WO2013175530A1 - Device and method for adjusting fuel for gas engines - Google Patents

Device and method for adjusting fuel for gas engines Download PDF

Info

Publication number
WO2013175530A1
WO2013175530A1 PCT/JP2012/003372 JP2012003372W WO2013175530A1 WO 2013175530 A1 WO2013175530 A1 WO 2013175530A1 JP 2012003372 W JP2012003372 W JP 2012003372W WO 2013175530 A1 WO2013175530 A1 WO 2013175530A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
fuel
fuel gas
line
valve
Prior art date
Application number
PCT/JP2012/003372
Other languages
French (fr)
Japanese (ja)
Inventor
昭宏 竹内
木塚 智昭
洋輔 野中
峻太郎 海野
洋平 中島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP2014516510A priority Critical patent/JP6014660B2/en
Priority to PCT/JP2012/003372 priority patent/WO2013175530A1/en
Publication of WO2013175530A1 publication Critical patent/WO2013175530A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/0272Ball valves; Plate valves; Valves having deformable or flexible parts, e.g. membranes; Rotatable valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0278Port fuel injectors for single or multipoint injection into the air intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0284Arrangement of multiple injectors or fuel-air mixers per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • F02M21/0224Secondary gaseous fuel storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0227Means to treat or clean gaseous fuels or fuel systems, e.g. removal of tar, cracking, reforming or enriching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0242Shut-off valves; Check valves; Safety valves; Pressure relief valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an apparatus and method for adjusting the properties of fuel gas supplied to a gas engine.
  • a gas engine using natural gas or the like as a fuel is used as a drive source for ships navigating at sea or generators installed on land.
  • fuel may be replenished at the port, but natural gas has different properties such as calorific value and methane number depending on the place of production.
  • natural gas supplied through a pipeline may vary.
  • the combustion characteristics of the gas engine will change. For example, if fuel gas with a high calorific value is supplied to the gas engine, the ignition temperature will drop and knocking will occur. It becomes easy to do.
  • the amount of heat required is low, so the flow rate of the fuel gas supplied to the gas engine is set to be small, but when a fuel gas with a high amount of heat is supplied, the gas engine The required flow rate of fuel gas at startup is further reduced. For this reason, when fuel gas having a heat quantity higher than expected is supplied, there is a possibility that the gas engine cannot be started normally.
  • Patent Document 1 discloses a fuel supply device that mixes a high calorie gas fuel, a low calorie gas fuel, or the like to adjust the amount of heat and the like and then supplies the fuel to a combustion engine. According to this, it is said that it is not necessary to make major modifications or adjustments to the combustion engine.
  • the apparatus of Patent Document 1 detects the temperature, pressure, and flow rate of each of high-calorie gas fuel and low-calorie gas fuel with a sensor and refers to a pre-stored table to determine the flow rate of each gas fuel. Each is decided. That is, assuming that the properties of each gas fuel are known, the amount of heat of the mixed gas is appropriately adjusted. Therefore, in the case of this device, if the properties of the fuel gas supplied to the gas engine change, the gas engine will start up normally unless changes are made to grasp the properties in advance and recreate the table. It will not be possible to drive stably.
  • the present invention has an object to efficiently operate a gas engine by eliminating the need to grasp the properties of the fuel gas in advance and change the specifications of the gas engine even if the properties of the fuel gas from the fuel supply source change. It is said.
  • a fuel adjustment device for a gas engine includes a fuel gas line that sends fuel gas from a fuel supply source to a fuel supply valve of a gas engine, and a fuel gas line that is connected to the fuel gas line and that is connected to the fuel gas line.
  • a noncombustible gas line for mixing noncombustible gas; a flow rate adjusting valve for adjusting a flow rate of the noncombustible gas flowing from the noncombustible gas line to the fuel gas line; and the noncombustible gas line of the fuel gas line
  • a property detector for detecting the property of the fuel gas flowing downstream from the junction where the gas flow is connected, and the flow rate adjusting valve so that the value detected by the property detector approaches a predetermined target value.
  • a controller for controlling the opening degree.
  • the mixing amount of the incombustible gas is adjusted by controlling the flow rate adjustment valve according to the value detected by the property detector, and the gas engine
  • the fuel gas sent to the fuel supply valve is automatically adjusted so as to approach the target value. Therefore, even if the properties of the fuel gas from the fuel supply source change, it is possible to eliminate the need to know the properties of the fuel gas in advance and change the specifications of the gas engine. Since the fuel gas having the optimum properties for the gas engine is stably supplied, the gas engine can be operated efficiently regardless of the fuel type of the fuel supply source.
  • the incombustible gas line may be connected to an exhaust port of the gas engine, and the incombustible gas mixed in the fuel gas of the fuel gas line may include exhaust gas from the gas engine.
  • the fuel adjustment device further includes a flow path forming device that forms a flow path for generating a flow in the fuel gas line before the gas engine is started, and the controller
  • the value detected by the property detector approaches a predetermined target value in a state where the flow path is formed by controlling the flow path forming device and the flow of the fuel gas is generated in the fuel gas line. You may control the opening degree of the said flow regulating valve.
  • the properties of the fuel gas from the fuel supply source are different, the properties of the fuel gas are automatically adjusted so as to approach the target value before starting the gas engine. Therefore, for example, even when a fuel gas having an excessively high heat amount is supplied, the gas engine can be started at the designed number of revolutions and stably started normally.
  • the flow path forming device includes an intermediate outflow portion that is provided in a portion of the fuel gas line between the junction and the fuel supply valve and from which the fuel gas can flow out of the fuel gas line, A shutoff valve capable of shutting off the outflow of the fuel gas from the outflow portion, and the controller opens the shutoff valve and directs the fuel gas line to the intermediate outflow portion before starting the gas engine. Further, the opening degree of the flow rate adjusting valve may be controlled so that the value detected by the property detector approaches a predetermined target value in a state where the flow of the fuel gas is generated.
  • the fuel gas line can be easily caused to flow. It becomes possible to automatically adjust the properties.
  • the fuel adjustment device returns a fuel gas flowing out from the intermediate outflow portion to a portion upstream of the intermediate outflow portion in the fuel gas line, and forms a circulation path together with the fuel gas line.
  • the controller further comprises: opening the shut-off valve and generating a circulating flow in the circulation path before starting the gas engine, so that the value detected by the property detector becomes a predetermined target value. You may control the opening degree of the said flow regulating valve so that it may approach.
  • the flow when the flow is generated in the fuel gas line before the gas engine is started, the flow forms a circulation flow, so that the fuel gas can be effectively used for the operation after the gas engine is started. It becomes.
  • the fuel adjustment device further includes a storage tank provided in the incombustible gas line, the incombustible gas line is connected to an exhaust port of the gas engine at an upstream side of the storage tank, and the controller includes: Before the gas engine is started, the opening of the flow rate adjusting valve may be controlled so that the exhaust gas stored in the storage tank during the previous operation of the gas engine is mixed into the fuel gas line.
  • the exhaust gas at the previous operation of the gas engine can be used as the non-combustible gas to be mixed into the fuel gas before the gas engine is started, the increase in the exhaust gas and the cost reduction of the non-combustible gas And can be promoted.
  • the fuel adjustment device may further include a buffer tank provided on the downstream side of the joining point in the fuel gas line.
  • the pressure fluctuation is absorbed by the buffer tank, and it becomes possible to supply the fuel gas with a stable pressure to the gas engine.
  • the above-described circulation flow is generated before the gas engine is started, it is possible to absorb the increase in pressure due to the gas supply to the circulation path by the buffer tank.
  • the fuel adjusting device includes a bypass line connected to the fuel gas line so as to bypass the buffer tank, a flow of the fuel gas passing through the buffer tank, and a flow of the fuel gas passing through the bypass line And a switching valve for selectively switching between.
  • a fuel adjustment method for a gas engine includes a first step of sending a fuel gas from a fuel supply source to a fuel supply valve of a gas engine, and adding an incombustible gas to the fuel gas upstream of the fuel supply valve.
  • a second step of mixing a third step of detecting the property of the fuel gas mixed with the nonflammable gas, and the mixing of the fuel gas with the fuel gas so that the detected property value approaches a predetermined target value.
  • the mixing amount of the non-combustible gas is adjusted according to the detected property value, and the fuel supply valve of the gas engine Is automatically adjusted so that the property of the fuel gas sent to the fuel cell approaches the target value. Therefore, even if the properties of the fuel gas from the fuel supply source change, it is possible to eliminate the need to know the properties of the fuel gas in advance and change the specifications of the gas engine. Since the fuel gas having the optimum properties for the gas engine is stably supplied, the gas engine can be operated efficiently regardless of the fuel type of the fuel supply source.
  • the gas engine can be operated efficiently regardless of the fuel type of the fuel supply source.
  • FIG. 1 is a block diagram showing a fuel adjustment device for a gas engine according to a first embodiment of the present invention. It is an enlarged view of the gas engine shown in FIG. 1 and its vicinity. It is a flowchart explaining the operation
  • FIG. 1 is a block diagram showing a fuel adjustment device 1 for a gas engine 3 according to a first embodiment of the present invention.
  • the fuel adjustment device 1 for a gas engine includes a fuel gas line L ⁇ b> 1 that is a gas pipe that sends fuel gas from a fuel supply source 2 to the gas engine 3.
  • the fuel gas from the fuel supply source 2 is, for example, natural gas or city gas, and is methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ). And the like, but the components can vary geographically or temporally.
  • a first flow rate adjusting valve 4 and a first shut-off valve 5 are provided in the upstream portion of the fuel gas line L1.
  • a nonflammable gas line L2 is connected to the fuel gas line L1 on the downstream side of the first flow rate adjusting valve 4 and the first shutoff valve 5.
  • the incombustible gas line L2 is a gas pipe that mixes incombustible gas into the fuel gas in the fuel gas line L1.
  • a mixer 6 is provided at a portion downstream from the joining point P1 to which the incombustible gas line L2 is connected.
  • the mixer 6 generates a swirl flow and uniformly mixes the fuel gas and the incombustible gas.
  • a buffer tank 7 is provided in a portion of the fuel gas line L1 downstream from the mixer 6.
  • the buffer tank 7 serves to absorb pressure fluctuations in the fuel gas line L1.
  • the buffer tank 7 is provided with a safety valve 8 that opens when the internal pressure of the buffer tank 7 exceeds a predetermined upper limit value, and a pressure sensor 9 that detects the internal pressure of the buffer tank 7.
  • the fuel gas line L1 is connected to a bypass line L3 that is a gas pipe that bypasses the buffer tank 7.
  • switching valves 10, 11 comprising three-way valves for selectively switching the flow of the fuel gas passing through the buffer tank 7 and the flow of the fuel gas passing through the bypass line L3. .
  • An oxygen concentration meter 12, a methane number sensor 13, a calorimeter 14, a flow meter 15, and a booster 16 are provided in a portion of the fuel gas line L 1 downstream from the buffer tank 7 and downstream from the connection point with the bypass line L 3. Is provided.
  • the oxygen concentration meter 12 measures the oxygen concentration in order to keep the fuel gas flowing through the fuel gas line L1 below the explosion limit.
  • the methane number sensor 13 detects the methane number of the fuel gas flowing downstream from the joining point P1 in the fuel gas line L1.
  • the calorimeter 14 detects the amount of heat of the fuel gas flowing downstream from the joining point P1 in the fuel gas line L1.
  • the methane number sensor 13 and the calorimeter 14 serve as a property detector that detects the property as the chemical property of the fuel gas flowing downstream from the junction P1 in the fuel gas line L1.
  • these property detectors 13 and 14 detect the methane number or the amount of heat as a value related to the knock resistance index of the fuel gas.
  • the flow meter 15 measures the flow rate of the fuel gas flowing downstream from the junction P1 in the fuel gas line L1.
  • the booster 16 pressurizes the fuel gas flowing downstream from the joining point P1 in the fuel gas line L1 to generate a flow toward the gas engine 3 or a circulation line L7 described later.
  • the incombustible gas line L2 is connected to the storage tank 17, and the incombustible gas stored in the storage tank 17 is mixed into the fuel gas line L1 through the incombustible gas line L2.
  • the incombustible gas line L2 is provided with a cooler 18 on the downstream side of the storage tank 17. The cooler 18 is activated when the temperature of the incombustible gas becomes high.
  • the non-combustible gas line L2 is provided with a second flow rate adjustment valve 19, a second cutoff valve 20, and a first check valve 21 on the downstream side of the cooler 18.
  • the first check valve 21 allows the flow from the noncombustible gas line L2 toward the joining point P1 of the fuel gas line L1.
  • the storage tank 17 is connected to an exhaust line L4 which is a gas pipe connected to an exhaust port 39 (see FIG. 2) of the gas engine 3. That is, the exhaust gas from the gas engine 3 can be supplied to the storage tank 17.
  • the exhaust line L4 is provided with a third flow rate adjustment valve 22 and a third shut-off valve 23.
  • the discharge line L5 is branched and connected.
  • the inert gas line L6 connected to the inert gas tank 24 is connected to the storage tank 17. That is, the inert gas (for example, nitrogen etc.) stored in the inert gas tank 24 can be supplied to the storage tank 17.
  • a fourth shutoff valve 25 is provided in the inert gas line L6.
  • the storage tank 17 is provided with a safety valve 26 that opens when the internal pressure of the storage tank 17 exceeds a predetermined upper limit value, and a pressure sensor 27 that detects the internal pressure of the storage tank 17.
  • An intermediate outflow portion 31 through which the fuel gas of the fuel gas line L1 can flow out is provided in a portion of the fuel gas line L1 between the booster 16 and the fuel supply valves 46 and 47 (see FIG. 2).
  • a circulation line L7 Connected to the intermediate outlet 31 is a circulation line L7 for returning the fuel gas flowing out from the intermediate outlet 31 to a portion upstream of the mixer 6 in the fuel gas line L1 and forming a circulation path together with the fuel gas line L1.
  • the joining point P2 of the circulation line L7 to the fuel gas line L1 is between the joining point P1 and the mixer 6.
  • the circulation line L7 is provided with a fifth shut-off valve 28 and a second check valve 29.
  • the circulation line L7, the fifth shut-off valve 28, and the second check valve 29 serve as a flow path forming device 51 that forms a flow path for causing a flow in the fuel gas line L1 before the gas engine 3 is started. Plays.
  • the second check valve 29 allows a flow from the circulation line L7 toward the joining point P2 of the fuel gas line L1.
  • the main controller 30 includes the first to fifth shut-off valves 5, 20, 23, 25, 28, the first to third flow rate adjusting valves 4, 19, 22, the switching valves 10, 11, and the booster 16. And the cooler 18 is controlled.
  • FIG. 2 is an enlarged view of the gas engine 3 shown in FIG. 1 and the vicinity thereof.
  • the gas engine 3 is a reciprocating multi-cylinder four-stroke engine, and is controlled by an engine controller 50.
  • a piston 33 is inserted into the cylinder 32 of the gas engine 3 so as to be able to reciprocate.
  • the piston 33 is connected to a crankshaft 35 via a connecting rod 34.
  • a starter motor M is connected to the crankshaft 35 so that power can be transmitted.
  • the gas engine 3 is provided with a crank angle sensor 36 for detecting the angle (phase) of the crankshaft 35.
  • the space above the piston 33 in the cylinder 32 is a main combustion chamber 37.
  • An air supply port 38 is connected to the main combustion chamber 37 via an air supply valve 40, and an exhaust port 39 is connected via an exhaust valve 41.
  • the supply port 38 is provided with a main fuel supply valve 46 for injecting fuel gas.
  • a sub-combustion chamber 43 is adjacent to the main combustion chamber 37 through a partition wall 42.
  • the auxiliary combustion chamber 43 communicates with the main combustion chamber 37 via a communication hole 42 a formed in the partition wall 42.
  • the auxiliary combustion chamber 43 is provided with an auxiliary fuel supply valve 47 for injecting fuel gas and an ignition plug 44 for burning the air-fuel mixture.
  • a fuel gas line L ⁇ b> 1 is connected to the main fuel supply valve 46 and the sub fuel supply valve 47.
  • the main controller 30 (see FIG. 1) is configured to determine whether or not the gas engine 3 is activated based on a signal from the engine controller 50.
  • fuel gas from the fuel supply source 2 (see FIG. 1) is sent to the fuel supply valves 46 and 47 of the gas engine 3 through the fuel gas line L1.
  • the main combustion chamber 37 is supplied with an air-fuel mixture including air and the fuel gas injected from the main fuel supply valve 46 from the air supply port 38, and the auxiliary combustion chamber 43 is supplied with the auxiliary fuel supply valve 47. Is supplied with an air-fuel mixture containing fuel gas.
  • the spark plug 44 operates at a predetermined timing, and the air-fuel mixture in the sub-combustion chamber 43 is ignited.
  • the flame generated in the auxiliary combustion chamber 43 propagates into the main combustion chamber 37 through the communication hole 42a, and the air-fuel mixture in the main combustion chamber 37 is ignited.
  • FIG. 3 is a flowchart for explaining an operation procedure of the fuel adjustment device 1 of the gas engine 3 shown in FIG. 1 before starting the gas engine.
  • the main controller 30 starts the fuel adjustment device 1 in a state where the gas engine 3 is not started.
  • the first to fifth shut-off valves 5, 20, 23, 25, 28 are closed, and the switching valves 10, 11 are fuel gas in the fuel gas line L1. Is switched to a position where it flows through the buffer tank 7 without passing through the bypass line L3.
  • step S1 the main controller 30 first activates the booster 16 (step S1) and opens the fifth shutoff valve 28 (step S2). As a result, a circulation flow is generated in the circulation path formed by the fuel gas line L1 and the circulation line L7.
  • the main controller 30 opens the first cutoff valve 5 (step S3) and fully opens the first flow rate adjustment valve 4 (step S4).
  • the fuel gas from the fuel supply source 2 is supplied to the fuel gas line L1, and the flow of the fuel gas is generated in the portion where the methane number sensor 13 and the calorimeter 14 are arranged.
  • the main controller 30 opens the second cutoff valve 20 (step S5) and controls the opening degree of the second flow rate adjustment valve 19 (step S6).
  • the nonflammable gas from the storage tank 17 mixes in the fuel gas line L1 via the nonflammable gas line L2.
  • the storage tank 17 stores the exhaust gas flowing in via the exhaust line L4 during the previous operation of the gas engine 3.
  • incombustible gas is mixed and adjusted in the circulation line filled with fuel gas.
  • the main controller 30 determines whether or not the internal pressure of the storage tank 17 detected by the pressure sensor 27 is equal to or higher than the lower limit pressure (step S7). If YES in step S7, the fourth shutoff valve 25 is closed (step S8). In the case of NO in step S7, the fourth shutoff valve 25 is opened to supply the inert gas from the inert gas tank 24 to the storage tank 17 (step S9). As a result, the internal pressure of the storage tank 17 is maintained so as not to be lower than the pressure at the junction P of the fuel gas line L1. If the internal pressure of the storage tank 17 becomes low and does not recover, it is determined as a startup error by a monitoring function (not shown).
  • the main controller 30 determines whether or not the values detected by the property detectors 13 and 14 satisfy a predetermined allowable condition in a state where the above-described circulation flow is generated. That is, the main controller 30 determines whether or not the value (methane number or amount of heat) detected by the methane number sensor 13 or the calorimeter 14 has converged to a predetermined target value. (Step S10). Specifically, the main controller 30 determines whether or not the value detected by the methane number sensor 13 or the calorimeter 14 is continuously within a permissible range including the target value for a predetermined time.
  • the “target value” is the optimum value of the methane number or the calorific value at which the gas engine 3 can be normally started and operated without causing abnormal operation such as overspeeding or knocking, and the gas engine 3 can operate with high efficiency. It is.
  • step S10 the opening degree of the second flow rate adjustment valve 19 is feedback controlled so that the value detected by the methane number sensor 13 or the calorimeter 14 approaches the target value (step S6).
  • step S6 the flow rate of the incombustible gas flowing into the fuel gas line L1 from the incombustible gas line L2 is adjusted, and the methane number or the amount of heat of the fuel gas flowing downstream of the joining point P of the fuel gas line L is adjusted.
  • step S10 determines whether or not the internal pressure of the buffer tank 7 detected by the pressure sensor 9 is equal to or higher than a predetermined lower limit pressure (step S11). If NO in step S11, the process returns to step S6. This prevents the gas engine 3 from being started with the internal pressure of the buffer tank 7 being too low, and the fuel supply pressure to the gas engine 3 from being insufficient.
  • step S11 the main controller 30 determines whether or not the safety valve 8 of the buffer tank 7 has been actuated (step S12). If YES in step S12, the process returns to step S6. This prevents the gas engine 3 from starting while the safety valve 8 is activated and the internal pressure of the buffer tank 7 fluctuates.
  • step S12 the main controller 30 closes the fifth shutoff valve 28 to shut off the flow of the circulation line L7 (step S13), and instructs the engine controller 50 to start the gas engine 3 (step S13). S14).
  • FIG. 4 is a flowchart for explaining an operation procedure after the gas engine is started of the fuel adjustment device 1 of the gas engine 3 shown in FIG.
  • the main controller 30 opens the third cutoff valve 23 (step S21) and closes the fourth cutoff valve 25 (step S22).
  • the exhaust gas from the gas engine 3 is supplied to the storage tank 17, and the exhaust gas is mixed as a non-combustible gas into the fuel gas line L1 via the non-combustible gas line L2.
  • the main controller 30 starts the cooler 18 (step S23). As a result, the hot exhaust gas from the gas engine 3 is cooled and mixed into the fuel gas line L1.
  • the main controller 30 switches the switching valves 10 and 11 so that the fuel gas flows through the bypass line L3 without passing through the buffer tank 7 (step S24). That is, the main controller 30 selects the flow of fuel gas that does not pass through the buffer tank 7 by the bypass line L3 when the gas engine 3 is in an operating state.
  • step S25 the main controller 30 once opens the third flow rate adjustment valve 22 (step S25), and then controls the opening degree of the third flow rate adjustment valve 22 (step S26). As a result, the flow rate of the exhaust gas flowing from the gas engine 3 toward the storage tank 17 is adjusted.
  • step S10 the main controller 30 determines whether or not the value (methane number or amount of heat) detected by the methane number sensor 13 or the calorimeter 14 has converged to a predetermined target value. (Step S27). In the case of NO in step S27, by returning to step S26, the opening degree of the third flow rate adjusting valve 22 is feedback-controlled so that the value detected by the methane number sensor 13 or the calorimeter 14 approaches the target value.
  • Step S27 the main controller 30 controls the second flow rate adjustment valve 19 to gradually increase the opening (step S28). Then, the main controller 30 determines whether or not the second flow rate adjustment valve 19 is fully opened (step S29). If NO in step S29, the process returns to step S26. If YES in step S29, the main controller 30 determines whether or not the value (methane number or calorific value) detected by the methane number sensor 13 or the calorimeter 14 has converged to a predetermined target value, as in step S27. Determine. (Step S30).
  • step S30 the opening degree of the third flow rate adjustment valve 22 is feedback controlled so that the value detected by the methane number sensor 13 or the calorimeter 14 approaches the target value (step S31). If YES in step S30, normal operation is performed without changing the opening of the third flow rate adjustment valve 22 (step S32).
  • the main controller 30 is used when the oxygen concentration measured by the oximeter 12 exceeds a predetermined upper limit value before and after the gas engine 3 is started. Closes the third shut-off valve 23 and opens the fourth shut-off valve 25 to supply the inert gas to the storage tank 17. As a result, the fuel gas flowing through the fuel gas line L1 is kept below the explosion limit.
  • the second flow rate adjustment valve 19 or the third flow rate adjustment according to the value detected by the methane number sensor 13 or the calorimeter 14 is performed.
  • the amount of the incombustible gas mixed is adjusted by the control of the valve 22, and the property of the fuel gas sent to the fuel supply valves 46 and 47 of the gas engine 3 is automatically adjusted so as to approach the target value. Therefore, even if the properties of the fuel gas from the fuel supply source 2 change, it is possible to eliminate the need to know the properties of the fuel gas in advance and change the specifications of the gas engine 3. Since the fuel gas having the optimum properties for the gas engine 3 is stably supplied, the gas engine 3 can be operated efficiently regardless of the fuel type of the fuel supply source 2.
  • exhaust gas emitted from the gas engine 3 is used as a nonflammable gas.
  • the exhaust gas at the previous operation of the gas engine 3 can be used as the incombustible gas to be mixed into the fuel gas before the gas engine 3 is started. Therefore, it is possible to suppress an increase in the exhaust gas that is released, and to reduce the supply cost of the incombustible gas.
  • a flow path for generating a flow in the fuel gas line L1 is formed, and the opening degree of the second flow rate adjusting valve 19 in a state in which the flow of the fuel gas is generated in the fuel gas line. Therefore, the fuel gas is automatically adjusted so as to approach the target value before the gas engine 3 is started. Therefore, for example, even when a fuel gas having an excessively high heat amount is supplied, the gas engine 3 can be started at the designed number of rotations and stably started normally.
  • the flow path is formed in the circulation line L7. Therefore, even when the supply valve 40 or the exhaust valve 41 of the gas engine 3 before the start is closed.
  • the flow can be easily generated in the fuel gas line L1. Since the flow of the fuel gas forms a circulation flow, the fuel gas can be effectively used for the operation after the gas engine 3 is started.
  • the buffer tank 7 is provided on the downstream side of the joining point P1 in the fuel gas line L1, the pressure is obtained by supplying gas to the circulation path in a state where a circulation flow is generated before the gas engine 3 is started. Even if it increases, the buffer tank 7 can absorb it. Even if pulsation or the like occurs in the fuel gas mixed with the non-combustible gas, the pressure fluctuation is absorbed by the buffer tank 7, and the fuel gas having a stable pressure can be supplied to the gas engine 3.
  • FIG. 5 is a block diagram showing the fuel adjustment device 101 of the gas engine 3 according to the second embodiment of the present invention.
  • symbol is attached
  • the flow path forming device 151 is different from the flow path forming device 51 of the first embodiment.
  • the circulation line L7, the fifth shutoff valve 28, the second check valve 29, the buffer tank 7, the bypass line L3, and the switching valves 10 and 11 of the first embodiment are eliminated.
  • a branch line L8 is connected to the intermediate outflow portion 31 of the fuel gas line L1 for guiding the fuel gas flowing out therefrom to the outside.
  • the branch line L8 may be connected to a fuel tank (not shown) or may be connected to another system.
  • the branch line L ⁇ b> 8 is provided with a sixth cutoff valve 61, and the sixth cutoff valve 61 is controlled by the main controller 130. That is, the branch line L8 and the sixth shut-off valve 61 serve as a flow path forming device 151 that forms a flow path for causing a flow in the fuel gas line L1 before the gas engine 3 is started.
  • FIG. 6 is a flowchart for explaining an operation procedure of the fuel adjustment device 101 of the gas engine 3 shown in FIG. 5 before starting the gas engine. Note that steps common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the main controller 130 opens the sixth shut-off valve 61 after step S1 in order to start the fuel adjustment device 101 in a state where the gas engine 3 is not activated (step S102). Moreover, the main controller 130 closes the 6th cutoff valve 61 (step S113) and starts the gas engine 3 (step S14), when YES at step S10. According to such a configuration, it is possible to adjust the properties of the fuel gas before starting the gas engine 3 with a simple configuration.
  • the present invention is not limited to the above-described embodiments, and the configuration can be changed, added, or deleted without departing from the spirit of the present invention.
  • the above embodiments may be arbitrarily combined with each other.
  • some configurations or methods in one embodiment may be applied to other embodiments.
  • the booster 16 is used, but the present invention is not limited to this as long as it is a flow generator that generates a flow in the fuel gas line L1.
  • a methane number sensor 13 for detecting the methane number of the fuel gas flowing downstream from the joining point P1 in the fuel gas line L1, or a calorimeter 14 for detecting the heat amount of the fuel gas is used.
  • the property detector may be a gas chromatography that detects a component of the fuel gas that flows downstream from the junction P1 in the fuel gas line L1.
  • the fuel adjustment device and method for a gas engine according to the present invention changes the specifications of the gas engine by grasping the properties of the fuel gas in advance even if the properties of the fuel gas from the fuel supply source change. It is beneficial to apply widely to gas engines that can eliminate the need and have an excellent effect of efficiently operating the gas engine regardless of the fuel type of the fuel supply source, and can exhibit the significance of this effect.

Abstract

The purpose of the present invention is to efficiently operate gas engines by ascertaining the properties of a fuel gas in advance and eliminating the need to change gas engine specifications even if the properties of the fuel gas from a fuel supply source change. A device for adjusting fuel for gas engines comprises: a fuel gas line that sends fuel gas that is from a fuel supply source to a gas engine fuel supply valve; a non-combustible gas line, which is connected to the fuel gas line, and whereby the fuel gas in the fuel gas line is mixed with non-combustible gas; a flow rate adjusting valve that adjusts the flow rate of the non-combustible gas flowing from the non-combustible gas line into the fuel gas line; a properties detector for detecting the properties of the fuel gas flowing further downstream than the junction point in the fuel gas line where the non-combustible gas line is connected; and a controller that controls the degree the flow rate adjusting valve is opened so that the value detected by the properties detector approaches a prescribed target value.

Description

ガスエンジンの燃料調整装置及び方法Gas engine fuel conditioning apparatus and method
 本発明は、ガスエンジンに供給する燃料ガスの性状を調整する装置及び方法に関する。 The present invention relates to an apparatus and method for adjusting the properties of fuel gas supplied to a gas engine.
 海上を航行する船舶や陸上に定置された発電機等の駆動源として、天然ガス等を燃料とするガスエンジンが用いられている。船舶用ガスエンジンの場合、港で燃料を補給することがあるが、天然ガスは産出地によって熱量やメタン価等の性状が異なる。また、陸上用ガスエンジンの場合も、パイプラインで供給される天然ガスの性状が変動する場合がある。 A gas engine using natural gas or the like as a fuel is used as a drive source for ships navigating at sea or generators installed on land. In the case of marine gas engines, fuel may be replenished at the port, but natural gas has different properties such as calorific value and methane number depending on the place of production. In the case of an onshore gas engine, the nature of natural gas supplied through a pipeline may vary.
 ガスエンジンに供給される燃料ガスの性状が異なると、ガスエンジンの燃焼特性が変化し、例えば、発熱量の高い燃料ガスがガスエンジンに供給されると、着火温度が低下するためにノッキングが発生し易くなる。また、ガスエンジンの起動時には、必要とされる熱量が低いため、ガスエンジンに供給される燃料ガスの流量は少なく設定されるが、熱量の高い燃料ガスが供給された場合には、ガスエンジンの起動時における燃料ガスの必要流量は更に少なくなる。そのため、想定よりも高い熱量の燃料ガスが供給された場合、ガスエンジンが正常に起動できない可能性もある。 If the properties of the fuel gas supplied to the gas engine are different, the combustion characteristics of the gas engine will change. For example, if fuel gas with a high calorific value is supplied to the gas engine, the ignition temperature will drop and knocking will occur. It becomes easy to do. In addition, when the gas engine is started, the amount of heat required is low, so the flow rate of the fuel gas supplied to the gas engine is set to be small, but when a fuel gas with a high amount of heat is supplied, the gas engine The required flow rate of fuel gas at startup is further reduced. For this reason, when fuel gas having a heat quantity higher than expected is supplied, there is a possibility that the gas engine cannot be started normally.
 このような事態を回避し、ガスエンジンを正常に起動して安定的に運転させるためには、燃料種類に応じて、運転出力や圧縮比を下げたり点火時期を遅角させたりして、ガスエンジンの仕様を変更せねばならなくなる。そのような仕様変更が燃料種類ごとに必要になると、ガスエンジンの製品価値が低下し、製造コストも増加することとなる。 In order to avoid such a situation and start the gas engine normally and operate stably, depending on the fuel type, the operation output and the compression ratio are lowered or the ignition timing is retarded. You will have to change the engine specifications. If such a specification change is required for each fuel type, the product value of the gas engine is lowered and the manufacturing cost is also increased.
特開2004-278468号公報JP 2004-278468 A
 特許文献1には、高カロリーガス燃料や低カロリーガス燃料などを混合して熱量等を調整したうえで燃焼機関に供給する燃料供給装置が開示されている。これによれば、燃焼機関に大きな改造や調整を行う必要がなくなるとされている。しかしながら、特許文献1の装置は、高カロリーガス燃料や低カロリーガス燃料などの夫々の温度、圧力及び流量をセンサで検出し、予め記憶されたテーブルを参照することで、各ガス燃料の流量をそれぞれ決定している。即ち、各ガス燃料の性状が既知であることを前提として、混合ガスの熱量等を適宜調整するようにしている。よって、この装置の場合には、ガスエンジンに供給される燃料ガスの性状が変わると、その性状を事前に把握してテーブルを再作成する変更を行わないと、ガスエンジンを正常に起動して安定的に運転させることができなくなる。 Patent Document 1 discloses a fuel supply device that mixes a high calorie gas fuel, a low calorie gas fuel, or the like to adjust the amount of heat and the like and then supplies the fuel to a combustion engine. According to this, it is said that it is not necessary to make major modifications or adjustments to the combustion engine. However, the apparatus of Patent Document 1 detects the temperature, pressure, and flow rate of each of high-calorie gas fuel and low-calorie gas fuel with a sensor and refers to a pre-stored table to determine the flow rate of each gas fuel. Each is decided. That is, assuming that the properties of each gas fuel are known, the amount of heat of the mixed gas is appropriately adjusted. Therefore, in the case of this device, if the properties of the fuel gas supplied to the gas engine change, the gas engine will start up normally unless changes are made to grasp the properties in advance and recreate the table. It will not be possible to drive stably.
 そこで本発明は、燃料供給源からの燃料ガスの性状が変わっても、その燃料ガスの性状を予め把握してガスエンジンの仕様を変更する必要をなくし、ガスエンジンを効率良く稼働させることを目的としている。 Accordingly, the present invention has an object to efficiently operate a gas engine by eliminating the need to grasp the properties of the fuel gas in advance and change the specifications of the gas engine even if the properties of the fuel gas from the fuel supply source change. It is said.
 本発明に係るガスエンジンの燃料調整装置は、燃料供給源からの燃料ガスをガスエンジンの燃料供給弁に送る燃料ガスラインと、前記燃料ガスラインに接続され、前記燃料ガスラインの前記燃料ガスに不燃性ガスを混入させる不燃性ガスラインと、前記不燃性ガスラインから前記燃料ガスラインに流入する前記不燃性ガスの流量を調整する流量調整弁と、前記燃料ガスラインのうち前記不燃性ガスラインが接続された合流箇所よりも下流側を流れる前記燃料ガスの性状を検出するための性状検出器と、前記性状検出器で検出される値が所定の目標値に近づくように前記流量調整弁の開度を制御するコントローラと、を備えている。 A fuel adjustment device for a gas engine according to the present invention includes a fuel gas line that sends fuel gas from a fuel supply source to a fuel supply valve of a gas engine, and a fuel gas line that is connected to the fuel gas line and that is connected to the fuel gas line. A noncombustible gas line for mixing noncombustible gas; a flow rate adjusting valve for adjusting a flow rate of the noncombustible gas flowing from the noncombustible gas line to the fuel gas line; and the noncombustible gas line of the fuel gas line A property detector for detecting the property of the fuel gas flowing downstream from the junction where the gas flow is connected, and the flow rate adjusting valve so that the value detected by the property detector approaches a predetermined target value. And a controller for controlling the opening degree.
 前記構成によれば、燃料供給源からの燃料ガスの性状が異なる場合でも、性状検出器で検出された値に応じた流量調整弁の制御により不燃性ガスの混入量が調整されて、ガスエンジンの燃料供給弁に送られる燃料ガスの性状が目標値に近づくように自動調整される。よって、燃料供給源からの燃料ガスの性状が変わっても、その燃料ガスの性状を予め把握してガスエンジンの仕様を変更する必要をなくすことができる。そして、ガスエンジンにとって最適な性状の燃料ガスが安定して供給されるので、燃料供給源の燃料種類にかかわらずガスエンジンを効率良く稼働することが可能となる。 According to the above configuration, even when the properties of the fuel gas from the fuel supply source are different, the mixing amount of the incombustible gas is adjusted by controlling the flow rate adjustment valve according to the value detected by the property detector, and the gas engine The fuel gas sent to the fuel supply valve is automatically adjusted so as to approach the target value. Therefore, even if the properties of the fuel gas from the fuel supply source change, it is possible to eliminate the need to know the properties of the fuel gas in advance and change the specifications of the gas engine. Since the fuel gas having the optimum properties for the gas engine is stably supplied, the gas engine can be operated efficiently regardless of the fuel type of the fuel supply source.
 前記不燃性ガスラインは、前記ガスエンジンの排気ポートに接続され、前記燃料ガスラインの前記燃料ガスに混入する前記不燃性ガスは、前記ガスエンジンからの排気ガスを含んでいてもよい。 The incombustible gas line may be connected to an exhaust port of the gas engine, and the incombustible gas mixed in the fuel gas of the fuel gas line may include exhaust gas from the gas engine.
 前記構成によれば、不燃性ガスとしてガスエンジン自身の排気ガスが利用されるので、放出される排気ガスの増加を抑制できるとともに、不燃性ガスの供給コストを低減することが可能となる。 According to the above configuration, since the exhaust gas of the gas engine itself is used as the incombustible gas, it is possible to suppress an increase in the exhaust gas released and reduce the supply cost of the incombustible gas.
 前記燃料調整装置は、前記ガスエンジンの起動前において前記燃料ガスラインに流れを生じさせるための流路を形成する流路形成装置を更に備え、前記コントローラは、前記ガスエンジンの起動前において、前記流路形成装置を制御して前記流路を形成して前記燃料ガスラインに前記燃料ガスの流れを生じさせた状態で、前記性状検出器で検出される値が所定の目標値に近づくように前記流量調整弁の開度を制御してもよい。 The fuel adjustment device further includes a flow path forming device that forms a flow path for generating a flow in the fuel gas line before the gas engine is started, and the controller The value detected by the property detector approaches a predetermined target value in a state where the flow path is formed by controlling the flow path forming device and the flow of the fuel gas is generated in the fuel gas line. You may control the opening degree of the said flow regulating valve.
 前記構成によれば、燃料供給源からの燃料ガスの性状が異なる場合でも、ガスエンジンの起動前から燃料ガスの性状が目標値に近づくように自動調整される。よって、例えば、過剰に熱量の高い燃料ガスが供給された場合でも、ガスエンジンが設計通りの回転数で始動し、安定的に正常起動することが可能になる。 According to the above configuration, even when the properties of the fuel gas from the fuel supply source are different, the properties of the fuel gas are automatically adjusted so as to approach the target value before starting the gas engine. Therefore, for example, even when a fuel gas having an excessively high heat amount is supplied, the gas engine can be started at the designed number of revolutions and stably started normally.
 前記流路形成装置は、前記燃料ガスラインのうち前記合流箇所と前記燃料供給弁との間の部分に設けられた、前記燃料ガスラインの前記燃料ガスが流出可能な中間流出部と、前記中間流出部からの前記燃料ガスの流出を遮断可能な遮断弁と、を有し、前記コントローラは、前記ガスエンジンの起動前において、前記遮断弁を開いて前記燃料ガスラインに前記中間流出部に向けた前記燃料ガスの流れを生じさせた状態で、前記性状検出器で検出される値が所定の目標値に近づくように前記流量調整弁の開度を制御してもよい。 The flow path forming device includes an intermediate outflow portion that is provided in a portion of the fuel gas line between the junction and the fuel supply valve and from which the fuel gas can flow out of the fuel gas line, A shutoff valve capable of shutting off the outflow of the fuel gas from the outflow portion, and the controller opens the shutoff valve and directs the fuel gas line to the intermediate outflow portion before starting the gas engine. Further, the opening degree of the flow rate adjusting valve may be controlled so that the value detected by the property detector approaches a predetermined target value in a state where the flow of the fuel gas is generated.
 前記構成によれば、ガスエンジンの起動前においてガスエンジンの給気弁又は排気弁が閉じた状態でも、燃料ガスラインに簡単に流れを生じさせることができ、ガスエンジンの起動前から燃料ガスの性状を自動調整することが可能となる。 According to the above configuration, even when the gas engine supply valve or exhaust valve is closed before the gas engine is started, the fuel gas line can be easily caused to flow. It becomes possible to automatically adjust the properties.
 前記燃料調整装置は、前記中間流出部から流出する燃料ガスを前記燃料ガスラインのうち前記中間流出部よりも上流側の部分に戻して、前記燃料ガスラインとともに循環路を形成するための循環ラインを更に備え、前記コントローラは、前記ガスエンジンの起動前において、前記遮断弁を開いて前記循環路に循環流を生じさせた状態で、前記性状検出器で検出される値が所定の目標値に近づくように前記流量調整弁の開度を制御してもよい。 The fuel adjustment device returns a fuel gas flowing out from the intermediate outflow portion to a portion upstream of the intermediate outflow portion in the fuel gas line, and forms a circulation path together with the fuel gas line. The controller further comprises: opening the shut-off valve and generating a circulating flow in the circulation path before starting the gas engine, so that the value detected by the property detector becomes a predetermined target value. You may control the opening degree of the said flow regulating valve so that it may approach.
 前記構成によれば、ガスエンジンの起動前において燃料ガスラインに流れを生じさせるにあたり、その流れが循環流を形成するので、その燃料ガスをガスエンジンの起動後の運転に有効利用することが可能となる。 According to the above configuration, when the flow is generated in the fuel gas line before the gas engine is started, the flow forms a circulation flow, so that the fuel gas can be effectively used for the operation after the gas engine is started. It becomes.
 前記燃料調整装置は、前記不燃性ガスラインに設けられた貯蔵タンクを更に備え、前記不燃性ガスラインは、前記貯蔵タンクよりも上流側で前記ガスエンジンの排気ポートに接続され、前記コントローラは、前記ガスエンジンの起動前において、前記ガスエンジンの前回運転時に前記貯蔵タンクに貯蔵された排気ガスを前記燃料ガスラインに混入させるように前記流量調整弁の開度を制御してもよい。 The fuel adjustment device further includes a storage tank provided in the incombustible gas line, the incombustible gas line is connected to an exhaust port of the gas engine at an upstream side of the storage tank, and the controller includes: Before the gas engine is started, the opening of the flow rate adjusting valve may be controlled so that the exhaust gas stored in the storage tank during the previous operation of the gas engine is mixed into the fuel gas line.
 前記構成によれば、ガスエンジンの起動前に燃料ガスに混入させる不燃性ガスとして、ガスエンジンの前回運転時の排気ガスが利用可能となるので、排気ガスの増加抑制と不燃性ガスのコスト低減とを促進することができる。 According to the above configuration, since the exhaust gas at the previous operation of the gas engine can be used as the non-combustible gas to be mixed into the fuel gas before the gas engine is started, the increase in the exhaust gas and the cost reduction of the non-combustible gas And can be promoted.
 前記燃料調整装置は、前記燃料ガスラインのうち前記合流箇所の下流側に設けられたバッファタンクを更に備えていてもよい。 The fuel adjustment device may further include a buffer tank provided on the downstream side of the joining point in the fuel gas line.
 前記構成によれば、不燃性ガスが混入された燃料ガスに脈動等が生じても、その圧力変動がバッファタンクで吸収され、ガスエンジンに安定した圧力の燃料ガスを供給することが可能になる。また、例えば、ガスエンジンの起動前に前記した循環流を生じさせる場合には、循環路へのガス供給による圧力の高まりをバッファタンクで吸収することが可能となる。 According to the above configuration, even if pulsation or the like occurs in the fuel gas mixed with nonflammable gas, the pressure fluctuation is absorbed by the buffer tank, and it becomes possible to supply the fuel gas with a stable pressure to the gas engine. . Further, for example, when the above-described circulation flow is generated before the gas engine is started, it is possible to absorb the increase in pressure due to the gas supply to the circulation path by the buffer tank.
 前記燃料調整装置は、前記バッファタンクを迂回するように前記燃料ガスラインに接続されたバイパスラインと、前記バッファタンクを通過する前記燃料ガスの流れと前記バイパスラインを通過する前記燃料ガスの流れとを選択的に切り換える切換弁と、を更に備えていてもよい。 The fuel adjusting device includes a bypass line connected to the fuel gas line so as to bypass the buffer tank, a flow of the fuel gas passing through the buffer tank, and a flow of the fuel gas passing through the bypass line And a switching valve for selectively switching between.
 前記構成によれば、バイパスラインによるバッファタンクを経由しない燃料ガスの流れを選択することで、流量調整弁の開度変化に対する燃料ガスの性状変化の応答性を向上させることが可能となる。 According to the above configuration, by selecting the flow of the fuel gas that does not pass through the buffer tank by the bypass line, it becomes possible to improve the responsiveness of the change in the property of the fuel gas to the change in the opening of the flow rate adjustment valve.
 本発明に係るガスエンジンの燃料調整方法は、燃料供給源からの燃料ガスをガスエンジンの燃料供給弁に送る第1工程と、前記燃料供給弁よりも上流側で前記燃料ガスに不燃性ガスを混入させる第2工程と、前記不燃性ガスが混入した前記燃料ガスの性状を検出する第3工程と、前記検出される性状の値が所定の目標値に近づくように前記燃料ガスに混入させる前記不燃性ガスの流量を調整する第4工程と、を備えている。 A fuel adjustment method for a gas engine according to the present invention includes a first step of sending a fuel gas from a fuel supply source to a fuel supply valve of a gas engine, and adding an incombustible gas to the fuel gas upstream of the fuel supply valve. A second step of mixing, a third step of detecting the property of the fuel gas mixed with the nonflammable gas, and the mixing of the fuel gas with the fuel gas so that the detected property value approaches a predetermined target value. A fourth step of adjusting the flow rate of the non-combustible gas.
 前記方法によれば、前記同様に、燃料供給源からの燃料ガスの性状が異なる場合でも、検出された性状の値に応じて不燃性ガスの混入量が調整されて、ガスエンジンの燃料供給弁に送られる燃料ガスの性状が目標値に近づくように自動調整される。よって、燃料供給源からの燃料ガスの性状が変わっても、その燃料ガスの性状を予め把握してガスエンジンの仕様を変更する必要をなくすことができる。そして、ガスエンジンにとって最適な性状の燃料ガスが安定して供給されるので、燃料供給源の燃料種類にかかわらずガスエンジンを効率良く稼働することが可能となる。 According to the method, similarly to the above, even when the property of the fuel gas from the fuel supply source is different, the mixing amount of the non-combustible gas is adjusted according to the detected property value, and the fuel supply valve of the gas engine Is automatically adjusted so that the property of the fuel gas sent to the fuel cell approaches the target value. Therefore, even if the properties of the fuel gas from the fuel supply source change, it is possible to eliminate the need to know the properties of the fuel gas in advance and change the specifications of the gas engine. Since the fuel gas having the optimum properties for the gas engine is stably supplied, the gas engine can be operated efficiently regardless of the fuel type of the fuel supply source.
 以上の説明から明らかなように、本発明によれば、燃料供給源からの燃料ガスの性状が変わっても、その燃料ガスの性状を予め把握してガスエンジンの仕様を変更する必要をなくすことができ、燃料供給源の燃料種類にかかわらずガスエンジンを効率良く稼働することが可能となる。 As is apparent from the above description, according to the present invention, even if the properties of the fuel gas from the fuel supply source change, it is not necessary to grasp the properties of the fuel gas in advance and change the specifications of the gas engine. Therefore, the gas engine can be operated efficiently regardless of the fuel type of the fuel supply source.
本発明の第1実施形態に係るガスエンジンの燃料調整装置を示すブロック図である。1 is a block diagram showing a fuel adjustment device for a gas engine according to a first embodiment of the present invention. 図1に示すガスエンジン及びその近傍の拡大図である。It is an enlarged view of the gas engine shown in FIG. 1 and its vicinity. 図1に示すガスエンジンの燃料調整装置のガスエンジン起動前における動作手順を説明するフローチャートである。It is a flowchart explaining the operation | movement procedure before the gas engine starting of the fuel adjustment apparatus of the gas engine shown in FIG. 図1に示すガスエンジンの燃料調整装置のガスエンジン起動後における動作手順を説明するフローチャートである。It is a flowchart explaining the operation | movement procedure after the gas engine starting of the fuel adjustment apparatus of the gas engine shown in FIG. 本発明の第2実施形態に係るガスエンジンの燃料調整装置を示すブロック図である。It is a block diagram which shows the fuel adjustment apparatus of the gas engine which concerns on 2nd Embodiment of this invention. 図5に示すガスエンジンの燃料調整装置のガスエンジン起動前における動作手順を説明するフローチャートである。It is a flowchart explaining the operation | movement procedure before the gas engine starting of the fuel adjustment apparatus of the gas engine shown in FIG.
 以下、本発明に係る実施形態を図面を参照して説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 (第1実施形態)
 図1は、本発明の第1実施形態に係るガスエンジン3の燃料調整装置1を示すブロック図である。図1に示すように、ガスエンジンの燃料調整装置1は、燃料供給源2からの燃料ガスをガスエンジン3に送るガス管である燃料ガスラインL1を備えている。燃料供給源2からの燃料ガスは、例えば、天然ガスや都市ガス等であり、メタン(CH4)、エタン(C26)、プロパン(C38)、ブタン(C410)などの炭化水素を含んだものであるが、その成分は地理的又は時間的に変動しうる。燃料ガスラインL1の上流部分には、第1流量調整弁4及び第1遮断弁5が設けられている。燃料ガスラインL1には、第1流量調整弁4及び第1遮断弁5の下流側において不燃性ガスラインL2が接続されている。不燃性ガスラインL2は、燃料ガスラインL1の燃料ガスに不燃性ガスを混入させるガス管である。
(First embodiment)
FIG. 1 is a block diagram showing a fuel adjustment device 1 for a gas engine 3 according to a first embodiment of the present invention. As shown in FIG. 1, the fuel adjustment device 1 for a gas engine includes a fuel gas line L <b> 1 that is a gas pipe that sends fuel gas from a fuel supply source 2 to the gas engine 3. The fuel gas from the fuel supply source 2 is, for example, natural gas or city gas, and is methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ). And the like, but the components can vary geographically or temporally. A first flow rate adjusting valve 4 and a first shut-off valve 5 are provided in the upstream portion of the fuel gas line L1. A nonflammable gas line L2 is connected to the fuel gas line L1 on the downstream side of the first flow rate adjusting valve 4 and the first shutoff valve 5. The incombustible gas line L2 is a gas pipe that mixes incombustible gas into the fuel gas in the fuel gas line L1.
 燃料ガスラインL1のうち不燃性ガスラインL2が接続された合流箇所P1より下流の部分には、混合器6が設けられている。混合器6は、旋回流を生成し、燃料ガスと不燃性ガスとを均一に混合させるものである。燃料ガスラインL1のうち混合器6より下流の部分には、バッファタンク7が設けられている。バッファタンク7は、燃料ガスラインL1の圧力変動を吸収する役目を果たす。バッファタンク7には、バッファタンク7の内部圧力が所定の上限値を超えると開放する安全弁8と、バッファタンク7の内部圧力を検出する圧力センサ9とが設けられている。また、燃料ガスラインL1には、バッファタンク7を迂回するガス管であるバイパスラインL3が接続されている。バイパスラインL3の両端部には、バッファタンク7を通過する燃料ガスの流れとバイパスラインL3を通過する燃料ガスの流れとを選択的に切り換える三方弁からなる切換弁10,11が設けられている。 In the fuel gas line L1, a mixer 6 is provided at a portion downstream from the joining point P1 to which the incombustible gas line L2 is connected. The mixer 6 generates a swirl flow and uniformly mixes the fuel gas and the incombustible gas. A buffer tank 7 is provided in a portion of the fuel gas line L1 downstream from the mixer 6. The buffer tank 7 serves to absorb pressure fluctuations in the fuel gas line L1. The buffer tank 7 is provided with a safety valve 8 that opens when the internal pressure of the buffer tank 7 exceeds a predetermined upper limit value, and a pressure sensor 9 that detects the internal pressure of the buffer tank 7. The fuel gas line L1 is connected to a bypass line L3 that is a gas pipe that bypasses the buffer tank 7. At both ends of the bypass line L3, there are provided switching valves 10, 11 comprising three-way valves for selectively switching the flow of the fuel gas passing through the buffer tank 7 and the flow of the fuel gas passing through the bypass line L3. .
 燃料ガスラインL1のうちバッファタンク7より下流側でかつバイパスラインL3との接続箇所より下流側の部分には、酸素濃度計12、メタン価センサ13、カロリメータ14、流量計15及び昇圧機16が設けられている。酸素濃度計12は、燃料ガスラインL1を流れる燃料ガスを爆発限界未満に保つために酸素濃度を計測する。メタン価センサ13は、燃料ガスラインL1のうち合流箇所P1よりも下流側を流れる燃料ガスのメタン価を検出する。カロリメータ14は、燃料ガスラインL1のうち合流箇所P1よりも下流側を流れる燃料ガスの熱量を検出する。 An oxygen concentration meter 12, a methane number sensor 13, a calorimeter 14, a flow meter 15, and a booster 16 are provided in a portion of the fuel gas line L 1 downstream from the buffer tank 7 and downstream from the connection point with the bypass line L 3. Is provided. The oxygen concentration meter 12 measures the oxygen concentration in order to keep the fuel gas flowing through the fuel gas line L1 below the explosion limit. The methane number sensor 13 detects the methane number of the fuel gas flowing downstream from the joining point P1 in the fuel gas line L1. The calorimeter 14 detects the amount of heat of the fuel gas flowing downstream from the joining point P1 in the fuel gas line L1.
 メタン価センサ13及びカロリメータ14は、燃料ガスラインL1のうち合流箇所P1よりも下流側を流れる燃料ガスの化学的性質としての性状を検出する性状検出器の役目を果たしている。燃料ガスのメタン価が大きくなるとガスエンジン3でノッキングが起こり難くなり、燃料ガスの熱量が大きくなるとガスエンジン3のノッキングが起こり易くなる。即ち、本実施形態では、これらの性状検出器13,14は、燃料ガスのノッキング抵抗指数に関する値としてメタン価又は熱量を検出している。流量計15は、燃料ガスラインL1のうち合流箇所P1よりも下流側を流れる燃料ガスの流量を計測する。昇圧機16は、燃料ガスラインL1のうち合流箇所P1よりも下流側を流れる燃料ガスを昇圧して、ガスエンジン3又は後述する循環ラインL7に向かう流れを生成する。 The methane number sensor 13 and the calorimeter 14 serve as a property detector that detects the property as the chemical property of the fuel gas flowing downstream from the junction P1 in the fuel gas line L1. When the methane number of the fuel gas increases, knocking does not easily occur in the gas engine 3, and when the amount of heat of the fuel gas increases, knocking of the gas engine 3 easily occurs. That is, in the present embodiment, these property detectors 13 and 14 detect the methane number or the amount of heat as a value related to the knock resistance index of the fuel gas. The flow meter 15 measures the flow rate of the fuel gas flowing downstream from the junction P1 in the fuel gas line L1. The booster 16 pressurizes the fuel gas flowing downstream from the joining point P1 in the fuel gas line L1 to generate a flow toward the gas engine 3 or a circulation line L7 described later.
 不燃性ガスラインL2は、貯蔵タンク17に接続されており、その貯蔵タンク17に貯蔵された不燃性ガスが不燃性ガスラインL2を通じて燃料ガスラインL1に混入される。不燃性ガスラインL2には、貯蔵タンク17の下流側に冷却器18が設けられている。冷却器18は、不燃性ガスの温度が高くなるときに起動される。不燃性ガスラインL2には、冷却器18の下流側において、第2流量調整弁19、第2遮断弁20及び第1逆止弁21が設けられている。なお、第1逆止弁21は、不燃性ガスラインL2から燃料ガスラインL1の合流箇所P1に向けた流れを許容するものである。 The incombustible gas line L2 is connected to the storage tank 17, and the incombustible gas stored in the storage tank 17 is mixed into the fuel gas line L1 through the incombustible gas line L2. The incombustible gas line L2 is provided with a cooler 18 on the downstream side of the storage tank 17. The cooler 18 is activated when the temperature of the incombustible gas becomes high. The non-combustible gas line L2 is provided with a second flow rate adjustment valve 19, a second cutoff valve 20, and a first check valve 21 on the downstream side of the cooler 18. The first check valve 21 allows the flow from the noncombustible gas line L2 toward the joining point P1 of the fuel gas line L1.
 貯蔵タンク17には、ガスエンジン3の排気ポート39(図2参照)に接続されたガス管である排気ラインL4が接続されている。即ち、ガスエンジン3からの排気ガスが貯蔵タンク17に供給可能になっている。排気ラインL4には、第3流量調整弁22及び第3遮断弁23が設けられている。排気ラインL4のうち第3流量調整弁22及び第3遮断弁23より上流側には、ガスエンジン3の排気ポート39(図2参照)からの排気ガスを大気に排気するためのガス管である放出ラインL5が分岐接続されている。 The storage tank 17 is connected to an exhaust line L4 which is a gas pipe connected to an exhaust port 39 (see FIG. 2) of the gas engine 3. That is, the exhaust gas from the gas engine 3 can be supplied to the storage tank 17. The exhaust line L4 is provided with a third flow rate adjustment valve 22 and a third shut-off valve 23. A gas pipe for exhausting the exhaust gas from the exhaust port 39 (see FIG. 2) of the gas engine 3 to the atmosphere upstream of the third flow rate adjusting valve 22 and the third shut-off valve 23 in the exhaust line L4. The discharge line L5 is branched and connected.
 貯蔵タンク17には、不活性ガスタンク24に接続された不活性ガスラインL6が接続されている。即ち、不活性ガスタンク24に貯蔵された不活性ガス(例えば、窒素等)が貯蔵タンク17に供給可能になっている。不活性ガスラインL6には、第4遮断弁25が設けられている。貯蔵タンク17には、貯蔵タンク17の内部圧力が所定の上限値を超えると開放する安全弁26と、貯蔵タンク17の内部圧力を検出する圧力センサ27とが設けられている。 The inert gas line L6 connected to the inert gas tank 24 is connected to the storage tank 17. That is, the inert gas (for example, nitrogen etc.) stored in the inert gas tank 24 can be supplied to the storage tank 17. A fourth shutoff valve 25 is provided in the inert gas line L6. The storage tank 17 is provided with a safety valve 26 that opens when the internal pressure of the storage tank 17 exceeds a predetermined upper limit value, and a pressure sensor 27 that detects the internal pressure of the storage tank 17.
 燃料ガスラインL1のうち昇圧機16と燃料供給弁46,47(図2参照)との間の部分には、燃料ガスラインL1の燃料ガスが流出可能な中間流出部31が設けられている。中間流出部31には、そこから流出する燃料ガスを燃料ガスラインL1のうち混合器6よりも上流側の部分に戻して、燃料ガスラインL1とともに循環路を形成するための循環ラインL7が接続されている。本実施形態では、循環ラインL7の燃料ガスラインL1への合流箇所P2は、合流箇所P1と混合器6との間である。循環ラインL7には、第5遮断弁28及び第2逆止弁29が設けられている。即ち、循環ラインL7、第5遮断弁28及び第2逆止弁29が、ガスエンジン3の起動前において燃料ガスラインL1に流れを生じさせるための流路を形成する流路形成装置51の役目を果たしている。なお、第2逆止弁29は、循環ラインL7から燃料ガスラインL1の合流箇所P2に向けた流れを許容するものである。 An intermediate outflow portion 31 through which the fuel gas of the fuel gas line L1 can flow out is provided in a portion of the fuel gas line L1 between the booster 16 and the fuel supply valves 46 and 47 (see FIG. 2). Connected to the intermediate outlet 31 is a circulation line L7 for returning the fuel gas flowing out from the intermediate outlet 31 to a portion upstream of the mixer 6 in the fuel gas line L1 and forming a circulation path together with the fuel gas line L1. Has been. In the present embodiment, the joining point P2 of the circulation line L7 to the fuel gas line L1 is between the joining point P1 and the mixer 6. The circulation line L7 is provided with a fifth shut-off valve 28 and a second check valve 29. That is, the circulation line L7, the fifth shut-off valve 28, and the second check valve 29 serve as a flow path forming device 51 that forms a flow path for causing a flow in the fuel gas line L1 before the gas engine 3 is started. Plays. The second check valve 29 allows a flow from the circulation line L7 toward the joining point P2 of the fuel gas line L1.
 酸素濃度計12、メタン価センサ13、カロリメータ14、流量計15及びエンジンコントローラ50(図2参照)からの信号は、メインコントローラ30に入力される。メインコントローラ30は、それらの入力に基づいて、第1~5遮断弁5,20,23,25,28、第1~3流量調整弁4,19,22、切換弁10,11、昇圧機16及び冷却器18を制御する。 Signals from the oxygen concentration meter 12, the methane number sensor 13, the calorimeter 14, the flow meter 15 and the engine controller 50 (see FIG. 2) are input to the main controller 30. Based on these inputs, the main controller 30 includes the first to fifth shut-off valves 5, 20, 23, 25, 28, the first to third flow rate adjusting valves 4, 19, 22, the switching valves 10, 11, and the booster 16. And the cooler 18 is controlled.
 図2は、図1に示すガスエンジン3及びその近傍の拡大図である。図2に示すように、ガスエンジン3は、レシプロ型の多気筒4ストロークエンジンであり、エンジンコントローラ50により制御される。ガスエンジン3の気筒32にはピストン33が往復動可能に挿入されており、ピストン33はコンロッド34を介してクランク軸35と連結されている。クランク軸35には、スタータモータMが動力伝達可能に接続されている。ガスエンジン3には、クランク軸35の角度(位相)を検出するためのクランク角センサ36が設けられている。 FIG. 2 is an enlarged view of the gas engine 3 shown in FIG. 1 and the vicinity thereof. As shown in FIG. 2, the gas engine 3 is a reciprocating multi-cylinder four-stroke engine, and is controlled by an engine controller 50. A piston 33 is inserted into the cylinder 32 of the gas engine 3 so as to be able to reciprocate. The piston 33 is connected to a crankshaft 35 via a connecting rod 34. A starter motor M is connected to the crankshaft 35 so that power can be transmitted. The gas engine 3 is provided with a crank angle sensor 36 for detecting the angle (phase) of the crankshaft 35.
 気筒32内におけるピストン33の上方の空間は主燃焼室37である。主燃焼室37には、給気弁40を介して給気ポート38が接続されるとともに、排気弁41を介して排気ポート39が接続されている。給気ポート38には燃料ガスを噴射する主燃料供給弁46が設けられている。主燃焼室37には副燃焼室43が隔壁42を介して隣接している。副燃焼室43は、隔壁42に形成された連通孔42aを介して主燃焼室37と連通している。副燃焼室43には、燃料ガスを噴射する副燃料供給弁47と、混合気を燃焼させるための点火プラグ44とが設けられている。主燃料供給弁46及び副燃料供給弁47には、燃料ガスラインL1が接続されている。エンジンコントローラ50には、クランク角センサ36等からの各種センサ信号が入力され、各燃料供給弁46,47、点火プラグ44及びスタータモータMなどを制御する。また、そのエンジンコントローラ50からの信号により、メインコントローラ30(図1参照)は、ガスエンジン3が起動しているか否かを判定するように構成されている。 The space above the piston 33 in the cylinder 32 is a main combustion chamber 37. An air supply port 38 is connected to the main combustion chamber 37 via an air supply valve 40, and an exhaust port 39 is connected via an exhaust valve 41. The supply port 38 is provided with a main fuel supply valve 46 for injecting fuel gas. A sub-combustion chamber 43 is adjacent to the main combustion chamber 37 through a partition wall 42. The auxiliary combustion chamber 43 communicates with the main combustion chamber 37 via a communication hole 42 a formed in the partition wall 42. The auxiliary combustion chamber 43 is provided with an auxiliary fuel supply valve 47 for injecting fuel gas and an ignition plug 44 for burning the air-fuel mixture. A fuel gas line L <b> 1 is connected to the main fuel supply valve 46 and the sub fuel supply valve 47. Various sensor signals from the crank angle sensor 36 and the like are input to the engine controller 50 to control the fuel supply valves 46 and 47, the spark plug 44, the starter motor M, and the like. The main controller 30 (see FIG. 1) is configured to determine whether or not the gas engine 3 is activated based on a signal from the engine controller 50.
 このガスエンジン3によれば、燃料供給源2(図1参照)からの燃料ガスが燃料ガスラインL1によってガスエンジン3の各燃料供給弁46,47に送られる。そして、給気行程において、主燃焼室37には給気ポート38から空気と主燃料供給弁46が噴射する燃料ガスとを含む混合気が供給され、副燃焼室43には副燃料供給弁47が噴射する燃料ガスを含む混合気が供給される。圧縮行程において、主燃焼室37及び副燃焼室43内の混合気が圧縮された後、点火プラグ44が所定のタイミングで動作して副燃焼室43内の混合気が着火される。副燃焼室43内で発生した火炎は連通孔42aを通じて主燃焼室37内に伝播し、主燃焼室37の混合気が着火される。 According to the gas engine 3, fuel gas from the fuel supply source 2 (see FIG. 1) is sent to the fuel supply valves 46 and 47 of the gas engine 3 through the fuel gas line L1. In the air supply stroke, the main combustion chamber 37 is supplied with an air-fuel mixture including air and the fuel gas injected from the main fuel supply valve 46 from the air supply port 38, and the auxiliary combustion chamber 43 is supplied with the auxiliary fuel supply valve 47. Is supplied with an air-fuel mixture containing fuel gas. In the compression stroke, after the air-fuel mixture in the main combustion chamber 37 and the sub-combustion chamber 43 is compressed, the spark plug 44 operates at a predetermined timing, and the air-fuel mixture in the sub-combustion chamber 43 is ignited. The flame generated in the auxiliary combustion chamber 43 propagates into the main combustion chamber 37 through the communication hole 42a, and the air-fuel mixture in the main combustion chamber 37 is ignited.
 図3は、図1に示すガスエンジン3の燃料調整装置1のガスエンジン起動前における動作手順を説明するフローチャートである。図3に示すように、メインコントローラ30は、ガスエンジン3が起動していない状態で燃料調整装置1を始動させる。その燃料調整装置1の始動前の初期設定では、第1~5遮断弁5,20,23,25,28は、閉じており、かつ、切換弁10,11は、燃料ガスラインL1の燃料ガスがバイパスラインL3を経由せずにバッファタンク7を流れる位置に切り換えられている。 FIG. 3 is a flowchart for explaining an operation procedure of the fuel adjustment device 1 of the gas engine 3 shown in FIG. 1 before starting the gas engine. As shown in FIG. 3, the main controller 30 starts the fuel adjustment device 1 in a state where the gas engine 3 is not started. In the initial setting before starting the fuel adjusting device 1, the first to fifth shut-off valves 5, 20, 23, 25, 28 are closed, and the switching valves 10, 11 are fuel gas in the fuel gas line L1. Is switched to a position where it flows through the buffer tank 7 without passing through the bypass line L3.
 〔循環流起動〕
 燃料調整装置1を始動させるために、メインコントローラ30は、まず、昇圧機16を起動させて(ステップS1)、第5遮断弁28を開く(ステップS2)。これにより、燃料ガスラインL1と循環ラインL7とで形成される循環路に循環流が生成される。
(Circulating flow start)
In order to start the fuel adjusting device 1, the main controller 30 first activates the booster 16 (step S1) and opens the fifth shutoff valve 28 (step S2). As a result, a circulation flow is generated in the circulation path formed by the fuel gas line L1 and the circulation line L7.
 〔燃料回路起動〕
 次いで、メインコントローラ30は、第1遮断弁5を開き(ステップS3)、第1流量調整弁4を全開にする(ステップS4)。これにより、燃料ガスラインL1には、燃料供給源2からの燃料ガスが供給され、メタン価センサ13及びカロリメータ14が配置された部分において燃料ガスの流れが生じる。
[Fuel circuit start-up]
Next, the main controller 30 opens the first cutoff valve 5 (step S3) and fully opens the first flow rate adjustment valve 4 (step S4). As a result, the fuel gas from the fuel supply source 2 is supplied to the fuel gas line L1, and the flow of the fuel gas is generated in the portion where the methane number sensor 13 and the calorimeter 14 are arranged.
 〔不燃性ガス供給回路起動〕
 次いで、メインコントローラ30は、第2遮断弁20を開き(ステップS5)、第2流量調整弁19の開度を制御する(ステップS6)。これにより、貯蔵タンク17からの不燃性ガスが不燃性ガスラインL2を介して燃料ガスラインL1に混入する。このとき、貯蔵タンク17には、ガスエンジン3の前回運転時に排気ラインL4を介して流入した排気ガスが貯蔵されている。これにより、燃料ガスで充満していた循環ラインの中に不燃性ガスが混入され調整される。
[Start non-combustible gas supply circuit]
Next, the main controller 30 opens the second cutoff valve 20 (step S5) and controls the opening degree of the second flow rate adjustment valve 19 (step S6). Thereby, the nonflammable gas from the storage tank 17 mixes in the fuel gas line L1 via the nonflammable gas line L2. At this time, the storage tank 17 stores the exhaust gas flowing in via the exhaust line L4 during the previous operation of the gas engine 3. Thereby, incombustible gas is mixed and adjusted in the circulation line filled with fuel gas.
 〔貯蔵タンクの圧力制御〕
 次いで、メインコントローラ30は、圧力センサ27で検出される貯蔵タンク17の内部圧力が下限圧力以上であるか否かを判定する(ステップS7)。ステップS7でYESの場合には、第4遮断弁25を閉じる(ステップS8)。ステップS7でNOの場合には、不活性ガスタンク24からの不活性ガスを貯蔵タンク17に供給するために第4遮断弁25を開く(ステップS9)。これにより、貯蔵タンク17の内部圧力が燃料ガスラインL1の合流箇所Pの圧力よりも低くならないように保たれる。もし、貯蔵タンク17の内部圧力が低くなって回復しないときは、図示しない監視機能により起動エラーと判断される。
[Storage tank pressure control]
Next, the main controller 30 determines whether or not the internal pressure of the storage tank 17 detected by the pressure sensor 27 is equal to or higher than the lower limit pressure (step S7). If YES in step S7, the fourth shutoff valve 25 is closed (step S8). In the case of NO in step S7, the fourth shutoff valve 25 is opened to supply the inert gas from the inert gas tank 24 to the storage tank 17 (step S9). As a result, the internal pressure of the storage tank 17 is maintained so as not to be lower than the pressure at the junction P of the fuel gas line L1. If the internal pressure of the storage tank 17 becomes low and does not recover, it is determined as a startup error by a monitoring function (not shown).
 〔ガス性状検出及び制御〕
 次いで、メインコントローラ30は、前記した循環流が生じた状態で、性状検出器13,14で検出される値が所定の許容条件を満たしているか否かを判定する。即ち、メインコントローラ30は、メタン価センサ13又はカロリメータ14で検出される値(メタン価又は熱量)が所定の目標値に収束しているか否かを判定する。(ステップS10)。具体的には、メインコントローラ30は、メタン価センサ13又はカロリメータ14で検出される値が前記目標値を含む許容範囲に所定時間にわたって継続して収まっているか否かを判定する。ここで、「目標値」は、ガスエンジン3が過回転やノッキング等の異常動作を起こさずに正常に起動及び運転でき、かつ、ガスエンジン3が高効率で動作できるメタン価又は熱量の最適値である。
[Gas property detection and control]
Next, the main controller 30 determines whether or not the values detected by the property detectors 13 and 14 satisfy a predetermined allowable condition in a state where the above-described circulation flow is generated. That is, the main controller 30 determines whether or not the value (methane number or amount of heat) detected by the methane number sensor 13 or the calorimeter 14 has converged to a predetermined target value. (Step S10). Specifically, the main controller 30 determines whether or not the value detected by the methane number sensor 13 or the calorimeter 14 is continuously within a permissible range including the target value for a predetermined time. Here, the “target value” is the optimum value of the methane number or the calorific value at which the gas engine 3 can be normally started and operated without causing abnormal operation such as overspeeding or knocking, and the gas engine 3 can operate with high efficiency. It is.
 ステップS10でNOの場合には、メタン価センサ13又はカロリメータ14で検出される値が前記目標値に近づくように第2流量調整弁19の開度をフィードバック制御する(ステップS6)。これにより、不燃性ガスラインL2から燃料ガスラインL1に流入する不燃性ガスの流量が調整され、燃料ガスラインLの合流箇所Pの下流側を流れる燃料ガスのメタン価又は熱量が調整される。 If NO in step S10, the opening degree of the second flow rate adjustment valve 19 is feedback controlled so that the value detected by the methane number sensor 13 or the calorimeter 14 approaches the target value (step S6). As a result, the flow rate of the incombustible gas flowing into the fuel gas line L1 from the incombustible gas line L2 is adjusted, and the methane number or the amount of heat of the fuel gas flowing downstream of the joining point P of the fuel gas line L is adjusted.
 〔バッファタンク低圧インターロック〕
 ステップS10でYESの場合には、メインコントローラ30は、圧力センサ9で検出されるバッファタンク7の内部圧力が所定の下限圧力以上であるか否かを判定する(ステップS11)。ステップS11でNOの場合には、ステップS6に戻る。これにより、バッファタンク7の内部圧力が低すぎる状態のままでガスエンジン3が起動して、ガスエンジン3への燃料供給圧が不足することが防止される。
[Buffer tank low pressure interlock]
If YES in step S10, the main controller 30 determines whether or not the internal pressure of the buffer tank 7 detected by the pressure sensor 9 is equal to or higher than a predetermined lower limit pressure (step S11). If NO in step S11, the process returns to step S6. This prevents the gas engine 3 from being started with the internal pressure of the buffer tank 7 being too low, and the fuel supply pressure to the gas engine 3 from being insufficient.
 〔バッファタンク高圧インターロック〕
 ステップS11でYESの場合には、メインコントローラ30は、バッファタンク7の安全弁8が作動した否かを判定する(ステップS12)。ステップS12でYESの場合には、ステップS6に戻る。これにより、安全弁8が作動してバッファタンク7の内部圧力が変動した状態のままでガスエンジン3が起動することが防止される。
[Buffer tank high pressure interlock]
If YES in step S11, the main controller 30 determines whether or not the safety valve 8 of the buffer tank 7 has been actuated (step S12). If YES in step S12, the process returns to step S6. This prevents the gas engine 3 from starting while the safety valve 8 is activated and the internal pressure of the buffer tank 7 fluctuates.
 〔起動〕
 ステップS12でNOの場合には、メインコントローラ30は、第5遮断弁28を閉じて循環ラインL7の流れを遮断し(ステップS13)、エンジンコントローラ50に指令してガスエンジン3を起動する(ステップS14)。
〔Start-up〕
If NO in step S12, the main controller 30 closes the fifth shutoff valve 28 to shut off the flow of the circulation line L7 (step S13), and instructs the engine controller 50 to start the gas engine 3 (step S13). S14).
 〔排気ガス混合ライン起動〕
 図4は、図1に示すガスエンジン3の燃料調整装置1のガスエンジン起動後における動作手順を説明するフローチャートである。図4に示すように、ガスエンジン3が起動すると、メインコントローラ30は、第3遮断弁23を開き(ステップS21)、第4遮断弁25を閉じる(ステップS22)。これにより、ガスエンジン3からの排気ガスが貯蔵タンク17に供給され、その排気ガスが不燃性ガスとして不燃性ガスラインL2を介して燃料ガスラインL1に混入される。
[Exhaust gas mixing line start]
FIG. 4 is a flowchart for explaining an operation procedure after the gas engine is started of the fuel adjustment device 1 of the gas engine 3 shown in FIG. As shown in FIG. 4, when the gas engine 3 is started, the main controller 30 opens the third cutoff valve 23 (step S21) and closes the fourth cutoff valve 25 (step S22). Thereby, the exhaust gas from the gas engine 3 is supplied to the storage tank 17, and the exhaust gas is mixed as a non-combustible gas into the fuel gas line L1 via the non-combustible gas line L2.
 〔冷却器起動〕
 次いで、メインコントローラ30は、冷却器18を起動する(ステップS23)。これにより、ガスエンジン3からの高熱の排気ガスは、冷却されたうえで燃料ガスラインL1に混入される。
[Cooler start-up]
Next, the main controller 30 starts the cooler 18 (step S23). As a result, the hot exhaust gas from the gas engine 3 is cooled and mixed into the fuel gas line L1.
 〔燃料ライン切替〕
 そして、メインコントローラ30は、燃料ガスがバッファタンク7を経由せずにバイパスラインL3を流れるように切換弁10,11を切り換える(ステップS24)。即ち、メインコントローラ30は、ガスエンジン3が運転状態にあるときには、バイパスラインL3によるバッファタンク7を経由しない燃料ガスの流れを選択する。
[Fuel line switching]
Then, the main controller 30 switches the switching valves 10 and 11 so that the fuel gas flows through the bypass line L3 without passing through the buffer tank 7 (step S24). That is, the main controller 30 selects the flow of fuel gas that does not pass through the buffer tank 7 by the bypass line L3 when the gas engine 3 is in an operating state.
 〔排気ガス流量調整〕
 次いで、メインコントローラ30は、第3流量調整弁22を一旦全開にしてから(ステップS25)、第3流量調整弁22の開度を制御する(ステップS26)。これにより、ガスエンジン3から貯蔵タンク17に向けて流れる排気ガスの流量が調節される。次いで、メインコントローラ30は、ステップS10と同様に、メタン価センサ13又はカロリメータ14で検出される値(メタン価又は熱量)が所定の目標値に収束しているか否かを判定する。(ステップS27)。ステップS27でNOの場合には、ステップS26に戻ることで、メタン価センサ13又はカロリメータ14で検出される値が前記目標値に近づくように第3流量調整弁22の開度をフィードバック制御する。
[Exhaust gas flow adjustment]
Next, the main controller 30 once opens the third flow rate adjustment valve 22 (step S25), and then controls the opening degree of the third flow rate adjustment valve 22 (step S26). As a result, the flow rate of the exhaust gas flowing from the gas engine 3 toward the storage tank 17 is adjusted. Next, as in step S10, the main controller 30 determines whether or not the value (methane number or amount of heat) detected by the methane number sensor 13 or the calorimeter 14 has converged to a predetermined target value. (Step S27). In the case of NO in step S27, by returning to step S26, the opening degree of the third flow rate adjusting valve 22 is feedback-controlled so that the value detected by the methane number sensor 13 or the calorimeter 14 approaches the target value.
 〔定常制御〕
 ステップS27でYESの場合には、メインコントローラ30は、第2流量調整弁19を制御して開度を徐々に増加させる(ステップS28)。そして、メインコントローラ30は、第2流量調整弁19が全開になったか否かを判定する(ステップS29)。ステップS29でNOの場合には、ステップS26に戻る。ステップS29でYESの場合には、メインコントローラ30は、ステップS27と同様に、メタン価センサ13又はカロリメータ14で検出される値(メタン価又は熱量)が所定の目標値に収束しているか否かを判定する。(ステップS30)。ステップS30でNOの場合には、メタン価センサ13又はカロリメータ14で検出される値が前記目標値に近づくように第3流量調整弁22の開度をフィードバック制御する(ステップS31)。ステップS30でYESの場合には、第3流量調整弁22の開度を変化させず、通常運転を行う(ステップS32)。
(Steady control)
If YES in step S27, the main controller 30 controls the second flow rate adjustment valve 19 to gradually increase the opening (step S28). Then, the main controller 30 determines whether or not the second flow rate adjustment valve 19 is fully opened (step S29). If NO in step S29, the process returns to step S26. If YES in step S29, the main controller 30 determines whether or not the value (methane number or calorific value) detected by the methane number sensor 13 or the calorimeter 14 has converged to a predetermined target value, as in step S27. Determine. (Step S30). In the case of NO in step S30, the opening degree of the third flow rate adjustment valve 22 is feedback controlled so that the value detected by the methane number sensor 13 or the calorimeter 14 approaches the target value (step S31). If YES in step S30, normal operation is performed without changing the opening of the third flow rate adjustment valve 22 (step S32).
 〔酸素濃度制御〕
 なお、図3及び4のフローチャートには記載していないが、ガスエンジン3の起動前も起動後も、酸素濃度計12で計測される酸素濃度が所定の上限値を超えたときには、メインコントローラ30は、第3遮断弁23を閉じるとともに第4遮断弁25を開き、不活性ガスを貯蔵タンク17に供給する。これにより、燃料ガスラインL1を流れる燃料ガスは、爆発限界未満に保たれることとなる。
[Oxygen concentration control]
Although not described in the flowcharts of FIGS. 3 and 4, the main controller 30 is used when the oxygen concentration measured by the oximeter 12 exceeds a predetermined upper limit value before and after the gas engine 3 is started. Closes the third shut-off valve 23 and opens the fourth shut-off valve 25 to supply the inert gas to the storage tank 17. As a result, the fuel gas flowing through the fuel gas line L1 is kept below the explosion limit.
 以上に説明した構成によれば、燃料供給源2からの燃料ガスの性状が異なる場合でも、メタン価センサ13又はカロリメータ14で検出された値に応じた第2流量調整弁19や第3流量調整弁22の制御により不燃性ガスの混入量が調整されて、ガスエンジン3の燃料供給弁46,47に送られる燃料ガスの性状が目標値に近づくように自動調整される。よって、燃料供給源2からの燃料ガスの性状が変わっても、その燃料ガスの性状を予め把握してガスエンジン3の仕様を変更する必要をなくすことができる。そして、ガスエンジン3にとって最適な性状の燃料ガスが安定して供給されるので、燃料供給源2の燃料種類にかかわらずガスエンジン3を効率良く稼働することが可能となる。 According to the configuration described above, even when the properties of the fuel gas from the fuel supply source 2 are different, the second flow rate adjustment valve 19 or the third flow rate adjustment according to the value detected by the methane number sensor 13 or the calorimeter 14 is performed. The amount of the incombustible gas mixed is adjusted by the control of the valve 22, and the property of the fuel gas sent to the fuel supply valves 46 and 47 of the gas engine 3 is automatically adjusted so as to approach the target value. Therefore, even if the properties of the fuel gas from the fuel supply source 2 change, it is possible to eliminate the need to know the properties of the fuel gas in advance and change the specifications of the gas engine 3. Since the fuel gas having the optimum properties for the gas engine 3 is stably supplied, the gas engine 3 can be operated efficiently regardless of the fuel type of the fuel supply source 2.
 また、ガスエンジン3の運転時において、不燃性ガスとしてガスエンジン3から出る排気ガスが利用される。そして、不燃性ガスラインL2に貯蔵タンク17を設けることで、ガスエンジン3の起動前に燃料ガスに混入させる不燃性ガスとして、ガスエンジン3の前回運転時の排気ガスが利用可能となる。よって、放出される排気ガスの増加を抑制できるとともに、不燃性ガスの供給コストを低減することが可能となる。 Further, when the gas engine 3 is operated, exhaust gas emitted from the gas engine 3 is used as a nonflammable gas. And by providing the storage tank 17 in the incombustible gas line L2, the exhaust gas at the previous operation of the gas engine 3 can be used as the incombustible gas to be mixed into the fuel gas before the gas engine 3 is started. Therefore, it is possible to suppress an increase in the exhaust gas that is released, and to reduce the supply cost of the incombustible gas.
 さらに、ガスエンジン3の起動前において、燃料ガスラインL1に流れを生じさせるための流路を形成し、燃料ガスラインに燃料ガスの流れを生じさせた状態で第2流量調整弁19の開度を制御するので、ガスエンジン3の起動前から燃料ガスの性状が目標値に近づくように自動調整される。よって、例えば、過剰に熱量の高い燃料ガスが供給された場合でも、ガスエンジン3が設計通りの回転数で始動し、安定的に正常起動することが可能になる。 Furthermore, before the gas engine 3 is started, a flow path for generating a flow in the fuel gas line L1 is formed, and the opening degree of the second flow rate adjusting valve 19 in a state in which the flow of the fuel gas is generated in the fuel gas line. Therefore, the fuel gas is automatically adjusted so as to approach the target value before the gas engine 3 is started. Therefore, for example, even when a fuel gas having an excessively high heat amount is supplied, the gas engine 3 can be started at the designed number of rotations and stably started normally.
 また、ガスエンジン3の起動前において燃料ガスラインに流れを生じさせるにあたり、循環ラインL7で流路を形成したので、起動前のガスエンジン3の給気弁40又は排気弁41が閉じた状態でも、燃料ガスラインL1に簡単に流れを生じさせることができる。そして、その燃料ガスの流れが循環流を形成するので、その燃料ガスをガスエンジン3の起動後の運転に有効利用することが可能となる。 Further, when the flow is generated in the fuel gas line before the gas engine 3 is started, the flow path is formed in the circulation line L7. Therefore, even when the supply valve 40 or the exhaust valve 41 of the gas engine 3 before the start is closed. The flow can be easily generated in the fuel gas line L1. Since the flow of the fuel gas forms a circulation flow, the fuel gas can be effectively used for the operation after the gas engine 3 is started.
 さらに、燃料ガスラインL1のうち合流箇所P1の下流側にはバッファタンク7が設けられているので、ガスエンジン3の起動前に循環流を生じさせた状態で循環路にガス供給することで圧力が高まっても、バッファタンク7で吸収することが可能となる。そして、不燃性ガスが混入された燃料ガスに脈動等が生じても、その圧力変動がバッファタンク7で吸収され、ガスエンジン3に安定した圧力の燃料ガスを供給することが可能になる。また、切換弁10,11によってバイパスラインL3によるバッファタンク7を経由しない燃料ガスの流れを選択することで、第2流量調整弁19又は第3流量調整弁22の開度変化に対する燃料ガスの性状変化の応答性を向上させることが可能となる。 Further, since the buffer tank 7 is provided on the downstream side of the joining point P1 in the fuel gas line L1, the pressure is obtained by supplying gas to the circulation path in a state where a circulation flow is generated before the gas engine 3 is started. Even if it increases, the buffer tank 7 can absorb it. Even if pulsation or the like occurs in the fuel gas mixed with the non-combustible gas, the pressure fluctuation is absorbed by the buffer tank 7, and the fuel gas having a stable pressure can be supplied to the gas engine 3. Further, by selecting the flow of the fuel gas that does not pass through the buffer tank 7 by the bypass line L3 by the switching valves 10 and 11, the property of the fuel gas with respect to the opening degree change of the second flow rate adjustment valve 19 or the third flow rate adjustment valve 22 It becomes possible to improve the responsiveness of change.
 (第2実施形態)
 図5は、本発明の第2実施形態に係るガスエンジン3の燃料調整装置101を示すブロック図である。なお、第1実施形態と共通する構成については同一符号を付して説明を省略する。図5に示すように、第2実施形態の燃料調整装置101では、流路形成装置151が第1実施形態の流路形成装置51と相違している。燃料調整装置101では、第1実施形態の循環ラインL7、第5遮断弁28、第2逆止弁29、バッファタンク7、バイパスラインL3、切換弁10,11を廃止している。その代わりに、燃料ガスラインL1の中間流出部31には、そこから流出する燃料ガスを外部に導くための分岐ラインL8が接続されている。例えば、分岐ラインL8は、燃料タンク(図示せず)に接続されてもよいし、他の系統に接続されてもよい。そして、分岐ラインL8には、第6遮断弁61が設けられており、その第6遮断弁61は、メインコントローラ130で制御される。即ち、分岐ラインL8及び第6遮断弁61が、ガスエンジン3の起動前において燃料ガスラインL1に流れを生じさせるための流路を形成する流路形成装置151の役目を果たしている。
(Second Embodiment)
FIG. 5 is a block diagram showing the fuel adjustment device 101 of the gas engine 3 according to the second embodiment of the present invention. In addition, about the structure which is common in 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted. As shown in FIG. 5, in the fuel adjustment device 101 of the second embodiment, the flow path forming device 151 is different from the flow path forming device 51 of the first embodiment. In the fuel adjusting device 101, the circulation line L7, the fifth shutoff valve 28, the second check valve 29, the buffer tank 7, the bypass line L3, and the switching valves 10 and 11 of the first embodiment are eliminated. Instead, a branch line L8 is connected to the intermediate outflow portion 31 of the fuel gas line L1 for guiding the fuel gas flowing out therefrom to the outside. For example, the branch line L8 may be connected to a fuel tank (not shown) or may be connected to another system. The branch line L <b> 8 is provided with a sixth cutoff valve 61, and the sixth cutoff valve 61 is controlled by the main controller 130. That is, the branch line L8 and the sixth shut-off valve 61 serve as a flow path forming device 151 that forms a flow path for causing a flow in the fuel gas line L1 before the gas engine 3 is started.
 図6は、図5に示すガスエンジン3の燃料調整装置101のガスエンジン起動前における動作手順を説明するフローチャートである。なお、第1実施形態と共通するステップについては同一符号を付して説明を省略する。図6に示すように、メインコントローラ130は、ガスエンジン3が起動していない状態で燃料調整装置101を始動させるために、ステップS1の後、第6遮断弁61を開く(ステップS102)。また、メインコントローラ130は、ステップS10でYESの場合に、第6遮断弁61を閉じ(ステップS113)、ガスエンジン3を起動する(ステップS14)。このような構成によれば、簡素な構成でガスエンジン3の起動前に燃料ガスの性状を調整することが可能になる。 FIG. 6 is a flowchart for explaining an operation procedure of the fuel adjustment device 101 of the gas engine 3 shown in FIG. 5 before starting the gas engine. Note that steps common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 6, the main controller 130 opens the sixth shut-off valve 61 after step S1 in order to start the fuel adjustment device 101 in a state where the gas engine 3 is not activated (step S102). Moreover, the main controller 130 closes the 6th cutoff valve 61 (step S113) and starts the gas engine 3 (step S14), when YES at step S10. According to such a configuration, it is possible to adjust the properties of the fuel gas before starting the gas engine 3 with a simple configuration.
 なお、本発明は前述した各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲でその構成を変更、追加、又は削除することができる。前記各実施形態は互いに任意に組み合わせてもよく、例えば1つの実施形態中の一部の構成又は方法を他の実施形態に適用してもよい。本実施形態では、昇圧機16を用いたが、燃料ガスラインL1に流れを生じさせる流れ生成器であれば、これに限られない。また、性状検出器としては、燃料ガスラインL1のうち合流箇所P1よりも下流側を流れる燃料ガスのメタン価を検出するメタン価センサ13、又は、当該燃料ガスの熱量を検出するカロリメータ14を使用したが、これに限られない。例えば、性状検出器は、燃料ガスラインL1のうち合流箇所P1よりも下流側を流れる燃料ガスの成分を検出するガスクロマトグラフィであってもよい。 The present invention is not limited to the above-described embodiments, and the configuration can be changed, added, or deleted without departing from the spirit of the present invention. The above embodiments may be arbitrarily combined with each other. For example, some configurations or methods in one embodiment may be applied to other embodiments. In the present embodiment, the booster 16 is used, but the present invention is not limited to this as long as it is a flow generator that generates a flow in the fuel gas line L1. Further, as the property detector, a methane number sensor 13 for detecting the methane number of the fuel gas flowing downstream from the joining point P1 in the fuel gas line L1, or a calorimeter 14 for detecting the heat amount of the fuel gas is used. However, it is not limited to this. For example, the property detector may be a gas chromatography that detects a component of the fuel gas that flows downstream from the junction P1 in the fuel gas line L1.
 以上のように、本発明に係るガスエンジンの燃料調整装置及び方法は、燃料供給源からの燃料ガスの性状が変わっても、その燃料ガスの性状を予め把握してガスエンジンの仕様を変更する必要をなくすことができ、燃料供給源の燃料種類にかかわらずガスエンジンを効率良く稼働することができる優れた効果を有し、この効果の意義を発揮できるガスエンジンに広く適用すると有益である。 As described above, the fuel adjustment device and method for a gas engine according to the present invention changes the specifications of the gas engine by grasping the properties of the fuel gas in advance even if the properties of the fuel gas from the fuel supply source change. It is beneficial to apply widely to gas engines that can eliminate the need and have an excellent effect of efficiently operating the gas engine regardless of the fuel type of the fuel supply source, and can exhibit the significance of this effect.
1,101 燃料調整装置
2  燃料供給源
3  ガスエンジン
7  バッファタンク
10,11 切換弁
13 メタン価センサ(性状検出器)
14 カロリメータ(性状検出器)
17 貯蔵タンク
19 第2流量調整弁
22 第3流量調整弁
28 第5遮断弁
30,130 メインコントローラ
31 中間流出部
39 排気ポート
46 主燃料供給弁
47 副燃料供給弁
51,151 流路形成装置
61 第6遮断弁
L1 燃料ガスライン
L2 不燃性ガスライン
L3 バイパスライン
L4 排気ライン
L5 放出ライン
L6 不活性ガスライン
L7 循環ライン
L8 分岐ライン
DESCRIPTION OF SYMBOLS 1,101 Fuel regulator 2 Fuel supply source 3 Gas engine 7 Buffer tank 10, 11 Switching valve 13 Methane number sensor (property detector)
14 Calorimeter (Property detector)
17 Storage tank 19 Second flow rate adjustment valve 22 Third flow rate adjustment valve 28 Fifth shut-off valve 30, 130 Main controller 31 Intermediate outlet 39 Exhaust port 46 Main fuel supply valve 47 Sub fuel supply valve 51, 151 Flow path forming device 61 Sixth shutoff valve L1 Fuel gas line L2 Incombustible gas line L3 Bypass line L4 Exhaust line L5 Release line L6 Inert gas line L7 Circulation line L8 Branch line

Claims (9)

  1.  燃料供給源からの燃料ガスをガスエンジンの燃料供給弁に送る燃料ガスラインと、
     前記燃料ガスラインに接続され、前記燃料ガスラインの前記燃料ガスに不燃性ガスを混入させる不燃性ガスラインと、
     前記不燃性ガスラインから前記燃料ガスラインに流入する前記不燃性ガスの流量を調整する流量調整弁と、
     前記燃料ガスラインのうち前記不燃性ガスラインが接続された合流箇所よりも下流側を流れる前記燃料ガスの性状を検出するための性状検出器と、
     前記性状検出器で検出される値が所定の目標値に近づくように前記流量調整弁の開度を制御するコントローラと、を備えている、ガスエンジンの燃料調整装置。
    A fuel gas line for sending fuel gas from a fuel supply source to a fuel supply valve of the gas engine;
    An incombustible gas line connected to the fuel gas line, for mixing an incombustible gas into the fuel gas of the fuel gas line;
    A flow rate adjusting valve for adjusting a flow rate of the non-combustible gas flowing from the non-combustible gas line into the fuel gas line;
    A property detector for detecting the property of the fuel gas flowing downstream from the joining point to which the incombustible gas line is connected among the fuel gas lines;
    And a controller for controlling an opening degree of the flow rate adjusting valve so that a value detected by the property detector approaches a predetermined target value.
  2.  前記不燃性ガスラインは、前記ガスエンジンの排気ポートに接続され、
     前記燃料ガスラインの前記燃料ガスに混入する前記不燃性ガスは、前記ガスエンジンからの排気ガスを含んでいる、請求項1に記載のガスエンジンの燃料調整装置。
    The incombustible gas line is connected to an exhaust port of the gas engine;
    The fuel adjustment device for a gas engine according to claim 1, wherein the incombustible gas mixed in the fuel gas in the fuel gas line includes exhaust gas from the gas engine.
  3.  前記ガスエンジンの起動前において前記燃料ガスラインに流れを生じさせるための流路を形成する流路形成装置を更に備え、
     前記コントローラは、前記ガスエンジンの起動前において、前記流路形成装置を制御して前記流路を形成して前記燃料ガスラインに前記燃料ガスの流れを生じさせた状態で、前記性状検出器で検出される値が所定の目標値に近づくように前記流量調整弁の開度を制御する、請求項1又は2に記載のガスエンジンの燃料調整装置。
    A flow path forming device for forming a flow path for generating a flow in the fuel gas line before starting the gas engine;
    The controller is configured to control the flow path forming device to form the flow path and generate a flow of the fuel gas in the fuel gas line before starting the gas engine. The fuel adjustment device for a gas engine according to claim 1 or 2, wherein an opening degree of the flow rate adjustment valve is controlled so that a detected value approaches a predetermined target value.
  4.  前記流路形成装置は、前記燃料ガスラインのうち前記合流箇所と前記燃料供給弁との間の部分に設けられた、前記燃料ガスラインの前記燃料ガスが流出可能な中間流出部と、前記中間流出部からの前記燃料ガスの流出を遮断可能な遮断弁と、を有し、
     前記コントローラは、前記ガスエンジンの起動前において、前記遮断弁を開いて前記燃料ガスラインに前記中間流出部に向けた前記燃料ガスの流れを生じさせた状態で、前記性状検出器で検出される値が所定の目標値に近づくように前記流量調整弁の開度を制御する、請求項3に記載のガスエンジンの燃料調整装置。
    The flow path forming device includes an intermediate outflow portion that is provided in a portion of the fuel gas line between the junction and the fuel supply valve and from which the fuel gas can flow out of the fuel gas line, A shutoff valve capable of shutting off the outflow of the fuel gas from the outflow part,
    The controller detects the property detector in a state where the shutoff valve is opened to cause the fuel gas to flow toward the intermediate outflow portion in the fuel gas line before the gas engine is started. The fuel adjustment device for a gas engine according to claim 3, wherein the opening degree of the flow rate adjustment valve is controlled so that the value approaches a predetermined target value.
  5.  前記中間流出部から流出する燃料ガスを前記燃料ガスラインのうち前記中間流出部よりも上流側の部分に戻して、前記燃料ガスラインとともに循環路を形成するための循環ラインを更に備え、
     前記コントローラは、前記ガスエンジンの起動前において、前記遮断弁を開いて前記循環路に循環流を生じさせた状態で、前記性状検出器で検出される値が所定の目標値に近づくように前記流量調整弁の開度を制御する、請求項4に記載のガスエンジンの燃料調整装置。
    The fuel gas flowing out from the intermediate outflow portion is returned to a portion upstream of the intermediate outflow portion in the fuel gas line, and further includes a circulation line for forming a circulation path together with the fuel gas line,
    The controller opens the shut-off valve before the gas engine is started to generate a circulation flow in the circulation path so that the value detected by the property detector approaches a predetermined target value. The fuel adjustment device for a gas engine according to claim 4, wherein the opening degree of the flow rate adjustment valve is controlled.
  6.  前記不燃性ガスラインに設けられた貯蔵タンクを更に備え、
     前記不燃性ガスラインは、前記貯蔵タンクよりも上流側で前記ガスエンジンの排気ポートに接続され、
     前記コントローラは、前記ガスエンジンの起動前において、前記ガスエンジンの前回運転時に前記貯蔵タンクに貯蔵された排気ガスを前記燃料ガスラインに混入させるように前記流量調整弁の開度を制御する、請求項3乃至5のいずれかに記載のガスエンジンの燃料調整装置。
    A storage tank provided in the incombustible gas line;
    The non-combustible gas line is connected to an exhaust port of the gas engine upstream of the storage tank;
    The controller controls the opening of the flow rate adjustment valve so that the exhaust gas stored in the storage tank during the previous operation of the gas engine is mixed into the fuel gas line before the gas engine is started. Item 6. The fuel adjustment device for a gas engine according to any one of Items 3 to 5.
  7.  前記燃料ガスラインのうち前記合流箇所の下流側に設けられたバッファタンクを更に備えている、請求項1乃至6のいずれかに記載のガスエンジンの燃料調整装置。 The fuel adjustment device for a gas engine according to any one of claims 1 to 6, further comprising a buffer tank provided on the downstream side of the joining location in the fuel gas line.
  8.  前記バッファタンクを迂回するように前記燃料ガスラインに接続されたバイパスラインと、
     前記バッファタンクを通過する前記燃料ガスの流れと前記バイパスラインを通過する前記燃料ガスの流れとを選択的に切り換える切換弁と、を更に備えている、請求項7に記載のガスエンジンの燃料調整装置。
    A bypass line connected to the fuel gas line to bypass the buffer tank;
    The fuel adjustment of the gas engine according to claim 7, further comprising a switching valve that selectively switches between the flow of the fuel gas passing through the buffer tank and the flow of the fuel gas passing through the bypass line. apparatus.
  9.  燃料供給源からの燃料ガスをガスエンジンの燃料供給弁に送る第1工程と、
     前記燃料供給弁よりも上流側で前記燃料ガスに不燃性ガスを混入させる第2工程と、
     前記不燃性ガスが混入した前記燃料ガスの性状を検出する第3工程と、
     前記検出される性状の値が所定の目標値に近づくように前記燃料ガスに混入させる前記不燃性ガスの流量を調整する第4工程と、を備えている、ガスエンジンの燃料調整方法。
    A first step of sending fuel gas from a fuel supply source to a fuel supply valve of a gas engine;
    A second step of mixing non-combustible gas into the fuel gas upstream of the fuel supply valve;
    A third step of detecting properties of the fuel gas mixed with the non-combustible gas;
    And a fourth step of adjusting a flow rate of the non-combustible gas mixed into the fuel gas so that the detected property value approaches a predetermined target value.
PCT/JP2012/003372 2012-05-23 2012-05-23 Device and method for adjusting fuel for gas engines WO2013175530A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014516510A JP6014660B2 (en) 2012-05-23 2012-05-23 Gas engine fuel conditioning apparatus and method
PCT/JP2012/003372 WO2013175530A1 (en) 2012-05-23 2012-05-23 Device and method for adjusting fuel for gas engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003372 WO2013175530A1 (en) 2012-05-23 2012-05-23 Device and method for adjusting fuel for gas engines

Publications (1)

Publication Number Publication Date
WO2013175530A1 true WO2013175530A1 (en) 2013-11-28

Family

ID=49623268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003372 WO2013175530A1 (en) 2012-05-23 2012-05-23 Device and method for adjusting fuel for gas engines

Country Status (2)

Country Link
JP (1) JP6014660B2 (en)
WO (1) WO2013175530A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015128903A1 (en) * 2014-02-28 2015-09-03 日揮株式会社 Receiving equipment for liquefied natural gas
JP2016105022A (en) * 2016-03-01 2016-06-09 日揮株式会社 Liquefied natural gas receiving facility
WO2016194283A1 (en) * 2015-06-03 2016-12-08 川崎重工業株式会社 Gas engine fuel supply device
EP3267008A1 (en) * 2016-07-06 2018-01-10 Mahle Powertrain LLC Method for starting an internal combustion engine
JP2019099817A (en) * 2017-12-01 2019-06-24 インフィニューム インターナショナル リミテッド Marine engine lubrication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119950A (en) * 1979-03-05 1980-09-16 Kawasaki Heavy Ind Ltd Fuel gas feeding apparatus
JP2003314316A (en) * 2002-04-18 2003-11-06 Tokyo Gas Co Ltd Prechamber type gas engine and control method thereof
JP2003328800A (en) * 2002-05-13 2003-11-19 Tokyo Gas Co Ltd Gas engine and its control method
JP2005076548A (en) * 2003-09-01 2005-03-24 Nissan Diesel Motor Co Ltd Fuel supply device for engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004278468A (en) * 2003-03-18 2004-10-07 Ntt Power & Building Facilities Inc Fuel supplying system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119950A (en) * 1979-03-05 1980-09-16 Kawasaki Heavy Ind Ltd Fuel gas feeding apparatus
JP2003314316A (en) * 2002-04-18 2003-11-06 Tokyo Gas Co Ltd Prechamber type gas engine and control method thereof
JP2003328800A (en) * 2002-05-13 2003-11-19 Tokyo Gas Co Ltd Gas engine and its control method
JP2005076548A (en) * 2003-09-01 2005-03-24 Nissan Diesel Motor Co Ltd Fuel supply device for engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015128903A1 (en) * 2014-02-28 2015-09-03 日揮株式会社 Receiving equipment for liquefied natural gas
JP5959782B2 (en) * 2014-02-28 2016-08-02 日揮株式会社 Facility for receiving liquefied natural gas
WO2016194283A1 (en) * 2015-06-03 2016-12-08 川崎重工業株式会社 Gas engine fuel supply device
JP2016223416A (en) * 2015-06-03 2016-12-28 川崎重工業株式会社 Fuel supply device for gas engine
JP2016105022A (en) * 2016-03-01 2016-06-09 日揮株式会社 Liquefied natural gas receiving facility
EP3267008A1 (en) * 2016-07-06 2018-01-10 Mahle Powertrain LLC Method for starting an internal combustion engine
JP2019099817A (en) * 2017-12-01 2019-06-24 インフィニューム インターナショナル リミテッド Marine engine lubrication

Also Published As

Publication number Publication date
JPWO2013175530A1 (en) 2016-01-12
JP6014660B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6014660B2 (en) Gas engine fuel conditioning apparatus and method
JP6684492B2 (en) Dual fuel engine and control method
JP5583825B2 (en) Internal combustion engine with variable fuel injection profile
JP2020023975A (en) engine
US9845743B2 (en) Controlling an internal combustion engine operated on gaseous fuel
CN102454486A (en) A method and system for preventing combustion instabilities during transient operations
KR101755969B1 (en) Fuel control device for gas engine
JP6517117B2 (en) Engine equipment
KR101967591B1 (en) Engine device
KR20140033324A (en) Method of operating an internal combustion piston engine in transient load change, a control system for controlling the operating of an internal combustion engine, and a piston engine
KR101864971B1 (en) Gas fuel supply system and method for detecting abnormality of gas fuel supply system
JP2010014112A (en) Switchable multi-fuel engine and fuel switching method in the multi-fuel engine
JP5826095B2 (en) Sub-chamber gas engine operating method and sub-chamber gas engine
JP2004190640A (en) Premixed forced ignition type gas engine
JP2005171975A (en) Combustion control method and combustion control device in gas engine
KR102172165B1 (en) Engine including knocking control system and knock controlling method of engine
EP3434885B1 (en) Method of operating an electric power generator set and an electric power generator set
KR102056558B1 (en) engine
KR20160041522A (en) Cylinder start of combustion balancing system and method by control pilot oil quantity of dual fuel engine
WO2017013939A1 (en) Engine device
JP6404781B2 (en) Engine equipment
KR20150087597A (en) Fuel supply apparatus for LPG and NG
JP2005315177A (en) Pilot oil supply timing adjusting method and pilot oil supply timing adjusting device for pilot ignition gas engine
JP4461129B2 (en) Multi-fuel gas engine operating method and fuel switching device
KR20140127454A (en) Cylinder balancing system and method by control duration of combustion of dual fuel engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014516510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12877411

Country of ref document: EP

Kind code of ref document: A1