the lubricating oil sent from the oil separator 2 and flowing through the cooling pipe 20b is diverted at the branch point P2, and a part flows into the first bypass pipe 20e. Then, the lubricating oil flowing through the first bypass pipe 20e flows into the third bypass pipe 20g via the autonomous three-way valve 51. The lubricating oil that has flowed through the third bypass pipe 20g flows into the bearing chamber oil supply pipe 20d at the branch point P4, and further splits into the suction-side oil supply pipe 20d1 and the discharge-side oil supply pipe 20d2. Then, the lubricating oil is supplied from the suction side oil supply pipe 20d1 to the bearing chamber 15a (see FIG. 1) on the suction side via the bearing lubricating oil supply port 17a, and from the discharge side oil supply pipe 20d2 to the bearing lubricating oil supply port 17b. It is supplied to the bearing chamber 15b (see FIG. 1) on the discharge side.
 また、オイルセパレータ2から送出されて冷却配管20bを流通する潤滑油はオイルクーラ3にも流れ込み、冷却されて作動室給油管20cを流通する。自律式三方弁51は第2状態であって第2バイパス管20fは閉塞されている。したがって、作動室給油管20cを流通する潤滑油は分岐点P3で第2バイパス管20fに流れ込まない。また、自律式開閉弁50は閉弁状態であり、作動室給油管20cを流通する潤滑油は分岐点P1で軸受室給油管20dに流れ込まない。そして、作動室給油管20cを流通する潤滑油は全て圧縮機本体10の作動室給油口19から作動室13(図1参照)に供給される。 Further, the lubricating oil sent from the oil separator 2 and flowing through the cooling pipe 20b also flows into the oil cooler 3, is cooled, and flows through the working chamber oil supply pipe 20c. The autonomous three-way valve 51 is in the second state, and the second bypass pipe 20f is closed. Accordingly, the lubricating oil flowing through the working chamber oil supply pipe 20c does not flow into the second bypass pipe 20f at the branch point P3. Further, the autonomous open / close valve 50 is in a closed state, and the lubricating oil flowing through the working chamber oil supply pipe 20c does not flow into the bearing chamber oil supply pipe 20d at the branch point P1. And all the lubricating oil which distribute | circulates the working chamber oil supply pipe | tube 20c is supplied to the working chamber 13 (refer FIG. 1) from the working chamber oil supply port 19 of the compressor main body 10. FIG.
 圧縮機本体10の作動室13(図1参照)および軸受室15a,15b(図1参照)に供給された潤滑油は圧縮された空気とともに吐出口16bから吐出されて吐出配管20aを流通し、オイルセパレータ2に流入する。オイルセパレータ2で潤滑油は圧縮された空気と分離されて貯留される。 The lubricating oil supplied to the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10 is discharged from the discharge port 16b together with the compressed air, and flows through the discharge pipe 20a. It flows into the oil separator 2. In the oil separator 2, the lubricating oil is separated from the compressed air and stored.
 以上のように、スクリュー圧縮機1aが定常運転状態になって潤滑油の温度が上昇すると、オイルセパレータ2から送出された潤滑油は、第1バイパス管20e、第3バイパス管20gを経由して圧縮機本体10の軸受室15a,15b(図1参照)に供給される。軸受室15a,15bに供給される潤滑油はオイルクーラ3を経由せず冷却されない。したがって比較的高温で粘度の低い潤滑油が軸受室15a,15bに供給されることになり、高い潤滑性能を維持できる。
 また、第3バイパス管20gには絞り52が備わり、軸受室15a,15bに供給される潤滑油の供給量が好適に規制される。したがって、軸受14a,14b(図1参照)における損失動力を抑制することができ、スクリュー圧縮機1aの動作効率の低下を防止できる。
As described above, when the screw compressor 1a is in a steady operation state and the temperature of the lubricating oil rises, the lubricating oil sent from the oil separator 2 passes through the first bypass pipe 20e and the third bypass pipe 20g. It is supplied to bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10. The lubricating oil supplied to the bearing chambers 15a and 15b does not pass through the oil cooler 3 and is not cooled. Accordingly, lubricating oil having a relatively high temperature and low viscosity is supplied to the bearing chambers 15a and 15b, and high lubricating performance can be maintained.
Further, the third bypass pipe 20g is provided with a throttle 52, and the supply amount of the lubricating oil supplied to the bearing chambers 15a and 15b is suitably regulated. Therefore, power loss in the bearings 14a and 14b (see FIG. 1) can be suppressed, and a reduction in the operating efficiency of the screw compressor 1a can be prevented.
 また、第3バイパス管20gに備わる絞り52によって、第1バイパス管20eを流通する潤滑油に流れの抵抗が生じ、この抵抗の影響によって冷却配管20bを流通する潤滑油はオイルクーラ3にも流れ込む。そして、圧縮機本体10の作動室13(図1参照)には、オイルクーラ3で冷却された潤滑油が供給される。したがって、作動室13で圧縮される空気を効果的に冷却できる。 Further, the restriction 52 provided in the third bypass pipe 20g causes a flow resistance in the lubricating oil flowing through the first bypass pipe 20e, and the lubricating oil flowing through the cooling pipe 20b flows into the oil cooler 3 due to the influence of the resistance. . Then, the lubricating oil cooled by the oil cooler 3 is supplied to the working chamber 13 (see FIG. 1) of the compressor body 10. Therefore, the air compressed in the working chamber 13 can be effectively cooled.
 図9の(a)は、例えば圧縮機本体10からの空気の吐出圧力が高い場合や、雄ロータ11(図1参照)と雌ロータ(図示せず)の回転速度が高い場合など、運転負荷が高い場合の潤滑油の流通を示す図である。
 このとき潤滑油の温度はスクリュー圧縮機1aの定常運転時よりも上昇し、軸受14bを潤滑した後の潤滑油の温度も高くなって自律式三方弁51は第1状態に設定される。すなわち、第1接続口51aが閉鎖されて、第3接続口51cと第2接続口51bが連通する。なお、自律式開閉弁50は閉弁状態を維持する。つまり、図9の(a)は、自律式三方弁51が第1状態に設定され、自律式開閉弁50が閉弁状態に設定される潤滑油の温度となったときの潤滑油の流通を示している。
FIG. 9A shows an operation load when, for example, the discharge pressure of air from the compressor body 10 is high, or when the rotation speed of the male rotor 11 (see FIG. 1) and the female rotor (not shown) is high. It is a figure which shows distribution | circulation of the lubricating oil in case that is high.
At this time, the temperature of the lubricating oil is higher than that during the steady operation of the screw compressor 1a, the temperature of the lubricating oil after lubricating the bearing 14b is also increased, and the autonomous three-way valve 51 is set to the first state. That is, the first connection port 51a is closed, and the third connection port 51c and the second connection port 51b communicate with each other. Note that the autonomous on-off valve 50 maintains a closed state. That is, (a) in FIG. 9 shows the flow of the lubricating oil when the autonomous three-way valve 51 is set to the first state and the autonomous opening / closing valve 50 reaches the lubricating oil temperature set to the closed state. Show.
 自律式三方弁51が第1状態に設定されると、オイルセパレータ2から送出されて冷却配管20bを流通する潤滑油は分岐点P2で第1バイパス管20eに流れ込まず、オイルクーラ3を流通する。そして、オイルクーラ3で冷却されて作動室給油管20cに流れ込む。 When the autonomous three-way valve 51 is set to the first state, the lubricating oil sent from the oil separator 2 and flowing through the cooling pipe 20b does not flow into the first bypass pipe 20e at the branch point P2, but flows through the oil cooler 3. . And it cools with the oil cooler 3 and flows into the working chamber oil supply pipe | tube 20c.
 作動室給油管20cを流通する潤滑油は分岐点P3で分流して一部が第2バイパス管20fに流れ込み、自律式三方弁51を介して第3バイパス管20gに流れ込む。そして、第3バイパス管20gを流通した潤滑油は分岐点P4で軸受室給油管20dに流れ込み、さらに、吸込側給油管20d1と吐出側給油管20d2に分流する。そして、潤滑油は吸込側給油管20d1から軸受潤滑油供給口17aを介して吸込側の軸受室15a(図1参照)に供給され、吐出側給油管20d2から軸受潤滑油供給口17bを介して吐出側の軸受室15b(図1参照)に供給される。
 一方、分岐点P3で分流して作動室給油管20cを流通する潤滑油は圧縮機本体10の作動室給油口19から作動室13(図1参照)に供給される。
The lubricating oil flowing through the working chamber oil supply pipe 20 c is diverted at the branch point P 3, and part of the lubricating oil flows into the second bypass pipe 20 f and then flows into the third bypass pipe 20 g through the autonomous three-way valve 51. Then, the lubricating oil flowing through the third bypass pipe 20g flows into the bearing chamber oil supply pipe 20d at the branch point P4, and further splits into the suction-side oil supply pipe 20d1 and the discharge-side oil supply pipe 20d2. Then, the lubricating oil is supplied from the suction side oil supply pipe 20d1 to the bearing chamber 15a (see FIG. 1) on the suction side via the bearing lubricating oil supply port 17a, and from the discharge side oil supply pipe 20d2 to the bearing lubricating oil supply port 17b. It is supplied to the bearing chamber 15b (see FIG. 1) on the discharge side.
On the other hand, the lubricating oil branched at the branch point P3 and flowing through the working chamber oil supply pipe 20c is supplied from the working chamber oil supply port 19 of the compressor body 10 to the working chamber 13 (see FIG. 1).
 圧縮機本体10の作動室13(図1参照)および軸受室15a,15b(図1参照)に供給された潤滑油は圧縮された空気とともに吐出口16bから吐出されて吐出配管20aを流通し、オイルセパレータ2に流入する。オイルセパレータ2で潤滑油は圧縮された空気と分離されて貯留される。 The lubricating oil supplied to the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10 is discharged from the discharge port 16b together with the compressed air, and flows through the discharge pipe 20a. It flows into the oil separator 2. In the oil separator 2, the lubricating oil is separated from the compressed air and stored.
 このように、スクリュー圧縮機1aの定常運転時よりも潤滑油の温度が高くなると、オイルセパレータ2から送出された潤滑油はオイルクーラ3で冷却されて圧縮機本体10に供給される。したがって、オイルクーラ3で冷却された潤滑油を軸受14a,14b(図1参照)に供給することができる。このことによって軸受14a,14bの温度が高温になることを好適に防止でき、信頼性を維持できる。
 また、潤滑油は、絞り52が備わる第3バイパス管20gを流通することによって軸受14a,14bに供給される流量が好適に規制され、損失動力の増加を抑えることができる。
As described above, when the temperature of the lubricating oil becomes higher than that during the steady operation of the screw compressor 1a, the lubricating oil sent from the oil separator 2 is cooled by the oil cooler 3 and supplied to the compressor body 10. Therefore, the lubricating oil cooled by the oil cooler 3 can be supplied to the bearings 14a and 14b (see FIG. 1). As a result, the temperature of the bearings 14a and 14b can be suitably prevented from increasing, and the reliability can be maintained.
In addition, the flow rate of the lubricating oil supplied to the bearings 14a and 14b is suitably regulated by flowing through the third bypass pipe 20g provided with the throttle 52, and an increase in loss power can be suppressed.
 図9の(b)は、軸受の負荷が最大限になった状態でスクリュー圧縮機が運転される場合の潤滑油の流通を示す図である。
 このとき潤滑油の温度はさらに上昇し、軸受14bを潤滑した後の潤滑油の温度も高くなる。そして、自律式三方弁51は第1状態に設定されたまま、自律式開閉弁50が開弁状態になる。
(B) of FIG. 9 is a figure which shows distribution | circulation of lubricating oil in case a screw compressor is drive | operated in the state in which the load of the bearing became the maximum.
At this time, the temperature of the lubricating oil further increases, and the temperature of the lubricating oil after lubricating the bearing 14b also increases. And the autonomous on-off valve 50 will be in an open state, with the autonomous three-way valve 51 set to the 1st state.
 スクリュー圧縮機1aがこの状態のとき、オイルセパレータ2から送出されてオイルクーラ3で冷却された潤滑油は作動室給油管20cを流通するときに分岐点P1で分流し、その一部が軸受室給油管20dに流れ込む。軸受室給油管20dを流通する潤滑油は吸込側給油管20d1と吐出側給油管20d2に分流する。そして、潤滑油は吸込側給油管20d1から軸受潤滑油供給口17aを介して吸込側の軸受室15a(図1参照)に供給され、吐出側給油管20d2から軸受潤滑油供給口17bを介して吐出側の軸受室15b(図1参照)に供給される。 When the screw compressor 1a is in this state, the lubricating oil delivered from the oil separator 2 and cooled by the oil cooler 3 is diverted at the branch point P1 when flowing through the working chamber oil supply pipe 20c, and a part thereof is a bearing chamber. It flows into the oil supply pipe 20d. Lubricating oil flowing through the bearing chamber oil supply pipe 20d is divided into a suction-side oil supply pipe 20d1 and a discharge-side oil supply pipe 20d2. Then, the lubricating oil is supplied from the suction side oil supply pipe 20d1 to the bearing chamber 15a (see FIG. 1) on the suction side via the bearing lubricating oil supply port 17a, and from the discharge side oil supply pipe 20d2 to the bearing lubricating oil supply port 17b. It is supplied to the bearing chamber 15b (see FIG. 1) on the discharge side.
 一方、分岐点P1で分流して作動室給油管20cを流通する潤滑油は圧縮機本体10の作動室給油口19から作動室13(図1参照)に供給される。 On the other hand, the lubricating oil branched at the branch point P1 and flowing through the working chamber oil supply pipe 20c is supplied from the working chamber oil supply port 19 of the compressor body 10 to the working chamber 13 (see FIG. 1).
 圧縮機本体10の作動室13(図1参照)および軸受室15a,15b(図1参照)に供給された潤滑油は圧縮された空気とともに吐出口16bから吐出されて吐出配管20aを流通し、オイルセパレータ2に流入する。オイルセパレータ2で潤滑油は圧縮された空気と分離されて貯留される。 The lubricating oil supplied to the working chamber 13 (see FIG. 1) and the bearing chambers 15a and 15b (see FIG. 1) of the compressor body 10 is discharged from the discharge port 16b together with the compressed air, and flows through the discharge pipe 20a. It flows into the oil separator 2. In the oil separator 2, the lubricating oil is separated from the compressed air and stored.
 このように、軸受14a,14b(図1参照)の負荷が最大になった状態でスクリュー圧縮機1aが運転される場合、絞り52を迂回して軸受14a,14bに潤滑油を供給できる。したがって、軸受14a,14bへの潤滑油の供給量を増やすことができ、負荷が最大になった軸受14a,14bを潤滑油で充分に潤滑させることができる。
 また、オイルクーラ3で冷却された低温の潤滑油を軸受14a,14bに供給できる。したがって、大きな負荷で高温になった軸受14a,14bを潤滑油で効果的に冷却できる。
Thus, when the screw compressor 1a is operated with the load on the bearings 14a and 14b (see FIG. 1) being maximized, the lubricating oil can be supplied to the bearings 14a and 14b by bypassing the throttle 52. Therefore, the supply amount of the lubricating oil to the bearings 14a and 14b can be increased, and the bearings 14a and 14b having the maximum load can be sufficiently lubricated with the lubricating oil.
Further, the low-temperature lubricating oil cooled by the oil cooler 3 can be supplied to the bearings 14a and 14b. Therefore, the bearings 14a and 14b that have become high temperature under a large load can be effectively cooled with the lubricating oil.
 以上のように、実施例2のスクリュー圧縮機1aは、圧縮機本体10の作動室13(図1参照)に潤滑油を供給する給油経路と、軸受室15a,15b(図1参照)に潤滑油を供給する給油経路が独立した経路となるように構成される。この構成によって、作動室13への潤滑油の供給量に影響を与えることなく、軸受室15a,15bへの潤滑油の供給量を調節できる。
 また、軸受室15a,15bに潤滑油を供給する給油経路には絞り52を設けて軸受14a,14b(図1参照)に供給される潤滑油の供給量を規制可能な構成とした。これによって、損失動力の増大による動作効率の低下を防止できる。
 また、絞り52を迂回して軸受14a,14bに潤滑油を供給する給油経路を備えた。この構成によって、必要に応じて軸受14a,14bに充分な量の潤滑油を供給できる。したがって、軸受14a,14bに対する潤滑性能を維持できる。
 そして、潤滑油が流通する経路の切替えに、自律式三方弁51および自律式開閉弁50を使用する構成とした。
 この構成によると、電気的に制御することなく潤滑油の温度で潤滑油が流通する経路を切り替えることができる。
 したがって制御装置など電子機器の故障によるスクリュー圧縮機1aの動作不良を防止できる。
 また、軸受14b(図1参照)の温度を計測する軸受温度センサ15c(図1参照)も不要となるため、スクリュー圧縮機1(図1参照)をコストダウンする効果も奏する。
As described above, the screw compressor 1a according to the second embodiment lubricates the oil supply passage for supplying the lubricating oil to the working chamber 13 (see FIG. 1) of the compressor body 10 and the bearing chambers 15a and 15b (see FIG. 1). The oil supply route for supplying oil is configured to be an independent route. With this configuration, the amount of lubricating oil supplied to the bearing chambers 15a and 15b can be adjusted without affecting the amount of lubricating oil supplied to the working chamber 13.
In addition, a throttle 52 is provided in the oil supply path for supplying the lubricating oil to the bearing chambers 15a and 15b so that the supply amount of the lubricating oil supplied to the bearings 14a and 14b (see FIG. 1) can be regulated. Thereby, it is possible to prevent a decrease in operating efficiency due to an increase in power loss.
In addition, an oil supply path that bypasses the throttle 52 and supplies lubricating oil to the bearings 14a and 14b is provided. With this configuration, a sufficient amount of lubricating oil can be supplied to the bearings 14a and 14b as necessary. Therefore, the lubrication performance for the bearings 14a and 14b can be maintained.
And it was set as the structure which uses the autonomous three-way valve 51 and the autonomous on-off valve 50 for switching of the path | route which lubricating oil distribute | circulates.
According to this configuration, the route through which the lubricating oil flows can be switched at the temperature of the lubricating oil without being electrically controlled.
Accordingly, it is possible to prevent malfunction of the screw compressor 1a due to failure of electronic equipment such as a control device.
Further, since the bearing temperature sensor 15c (see FIG. 1) for measuring the temperature of the bearing 14b (see FIG. 1) is not necessary, the cost of the screw compressor 1 (see FIG. 1) can be reduced.
 なお、本発明は前記した実施例に限定されるものではない。例えば、前記した実施例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
In addition, this invention is not limited to an above-described Example. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
 例えば、図2に示すように実施例1では、第1バイパス管20eと第2バイパス管20fと第3バイパス管20gを三方弁21で連結する構成とした。しかしながら、この構成は限定されるものではない。例えば、開閉弁が備わる第1バイパス管20eと開閉弁が備わる第2バイパス管20fと開閉弁が備わる第3バイパス管20gが連結する構成であってもよい。この構成の場合、制御装置4が各バイパス管に備わる開閉弁を適宜制御することによって、三方弁21と同様に潤滑油の経路を切り替えることができる。
 例えば、全てのバイパス管の開閉弁が開弁すると、第1状態に設定された三方弁21と同等になり、全てのバイパス管の開閉弁が閉弁すると、第2状態に設定された三方弁21と同等になる。
 また、第1バイパス管20eの開閉弁を閉弁し、第2バイパス管20fの開閉弁と第3バイパス管20gの開閉弁を開弁すると、第3状態に設定された三方弁21と同等になる。
 このように、三方弁21に替えて各バイパス管に開閉弁を備える構成とすることもできる。
For example, as shown in FIG. 2, in the first embodiment, the first bypass pipe 20e, the second bypass pipe 20f, and the third bypass pipe 20g are connected by a three-way valve 21. However, this configuration is not limited. For example, the first bypass pipe 20e provided with the on-off valve, the second bypass pipe 20f provided with the on-off valve, and the third bypass pipe 20g provided with the on-off valve may be connected. In the case of this configuration, the control device 4 can appropriately control the on-off valve provided in each bypass pipe, thereby switching the route of the lubricating oil similarly to the three-way valve 21.
For example, when all the bypass pipe opening / closing valves are opened, the three-way valve 21 is set to the first state, and when all the bypass pipe opening / closing valves are closed, the three-way valve is set to the second state. Is equivalent to 21.
Further, when the on-off valve of the first bypass pipe 20e is closed and the on-off valve of the second bypass pipe 20f and the on-off valve of the third bypass pipe 20g are opened, it is equivalent to the three-way valve 21 set in the third state. Become.
Thus, it can replace with the three-way valve 21, and can also be set as the structure provided with an on-off valve in each bypass pipe.
 同様に、実施例2においても、自律式三方弁51(図6参照)の替わりに、第1バイパス管20eと第2バイパス管20fと第3バイパス管20gに、それぞれ自律式開閉弁50(図7の(b)参照)を備える構成としてもよい。この場合、潤滑油の温度に対する弁体の動作を各バイパス管の開閉弁で適宜変えることによって、自律式三方弁51と同様の機能を持たせることができる。
 例えば、潤滑油が高温のときに閉弁する自律式開閉弁50が第1バイパス管20eに備わり、潤滑油が低温のときに閉弁する自律式開閉弁50が第3バイパス管20gに備わる構成とすればよい。さらに、第2バイパス管20fには、第1バイパス管20eの自律式開閉弁50が閉弁する温度より低く、第3バイパス管20gの自律式開閉弁50が閉弁する温度より高い温度で閉弁する自律式開閉弁50が備わる構成とすればよい。
 このように、自律式三方弁51に替えて各バイパス管に自律式開閉弁50を備える構成とすることもできる。
 また、図7に示す自律式三方弁51および自律式開閉弁50の構造も限定するものではない。
Similarly, in the second embodiment, instead of the autonomous three-way valve 51 (see FIG. 6), the autonomous on-off valve 50 (see FIG. 6) is connected to the first bypass pipe 20e, the second bypass pipe 20f, and the third bypass pipe 20g, respectively. 7 (b)). In this case, the function similar to that of the autonomous three-way valve 51 can be provided by appropriately changing the operation of the valve body with respect to the temperature of the lubricating oil by the opening / closing valve of each bypass pipe.
For example, an autonomous on-off valve 50 that closes when the lubricating oil is hot is provided in the first bypass pipe 20e, and an autonomous on-off valve 50 that closes when the lubricating oil is low is provided in the third bypass pipe 20g. And it is sufficient. Furthermore, the second bypass pipe 20f is closed at a temperature lower than the temperature at which the autonomous open / close valve 50 of the first bypass pipe 20e is closed and higher than the temperature at which the autonomous open / close valve 50 of the third bypass pipe 20g is closed. What is necessary is just to set it as the structure provided with the autonomous on-off valve 50 to valve.
Thus, it can replace with the autonomous three-way valve 51, and can also be set as the structure provided with the autonomous on-off valve 50 in each bypass pipe.
Further, the structures of the autonomous three-way valve 51 and the autonomous opening / closing valve 50 shown in FIG. 7 are not limited.
 また、実施例2において、自律式開閉弁50(図6参照)に替えて電動式の開閉弁を備える構成としてもよい。この場合は軸受温度センサ15c(図1参照)と制御装置4(図1参照)を備え、軸受温度センサ15cが計測する軸受14bの温度に基づいて制御装置4が電動式の開閉弁を制御する構成とすればよい。 In the second embodiment, an electric on-off valve may be provided instead of the autonomous on-off valve 50 (see FIG. 6). In this case, a bearing temperature sensor 15c (see FIG. 1) and a control device 4 (see FIG. 1) are provided, and the control device 4 controls the electric on-off valve based on the temperature of the bearing 14b measured by the bearing temperature sensor 15c. What is necessary is just composition.
 この他、本発明は、前記した実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更が可能である。 In addition, the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the invention.

Claims (4)

  1.  雌雄一対のロータが回転して気体を圧縮する作動室および前記ロータを支持する軸受が備わる軸受室が形成される圧縮機本体と、
     前記作動室に潤滑用の液体を供給する第1管路と、
     前記軸受室に前記液体を供給する第2管路と、
     前記作動室から排出された前記液体を冷却する冷却手段と、
     前記作動室から排出された前記液体を前記冷却手段に供給する第3管路と、
     前記冷却手段をバイパスするバイパス管路と、
     前記第2管路に備わって前記液体の流量を調節する流量調節手段と、を備え、
     前記第1管路は前記冷却手段で冷却された前記液体を前記作動室に供給し、
     前記第2管路は前記第1管路から分岐して、前記冷却手段で冷却された前記液体を前記軸受室に供給し、
     前記バイパス管路は、前記第3管路から分岐する第1バイパス管と、前記第2管路との分岐点と前記冷却手段の間で前記第1管路から分岐する第2バイパス管と、前記流量調節手段と前記軸受室の間で前記第2管路から分岐する第3バイパス管と、が接続されて構成され、
     前記第1バイパス管と前記第2バイパス管と前記第3バイパス管のそれぞれを開閉する開閉手段が備わることを特徴とするスクリュー圧縮機。
    A compressor body in which a working chamber in which a pair of male and female rotors rotate to compress gas and a bearing chamber provided with a bearing that supports the rotor are formed;
    A first conduit for supplying a lubricating liquid to the working chamber;
    A second conduit for supplying the liquid to the bearing chamber;
    Cooling means for cooling the liquid discharged from the working chamber;
    A third conduit for supplying the liquid discharged from the working chamber to the cooling means;
    A bypass line bypassing the cooling means;
    A flow rate adjusting means for adjusting the flow rate of the liquid provided in the second conduit,
    The first conduit supplies the liquid cooled by the cooling means to the working chamber,
    The second pipe branches from the first pipe and supplies the liquid cooled by the cooling means to the bearing chamber;
    The bypass pipe includes a first bypass pipe branched from the third pipe, a second bypass pipe branched from the first pipe between the branch point of the second pipe and the cooling means, A third bypass pipe branched from the second pipe line between the flow rate adjusting means and the bearing chamber is connected,
    A screw compressor, comprising: opening and closing means for opening and closing each of the first bypass pipe, the second bypass pipe, and the third bypass pipe.
  2.  前記第3バイパス管を流通する前記液体の流量を調節する第2の流量調節手段が備わることを特徴とする請求項1に記載のスクリュー圧縮機。 The screw compressor according to claim 1, further comprising second flow rate adjusting means for adjusting a flow rate of the liquid flowing through the third bypass pipe.
  3.  前記開閉手段および前記流量調節手段の少なくとも一方が、前記軸受の温度に基づいて動作することを特徴とする請求項1または請求項2に記載のスクリュー圧縮機。 3. The screw compressor according to claim 1 or 2, wherein at least one of the opening / closing means and the flow rate adjusting means operates based on a temperature of the bearing.
  4.  前記軸受の温度が、前記軸受を潤滑した後の前記液体の温度であることを特徴とする請求項3に記載のスクリュー圧縮機。 The screw compressor according to claim 3, wherein the temperature of the bearing is a temperature of the liquid after the bearing is lubricated.
PCT/JP2013/054192 2012-05-22 2013-02-20 Screw compressor WO2013175817A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380010269.1A CN104136780B (en) 2012-05-22 2013-02-20 Helical-lobe compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012116838A JP5827172B2 (en) 2012-05-22 2012-05-22 Screw compressor
JP2012-116838 2012-05-22

Publications (1)

Publication Number Publication Date
WO2013175817A1 true WO2013175817A1 (en) 2013-11-28

Family

ID=49623522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054192 WO2013175817A1 (en) 2012-05-22 2013-02-20 Screw compressor

Country Status (3)

Country Link
JP (1) JP5827172B2 (en)
CN (1) CN104136780B (en)
WO (1) WO2013175817A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016074431A1 (en) * 2014-11-14 2016-05-19 珠海格力电器股份有限公司 Oil temperature control device for compressor, and oil temperature control method
WO2016099746A1 (en) * 2014-12-17 2016-06-23 Carrier Corporation Screw compressor with oil shutoff and method
WO2016157445A1 (en) * 2015-03-31 2016-10-06 株式会社日立産機システム Screw compressor
WO2018003211A1 (en) * 2016-06-28 2018-01-04 株式会社日立製作所 Air compressor
US20190032663A1 (en) * 2017-07-31 2019-01-31 Fu Sheng Industrial Co., Ltd. Water lubrication air compression system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511321B2 (en) * 2015-04-10 2019-05-15 株式会社日立産機システム Refueling displacement compressor
DE102015007552A1 (en) * 2015-06-16 2016-12-22 Man Diesel & Turbo Se Screw machine and method of operating the same
US20230332602A1 (en) 2020-09-18 2023-10-19 Hitachi Industrial Equipment Systems Co., Ltd. Liquid feed type gas compressor
CN113323873B (en) * 2021-07-05 2022-07-22 漯河职业技术学院 Electric compressor and control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130686U (en) * 1987-02-18 1988-08-26
JP2002332980A (en) * 2001-05-08 2002-11-22 Kobe Steel Ltd Oil injection type compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990186B2 (en) * 2002-05-02 2007-10-10 中部電力株式会社 High pressure side pressure control method and circuit device in supercritical vapor compression circuit
JP4627492B2 (en) * 2005-12-19 2011-02-09 株式会社日立産機システム Oil-cooled screw compressor
JP5110882B2 (en) * 2007-01-05 2012-12-26 株式会社日立産機システム Oil-free screw compressor
JP4885077B2 (en) * 2007-07-03 2012-02-29 株式会社日立産機システム Oil-free screw compressor
JP2010275939A (en) * 2009-05-29 2010-12-09 Hitachi Industrial Equipment Systems Co Ltd Water-cooled oil-free air compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130686U (en) * 1987-02-18 1988-08-26
JP2002332980A (en) * 2001-05-08 2002-11-22 Kobe Steel Ltd Oil injection type compressor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016074431A1 (en) * 2014-11-14 2016-05-19 珠海格力电器股份有限公司 Oil temperature control device for compressor, and oil temperature control method
US10288070B2 (en) 2014-12-17 2019-05-14 Carrier Corporation Screw compressor with oil shutoff and method
WO2016099746A1 (en) * 2014-12-17 2016-06-23 Carrier Corporation Screw compressor with oil shutoff and method
WO2016157445A1 (en) * 2015-03-31 2016-10-06 株式会社日立産機システム Screw compressor
US10704549B2 (en) 2015-03-31 2020-07-07 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor having a discharging passage with enlarged cross section area
JPWO2016157445A1 (en) * 2015-03-31 2018-01-11 株式会社日立産機システム Screw compressor
US20190242382A1 (en) * 2016-06-28 2019-08-08 Hitachi, Ltd. Air Compressor
JPWO2018003211A1 (en) * 2016-06-28 2019-04-11 株式会社日立製作所 air compressor
WO2018003211A1 (en) * 2016-06-28 2018-01-04 株式会社日立製作所 Air compressor
US10995756B2 (en) 2016-06-28 2021-05-04 Hitachi, Ltd. Air compressor
CN109322830A (en) * 2017-07-31 2019-02-12 复盛股份有限公司 Water lubrication compression system
US20190032663A1 (en) * 2017-07-31 2019-01-31 Fu Sheng Industrial Co., Ltd. Water lubrication air compression system
CN109322830B (en) * 2017-07-31 2019-11-26 复盛股份有限公司 Water lubrication compression system
US10718332B2 (en) 2017-07-31 2020-07-21 Fu Sheng Industrial Co., Ltd. Water lubrication air compression system

Also Published As

Publication number Publication date
JP2013241920A (en) 2013-12-05
JP5827172B2 (en) 2015-12-02
CN104136780B (en) 2016-06-29
CN104136780A (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5827172B2 (en) Screw compressor
JP6339158B2 (en) Compressor device
US8769982B2 (en) Injection system and method for refrigeration system compressor
US7647790B2 (en) Injection system and method for refrigeration system compressor
KR100345843B1 (en) Screw compressor and method for controlling the operation of the same
US9360011B2 (en) System including high-side and low-side compressors
JP5598724B2 (en) Compression heat recovery system
WO2002066872A1 (en) Self-contained regulating valve, and compression type refrigerating machine having the same
US20220136513A1 (en) Gas compressor
WO2012042698A1 (en) Refrigerating and air conditioning device
US5996367A (en) Heat pump and air conditioning system compressor unloading method and apparatus
JP5054597B2 (en) Steam expander driven air compressor
CN106032799B (en) Scroll compressor having a plurality of scroll members
WO2010116388A1 (en) Screw compressor specially suitable to be connected in parallel in compression units
CN112197453A (en) Compressor, double-compressor series heat pump unit and control method thereof
JPH0128233B2 (en)
WO2023171099A1 (en) Gas compressor
US20230332602A1 (en) Liquid feed type gas compressor
JP2019218930A (en) Screw compressor
JP2019120217A (en) Fluid machinery
SU1749652A1 (en) Centrifugal expander unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793130

Country of ref document: EP

Kind code of ref document: A1